Science.gov

Sample records for adsorption experiments show

  1. A Simple Adsorption Experiment

    ERIC Educational Resources Information Center

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  2. Casimir experiments showing saturation effects

    SciTech Connect

    Sernelius, Bo E.

    2009-10-15

    We address several different Casimir experiments where theory and experiment disagree. First out is the classical Casimir force measurement between two metal half spaces; here both in the form of the torsion pendulum experiment by Lamoreaux and in the form of the Casimir pressure measurement between a gold sphere and a gold plate as performed by Decca et al.; theory predicts a large negative thermal correction, absent in the high precision experiments. The third experiment is the measurement of the Casimir force between a metal plate and a laser irradiated semiconductor membrane as performed by Chen et al.; the change in force with laser intensity is larger than predicted by theory. The fourth experiment is the measurement of the Casimir force between an atom and a wall in the form of the measurement by Obrecht et al. of the change in oscillation frequency of a {sup 87}Rb Bose-Einstein condensate trapped to a fused silica wall; the change is smaller than predicted by theory. We show that saturation effects can explain the discrepancies between theory and experiment observed in all these cases.

  3. Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: batch and column experiments.

    PubMed

    Seo, Dong Cheol; Yu, Kewei; DeLaune, Ronald D

    2008-12-01

    Monometal and multimetal adsorption of selected heavy metals in a sediment from a coastal Louisiana forested swamp used for wastewater treatment was studied. Results from the batch experiments show that the maximum adsorption capacities of the metals by the sediment were in the order of Pb>Hg>Cr>CdCuZn>As based on monometal adsorption isotherm, and Hg>Cr>CuCd approximately Pb>As approximately Zn based on multimetal adsorption isotherm, respectively. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the maximum adsorption capacities of the metals were in the order of Pb>Hg>Cr>Cd>Cu>Zn>As in monometal conditions, and Hg>Cr>Pb>CuZn approximately Cd>As in multimetal conditions. The metals became more mobile in multimetal than in monometal conditions. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. Particularly, in this study, Pb in multimetal conditions lost it adsorption capacity most significantly. In both monometal and multimetal conditions, the maximum adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in sediments.

  4. Experiments showing dynamics of materials interfaces

    SciTech Connect

    Benjamin, R.F.

    1997-02-01

    The discipline of materials science and engineering often involves understanding and controlling properties of interfaces. The authors address the challenge of educating students about properties of interfaces, particularly dynamic properties and effects of unstable interfaces. A series of simple, inexpensive, hands-on activities about fluid interfaces provides students with a testbed to develop intuition about interface dynamics. The experiments highlight the essential role of initial interfacial perturbations in determining the dynamic response of the interface. The experiments produce dramatic, unexpected effects when initial perturbations are controlled and inhibited. These activities help students to develop insight about unstable interfaces that can be applied to analogous problems in materials science and engineering. The lessons examine ``Rayleigh-Taylor instability,`` an interfacial instability that occurs when a higher-density fluid is above a lower-density fluid.

  5. Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments.

    PubMed

    Pavagadhi, Shruti; Tang, Ai Ling Lena; Sathishkumar, Muthuswamy; Loh, Kian Ping; Balasubramanian, Rajasekhar

    2013-09-01

    Graphene oxide (GO) was employed in the present study for removal of two commonly occurring algal toxins, microcystin-LR (MC-LR) and microcystin-RR (MC-RR), from water. The adsorption performance of GO was compared to that of commercially available activated carbon. Further, adsorption experiments were conducted in the presence of other environmental pollutants to understand the matrix effects of contaminated water on the selective adsorption of MC-LR and MC-RR onto GO. The environmental pollutants addressed in this study included different anions (nitrate NO3-, nitrite NO2-, sulphate SO4(2-), chloride (Cl(-)), phosphate PO4(3-) and fluoride (F(-))) and cations (sodium (Na(+)), potassium (K(+)), magnesium (Mg(2+)) and calcium (Ca(2+))). GO showed very a high adsorption capacity of 1700 μg/g for removal of MC-LR and 1878 μg/g for MC-RR while the maximum adsorption capacity obtained with the commercial activated carbon was 1481.7 μg/g and 1034.1 μg/g for MC-LR and MC-RR, respectively. The sorption kinetic experiments revealed that more than 90% removal of both MC-LR/RR was achieved within 5 min for all the doses studied (500, 700 and 900 μg/L). GO could be reused as an adsorbent following ten cycles of adsorption/desorption with no significant loss in its adsorption capacity.

  6. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment.

    PubMed

    Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol

    2015-01-01

    The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.

  7. Experiments and Modeling of Uranium Adsorption in the Presence of Other Ions in Simulated Seawater

    SciTech Connect

    Ladshaw, Austin; Das, Sadananda; Liao, Wei-Po; Yiacoumi, Sotira; Janke, Christopher James; Mayes, Richard T.; Dai, Sheng; Tsouris, Costas

    2015-11-19

    Seawater contains uranium at an average concentration of 3.3 ppb, as well as a variety of other ions at either overwhelmingly higher or similar concentrations, which complicate the recovery of uranium. This report describes an investigation of the effects of various factors such as uranium speciation and presence of salts including sodium, calcium, magnesium, and bicarbonate, as well as trace elements such as vanadium on uranium adsorption kinetics in laboratory experiments. Adsorption models are also developed to describe the experimental data of uranium extraction from seawater. Results show that the presence of calcium and magnesium significantly slows down the uranium adsorption kinetics. Vanadium can replace uranium from amidoxime-based adsorbent in the presence of sodium in the solution. Results also show that bicarbonate in the solution strongly competes with amidoxime for binding uranium, and thus slows down the uranium adsorption kinetics. Developed on the basis of the experimental findings, the model is capable of describing the effects of pH, ionic strength, temperature, and concentration of various species. The results of this work are useful in the understanding of the important factors that control the adsorbent capacity and kinetics of uranium uptake by amidoxime-based adsorbents.

  8. Experiments and Modeling of Uranium Adsorption in the Presence of Other Ions in Simulated Seawater

    DOE PAGES

    Ladshaw, Austin; Das, Sadananda; Liao, Wei-Po; ...

    2015-11-19

    Seawater contains uranium at an average concentration of 3.3 ppb, as well as a variety of other ions at either overwhelmingly higher or similar concentrations, which complicate the recovery of uranium. This report describes an investigation of the effects of various factors such as uranium speciation and presence of salts including sodium, calcium, magnesium, and bicarbonate, as well as trace elements such as vanadium on uranium adsorption kinetics in laboratory experiments. Adsorption models are also developed to describe the experimental data of uranium extraction from seawater. Results show that the presence of calcium and magnesium significantly slows down the uraniummore » adsorption kinetics. Vanadium can replace uranium from amidoxime-based adsorbent in the presence of sodium in the solution. Results also show that bicarbonate in the solution strongly competes with amidoxime for binding uranium, and thus slows down the uranium adsorption kinetics. Developed on the basis of the experimental findings, the model is capable of describing the effects of pH, ionic strength, temperature, and concentration of various species. The results of this work are useful in the understanding of the important factors that control the adsorbent capacity and kinetics of uranium uptake by amidoxime-based adsorbents.« less

  9. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    Air purification systems are necessary to provide clean air in the closed environments aboard spacecraft. Trace contaminants are removed using adsorption. One major factor concerning the removal of trace contaminants is relative humidity. Water can reduce adsorption capacity and, due to constant fluctuations, its presence is difficult to incorporate into adsorption column designs. The purpose of the research was to allow for better design techniques in trace contaminant adsorption systems, especially for feeds with water present. Experiments and mathematical modeling research on effects of humidity swings on adsorption columns for air revitalization were carried out.

  10. Probing the mechanism of water adsorption in carbon micropores with multitemperature isotherms and water preadsorption experiments.

    PubMed

    Rutherford, S W

    2006-11-21

    The phenomenon of water adsorption in carbon micropores is examined through the study of water adsorption equilibrium in molecular sieving carbon. Adsorption and desorption isotherms are obtained over a wide range of concentrations from less than 0.1% to beyond 80% of the vapor pressure. Evidence is provided in support of a proposed bimodal water adsorption mechanism that involves the interaction of water molecules with functional groups at low relative pressures and the adsorption of water molecules between graphene layers at higher pressures. Decomposition of the equilibrium isotherm data through application of the extended cooperative multimolecular sorption theory, together with favorable quantitative comparison, provides support for the proposed adsorption mechanism. Additional support is obtained from a multitemperature study of water equilibrium. Temperatures of 20, 50, and 60 degrees C were probed in this investigation in order to provide isosteric heat of adsorption data for water interaction with the carbon molecular sieve. At low loading, the derived isosteric heat of adsorption is estimated to be 69 kJ/mol. This value is indicative of the adsorption of water to functional groups. At higher loading, the isosteric heat of adsorption decreases with increasing loading and approaches the heat of condensation, indicative of adsorption between graphene layers. Further support for the proposed adsorption mechanism is derived from carbon dioxide adsorption experiments on carbon molecular sieve that is preadsorbed with various amounts of water. Significant exclusion of carbon dioxide occurs, and a quantitative analysis that is based on the proposed bimodal water adsorption mechanism is employed in this investigation.

  11. A Biomedical Application of Activated Carbon Adsorption: An Experiment Using Acetaminophen and N-Acetylcysteine.

    ERIC Educational Resources Information Center

    Rybolt, Thomas R.; And Others

    1988-01-01

    Illustrates an interesting biomedical application of adsorption from solution and demonstrates some of the factors that influence the in vivo adsorption of drug molecules onto activated charcoal. Uses acetaminophen and N-acetylcysteine for the determination. Suggests several related experiments. (MVL)

  12. Comparison of batch, stirred flow chamber, and column experiments to study adsorption, desorption and transport of carbofuran within two acidic soils.

    PubMed

    Bermúdez-Couso, Alipio; Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2012-06-01

    Different methods (batch, column and stirred flow chamber experiments) used for adsorption and desorption of carbofuran studies were compared. All tested methods showed that the carbofuran adsorption was higher in the soil with the higher organic matter content, whereas the opposite behaviour was observed for the percentage of carbofuran desorbed. However, different methods have revealed some discrepancies in carbofuran adsorption/desorption kinetics. Although batch method showed interesting data on equilibrium experiments, such as a low heterogeneity for the carbofuran adsorption sites independent of soil organic matter content, it had some disadvantages for carbofuran adsorption/desorption kinetic studies. The disadvantages were related with the excessive limitations of this method on kinetics, i.e., no difference could be detected between different soils. However, with column and stirred flow chamber methods the carbofuran adsorption/desorption kinetics of different soils could be compared. Moreover, the absolute values of carbofuran adsorption/desorption and its rate were higher in the stirred flow chamber than in the batch and column experiments. Using stirred flow chamber experiments the carbofuran desorption was significantly faster than its adsorption, whereas carbofuran using column experiments they were similar. These discrepancies should be considered when the results obtained only with one method is discussed.

  13. Insights into tetracycline adsorption onto kaolinite and montmorillonite: experiments and modeling.

    PubMed

    Zhao, Yanping; Gu, Xueyuan; Li, Shiyin; Han, Ruiming; Wang, Guoxiang

    2015-11-01

    Adsorption of tetracycline (TC) on kaolinite and montmorillonite was investigated using batch adsorption experiments with different pH, ionic strength, and surface coverage. As a result, pH and ionic strength-dependent adsorption of TC was observed for the two clay minerals. The adsorption of TC decreased with the increase of pH and ionic strength, and high initial TC concentration had high adsorption. In addition, a triple-layer model was used to predict the adsorption and surface speciation of TC on the two minerals. As a result, four complex species on kaolinite (≡X(-)∙H3TC(+), ≡X(-)∙H2TC(±), ≡SOH(0)∙H2TC(±), and ≡SOH(0)∙HTC(-)) and three species on montmorillonite (≡X(-)∙H3TC(+), ≡X(-)∙H2TC(±), and ≡SOH(0)∙HTC(-)) were structurally constrained by spectroscopy, and these species were also successfully fitted to the adsorption edges of TC. Three functional groups of TC were involved in these adsorption reactions, including the positively charged dimethylamino group, the C=O amide I group, and the C=O group at the C ring. Combining adsorption experiments and model in this study, the adsorption of TC on kaolinite and montmorillonite was mainly attributed to cation exchange on the surface sites (≡X(-)) compared to surface complexation on the edge sites (≡SOH) at natural soil pH condition. Moreover, the surface adsorption species, the corresponding adsorption modes, and the binding constants for the surface reactions were also estimated.

  14. Lithium inclusion in indium metal-organic frameworks showing increased surface area and hydrogen adsorption

    SciTech Connect

    Bosch, Mathieu; Zhang, Muwei; Feng, Dawei; Yuan, Shuai; Wang, Xuan; Chen, Ying-Pin; Zhou, Hong-Cai

    2014-12-01

    Investigation of counterion exchange in two anionic In-Metal-Organic Frameworks (In-MOFs) showed that partial replacement of disordered ammonium cations was achieved through the pre-synthetic addition of LiOH to the reaction mixture. This resulted in a surface area increase of over 1600% in (Li [In(1,3 − BDC){sub 2}]){sub n} and enhancement of the H{sub 2} uptake of approximately 275% at 80 000 Pa at 77 K. This method resulted in frameworks with permanent lithium content after repeated solvent exchange as confirmed by inductively coupled plasma mass spectrometry. Lithium counterion replacement appears to increase porosity after activation through replacement of bulkier, softer counterions and demonstrates tuning of pore size and properties in MOFs.

  15. Adsorption laboratory experiment for undergraduate chemical engineering: Introducing kinetic, equilibrium and thermodynamic concepts

    NASA Astrophysics Data System (ADS)

    Muryanto, S.; Djatmiko Hadi, S.

    2016-11-01

    Adsorption laboratory experiment for undergraduate chemical engineering program is discussed. The experiment demonstrated adsorption of copper ions commonly found in wastewater using bio-sorbent, i.e. agricultural wastes. The adsorption was performed in a batch mode under various parameters: adsorption time (up to 120 min), initial pH (2 to 6), adsorbent dose (2.0 to 12.0 g L-1), adsorbent size (50 to 170 mesh), initial Cu2+ concentration (25 to 100 ppm) and temperatures (room temp to 40°C). The equilibrium and kinetic data of the experiments were calculated using the two commonly used isotherms: Langmuir and Lagergren pseudo-first-order kinetics. The maximum adsorption capacity for Cu2+ was found as 94.34 mg g-1. Thermodynamically, the adsorption process was spontaneous and endothermic. The calculated activation energy for the adsorption was observed as high as 127.94 kJ mol-1. Pedagogically, the experiment was assumed to be important in increasing student understanding of kinetic, equilibrium and thermodynamic concepts.

  16. Adsorption selectivity: a way to homochirality? Computational experiments

    NASA Astrophysics Data System (ADS)

    Pauzat, F.; Ellinger, Y.; Markovits, A.

    2015-10-01

    Life, as we know it today, is inseparable from homochirality; standing within the panspermia hypothesis, we investigate computationally the still unknown origin of the enantiomeric excess present in the organic matter of well-defined families of meteorites [1,2,3] through the possibilities open by a selective adsorption of the enantiomers.

  17. Bovine Serum Albumin Adsorption at a Silica Surface Explored by Simulation and Experiment.

    PubMed

    Kubiak-Ossowska, Karina; Tokarczyk, Karolina; Jachimska, Barbara; Mulheran, Paul A

    2017-03-28

    Molecular details of BSA adsorption on a silica surface are revealed by fully atomistic Molecular Dynamics (MD) simulations (with a 0.5μs trajectory), supported by Dynamic Light Scattering (DLS), Zeta Potential, Multi-Parametric Surface Plasmon Resonance (MP-SPR) and Contact Angle experiments. The experimental and theoretical methods complement one another and lead to a wider understanding of the mechanism of BSA adsorption across a range of pH 3-9. The MD results show how the negatively charged BSA at pH7 adsorbs to the negatively charged silica surface, and reveal a unique orientation with preserved secondary and tertiary structure. The experiments then show that the protein forms complete monolayers at ~pH6, just above the protein's isoelectric point (pH5.1). The surface contact angle is maximum when it is completely coated with protein, and the hydrophobicity of the surface is understood in terms of the simulated protein conformation. The adsorption behaviour at higher pH>6 is also consistently interpreted using the MD picture; both the contact angle and the adsorbed protein mass density decrease with increasing pH, in line with the increasing magnitude of negative charge on both the protein and the surface. At lower pH<5 the protein starts to unfold, and the adsorbed mass dramatically decreases. The comprehensive picture that emerges for the formation of oriented protein films with preserved native conformation will help guide efforts to create functional films for new technologies.

  18. Hydrocarbon adsorption on gold clusters: Experiment and quantum chemical modeling

    NASA Astrophysics Data System (ADS)

    Lanin, S. N.; Pichugina, D. A.; Shestakov, A. F.; Smirnov, V. V.; Nikolaev, S. A.; Lanina, K. S.; Vasil'Kov, A. Yu.; Zung, Fam Tien; Beletskaya, A. V.

    2010-12-01

    Heats of adsorption Q of n-alkanes C6-C9 on ZrO2 modified with gold and nickel nanoparticles were determined experimentally. The Q values were found to be higher on average by 7 kJ/mol on the modified samples as compared to the pure support. Density functional theory with the PBE functional and the pseudopotential for gold effectively allowing for relativistic corrections was used to model the adsorption of saturated hydrocarbons on Au and Au + Ni, as exemplified by the interaction of alkanes C1-C3 with Au m , Au m - 1Ni ( m = 3, 4, 5) clusters as well as the interaction of C1-C8 with Au20. Based on the calculation results, the probable coordination centers of alkanes on nanoparticle surfaces were found to be vertices and edges, whereas face localization was less probable.

  19. [Virus adsorption from batch experiments as influenced by air-water interface].

    PubMed

    Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji

    2007-12-01

    The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface.

  20. Characterization of micro-mesoporous materials from nitrogen and toluene adsorption: experiment and modeling.

    PubMed

    Ravikovitch, Peter I; Vishnyakov, Aleksey; Neimark, Alexander V; Ribeiro Carrott, Manuela M L; Russo, Patrícia A; Carrott, Peter J

    2006-01-17

    Universal mechanisms of adsorption and capillary condensation of toluene and nitrogen on ordered MCM-41 and PHTS materials are studied by means of high-resolution experiments and Monte Carlo molecular simulations. A molecular simulation model of toluene adsorption in silica nanopores, which accounts for surface heterogeneity, and a hybrid molecular-macsroscopic method for pore size distribution (PSD) calculations have been developed. For a range of reference materials, the PSD results obtained from toluene isotherms are consistent with the results of nitrogen adsorption using the nonlocal density functional theory method.

  1. Adsorption of probe molecules in pillared interlayered clays: Experiment and computer simulation

    SciTech Connect

    Gallardo, A. Guil, J. M.; Lomba, E.; Almarza, N. G.; Khatib, S. J.; Cabrillo, C.; Sanz, A.; Pires, J.

    2014-06-14

    In this paper we investigate the adsorption of various probe molecules in order to characterize the porous structure of a series of pillared interlayered clays (PILC). To that aim, volumetric and microcalorimetric adsorption experiments were performed on various Zr PILC samples using nitrogen, toluene, and mesitylene as probe molecules. For one of the samples, neutron scattering experiments were also performed using toluene as adsorbate. Various structural models are proposed and tested by means of a comprehensive computer simulation study, using both geometric and percolation analysis in combination with Grand Canonical Monte Carlo simulations in order to model the volumetric and microcalorimetric isotherms. On the basis of this analysis, we propose a series of structural models that aim at accounting for the adsorption experimental behavior, and make possible a microscopic interpretation of the role played by the different interactions and steric effects in the adsorption processes in these rather complex disordered microporous systems.

  2. Hydrophobic dipeptide crystals: a promising Ag-free class of ultramicroporous materials showing argon/oxygen adsorption selectivity.

    PubMed

    Afonso, R; Mendes, A; Gales, L

    2014-09-28

    The adsorption isotherms of nitrogen, oxygen and argon in four VA-class hydrophobic dipeptides are presented. Isotherms were determined at 5, 20 and 35 °C, for a pressure range of 0-6 bar. Under these conditions, adsorption is still in the Henry region. For all materials and temperatures, the sequence of preferential adsorption is Ar > O2 > N2, a highly abnormal result. At 5 °C, the dipeptide with the smallest pores, VI, has Ar/O2 adsorption equilibrium selectivities up to 1.30, the highest ever measured in Ag-free adsorbents. Gas uptakes, at 1 bar and 20 °C, are ∼0.05 mol kg(-1), very low relative values that are partially explained by the low porosity of the solids (<10%). The significance of these results for the development of new materials for the process of O2 generation by pressure swing adsorption (PSA) is discussed. The results indicate some of the structural and chemical properties that prospective Ag-free adsorbents should have in order to have Ar/O2 selectivity, hydrophobic pores, less than 0.5 nm-wide, and porosity of, at least, 20%.

  3. Adsorption of HMF from water/DMSO solutions onto hydrophobic zeolites: experiment and simulation.

    PubMed

    Xiong, Ruichang; León, Marta; Nikolakis, Vladimiros; Sandler, Stanley I; Vlachos, Dionisios G

    2014-01-01

    The adsorption of 5-hydroxymethylfurfural (HMF), DMSO, and water from binary and ternary mixtures in hydrophobic silicalite-1 and dealuminated Y (DAY) zeolites at ambient conditions was studied by experiments and molecular modeling. HMF and DMSO adsorption isotherms were measured and compared to those calculated using a combination of grand canonical Monte Carlo and expanded ensemble (GCMC-EE) simulations. A method based on GCMC-EE simulations for dilute solutions combined with the Redlich-Kister (RK) expansion (GCMC-EE-RK) is introduced to calculate the isotherms over a wide range of concentrations. The simulations, using literature force fields, are in reasonable agreement with experimental data. In HMF/water binary mixtures, large-pore hydrophobic zeolites are much more effective for HMF adsorption but less selective because large pores allow water adsorption because of H2 O-HMF attraction. In ternary HMF/DMSO/water mixtures, HMF loading decreases with increasing DMSO fraction, rendering the separation of HMF from water/DMSO mixtures by adsorption difficult. The ratio of the energetic interaction in the zeolite to the solvation free energy is a key factor in controlling separation from liquid mixtures. Overall, our findings could have an impact on the separation and catalytic conversion of HMF and the rational design of nanoporous adsorbents for liquid-phase separations in biomass processing.

  4. Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: Experiments and modeling

    SciTech Connect

    Nan, Yue; Tavlarides, Lawrence L.; DePaoli, David W.

    2016-08-03

    The adsorption process of iodine, a major volatile radionuclide in the off-gas streams of spent nuclear fuel reprocessing, on hydrogen-reduced silver-exchanged mordenite (Ag0Z) was studied at the micro-scale. The gas-solid mass transfer and reaction involved in the adsorption process were investigated and evaluated with appropriate models. Optimal conditions for reducing the silver-exchanged mordenite (AgZ) in a hydrogen stream were determined. Kinetic and equilibrium data of iodine adsorption on Ag0Z were obtained by performing single-layer adsorption experiments with experimental systems of high precision at 373–473 K over various iodine concentrations. Results indicate approximately 91% to 97% of the iodine adsorption was through the silver-iodine reaction. The effect of temperature on the iodine loading capacity of Ag0Z was discussed. In conclusion, the Shrinking Core model describes the data well, and the primary rate controlling mechanisms were macro-pore diffusion and silver-iodine reaction. © 2016 American Institute of Chemical Engineers AIChE J, 2016

  5. Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: Experiments and modeling

    DOE PAGES

    Nan, Yue; Tavlarides, Lawrence L.; DePaoli, David W.

    2016-08-03

    The adsorption process of iodine, a major volatile radionuclide in the off-gas streams of spent nuclear fuel reprocessing, on hydrogen-reduced silver-exchanged mordenite (Ag0Z) was studied at the micro-scale. The gas-solid mass transfer and reaction involved in the adsorption process were investigated and evaluated with appropriate models. Optimal conditions for reducing the silver-exchanged mordenite (AgZ) in a hydrogen stream were determined. Kinetic and equilibrium data of iodine adsorption on Ag0Z were obtained by performing single-layer adsorption experiments with experimental systems of high precision at 373–473 K over various iodine concentrations. Results indicate approximately 91% to 97% of the iodine adsorption wasmore » through the silver-iodine reaction. The effect of temperature on the iodine loading capacity of Ag0Z was discussed. In conclusion, the Shrinking Core model describes the data well, and the primary rate controlling mechanisms were macro-pore diffusion and silver-iodine reaction. © 2016 American Institute of Chemical Engineers AIChE J, 2016« less

  6. Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory

    NASA Astrophysics Data System (ADS)

    Maurer, Reinhard J.; Ruiz, Victor G.; Camarillo-Cisneros, Javier; Liu, Wei; Ferri, Nicola; Reuter, Karsten; Tkatchenko, Alexandre

    2016-05-01

    Adsorption geometry and stability of organic molecules on surfaces are key parameters that determine the observable properties and functions of hybrid inorganic/organic systems (HIOSs). Despite many recent advances in precise experimental characterization and improvements in first-principles electronic structure methods, reliable databases of structures and energetics for large adsorbed molecules are largely amiss. In this review, we present such a database for a range of molecules adsorbed on metal single-crystal surfaces. The systems we analyze include noble-gas atoms, conjugated aromatic molecules, carbon nanostructures, and heteroaromatic compounds adsorbed on five different metal surfaces. The overall objective is to establish a diverse benchmark dataset that enables an assessment of current and future electronic structure methods, and motivates further experimental studies that provide ever more reliable data. Specifically, the benchmark structures and energetics from experiment are here compared with the recently developed van der Waals (vdW) inclusive density-functional theory (DFT) method, DFT + vdWsurf. In comparison to 23 adsorption heights and 17 adsorption energies from experiment we find a mean average deviation of 0.06 Å and 0.16 eV, respectively. This confirms the DFT + vdWsurf method as an accurate and efficient approach to treat HIOSs. A detailed discussion identifies remaining challenges to be addressed in future development of electronic structure methods, for which the here presented benchmark database may serve as an important reference.

  7. Simple fabrication of carbon/TiO2 composite nanotubes showing dual functions with adsorption and photocatalytic decomposition of Rhodamine B.

    PubMed

    Im, Ji Hyuk; Yang, Seung Jae; Yun, Chang Hun; Park, Chong Rae

    2012-01-27

    Carbon/TiO2 composite nanotubes were fabricated via a very simple electrospinning process and their dual functionalities of adsorptivity and photocatalytic activity were evaluated using Rhodamine B (RhB) as a model organic pollutant. A poly(vinyl alcohol) (PVA) aqueous solution was directly electrospun into a coagulation bath containing titanium (IV) tetraisopropoxide (TTIP) solution so that PVA-core/TiO2-shell composite nanofibers were formed through the in situ sol-gel reaction of TTIP. The carbon/TiO2 composite nanotubes were then fabricated by heat treatment of composite nanofibers under nitrogen atmosphere. By using several characterization methods, we confirmed that the resultant nanotubes consisted of anatase TiO2 nanocrystallites embedded in a carbonaceous matrix. The prepared nanotubes exhibited fast adsorption of RhB with high capacity compared with a commercial porous carbon, and they also showed the photocatalytic decomposition activity for the dye molecules under UV irradiation comparable to the degradation by P-25 and ST-01 (commercial TiO2). Finally, the carbon/TiO2 composite nanotubes exhibited several cycle performances of adsorption-photodegradation for RhB. This indicates that the composite nanotubes can adsorb and photodecompose organic pollutants repeatedly without additional activating processes.

  8. Simple fabrication of carbon/TiO2 composite nanotubes showing dual functions with adsorption and photocatalytic decomposition of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Im, Ji Hyuk; Yang, Seung Jae; Yun, Chang Hun; Park, Chong Rae

    2012-01-01

    Carbon/TiO2 composite nanotubes were fabricated via a very simple electrospinning process and their dual functionalities of adsorptivity and photocatalytic activity were evaluated using Rhodamine B (RhB) as a model organic pollutant. A poly(vinyl alcohol) (PVA) aqueous solution was directly electrospun into a coagulation bath containing titanium (IV) tetraisopropoxide (TTIP) solution so that PVA-core/TiO2-shell composite nanofibers were formed through the in situ sol-gel reaction of TTIP. The carbon/TiO2 composite nanotubes were then fabricated by heat treatment of composite nanofibers under nitrogen atmosphere. By using several characterization methods, we confirmed that the resultant nanotubes consisted of anatase TiO2 nanocrystallites embedded in a carbonaceous matrix. The prepared nanotubes exhibited fast adsorption of RhB with high capacity compared with a commercial porous carbon, and they also showed the photocatalytic decomposition activity for the dye molecules under UV irradiation comparable to the degradation by P-25 and ST-01 (commercial TiO2). Finally, the carbon/TiO2 composite nanotubes exhibited several cycle performances of adsorption-photodegradation for RhB. This indicates that the composite nanotubes can adsorb and photodecompose organic pollutants repeatedly without additional activating processes.

  9. Adsorption and transformation of ammonium ion in a loose-pore geothermal reservoir: Batch and column experiments.

    PubMed

    Zhao, Li; Li, Yanli; Wang, Shidong; Wang, Xinyi; Meng, Hongqi; Luo, Shaohe

    2016-09-01

    Adsorption kinetics and transformation process of ammonium ion (NH4(+)) were investigated to advance the understanding of N cycle in a low-temperature loose-pore geothermal reservoir. Firstly, batch experiments were performed in order to determine the sorption capacity and the kinetic mechanism of NH4(+) onto a loose-pore geothermal reservoir matrix. Then column experiments were carried out at temperatures from 20°C to 60°C in order to determine the transport parameters and transformation mechanism of NH4(+) in the studied matrix. The results showed that the adsorption process of NH4(+) onto the porous media well followed the pseudo-second-order model. No obvious variation of hydrodynamic dispersion coefficient (D) and retardation factor (R) was observed at different transport distances at a Darcy's flux of 2.27cm/h, at which nitrification could be neglected. The simulated D obtained by the CDE model in CXTFIT2.1 increased with temperature while R decreased with temperature, indicating that the adsorption capacity of NH4(+) onto the matrix decreased with the increasing of temperature. When the Darcy's flux was decreased to 0.014cm/h, only a little part of NH4(+) could be transformed to nitrate, suggesting that low density of nitrifiers existed in the simulated loose-pore geothermal reservoir. Although nitrification rate increased with temperature in the range of 20°C to 60°C, it was extremely low and no accumulation of nitrite was observed under the simulated low-temperature geothermal conditions without addition of biomass and oxygen.

  10. Adsorption and transformation of ammonium ion in a loose-pore geothermal reservoir: Batch and column experiments

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Li, Yanli; Wang, Shidong; Wang, Xinyi; Meng, Hongqi; Luo, Shaohe

    2016-09-01

    Adsorption kinetics and transformation process of ammonium ion (NH4+) were investigated to advance the understanding of N cycle in a low-temperature loose-pore geothermal reservoir. Firstly, batch experiments were performed in order to determine the sorption capacity and the kinetic mechanism of NH4+ onto a loose-pore geothermal reservoir matrix. Then column experiments were carried out at temperatures from 20 °C to 60 °C in order to determine the transport parameters and transformation mechanism of NH4+ in the studied matrix. The results showed that the adsorption process of NH4+ onto the porous media well followed the pseudo-second-order model. No obvious variation of hydrodynamic dispersion coefficient (D) and retardation factor (R) was observed at different transport distances at a Darcy's flux of 2.27 cm/h, at which nitrification could be neglected. The simulated D obtained by the CDE model in CXTFIT2.1 increased with temperature while R decreased with temperature, indicating that the adsorption capacity of NH4+ onto the matrix decreased with the increasing of temperature. When the Darcy's flux was decreased to 0.014 cm/h, only a little part of NH4+ could be transformed to nitrate, suggesting that low density of nitrifiers existed in the simulated loose-pore geothermal reservoir. Although nitrification rate increased with temperature in the range of 20 °C to 60 °C, it was extremely low and no accumulation of nitrite was observed under the simulated low-temperature geothermal conditions without addition of biomass and oxygen.

  11. From surfactant adsorption kinetics to asymmetric nanomembrane mechanics: pendant drop experiments with subphase exchange.

    PubMed

    Ferri, James K; Kotsmar, Csaba; Miller, Reinhard

    2010-12-15

    Adsorption equilibrium is the state in which the chemical potential of each species in the interface and bulk is the same. Dynamic phenomena at fluid-fluid interfaces in the presence of surface active species are often probed by perturbing an interface or adjoining bulk phase from the equilibrium state. Many methods designed for studying kinetics at fluid-fluid interfaces focus on removing the system from equilibrium through dilation or compression of the interface. This modifies the surface excess concentration Γ(i) and allows the species distribution in the bulk C(i) to respond. There are only a few methods available for studying fluid-fluid interfaces which seek to control C(i) and allow the interface to respond with changes to Γ(i). Subphase exchange in pendant drops can be achieved by the injection and withdrawal of liquid into a drop at constant volumetric flow rate R(E) during which the interfacial area and drop volume V(D) are controlled to be approximately constant. This can be accomplished by forming a pendant drop at the tip of two coaxial capillary tubes. Although evolution of the subphase concentration C(i)(t) is dictated by extrinsic factors such as R(E) and V(D), complete subphase exchange can always be attained when a sufficient amount of liquid is used. This provides a means to tailor driving forces for adsorption and desorption in fluid-fluid systems and in some cases, fabricate interfacial materials of well-defined composition templated at these interfaces. The coaxial capillary pendant drop (CCPD) method opens a wide variety of experimental possibilities. Experiments and theoretical frameworks are reviewed for the study of surfactant exchange kinetics, macromolecular adsorption equilibrium and dynamics, as well as the fabrication of a wide range of soft surface materials and the characterization of their mechanics. Future directions for new experiments are also discussed.

  12. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    The goal of this research was to develop a dynamic model which can predict the effect of humidity swings on activated carbon adsorption beds used to remove trace contaminants from the atmosphere in spacecraft. Specifically, the model was to be incorporated into a computer simulation to predict contaminant concentrations exiting the bed as a function of time after a humidity swing occurs. Predicted breakthrough curves were to be compared to experimentally measured results. In all respects the research was successful. The two major aspects of this research were the mathematical model and the experiments. Experiments were conducted by Mr. Appel using a fixed-bed apparatus at NASA-Ames Research Center during the summers of 1994 and 1995 and during the first 8 months of 1996. Mr. Appel conducted most of his mathematical modeling work at the University of Virginia. The simulation code was used to predict breakthrough curves using adsorption equilibrium correlations developed previously by M. D. LeVan's research group at the University of Virginia. These predictions were compared with the experimental measurements, and this led to improvements in both the simulation code and the apparatus.

  13. Equilibrium and kinetics of water adsorption in carbon molecular sieve: theory and experiment.

    PubMed

    Rutherford, S W; Coons, J E

    2004-09-28

    Measurements of water adsorption equilibrium and kinetics in Takeda carbon molecular sieve (CMS) were undertaken in an effort to characterize fundamental mechanisms of adsorption and transport. Adsorption equilibrium revealed a type III isotherm that was characterized by cooperative multimolecular sorption theory. Water adsorption was found to be reversible and did not display hysteresis upon desorption over the conditions studied. Adsorption kinetics measurements revealed that a Fickian diffusion mechanism governed the uptake of water and that the rate of adsorption decreased with increasing relative pressure. Previous investigations have attributed the observed decreasing trend in the rate of adsorption to blocking of micropores. Here, it is proposed that the decrease is attributed to the thermodynamic correction to Fick's law which is formulated on the basis of the chemical potential as the driving force for transport. The thermodynamically corrected formulation accounted for observations of transport of water and other molecules in CMS.

  14. Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments

    NASA Astrophysics Data System (ADS)

    Larson, T. E.

    2012-12-01

    steadily increased and became constant after two pore volumes of CO2 flushed through the column. Carbon and oxygen isotope values of the front of the peak (first pore volume) are 2‰ and 5‰ lower than the injected CO2 values, respectively. These results are fit very well using a mass transfer model that only includes binary diffusion between CO2 and helium that account for isotope substitution in the reduced mass coefficient. In contrast to these diffusion-dominated systems, CO2 break through curves from the illite packed column show strong adsorption effects that include a +180‰ increase in the carbon isotope ratio at the front of the peak followed by a 20‰ decrease. Up to 20 pore volumes of CO2 were flushed through the column before the carbon and oxygen isotope values stabilized to their starting values. These adsorption effects cannot be modeled using mass isotope effects alone, and instead must include additional parameters such as volume effects. These results demonstrate the importance of understanding the isotopic effects of CO2 in different substrates, and potentially offers a tracer tool that can be used to quantify surface area, transport distance, and surface reactivity of CO2. Additional applications may include more affectively determining transfer rates of CO2 across low permeability zones.

  15. Searching the UVSP database and a list of experiments showing mass motions

    NASA Technical Reports Server (NTRS)

    Thompson, William

    1986-01-01

    Since the Solar Maximum Mission (SMM) satellite was launched, a large database has been built up of experiments using the Ultraviolet Spectrometer and Polarimeter (UVSP) instrument. Access to this database can be gained through the SMM Vax 750 computer at Goddard Space Flight Center. One useful way to do this is with a program called USEARCH. This program allows one to make a listing of different types of UVSP experiments. It is evident that this program is useful to those who would wish to make use of UVSP data, but who don't know what data is available. Therefore it was decided to include a short description of how to make use of the USEARCH program. Also described, but not included, is a listing of all UVSP experiments showing mass motions in prominences and filaments. This list was made with the aid of the USEARCH program.

  16. Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior

    PubMed Central

    Gómez-Navarro, C.; Moreno-Herrero, F.; de Pablo, P. J.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M.

    2002-01-01

    A fundamental requirement for a molecule to be considered a molecular wire (MW) is the ability to transport electrical charge with a reasonably low resistance. We have carried out two experiments that measure first, the charge transfer from an electrode to the molecule, and second, the dielectric response of the MW. The latter experiment requires no contacts to either end of the molecule. From our experiments we conclude that adsorbed individual DNA molecules have a resistivity similar to mica, glass, and silicon oxide substrates. Therefore adsorbed DNA is not a conductor, and it should not be considered as a viable candidate for MW applications. Parallel studies on other nanowires, including single-walled carbon nanotubes, showed conductivity as expected. PMID:12070346

  17. Exploring the Stability of Gold Nanoparticles by Experimenting with Adsorption Interactions of Nanomaterials in an Undergraduate Lab

    ERIC Educational Resources Information Center

    Lee, Chi-Feng; You, Pei-Yun; Lin, Ying-Chiao; Hsu, Tsai-Ling; Cheng, Pi-Yun; Wu, Yu-Xuan; Tseng, Chi-Shun; Chen, Sheng-Wen; Chang, Huey-Por; Lin, Yang-Wei

    2015-01-01

    The proposed experiment can help students to understand the factors involved in the stability of gold nanoparticles (Au NPs) by exploring the adsorption interaction between Au NPs and various substances. The students in this study found that the surface plasmon resonance band of Au NP solutions underwent a red shift (i.e., from 520 to 650 nm)…

  18. Kinetic Study of Adsorption Processes in Solution: An Undergraduate Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Casado, Julio; And Others

    1985-01-01

    Background information, apparatus needed, procedures used, and results obtained are provided for a simple kinetic method for the monitoring of adsorption processes. The method, which involved adsorption of crystal violet onto activated carbon, is suitable for classroom and/or research purposes. (JN)

  19. Batch and column studies of adsorption of Li, Ni and Br by a reference sand for contaminant transport experiments

    SciTech Connect

    Seigel, M.D.; Ward, D.B.; Bryan, C.R.

    1995-09-01

    A processed quartz sand (Wedron 510), mined from the St. Peter sandstone, has been characterized by a variety of chemical and physical methods for use as a reference porous media in transport model validation experiments. Wedron 510 sand was used in an intermediate-scale experiment involving migration of Ni, Li and Br through a 6-m high x 3-m diameter caisson. Ni and Li adsorption/desorption, and Li/Ni site-competition experiments yielded information on the importance of the trace mineral phases to adsorption of Li and Ni by the sand. The presence of an iron hydroxide coating similar to goethite on the sand grains is suggested by visual observation and leaching experiments. Kaolinite was identified by SEM and XRD as a significant trace mineral phase in the sand and occurs as small particles coating the sand grains. Quartz, the predominant constituent of the sand by weight, does not appear to contribute significantly to the adsorption properties of the sand. Qualitatively, the adsorption properties of the sand can be adequately modeled as a two-mineral system (goethite and kaolinite). The studies described in this report should provide a basis for understanding transport of Ni, Li and Br through porous media similar to the reference sand. Techniques were developed for obtaining parameter values for surface complexation and kinetic adsorption models for the sand and its mineral components. These constants can be used directly in coupled hydrogeochemical transport codes. The techniques should be useful for characterization of other natural materials and elements in high-level nuclear waste in support of coupled hydrogeochemical transport calculations for Yucca Mountain.

  20. A field experiment shows that subtle linguistic cues might not affect voter behavior.

    PubMed

    Gerber, Alan S; Huber, Gregory A; Biggers, Daniel R; Hendry, David J

    2016-06-28

    One of the most important recent developments in social psychology is the discovery of minor interventions that have large and enduring effects on behavior. A leading example of this class of results is in the work by Bryan et al. [Bryan CJ, Walton GM, Rogers T, Dweck CS (2011) Proc Natl Acad Sci USA 108(31):12653-12656], which shows that administering a set of survey items worded so that subjects think of themselves as voters (noun treatment) rather than as voting (verb treatment) substantially increases political participation (voter turnout) among subjects. We revisit these experiments by replicating and extending their research design in a large-scale field experiment. In contrast to the 11 to 14% point greater turnout among those exposed to the noun rather than the verb treatment reported in the work by Bryan et al., we find no statistically significant difference in turnout between the noun and verb treatments (the point estimate of the difference is approximately zero). Furthermore, when we benchmark these treatments against a standard get out the vote message, we estimate that both are less effective at increasing turnout than a much shorter basic mobilization message. In our conclusion, we detail how our study differs from the work by Bryan et al. and discuss how our results might be interpreted.

  1. Avidity of influenza virus: model-based identification of adsorption kinetics from surface plasmon resonance experiments.

    PubMed

    Wang, Wenjing; Wolff, Michael W; Reichl, Udo; Sundmacher, Kai

    2014-01-24

    Affinity chromatography and membrane adsorption are highly promising methods for the downstream processing of cell culture-derived influenza virus. For the optimization of this separation process, it is desirable to quantify the kinetics of virus adsorption. For this reason, the adsorption kinetics of the influenza A virus (Puerto Rico/8/34 (H1N1)) on a surface with the immobilized ligand Euronymus europaeus lectin (EEL) was investigated. The adsorption kinetics was experimentally monitored in a microfluidic flow cell by surface plasmon resonance (SPR) spectroscopy. The boundary layer theory was applied to analyze the convective and diffusive mass transport of the virus particles in the SPR flow cell. A multi-site kinetic adsorption model was found to describe the experimentally recorded adsorption curves adequately. According to the proposed model, under the applied experimental conditions, the number of sites (galactose residuals) binding one single virus particle to the EEL surface is in the range of 300 to 460, which is in average about 4% of the total number of sites available on the virus surface. The avidity of individual virus particles to the EEL surface was estimated to be in the order of magnitude of 10(6)M(-1)s(-1).

  2. Adsorption of phenolic compound by aged-refuse.

    PubMed

    Xiaoli, Chai; Youcai, Zhao

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  3. F-18 SRA closeup of nose cap showing Advanced L-Probe Air Data Integration experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This L-shaped probe mounted on the forward fuselage of a modified F-18 Systems Research Aircraft was the focus of an air data collection experiment flown at NASA's Dryden Flight Research Center, Edwards, California. The Advanced L-Probe Air Data Integration (ALADIN) experiment focused on providing pilots with angle-of-attack and angle-of-sideslip information as well as traditional airspeed and altitude data from a single system. For the experiment, the probes--one mounted on either side of the F-18's forward fuselage--were hooked to a series of four transducers, which relayed pressure measurements to an on-board research computer.

  4. Competitive adsorption of VOCcs and BOM: Oxic and anoxic environments

    SciTech Connect

    Sorial, G.A.; Papadimas, S.P.; Suidan, M.T.; Speth, T.F.

    1994-01-01

    The effect of the presence of molecular oxygen on the adsorption of volatile organic compounds (VOCs) in distilled Milli-Q water and in water supplemented with background organic matter (BOM) is evaluated. Experiments are conducted under conditions where molecular oxygen is present in the test environment (oxic adsorption), and where oxygen is absent from the test environment (anoxic adsorption). Adsorption isotherms for tetrachloroethylene (PCE) and trichloroethylene (TCE) in Milli-Q water showed no impact of the presence of oxygen on their adsorption behavior, while adsorption isotherms for cis-1,2-dichloroethylene (DCE) showed higher capacities under toxic conditions. The Ideal Adsorbed Solution Theory (IAST) successfully predicted the VOCs anoxic adsorption isotherms in BOM. However, the IAST model did not predict the VOCs oxic adsorption isotherms in BOM.

  5. A Prebiotic Chemistry Experiment on the Adsorption of Nucleic Acids Bases onto a Natural Zeolite

    NASA Astrophysics Data System (ADS)

    Anizelli, Pedro R.; Baú, João Paulo T.; Gomes, Frederico P.; da Costa, Antonio Carlos S.; Carneiro, Cristine E. A.; Zaia, Cássia Thaïs B. V.; Zaia, Dimas A. M.

    2015-09-01

    There are currently few mechanisms that can explain how nucleic acid bases were synthesized, concentrated from dilute solutions, and/or protected against degradation by UV radiation or hydrolysis on the prebiotic Earth. A natural zeolite exhibited the potential to adsorb adenine, cytosine, thymine, and uracil over a range of pH, with greater adsorption of adenine and cytosine at acidic pH. Adsorption of all nucleic acid bases was decreased in artificial seawater compared to water, likely due to cation complexation. Furthermore, adsorption of adenine appeared to protect natural zeolite from thermal degradation. The C=O groups from thymine, cytosine and uracil appeared to assist the dissolution of the mineral while the NH2 group from adenine had no effect. As shown by FT-IR spectroscopy, adenine interacted with a natural zeolite through the NH2 group, and cytosine through the C=O group. A pseudo-second-order model best described the kinetics of adenine adsorption, which occurred faster in artificial seawaters.

  6. A Prebiotic Chemistry Experiment on the Adsorption of Nucleic Acids Bases onto a Natural Zeolite.

    PubMed

    Anizelli, Pedro R; Baú, João Paulo T; Gomes, Frederico P; da Costa, Antonio Carlos S; Carneiro, Cristine E A; Zaia, Cássia Thaïs B V; Zaia, Dimas A M

    2015-09-01

    There are currently few mechanisms that can explain how nucleic acid bases were synthesized, concentrated from dilute solutions, and/or protected against degradation by UV radiation or hydrolysis on the prebiotic Earth. A natural zeolite exhibited the potential to adsorb adenine, cytosine, thymine, and uracil over a range of pH, with greater adsorption of adenine and cytosine at acidic pH. Adsorption of all nucleic acid bases was decreased in artificial seawater compared to water, likely due to cation complexation. Furthermore, adsorption of adenine appeared to protect natural zeolite from thermal degradation. The C=O groups from thymine, cytosine and uracil appeared to assist the dissolution of the mineral while the NH2 group from adenine had no effect. As shown by FT-IR spectroscopy, adenine interacted with a natural zeolite through the NH2 group, and cytosine through the C=O group. A pseudo-second-order model best described the kinetics of adenine adsorption, which occurred faster in artificial seawaters.

  7. Adsorption and desorption of phosphate on limestone in experiments simulating seawater intrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The absorption and desorption of phosphorus on a large block of limestone was investigated using deionized water (DIW) and seawater. The limestone had a high affinity to adsorb phosphorus in DIW. Phosphate adsorption was significantly less in seawater, and more phosphorus was desorbed in the seawate...

  8. Adsorption and transport of polymaleic acid on Callovo-Oxfordian clay stone: batch and transport experiments.

    PubMed

    Durce, Delphine; Landesman, Catherine; Grambow, Bernd; Ribet, Solange; Giffaut, Eric

    2014-08-01

    Dissolved Organic Matter (DOM) can affect the mobility of radionuclides in pore water of clay-rich geological formations, such as those intended to be used for nuclear waste disposal. The present work studies the adsorption and transport properties of a polycarboxylic acid, polymaleic acid (PMA, Mw=1.9kDa), on Callovo-Oxfordian argillite samples (COx). Even though this molecule is rather different from the natural organic matter found in clay rock, the study of its retention properties on both dispersed and intact samples allows assessing to which extent organic acids may undergo sorption under natural conditions (pH7) and what could be the impact on their mobility. PMA sorption and desorption were investigated in dispersed systems. The degree of sorption was measured after 1, 8 and 21days and for a range of PMA initial concentrations from 4.5×10(-7) to 1.4×10(-3)mol.L(-1). The reversibility of the sorption process was estimated by desorption experiments performed after the sorption experiments. At the sorption steady state, the sorption was described by a two-site Langmuir model. A total sorption capacity of COx for PMA was found to be 1.01×10(-2) mol.kg(-1) distributed on two sorption sites, one weak and one strong. The desorption of PMA was incomplete, independently of the duration of the sorption phase. The amount of desorbable PMA even appeared to decrease for sorption phases from 1 to 21days. To describe the apparent desorption hysteresis, two conceptual models were applied. The two-box diffusion model accounted for intraparticle diffusion and more generally for nonequilibrium processes. The two-box first-order non-reversible model accounted for a first-order non-reversible sorption and more generally for kinetically-controlled irreversible sorption processes. The use of the two models revealed that desorption hysteresis was not the result of nonequilibrium processes but was due to irreversible sorption. Irreversible sorption on the strong site was

  9. Adsorption and transport of polymaleic acid on Callovo-Oxfordian clay stone: Batch and transport experiments

    NASA Astrophysics Data System (ADS)

    Durce, Delphine; Landesman, Catherine; Grambow, Bernd; Ribet, Solange; Giffaut, Eric

    2014-08-01

    Dissolved Organic Matter (DOM) can affect the mobility of radionuclides in pore water of clay-rich geological formations, such as those intended to be used for nuclear waste disposal. The present work studies the adsorption and transport properties of a polycarboxylic acid, polymaleic acid (PMA, Mw = 1.9 kDa), on Callovo-Oxfordian argillite samples (COx). Even though this molecule is rather different from the natural organic matter found in clay rock, the study of its retention properties on both dispersed and intact samples allows assessing to which extent organic acids may undergo sorption under natural conditions (pH 7) and what could be the impact on their mobility. PMA sorption and desorption were investigated in dispersed systems. The degree of sorption was measured after 1, 8 and 21 days and for a range of PMA initial concentrations from 4.5 × 10- 7 to 1.4 × 10- 3 mol.L- 1. The reversibility of the sorption process was estimated by desorption experiments performed after the sorption experiments. At the sorption steady state, the sorption was described by a two-site Langmuir model. A total sorption capacity of COx for PMA was found to be 1.01×10- 2 mol.kg- 1 distributed on two sorption sites, one weak and one strong. The desorption of PMA was incomplete, independently of the duration of the sorption phase. The amount of desorbable PMA even appeared to decrease for sorption phases from 1 to 21 days. To describe the apparent desorption hysteresis, two conceptual models were applied. The two-box diffusion model accounted for intraparticle diffusion and more generally for nonequilibrium processes. The two-box first-order non-reversible model accounted for a first-order non-reversible sorption and more generally for kinetically-controlled irreversible sorption processes. The use of the two models revealed that desorption hysteresis was not the result of nonequilibrium processes but was due to irreversible sorption. Irreversible sorption on the strong site was

  10. Lullaby Light Shows: Everyday Musical Experience among Under-Two-Year-Olds

    ERIC Educational Resources Information Center

    Young, Susan

    2008-01-01

    This article reports on information gathered from a set of interviews carried out with 88 mothers of under-two-year-olds. The interviews enquired about the everyday musical experiences of their babies and very young children in the home. From the process of analysis, the responses to the interviews were grouped into three main areas: musical…

  11. "Binge" drinking experience in adolescent mice shows sex differences and elevated ethanol intake in adulthood.

    PubMed

    Strong, Moriah N; Yoneyama, Naomi; Fretwell, Andrea M; Snelling, Chris; Tanchuck, Michelle A; Finn, Deborah A

    2010-06-01

    Binge drinking, defined as achieving blood ethanol concentrations (BEC) of 80 mg%, has been increasing in adolescents and was reported to predispose later physical dependence. The present experiments utilized an animal model of binge drinking to compare the effect of ethanol "binge" experience during adolescence or adulthood on subsequent ethanol intake in male and female C57BL/6 mice. Adolescent and adult mice were initially exposed to the scheduled high alcohol consumption procedure, which produces BECs that exceed the levels for binge drinking following a 30-min ethanol session every third day. Ethanol intake and BECs were significantly higher in the adolescent ( approximately 3 g/kg, 199 mg%) versus adult ( approximately 2 g/kg, 135 mg%) mice during the first three ethanol sessions, but were more equivalent during the final two ethanol sessions (1.85-2.0 g/kg, 129-143 mg%). Then, separate groups of the ethanol-experienced mice were tested with ethanol naïve adolescent and adult mice for 2-h limited access (10% and 20% solutions) or 24-h (5%, 10% and 20% solutions) ethanol preference drinking. Limited access ethanol intake was significantly higher in female versus male mice, but was not altered by age or ethanol experience. In contrast, 24-h ethanol intake was significantly higher in the adolescent versus adult mice and in female versus male mice. Furthermore, binge drinking experience in the adolescent mice significantly increased subsequent ethanol intake, primarily due to intake in female mice. Thus, adolescent binge drinking significantly increased unlimited ethanol intake during adulthood, with female mice more susceptible to this effect.

  12. Real Science: MIT Reality Show Tracks Experiences, Frustrations of Chemistry Lab Students

    ERIC Educational Resources Information Center

    Cooper, Kenneth J.

    2012-01-01

    A reality show about a college course--a chemistry class no less? That's what "ChemLab Boot Camp" is. The 14-part series of short videos is being released one episode at a time on the online learning site of the Massachusetts Institute of Technology. The novel show follows a diverse group of 14 freshmen as they struggle to master the…

  13. Hydrogen adsorption in the NaA zeolite: A comparison between numerical simulations and experiments

    NASA Astrophysics Data System (ADS)

    Darkrim, Farida; Aoufi, Asdin; Malbrunot, Pierre; Levesque, Dominique

    2000-04-01

    At room temperature and high pressures between 10 MPa and 140 MPa, hydrogen adsorption in the NaA zeolite was studied by grand canonical Monte Carlo simulation. The computed values of the average number of hydrogen molecules adsorbed in a crystal unit were compared to those measured at the same temperature and pressures between 10 MPa and 70 MPa. A quantitative agreement between the two sets of values was obtained by using, in the simulations, a model of zeolite crystal where the Al, Si, O, and Na atoms, disposed in accordance with the crystallographic structure of the NaA zeolite determined by x-ray diffraction, had effective electric charges and were sources of a van der Waals interaction. The adsorption of hydrogen molecules in the NaA zeolite resulted from the combined effects of van der Waals interactions and polarization of hydrogen molecules induced by the electric field of the effective charges.

  14. A common anterior insula representation of disgust observation, experience and imagination shows divergent functional connectivity pathways.

    PubMed

    Jabbi, Mbemba; Bastiaansen, Jojanneke; Keysers, Christian

    2008-08-13

    Similar brain regions are involved when we imagine, observe and execute an action. Is the same true for emotions? Here, the same subjects were scanned while they (a) experience, (b) view someone else experiencing and (c) imagine experiencing gustatory emotions (through script-driven imagery). Capitalizing on the fact that disgust is repeatedly inducible within the scanner environment, we scanned the same participants while they (a) view actors taste the content of a cup and look disgusted (b) tasted unpleasant bitter liquids to induce disgust, and (c) read and imagine scenarios involving disgust and their neutral counterparts. To reduce habituation, we inter-mixed trials of positive emotions in all three scanning experiments. We found voxels in the anterior Insula and adjacent frontal operculum to be involved in all three modalities of disgust, suggesting that simulation in the context of social perception and mental imagery of disgust share a common neural substrates. Using effective connectivity, this shared region however was found to be embedded in distinct functional circuits during the three modalities, suggesting why observing, imagining and experiencing an emotion feels so different.

  15. Unified superresolution experiments and stochastic theory provide mechanistic insight into protein ion-exchange adsorptive separations

    PubMed Central

    Kisley, Lydia; Chen, Jixin; Mansur, Andrea P.; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Chen, Wen-Hsiang; Dhamane, Sagar; Willson, Richard C.; Landes, Christy F.

    2014-01-01

    Chromatographic protein separations, immunoassays, and biosensing all typically involve the adsorption of proteins to surfaces decorated with charged, hydrophobic, or affinity ligands. Despite increasingly widespread use throughout the pharmaceutical industry, mechanistic detail about the interactions of proteins with individual chromatographic adsorbent sites is available only via inference from ensemble measurements such as binding isotherms, calorimetry, and chromatography. In this work, we present the direct superresolution mapping and kinetic characterization of functional sites on ion-exchange ligands based on agarose, a support matrix routinely used in protein chromatography. By quantifying the interactions of single proteins with individual charged ligands, we demonstrate that clusters of charges are necessary to create detectable adsorption sites and that even chemically identical ligands create adsorption sites of varying kinetic properties that depend on steric availability at the interface. Additionally, we relate experimental results to the stochastic theory of chromatography. Simulated elution profiles calculated from the molecular-scale data suggest that, if it were possible to engineer uniform optimal interactions into ion-exchange systems, separation efficiencies could be improved by as much as a factor of five by deliberately exploiting clustered interactions that currently dominate the ion-exchange process only accidentally. PMID:24459184

  16. Unified superresolution experiments and stochastic theory provide mechanistic insight into protein ion-exchange adsorptive separations.

    PubMed

    Kisley, Lydia; Chen, Jixin; Mansur, Andrea P; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Chen, Wen-Hsiang; Dhamane, Sagar; Willson, Richard C; Landes, Christy F

    2014-02-11

    Chromatographic protein separations, immunoassays, and biosensing all typically involve the adsorption of proteins to surfaces decorated with charged, hydrophobic, or affinity ligands. Despite increasingly widespread use throughout the pharmaceutical industry, mechanistic detail about the interactions of proteins with individual chromatographic adsorbent sites is available only via inference from ensemble measurements such as binding isotherms, calorimetry, and chromatography. In this work, we present the direct superresolution mapping and kinetic characterization of functional sites on ion-exchange ligands based on agarose, a support matrix routinely used in protein chromatography. By quantifying the interactions of single proteins with individual charged ligands, we demonstrate that clusters of charges are necessary to create detectable adsorption sites and that even chemically identical ligands create adsorption sites of varying kinetic properties that depend on steric availability at the interface. Additionally, we relate experimental results to the stochastic theory of chromatography. Simulated elution profiles calculated from the molecular-scale data suggest that, if it were possible to engineer uniform optimal interactions into ion-exchange systems, separation efficiencies could be improved by as much as a factor of five by deliberately exploiting clustered interactions that currently dominate the ion-exchange process only accidentally.

  17. Adsorption of thorium from aqueous solutions by perlite.

    PubMed

    Talip, Z; Eral, M; Hiçsönmez, U

    2009-02-01

    The use of expanded perlite for the adsorption of thorium from aqueous solution by batch technique is presented. The effects of particle size, pH of the solution, initial thorium concentration, shaking time, V/m ratio and temperature were determined. It was found that the adsorption capacity increases by the increase in the pH of the suspensions. The rate of thorium adsorption on expanded perlite was observed to be fast in the first hour of the reaction time. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models and the adsorption experiments conducted at 30 +/- 1 degrees C showed that the adsorption isotherms correlated well with the Langmuir model. From the adsorption data, thermodynamic parameters such as DeltaG(o), DeltaH(o) and DeltaS(o) were calculated as a function of temperature.

  18. Integrative Analysis of Disease Signatures Shows Inflammation Disrupts Juvenile Experience-Dependent Cortical Plasticity

    PubMed Central

    Smith, Milo R.; Burman, Poromendro

    2016-01-01

    Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate plasticity signatures. We tested the hypothesis that inflammation disrupts developmental cortical plasticity in vivo using the mouse ocular dominance model of experience-dependent plasticity in primary visual cortex. We found that the administration of systemic lipopolysaccharide suppressed plasticity during juvenile critical period with accompanying transcriptional changes in a particular set of molecular regulators within primary visual cortex. These findings suggest that inflammation may have unrecognized adverse consequences on the postnatal developmental trajectory and indicate that treating inflammation may reduce the burden of neurodevelopmental disorders. PMID:28101530

  19. Why do people show minimal knowledge updating with task experience: inferential deficit or experimental artifact?

    PubMed

    Hertzog, Christopher; Price, Jodi; Burpee, Ailis; Frentzel, William J; Feldstein, Simeon; Dunlosky, John

    2009-01-01

    Students generally do not have highly accurate knowledge about strategy effectiveness for learning, such as that imagery is superior to rote repetition. During multiple study-test trials using both strategies, participants' predictions about performance on List 2 do not markedly differ for the two strategies, even though List 1 recall is substantially greater for imagery. Two experiments evaluated whether such deficits in knowledge updating about the strategy effects were due to an experimental artifact or to inaccurate inferences about the effects the strategies had on recall. Participants studied paired associates on two study-test trials--they were instructed to study half using imagery and half using rote repetition. Metacognitive judgements tapped the quality of inferential processes about the strategy effects during the List 1 test and tapped gains in knowledge about the strategies across lists. One artifactual explanation--noncompliance with strategy instructions--was ruled out, whereas manipulations aimed at supporting the data available to inferential processes improved but did not fully repair knowledge updating.

  20. Why Do People Show Minimal Knowledge Updating with Task Experience: Inferential Deficit or Experimental Artifact?

    PubMed Central

    Hertzog, Christopher; Price, Jodi; Burpee, Ailis; Frentzel, William J.; Feldstein, Simeon; Dunlosky, John

    2008-01-01

    Students generally do not have highly accurate knowledge about strategy effectiveness for learning, such as that imagery is superior to rote repetition. During multiple study-test trials using both strategies, participants’ predictions about performance on List 2 do not markedly differ for the two strategies, even though List 1 recall is substantially greater for imagery. Two experiments evaluated whether such deficits in knowledge updating about the strategy effects were due to an experimental artifact or to inaccurate inferences about the effects the strategies had on recall. Participants studied paired associates on two study-test trials—they were instructed to study half using imagery and half using rote repetition. Metacognitive judgments tapped the quality of inferential processes about the strategy effects during the List 1 test and tapped gains in knowledge about the strategies across lists. One artifactual explanation –noncompliance with strategy instructions -- was ruled out, whereas manipulations aimed at supporting the data available to inferential processes improved but did not fully repair knowledge updating. PMID:18609379

  1. Brain regions that show repetition suppression and enhancement: A meta-analysis of 137 neuroimaging experiments.

    PubMed

    Kim, Hongkeun

    2017-04-01

    Repetition suppression and enhancement refer to the reduction and increase in the neural responses for repeated rather than novel stimuli, respectively. This study provides a meta-analysis of the effects of repetition suppression and enhancement, restricting the data used to that involving fMRI/PET, visual stimulus presentation, and healthy participants. The major findings were as follows. First, the global topography of the repetition suppression effects was strikingly similar to that of the "subsequent memory" effects, indicating that the mechanism for repetition suppression is the reduced engagement of an encoding system. The lateral frontal cortex effects involved the frontoparietal control network regions anteriorly and the dorsal attention network regions posteriorly. The left fusiform cortex effects predominantly involved the dorsal attention network regions, whereas the right fusiform cortex effects mainly involved the visual network regions. Second, the category-specific meta-analyses and their comparisons indicated that most parts of the alleged category-specific regions showed repetition suppression for more than one stimulus category. In this regard, these regions may not be "dedicated cortical modules," but are more likely parts of multiple overlapping large-scale maps of simple features. Finally, the global topography of the repetition enhancement effects was similar to that of the "retrieval success" effects, suggesting that the mechanism for repetition enhancement is voluntary or involuntary explicit retrieval during an implicit memory task. Taken together, these results clarify the network affiliations of the regions showing reliable repetition suppression and enhancement effects and contribute to the theoretical interpretations of the local and global topography of these two effects. Hum Brain Mapp 38:1894-1913, 2017. © 2017 Wiley Periodicals, Inc.

  2. Extended random sequential adsorption model of irreversible deposition processes: From simulations to experiments

    PubMed Central

    Lavalle, P.; Schaaf, P.; Ostafin, M.; Voegel, J.-C.; Senger, B.

    1999-01-01

    An experimental study of the irreversible deposition of colloidal particles of various radii R on a solid surface is presented over a wide range of the Péclet number, Pe, or reduced radius R* (Pe = R*4). The experimental data are analyzed by means of a new generalized random sequential adsorption model that takes explicitly the diffusion of the particles during the deposition into account. It allows description of the continuous transition from a random sequential adsorption-like to a ballistic-like deposition behavior. It depends on three parameters: ds, related to the diffusion of the particles before adhesion; ns, related to the number of allowed adhesion trials of a particle; and Re, representing the effective particle radius. The model allows accounting for all of the experimental observations relative to the radial distribution functions and the number density fluctuations over the whole coverage range and all investigated values of R*. In addition, it is found that ds/R is proportional to R*−2 as expected for a diffusional process. Moreover, the parameters ds and ns appear to be connected through the empirical relation (ds/R)ns2/3 = C, where C is found to be of the order of 50. This unique statistical model allows an accurate description of the irreversible deposition process, whatever the influence of gravity with respect to diffusion. PMID:10500136

  3. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  4. Adsorption in single-walled carbon nanotubes by experiments and molecular simulation II: Effect of morphology and temperature on organic adsorption

    USGS Publications Warehouse

    Agnihotri, S.; Rostam-Abadi, M.; Mota, J.P.B.; Rood, M.J.

    2005-01-01

    Hexane adsorption on single-walled carbon nanotube (SWNT) bundles was studied. Hexane adsorption capacities of two purified SWNT samples was gravimetrically determined at isothermal conditions of 25??, 37??, and 50??C for 10-4 < p/po < 0.9, where p/po is hexane vapor pressure relative to its saturation pressure. Simulation of hexane adsorption under similar temperature and pressure conditions were performed on the external and internal sites of nanotube bundles of diameters same as those in experimental samples. The simulations could predict isotherms for a hypothetical scenario where all nanotubes in a sample would be open. This is an abstract of a paper presented at the AIChE Annual Meeting and Fall Showcase (Cincinnati, OH 10/30/2005-11/4/2005).

  5. Intestinal adsorption of levothyroxine by antacids and laxatives: case stories and in vitro experiments.

    PubMed

    Mersebach, H; Rasmussen, A K; Kirkegaard, L; Feldt-Rasmussen, U

    1999-03-01

    Two patients with hypothyroidism treated for upper dyspepsia and constipation with aluminum hydroxide and magnesium oxide, respectively, presented a marked increase in the serum concentration of thyroid stimulating hormone and low serum thyroxine on a fixed dosage of levothyroxine. After discontinuation of antacids/laxatives, thyroid stimulating hormone was again reduced indicating interaction between levothyroxine and antacids/laxatives. In vitro studies revealed a dose-related increased adsorption of levothyroxine by addition of a combination of aluminum hydroxide, magnesium hydroxide and magnesium carbonate, while no connection between levothyroxine and the addition of magnesium oxide, alone, was found. This finding has major clinical consequences since 1) many patients are treated with levothyroxine, 2) most patients do not tell physicians that they take antacids/laxatives, and 3) consumption of antacids/laxatives in patients with levothyroxine-treated hypothyroidism may lead to serious undersubstitution with levothyroxine.

  6. Facet-Specific Adsorption of Tripeptides at Aqueous Au Interfaces: Open Questions in Reconciling Experiment and Simulation.

    PubMed

    Hughes, Zak E; Kochandra, Raji; Walsh, Tiffany R

    2017-04-07

    The adsorption of three homo-tripeptides, HHH, YYY, and SSS, at the aqueous Au interface is investigated, using molecular dynamics simulations. We find that consideration of surface facet effects, relevant to experimental conditions, opens up new questions regarding interpretations of current experimental findings. Our well-tempered metadynamics simulations predict the rank ordering of the tripeptide binding affinities at aqueous Au(111) to be YYY > HHH > SSS. This ranking differs with that obtained from existing experimental data which used surface-immobilized Au nanoparticles as the target substrate. The influence of Au facet on these experimental findings is then considered, via our binding strength predictions of the relevant amino acids at aqueous Au(111) and Au(100)(1 × 1). The Au(111) interface supports an amino acid ranking of Tyr > HisA ≃ HisH > Ser, matching that of the tripeptides on Au(111), while the ranking on Au(100) is HisA > Ser ≃ Tyr ≃ HisH, with only HisA showing non-negligible binding. The substantial reduction in Tyr amino acid affinity for Au(100) vs Au(111) offers one possible explanation for the experimentally observed weaker adsorption of YYY on the nanoparticle-immobilized substrate compared with HHH. In a separate set of simulations, we predict the structures of the adsorbed tripeptides at the two aqueous Au facets, revealing facet-dependent differences in the adsorbed conformations. Our findings suggest that Au facet effects, where relevant, may influence the adsorption structures and energetics of biomolecules, highlighting the possible influence of the structural model used to interpret experimental binding data.

  7. Adsorption of EDTA on activated carbon from aqueous solutions.

    PubMed

    Zhu, Hai-song; Yang, Xiao-juan; Mao, Yan-peng; Chen, Yu; Long, Xiang-li; Yuan, Wei-kang

    2011-01-30

    In this study, the adsorption of EDTA on activated carbon from aqueous solutions has been investigated in a batch stirred cell. Experiments have been carried out to investigate the effects of temperature, EDTA concentration, pH, activated carbon mass and particle size on EDTA adsorption. The experimental results manifest that the EDTA adsorption rate increases with its concentration in the aqueous solutions. EDTA adsorption also increases with temperature. The EDTA removal from the solution increases as activated carbon mass increases. The Langmuir and Freundlich equilibrium isotherm models are found to provide a good fitting of the adsorption data, with R(2) = 0.9920 and 0.9982, respectively. The kinetic study shows that EDTA adsorption on the activated carbon is in good compliance with the pseudo-second-order kinetic model. The thermodynamic parameters (E(a), ΔG(0), ΔH(0), ΔS(0)) obtained indicate the endothermic nature of EDTA adsorption on activated carbon.

  8. Adsorption experiment of toxic micro-pollutants derived from automobiles using red soil.

    PubMed

    Kawai, Takahiro; Ichiki, Atsushi; Sawada, Yasunori

    2015-01-01

    In some countries, non-point source pollution derived from a city's economic activities tends to be a barrier to the improvement of water quality. Roadway runoff is known to contain toxic micro-pollutants such as polycyclic aromatic hydrocarbons (PAHs). Conversely, red soil is known to adsorb some organic matter. In this study, artificial roadway runoff water containing toxic micro-pollutants was made using roadway dust collected from a highway, and used for both batch-type tests and soil column tests with red soil in order to understand adsorption ability of the red soil on such toxic micro-pollutants, especially PAHs. In the batch-type tests, PAHs could be removed by approximately 40% when the contact time was 90 minutes. In the soil column tests, PAHs were removed by more than 80% while suspended solids were removed by more than 90%. Notably, PAHs with a high molecular weight were removed more readily in the tests than PAHs with a low molecular weight.

  9. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  10. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    ERIC Educational Resources Information Center

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  11. Argon adsorption and the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Bernatowicz, T. J.; Podosek, F. A.

    1991-01-01

    The results of Ar adsorption experiments on a terrestrial labradorite and lunar rock 15415 crushed in vacuo are reported. The experiments were designed to test lunar atmosphere simulation models for the behavior of Ar on the lunar surface, as determined from the Apollo 17 mass spectrometer results. These models (Hodges, 1980, 1982) used a single adsorption potential to characterize the surfaces of lunar soil grains, with the result that high (6-7 kcal/mol) heats of adsorption were inferred. The present experimental results show that very high adsorption potentials are indeed associated with fresh mineral surfaces, but that these energetic surfaces occupy only small fractions of the total surface area. Nonetheless, these small fractions of surface, if they can be maintained in the lunar regolith in steady-state condition, could be sufficient to account for the Apollo 17 mass spectrometer observations.

  12. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments].

    PubMed

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui

    2011-02-01

    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions

  13. F-18 SRA closeup of nose cap showing L-Probe experiment and standard air data sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This under-the-nose view of a modified F-18 Systems Research Aircraft at NASA's Dryden Flight Research Center, Edwards, California, shows three critical components of the aircraft's air data systems which are mounted on both sides of the forward fuselage. Furthest forward are two L-probes that were the focus of the recent Advanced L-probe Air Data Integration (ALADIN) experiment. Behind the L-probes are angle-of-attack vanes, while below them are the aircraft's standard pitot-static air data probes. The ALADIN experiment focused on providing pilots with angle-of-attack and angle-of-sideslip air data as well as traditional airspeed and altitude information, all from a single system. Once fully developed, the new L-probes have the potential to give pilots more accurate air data information with less hardware.

  14. Effect of grain size on uranium(VI) surface complexation kinetics and adsorption additivity.

    PubMed

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M

    2011-07-15

    The contribution of variable grain sizes to uranium adsorption/desorption was studied using a sediment from the US DOE Hanford site. The sediment was wet sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.053-0.2 mm), and clay/silt fraction (<0.053 mm). For each size fraction and their composite (sediment), batch and flow-cell experiments were performed to determine uranium adsorption isotherms and kinetic uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. One important implication of this study is that grain-size distribution may be used to estimate uranium adsorption site and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  15. Bridging the gap between batch and column experiments: A case study of Cs adsorption on granite.

    PubMed

    Wang, Tsing-Hai; Li, Ming-Hsu; Teng, Shi-Ping

    2009-01-15

    Both batch and column methods are conventionally utilized to determine some critical parameters for assessing the transport of contaminants of concern. The validity of using these parameters is somewhat confusing, however, since outputs such as distribution coefficient (Kd) from these two approaches are often discrepant. To bridge this gap, all possible factors that might contribute to this discrepancy were thoroughly investigated in this report by a case study of Cs sorption to crushed granite under various conditions. Our results confirm an important finding that solid/liquid (S/L) ratio is the dominant factor responsible for this discrepancy. As long as the S/L ratio exceeds 0.25, a consistent Kd value can be reached by the two methods. Under these conditions (S/L ratios>0.25), the sorption capacity of the solid is about an order of magnitude less than that in low S/L ratios (<0.25). Although low sorption capacity is observed in the cases of high S/L ratios, the sorption usually takes place preferentially on the most favorable (thermodynamically stable) sorption sites to form a stronger binding. This is verified by our desorption experiments in which a linear isotherm feature is shown either in deionized water or in 1M of ammonium acetate solutions. It may be concluded that batch experiment with an S/L ratio exceeding 0.25 is crucial to obtain convincing Kd values for safety assessment of radioactive waste repository.

  16. Adsorption Behavior of Pb(II) Onto Potassium Polytitanate Nanofibres.

    PubMed

    Shahid, Mohammad; Tiling, Leonard D; El Saliby, Ibrahim; McDonagh, Andrew; Kim, Jong-Beom; Kim, Jong-Ho; Shon, Ho Kyong

    2016-02-01

    Potassium polytitanate nanofibres prepared by a hydrothermal method were investigated for their possible application in removing toxic metals from aqueous solution. Particular attention was paid to employing the titanate as a novel effective adsorbent for the removal of Pb(II). Batch adsorption experiments demonstrated that the adsorption was influenced by various conditions such as solution pH, adsorbent dosage and initial Pb(II) concentration. The results showed that the adsorption rate was faster in the first 5 min and equilibrium was achieved after 180 min. The maximum amount of adsorption was detected at pH 5. Potassium titanate showed much higher adsorption capacity compared to P25. The kinetic studies indicated that the adsorption of Pb(II) onto titanate best fit the pseudo-second-order kinetic model. FTIR spectra revealed that the hydroxyl groups in titanate were responsible for Pb(II) adsorption. The principal mechanism of the adsorption of Pb(II) in the present study is attributed to both ion exchange and oxygen bonding. The adsorption-desorption results demonstrated that the titanate could be readily regenerated after adsorption. Therefore, the present titanate exhibits great potential for the removal of Pb(II) from wastewater.

  17. Understanding H isotope adsorption and absorption of Al-alloys using modeling and experiments (LDRD: #165724)

    SciTech Connect

    Ward, Donald K.; Zhou, Xiaowang; Karnesky, Richard A.; Kolasinski, Robert; Foster, Michael E.; Thurmer, Konrad; Chao, Paul; Epperly, Ethan Nicholas; Zimmerman, Jonathan A.; Wong, Bryan M.; Sills, Ryan B.

    2015-09-01

    Current austenitic stainless steel storage reservoirs for hydrogen isotopes (e.g. deuterium and tritium) have performance and operational life-limiting interactions (e.g. embrittlement) with H-isotopes. Aluminum alloys (e.g.AA2219), alternatively, have very low H-isotope solubilities, suggesting high resistance towards aging vulnerabilities. This report summarizes the work performed during the life of the Lab Directed Research and Development in the Nuclear Weapons investment area (165724), and provides invaluable modeling and experimental insights into the interactions of H isotopes with surfaces and bulk AlCu-alloys. The modeling work establishes and builds a multi-scale framework which includes: a density functional theory informed bond-order potential for classical molecular dynamics (MD), and subsequent use of MD simulations to inform defect level dislocation dynamics models. Furthermore, low energy ion scattering and thermal desorption spectroscopy experiments are performed to validate these models and add greater physical understanding to them.

  18. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    PubMed

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  19. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity

    SciTech Connect

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M.

    2011-07-27

    Laboratory experiments were performed to investigate the contribution of variable grain sizes to uranium adsorption/desorption in a sediment collected from the US DOE Hanford site. The sediment was wet-sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.05-0.2 mm), and clay/silt fraction (< 0.05mm). For each size fraction and their composite (sediment), batch experiments were performed to determine uranium adsorption isotherms, and stirred flow-cell experiments were conducted to derive kinetic data of uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size-specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment, but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. Our analysis also showed that uranium adsorption site concentration estimated from the adsorption isotherms was 3 orders of magnitude less than a site concentration estimated from sediment surface area and generic site density. One important implication of this study is that grain size distribution may be used to estimate uranium adsorption site, and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  20. Hill-type muscle model parameters determined from experiments on single muscles show large animal-to-animal variation.

    PubMed

    Blümel, Marcus; Guschlbauer, Christoph; Daun-Gruhn, Silvia; Hooper, Scott L; Büschges, Ansgar

    2012-11-01

    Models built using mean data can represent only a very small percentage, or none, of the population being modeled, and produce different activity than any member of it. Overcoming this "averaging" pitfall requires measuring, in single individuals in single experiments, all of the system's defining characteristics. We have developed protocols that allow all the parameters in the curves used in typical Hill-type models (passive and active force-length, series elasticity, force-activation, force-velocity) to be determined from experiments on individual stick insect muscles (Blümel et al. 2012a). A requirement for means to not well represent the population is that the population shows large variation in its defining characteristics. We therefore used these protocols to measure extensor muscle defining parameters in multiple animals. Across-animal variability in these parameters can be very large, ranging from 1.3- to 17-fold. This large variation is consistent with earlier data in which extensor muscle responses to identical motor neuron driving showed large animal-to-animal variability (Hooper et al. 2006), and suggests accurate modeling of extensor muscles requires modeling individual-by-individual. These complete characterizations of individual muscles also allowed us to test for parameter correlations. Two parameter pairs significantly co-varied, suggesting that a simpler model could as well reproduce muscle response.

  1. [Adsorption characteristics of f2 bacteriophages by four substrates in constructed wetland].

    PubMed

    Chen, Di; Zheng, Xiang; Wei, Yuan-Song; Yang, Yong

    2013-10-01

    Performance of f2 phages adsorption by four substrates including anthracite coal, steel slag, zeolite and forsterite was investigated through batch and dynamic experiments. Results of batch experiments showed that the removal efficiency of f2 phages by these four substrates was in the order of anthracite > steel slag > forsterite approximately zeolite. The adsorption of f2 phages by anthracite experienced fast, medium and slow stages, and the removal efficiency of f2 phages increased gradually with the increase of anthracite dosage, e. g. the optimized dosage of anthracite was 8.0 g at a solid/liquid ratio of 1:12.5 (m/V). The isothermal adsorption of all four substrates was described with Freundlich and Langmuir isothermal adsorption equation very well, and the adsorption of f2 phages by both anthracite and steel slag fitted pseudo-second order adsorption kinetics at their theoretical adsorption capacities of 3. 35 x 10(8) PFU.g-1 and 2.56 x 10(8) PFU.g-1, respectively, nearly the same as the equilibrium adsorption capacities obtained under the experiment conditions. And the liquid diffusion process was a rate-limiting step of the adsorption of f2 phage by both anthracite and steel slag, but not the only one. The results of dynamic adsorption experiments showed that the adsorption process of f2 phages in the three adsorption columns including anthracite, steel slag and zeolite experienced four stages of adaption, adsorption, pulse adsorption and adsorption equilibrium, and the total removal rates of f2 phages were more than 2. 55 Ig.

  2. Enhanced adsorption of paracetamol on closed carbon nanotubes by formation of nanoaggregates: carbon nanotubes as potential materials in hot-melt drug deposition-experiment and simulation.

    PubMed

    Terzyk, Artur P; Pacholczyk, Agnieszka; Wiśniewski, Marek; Gauden, Piotr A

    2012-06-15

    We present the new results of systematic studies of paracetamol adsorption on closed, commercially available, unmodified carbon nanotubes. The results of thermal analysis, static adsorption measurements and the comparison with phenol adsorption data lead to suggestion that the formation of paracetamol nanoaggregates in the interstitial spaces between nanotubes occurs. This effect is also confirmed by the results of (performed in two ways) independent dynamic measurements and by molecular dynamics simulation technique. Next, we show that the behavior of adsorbed paracetamol during heating leads to the creation of a new drug delivery system. The properties of this system depend on the type of applied nanotubes and the parameters of the process called hot-melt drug deposition. Thus, we conclude that confined nanoaggregate formation, as well as hot-melt deposition should be promising effects in the preparation of highly effective, new drug delivery systems.

  3. Kinetics and equilibrium adsorption studies of dimethylamine (DMA) onto ion-exchange resin.

    PubMed

    Hu, Qinhai; Meng, Yuanyuan; Sun, Tongxi; Mahmood, Qaisar; Wu, Donglei; Zhu, Jianhang; Lu, George

    2011-01-30

    The fine grained resin ZGSPC106 was used to adsorb dimethylamine (DMA) from aqueous solution in the present research. Batch experiments were performed to examine the effects of initial pH of solution and agitation time on the adsorption process. The thermodynamics and kinetics of adsorption were also analyzed. The maximum adsorption was found at natural pH of DMA solution and equilibrium could be attained within 12 min. The equilibrium adsorption data were conformed satisfactorily to the Langmuir equation. The evaluation based on Langmuir isotherm gave the maximal static saturated adsorption capacity of 138.89 mg/g at 293K. Various thermodynamic parameters such as free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) showed that the adsorption was spontaneous, endothermic and feasible. DMA adsorption on ZGSPC106 fitted well to the pseudo-second-order kinetic model. Furthermore, the adsorption mechanism was discussed by Fourier transform infrared spectroscopy (FT-IR) analysis.

  4. Adsorption of organic dyes on TiO2 surfaces in dye-sensitized solar cells: interplay of theory and experiment.

    PubMed

    Anselmi, Chiara; Mosconi, Edoardo; Pastore, Mariachiara; Ronca, Enrico; De Angelis, Filippo

    2012-12-14

    /simulation and experiments appears to be the key to further DSCs progress, both concerning the design of new dye sensitizers and their interaction with the semiconductor and with the solution environment and/or an electrolyte upon adsorption onto the semiconductor.

  5. Internally labeled Cy3/Cy5 DNA constructs show greatly enhanced photo-stability in single-molecule FRET experiments

    PubMed Central

    Lee, Wonbae; von Hippel, Peter H.; Marcus, Andrew H.

    2014-01-01

    DNA constructs labeled with cyanine fluorescent dyes are important substrates for single-molecule (sm) studies of the functional activity of protein–DNA complexes. We previously studied the local DNA backbone fluctuations of replication fork and primer–template DNA constructs labeled with Cy3/Cy5 donor–acceptor Förster resonance energy transfer (FRET) chromophore pairs and showed that, contrary to dyes linked ‘externally’ to the bases with flexible tethers, direct ‘internal’ (and rigid) insertion of the chromophores into the sugar-phosphate backbones resulted in DNA constructs that could be used to study intrinsic and protein-induced DNA backbone fluctuations by both smFRET and sm Fluorescent Linear Dichroism (smFLD). Here we show that these rigidly inserted Cy3/Cy5 chromophores also exhibit two additional useful properties, showing both high photo-stability and minimal effects on the local thermodynamic stability of the DNA constructs. The increased photo-stability of the internal labels significantly reduces the proportion of false positive smFRET conversion ‘background’ signals, thereby simplifying interpretations of both smFRET and smFLD experiments, while the decreased effects of the internal probes on local thermodynamic stability also make fluctuations sensed by these probes more representative of the unperturbed DNA structure. We suggest that internal probe labeling may be useful in studies of many DNA–protein interaction systems. PMID:24627223

  6. Adsorption efficiency of natural materials for low-concentration cesium in solution.

    PubMed

    Miura, A; Kubota, T; Hamada, K; Hitomi, T

    2016-01-01

    In this study, several natural materials were investigated in order to clarify their potential use as cesium (Cs) adsorbents in situ. Four materials--carbonized rice hull, beech sawdust, oak sawdust, and charcoal (Japanese cedar)--which were previously shown to have Cs adsorption capabilities, were examined. Cs adsorption experiments were conducted using different initial Cs and adsorbent concentrations. The physical properties, adsorption isotherms, and adsorption processes were then examined, so as to exploit the Cs adsorption characteristics in the field. Based on these findings, carbonized rice hull and beech sawdust were selected as effective Cs adsorbents. It was found that these materials show continuous and stable Cs adsorption rates for different initial Cs concentrations. The adsorption efficiency of these two adsorption materials in combination was considered, and it was shown that the adsorption isotherms for carbonized rice hull and beech sawdust follow the Freundlich model. Furthermore, the beech sawdust adsorption process exhibited better agreement with the calculated values obtained via the adsorption rate model and the adsorption kinetics model than did the carbonized rice hull adsorption.

  7. Pressurized laboratory experiments show no stable carbon isotope fractionation of methane during gas hydrate dissolution and dissociation.

    PubMed

    Lapham, Laura L; Wilson, Rachel M; Chanton, Jeffrey P

    2012-01-15

    The stable carbon isotopic ratio of methane (δ(13)C-CH(4)) recovered from marine sediments containing gas hydrate is often used to infer the gas source and associated microbial processes. This is a powerful approach because of distinct isotopic fractionation patterns associated with methane production by biogenic and thermogenic pathways and microbial oxidation. However, isotope fractionations due to physical processes, such as hydrate dissolution, have not been fully evaluated. We have conducted experiments to determine if hydrate dissolution or dissociation (two distinct physical processes) results in isotopic fractionation. In a pressure chamber, hydrate was formed from a methane gas source at 2.5 MPa and 4 °C, well within the hydrate stability field. Following formation, the methane source was removed while maintaining the hydrate at the same pressure and temperature which stimulated hydrate dissolution. Over the duration of two dissolution experiments (each ~20-30 days), water and headspace samples were periodically collected and measured for methane concentrations and δ(13)C-CH(4) while the hydrate dissolved. For both experiments, the methane concentrations in the pressure chamber water and headspace increased over time, indicating that the hydrate was dissolving, but the δ(13)C-CH(4) values showed no significant trend and remained constant, within 0.5‰. This lack of isotope change over time indicates that there is no fractionation during hydrate dissolution. We also investigated previous findings that little isotopic fractionation occurs when the gas hydrate dissociates into gas bubbles and water due to the release of pressure. Over a 2.5 MPa pressure drop, the difference in the δ(13)C-CH(4) was <0.3‰. We have therefore confirmed that there is no isotope fractionation when the gas hydrate dissociates and demonstrated that there is no fractionation when the hydrate dissolves. Therefore, measured δ(13)C-CH(4) values near gas hydrates are not affected

  8. Initial heats of H{sub 2}S adsorption on activated carbons: Effect of surface features

    SciTech Connect

    Bagreev, A.; Adib, F.; Bandosz, T.J.

    1999-11-15

    The sorption of hydrogen sulfide was studied on activated carbons of various origins by means of inverse gas chromatography at infinite dilution. The conditions of the experiment were dry and anaerobic. Prior to the experiments the surface of some carbon samples was oxidized using either nitric acid or ammonium persulfate. Then the structural parameters of carbons were evaluated from the sorption of nitrogen. From the IGC experiments at various temperatures, heats of adsorption were calculated. The results showed that the heat of H{sub 2}S adsorption under dry anaerobic conditions does not depend on surface chemistry. The dependence of the heat of adsorption on the characteristic energy of nitrogen adsorption calculated from the Dubinin-Raduskevich equation was found. This correlation can be used to predict the heat of H{sub 2}S adsorption based on the results obtained from nitrogen adsorption.

  9. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  10. Direct injection method for HPLC/MS/MS analysis of acrylamide in aqueous solutions: application to adsorption experiments.

    PubMed

    Mnif, Ines; Hurel, Charlotte; Marmier, Nicolas

    2015-05-01

    Polyacrylamides are polymers used in many fields and represent the main source of release of the highly toxic acrylamide in the environment. In this work, a simple, rapid, and sensitive analytical method was developed with HPLC/MS/MS and direct injection for acrylamide analysis in water and adsorption samples. AFNOR standards NF T90-210 and NF T90-220 were used for the analytical method validation and uncertainty estimation. Limit of quantification (LOQ) for acrylamide was 1 μg/L, and accuracy was checked at three acrylamide levels (1, 6, and 10 μg/L). Uncertainties were estimated at 34.2, 22, and 12.4 % for acrylamide concentrations at LOQ, 6 μg/L, and 10 μg/L, respectively. Acrylamide adsorption on clays (kaolinite, illite) and sludge was then studied as a function of pH, time, and acrylamide concentrations. Acrylamide adsorption on kaolinite, illite, and sludge was found to be very weak since adsorption percentages were inferior to 10 %, whatever the pH value and the initial acrylamide concentration. The low affinity of acrylamide for clays and sludge is likely due to its hydrophilic property, small size, and charge neutrality.

  11. A pressure-amplifying framework material with negative gas adsorption transitions.

    PubMed

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M; Zander, Stefan; Pillai, Renjith S; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-21

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

  12. A pressure-amplifying framework material with negative gas adsorption transitions

    NASA Astrophysics Data System (ADS)

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M.; Zander, Stefan; Pillai, Renjith S.; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-01

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers—or metal-organic frameworks (MOFs)—has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

  13. Adsorption characteristics of brilliant green dye on kaolin.

    PubMed

    Nandi, B K; Goswami, A; Purkait, M K

    2009-01-15

    Experimental investigations were carried out to adsorb toxic brilliant green dye from aqueous medium using kaolin as an adsorbent. Characterization of kaolin is done by measuring: (i) particle size distribution using particle size analyzer, (ii) BET surface area using BET surface analyzer, and (iii) structural analysis using X-ray diffractometer. The effects of initial dye concentration, contact time, kaolin dose, stirring speed, pH and temperature were studied for the adsorption of brilliant green in batch mode. Adsorption experiments indicate that the extent of adsorption is strongly dependent on pH of solution. Free energy of adsorption (DeltaG0), enthalpy (DeltaH0) and entropy (DeltaS0) changes are calculated to know the nature of adsorption. The calculated values of DeltaG0 at 299K and 323K indicate that the adsorption process is spontaneous. The estimated values of DeltaH0 and DeltaS0 both show the negative sign, which indicate that the adsorption process is exothermic and the dye molecules are organized on the kaolin surface in less randomly fashion than in solution. The adsorption kinetic has been described by first-order, pseudo-second-order and intra-particle-diffusion models. It was observed that the rate of dye adsorption follows pseudo-second-order model for the dye concentration range studied in the present case. Standard adsorption isotherms were used to fit the experimental equilibrium data. It was found that the adsorption of brilliant green on kaolin follows the Langmuir adsorption isotherm.

  14. Nisin adsorption to hydrophobic surfaces coated with the PEO–PPO–PEO triblock surfactant Pluronic® F108

    PubMed Central

    Tai, Yuan-Ching; Joshi, Pranav; McGuire, Joseph; Neff, Jennifer A.

    2008-01-01

    The adsorption and elution of the antimicrobial peptide nisin at hydrophobic, silanized silica surfaces coated with the poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) surfactant Pluronic® F108 were measured in situ, with ellipsometry. While such layers are known to inhibit protein adsorption, nisin was observed to adsorb in multilayer quantities, to an extent similar to its adsorption at uncoated, hydrophobic surfaces. The rates of nisin adsorption and elution were generally slower at F108-coated surfaces. And, the sequential adsorption of nisin, including two adsorption–elution cycles at each surface, showed greater differences in adsorption rates between the first and second adsorption cycles, when evaluated at identical mass density, for uncoated relative to F108-coated surfaces. These results indicate that nisin adsorption occurs via “entrapment” within the PEO brush layer at F108-coated surfaces, in this way slowing adsorption and spontaneous elution, and inhibiting post-adsorptive molecular rearrangements by reducing the lateral mobility of nisin. While F108-coated layers rejected adsorption of serum albumin, sequential adsorption experiments carried out with nisin and albumin showed a low level of albumin adsorption when nisin was present at the interface. PMID:18359037

  15. [Adsorption of acid orange II from aqueous solution onto modified peat-resin particles].

    PubMed

    Sun, Qing-Ye; Yang, Lin-Zhang

    2007-06-01

    The adsorption of acid orange II onto modified peat-resin particles was examined in aqueous solution in a batch system. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The pseudo-first-order, pseudo-second-order kinetic and the intraparticle diffusion models were used to describe the kinetic data. The results showed that both Langmuir and Freundlich adsorption models could be used to describe the adsorption of acid orange II onto modified peat-resin particles. The maximum adsorption capacity was 71.43 mg x g(-1). The data analysis indicated that the intraparticle diffusion model could fit the results of kinetic experiment well. The adsorption rate of acid orange II onto modified peat-resin particles is affected by the initial dye concentrations, sizes and doses of modified peat-resin particles and agitation rates. The surface of modified peat-resin particle is the major adsorption area.

  16. Adsorption potential of mercury(II) from aqueous solutions onto Romanian peat moss.

    PubMed

    Bulgariu, Laura; Ratoi, Mioara; Bulgariu, Dumitru; Macoveanu, Matei

    2009-06-01

    This study was undertaken to evaluate the adsorption potential of Romanian peat moss for the removal of mercury(II) from aqueous solutions. The batch system experiments carried out showed that this natural material was effective in removing mercury(II). The analysis of FT-IR spectra indicated that the mechanism involved in the adsorption can be mainly attributed to the binding of mercury(II) with the carboxylic groups of Romanian peat moss. Adsorption equilibrium approached within 60 min. The adsorption data fitted well the Langmuir isotherm model. The maximum adsorption capacity (qmax) was 98.94 mg g(-1). Pseudo-second-order kinetic model was applicable to the adsorption data. The thermodynamic parameters indicate that the adsorption process was spontaneous as the Gibbs free energy values were found to be negative (between -17.58 and -27.25 kJ mol(-1)) at the temperature range of 6-54 degrees C.

  17. [Adsorption-desorption Characteristics of Fermented Rice Husk for Ferrous and Sulfur Ions].

    PubMed

    Xie, Xiao-mei; Liao, Min; Hua, Jia-yuan; Chen, Na; Zhang, Nan; Xu, Pei-zhi; Xie Kai-zhi; XU, Chang-xu; Liu, Guang-rong

    2015-10-01

    To understand the potential of rice husk to fix Fe2+ and S2- ions, the sorption of Fe2+ and S2- by fermented rice husk was studied by using batch incubation experiments in the present study. The effects of adsorption time, Fe2+ and S2- concentration, pH, the temperature and ionic strength in adsorption reaction solution on the sorption were investigated. Therefore, the stability of Fe2+ and S2- adsorbed by fermented rice husk was further validated by desorption experiments performed under similar conditions as adsorption. The results showed that, the adsorption kinetics of Fe2+ (r = 0.912 1) and S2- (r = 0.901 1) by fermented rice husk fits the Elovich kinetics equation, and Freundlich isotherm model could simulate the isotherm adsorption processes of Fe2+ (R2 = 0.965 1) and S2- (R2 = 0.936 6) on fermented rice husk was better than other models. The adsorption processes on fermented rice husk were non- preferential adsorption for Fe2+ and S2, while the adsorption process of Fe2+ on fermented rice husk was spontaneous reaction and the adsorption process of S2- was non-spontaneous reaction. The adsorption processes of Fe2+ and S2- on fermented rice husk were endothermic process since high temperature could benefit to the adsorption. The adsorption mechanism of Fe2+ on fermented rice husk was mainly controlled by coordination adsorption, the adsorption mechanism of S2- on fermented rice husk was mainly controlled by ligand exchange adsorption. The adsorption processes of Fe2+ and S2- on fermented rice husk showed greater pH adaptability which ranged from 1.50 to 11.50. With the increasing of ionic strength, the amount of adsorbed Fe2+ on fermented rice husk wasincreased in some extent, the amount of adsorbed S2- on fermented rice husk was slightly decreased, which further proved the adsorption of Fe2+ was major in inner sphere complexation and the adsorption of S2- was major in outer complexation. The desorption rates of Fe2+ and S2- which was adsorbed by fermented

  18. F-15B in flight showing Supersonic Natural Laminar Flow (SS-NLF) experiment attached vertically to t

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In-flight photo of the F-15B equipped with the Supersonic Natural Laminar Flow (SS-NLF) experiment. During four research flights, laminar flow was achieved over 80 percent of the test wing at speeds approaching Mach 2. This was accomplished as the sole result of the shape of the wing, without the use of suction gloves, such as on the F-16XL. Laminar flow is a condition in which air passes over a wing in smooth layers, rather than being turbulent The greater the area of laminar flow, the lower the amount of friction drag on the wing, thus increasing an aircraft's range and fuel economy. Increasing the area of laminar flow on a wing has been the subject of research by engineers since the late 1940s, but substantial success has proven elusive. The SS-NLF experiment was intended to provide engineers with the data by which to design natural laminar flow wings.

  19. [Adsorption of Congo red from aqueous solution on hydroxyapatite].

    PubMed

    Zhan, Yan-Hui; Lin, Jian-Wei

    2013-08-01

    The adsorption of Congo red (CR) from aqueous solution on hydroxyapatite was investigated using batch experiments. The hydroxyapatite was effective for CR removal from aqueous solution. The adsorption kinetics of CR on hydroxyapatite well followed a pseudo-second-order model. The equilibrium adsorption data of CR on hydroxyapatite could be described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and showed that the adsorption of CR on hydroxyapatite was spontaneous and exothermic in nature. The CR adsorption capacity for hydroxyapatite decreased significantly with increasing pH from 8 to 10. Thermal regeneration showed that hydroxyapatite could be used for six desorption-adsorption cycles with high removal efficiency for CR in each cycle. The mechanisms for CR adsorption on hydroxyapatite with pH value below the pH at point of zero charge (pH(PZC)) include electrostatic attraction, hydrogen bonding and Lewis acid-base interaction. The mechanisms for CR adsorption on hydroxyapatite with pH value above its pH(PZC) include hydrogen bonding and Lewis acid-base interaction. Results of this work indicate that hydroxyapatite is a promising adsorbent for CR removal from aqueous solution.

  20. Adsorption of Pyrene onto the Agricultural By-Product: Corncob.

    PubMed

    Li, Xiaojun; Tong, Dongli; Allinson, Graeme; Jia, Chunyun; Gong, Zongqing; Liu, Wan

    2016-01-01

    The adsorption behavior of pyrene on corncob was studied to provide a theoretical basis for the possible use of this material as an immobilized carrier for improving the bioremediation of PAH-contaminated soil. The results were as follows. Kinetic experiments showed that the adsorption processes obeyed a pseudo-second-order model. The intraparticle diffusion of Weber-Morris model fitting showed that the film and intraparticle diffusions were the key rate-limiting processes, and the adsorption process mainly consisted of three steps: boundary layer diffusion and two intra-particle diffusions. Experimental adsorption data for pyrene were successfully described by the adsorption-partition equilibrium model. The maximum adsorption capacity at 25°C was 214.8 μg g(-1). The adsorption contribution decreased significantly when the Ce/Sw (the equilibrium concentration/solubility in water) was higher than 1. Adsorption decreased with increased temperature. Based on the above results, the corncob particles could be helpful in the bioremediation of pyrene-contaminated soil.

  1. Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements.

    PubMed

    Luengo, Carina; Brigante, Maximiliano; Antelo, Juan; Avena, Marcelo

    2006-08-15

    The adsorption kinetics of phosphate on goethite has been studied by batch adsorption experiments and by in situ ATR-IR spectroscopy at different pH, initial phosphate concentrations and stirring rates. Batch adsorption results are very similar to those reported by several authors, and show a rather fast initial adsorption taking place in a few minutes followed by a slower process taking place in days or weeks. The adsorption kinetics could be also monitored by integrating the phosphate signals obtained in ATR-IR experiments, and a very good agreement between both techniques was found. At pH 4.5 two surface complexes, the bidentate nonprotonated (FeO)(2)PO(2) and the bidentate protonated (FeO)(2)(OH)PO complexes, are formed at the surface. There are small changes in the relative concentrations of these species as the reaction proceeds, and they seem to evolve in time rather independently. At pH 7.5 and 9 the dominating surface species is (FeO)(2)PO(2), which is accompanied by an extra unidentified species at low concentration. They also seem to evolve independently as the reaction proceeds. The results are consistent with a mechanism that involve a fast adsorption followed by a slow diffusion into pores, and are not consistent with surface precipitation of iron phosphate.

  2. Adsorptive removal of methylene blue by CuO-acid modified sepiolite as effective adsorbent and its regeneration with high-temperature gas stream.

    PubMed

    Su, Chengyuan; Wang, Liang; Chen, Menglin; Huang, Zhi; Lin, Xiangfeng

    In this study, the dynamic adsorption of methylene blue dye onto CuO-acid modified sepiolite was investigated. Meanwhile, the equilibrium and kinetic data of the adsorption process were studied to understand the adsorption mechanism. Furthermore, a high-temperature gas stream was applied to regenerate the adsorbent. The results showed that the Langmuir isotherm model was applied to describe the adsorption process. The positive value of enthalpy change indicated that the adsorption process was endothermic in nature. In the dynamic adsorption process, the best adsorption performance was achieved when the ratio of column height to diameter was 2.56 and the treatment capacity was 6 BV/h. The optimal scenario for regeneration experiments was the regeneration temperature of 550-650 °C, the space velocity of 100 min(-1) and the regeneration time of 10 min. The effective adsorption of CuO-acid modified sepiolite was kept for 12 cycles of adsorption and regeneration.

  3. Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires.

    PubMed

    Tanthapanichakoon, W; Ariyadejwanich, P; Japthong, P; Nakagawa, K; Mukai, S R; Tamon, H

    2005-04-01

    Liquid-phase adsorption-desorption characteristics and ethanol regeneration efficiency of an activated carbon prepared from waste tires and a commercial activated carbon were investigated. Water vapor adsorption experiments reveal that both activated carbons showed hydrophobic surface characteristics. Adsorption experiments reveal that the prepared activated carbon possessed comparable phenol adsorption capacity as the commercial one but clearly larger adsorption capacity of two reactive dyes, Black 5 and Red 31. It was ascertained that the prepared activated carbon exhibited less irreversible adsorption of phenol and the two dyes than its commercial counterpart. Moreover, ethanol regeneration efficiency of the prepared AC saturated with either dye was higher than that of the commercial AC. Because of its superior liquid-phase adsorption-desorption characteristics as well as higher ethanol regeneration efficiency, the prepared activated carbon is more suitable for wastewater treatment, especially for adsorbing similarly bulky adsorbates.

  4. Adsorption of fluoride onto crystalline titanium dioxide: effect of pH, ionic strength, and co-existing ions.

    PubMed

    Babaeivelni, Kamel; Khodadoust, Amid P

    2013-03-15

    Adsorption of fluoride from water onto titanium dioxide (TiO(2)) powder was investigated. The sorbent was crystalline TiO(2) composed of mostly anatase with a specific surface area of 56 m(2)/g. Adsorption kinetics and isotherm experiments were performed using an aqueous solution with bicarbonate alkalinity representative of natural waters. Adsorption kinetics data showed that maximum adsorption of fluoride occurred within 3h, following a pseudo-second order kinetics model. Adsorption isotherm data followed the Langmuir equation, indicating favorable adsorption of fluoride onto TiO(2), while results from the Dubinin-Radushkevich model are indicative of physical adsorption of fluoride. Adsorption of fluoride increased with decreasing solution pH. Maximum adsorption of fluoride occurred within the pH range of 2-5, while approximately 75% of maximum adsorption was obtained in the pH range of 7-8 with rapidly declining adsorption above pH 9. The pH(pzc) data for TiO(2) indicated the preferred adsorption of fluoride onto the acidic surface of TiO(2). Higher bicarbonate concentrations in solution increased the solution pH which was conducive to a decrease in adsorption of fluoride onto the surface of TiO(2) at higher pH. Overall, the solution pH was the main factor controlling the uptake of fluoride by TiO(2).

  5. Use of Activated Charcoal for {sup 220}Rn Adsorption for Operations Associated with the Uranium Deposit in the Auxiliary Charcoal Bed at the Molten Salt Reactor Experiment Facility

    SciTech Connect

    Coleman, R.L.

    1999-03-01

    Measurements have been collected with the purpose of evaluating the effectiveness of activated charcoal for the removal of {sup 220}Rn from process off-gas at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory. A series of bench-scale tests were performed at superficial flow velocities of 10, 18, 24, and 33 cm/s (20, 35, 47, and 65 ft/min) with a continuous input concentration of {sup 220}Rn in the range of 9 x 10{sup 3} pCi/L. In addition, two tests were performed at the MSRE facility by flowing helium through the auxiliary charcoal bed uranium deposit. These tests were performed so that the adsorptive effectiveness could be evaluated with a relatively high concentration of {sup 220}Rn. In addition to measuring the effectiveness of activated charcoal as a {sup 220}Rn adsorption media, the source term for available {sup 220}Rn in the deposit is actually available for removal and that the relative activity of fission gases is very small when compared to {sup 220}Rn. The measurement data were then used to evaluate the expected effectiveness of a proposed charcoal adsorption bed consisting of a right circular cylinder having a diameter of 43 cm and a length of 91 cm (17 in. I.D. x 3 ft.). The majority of the measurement data predicts an overall 220Rn activity reduction factor of about 1 x 10{sup 9} for such a design; however, two measurements collected at a flow velocity of 18 cm/s (35 ft/min) indicated that the reduction factor could be as low as 1 x 10{sup 6}. The adsorptive capacity of the proposed trap was also evaluated to determine the expected life prior to degradation of performance. Taking a conservative vantage point during analysis, it was estimated that the adsorption effectiveness should not begin to deteriorate until a {sup 220}Rn activity on the order of 10{sup 10} Ci has been processed. It was therefore concluded that degradation of performance would likely occur as the result of causes other than filling by radon progeny.

  6. Use of Activated Charcoal for Rn-220 Adsorption for Operations Associated with the Uranium Deposit in the Auxiliary Charcoal Bed at the Molten Salt Reactor Experiment Facility

    SciTech Connect

    Coleman, R.L.

    1999-03-17

    Measurements have been collected with the purpose of evaluating the effectiveness of activated charcoal for the removal of {sup 220}Rn from process off-gas at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory. A series of bench-scale tests were performed at superficial flow velocities of 10, 18, 24, and 33 cm s{sup -1} (20, 35, 47, and 65 ft min{sup -1}) with a continuous input concentration of {sup 220}Rn in the range of 9 x 10{sup 3} pCi L{sup -1}. In addition, two tests were performed at the MSRE facility by flowing helium through the auxiliary charcoal bed uranium deposit. These tests were performed so that the adsorptive effectiveness could be evaluated with a relatively high concentration of {sup 220}Rn. In addition to measuring the effectiveness of activated charcoal as a {sup 220}Rn adsorption media, the source term for available {sup 220}Rn and gaseous fission products was evaluated and compared to what is believed to be present in the deposit. The results indicate that only a few percent of the total {sup 220}Rn in the deposit is actually available for removal and that the relative activity of fission gases is very small when compared to {sup 220}Rn. The measurement data were then used to evaluate the expected effectiveness of a proposed charcoal adsorption bed consisting of a right circular cylinder having a diameter of 43 cm and a length of 91 cm (17 in. I.D. x 3 ft.). The majority of the measurement data predicts an overall {sup 220}Rn activity reduction factor of about 1 x 10{sup 9} for such a design; however, two measurements collected at a flow velocity of 18 cm s{sup -1} (35 ft min{sup -1}) indicated that the reduction factor could be as low as 1 x 10{sup 6}. The adsorptive capacity of the proposed trap was also evaluated to determine the expected life prior to degradation of performance. Taking a conservative vantage point during analysis, it was estimated that the adsorption effectiveness should not begin to deteriorate

  7. Perfluorocarbon Tracer Experiments on a 2 km Scale in Manchester Showing Ingress of Pollutants into a Building

    NASA Astrophysics Data System (ADS)

    Matthews, James; Wright, Matthew; Bacak, Asan; Silva, Hugo; Priestley, Michael; Martin, Damien; Percival, Carl; Shallcross, Dudley

    2016-04-01

    Cyclic perfluorocarbons (PFCs) have been used to measure the passage of air in urban and rural settings as they are chemically inert, non-toxic and have low background concentrations. The use of pre-concentrators and chemical ionisation gas chromatography enables concentrations of a few parts per quadrillion (ppq) to be measured in bag samples. Three PFC tracers were used in Manchester, UK in the summer of 2015 to map airflow in the city and ingress into buildings: perfluomethylcyclohexane (PMCH), perfluoro-2-4-dimethylcyclohexane (mPDMCH) and perfluoro-2-methyl-3-ethylpentene (PMEP). A known quantity of each PFC was released for 15 minutes from steel canisters using pre-prepared PFC mixtures. Release points were chosen to be upwind of the central sampling location (Simon Building, University of Manchester) and varied in distance up to 2.2 km. Six releases using one or three tracers in different configurations and under different conditions were undertaken in the summer. Three further experiments were conducted in the Autumn, to more closely investigate the rate of ingress and decay of tracer indoors. In each experiment, 10 litre samples were made over 30 minutes into Tedlar bags, starting at the same time the as PFC release. Samples were taken in 11 locations chosen from 15 identified areas including three in public parks, three outside within the University of Manchester area, seven inside and five outside of the Simon building and two outside a building nearby. For building measurements, receptors were placed inside the buildings on different floors; outside measurements were achieved through a sample line out of the window. Three of the sample positions inside the Simon building were paired with samplers outside to allow indoor-outdoor comparisons. PFC concentrations varied depending on location and height. The highest measured concentrations occurred when the tracer was released at sunrise; up to 330 ppq above background (11 ppq) of PMCH was measured at the 6

  8. Assessment of multi-mycotoxin adsorption efficacy of grape pomace.

    PubMed

    Avantaggiato, Giuseppina; Greco, Donato; Damascelli, Anna; Solfrizzo, Michele; Visconti, Angelo

    2014-01-15

    Grape pomace (pulp and skins) was investigated as a new biosorbent for removing mycotoxins from liquid media. In vitro adsorption experiments showed that the pomace obtained from Primitivo grapes is able to sequester rapidly and simultaneously different mycotoxins. Aflatoxin B1 (AFB1) was the most adsorbed mycotoxin followed by zearalenone (ZEA), ochratoxin A (OTA), and fumonisin B1 (FB1), whereas the adsorption of deoxynivalenol (DON) was negligible. AFB1 and ZEA adsorptions were not affected by changing pH values in the pH 3-8 range, whereas OTA and FB1 adsorptions were significantly affected by pH. Equilibrium adsorption isotherms obtained at different temperatures (5-70 °C) and pH values (3 and 7) were modeled and evaluated using the Freundlich, Langmuir, Sips, and Hill models. The goodness of the fits and the parameters involved in the adsorption mechanism were calculated by the nonlinear regression analysis method. The best-fitting models to describe AFB1, ZEA, and OTA adsorption by grape pomace were the Sips, Langmuir, and Freundlich models, respectively. The Langmuir and Sips models were the best models for FB1 adsorption at pH 7 and 3, respectively. The theoretical maximum adsorption capacities (mmol/kg dried pomace) calculated at pH 7 and 3 decreased in the following order: AFB1 (15.0 and 15.1) > ZEA (8.6 and 8.3) > OTA (6.3-6.9) > FB1 (2.2 and 0.4). Single- and multi-mycotoxin adsorption isotherms showed that toxin adsorption is not affected by the simultaneous presence of different mycotoxins in the liquid medium. The profiles of adsorption isotherms obtained at different temperatures and pH and the thermodynamic parameters (ΔG°, ΔH°, ΔS°) suggest that mycotoxin adsorption is an exothermic and spontaneous process, which involves physisorption weak associations. Hydrophobic interactions may be associated with AFB1 and ZEA adsorption, whereas polar noncovalent interactions may be associated with OTA and FB1 adsorption. In conclusion, this study

  9. Adsorption of polyelectrolyte versus surface charge: in situ single-molecule atomic force microscopy experiments on similarly, oppositely, and heterogeneously charged surfaces.

    PubMed

    Roiter, Yuri; Minko, Sergiy

    2007-07-26

    We have studied the effect of the pH and surface charge of mica on the adsorption of the positively charged weak polyelectrolyte (PE) poly(2-vinylpyridine) (P2VP) using atomic force microscopy (AFM) single-molecule experiments. These AFM experiments were performed in situ directly under aqueous media. If the mica's surface and the PE are oppositely charged (pH > 3), the PE forms a flat adsorbed layer of two-dimensionally (2D) equilibrated self-avoiding random walk coils. The adsorbed layer's structure remains almost unchanged if the pH is decreased to pH 3 (the mica's surface is weakly charged). At pH 2 (the mica surface is decorated by spots of different electrical charges), the polyelectrolyte chains take the form of a 2D compressed coil. In this pH range, at an increased P2VP concentration in solution, the PE segments preferentially adsorb onto the top of previously adsorbed segments, rather than onto an unoccupied surface. We explain this behavior as being caused by the heterogeneous character of the charged surface and the competitive adsorption of hydronium ions. The further increase of polymer concentration results in a complete coverage of the mica substrate and the charge overcompensation by P2VP chains adsorbed on the similarly charged substrate, due to van der Waals forces.

  10. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    PubMed

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  11. Adsorption behavior of some radionuclides on the Chinese weathered coal.

    PubMed

    Wu, Jianfeng; Xu, Qichu; Bai, Tao

    2007-08-01

    The equilibrium and kinetic properties of Am(III), Eu(III) and Cs(I) ions adsorption by three weathered coals (WCs) from China, have been investigated in batch stirred-tank experiments. The effects of contact time, solution acidity and initial sorbate concentration on the adsorption of Am(III), Eu(III) and Cs(I) by Yuxian(YX) Tongchuan (TC) and Pingxiang (PX) WC were evaluated. The radionuclide ions are able to form complex compounds with carboxylic and phenolic groups of WCs and they are also bounded with phenolic groups even at high acidity reaction solution (>0.1 mol/L). Mechanisms including ion exchange, complexation and adsorption to the coal surface are possible in the sorption process. The acidity of the solution played an important role in the adsorption. Even acidity as high as 0.1 mol/L, 60% of Am(III) or Eu(III), 40% of Cs(I) were found to be sorbed on the YX WC, which had the best adsorption capacity for Am(III) and Eu(III). Our batch adsorption studies showed the equilibrium adsorption data fit the linear Langmuir and Freundlich adsorption isotherm. The maximum equilibrium uptake of Eu(III) were 0.412, 3.701, 5.446 mmol/g for JXWC, TCWC and YXWC, respectively.

  12. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    PubMed

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed

  13. A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment

    NASA Astrophysics Data System (ADS)

    Cetinić, I.; Perry, M. J.; D'Asaro, E.; Briggs, N.; Poulton, N.; Sieracki, M. E.; Lee, C. M.

    2015-04-01

    The ratio of two in situ optical measurements - chlorophyll fluorescence (Chl F) and optical particulate backscattering (bbp) - varied with changes in phytoplankton community composition during the North Atlantic Bloom Experiment in the Iceland Basin in 2008. Using ship-based measurements of Chl F, bbp, chlorophyll a (Chl), high-performance liquid chromatography (HPLC) pigments, phytoplankton composition and carbon biomass, we found that oscillations in the ratio varied with changes in plankton community composition; hence we refer to Chl F/bbp as an "optical community index". The index varied by more than a factor of 2, with low values associated with pico- and nanophytoplankton and high values associated with diatom-dominated phytoplankton communities. Observed changes in the optical index were driven by taxa-specific chlorophyll-to-autotrophic carbon ratios and by physiological changes in Chl F associated with the silica limitation. A Lagrangian mixed-layer float and four Seagliders, operating continuously for 2 months, made similar measurements of the optical community index and followed the evolution and later demise of the diatom spring bloom. Temporal changes in optical community index and, by implication, the transition in community composition from diatom to post-diatom bloom communities were not simultaneous over the spatial domain surveyed by the ship, float and gliders. The ratio of simple optical properties measured from autonomous platforms, when carefully validated, provides a unique tool for studying phytoplankton patchiness on extended temporal scales and ecologically relevant spatial scales and should offer new insights into the processes regulating patchiness.

  14. The Majorana Demonstrator: Progress towards showing the feasibility of a 76Ge neutrinoless double-beta decay experiment

    SciTech Connect

    Finnerty, P.; Aguayo, Estanislao; Amman, M.; Avignone, Frank T.; Barabash, Alexander S.; Barton, P. J.; Beene, Jim; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, P. J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Fraenkle, Florian; Galindo-Uribarri, A.; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Looker, Q.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Perumpilly, Gopakumar; Phillips, David; Poon, Alan; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-03-24

    The Majorana Demonstrator will search for the neutrinoless double-beta decay (0*) of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The Demonstrator is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a lowbackground environment and surrounded by passive and active shielding. The goals for the Demonstrator are: demonstrating a background rate less than 3 counts tonne -1 year-1 in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of 0; and performing a direct search for lightWIMPs (3-10 GeV/c2).

  15. Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite.

    PubMed

    Liu, Jing; Zhu, Runliang; Xu, Tianyuan; Xu, Yin; Ge, Fei; Xi, Yunfei; Zhu, Jianxi; He, Hongping

    2016-02-01

    Ferrihydrite (Fh) is of great importance in affecting the migration and transformation of heavy-metal cations and oxyanions. To advance the understanding of co-adsorption reactions on Fh surface, the co-adsorption of phosphate and Zn(II) from aqueous solution to a synthesized Fh was determined. The batch experiments demonstrated a synergistic adsorption of phosphate and Zn(II) on Fh. In the pH range of 3.5-6, the adsorption of the two contaminants showed strong pH dependence in the single solute adsorption systems, but the dependence alleviated in the simultaneous adsorption system. X-ray photoelectron spectroscopy (XPS) revealed that the chemical shifts of Zn 2p1/2 and Zn 2p3/2 binding energies were more significant than that of P 2p in the single and simultaneous adsorption systems. On the other side, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) observed increased formation of outer- and inner-sphere complexes of phosphate in the simultaneous system. Thus, the synergistic adsorption of the two contaminants could be attributed to the formation of ternary complexes as well as electrostatic interactions, while surface precipitation could not be completely ruled out. On the basis of the results from both the batch adsorption experiments and structural characterization, these two contaminants were likely to form phosphate-bridged ternary complexes (≡Fe-P-Zn) in the simultaneous adsorption system.

  16. Quaternized dimethylaminoethyl methacrylate strong base anion exchange fibers for As(V) adsorption

    NASA Astrophysics Data System (ADS)

    Kavaklı, Cengiz; Akkaş Kavaklı, Pınar; Turan, Burcu Dila; Hamurcu, Aslı; Güven, Olgun

    2014-09-01

    N,N-Dimethylaminoethyl methacrylate (DMAEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fibers (DMAEMA-g-PE/PP) was prepared by radiation-induced graft polymerization. DMAEMA graft chains on nonwoven fibers were quaternized with dimethyl sulfate solution for the preparation of strong base anion exchange fibers (QDMAEMA-g-PE/PP). Fiber structures were characterized by FTIR, XPS and SEM techniques. The effect of solution pH, contact time, initial As(V) ion concentration and coexisting ions on the As(V) adsorption capacity of the QDMAEMA-g-PE/PP fibers were investigated by performing batch adsorption experiments. The adsorption of As(V) by QDMAEMA-g-PE/PP fibers was found to be independent on solution pH in the range 4.00-10.00. Kinetic experiments show that the As(V) adsorption rate was rapid and As(V) adsorption follows pseudo second-order kinetic model. As(V) adsorption equilibrium data were analyzed using Langmuir and Freundlich adsorption isotherm model equations. Langmuir and Freundlich adsorption isotherm models fitted the experimental data well. The maximum adsorption capacity (qmax) calculated from Langmuir isotherm was found to be 83.33 mg As(V)/g polymer at pH 7.00. The adsorbent was used for three cycles without significant loss of adsorption capacity. The adsorbed As(V) ions were desorbed effectively by a 0.1 M NaOH solution.

  17. Impact of biochar produced from post-harvest residue on the adsorption behavior of diesel oil on loess soil.

    PubMed

    Jiang, Yu Feng; Sun, Hang; Yves, Uwamungu J; Li, Hong; Hu, Xue Fei

    2016-02-01

    The primary objective of this study was to investigate the effect of biochar, produced from wheat residue at different temperatures, on the adsorption of diesel oil by loess soil. Kinetic and equilibrium data were processed to understand the adsorption mechanism of diesel by biochar-affected loess soil; dynamic and thermodynamic adsorption experiments were conducted to characterize this adsorption. The surface features and chemical structure of biochar, modified at varying pyrolytic temperatures, were investigated using surface scanning electron microscopy and Fourier transform infrared analysis. The kinetic data showed that the adsorption of diesel oil onto loess soil could be described by a pseudo-second-order kinetic model, with the rate-controlling step being intraparticle diffusion. However, in the presence of biochar, boundary layer control and intraparticle diffusion were both involved in the adsorption. Besides, the adsorption equilibrium data were well described by the Freundlich isothermal model. The saturated adsorption capacity weakened as temperature increased, suggesting a spontaneous exothermic process. Thermodynamic parameter analysis showed that adsorption was mainly a physical process and was enhanced by chemical adsorption. The adsorption capacity of loess soil for diesel oil was weakened with increasing pH. The biochar produced by pyrolytic wheat residue increased the adsorption behavior of petroleum pollutants in loess soil.

  18. Liquid-Phase Adsorption Fundamentals.

    ERIC Educational Resources Information Center

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  19. Determination of binding capacity and adsorption enthalpy between Human Glutamate Receptor (GluR1) peptide fragments and kynurenic acid by surface plasmon resonance experiments.

    PubMed

    Csapó, E; Majláth, Z; Juhász, Á; Roósz, B; Hetényi, A; Tóth, G K; Tajti, J; Vécsei, L; Dékány, I

    2014-11-01

    The interaction between kynurenic acid (KYNA) and two peptide fragments (ca. 30 residues) of Human Glutamate Receptor 201-300 (GluR1) using surface plasmon resonance (SPR) spectroscopy was investigated. Because of the medical interest in the neuroscience, GluR1 is one of the important subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). AMPARs are ionotoropic glutamate receptors, which are mediating fast synaptic transmission and are crucial for plasticity in the brain. On the other hand, KYNA has been suggested to have neuroprotective activity and it has been considered for apply in therapy in certain neurobiological disorders. In this article the adsorption of the GluR1201-230 and GluR1231-259 peptides were studied on gold biosensor chip. The peptides were chemically bonded onto the gold surface via thiol group of L-cysteine resulted in the formation of peptide monolayer on the SPR chip surface. Because the GluR1231-259 peptide does not contain L-cysteine the Val256 was replaced by Cys256. The cross sectional area and the surface orientation of the studied peptides were determined by SPR and theoretical calculations (LOMETS) as well. The binding capability of KYNA on the peptide monolayer was studied in the concentration range of 0.1-5.0 mM using 150 mM NaCl ionic strength at pH 7.4 (±0.02) in phosphate buffer solutions. In order to determine the binding enthalpy the experiments were carried out between +10°C and +40°C. The heat of adsorption was calculated by using adsorption isotherms at different surface loading of KYNA on the SPR chip.

  20. Generalized random sequential adsorption

    NASA Astrophysics Data System (ADS)

    Tarjus, G.; Schaaf, P.; Talbot, J.

    1990-12-01

    Adsorption of hard spherical particles onto a flat uniform surface is analyzed by using generalized random sequential adsorption (RSA) models. These models are defined by releasing the condition of immobility present in the usual RSA rules to allow for desorption or surface diffusion. Contrary to the simple RSA case, generalized RSA processes are no longer irreversible and the system formed by the adsorbed particles on the surface may reach an equilibrium state. We show by using a distribution function approach that the kinetics of such processes can be described by means of an exact infinite hierarchy of equations reminiscent of the Kirkwood-Salsburg hierarchy for systems at equilibrium. We illustrate the way in which the systems produced by adsorption/desorption and by adsorption/diffusion evolve between the two limits represented by ``simple RSA'' and ``equilibrium'' by considering approximate solutions in terms of truncated density expansions.

  1. Study on Adsorption of Cu(II) on Chitosan Nanofiber Membranes

    NASA Astrophysics Data System (ADS)

    Cao, Jianhua; Li, Dongzhou; Liang, Weihua; Wu, Dayong

    2014-12-01

    Chitosan nanofiber membranes by electrospinning technique were used to remove Cu(II) from aqueous solution. The adsorption kinetics, equilibrium isotherms, and pH effect were investigated in batch experiments. The Langmuir isotherm and pseudo second-order kinetic models agree well with the experimental data. The chitosan nanofiber membranes are effective for Cu(II) adsorption at pH6. Results showed that the maximum adsorption capacity of the chitosan nanofiber membranes with Cu(II) is 118.62 mg g-1. The chitosan nanofiber membranes can be used as an effective adsorbent for the removal of Cu(II) in aqueous solution due to high adsorption capacity.

  2. Neptunium(V) adsorption to calcite.

    PubMed

    Heberling, Frank; Brendebach, Boris; Bosbach, Dirk

    2008-12-12

    The migration behavior of the actinyl ions U(VI)O2(2+), Np(V)O2+ and Pu(V,VI)O2(+,2+) in the geosphere is to a large extend controlled by sorption reactions (inner- or outer-sphere adsorption, ion-exchange, coprecipitation/structural incorporation) with minerals. Here NpO2+ adsorption onto calcite is studied in batch type experiments over a wide range of pH (6.0-9.4) and concentration (0.4 microM-40 microM) conditions. pH is adjusted by variation of CO2 partial pressure. Adsorption is found to be pH dependent with maximal adsorption at pH 8.3 decreasing with increasing and decreasing pH. pH dependence of adsorption decreases with increasing Np(V) concentration. EXAFS data of neptunyl adsorbed to calcite and neptunyl in the supernatant shows differences in the Np(V)-O-yl distance, 1.85+/-0.01 angstroms for the adsorbed and 1.82+/-0.01 angstroms for the solution species. The equatorial environment of the neptunyl in solution shows about 5 oxygen neighbours at 2.45+/-0.02 angstroms. For adsorbed neptunyl there are also about 5 oxygen neighbours at 2.46+/-0.01 angstroms. An additional feature in the adsorbed species' R-space spectrum can be related to carbonate neighbours, 3 to 6 carbon backscatterers (C-eq) at 3.05+/-0.03 angstroms and 3 to 6 oxygen backscatterers (O-eq2) at 3.31+/-0.02 angstroms. The differences in the Np(V)-O-yl distance and the C-eq and O-eq2 backscatterers which are only present for the adsorbed species indicate inner-sphere bonding of the adsorbed neptunyl species to the calcite surface. Experiments on adsorption kinetics indicate that after a fast surface adsorption process a continuous slow uptake occurs which may be explained by incorporation via surface dissolution and reprecipitation processes. This is also indicated by the part irreversibility of the adsorption as shown by increased KD values after desorption compared to adsorption.

  3. A comparative adsorption study: 17β-estradiol onto aerobic granular sludge and activated sludge.

    PubMed

    Zheng, Xiao-ying; He, Yu-jie; Chen, Wei; Wang, Ming-yang; Cao, Su-lan; Ni, Ming; Chen, Yu

    2016-01-01

    Adsorption plays a significant role in removing hydrophobic 17β-estradiol (E2) from wastewater. Batch experiments were conducted to compare the adsorption of E2 onto activated aerobic granular sludge (AGS) and activated sludge (AS), and features evaluated included the adsorption kinetics, thermodynamics, and influence of other environmental factors. By using a non-chemical wet-heat technique, both AGS and AS were treated to inactivated status. Then, after loading E2, the adsorption equilibrium capacity of the AGS was found to be greater than that of the AS at the same initial concentration of E2. Moreover, both the adsorption processes corresponded to a pseudo-second-order kinetic model; the adsorption rate constant of AGS was found to be higher and the half-adsorption time was shorter than that of AS. Next, evaluations of adsorption isotherms and thermodynamics indicated that the adsorption process was mainly a physical process. Lower temperatures facilitated a higher equilibrium adsorption capacity. However, the adsorption binding sites of AGS were distributed more uniformly at higher temperature, in contrast to the distribution found for AS. Finally, acidic conditions and an appropriate ionic strength (0.4 mol/L) were found to be particularly conducive to the adsorption process. Overall, the results showed that AGS has the potential to adsorb E2 with significant efficiency, thereby offering a new and more efficient means of treating E2 and trace oestrogens in wastewater.

  4. [Characteristics of Adsorption Leaching and Influencing Factors of Dimethyl Phthalate in Purple Soil].

    PubMed

    Wang, Qiang; Song, Jiao-yan; Zeng, Wei; Wang, Fa

    2016-02-15

    The typical soil-purple soil in Three Gorges Reservoir was the tested soil, the characteristics of adsorption leaching of dimethyl phthalate (DMP) in contaminated water by the soil, and the influencing factors in the process were conducted using soil column leaching experiment. The results showed that the parabolic equation was the best equation describing adsorption kinetics of DMP by soils. The concentration of DMP in the leaching solution had significant effect on the adsorption amounts of DMP. With the increasing concentration of DMP in the leaching solution, the adsorption capacities of DMP by purple soil increased linearly. The ionic strength and pH in leaching solution had significant effects on adsorption of DMP. On the whole, increasing of the ionic strength restrained the adsorption. The adsorption amounts at pH 5.0-7.0 were more than those under other pH condition. The addition of exogenous organic matter (OM) in purple soil increased the adsorption amount of DMP by purple soil. However, the adsorption amount was less than those with other addition amounts of exogenous OM when the addition of exogenous OM was too high (> or = 30 g x kg(-1)). The addition of surfactant sodium dodecylbenzene sulfonic acid (SDBS) in purple soil increased the adsorption amount of DMP by purple soil. The adsorption amount was maximal when the addition amount of SDBS was 50 mg x kg(-1). However, the adsorption amounts decreased with increasing addition amounts of SDBS although the adsorption amounts were still more than that of the control group, and the adsorption amount was almost equal to that of the control group when the addition amount of SDBS was 800 mg x kg(-1). Continuous leaching time affected the vertical distribution of DMP in the soil column. When the leaching time was shorter, the upper soil column adsorbed more DMP, while the DMP concentrations in upper and lower soil columns became similar with the extension of leaching time.

  5. Critical analysis of adsorption data statistically

    NASA Astrophysics Data System (ADS)

    Kaushal, Achla; Singh, S. K.

    2016-09-01

    Experimental data can be presented, computed, and critically analysed in a different way using statistics. A variety of statistical tests are used to make decisions about the significance and validity of the experimental data. In the present study, adsorption was carried out to remove zinc ions from contaminated aqueous solution using mango leaf powder. The experimental data was analysed statistically by hypothesis testing applying t test, paired t test and Chi-square test to (a) test the optimum value of the process pH, (b) verify the success of experiment and (c) study the effect of adsorbent dose in zinc ion removal from aqueous solutions. Comparison of calculated and tabulated values of t and χ 2 showed the results in favour of the data collected from the experiment and this has been shown on probability charts. K value for Langmuir isotherm was 0.8582 and m value for Freundlich adsorption isotherm obtained was 0.725, both are <1, indicating favourable isotherms. Karl Pearson's correlation coefficient values for Langmuir and Freundlich adsorption isotherms were obtained as 0.99 and 0.95 respectively, which show higher degree of correlation between the variables. This validates the data obtained for adsorption of zinc ions from the contaminated aqueous solution with the help of mango leaf powder.

  6. [Adsorption of perchlorate by calcined Mg/Zn/Al layered double hydroxides].

    PubMed

    Wang, Hong-Yu; Liu, Yan

    2014-07-01

    The adsorption capacity of perchlorate by Mg/Zn/Al layered double hydroxides was investigated. The samples were characterized by X-ray diffraction (XRD) and the adsorption isothermal model and dynamic model were discussed. The effect of calcination temperature, Mg/Zn/Al molar ratio, pH value of solution, adsorption time and dosage on the adsorption capacity of samples were studied. The experiment results showed that the removal ratio and adsorption capacity reached the highest and the pH value had good applicability when the molar ratio was Mg/Zn/Al = 2: 1 : 1. The adsorption of perchlorate basically conformed to the pseudo-second kinetics and Langmuir, Freundlich isotherm model.

  7. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  8. Novel three-stage kinetic model for aqueous benzene adsorption on activated carbon.

    PubMed

    Choi, Jae-Woo; Choi, Nag-Choul; Lee, Soon-Jae; Kim, Dong-Ju

    2007-10-15

    We propose a novel kinetic model for adsorption of aqueous benzene onto both granular activated carbon (GAC) and powdered activated carbon (PAC). The model is based on mass conservation of benzene coupled with three-stage adsorption: (1) the first portion for an instantaneous stage or external surface adsorption, (2) the second portion for a gradual stage with rate-limiting intraparticle diffusion, and (3) the third portion for a constant stage in which the aqueous phase no longer interacts with activated carbon. An analytical solution of the kinetic model was validated with the kinetic data obtained from aqueous benzene adsorption onto GAC and PAC in batch experiments with two different solution concentrations (C(0)=300 mg L(-1), 600 mg L(-1)). Experimental results revealed that benzene adsorption for the two concentrations followed three distinct stages for PAC but two stages for GAC. The analytical solution could successfully describe the kinetic adsorption of aqueous benzene in the batch reaction system, showing a fast instantaneous adsorption followed by a slow rate-limiting adsorption and a final long constant adsorption. Use of the two-stage model gave incorrect values of adsorption coefficients in the analytical solution due to inability to describe the third stage.

  9. Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides.

    PubMed

    Di Natale, F; Erto, A; Lancia, A; Musmarra, D

    2011-09-15

    Adsorption is an effective process to remove mercury from polluted waters. In spite of the great number of experiments on this subject, the assessment of the optimal working conditions for industrial processes is suffering the lack of reliable models to describe the main adsorption mechanisms. This paper presents a critical analysis of mercury adsorption on an activated carbon, based on the use of chemical speciation analysis to find out correlations between mercury adsorption and concentration of dissolved species. To support this analysis, a comprehensive experimental study on mercury adsorption at different mercury concentrations, temperatures and pH was carried out in model aqueous solutions. This study pointed out that mercury capture occurs mainly through adsorption of cationic species, the adsorption of anions being significant only for basic pH. Furthermore, it was shown that HgOH(+) and Hg(2+) are captured to a higher extent than HgCl(+), but their adsorption is more sensitive to solution pH. Tests on the effect of temperature in a range from 10 to 55 °C showed a peculiar non-monotonic trend for mercury solution containing chlorides. The chemical speciation and the assumption of adsorption exothermicity allow describing this experimental finding without considering the occurrence of different adsorption mechanisms at different temperature.

  10. Phosphate adsorption from wastewater using zirconium (IV) hydroxide: Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies.

    PubMed

    Johir, M A H; Pradhan, M; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2016-02-01

    Excessive phosphate in wastewater should be removed to control eutrophication of water bodies. The potential of employing amorphous zirconium (Zr) hydroxide to remove phosphate from synthetic wastewater was studied in batch adsorption experiments and in a submerged membrane filtration adsorption hybrid (MFAH) reactor. The adsorption data satisfactorily fitted to Langmuir, pseudo-first order and pseudo-second order models. Langmuir adsorption maxima at 22 °C and pHs of 4.0, 7.1, and 10.0 were 30.40, 18.50, and 19.60 mg P/g, respectively. At pH 7.1 and temperatures of 40 °C and 60 °C, they were 43.80 and 54.60 mg P/g, respectively. The thermodynamic parameters, ΔG° and ΔS° were negative and ΔH° was positive. FTIR, zeta potential and competitive phosphate, sulphate and nitrate adsorption data showed that the mechanism of phosphate adsorption was inner-sphere complexation. In the submerged MFAH reactor experiment, when Zr hydroxide was added at doses of 1-5 g/L once only at the start of the experiment, the removal of phosphate from 3 L of wastewater containing 10 mg P/L declined after 5 h of operation. However, when Zr hydroxide was repeatedly added at 5 g/L dose every 24 h, satisfactory removal of phosphate was maintained for 3 days.

  11. [Adsorption kinetic and thermodynamic studies of lead onto activated carbons from cotton stalk].

    PubMed

    Li, Kun-quan; Zheng, Zheng; Jiang, Jian-chun; Zhang, Ji-biao

    2010-05-01

    Low-cost high surface area microporous carbons were prepared from cotton stalk and cotton stalk fiber by H3PO4 activation. The adsorption of lead ions on the carbons was investigated by conducting a series of batch adsorption experiments. The influence of solution pH value, contact time and temperature was investigated. The adsorption kinetics, thermodynamic behavior and mechanism were also discussed. The surface area and pore structure of the activated carbons were analyzed by BET equation, BJH method and H-K method according to the data from nitrogen adsorption at 77K. Boehm titration, Fourier transform infrared spectroscopy (FTIR), the point of zero charge (pH(PZC)) measurement and elemental analysis were used to characterize the surface properties. The results show that the carbons from cotton stalk and cotton stalk fiber have high surface area of 1570 and 1731 m2 x g(-1), and high content of oxygen-containing functional groups of 1.43 and 0.83 mmol x g(-1). The adsorption experiments show that the carbons have high adsorption capacity for lead, and the maximum adsorption equilibrium amount was found to be 120 mg x g(-1). The adsorption amount increased with contact time, and almost 80% of the adsorption occurred in the first 5 min. The pseudo-second-order model describes the adsorption kinetics most effectively. The Freundlich isotherm was found to the best explanation for experimental data. The negative change in free energy (delta G0) and positive change in enthalpy (delta H0) indicate that the adsorption is a spontaneous and endothermic process, and the adsorption of lead ions onto the carbons might be involved in an ion-exchange mechanism.

  12. Modification of a magnetic carbon composite for ciprofloxacin adsorption.

    PubMed

    Mao, Haixin; Wang, Shikui; Lin, Jian-Ying; Wang, Zengshuang; Ren, Jun

    2016-11-01

    A magnetic carbon composite, Fe3O4/C composite, was fabricated by one-step hydrothermal synthesis, modified by heat treatment under an inert atmosphere (N2), and then used as an adsorbent for ciprofloxacin (CIP) removal. Conditions for the modification were optimized according to the rate of CIP removal. The adsorbent was characterized by Fourier transform infrared spectroscopy, X-ray diffraction measurements, vibrating-sample magnetometry, scanning electron microscopy, transmission electron microscopy, and N2 adsorption/desorption isotherm measurements. The results indicate that the modified adsorbent has substantial magnetism and has a large specific area, which favor CIP adsorption. The effects of solution pH, adsorbent dose, contact time, initial CIP concentration, ion strength, humic acid and solution temperature on CIP removal were also studied. Our results show that all of the above factors influence CIP removal. The Langmuir adsorption isotherm fits the adsorption process well, with the pseudo second-order model describing the adsorption kinetics accurately. The thermodynamic parameters indicate that adsorption is mainly physical adsorption. Recycling experiments revealed that the behavior of adsorbent is maintained after recycling for five times. Overall, the modified magnetic carbon composite is an efficient adsorbent for wastewater treatment.

  13. Irreversible adsorption/desorption of PAHs in sediment/water

    SciTech Connect

    Fu, G.; Kan, A.T.; Tomson, M.B.

    1996-10-01

    Successive adsorption isotherm of phenanthrene on soil corresponds to a constant partition of phenanthrene between the bulk solution and solid phase. This shows that the hydrophobic reaction is a dominant mechanism in adsorption process. However, desorption of PAHs appears irreversibility. Cyclic and multiple adsorption and desorption experiments indicated that there is an irreversibly adsorbed intrinsic capacity in the interaction of PAHs (naphthalene and phenanthrene) and soil in aqueous solution. This irreversible fraction for PAHs (naphthalene and phenanthrene) is about 1000-5000 {mu}g/g normalized on the basis of soil organic carbon. The desorption of PAHs from soil appears biphasic when the total adsorbed capacity is greater than the intrinsic irreversibly adsorbed value. In phase, the partitioning coefficient of desorption of PAHs is similar to that of adsorption. However, the other mechanism may be responsible to control the release of PAHs in phase 2.

  14. Zinc modulates thrombin adsorption to fibrin

    SciTech Connect

    Hopmeier, P.; Halbmayer, M.; Fischer, M.; Marx, G. )

    1990-05-01

    Human thrombin with high affinity to Sepharose insolubilized fibrin monomers (high-affinity thrombin) was used to investigate the effect of Zn(II) on the thrombin adsorption to fibrin. Results showed that at Zn(II) concentrations exceeding 100 mumols/l, thrombin binding to fibrin was decreased concomitant with the Zn(II) concentration and time; at lower Zn(II) concentrations, thrombin adsorption was enhanced. Experimental results were identical by using 125I-labelled high-affinity alpha-thrombin or by measuring the thrombin activity either by chromogenic substrate or by a clotting time method. In contrast, Ca(II) alone (final conc. 3 mmol/l) or in combination with Zn(II) was not effective. However, at higher Ca(II) concentrations (7.5-15 mmol/l), thrombin adsorption was apparently decreased. Control experiments revealed that Zn(II) had no impact on the clottability of fibrinogen, and that the results of the experiments with Ca(II) were not altered by possible cross-linking of fibrin. We conclude that unlike Ca(II), Zn(II) is highly effective in modulating thrombin adsorption to fibrin.

  15. Optimization of lead adsorption of mordenite by response surface methodology: characterization and modification

    PubMed Central

    2014-01-01

    Background In order to remove heavy metals, water treatment by adsorption of zeolite is gaining momentum due to low cost and good performance. In this research, the natural mordenite was used as an adsorbent to remove lead ions in an aqueous solution. Methods The effects of adsorption temperature, time and initial concentration of lead on the adsorption yield were investigated. Response surface methodology based on Box-Behnken design was applied for optimization. Adsorption data were analyzed by isotherm models. The process was investigated by batch experiments; kinetic and thermodynamic studies were carried out. Adsorption yields of natural and hexadecyltrimethylammonium-bromide-modified mordenite were compared. Results The optimum conditions of maximum adsorption (nearly 84 percent) were found as follows: adsorption time of 85-90 min, adsorption temperature of 50°C, and initial lead concentration of 10 mg/L. At the same optimum conditions, modification of mordenite produced 97 percent adsorption yield. The most appropriate isotherm for the process was the Freundlich. Adsorption rate was found as 4.4. Thermodynamic calculations showed that the adsorption was a spontaneous and an exothermic process. Conclusions Quadratic model and reduced cubic model were developed to correlate the variables with the adsorption yield of mordenite. From the analysis of variance, the most influential factor was identified as initial lead concentration. At the optimum conditions modification increased the adsorption yield up to nearly 100 percent. Mordenite was found an applicable adsorbent for lead ions especially in dilute solutions and may also be applicable in more concentrated ones with lower yields. PMID:24393442

  16. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    PubMed

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties.

  17. Adsorption of a cationic surfactant by a magsorbent based on magnetic alginate beads.

    PubMed

    Obeid, Layaly; El Kolli, Nadia; Dali, Noëlle; Talbot, Delphine; Abramson, Sébastien; Welschbillig, Mathias; Cabuil, Valérie; Bée, Agnès

    2014-10-15

    Adsorption of cetylpyridinium chloride (CPC), a cationic surfactant, by magnetic alginate beads (MagAlgbeads) was investigated. The magnetic adsorbent (called magsorbent) was prepared by encapsulation of magnetic functionalized nanoparticles in an alginate gel. The influence on CPC adsorption of several parameters such as contact time, pH and initial surfactant concentration was studied. The equilibrium isotherm shows that adsorption occurs through both electrostatic interactions with charge neutralization of the carboxylate groups of the beads and hydrophobic interactions inducing the formation of surfactant aggregates in the beads. The dosage of calcium ions released in the solution turns out to be a useful tool for understanding the adsorption mechanisms. Adsorption is accompanied by a shrinking of the beads that corresponds to a 45% reduction of the volume. Adsorption kinetic experiments show that equilibrium time is strongly dependent on the surfactant concentration, which monitors the nature of the interactions. On the other hand, since the pH affects the ionization state of adsorption sites, adsorption depends on the pH solution, maximum adsorption being obtained in a large pH range (3.2-12) in agreement with the pKa value of alginate (pKa=3.4-4.2). Finally, due to the formation of micelle-like surfactants aggregates in the magnetic alginate beads, they could be used as a new efficient magsorbent for hydrophobic pollutants.

  18. [Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].

    PubMed

    Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei

    2016-04-15

    To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS.

  19. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework.

    PubMed

    Xiao, Bo; Wheatley, Paul S; Zhao, Xuebo; Fletcher, Ashleigh J; Fox, Sarah; Rossi, Adriano G; Megson, Ian L; Bordiga, S; Regli, L; Thomas, K Mark; Morris, Russell E

    2007-02-07

    Gas adsorption experiments have been carried out on a copper benzene tricarboxylate metal-organic framework material, HKUST-1. Hydrogen adsorption at 1 and 10 bar (both 77 K) gives an adsorption capacity of 11.16 mmol H2 per g of HKUST-1 (22.7 mg g(-)1, 2.27 wt %) at 1 bar and 18 mmol per g (36.28 mg g(-)1, 3.6 wt %) at 10 bar. Adsorption of D2 at 1 bar (77 K) is between 1.09 (at 1 bar) and 1.20(at <100 mbar) times the H2 values depending on the pressure, agreeing with the theoretical expectations. Gravimetric adsorption measurements of NO on HKUST-1 at 196 K (1 bar) gives a large adsorption capacity of approximately 9 mmol g(-1), which is significantly greater than any other adsorption capacity reported on a porous solid. At 298 K the adsorption capacity at 1 bar is just over 3 mmol g(-1). Infra red experiments show that the NO binds to the empty copper metal sites in HKUST-1. Chemiluminescence and platelet aggregometry experiments indicate that the amount of NO recovered on exposure of the resulting complex to water is enough to be biologically active, completely inhibiting platelet aggregation in platelet rich plasma.

  20. "The Show"

    ERIC Educational Resources Information Center

    Gehring, John

    2004-01-01

    For the past 16 years, the blue-collar city of Huntington, West Virginia, has rolled out the red carpet to welcome young wrestlers and their families as old friends. They have come to town chasing the same dream for a spot in what many of them call "The Show". For three days, under the lights of an arena packed with 5,000 fans, the…

  1. Simultaneous adsorption of phenol and cadmium on amphoteric modified soil.

    PubMed

    Meng, Zhao-Fu; Zhang, Yi-Ping; Zhang, Zeng-Qiang

    2008-11-30

    Surface modification is an effective way to enhance adsorption of pollutants by soil. In this study, we investigated the individual adsorption of cadmium ion (Cd(2+)) and phenol and also in combination by the clay layer of a loessial soil treated with the amphoteric modifier, duodalkylbetaine (BS-12). Three levels of BS-12 modification were compared in this experiment: (1) unmodified soil (CK), (2) modification with an amount of BS-12 equivalent to 50% of the soil's CEC (50BS) and (3) modification with an amount of BS-12 equivalent to 100% of the soil's CEC (100BS). Cd(2+) adsorption was 0.92-1.70 times higher in the amphoteric modified soil compared to unmodified soil. Adsorption isotherms for Cd(2+) displayed a L1-type shape. Phenol adsorption was 1.25-4.35 times higher in the amphoteric modified soil compared to the unmodified control. The adsorption isotherms of phenol on amphoteric modified soils were generally linear, but changed to L1-type isotherms for modified soil in the Cd(2+)+phenol treatment at 40 degrees C. The results clearly showed that amphoteric modified soil had the ability to simultaneously adsorb Cd(2+) and phenol. Cd(2+) adsorption by the amphoteric modified soil was related to the initial concentration of Cd(2+) in the supernatant. Cd(2+) adsorption in the 100BS treatment exceeded adsorption in the 50BS treatment when Cd(2+) initial concentrations were higher than approximate 200 microg mL(-1). Phenol adsorption by modified soils decreased in the order: 100BS>50BS>CK and was primarily determined by the surface hydrophobicity of the soil. For the unmodified soil, total adsorption in the Cd(2+)+phenol treatment was slightly lower compared to treatments that contained only Cd(2+) or phenol. This indicated an antagonistic effect between the adsorption of Cd(2+) and phenol, which was reduced after amphoteric modification. A comparison of temperature effects on Cd(2+) and phenol adsorption indicated that Cd(2+) was both physically and chemically

  2. [Kinetics of adsorption of Pb2+ onto small river sediment].

    PubMed

    Shi, Gui-Tao; Chen, Zhen-Lou; Bi, Chun-Juan; Sun, Chao; Sun, Yue-Di; Xu, Shi-Yuan

    2009-06-15

    The batch experiments of adsorption of Pb2+ onto small river sediments were conducted. The kinetics of the sorption process was analyzed. The results showed that the equilibrium time of adsorption increased with the increasing of sediment mass in solution, while both adsorbed Pb2+ on per unit of sediment and Pb2+ concentration in the solution after equilibrium decreased. More than 95% of Pb2+ in solution was removed when sediment contents larger than 0.6 g x L(-1). Both pseudo-first-order and pseudo-second-order kinetics were tested and it was found that the latter gave a better explanation of the adsorption process. The equilibrium adsorption capacities calculated from the pseudo-second-order model could represent the true value. There was no significant correlation between initial adsorption rate of Pb2+ and the amount of sediment in solution. However, the pseudo-second-order rate constant increased in the solution with more adsorbent, namely chemical adsorption controlled the process. Elovich equation could explain the mechanism of sorption in the solution with higher contents of sediment; nevertheless, the process of low concentration of adsorbent adsorbing Pb2+ disagreed well with Elovich equation. In terms of adsorption rate in the sorption, intra-particle diffusion dominated in the more sediment solution. On the other hand, multi-linearity was presented for the adsorption rate in less adsorbent solution. The first, sharper portion represented adsorption on the external surface. The second portion indicated Pb2+ diffused gradually into the interior of particles and intra-particle diffusion controlled.

  3. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation

    USGS Publications Warehouse

    Fuller, C.C.; Dadis, J.A.; Waychunas, G.A.

    1993-01-01

    The kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adsorption experiments conducted in the pH range 7.5-9.0. In coprecipitation experiments, As(V) was present in solution during the hydrolysis and precipitation of iron. In adsorption experiments, a period of rapid (<5 min) As(V) uptake from solution was followed by continued uptake for at least eight days, as As(V) diffused to adsorption sites on ferrihydrite surfaces within aggregates of colloidal particles. The time dependence of As(V) adsorption is well described by a general model for diffusion into a sphere if a subset of surface sites located near the exterior of aggregates is assumed to attain adsorptive equilibrium rapidly. The kinetics of As(V) desorption after an increase in pH were also consistent with diffusion as a rate-limiting process. Aging of pure ferrihydrite prior to As(V) adsorption caused a decrease in adsorption sites on the precipitate owing to crystallite growth. In coprecipitation experiments, the initial As(V) uptake was significantly greater than in post-synthesis adsorption experiments, and the rate of uptake was not diffusion limited because As(V) was coordinated by surface sites before crystallite growth and coagulation processes could proceed. After the initial adsorption, As(V) was slowly released from coprecipitates for at least one month, as crystallite growth caused desorption of As(V). Adsorption densities as high as 0.7 mole As(V) per mole of Fe were measured in coprecipitates, in comparison to 0.25 mole As(V) per mole of Fe in post-synthesis adsorption experiments. Despite the high Concentration of As(V) in the precipitates, EXAFS spectroscopy (Waychunas et al., 1993) showed that neither ferric arsenate nor any other As-bearing surface precipitate or solid solution was formed. The high adsorption densities are possible because the ferrihydrite particles are extremely small, approaching the size of small dioctahedral chains at

  4. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA.

  5. First Molecular Dynamics simulation insight into the mechanism of organics adsorption from aqueous solutions on microporous carbons

    NASA Astrophysics Data System (ADS)

    Terzyk, Artur P.; Gauden, Piotr A.; Zieliński, Wojciech; Furmaniak, Sylwester; Wesołowski, Radosław P.; Klimek, Kamil K.

    2011-10-01

    The results of 84 MD simulations showing the influence of porosity and carbon surface oxidation on adsorption of three organic compounds from aqueous solutions on carbons are reported. Based on a model of 'soft' activated carbon, three carbon structures with gradually changed microporosity were created. Next, different number of surface oxygen groups was introduced. We observe quantitative agreement between simulation and experiment i.e. the decrease in adsorption from benzene down to paracetamol. Simulation results clearly demonstrate that the balance between porosity and carbon surface chemical composition in organics adsorption on carbons, and the pore blocking determine adsorption properties of carbons.

  6. Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae.

    PubMed

    Chen, Hao; Zhao, Jie; Wu, Junyong; Dai, Guoliang

    2011-08-15

    This paper reports on the development of organo-modified silkworm exuviae (MSE) adsorbent prepared by using hexadecyltrimethylammonium bromide (HDTMAB) for removing methyl orange (MO), a model anionic dye, from aqueous solution. The natural and modified samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and Fourier transform infrared spectroscopy (FT-IR). Batch adsorption experiments were carried out to remove MO from its aqueous solutions using SE and MSE. It was observed that the adsorption capacity of MSE is 5-6 times of SE. The different parameters effecting on the adsorption capacity such as pH of the solution, initial dye concentration, temperature and contact time have been investigated. Analysis of adsorption results obtained at different temperatures showed that the adsorption pattern on the MSE can be described perfectly with Langmuir isotherm model compared with Freundlich and Dubinin-Radushkevich (D-R) isotherm models, and the characteristic parameters for each adsorption isotherm were also determined. The adsorption process has been found exothermic in nature and thermodynamic parameters have been calculated. The adsorption kinetic followed the pseudo-second order kinetic model. The results of FT-IR, EDS and desorption studies all suggest that methyl orange adsorption onto the MSE should be mainly controlled by the hydrophobic interaction mechanism, along with a considerable contribution of the anionic exchange mechanism. The results indicate that HDTMAB-modified silkworm exuviae could be employed as low-cost material for the removal of methyl orange anionic dye from wastewater.

  7. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber.

    PubMed

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution.

  8. Protein nanoparticle interaction: A spectrophotometric approach for adsorption kinetics and binding studies

    NASA Astrophysics Data System (ADS)

    Vaishanav, Sandeep K.; Chandraker, Kumudini; Korram, Jyoti; Nagwanshi, Rekha; Ghosh, Kallol K.; Satnami, Manmohan L.

    2016-08-01

    Investigating the protein nanoparticle interaction is crucial to understand how to control the biological interactions of nanoparticles. In this work, Model protein Bovine serum albumin (BSA) was used to evaluate the process of protein adsorption to the gold nanoparticles (GNPs) surface. The binding of a model protein (BSA) to GNPs was investigated through fluorescence quenching measurements. The strong affinities of BSA for GNPs were confirmed by the high value of binding constant (Ks) which was calculated to be 2.2 × 1011 L/mol. In this consequence, we also investigated the adsorption behavior of BSA on GNPs surface via UV-Vis spectroscopy. The effect of various operational parameters such as pH, contact time, initial BSA concentration, and temperature on adsorption of BSA was investigated using batch adsorption experiments. Kinetics of adsorption was found to follow the pseudo-second order rate equation. The suitability of Freundlich and Langmuir adsorption models to the equilibrium data was investigated. The equilibrium adsorption was well described by the Freundlich isotherm model. The maximum adsorption capacity for BSA adsorbed on GNPs was 58.71 mg/g and equilibrium constant was 0.0058 calculated by the Langmuir model at 298 K and pH = 11.0. Thermodynamic parameters showed that the adsorption of BSA onto GNPs was feasible, spontaneous, and exothermic.

  9. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber

    PubMed Central

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265

  10. Characteristic Evaluation of Graphene Oxide for Bisphenol A Adsorption in Aqueous Solution

    PubMed Central

    Phatthanakittiphong, Thatchaphong; Seo, Gyu Tae

    2016-01-01

    This paper investigates the characteristics of graphene oxide (GO) for Bisphenol A (BPA) adsorption in water. Batch experiments on the influence of significant parameters were performed. While an improvement of the adsorption capacity of BPA was obtained by the increment of contact time and the initial BPA concentration, the increment of pH above 8, GO dosage, and temperature showed the reverse results. The thermodynamic study suggested that BPA adsorption on GO was an exothermic and spontaneous process. The kinetics was explained by the pseudo-second-order model which covers all steps of adsorption. The fit of the results with the Langmuir isotherm indicated the monolayer adsorption. At 298 K, the adsorption reached equilibrium within 30 min with the maximum adsorption capacity of 49.26 mg/g. The low BPA adsorption capacity of GO can be interpreted by the occurrence of oxygen-containing functional groups (OCFGs) that are able to form hydrogen bonds with the surrounding OCFGs and water molecules. This effect inhibited the role of π–π interactions that are mainly responsible for the adsorption of BPA. PMID:28335257

  11. Surface complexation modeling of uranyl adsorption on corrensite from the Waste Isolation Pilot Plant Site

    SciTech Connect

    Park, Sang-Won; Leckie, J.O.; Siegel, M.D.

    1995-09-01

    Corrensite is the dominant clay mineral in the Culebra Dolomite at the Waste Isolation Pilot Plant. The surface characteristics of corrensite, a mixed chlorite/smectite clay mineral, have been studied. Zeta potential measurements and titration experiments suggest that the corrensite surface contains a mixture of permanent charge sites on the basal plane and SiOH and AlOH sites with a net pH-dependent charge at the edge of the clay platelets. Triple-layer model parameters were determined by the double extrapolation technique for use in chemical speciation calculations of adsorption reactions using the computer program HYDRAQL. Batch adsorption studies showed that corrensite is an effective adsorbent for uranyl. The pH-dependent adsorption behavior indicates that adsorption occurs at the edge sites. Adsorption studies were also conducted in the presence of competing cations and complexing ligands. The cations did not affect uranyl adsorption in the range studied. This observation lends support to the hypothesis that uranyl adsorption occurs at the edge sites. Uranyl adsorption was significantly hindered by carbonate. It is proposed that the formation of carbonate uranyl complexes inhibits uranyl adsorption and that only the carbonate-free species adsorb to the corrensite surface. The presence of the organic complexing agents EDTA and oxine also inhibits uranyl sorption.

  12. Adsorption of mercury in coal-fired power plants gypsum slurry on TiO2/chitosan composite material

    NASA Astrophysics Data System (ADS)

    Gao, P.; Gao, B. B.; Gao, J. Q.; Zhang, K.; Chen, Y. J.; Yang, Y. P.; Chen, H. W.

    2016-07-01

    In this study, a simple method was used to prepare a chitosan adsorbent to mix with KI and TiO2. Gravimetric analysis (TG), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the samples before and after adsorption of Hg2+. A mercury adsorption experiment was also conducted in the gypsum slurry. The results show that using hydrobromic acid as a solvent of adsorbent resulted in a better adsorption effect than using acetic acid alone. Also, the sample (CS-KI/TiO2-HBr) had a maximum mercury adsorption capacity when the pH=5 and the t=50°C. The characterization experiments showed that the thermal stability of composite materials declined and the TiO2 uniformly dispersed in the surface of the samples with a lamellar structure, generating a lot of cracks and recesses that increased the reactive sites. Furthermore, when the TiO2 reacted with CS, it resulted in Ti-C, Ti-O and Ti-N bonds. The Br- can prevent the growth of TiO2 crystal grains and strengthen the ability of I- to remove mercury. The adsorption isotherm and kinetic results indicated that the adsorption behaviour of CS-KI/TiO2-HBr as it removes Hg2+ is an inhomogeneous multilayer adsorption process. The surface adsorption and intraparticle diffusion effects are both important in the Hg2+ adsorption process.

  13. Synthesization, characterization and adsorption properties of sulfonic cellulose.

    PubMed

    Shi, Wenjian; Zhou, Yan; Zhang, Yuanzhang; Li, Liang; Yang, Qinlin

    2012-01-01

    The synthesization and characterization of a new environmental functional material-sulfonic cellulose - were studied in this paper. The preparation conditions were optimized through an orthogonal experiment. The modified cellulose was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorption rules of cationic organic pollutants and heavy metal ions by this new material were discussed. Regeneration and recycling performances of the sulfonic cellulose were also investigated. At the temperature of 323 K, sulfonic cellulose was prepared by grafting 2-acrylamido-2-methylpropane sulfonic acid (AMPS) onto alkali-treated cellulose for 4 h with the employing of ceric ammonium nitrate as initiator. The mass ratio of AMPS to cellulose was 3:1 and the concentration of ceric ammonium nitrate was 63.8 mmol/L. The sulfur content of sulfonic cellulose was 7.32 wt%. The peaks of 1,303 and 1,159 cm⁻¹ in IR suggested the existence of the sulfonic group in sulfonic cellulose. The XRD and SEM results showed that the crystallinity decreased while the specific surface area increased after modification. Batch adsorption results showed that sulfonic cellulose had a favorable adsorption capacity for model contaminants at pH 6.0-7.0. The adsorption process was endothermic and reached equilibrium in 180 min. The adsorption rules of cationic organic pollutants and heavy metal ions indicated that sulfonic cellulose had high adsorption capacity for the cationic dyes with a coplanar macromolecule structure and organic compounds carrying the amino group. Under room temperature, 1.0 mol/L HCl can be used as a desorption solution and the equilibrium adsorption capacity had little decrease (less than 7%) after six adsorption-desorption cycles.

  14. [Study on treatment of methylene blue wastewater by fly ash adsorption-Fenton and thermal regeneration].

    PubMed

    Bai, Yu-Jie; Zhang, Ai-Li; Zhou, Ji-Ti

    2012-07-01

    The physicochemical properties of water-washed fly ash (FA) and acid modified fly ash (M-FA) were investigated. The adsorption of methylene blue by FA and M-FA were studied by batch experiments. Two methods, Fenton-drive oxidation regeneration and thermal regeneration, were used for regeneration of the used FA and M-FA. The result showed that the rate of adsorption process followed the second order kinetics and the adsorption followed Langmuir isotherms. The adsorption equilibrium time was 30 min, and the equilibrium adsorption capacity of FA and M-FA were 4.22 mg x g(-1) and 5.98 mg x g(-1) respectively. The adsorption capability of M-FA was higher than that of FA. In the range of pH 2-12, the adsorption capacity of M-FA increased with the increase of pH, whereas the adsorption capacity of FA decreased slowly until the pH 8 and then increased. Electrostatic adsorption was the major factor on the adsorption capacity. Around 61% and 55% percentage regeneration (PR) were obtained for FA and M-FA respectively when 78.4 mmol x L(-1) H2O2 and 0.72 mmol x L(-1) Fe2+ were used. When the condition of thermal regeneration was 400 degrees C and 2 h, a positive correlation can be found between the PRs of FA and regeneration times, the PRs were 102%, 104% and 107% in three cycles of adsorption-thermal regeneration process. However a negative correlation can be found between the PRs of M-FA and regeneration times, the PRs were 82%, 75% and 74% in three cycles of adsorption-thermal regeneration process. The PR of FA was higher than that of M-FA, and thermal regeneration was superior to Fenton-drive regeneration.

  15. Superior adsorption and photoinduced carries transfer behaviors of dandelion-shaped Bi2S3@MoS2: experiments and theory

    NASA Astrophysics Data System (ADS)

    Li, Mengjiao; Wang, Junyong; Zhang, Peng; Deng, Qinglin; Zhang, Jinzhong; Jiang, Kai; Hu, Zhigao; Chu, Junhao

    2017-02-01

    The enhanced light-harvesting capacity and effective separation of photogenerated carriers in fantastic hierarchical heterostructures enjoy striking attention for potential applications in the field of solar cells and photocatalysis. A three-dimensional (3D) dandelion-shaped hierarchical Bi2S3 microsphere compactly decorated with wing-shaped few layered MoS2 lamella (D-BM) was fabricated via a facile hydrothermal self-assembly process. Especially, polyethylene glycol (PEG) has been proven as the vital template to form D-BM microsphere. Importantly, the as-prepared D-BM microsphere presents pH-dependent superior adsorption behavior and remarkable visible light photocatalytic activity for degradation of organic dyestuffs (Rhodamine B/RhB and Methylene blue/MB), far exceeding those for the pure Bi2S3 and MoS2. It is understandable that D-BM with high surface area possesses more active sites and promotes light utilization due to the unique porous structure with outspread wings. Besides, based on the experiments and theoretical calculations, the staggered type II band alignment of D-BM permits the charge injection from Bi2S3 to MoS2, subsequently accelerates the separation and restrains the recombination of carriers, leading to excellent photocatalytic activity, as well as the photoconductance and photoresponse performance (with Ilight/Idark ratio 567).

  16. Superior adsorption and photoinduced carries transfer behaviors of dandelion-shaped Bi2S3@MoS2: experiments and theory.

    PubMed

    Li, Mengjiao; Wang, Junyong; Zhang, Peng; Deng, Qinglin; Zhang, Jinzhong; Jiang, Kai; Hu, Zhigao; Chu, Junhao

    2017-02-13

    The enhanced light-harvesting capacity and effective separation of photogenerated carriers in fantastic hierarchical heterostructures enjoy striking attention for potential applications in the field of solar cells and photocatalysis. A three-dimensional (3D) dandelion-shaped hierarchical Bi2S3 microsphere compactly decorated with wing-shaped few layered MoS2 lamella (D-BM) was fabricated via a facile hydrothermal self-assembly process. Especially, polyethylene glycol (PEG) has been proven as the vital template to form D-BM microsphere. Importantly, the as-prepared D-BM microsphere presents pH-dependent superior adsorption behavior and remarkable visible light photocatalytic activity for degradation of organic dyestuffs (Rhodamine B/RhB and Methylene blue/MB), far exceeding those for the pure Bi2S3 and MoS2. It is understandable that D-BM with high surface area possesses more active sites and promotes light utilization due to the unique porous structure with outspread wings. Besides, based on the experiments and theoretical calculations, the staggered type II band alignment of D-BM permits the charge injection from Bi2S3 to MoS2, subsequently accelerates the separation and restrains the recombination of carriers, leading to excellent photocatalytic activity, as well as the photoconductance and photoresponse performance (with Ilight/Idark ratio 567).

  17. Superior adsorption and photoinduced carries transfer behaviors of dandelion-shaped Bi2S3@MoS2: experiments and theory

    PubMed Central

    Li, Mengjiao; Wang, Junyong; Zhang, Peng; Deng, Qinglin; Zhang, Jinzhong; Jiang, Kai; Hu, Zhigao; Chu, Junhao

    2017-01-01

    The enhanced light-harvesting capacity and effective separation of photogenerated carriers in fantastic hierarchical heterostructures enjoy striking attention for potential applications in the field of solar cells and photocatalysis. A three-dimensional (3D) dandelion-shaped hierarchical Bi2S3 microsphere compactly decorated with wing-shaped few layered MoS2 lamella (D-BM) was fabricated via a facile hydrothermal self-assembly process. Especially, polyethylene glycol (PEG) has been proven as the vital template to form D-BM microsphere. Importantly, the as-prepared D-BM microsphere presents pH-dependent superior adsorption behavior and remarkable visible light photocatalytic activity for degradation of organic dyestuffs (Rhodamine B/RhB and Methylene blue/MB), far exceeding those for the pure Bi2S3 and MoS2. It is understandable that D-BM with high surface area possesses more active sites and promotes light utilization due to the unique porous structure with outspread wings. Besides, based on the experiments and theoretical calculations, the staggered type II band alignment of D-BM permits the charge injection from Bi2S3 to MoS2, subsequently accelerates the separation and restrains the recombination of carriers, leading to excellent photocatalytic activity, as well as the photoconductance and photoresponse performance (with Ilight/Idark ratio 567). PMID:28211893

  18. Adsorption of humic acid from aqueous solutions on crosslinked chitosan-epichlorohydrin beads: kinetics and isotherm studies.

    PubMed

    Wan Ngah, W S; Hanafiah, M A K M; Yong, S S

    2008-08-01

    The adsorption of humic acid on crosslinked chitosan-epichlorohydrin (chitosan-ECH) beads was investigated. Chitosan-ECH beads were characterized by Fourier transform infrared spectroscopy (FTIR), surface area and pore size analyses, and scanning electron microscopy (SEM). Batch adsorption experiments were carried out and optimum humic acid adsorption on chitosan-ECH beads occurred at pH 6.0, agitation rate of 300 rpm and contact time of 50 min. Adsorption equilibrium isotherms were analyzed by Langmuir and Freundlich models. Freundlich model was found to show the best fit for experimental data while the maximum adsorption capacity determined from Langmuir model was 44.84 mg g(-1). The adsorption of humic acid on chitosan-ECH beads was best described with pseudo-first-order kinetic model. For desorption study, more than 60% of humic acid could be desorbed from the adsorbent using 1.0M HCl for 180 min.

  19. Adsorption edge study about cadmium, copper, nickel and zinc adsorption by variable charge soils

    NASA Astrophysics Data System (ADS)

    Casagrande, J. C.; Mouta, E. R.; Soares, M. R.

    2009-04-01

    The improper discharge of industrial and urban residues and the inadvertent use of fertilizers and pesticides can result in soil and water pollution and improve the potential of trace metals to enter in the human food chain. Adsorption reactions occur at the solid/liquid interface and are the most important mechanisms for controlling the activity of metal ions in soil solution. In a complex system with amphoteric behavior, the comprehension of the mobility, availability and fate of pollutants in the soil system is crucial for the prediction of the environmental consequences and for development of prevention/remediation strategies. A comparative study of cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) adsorption by highly weathered soils was carried out. Surface (0-0.2m) and subsoil (B horizon) samples were taken from a Rhodic Kandiudalf (RH), an Anionic "Xanthic" Acrudox (XA) and an Anionic "Rhodic" Acrudox (RA), located in brazilian humid tropical area. As the pH and the ionic strength are important environmental factors influencing the solution chemistry of heavy metals in variable charge systems, adsorption envelopes, in a batch adsorption experiment, were elaborated by reacting, for 24 h, soil samples with individual 0.01, 0.1 and 1.0 mol L-1 Ca(NO3)2 aqueous solutions containing nitrate salts of the adsorptive heavy metal (Cd, Cu, Ni and Zn) at the initial concentration of 5 mg L-1, with an increasing pH value from 3.0 to 8.0. pH50-100%, the difference between the pH of 100 and 50 percent metal adsorption was determined. A sharp increase of adsorption density (adsorption edge) was observed within a very narrow pH range, usually less than two pH units. Commonly, the relative affinity of a soil for a metal cation increases with the tendency of the cation to form inner-sphere surface complexes. This may be caused by differences in extent of hydrolysis of Cu ions and in affinity of adsorption sites for Cu. In general, subsurface samples showed low pH50

  20. Adsorptive removal of patulin from aqueous solution using thiourea modified chitosan resin.

    PubMed

    Liu, Bingjie; Peng, Xiaoning; Chen, Wei; Li, Yang; Meng, Xianghong; Wang, Dongfeng; Yu, Guangli

    2015-09-01

    In the present paper, thiourea modified chitosan resin (TMCR) was firstly prepared through converting hydroxyl groups of chitosan resin into thiol groups, using glutaraldehyde as cross-linking agent and thiourea as modification agent. TMCR was characterized by FTIR, EDXS, SEM, XRD and AFM technologies. Batch adsorption experiments were performed to study the adsorption capacity of TMCR for patulin at different pH, temperature, contact time and patulin concentration. The result showed that TMCR was effective in removal of patulin from aqueous solution. The adsorption capacity of TMCR for patulin was 1.0 mg/g at pH 4.0, 25 °C for 24 h. Adsorption process could be well described by pseudo-first order model, Freundlich isotherm model and intraparticle diffusion model. It indicated that TMCR is expected to be a new material for patulin adsorption from aqueous solutions.

  1. Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption.

    PubMed

    Hassan, A F; Abdel-Mohsen, A M; Fouda, Moustafa M G

    2014-02-15

    Three adsorbents, calcium alginate beads (AB), sodium hydroxide activated carbon based coconut shells (C), and calcium alginate/activated carbon composite beads (ACB) were prepared. Their textural properties were characterized by N2-adsorption at -196°C and scanning electron microscopy. The porosity, surface area and total pore volume of C>ACB>AB, but AB adsorbent was more acidic function groups more than the other adsorbents. Adsorption experiments were conducted to examine the effects of adsorbent dosage, pH, time, temperature and initial concentration of methylene blue. Methylene blue adsorption on C, AB and ACB was observed at pH>6 to avoid the competition of H(+). The amount of dye adsorbed increases as the adsorbent dosage increase. Adsorption of dye follows pseudo-second order mechanism. Thermodynamic studies show spontaneous and endothermic nature of the overall adsorption process.

  2. Kinetics adsorption study of the ethidium bromide by graphene oxide as adsorbent from aqueous matrices

    NASA Astrophysics Data System (ADS)

    Rajabi, M.; Moradi, O.; Zare, K.

    2017-01-01

    In this study of ethidium bromide, adsorption from aqueous matrices by graphene oxide as adsorbent was investigated. Influencing parameters in the adsorption study included contact time, temperature, and pH. The optimum time was selected 17 min, and the best value of pH was determined at 8. All adsorption experiments were performed at 298 K temperature. The maximum wavelength of ethidium bromide was 475 nm. The Elovich, four types of the pseudo-second-order, the pseudo-first-order, and intra-particle diffusion kinetic adsorption models were used for kinetic study, and the results show that adsorption of ethidium bromide on graphene oxide surface best complied with type (I) of the pseudo-second-order kinetic model.

  3. The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes

    SciTech Connect

    Seyed-Talebi, Seyedeh Mozhgan; Neek-Amal, M.

    2014-10-21

    Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energy of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.

  4. Photocatalytic degradation of phenol and phenolic compounds Part I. Adsorption and FTIR study.

    PubMed

    Araña, J; Pulido Melián, E; Rodríguez López, V M; Peña Alonso, A; Doña Rodríguez, J M; González Díaz, O; Pérez Peña, J

    2007-07-31

    With the goal of predicting the photocatalytic behaviour of different phenolic compounds (catechol, resorcinol, phenol, m-cresol and o-cresol), their adsorption and interaction types with the TiO(2) Degussa P-25 surface were studied. Langmuir and Freundlich isotherms were applied in the adsorption studies. The obtained results indicated that catechol adsorption is much higher than those of the other phenolics and its interaction occurs preferentially through the formation of a catecholate monodentate. Resorcinol and the cresols interact by means of hydrogen bonds through the hydroxyl group, and their adsorption is much lower than that of catechol. Finally, phenol showed an intermediate behaviour, with a Langmuir adsorption constant, K(L), much lower than that of catechol, but a similar interaction. The interaction of the selected molecules with the catalyst surface was evaluated by means of FTIR experiments, which allowed us to determine the probability of OH radical attack to the aromatic ring.

  5. Removal of 8-quinolinecarboxylic acid pesticide from aqueous solution by adsorption on activated montmorillonites.

    PubMed

    Mekhloufi, M; Zehhaf, A; Benyoucef, A; Quijada, C; Morallon, E

    2013-12-01

    Sodium montmorillonite (Na-M), acidic montmorillonite (H-M), and organo-acidic montmorillonite (Org-H-M) were applied to remove the herbicide 8-quinolinecarboxylic acid (8-QCA). The montmorillonites containing adsorbed 8-QCA were investigated by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction analysis, X-ray fluorescence thermogravimetric analysis, and physical adsorption of gases. Experiments showed that the amount of adsorbed 8-QCA increased at lower pH, reaching a maximum at pH 2. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The Langmuir model provided the best correlation of experimental data for adsorption equilibria. The adsorption of 8-QCA decreased in the order Org-H-M > H-M > Na-M. Isotherms were also used to obtain the thermodynamic parameters. The negative values of ΔG indicated the spontaneous nature of the adsorption process.

  6. Adsorption of water vapor on reservoir rocks

    SciTech Connect

    Not Available

    1993-07-01

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  7. Design and development of green roof substrate to improve runoff water quality: plant growth experiments and adsorption.

    PubMed

    Vijayaraghavan, K; Raja, Franklin D

    2014-10-15

    Many studies worldwide have investigated the potential benefits achievable by transforming brown roofs of buildings to green roofs. However, little literature examined the runoff quality/sorption ability of green roofs. As the green roof substrate is the main component to alter the quality of runoff, this investigation raises the possibility of using a mixture of low-cost inorganic materials to develop a green roof substrate. The tested materials include exfoliated vermiculite, expanded perlite, crushed brick and sand along with organic component (coco-peat). Detailed physical and chemical analyses revealed that each of these materials possesses different characteristics and hence a mix of these materials was desirable to develop an optimal green roof substrate. Using factorial design, 18 different substrate mixes were prepared and detailed examination indicated that mix-12 exhibited desirable characteristics of green roof substrate with low bulk density (431 kg/m(3)), high water holding capacity (39.4%), air filled porosity (19.5%), and hydraulic conductivity (4570 mm/h). The substrate mix also provided maximum support to Portulaca grandiflora (380% total biomass increment) over one month of growth. To explore the leaching characteristics and sorption capacity of developed green roof substrate, a down-flow packed column arrangement was employed. High conductivity and total dissolved solids along with light metal ions (Na, K, Ca and Mg) were observed in the leachates during initial stages of column operation; however the concentration of ions ceased during the final stages of operation (600 min). Experiments with metal-spiked deionized water revealed that green roof substrate possess high sorption capacity towards various heavy metal ions (Al, Fe, Cr, Cu, Ni, Pb, Zn and Cd). Thus the developed growth substrate possesses desirable characteristics for green roofs along with high sorption capacity.

  8. Phosphate adsorption performance of a novel filter substrate made from drinking water treatment residuals.

    PubMed

    Wang, Wendong; Ma, Cui; Zhang, Yinting; Yang, Shengjiong; Shao, Yue; Wang, Xiaochang

    2016-07-01

    Phosphate is one of the most predominant pollutants in natural waters. Laboratory experiments were conducted to investigate the phosphate adsorption performance of a (NFS) made from drinking water treatment residuals. The adsorption of phosphate on the NFS fitted well with the Freundlich isotherm and pseudo second-order kinetic models. At pH7.0, the maximum adsorption capacity of 1.03mg/g was achieved at 15°C corresponding to the wastewater temperature in cold months, and increased notably to 1.31mg/g at 35°C. Under both acidic conditions (part of the adsorption sites was consumed) and basic conditions (negative charges formed on the surface of NFS, which led to a static repulsion of PO4(3-) and HPO4(2-)), the adsorption of phosphate was slightly inhibited. Further study showed that part of the adsorption sites could be recovered by 0.25mol/L NaOH. The activation energy was calculated to be above 8.0kJ/mol, indicating that the adsorption of phosphate on NFS was probably a chemical process. Considering the strong phosphate adsorption capacity and recoverability, NFS showed great promise on enhancing phosphate removal from the secondary treated wastewater in the filtration process.

  9. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration.

    PubMed

    Han, Fei; Zhang, Guang-Hui; Gu, Ping

    2012-07-30

    Copper ferrocyanide (CuFC) was used as an adsorbent to remove cesium. Jar test results showed that the adsorption capacity of CuFC was better than that of potassium zinc hexacyanoferrate. Lab-scale tests were performed by an adsorption-microfiltration process, and the mean decontamination factor (DF) was 463 when the initial cesium concentration was 101.3μg/L, the dosage of CuFC was 40mg/L and the adsorption time was 20min. The cesium concentration in the effluent continuously decreased with the operation time, which indicated that the used adsorbent retained its adsorption capacity. To use this capacity, experiments on a countercurrent two-stage adsorption (CTA)-microfiltration (MF) process were carried out with CuFC adsorption combined with membrane separation. A calculation method for determining the cesium concentration in the effluent was given, and batch tests in a pressure cup were performed to verify the calculated method. The results showed that the experimental values fitted well with the calculated values in the CTA-MF process. The mean DF was 1123 when the dilution factor was 0.4, the initial cesium concentration was 98.75μg/L and the dosage of CuFC and adsorption time were the same as those used in the lab-scale test. The DF obtained by CTA-MF process was more than three times higher than the single-stage adsorption in the jar test.

  10. Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism.

    PubMed

    Ren, Huixue; Gao, Zhimin; Wu, Daoji; Jiang, Jiahui; Sun, Youmin; Luo, Congwei

    2016-02-10

    Alginate-carboxymethyl cellulose (CMC) gel beads were prepared in this study using sodium alginate (SA) and sodium CMC through blending and cross-linking. The specific surface area and aperture of the prepared SA-CMC gel beads were tested. The SA-CMC structure was characterized and analyzed via infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Static adsorption experiment demonstrated that Pb(II) adsorption of SA-CMC exceeded 99% under the optimized conditions. In addition, experiments conducted under the same experimental conditions showed that the lead ion removal efficiency of SA-CMC was significantly higher than that of conventional adsorbents. The Pb(II) adsorption process of SA-CMC followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second-order rate equation. Pb(II) removal mechanisms of SA-CMC, including physical, chemical, and electrostatic adsorptions, were discussed based on microstructure analysis and adsorption kinetics. Chemical adsorption was the main adsorption method among these mechanisms.

  11. Comparing the removal of perchlorate when using single-walled carbon nanotubes (SWCNTs) or granular activated carbon: adsorption kinetics and thermodynamics.

    PubMed

    Lou, Jie C; Hsu, Yung S; Hsu, Kai L; Chou, Ming S; Han, Jia Y

    2014-01-01

    This study aims to remove perchlorate using single-walled carbon nanotubes (SWCNTs) or granular activated carbon (GAC). Dynamic and equilibrium adsorption experiments were performed to evaluate the thermodynamic behavior of perchlorate on SWCNTs and GAC. Key parameters affecting the adsorption, such as pH, ionic strength, and temperature were studied. The experimental results showed that the dynamic adsorption experiment achieved equilibrium in approximately eight hours. The adsorption capacity increased as the concentration of perchlorate increased or as the ionic strength decreased. The selected adsorption models were the modified Freundlich, the pseudo-1st-order, and the pseudo-2nd-order equations. The results showed that the modified Freundlich equation best described the kinetic adsorption processes. The maximal adsorption capacities of GAC and SWCNTs were 33.87-28.21 mg/g and 13.64 - 10.03 mg/g, respectively, at a constant temperature between 5°C and 45°C. The thermodynamic parameters, such as the equilibrium constant (K0 ), the standard free energy changes (ΔG°), the standard enthalpy change (ΔH°) and the standard entropy change (ΔS°), were obtained. The results of the isothermal equilibrium adsorption experiment showed that low pH levels, low ionic strength, and low-temperature conditions facilitated the perchlorate adsorption, indicating that GAC and SWCNTs are potential absorbents for water treatment.

  12. Multilayer adsorption on fractal surfaces.

    PubMed

    Vajda, Péter; Felinger, Attila

    2014-01-10

    Multilayer adsorption is often observed in liquid chromatography. The most frequently employed model for multilayer adsorption is the BET isotherm equation. In this study we introduce an interpretation of multilayer adsorption measured on liquid chromatographic stationary phases based on the fractal theory. The fractal BET isotherm model was successfully used to determine the apparent fractal dimension of the adsorbent surface. The nonlinear fitting of the fractal BET equation gives us the estimation of the adsorption equilibrium constants and the monolayer saturation capacity of the adsorbent as well. In our experiments, aniline and proline were used as test molecules on reversed phase and normal phase columns, respectively. Our results suggest an apparent fractal dimension 2.88-2.99 in the case of reversed phase adsorbents, in the contrast with a bare silica column with a fractal dimension of 2.54.

  13. Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study.

    PubMed

    Jauris, I M; Matos, C F; Saucier, C; Lima, E C; Zarbin, A J G; Fagan, S B; Machado, F M; Zanella, I

    2016-01-21

    The interactions of sodium diclofenac drug (s-DCF) with different graphene species were investigated using both first principles calculations based on Density Functional Theory (DFT) and adsorption experiments. Through batch adsorption experiments, it was found that rGO was a good adsorbent for removing the s-DCF drug from aqueous solutions. The general-order kinetic model shows the best fit to the experimental data compared with pseudo-first order and pseudo-second order kinetic adsorption models. The equilibrium data (at 25 °C) were fitted to the Liu isotherm model. The maximum sorption capacity for adsorption of the s-DCF drug was 59.67 mg g(-1) for rGO. The s-DCF adsorption onto pristine graphene, graphene with a vacancy, reduced oxide graphene (rGO) and functionalized graphene nanoribbons were simulated providing a good understanding of the adsorption process of this molecule on graphene-family surfaces. The results predict a physisorption regime in all cases. Based on these results, the ab initio calculations and the adsorption experiments point out that the graphene-family are promising materials for extracting s-DCF from wastewater effluents.

  14. The Calculation of Adsorption Isotherms from Chromatographic Peak Shapes

    ERIC Educational Resources Information Center

    Neumann, M. G.

    1976-01-01

    Discusses the relationship between adsorption isotherms and elution peak shapes in gas chromatography, and describes a laboratory experiment which involves the adsorption of hexane, cyclohexane, and benzene on alumina at different temperatures. (MLH)

  15. Random sequential adsorption on fractals.

    PubMed

    Ciesla, Michal; Barbasz, Jakub

    2012-07-28

    Irreversible adsorption of spheres on flat collectors having dimension d < 2 is studied. Molecules are adsorbed on Sierpinski's triangle and carpet-like fractals (1 < d < 2), and on general Cantor set (d < 1). Adsorption process is modeled numerically using random sequential adsorption (RSA) algorithm. The paper concentrates on measurement of fundamental properties of coverages, i.e., maximal random coverage ratio and density autocorrelation function, as well as RSA kinetics. Obtained results allow to improve phenomenological relation between maximal random coverage ratio and collector dimension. Moreover, simulations show that, in general, most of known dimensional properties of adsorbed monolayers are valid for non-integer dimensions.

  16. Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation.

    PubMed

    Vincent, Mark A; Hillier, Ian H

    2014-08-25

    The accurate prediction of the adsorption energies of unsaturated molecules on graphene in the presence of water is essential for the design of molecules that can modify its properties and that can aid its processability. We here show that a semiempirical MO method corrected for dispersive interactions (PM6-DH2) can predict the adsorption energies of unsaturated hydrocarbons and the effect of substitution on these values to an accuracy comparable to DFT values and in good agreement with the experiment. The adsorption energies of TCNE, TCNQ, and a number of sulfonated pyrenes are also predicted, along with the effect of hydration using the COSMO model.

  17. Field experiments of Controlled Drainage of agricultural clay soils show positive effects on water quantity (retention, runoff) and water quality (nitrate leaching).

    NASA Astrophysics Data System (ADS)

    schipper, peter; stuyt, lodewijk; straat, van der, andre; schans, van der, martin

    2014-05-01

    processes in the soil have been modelled with simulation model SWAP. The experiment started in 2010 and is ongoing. Data, collected so far show that the plots with controlled drainage (all compared with plots equipped with conventional drainage) conserve more rain water (higher groundwater tables in early spring), lower discharges under average weather conditions and storm events, reduce N-loads and saline seepage to surface waters, enhance denitrification, show a different 'first flush' effect and show similar crop yields. The results of the experiments will contribute to a better understanding of the impact of controlled drainage on complex hydrological en geochemical processes in agricultural clay soils, the interaction between ground- en surface water and its effects on drain water quantity, quality and crop yield.

  18. [Effect of SDS on the adsorption of Cd2+ onto amphoteric modified bentonites].

    PubMed

    Wang, Jian-Tao; Meng, Zhao-Fu; Yang, Ya-Ti; Yang, Shu-Ying; Li, Bin; Xu, Shao-e

    2014-07-01

    Under different modified ratios, temperatures, pH and ionic strengths, the effect of sodium dodecyl sulfonate (SDS) on the adsorption of Cd2+ onto bentonites which modified with amphoteric modifier dodecyl dimethyl betaine (BS-12) was studied by batch experiments, and the adsorption mechanism was also discussed. Results showed that the adsorption of Cd2+ on amphoteric bentonites can be enhanced significantly by SDS combined modification, Cd2+ adsorption decreases in the order: BS + 150SDS (BS-12 + 150% SDS) > BS + 100SDS (BS-12 + 100% SDS) > BS +50SDS(BS-12 + 50% SDS) > BS + 25SDS (BS-12 + 25% SDS) > BS (BS-12) > CK (unmodified soil). The adsorption isotherm can be described by the Langmuir equation. The change of temperature effect from positive on CK and amphoteric bentonites to negative on BS + 150SDS bentonites is observed with an increase of SDS modified ratio. The pH has little influence on Cd2+ adsorption on bentonites. The adsorption of Cd2+ on bentonites decreases with ionic strength rise, but the effect of ionic strength can be reduced with an increase of SDS modified ratio also. The adsorption thermodynamic parameters demonstrated that the adsorption of Cd2+ on modified bentonites was spontaneously controlled by entropy increment. When the SDS modified ratio is lower than 100% CEC, the adsorption of Cd2+ on modified bentonites is a process with characteristics of both enthalpy increment and entropy increment, while the SDS modified ratio is equal to or higher than 100% CEC, the adsorption of Cd2+ on modified bentonites becomes a process of enthalpy decrement and entropy increment.

  19. Highly enhanced adsorption for the removal of Hg(II) from aqueous solution by Mercaptoethylamine/Mercaptopropyltrimethoxysilane functionalized vermiculites.

    PubMed

    Tran, Lytuong; Wu, Pingxiao; Zhu, Yajie; Yang, Lin; Zhu, Nengwu

    2015-05-01

    Vermiculites modified with Mercaptoethylamine (MEA) and 3-Mercaptopropyltrimethoxysilane (MPTMS) were used as effective adsorbents for the removal of Hg(II) from aqueous solution. The physicochemical characteristics of the pristine and functionalized vermiculites were analyzed by XRD, BET, FTIR, SEM, TEM and Zeta potentials, confirming that the vermiculite was successfully functionalized by the organic ligands containing the thiol (SH) metal-chelating groups. Batch adsorption experiments demonstrated that the factors such as initial pH, contact time, temperature, coexisting cations and initial Hg(II) concentration could significantly influence the adsorption behaviors typically for VER and MEA-VER, whereas the adsorption capacity of MPTMS-VER showed negligible dependence on such factors. The maximum adsorption capacity of Hg(II) ions was greatly improved after functionalization, which was in the order of MPTMS-VER>MEA-VER>VER (286.29 μg g(-1), 176.33 μg g(-1), 99.95 μg g(-1), respectively). The adsorption isotherm could be well described with Langmuir model and the kinetic studies indicated that the adsorption process fitted well with the pseudo-second-order model. The calculated thermodynamic parameters suggested that the adsorption process was feasible and spontaneous. The adsorption mechanism of Hg(II) on thiol groups was studied through XPS analysis. Considering the favorable adsorption capacities, thiol-functionalized vermiculites show a promising application in the removal of Hg(II) from wastewater.

  20. [Influence of Three Low-Molecular-Weight Organic Acids on the Adsorption of Phenanthrene in Purple Soil].

    PubMed

    Xie, Li; Chen, Ben-shou; Zhang, Jin-zhong; Lu, Song; Jiang, Tao

    2016-03-15

    The effects of three low-molecular-weight organic acids (citric acid, malic acid and oxalic acid) on the adsorption of phenanthrene in purple soil were studied by static adsorption experiment. The results showed that the adsorption kinetic process of phenanthrene in purple soil could be described by the second-order kinetic model, and the adsorption rate constant would significantly decrease in the presence of the three low-molecular-weight organic acids ( LMWOAs). The adsorption thermodynamic process could be well described by linear adsorption model, which was dominated by distribution role. The three LMWOAs could promote the adsorption of phenantherene in purple soil when their concentrations were less than 5 mmol · L⁻¹, whereas inhibit the adsorption when their concentrations were more than 10 mmol · L⁻¹, and the inhibition would increase with increasing concentrations. Moreover, the inhibitory ability displayed a decreasing order of citric acid, oxalic acid, and malic acid when their concentrations were 20 mmol · L⁻¹, which is related to the molecular structure and acidity of the three LMWOAs. Compared with the control, the content of dissolved organic matter (DOM) released from purple soil showed a trend of first decrease and then increase with increasing LMWOAs concentration, and the adsorption capacity of phenanthrene in purple soil was negatively related to DOM content.

  1. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.

    PubMed

    Szlachta, M; Wójtowicz, P

    2013-01-01

    This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m(2)/g, MWCNTs 358 m(2)/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal.

  2. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite.

    PubMed

    Ghassabzadeh, Hamid; Mohadespour, Ahmad; Torab-Mostaedi, Meisam; Zaheri, Parisa; Maragheh, Mohammad Ghannadi; Taheri, Hossein

    2010-05-15

    The aim of the present work was to investigate the ability of expanded perlite (EP) to remove of silver, copper and mercury ions from aqueous solutions. Batch adsorption experiments were carried out and the effect of pH, adsorbent dosage, contact time and temperature of solution on the removal process has been investigated. The optimum pH for the adsorption was found to be 6.5. Adsorption of these metal ions reached their equilibrium concentration in 120, 240 and 180 min for Ag (I), Cu (II) and Hg (II) ions, respectively. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that adsorption process for these metal ions followed well pseudo-second-order kinetics. Using Langmuir isotherm model, maximum adsorption capacity of EP was found to be 8.46, 1.95 and 0.35 mg/g for Ag (I), Cu (II) and Hg (II) ions, respectively. Finally, the thermodynamic parameters including, the change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) of adsorption were calculated for each metal ion. The results showed that the adsorption of these metal ions on EP was feasible and exothermic at 20-50 degrees C.

  3. Adsorption of Cd(II) by two variable-charge soils in the presence of pectin.

    PubMed

    Wang, Ru-Hai; Zhu, Xiao-Fang; Qian, Wei; Zhao, Min-Hua; Xu, Ren-Kou; Yu, Yuan-Chun

    2016-07-01

    Batch experiments were conducted to investigate cadmium(II) (Cd(II)) adsorption by two variable-charge soils (an Oxisol and an Ultisol) as influenced by the presence of pectin. When pectin dosage was less than 30 g kg(-1), the increase in Cd(II) adsorption with the increasing dose of pectin was greater than that when the pectin dosage was >30 g kg(-1). Although both Langmuir and Freundlich equations fitted the adsorption isotherms of Cd(II) and electrostatic adsorption data of Cd(II) by the two soils well, the Langmuir equation showed a better fit. The increase in the maximum total adsorption of Cd(II) induced by pectin was almost equal in both the soils, whereas the increase in the maximum electrostatic adsorption of Cd(II) was greater in the Oxisol than in the Ultisol because the former contained greater amounts of free Fe/Al oxides than the latter, which, in turn, led to a greater increase in the negative charge on the Oxisol. Therefore, the presence of pectin induced the increase in Cd(II) adsorption by the variable-charge soils mainly through the electrostatic mechanism. Pectin increased the adsorption of Cd(II) by the variable-charge soils and thus decreased the activity and mobility of Cd(II) in these soils.

  4. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics.

    PubMed

    Azouaou, N; Sadaoui, Z; Djaafri, A; Mokaddem, H

    2010-12-15

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd(2+) adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g(-1). Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd(2+) removal.

  5. A comparative study and evaluation of sulfamethoxazole adsorption onto organo-montmorillonites.

    PubMed

    Lu, Laifu; Gao, Manglai; Gu, Zheng; Yang, Senfeng; Liu, Yuening

    2014-12-01

    Three organo-montmorillonites were prepared using surfactants, and their adsorption behaviors toward sulfamethoxazole (SMX) were investigated. The surfactants used were cetyltrimethyl ammonium bromide (CTMAB), 3-(N,N-dimethylhexadecylammonio) propane sulfonate (HDAPS) and 1,3-bis(hexadecyldimethylammonio)-propane dibromide (BHDAP). The properties of the organo-montmorillonites were characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption-desorption isotherm measurements. Results showed that the interlayer spacing of montmorillonite was increased and the surface area as well as the morphology were changed. Batch adsorption experiments showed that the surfactant loading amount had a great effect on the adsorption of SMX. The adsorption process was pH dependent and the maximum adsorption capacity was obtained at pH3 for HDAPS-Mt, while CTMAB-Mt and BHDAP-Mt showed a high removal efficiency at 3-11. The adsorption capacity increased with the initial SMX concentration and contact time but decreased with increasing solution ionic strength. Kinetic data were best described by the pseudo second-order model. Equilibrium data were best represented by the Langmuir model, and the Freundlich constant (n) indicated a favorable adsorption process. The maximum adsorption capacity of SMX was 235.29 mg/g for CTMAB-Mt, 155.28 mg/g for HDAPS-Mt and 242.72 mg/g for BHDAP-Mt. Thermodynamic parameters were calculated to evaluate the spontaneity and endothermic or exothermic nature. The adsorption mechanism was found to be dominated by electrostatic interaction, while hydrophobic interaction played a secondary role.

  6. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.

    PubMed

    Sun, Lei; Chen, Dongmei; Wan, Shungang; Yu, Zebin

    2015-12-01

    Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C.

  7. Phosphate adsorption on lanthanum loaded biochar.

    PubMed

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu

    2016-05-01

    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC.

  8. Adsorption of organic chemicals in soils.

    PubMed Central

    Calvet, R

    1989-01-01

    This paper presents a review on adsorption of organic chemicals on soils sediments and their constituents. The first part of this review deals with adsorption from gas and liquid phases and gives a discussion on the physical meaning of the shape of adsorption isotherms. Results show that no general rules can be proposed to describe univocally the relation between the shape of isotherms and the nature of adsorbate-adsorbent system. Kinetics of adsorption is discussed through the description of various models. Theoretical developments exist both for the thermodynamics and the kinetics of adsorption, but there is a strong need for experimental results. Possible adsorption mechanisms are ion exchange, interaction with metallic cations, hydrogen bonds, charge transfers, and London-van der Waals dispersion forces/hydrophobic effect. However, direct proofs of a given mechanism are rare. Several factors influence adsorption behavior. Electronic structure of adsorbed molecules, properties of adsorbents, and characteristics of the liquid phase are discussed in relation to adsorption. Such properties as water solubility, organic carbon content of adsorbing materials, and the composition of the liquid phase are particularly important. Evaluation of adsorption can be obtained through either laboratory measurements or use of several correlations. Adsorption measurements must be interpreted, taking into account treatment of adsorbent materials, experimental conditions, and secondary phenomena such as degradations. Correlations between adsorption coefficients and water-octanol partition coefficient or water solubility are numerous. They may be useful tools for prediction purposes. Relations with transport, bioavailability, and degradation are described. PMID:2695323

  9. Adsorption kinetics and equilibrium study of nitrogen species onto radiata pine (Pinus radiata) sawdust.

    PubMed

    Harmayani, Kadek D; Faisal Anwar, A H M

    Nitrogen species (NH3-N, NO3-N, and NO2-N) are found as one of the major dissolved constituents in wastewater or stormwater runoff. In this research, laboratory experiments were conducted to remove these pollutants from the water environment using radiata pine (Pinus radiata) sawdust. A series of batch tests was conducted by varying initial concentration, dosage, particle size, pH, and contact time to check the removal performance. Test results confirmed the effectiveness of radiata pine sawdust for removing these contaminants from the aqueous phase (100% removal of NO3-N, and NO2-N; 55% removal of NH3-N). The adsorbent dosage and initial concentration showed a significantly greater effect on the removal process over pH or particle sizes. The optimum dosage for contaminant removal on a laboratory scale was found to be 12 g. Next, the adsorption kinetics were studied using intraparticle diffusion, liquid-film diffusion, and a pseudo-first order and pseudo-second order model. The adsorption of all species followed a pseudo-second order model but NO2-N adsorption followed both models. In addition, the kinetics of NO2-N adsorption showed two-step adsorption following intraparticle diffusion and liquid-film diffusion. The isotherm study showed that NO3-N and NO2-N adsorption fitted slightly better with the Freundlich model but that NH3-N adsorption followed both Freundlich and Langmuir models.

  10. Adsorption of beta blockers to environmental surfaces.

    PubMed

    Kibbey, Tohren C G; Paruchuri, Rajiv; Sabatini, David A; Chen, Lixia

    2007-08-01

    Beta-adrenergic blocking agents (beta blockers) are widely used pharmaceuticals which have been detected in the environment. Predicting the transport and ultimate fate of beta blockers in the environment requires understanding their adsorption to soils and sediments, something for which little information is currently available. The objective of this work was to examine the adsorption of three beta blockers, propranolol, metoprolol and nadolol, to a natural alluvial material, as well as to six minerals present as components of the alluvial material. Batch adsorption experiments indicate that, for most of the minerals studied, compound hydrophobicity is an important predictor of adsorption, with propranolol,the most hydrophobic compound studied, adsorbing to the greatest extent. Results further suggest that, for the minerals studied, electrostatic effects are not a good predictor of adsorption; adsorption extent was not well-predicted by either surface zeta potential or by the difference between experiment pH and point of zero charge, despite the cationic nature af the three beta blockers at experiment pH values. Experiments were conducted to examine the effect of an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS), on adsorption. Results indicate that SDBS significantly increases the adsorption of propranolol to two different sorbents. This result is potentially important because surfactants such as SDBS are likely to be present in wastewater effluents with beta blockers and could influence their mobility in the environment.

  11. Competitive adsorption of Pb and Cd on bacteria-montmorillonite composite.

    PubMed

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Feng, Xionghan; Huang, Qiaoyun

    2016-11-01

    The characteristics and mechanisms of competitive adsorption of trace metals on bacteria-associated clay mineral composites have never been studied, despite their being among the most common organic-mineral complexes in geological systems. Herein, competitive adsorption of Pb and Cd on Pseudomonas putida-montmorillonite composite was investigated through adsorption-desorption experiment, isothermal titration calorimetry (ITC), and synchrotron micro X-ray fluorescence (μ-XRF). From the experiment, stronger competition was observed on clay mineral than on bacteria-clay composite because more non-specific sites accounted for heavy metal adsorption on clay mineral surface at the studied pH 5. Both competing heavy metals tended to react with bacterial fractions in the composite, which was verified by the higher correlation of Cd (and Pb) with Zn (R(2) = 0.41) elemental distribution than with Si (R(2) = 0.10). ITC results showed that competitive adsorption exhibited a lower entropy change (ΔS) at the metal-sorbent interfaces compared with single-metal adsorption, revealing that Cd and Pb are bound to the same types of adsorption sites on the sorbent. The competitive effect on bacteria-clay composite was found to be helpful for a better understanding on the fixation, remobilization and subsequent migration of heavy metals in multi-metal contaminated environments.

  12. [Adsorption of methylene blue from water by the biochars generated from crop residues].

    PubMed

    Xu, Ren-Kou; Zhao, An-Zhen; Xiao, Shuang-Cheng; Yuan, Jin-Hua

    2012-01-01

    Biochars were prepared from straws of rice, peanut and soybean and rice hull using a low temperature pyrolysis method and adsorption of methylene blue by these biochars were investigated with batch and leaching experiments. Results indicated that biochars have high adsorption capacity for methylene blue and followed the order: rice straw char > soybean straw char > peanut straw char > rice hull char. This order is generally consistent with the amount of negative charge and specific surface area of these biochars. While methylene blue was mainly adsorbed specifically by the biochars, because the adsorption of methylene blue increased with the increase of ionic strength and the adsorption led to the shift of zeta potential of biochar particles to positive value direction. Langmuir equation fitted the adsorption isotherms well and can be used to describe the adsorption behaviors of methylene blue by the biochars. The maximum adsorption capacity of methylene blue predicted by langmuir equation was 196.1, 169.5, 129.9 and 89.3 mmol x kg(-1) for rice straw char, soybean straw char, peanut straw char and rice hull char, respectively. Leaching experiments show that rice hull char of 156 g can remove methylene blue from 30 L water containing 0.3 mmol x L(-1) of methylene blue completely and the cumulative amount of methylene blue absorbed by the biochar reaches 57.7 mmol x kg(-1). The biochars can be used as efficient adsorbents to remove methylene blue from waste water of dye.

  13. The effect of polysaccharide types on adsorption properties of LbL assembled multilayer films.

    PubMed

    Xu, Jie; Yang, Lixing; Hu, Xiaoxia; Xu, Shimei; Wang, Jide; Feng, Shun

    2015-03-07

    Three types of biocompatible films were fabricated via electrostatic layer-by-layer (LbL) adsorption of oppositely charged cationic polyurethane and anionic polysaccharides with different primary structures, including sodium hyaluronate, sodium carboxymethyl cellulose and sodium alginate. The adsorption behaviors of films were investigated by using the cationic dye methylene blue (MB) as a model drug at various pH values and salt concentrations. The relationship between the type of polysaccharide and the adsorption behavior of LbL films was comparatively studied. It was found that the adsorption capacity increased with an increase of the initial concentration of MB in the concentration range of the experiment to all of the films, and the pH of environment ranged from 3.0 to 9.0. The Langmuir equation fit perfectly to the experiment data. In addition, a pseudo second-order adsorption model can well describe the adsorption behaviors of MB for three films. The results showed that the type of side chains and the charge density of the polysaccharides played key roles in the adsorption properties of the PU/polysaccharide multilayer films.

  14. Adsorption behavior of a surfactant and a monoclonal antibody to sterilizing-grade filters.

    PubMed

    Mahler, Hanns-Christian; Huber, Franziska; Kishore, Ravuri S K; Reindl, Jürgen; Rückert, Peter; Müller, Robert

    2010-06-01

    Formulations of therapeutic proteins usually contain a surfactant such as polysorbate 80 to protect them against interfacial stresses. Since surfactants may interact with surfaces, the aim of the present work was to study the adsorption behavior of low concentrations of polysorbate 80 and of a monoclonal antibody during sterile filtration. Lab-scale tests were performed to study the adsorption behavior of a monoclonal antibody to different filter materials (PVDF, PES, CA, and Nylon) from different suppliers. Subsequently, protein and polysorbate 80 adsorption were tested in manufacturing scale experiments. It was found that the extent of protein adsorption differed with filter materials, but also with different suppliers. Prominently, Nylon filters showed the highest degree of protein adsorption. In manufacturing-scale filtration experiments, significant adsorption of polysorbate 80 to sterilizing-grade filters was found. Thus, the adsorption of both protein and polysorbate to filters should be taken into consideration in the formulation and manufacturing process and assessed on a case-by-case basis depending on the manufacturing process set-up.

  15. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism.

    PubMed

    Zhu, Fang; Li, Luwei; Xing, Junde

    2017-01-05

    Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R(2) 0.9928-0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG(0)<0, ΔH(0)>0, ΔS(0)>0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  16. Surfactant adsorption kinetics in microfluidics

    PubMed Central

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore–surfactant interactions. PMID:27688765

  17. Surfactant adsorption kinetics in microfluidics

    NASA Astrophysics Data System (ADS)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  18. Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes).

    PubMed

    Xu, Yan; Liu, Yunguo; Liu, Shaobo; Tan, Xiaofei; Zeng, Guangming; Zeng, Wei; Ding, Yang; Cao, Weicheng; Zheng, Bohong

    2016-12-01

    In this work, a novel potential adsorbent, citric acid (CA)-modified biochar, named as CAWB, was obtained from water hyacinth biomass by slow pyrolysis in a N2 environment at 300 °C. The CA modification focused on enhancing the contaminants adsorption capacity of biochar pyrolyzed at relatively low temperature. Over 90 % of the total methylene blue (MB) could be removed at the first 60 min by CAWB, and the maximum MB adsorption capacity could reach to 395 mg g(-1). The physicochemical properties of CAWB was examined by FTIR, XPS, SEM, and BET analysis. The results indicated that the additional carboxyl groups were introduced to the surface of CAWB via the esterification reaction with CA, which played a significant role in the adsorption of MB. Batch adsorption studies showed that the initial MB concentration, solution pH, background ionic strength, and temperature could affect the removal efficiency obviously. The adsorption process could be well described by the pseudo-second-order kinetic model and Langmuir isotherm. Thermodynamic analysis revealed that the MB adsorption onto CAWB was an endothermic and spontaneous process. The regeneration study revealed that CAWB still exhibited an excellent regeneration and adsorption performance after multiple cycle adsorptions. The adsorption experiments of actual dye wastewater by CAWB suggested that it had a great potential in environmental application.

  19. [Effects of pH and coexisting cations on ammonia adsorption from aqueous solution by strawberry stem powder].

    PubMed

    Liu, Hai-wei; Liu, Yun; Wang, Hai-yun; Dong, Yuan-hua

    2010-08-01

    Batch equilibrium experiments were carried out to study ammonia adsorptions from aqueous solution by strawberry (Fragaia ananassa Duchesne) stem powder. The effects of pH, coexisting cations, initial ammonia concentration and temperature were investigated as well. The results showed that the equilibrium data fitted well to the Langmuir model and Freundlich model, and the maximum adsorption capacities were 3.05, 4.24 and 4.79 mg x g(-1) at 15, 25 and 35 degrees C respectively. The increase of temperature was favorable to ammonia adsorption. The optimal pH of ammonia adsorption was in the range of 4-8. The NH4+ content decreased at higher pH and the negative charges decreased at lower pH, resulting in the decrease of ammonia adsorption at both higher and lower pH. The pH changes after adsorption buffered both effects. K+, Na+, Ca2+ and Mg2+ had no effect on ammonia adsorption by strawberry stem, but Zn2+ and Al3+ decreased the adsorption for their hydrolyzation. The ammonia adsorption by strawberry stem powder could be applied in a large pH range and could not be affected by usual metal cations in wastewater, therefore the strawberry stem powder not only could be a suitable ammonia adsorbent, but also had advantages comparing with most mineral materials.

  20. Fixed-bed adsorption of toluene on high silica zeolites: experiments and mathematical modelling using LDF approximation and a multisite model.

    PubMed

    Brodu, Nicolas; Sochard, Sabine; Andriantsiferana, Caroline; Pic, Jean-Stéphane; Manero, Marie-Hélène

    2015-01-01

    The adsorption of toluene (TOL) as a target volatile organic compound has been studied experimentally and modelled on various hydrophobic zeolites: Faujasite (FAU), ZSM-5 (Z) and Mordenite (MOR). The influence of the nature of the compensating cation (H+ or Na+) has also been investigated for ZSM-5 zeolite, which is known to possess three kinds of adsorption sites (sinusoidal channels, straight channels and intersections). Type I isotherms observed on FAU, Na-Z and MOR fitted well with the Langmuir model. A deviation from a type I isotherm was observed for H-Z, because of the structure of this zeolite. The Successive Langmuir Model was more successful to fit the 'bump' of the experimental curve than the Double Langmuir. Classical shapes were found for MOR, FAU and Na-Z breakthrough curves that were fitted with good accuracy using the Linear Driving Force (LDF) approximation. In the case of H-Z, a change of profile was observed during the dynamic adsorption and the differences seen between the Na-Z and H-Z behaviours were explained by the strong interactions between Na+ and adsorbed TOL at the intersection sites. The Na+ cations prevented reorientation of TOL molecules at the intersection and thereby avoided the filling of the sinusoidal channel segments. Thus, a specific model was developed for fitting the breakthrough curve of H-Z. The model developed took into account these two types of adsorption sites with the overall uptake for each site being given by an LDF approximation.

  1. Adsorption of methylene blue and methyl red dyes from aqueous solutions onto modified zeolites.

    PubMed

    Ioannou, Z; Karasavvidis, Ch; Dimirkou, A; Antoniadis, V

    2013-01-01

    Zeolite, hematite, modified zeolite and commercial activated charcoal were examined for their ability to remove methylene blue (MB) and methyl red (MR) from their aqueous solutions. Modified zeolite and hematite were produced according to the Schwertmann and Cornell method while zeolite and commercial activated charcoal were obtained from S&B and Fluka AG companies, respectively. Adsorption experiments were conducted at three different adsorbent-to-solution ratios, namely 8, 16 and 24 g/L under environmental conditions and continuous stirring. Equilibrium isotherms of MB and MR were studied at different initial concentrations (from 5 × 10(-4) to 5 × 10(-3) g/L). MB adsorption kinetics were also studied. The maximum adsorption of MB and MR from their aqueous solutions was achieved at 24 g/L (adsorbent-to-dye solution ratio) after 1 h and was equal to 100% (MB) on modified zeolite and 99% (MR) on commercial activated charcoal, respectively. All the other materials achieved intermediate values of dye adsorption. From the applied kinetic models, the pseudo-second-order equation best described the adsorption of MB and MR. Consequently, modified zeolite showed the highest adsorption capacity for MB, while commercial activated charcoal showed the highest adsorption capacity of MR. The studied adsorbents can be used as filters to remove dyes from wastewaters.

  2. Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals.

    PubMed

    Yu, Xiaolin; Tong, Shengrui; Ge, Maofa; Wu, Lingyan; Zuo, Junchao; Cao, Changyan; Song, Weiguo

    2013-05-01

    A novel nanoadsorbent for the removal of heavy metal ions is reported. Cotton was first hydrolyzed to obtain cellulose nanocrystals (CNCs). CNCs were then chemically modified with succinic anhydride to obtain SCNCs. The sodic nanoadsorbent (NaSCNCs) was further prepared by treatment of SCNCs with saturated NaHCO3 aqueous solution. Batch experiments were carried out with SCNCs and NaSCNCs for the removal of Pb2+ and Cd2+. The effects of contact time, pH, initial adsorption concentration, coexisting ions and the regeneration performance were investigated. Kinetic studies showed that the adsorption equilibrium time of Pb2+ and Cd2+ was reached within 150 min on SCNCs and 5 min on NaSCNCs. The adsorption capacities of Pb2+ and Cd2+ on SCNCs and NaSCNCs increased with increasing pH. The adsorption isotherm was well fitted by the Langmuir model. The maximum adsorption capacities of SCNCs and NaSCNCs for Pb2+ and Cd2+ were 367.6 mg/g, 259.7 mg/g and 465.1 mg/g, 344.8 mg/g, respectively. SCNCs and NaSCNCs showed high selectivity and interference resistance from coexisting ions for the adsorption of Pb2+. NaSCNCs could be efficiently regenerated with a mild saturated NaCl solution with no loss of capacity after two recycles. The adsorption mechanisms of SCNCs and NaSCNCs were discussed.

  3. DNA stickers promote polymer adsorption onto cellulose.

    PubMed

    Sato, Teruaki; Ali, Md Monsur; Pelton, Robert; Cranston, Emily D

    2012-10-08

    Adsorption of oligonucleotides onto model cellulose surfaces was investigated by comparing the Boese and Breaker's cellulose binding oligonucleotide (CBO) with a nonspecific oligonucleotide control (NSO). Measurements using the quartz crystal microbalance with dissipation technique confirmed that CBO adsorbed onto cellulose more than NSO, particularly at high ionic strengths (100 mM CaCl(2)). CBO showed a higher maximum adsorption on nanofibrillated and nanocrystalline cellulose than on regenerated cellulose, indicating a preference for the native cellulose I crystal structure under conditions that favored specific adsorption over calcium-mediated electrostatically driven adsorption. In addition, an anionic polyacrylamide (A-PAM) with grafted CBO also adsorbed onto the surface of cellulose in CaCl(2), whereas the unmodified A-PAM did not. This work shows that CBO performs as a "sticker", facilitating the adsorption of polyacrylamide onto cellulose, even under high ionic strength conditions where the adsorption of conventional polyelectrolytes is inhibited.

  4. Pb2+ and Zn2+ adsorption by a natural aluminum- and iron-bearing surface coating on an aquifer sand

    USGS Publications Warehouse

    Coston, J.A.; Fuller, C.C.; Davis, J.A.

    1995-01-01

    Pb2+ and Zn2+ adsorption was studied in batch experiments with material collected from a shallow, unconfined aquifer of glacial outwash sand and gravel in Falmouth, Massachusetts, USA. The aquifer solids contain primarily quartz with minor amounts of alkali feldspars and ferromagnetic minerals. Pb2+ and Zn2+ adsorption experiments with various grain size and mineral fractions of the aquifer solids showed that: 1) Zn2+ adsorption was independent of grain size, but Pb2+ was preferentially adsorbed by the <64 ??m size fraction and 2) Pb2+ adsorption decreased after removal of the paramagnetic, Fe-bearing mineral fraction, but Zn2+ adsorption was unaffected. Pb2+ and Zn2+ adsorption on mineral separates from the aquifer material compared with metal adsorption on a purified quartz powder indicated that adsorption of both metal ions was dominated by coatings on the quartz fraction of the sediment. Characterization of the coatings by AES, SEM-EDS, and TOF-SIMS demonstrated that the natural quartz grains were extensively coated with Al- and Fe-bearing minerals of variable composition. -from Authors

  5. Studies on adsorption characteristics and mechanism of adsorption of chlorhexidine mainly by carbon black.

    PubMed

    Akaho, E; Fukumori, Y

    2001-09-01

    The extent of adsorption of chlorhexidine to carbon black and sanitary cotton was determined by measuring the amounts of chlorhexidine adsorbed to carbon black or sanitary cotton from the chlorhexidine solution containing specific amount of carbon black or sanitary cotton. As another comparative antiseptic example of adsorption phenomena, adsorption of acrinol to sanitary cotton was also studied. The specific surface area of carbon black was measured by the BET method of adsorption isotherm. The pattern of adsorption of chlorhexidine to carbon black was temperature-dependent Langmuir isotherms, and the amounts adsorbed increased as the temperature was raised. Since chlorhexidine, whose pKa's are 2.2 and 10.3, is considered to exist in aqueous solution as the di-cation, an ion-ion interaction should be formed between protonated biguanide and anionic portions of carbon black or sanitary cotton. The chlorophenyl and hexane moieties interact with hydrophobic portions of carbon black or sanitary cotton. The perturbation experiment conducted on this interaction system showed that the nature of interaction was irreversible. The enthalpy change calculated from Langmuir constants was small, indicating the existence of ion-ion interaction. The entropy values, 27.4 to 28.2 e.u. obtained in this system, suggested that the hydration shells of the ions were rather tightly bound. The area occupied by a chlorhexidine molecule, 548 (A)(2), was twice greater than the projection area, 276 (A)(2), suggesting that chlorhexidine was adsorbed in such a way that each molecule is sufficiently well spaced.

  6. Adsorption of Gemini surfactants onto clathrate hydrates.

    PubMed

    Salako, O; Lo, C; Couzis, A; Somasundaran, P; Lee, J W

    2013-12-15

    This work addresses the adsorption of two Gemini surfactants at the cyclopentane (CP) hydrate-water interface. The Gemini surfactants investigated here are Dowfax C6L and Dowfax 2A1 that have two anionic head groups and one hydrophobic tail group. The adsorption of these surfactants was quantified using adsorption isotherms and the adsorption isotherms were determined using liquid-liquid titrations. Even if the Gemini surfactant adsorption isotherms show multi-layer adsorption, they possess the first Langmuir layer with the second adsorption layer only evident in the 2A1 adsorption isotherm. Zeta potentials of CP hydrate particles in the surfactant solution of various concentrations of Dowfax C6L and Dowfax 2A1 were measured to further explain their adsorption behavior at the CP hydrate-water interface. Zeta potentials of alumina particles as a model particle system in different concentrations of sodium dodecyl sulfate (SDS), Dowfax C6L and Dowfax 2A1 were also measured to confirm the configuration of all the surfactants at the interface. The determination of the isotherms and zeta-potentials provides an understanding framework for the adsorption behavior of the two Gemini surfactants at the hydrate-water interface.

  7. Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate.

    PubMed

    Laus, Rogério; de Fávere, Valfredo Tadeu

    2011-10-01

    In this study, chitosan (CTS) was crosslinked with both epichlorohydrin (ECH) and triphosphate (TPP), by covalent and ionic crosslinking reactions, respectively. The resulting adsorbent (CTS-ECH-TPP) was characterized by SEM, CHN, EDS, FT-IR and TGA analyses, and tested for metal adsorption. The adsorbent was used in batch experiments to evaluate the adsorption of Cu(II) and Cd(II) ions in single and binary metal solutions. In single metal solutions the maximum adsorption capacities for Cu(II) and Cd(II) ions, obtained by Langmuir model, were 130.72 and 83.75 mg g⁻¹, respectively. Adsorption isotherms for binary solutions showed that the presence of Cu(II) decreased Cd(II) adsorption due to a significant competition effect, that is, the adsorbent was selective towards Cu(II) rather than Cd(II).

  8. Adsorption of Organic Molecules to van der Waals Materials: Comparison of Fluorographene and Fluorographite with Graphene and Graphite

    PubMed Central

    2017-01-01

    Understanding strength and nature of noncovalent binding to surfaces imposes significant challenge both for computations and experiments. We explored the adsorption of five small nonpolar organic molecules (acetone, acetonitrile, dichloromethane, ethanol, ethyl acetate) to fluorographene and fluorographite using inverse gas chromatography and theoretical calculations, providing new insights into the strength and nature of adsorption of small organic molecules on these surfaces. The measured adsorption enthalpies on fluorographite range from −7 to −13 kcal/mol and are by 1–2 kcal/mol lower than those measured on graphene/graphite, which indicates higher affinity of organic adsorbates to fluorographene than to graphene. The dispersion-corrected functionals performed well, and the nonlocal vdW DFT functionals (particularly optB86b-vdW) achieved the best agreement with the experimental data. Computations show that the adsorption enthalpies are controlled by the interaction energy, which is dominated by London dispersion forces (∼70%). The calculations also show that bonding to structural features, like edges and steps, as well as defects does not significantly increase the adsorption enthalpies, which explains a low sensitivity of measured adsorption enthalpies to coverage. The adopted Langmuir model for fitting experimental data enabled determination of adsorption entropies. The adsorption on the fluorographene/fluorographite surface resulted in an entropy loss equal to approximately 40% of the gas phase entropy. PMID:28145699

  9. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption.

    PubMed

    Karanfil, Tanju; Dastgheib, Seyed A; Mauldin, Dina

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers (ACFs) and two granular activated carbons (GACs) preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 A. It also had the highest volume in pores 5-8 A, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve during preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 A, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the waythatthe carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption.

  10. Competitive adsorption of arsenate and phosphate onto calcite; experimental results and modeling with CCM and CD-MUSIC

    NASA Astrophysics Data System (ADS)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus; Larsen, Flemming

    2012-09-01

    The competitive adsorption of arsenate and phosphate onto calcite was studied in batch experiments using calcite-equilibrated solutions. The solutions had circum-neutral pH (7-8.3) and covered a wide span in the activity of Ca2+ and CO32-. The results show that the adsorption of arsenate onto calcite is strongly reduced by the presence of phosphate, whereas phosphate adsorption is only slightly reduced by arsenate addition. Simultaneous and sequential addition (3 h apart) yields the same reduction in adsorption, underlining the high reversibility of the system. The reduction in adsorption of both arsenate and phosphate is most likely due to competition for the same sorption sites at the calcite surface, considering the similarity in sorption edges, pKa's and geometry of the two anions. The strong reduction in arsenate adsorption by competition with phosphate suggests that adsorption of arsenate onto calcite is of minor importance in most groundwater aquifers, as phosphate is often present at concentration levels sufficient to significantly reduce arsenate adsorption. The CD-MUSIC model for calcite was used successfully to model adsorption of arsenate and phosphate separately. By combining the models for single sorbate systems the competitive adsorption of phosphate and arsenate onto calcite in the binary system could be predicted. This is in contrast to the constant capacitance model (CCM) which under-predicted the competition when combining the models for single sorbate systems. This study clearly shows the importance of performing competitive adsorption studies for validation of multi-component models and for estimating the mobility of an ion in the environment.

  11. Adsorption of acid dye onto organobentonite.

    PubMed

    Baskaralingam, P; Pulikesi, M; Elango, D; Ramamurthi, V; Sivanesan, S

    2006-02-06

    Removal of Acid Red 151 from aqueous solution at different dye concentrations, adsorbent doses and pH has been studied. The bentonite clay has been modified using cationic surfactants, which has been confirmed using XRD and FT-IR analyses. Experimental result has shown that the acidic pH favours the adsorption. The adsorption isotherms are described by means of Langmuir and Freundlich isotherms. The adsorption capacity has been found to be 357.14 and 416.66 mg g(-1) for the cetyldimethylbenzylammonium chloride-bentonite (CDBA-bent) and cetylpyridinium chloride-bentonite (CP-bent), respectively. Kinetic studies show that the adsorption followed second-order kinetics.

  12. Adsorption of Chrysoidine R by using fly ash in batch process.

    PubMed

    Matheswaran, Manickam; Karunanithi, Thirugnanam

    2007-06-25

    This investigation deals with effective utilization of fly ash as adsorbent for the removal of Chrysoidine R from the aqueous solution. The fly ash is a major byproduct generated in coal-based thermal power plants and has good potential for use as an adsorbent. A series of experiments were carried out in a batch adsorption technique to obtain the effect of process variables viz. contact time, pH (2, 4, 6 and 8) initial concentration of the dye (400, 600, 800 and 1000mgL(-1)), amount of the adsorbent (125, 250, 375 and 500mgL(-1)), and temperature (303, 313, 323 and 333K) on adsorption. The concentration of dye was determined by spectrophotometer. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly; higher adsorption percentage was observed at lower concentration of chrysoidine. The adsorption data were analyzed using Langmuir and Freundlich isotherms. The adsorption was found to obey pseudo-first order kinetics. An intra particle diffusion model was used to fit the experimental data. The thermodynamic parameters such as standard change in free energy, enthalpy and entropy of adsorption have been calculated. Adsorption of Chrysoidine R on fly ash was found to be an exothermic reaction.

  13. Adsorption intrinsic kinetics and isotherms of lead ions on steel slag.

    PubMed

    Liu, Sheng-Yu; Gao, Jin; Yang, Yi-Jin; Yang, Ying-Chun; Ye, Zhi-Xiang

    2010-01-15

    Batch experiments were carried out to investigate the kinetics of adsorption of lead ions by steel slag on the basis of the external diffusion, intra-particle diffusion and adsorption reaction model (pseudo-first-order, pseudo-second-order). The results showed that the controlling step for the adsorption kinetics changed with the varying experimental parameters. When the particle size of steel slag was larger than 120 mesh, intra-particle diffusion of Pb(2+) was the controlling step, and when the initial concentration of Pb(2+) was less than 150 m gL(-1) or the shaking rate was lower than 150 rpm, external diffusion of Pb(2+) was promoted. Contrary to the former experimental conditions the adsorption reaction was the controlling step, and the adsorption followed second-order kinetics, with an adsorption rate constant of 13.26 g mg(-1)min(-1). The adsorption isotherm of Pb(2+) with steel slag followed the Langmuir model, with a correlation coefficient of 0.99.

  14. Adsorption of p-nitroaniline from aqueous solutions onto activated carbon fiber prepared from cotton stalk.

    PubMed

    Li, Kunquan; Zheng, Zheng; Feng, Jingwei; Zhang, Jibiao; Luo, Xingzhang; Zhao, Guohua; Huang, Xingfa

    2009-07-30

    Activated carbon fiber prepared from cotton stalk was used as an adsorbent for the removal of p-nitroaniline (PNA) from aqueous solutions. Liquid phase adsorption experiments were conducted and the maximum adsorptive capacity was determined. The effect of experimental parameters such as pH, salinity and temperature on the adsorption was studied. The obtained experimental data were then fitted with the Langmuir, Freundlich and Redlich-Peterson models to describe the equilibrium isotherms. The kinetics rates were modeled by using the pseudo-first-order and pseudo-second-order equations. The results indicated that cotton stalk activated carbon fiber (CS-ACF) is an effective adsorbent for the removal of PNA from aqueous solutions. The maximum adsorption capacity of 406 mg g(-1) was achieved at the initial PNA concentration of 200 mg L(-1). The optimum pH for the removal of PNA was found to be 7.6. The presence of ammonium chloride proved to be favorable for the process of adsorption. The adsorption amount decreased with increasing temperature. The Redlich-Peterson model was found to best represent the equilibrium data. The kinetic data followed closely the pseudo-second-order equation. Thermodynamic study showed the adsorption was a spontaneous exothermic physical process.

  15. An investigation of the adsorption of organic dyes onto organo-montmorillonite.

    PubMed

    Lee, S H; Song, D I; Jeon, Y W

    2001-03-01

    Adsorption of organic dyes, crystal violet (CV), orange II (OR), and phenol red (PR), onto organo-clay was investigated in a batch type reactor at 25 degrees C. The organo-clay was obtained by modifying montmorillonite with a cationic surfactant, cetylpyridinium (CP), and used as an adsorbent. We conducted experiments to find out the effect of pH and solvent on the adsorption affinity of organic dyes for the modified montmorillonite. From the results, we observed that the adsorption capacity on the organo-montmorillonite decreased in the order CV > OR > PR at all pH values examined (pH 3, pH 7, and pH 11). It mostly resulted from the difference in solubility and the molecular weight of the solutes. In a 30-V/V % methanol/water cosolvent solution, the adsorption capacity of the dyes decreased compared to that in aqueous solution. In addition, the adsorption capacities of OR and PR on CV-montmorillonite were lower than those on CP-montmorillonite. These results might show that partitioning by CP was superior to the adsorption by CV to hold the solute molecules on the surface of montmorillonite. The Langmuir and Redlich-Peterson (RP) models were used to represent the adsorption equilibria of the organic dyes.

  16. Study on the adsorption of DNA on the layered double hydroxides (LDHs).

    PubMed

    Li, Bin; Wu, Pingxiao; Ruan, Bo; Liu, Paiyu; Zhu, Nengwu

    2014-01-01

    Four kinds of layered double hydroxides (LDHs) were prepared by chemical coprecipitation method and used as DNA adsorbents. Multiple characterization tools such as power X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Standard electronic modules (SEM) were employed to characterize the LDHs. By examining the effect of initial concentration, solution pH, adsorption experiments were carried out to investigate the adsorption capacities of LDHs for DNA. The results revealed that the LDHs with Mg/Al=3 had higher ability on adsorbing the DNA and were not affected by pH values. The LDHs exhibited excellent adsorption properties and completely adsorbed DNA within 2h. The adsorption equilibrium data were fitted to the Langmuir and Freundlich models, showing that the Langmuir model which represented monolayer adsorption had better correlation with the adsorption linear equation. In addition, Circular dichroism (CD) spectrum, UV-vis spectorscopy and agarose gel electrophoresis revealed the integrity of DNA structure, suggesting that there had no damage on the DNA structure during the adsorption process.

  17. Study on the adsorption of DNA on the layered double hydroxides (LDHs)

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wu, Pingxiao; Ruan, Bo; Liu, Paiyu; Zhu, Nengwu

    2014-03-01

    Four kinds of layered double hydroxides (LDHs) were prepared by chemical coprecipitation method and used as DNA adsorbents. Multiple characterization tools such as power X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Standard electronic modules (SEM) were employed to characterize the LDHs. By examining the effect of initial concentration, solution pH, adsorption experiments were carried out to investigate the adsorption capacities of LDHs for DNA. The results revealed that the LDHs with Mg/Al = 3 had higher ability on adsorbing the DNA and were not affected by pH values. The LDHs exhibited excellent adsorption properties and completely adsorbed DNA within 2 h. The adsorption equilibrium data were fitted to the Langmuir and Freundlich models, showing that the Langmuir model which represented monolayer adsorption had better correlation with the adsorption linear equation. In addition, Circular dichroism (CD) spectrum, UV-vis spectorscopy and agarose gel electrophoresis revealed the integrity of DNA structure, suggesting that there had no damage on the DNA structure during the adsorption process.

  18. Operating Room Environment Control. Part A: a Valve Cannister System for Anesthetic Gas Adsorption. Part B: a State-of-the-art Survey of Laminar Flow Operating Rooms. Part C: Three Laminar Flow Experiments

    NASA Technical Reports Server (NTRS)

    Meyer, J. S.; Kosovich, J.

    1973-01-01

    An anesthetic gas flow pop-off valve canister is described that is airtight and permits the patient to breath freely. Once its release mechanism is activated, the exhaust gases are collected at a hose adapter and passed through activated coal for adsorption. A survey of laminar air flow clean rooms is presented and the installation of laminar cross flow air systems in operating rooms is recommended. Laminar flow ventilation experiments determine drying period evaporation rates for chicken intestines, sponges, and sections of pig stomach.

  19. Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.

    PubMed

    Chen, J Paul; Wang, Lin

    2004-01-01

    Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.

  20. Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution.

    PubMed

    Mandal, S; Mayadevi, S

    2008-06-01

    Cellulose supported layered double hydroxides (CSLDHs) were synthesized and tested for adsorption of fluoride in aqueous medium. Three samples of cellulose supported LDHs were synthesized by varying the LDH loading on cellulose. The raw cellulose, unsupported LDH and cellulose supported LDHs were characterized by XRD, SEM and BET surface area. Batch adsorption as well as fixed-bed column experiments were performed for determining the fluoride adsorption characteristics of CSLDHs. The fluoride adsorption properties of CSLDHs were found to be superior to that of reported adsorbents, including activated alumina and carbon nanotubes. Defluoridation capacity of the CSLDHs was 2-4 times higher than that of unsupported LDH. The cellulose supported LDH, CSLDH-50, having an LDH loading of 27% showed maximum fluoride uptake capacity (5.29 mg g(-1) of CSLDH, 25.18 mg g(-1) of LDH) in fixed-bed column study.

  1. Adsorption of cationic peptides to solid surfaces of glass and plastic.

    PubMed

    Kristensen, Kasper; Henriksen, Jonas R; Andresen, Thomas L

    2015-01-01

    Cationic membrane-active peptides have been studied for years in the hope of developing them into novel types of therapeutics. In this article, we investigate an effect that might have significant experimental implications for investigators who wish to study these peptides, namely, that the peptides adsorb to solid surfaces of glass and plastic. Specifically, we use analytical HPLC to systematically quantify the adsorption of the three cationic membrane-active peptides mastoparan X, melittin, and magainin 2 to the walls of commonly used glass and plastic sample containers. Our results show that, at typical experimental peptide concentrations, 90% or more of the peptides might be lost from solution due to rapid adsorption to the walls of the sample containers. Thus, our results emphasize that investigators should always keep these adsorption effects in mind when designing and interpreting experiments on cationic membrane-active peptides. We conclude the article by discussing different strategies for reducing the experimental impact of these adsorption effects.

  2. Adsorption of heterobifunctional 4-nitrophenol on the Ge(100)-2 × 1 surface

    NASA Astrophysics Data System (ADS)

    Shong, Bonggeun; Hellstern, Thomas R.; Bent, Stacey F.

    2016-08-01

    We report the adsorption chemistry of a heterobifunctional molecule, 4-nitrophenol, on the Ge(100)-2 × 1 surface. X-ray photoelectron and infrared spectroscopy experiments and density functional theory calculations were used to determine the adsorption products. The results show that 4-nitrophenol reacts with the Ge surface through either one or both of the sbnd OH or sbnd NO2 functionalities. It was found that the fraction of dually and singly tethered adsorbates varies according to reaction conditions: namely, singly tethered adsorbates are favored at higher adsorbate coverages and lower adsorption temperatures. These variations are explained by a two-step adsorption mechanism for 4-nitrophenol, in which geometrical limitations of the adsorbates on the surface affect the product distribution.

  3. Branched pore kinetic model analysis of geosmin adsorption on super-powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Ando, Naoya; Sasaki, Hiroshi; Matsushita, Taku; Ohno, Koichi

    2009-07-01

    Super-powdered activated carbon (S-PAC) is activated carbon of much finer particle size than powdered activated carbon (PAC). Geosmin is a naturally occurring taste and odor compound that impairs aesthetic quality in drinking water. Experiments on geosmin adsorption on S-PAC and PAC were conducted, and the results using adsorption kinetic models were analyzed. PAC pulverization, which produced the S-PAC, did not change geosmin adsorption capacity, and geosmin adsorption capacities did not differ between S-PAC and PAC. Geosmin adsorption kinetics, however, were much higher on S-PAC than on PAC. A solution to the branched pore kinetic model (BPKM) was developed, and experimental adsorption kinetic data were analyzed by BPKM and by a homogeneous surface diffusion model (HSDM). The HSDM describing the adsorption behavior of geosmin required different surface diffusivity values for S-PAC and PAC, which indicated a decrease in surface diffusivity apparently associated with activated carbon particle size. The BPKM, consisting of macropore diffusion followed by mass transfer from macropore to micropore, successfully described the batch adsorption kinetics on S-PAC and PAC with the same set of model parameter values, including surface diffusivity. The BPKM simulation clearly showed geosmin removal was improved as activated carbon particle size decreased. The simulation also implied that the rate-determining step in overall mass transfer shifted from intraparticle radial diffusion in macropores to local mass transfer from macropore to micropore. Sensitivity analysis showed that adsorptive removal of geosmin improved with decrease in activated carbon particle size down to 1microm, but further particle size reduction produced little improvement.

  4. Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method.

    PubMed

    Kooh, Muhammad Raziq Rahimi; Lim, Linda B L; Lim, Lee Hoon; Dahri, Muhammad Khairud

    2016-02-01

    This study investigated the potential of untreated Azolla pinnata (AP) to remove toxic rhodamine B (RB) dye. The effects of adsorbent dosage, pH, ionic strength, contact time, and concentration were studied. Experiments involving the effects of pH and ionic strength indicated that hydrophobic-hydrophobic interactions might be the dominant force of attraction for the RB-AP adsorption system. The kinetics modelling of the kinetics experiment showed that pseudo-second-order best represented the adsorption process. The Weber-Morris intraparticle diffusion model showed that intraparticle diffusion is not the rate-limiting step, while the Boyd model suggested that film diffusion might be rate-limiting. The adsorption isotherm model, Langmuir, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 72.2 and 199.7 mg g(-1) at 25 and 65 °C, respectively. Thermodynamics study indicates spontaneity, endothermic and physisorption-dominant adsorption process. The adsorbents were regenerated to satisfactory level with distilled water, HNO3 and NaOH. Pre-treatment of adsorbent with oxalic acid, citric acid, NaOH, HCl and phosphoric acid was investigated but the adsorption capacity was less than the untreated AP.

  5. Modulation of protein adsorption by poloxamer 188 in relation to polysorbates 80 and 20 at solid surfaces.

    PubMed

    Kim, Hyojin L; McAuley, Arnold; Livesay, Brynn; Gray, Warren D; McGuire, Joseph

    2014-04-01

    Poloxamer 188 (BASF Pluronic® F68) is widely used as a shear-protective excipient to enhance cell yield in agitated cultures and reduce cell adhesion in stationary cultures. However, little is known in any quantitative sense of its effect on protein adsorption and aggregation. Optical waveguide lightmode spectroscopy was used here to compare the adsorption kinetics exhibited by poloxamer 188, and polysorbates 80 and 20, in the presence and absence of a model protein (chicken egg white lysozyme) and in separate experiments, a recombinant protein (human granulocyte colony-stimulating factor) at hydrophilic, silica-titania surfaces. Experiments were performed in sequential and competitive adsorption modes, enabling the adsorption kinetic patterns to be interpreted in a fashion revealing the dominant mode of surfactant-mediated stabilization of protein in each case. Kinetic results showed that polysorbates 80 and 20 are able to inhibit protein adsorption only by their preferential location at an interface to which they show sufficient affinity, and not by formation of less surface active, protein-surfactant complexes. On the other hand, poloxamer 188 is able to inhibit protein adsorption by entering into formation of protein-surfactant complexes of low adsorption affinity (i.e., high colloidal stability), and not by its preferential location at the interface.

  6. Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: experimental adsorption kinetics analysis.

    PubMed

    Sun, Bin; Hao, Xiao-Gang; Wang, Zhong-De; Guan, Guo-Qing; Zhang, Zhong-Lin; Li, Yi-Bin; Liu, Shi-Bin

    2012-09-30

    A series of experiments were performed to evaluate the continuous separation of cesium based on an electrochemically switched ion exchange (ESIX) process using a diaphragm-isolated reactor with two identical nickel hexacyanoferrate/porous three-dimensional carbon felt (NiHCF/PTCF) electrodes as working electrodes. The effects of applied potential, initial concentrations and pH values of the simulation solutions on the adsorption of cesium ion were investigated. The adsorption rate of cesium ion in the ESIX process was fitted by a pseudo-first-order reaction model. The experiments revealed that the introduction of applied potential on the electrodes greatly enhanced the adsorption/desorption rate of Cs(+) and increased the separation efficiency. H(3)O(+) was found to play a dual role of electrolyte and competitor, and the adsorption rate constant showed a curve diversification with an increase in pH value. Also, it was found that the electrochemically switched adsorption process of Cs(+) by NiHCF/PTCF electrodes proceeded in two main steps, i.e., an ESIX step with a fast adsorption rate and an ion diffusion step with a slow diffusion rate. Meanwhile, the NiHCF/PTCF film electrode showed adsorption selectivity for Cs(+) in preference to Na(+).

  7. Kinetic and thermodynamic studies of sulforaphane adsorption on macroporous resin.

    PubMed

    Yuanfeng, Wu; Lei, Zhang; Jianwei, Mao; Shiwang, Liu; Jun, Huang; Yuru, You; Lehe, Mei

    2016-08-15

    The adsorption equilibrium, kinetic and thermodynamic of sulforaphane (SF) adsorption onto macroporous resin in aqueous phase were studied. The SP850 resin was screened as the appropriate resin for SF purification. From the equilibrium studies, the Redlich-Peterson model was found to be the best for description of the adsorption behavior of SF onto SP850 resin, followed by the Freundlich model and the Langmuir model. Batch equilibrium experiments demonstrated that, in the examined temperature range, the equilibrium adsorption capacity of SP850 resin decreased with increasing adsorption temperature. Thermodynamics studies indicated that the adsorption of SF was a physical, exothermic, and spontaneous process. The adsorption kinetics revealed that the pseudo-second-order kinetic model was suitable to characterize the kinetics of adsorption of SF onto SP850. Finally, the intra-particle diffusion model demonstrated that SF diffused quickly into macropores, and that diffusion slowed down in the meso- and micropores.

  8. Co-adsorption of perfluorooctane sulfonate and phosphate on boehmite: Influence of temperature, phosphate initial concentration and pH.

    PubMed

    Qian, Jin; Shen, Mengmeng; Wang, Peifang; Wang, Chao; Hu, Jing; Hou, Jun; Ao, Yanhui; Zheng, Hao; Li, Kun; Liu, Jingjing

    2017-03-01

    The co-presence of perfluorooctane sulfonate (PFOS) and phosphate in wastewater of various industries has been detected. Removing PFOS and phosphate simultaneously before discharging sewage into natural water can decrease effectively the environmental risk caused by the combined pollution of PFOS and phosphate. In this study, laboratory batch experiments were conducted for investigating the co-adsorption of PFOS and phosphate on boehmite and the influences of temperature, phosphate initial concentration and pH on the co-adsorption. The adsorption thermodynamics and kinetics of PFOS and phosphate on boehmite were also investigated completely and systematically. The results showed that lower temperature favored the co-adsorptions of PFOS and phosphate. The adsorption of PFOS and phosphate on boehmite agreed well with the Langmuir isotherm and the adsorption parameters of thermodynamics are ΔH=-16.9 and -20.0kJmol(-1) (PFOS and phosphate), ΔS=-5.69 and -7.63Jmol(-1) K(-1) (PFOS and phosphate) and ΔG <0 (PFOS and phosphate). It demonstrated that the co-adsorption of PFOS and phosphate on boehmite is a spontaneously exothermic process. Moreover, the co-adsorption process can be described well by a pseudo-second-order kinetic model. With increasing phosphate initial concentration, more phosphate could be adsorbed on boehmite, while the adsorption of PFOS decreased at phosphate initial concentration of less than 30mgL(-1) and increased at that of larger than 30mgL(-1). In the co-adsorption process, the adsorption amount of PFOS decreased with pH increasing, but that of phosphate changed little.

  9. Removal of bisphenol A by adsorption mechanism using PES-SiO2 composite membranes.

    PubMed

    Muhamad, Mimi Suliza; Salim, Mohd Razman; Lau, Woei Jye; Hadibarata, Tony; Yusop, Zulkifli

    2016-08-01

    Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM.

  10. Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons.

    PubMed

    Mansouri, Hayet; Carmona, Rocio J; Gomis-Berenguer, Alicia; Souissi-Najar, Souad; Ouederni, Abdelmottaleb; Ania, Conchi O

    2015-07-01

    This work investigates the competitive adsorption under dynamic and equilibrium conditions of ibuprofen (IBU) and amoxicillin (AMX), two widely consumed pharmaceuticals, on nanoporous carbons of different characteristics. Batch adsorption experiments of pure components in water and their binary mixtures were carried out to measure both adsorption equilibrium and kinetics, and dynamic tests were performed to validate the simultaneous removal of the mixtures in breakthrough experiments. The equilibrium adsorption capacities evaluated from pure component solutions were higher than those measured in dynamic conditions, and were found to depend on the porous features of the adsorbent and the nature of the specific/dispersive interactions that are controlled by the solution pH, density of surface change on the carbon and ionization of the pollutant. A marked roll-up effect was observed for AMX retention on the hydrophobic carbons, not seen for the functionalized adsorbent likely due to the lower affinity of amoxicillin towards the carbon adsorbent. Dynamic adsorption of binary mixtures from wastewater of high salinity and alkalinity showed a slight increase in IBU uptake and a reduced adsorption of AMX, demonstrating the feasibility of the simultaneous removal of both compounds from complex water matrices.

  11. Adsorption of oxygen on W/100/ - Adsorption kinetics and structure

    NASA Technical Reports Server (NTRS)

    Bauer, E.; Poppa, H.; Viswanath, Y.

    1976-01-01

    The adsorption of oxygen on W(100) single-crystal surfaces is studied by Auger electron spectroscopy (AES), flash desorption, low-energy electron diffraction (LEED), and retarding-field work-function measurements. The AES results reveal stepwise changes in the sticking coefficients in the coverage range 0 to 1 and activated adsorption at higher coverages. Upon room-temperature adsorption, a series of complex LEED patterns is observed. In layers adsorbed at 1050 K and cooled to room temperature, the p(2 x 1) structure is the first ordered structure observed. This structure shows a reversible order-disorder transition between 700 and 1000 K and is characterized by a work function which is lower than that of the clean surface. Heating room-temperature adsorbates changes their structure irreversibly. At temperatures below 750 K, some new structures are observed.

  12. Karst show caves - how DTN technology as used in space assists automatic environmental monitoring and tourist protection - experiment in Postojna Cave

    NASA Astrophysics Data System (ADS)

    Gabrovšek, F.; Grašič, B.; Božnar, M. Z.; Mlakar, P.; Udén, M.; Davies, E.

    2014-02-01

    The paper presents an experiment demonstrating a novel and successful application of delay- and disruption-tolerant networking (DTN) technology for automatic data transfer in a karst cave early warning and measuring system. The experiment took place inside the Postojna Cave in Slovenia, which is open to tourists. Several automatic meteorological measuring stations are set up inside the cave, as an adjunct to the surveillance infrastructure; the regular data transfer provided by the DTN technology allows the surveillance system to take on the role of an early warning system (EWS). One of the stations is set up alongside the railway tracks, which allows the tourist to travel inside the cave by train. The experiment was carried out by placing a DTN "data mule" (a DTN-enabled computer with WiFi connection) on the train and by upgrading the meteorological station with a DTN-enabled WiFi transmission system. When the data mule is in the wireless drive-by mode, it collects measurement data from the station over a period of several seconds as the train without stopping passes the stationary equipment, and delivers data at the final train station by the cave entrance. This paper describes an overview of the experimental equipment and organization allowing the use of a DTN system for data collection and an EWS inside karst caves where there is regular traffic of tourists and researchers.

  13. Karst show caves - how DTN technology as used in space assists automatic environmental monitoring and tourist protection - experiment in Postojna cave

    NASA Astrophysics Data System (ADS)

    Gabrovšek, F.; Grašič, B.; Božnar, M. Z.; Mlakar, P.; Udén, M.; Davies, E.

    2013-10-01

    The paper presents an experiment demonstrating a novel and successful application of Delay- and Disruption-Tolerant Networking (DTN) technology for automatic data transfer in a karst cave Early Warning and Measuring System. The experiment took place inside the Postojna Cave in Slovenia, which is open to tourists. Several automatic meteorological measuring stations are set up inside the cave, as an adjunct to the surveillance infrastructure; the regular data transfer provided by the DTN technology allows the surveillance system to take on the role of an Early Warning System (EWS). One of the stations is set up alongside the railway tracks, which allows the tourist to travel inside the cave by train. The experiment was carried out by placing a DTN "data mule" (a DTN-enabled computer with WiFi connection) on the train and by upgrading the meteorological station with a DTN-enabled WiFi transmission system. When the data mule is in the wireless drive-by mode, it collects measurement data from the station over a period of several seconds as the train passes the stationary equipment, and delivers data at the final train station by the cave entrance. This paper describes an overview of the experimental equipment and organisation allowing the use of a DTN system for data collection and an EWS inside karst caves where there is a regular traffic of tourists and researchers.

  14. Adsorption characteristics of hexavalent chromium on HCB/TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Yonggang

    2014-10-01

    Sol-gel method was adopted to prepare HCB/TiO2 and its adsorption ability of hexavalent chromium, Cr(VI), and removal from aqueous solution were investigated. The samples were characterized by Power X-ray diffraction (XRD) and a transmission electron microscope (TEM) which showed that the TiO2 was deposited on the surface of HCB. FTIR was used to identify the changes of the surface functional groups before and after adsorption. Potentiometric titration method was used to characterize the zero charge (pHpzc) characteristics of the surface of HCB/TiO2 which showed more acidic functional groups containing. Batch experiments showed that initial pH, absorbent dosage, contact time and initial concentration of Cr(VI) were important parameters for the Cr(VI) adsorption studies. The Freundlich isotherm model better reflected the experimental data better. Cr(VI) adsorption process followed the pseudo-second order kinetic model, which illustrated chemical adsorption. The thermodynamic parameters, such as Gibbs free energy (ΔG), changes in enthalpy change (ΔH) and changes in entropy change (ΔS) were also evaluated. Negative value of free energy occurred at temperature range of 25-45 °C, so Cr(VI) adsorption by HCB/TiO2 is spontaneous. Desorption results showed that the adsorption capacity could maintain 80% after five cycles. The maximum adsorption capacity for Cr(VI) was at 27.33 mg g-1 in an acidic medium, of which the value is worth comparable with other low-cost adsorbents.

  15. [Preparation of porous ceramics based on waste ceramics and its Ni2+ adsorption characteristics].

    PubMed

    Zhang, Yong-Li; Wang, Cheng-Zhi; Shi, Ce; Shang, Ling-Ling; Ma, Rui; Dong, Wan-Li

    2013-07-01

    The preparation conditions of porous ceramics were determined by SEM, XRD and FT-IR characterizations as well as the nickel removal ability of porous ceramics to be: the mass fraction w of sesbania powder doped was 4%, and the calcination temperature was 800 degrees C. SEM and pore structure characterization illustrated that calcination caused changes in the structure and morphology of waste ceramics. With the increase of calcination temperature, the specific surface area and pore volume decreased, while the aperture increased. EDS analyses showed that the main elements of both the original waste porcelain powder and the porous ceramics were Si, Al and O. The SEM, XRD and FT-IR characterization of porous ceramics illustrated that the structure of porous ceramics was stable before and after adsorption. The series of experiments of Ni2+ adsorption using these porous ceramics showed that when the dosage of porous ceramics was 10 g x L(-1), the adsorption time was 60 min, the pH value was 6.32, and the concentration of nickel-containing wastewater was below 100 mg x L(-1), the Ni2+ removal of wastewater reached 89.7%. Besides, the porous ceramics showed higher removal efficiency on nickel in the wastewater. The Ni(2+)-containing wastewater was processed by the porous ceramics prepared, and the adsorption dynamics and adsorption isotherms of Ni2+ in wastewater by porous ceramics were investigated. The research results showed that the Ni2+ adsorption process of porous ceramics was in accordance with the quasi second-order kinetic model (R2 = 0.999 9), with Q(e) of 9.09 mg x g(-1). The adsorption process can be described by the Freundlich equation and Langmuir equation, and when the temperature increased from 20 degrees C to 40 degrees C, the maximum adsorption capacity Q(m) increased from 14.49 mg x g(-1) to 15.38 mg x g(-1).

  16. Adsorption kinetics of laterally and polarly flagellated Vibrio.

    PubMed Central

    Belas, M R; Colwell, R R

    1982-01-01

    The adsorption of laterally and polarly flagellated bacteria to chitin was measured, and from the data obtained, a modified Langmuir adsorption isotherm was derived. Results indicated that the adsorption of laterally flagellated Vibrio parahaemolyticus follows the Langmuir adsorption isotherm, a type of adsorption referred to as surface saturation kinetics, when conditions are favorable for the production of lateral flagella. When conditions were not favorable for the production of lateral flagella, bacterial adsorption did not follow the Langmuir adsorption isotherm; instead, proportional adsorption kinetics were observed. The adsorption of some polarly flagellated bacteria exhibited surface saturation kinetics. However, the binding index (the product of the number of binding sites and bacterial affinity to the surface) of polarly flagellated bacteria differed significantly from that of laterally flagellated bacteria, suggesting that polarly flagellated bacteria adsorb to chitin by a different mechanism from that used by the laterally flagellated bacteria. From the results of dual-label adsorption competition experiments, in which polarly flagellated V. cholerae competed with increasing concentrations of laterally flagellated V. parahaemolyticus, it was observed that laterally flagellated bacteria inhibited the adsorption of polarly flagellated bacteria. In contrast, polarly flagellated bacteria enhanced the adsorption of V. cholerae. In competition experiments, where V. parahaemolyticus competed against increasing concentrations of other bacteria, polarly flagellated bacteria enhanced V. parahaemolyticus adsorption significantly, whereas laterally flagellated bacteria only slightly enhanced the process. The direct correlation observed between surface saturation kinetics, the production of lateral flagella, and the ability of laterally flagellated bacteria to inhibit the adsorption of polarly flagellated bacteria suggests that lateral flagella represent a

  17. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    PubMed

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9.

  18. Honored Teacher Shows Commitment.

    ERIC Educational Resources Information Center

    Ratte, Kathy

    1987-01-01

    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  19. Metal adsorption on mosses: Toward a universal adsorption model.

    PubMed

    González, A G; Pokrovsky, O S

    2014-02-01

    This study quantifies the adsorption of heavy metals on 4 typical moss species used for environmental monitoring in the moss bag technique. The adsorption of Cu(2+), Cd(2+), Ni(2+), Pb(2+) and Zn(2+) onto Hypnum sp., Sphagnum sp., Pseudoscleropodium purum and Brachytecium rutabulum has been investigated using a batch reactor in a wide range of pH (1.3-11.0) and metal concentrations in solution (1.6μM-3.8mM). A Linear Programming Model (LPM) was applied for the experimental data to derive equilibrium constants and the number of surface binding sites. The surface acid-base titration performed for 4 mosses at a pH range of 3-10 in 0.1M NaNO3 demonstrated that Sphagnum sp. is the most efficient adsorbent as it has the maximal number of proton-binding sites on the surface (0.65mmol g(-1)). The pKa computed for all the moss species suggested the presence of 5 major functional groups: phosphodiester, carboxyl, phosphoryl, amine and polyphenols. The results of pH-edge experiments demonstrated that B. rutabulum exhibits the highest percentage of metal adsorption and has the highest number of available sites for most of the metals studied. However, according to the results of the constant pH "Langmuirian" isotherm, Sphagnum sp. can be considered as the strongest adsorbent, although the relative difference from other mosses is within 20%. The LPM was found to satisfactorily fit the experimental data in the full range of the studied solution parameters. The results of this study demonstrate a rather similar pattern of five metal adsorptions on mosses, both as a function of pH and as a metal concentration, which is further corroborated by similar values of adsorption constants. Therefore, despite the species and geographic differences between the mosses, a universal adsorption edge and constant pH adsorption isotherm can be recommended for 4 studied mosses. The quantitative comparison of metal adsorption with other common natural organic and inorganic materials demonstrates

  20. Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles.

    PubMed

    Yen, Chia-Hsin; Lien, Hsing-Lung; Chung, Jung-Shing; Yeh, Hund-Der

    2017-01-15

    Magnetic nanoparticles modified by third-generation dendrimers (MNP-G3) and MNP-G3 further modified by ethylenediaminetetraacetic acid (EDTA) (MNP-G3-EDTA) were conducted to investigate their ability for recovery of precious metals (Pd(IV), Au(III), Pd(II) and Ag(I)) in water. Experiments were carried out using batch reactors for the studies of adsorption kinetics, adsorption isotherms, competitive adsorption and regeneration. The pseudo second-order model is the best-fit model among others suggesting that the adsorption of precious metals by MNP-G3 in water is a chemisorption process. Three adsorption isotherms namely Langmuir, Freundlich and Dubinin-Radushkevich isotherm were examined and the results showed the similarities and consistency of both linear and nonlinear analyses. Pd(IV) and Au(III) with higher valence exhibited relatively better adsorption efficiency than Pd(II) and Ag(I) with lower valence suggesting that the adsorption of precious metals by MNP-G3 is a function of valence. In the presence of the competing ion Zn(II), the adsorption efficiency of MNP-G3 for all four precious metals was declined significantly. The use of MNP-G3-EDTA revealed an increase in the adsorption efficiency for all four precious metals. However, the low selectivity of MNP-G3 towards precious metals was not enhanced by the modification of EDTA onto the MNP-G3. The regeneration of metal-laden MNP-G3 can be readily performed by using 1.0% HCl solution as a desorbent solution.

  1. Adsorption of aniline and toluidines on montmorillonite: Implications for the disposal of shale oil production wastes

    SciTech Connect

    Essington, M.E.; Bowen, J.M.; Wills, R.A.; Hart, B.K.

    1992-01-01

    Bentonite clay liners are commonly employed to mitigate the movement of contaminants from waste disposal sites. Solid and liquid waste materials that arise from the production of shale oil contain a vast array of organic compounds. Common among these compounds are the aromatic amines. in order to assess the ability of clay liner material to restrict organic compound mobility, the adsorption of aniline and o-, m-, and p-toluidine on Ca{sup 2+} - and K{sup +}-saturated Wyoming bentonite was investigated. Adsorption experiments were performed under conditions of varied pH, ionic strength, and dominate electrolyte cation and anion. organic adsorption on Ca{sup 2+} - and K{sup +}-saturated montmorillonite is pH dependent. For any given organic compound, maximum adsorption increases with decreasing ionic strength. organic compound adsorption is inhibited in the presence of sulfate and is greater in the Ca{sup 2+} systems than in the K{sup +} systems at any given ionic strength. High salt content and K{sup +} collapse the bentonite layers and limit access to and compete for adsorption sites. The K{sup +} ion is also more difficult to displace than Ca{sup 2+} from interlayer positions. Fourier transform infrared spectroscopic data show that the aniline compounds are adsorbed on bentonite through the hydrogen bonding of an amine hydrogen to a surface silica oxygen. Sulfate reduces amine adsorption by removing positively charged anilinium species from solution to form negatively charge sulfate complexes. Although adsorption of the substituted amines on bentonite is observed, aniline and toluidine adsorption is minimal in saline systems and not detected in alkaline systems. Thus, in shale oil process waste disposal sites, the mobility of the anilines through bentonite liners will not be mitigated by sorption processes, as spent oil shale leachates are both highly alkaline and saline.

  2. Adsorption of aniline and toluidines on montmorillonite: Implications for the disposal of shale oil production wastes

    SciTech Connect

    Essington, M.E.; Bowen, J.M.; Wills, R.A.; Hart, B.K.

    1992-01-01

    Bentonite clay liners are commonly employed to mitigate the movement of contaminants from waste disposal sites. Solid and liquid waste materials that arise from the production of shale oil contain a vast array of organic compounds. Common among these compounds are the aromatic amines. in order to assess the ability of clay liner material to restrict organic compound mobility, the adsorption of aniline and o-, m-, and p-toluidine on Ca[sup 2+] - and K[sup +]-saturated Wyoming bentonite was investigated. Adsorption experiments were performed under conditions of varied pH, ionic strength, and dominate electrolyte cation and anion. organic adsorption on Ca[sup 2+] - and K[sup +]-saturated montmorillonite is pH dependent. For any given organic compound, maximum adsorption increases with decreasing ionic strength. organic compound adsorption is inhibited in the presence of sulfate and is greater in the Ca[sup 2+] systems than in the K[sup +] systems at any given ionic strength. High salt content and K[sup +] collapse the bentonite layers and limit access to and compete for adsorption sites. The K[sup +] ion is also more difficult to displace than Ca[sup 2+] from interlayer positions. Fourier transform infrared spectroscopic data show that the aniline compounds are adsorbed on bentonite through the hydrogen bonding of an amine hydrogen to a surface silica oxygen. Sulfate reduces amine adsorption by removing positively charged anilinium species from solution to form negatively charge sulfate complexes. Although adsorption of the substituted amines on bentonite is observed, aniline and toluidine adsorption is minimal in saline systems and not detected in alkaline systems. Thus, in shale oil process waste disposal sites, the mobility of the anilines through bentonite liners will not be mitigated by sorption processes, as spent oil shale leachates are both highly alkaline and saline.

  3. Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber.

    PubMed

    Ruixia, Liu; Jinlong, Guo; Hongxiao, Tang

    2002-04-15

    A new type of ion exchange fiber for the removal of fluoride, phosphate, and arsenate ions has been developed. A batch adsorption technique for investigating adsorption kinetic and equilibrium parameters and determining pH adsorption edges is applied. It is shown that the adsorption properties of the ion exchange fiber for fluoride, phosphate, and arsenate ions depend on the pH value and anion concentration. The adsorption of arsenate on the sorbent reaches a maximum of 97.9% in the pH value range of 3.5 to 7.0. The adsorption percentage of phosphate is more than 99% in the pH range of 3.0 to 5.5. The adsorption of fluoride on the ion exchange fiber is found to be 90.4% at pH 3.0. The Freundlich model can describe the adsorption equilibrium data of fluoride, arsenate, and phosphate anions. The sorption of the three anions on the ion exchange fiber is a rapid process, and the adsorption kinetic data can be simulated very well by the pseudo-second-order rate equation. The column performance is carried out to assess the applicability of the ion exchange fiber for the removal of fluoride, phosphate, and arsenate ions from synthetic wastewaters with satisfactory removal efficiency. The desorption experiment shows that fluoride ion sorbed by the fiber column can be quantitatively desorbed with 5 mL of 0.50 mol/L NaOH at elution rate of 1 mL/min, and 30 mL of NaOH is necessary for the quantitative recovery of phosphate and arsenate ions.

  4. Molecular Simulation of Cesium Adsorption at the Basal Surface of Phyllosilicate Minerals

    SciTech Connect

    Kerisit, Sebastien N.; Okumura, Masahiko; Rosso, Kevin M.; Machida, Masahiko

    2016-08-16

    A better understanding of the thermodynamics of radioactive cesium uptake at the surfaces of phyllosilicate minerals is needed to understand mechanisms of its selective adsorption and help guide the development of practical and inexpensive decontamination techniques. In this work, molecular dynamics simulations were carried out to determine the thermodynamics of adsorption of Cs+ at the basal surface of six 2:1 phyllosilicate minerals, namely pyrophyllite, illite, muscovite, phlogopite, celadonite, and margarite. These minerals were selected to isolate the effects of the magnitude of the permanent layer charge (≤ 2), its location (tetrahedral versus octahedral sheet), and the structure of the octahedral sheet (dioctahedral versus trioctahedral). Good agreement was obtained with experiment in terms of the hydration free energy of Cs+ and the structure and thermodynamics of Cs+ adsorption at the muscovite basal surface, for which published data were available for comparison. With the exception of pyrophyllite, which did not exhibit an inner-sphere free energy minimum, all phyllosilicate minerals showed similar behavior with respect to Cs+ adsorption; notably, Cs+ adsorption was predominantly inner-sphere whereas outer-sphere adsorption was very weak with the simulations predicting the formation of an extended outer-sphere complex. For a given location of the layer charge, the free energy of adsorption as an inner-sphere complex was found to vary linearly with the magnitude of the layer charge. For a given location and magnitude of the layer charge, adsorption at phlogopite (trioctahedral sheet structure) was much less favorable than at muscovite (dioctahedral sheet structure) due to the electrostatic repulsion between the adsorbed Cs+ and the hydrogen atom of the hydroxyl group directly below the six-membered siloxane ring cavity. For a given magnitude of the layer charge and structure of the octahedral sheet, adsorption at celadonite (layer charge located in the

  5. [Preparation of surface molecularly imprinted polymers for penicilloic acid, and its adsorption properties].

    PubMed

    Zheng, Penglei; Luo, Zhimin; Chang, Ruimiao; Ge, Yanhui; Du, Wei; Chang, Chun; Fu, Qiang

    2015-09-01

    On account of the specificity and reproducibility for the determination of penicilloic acid in penicillin, this study aims to prepare penicilloic acid imprinted polymers (PEOA-MIPs) by surface polymerization method at the surface of modified silica particles by using penicilloic acid (PEOA) as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate ( EGDMA) as the cross linker, and methanol/acetonitrile as the solvents. The synthesis conditions were optimized, and PEOA-MIPs had the best adsorption capacity when the molar ratio of template molecule/functional monomer was 1 :4, cross linking degree was 85% and the solvent ratio of methanol/acetonitrile was 1 :1 (v/v). The adsorption properties were evaluated by adsorption experiments, including the adsorption isotherms, kinetics and selectivity. The adsorption process between PEOA-MIPs and PEOA fitted the Langmuir adsorption isotherm with the maximum adsorption capacity of 122. 78 mg/g and the pseudo-second-order reaction kinetics with fast adsorption kinetics (the equilibrium time of 45 min). The as-synthesized PEOA-MIPs were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). The results indicated that the MIPs layer has been successfully grafted on the surface of SiO2 microparticles and the PEOA-MIPs had the excellent thermal stability. The PEOA-MIPs showed the highest selective recognition for PEOA. The PEOA-MIPs possess a high adsorption capacity, rapid mass-transfer rate and high selectivity to PEOA when compared with non-imprinted polymers (PEOA-NIPs). The PEOA-MIPs was expected to be used as the solid phase extraction medium and this study provides the potential applications for fast recognition and analysis of the penicilloic acid in penicillin.

  6. '…it shows that there's no limits': the psychological impact of co-production for experts by experience working in youth mental health.

    PubMed

    Mayer, Claire; McKenzie, Karen

    2017-05-01

    Co-production is commonly conceptualised as a more equal sharing of power and decision-making between a dichotomy of service user and service provider, each bringing valuable and different assets to the process. Experts by experience lie in the overlap between this conceptually created duality, providing the services they now do by virtue of having once used services themselves. Previous related studies suggest that their involvement in co-production could impact positively on their social capital, self-esteem, self-efficacy and life skills. However, no studies have been explicitly psychological or phenomenological in nature, and the theoretical basis for such outcomes remains under-developed. This phenomenological study explored the psychological impact of co-production for young people who were paid experts by experience for a young person's mental health charity in a large and diverse urban area in the UK, looking at the what of psychological impact, as well as the theoretical why and how. Semi-structured interviews were conducted with a convenience sample of five males, with a mean age of 25 years. Interpretative phenomenological analysis yielded three master themes: the co-production approach, I'm a professional and identities in transition. Participants valued a collegiate organisational approach that prioritised empowerment, agency and equality between experts by experience and 'experts by qualification', leading to a positive impact on their self-efficacy and self-esteem. Co-production impacted fundamentally on their identity structure, enabling them to explore a new identity as a 'professional'. The results are framed within identity process theory and point to the potential benefits of this model to co-production.

  7. Albumin (BSA) Adsorption over Graphene in Aqueous Environment: Influence of Orientation, Adsorption Protocol, and Solvent Treatment.

    PubMed

    Vilhena, J G; Rubio-Pereda, Pamela; Vellosillo, Perceval; Serena, P A; Pérez, Rubén

    2016-02-23

    We report 150 ns explicit solvent MD simulations of the adsorption on graphene of albumin (BSA) in two orientations and using two different adsorption protocols, i.e., free and forced adsorption. Our results show that free adsorption occurs with little structural rearrangements. Even taking adsorption to an extreme, by forcing it with a 5 nN downward force applied during the initial 20 ns, we show that along a particular orientation BSA is able to preserve the structural properties of the majority of its binding sites. Furthermore, in all the cases considered in this work, the ibuprofen binding site has shown a strong resilience to structural changes. Finally, we compare these results with implicit solvent simulations and find that the latter predicts an extreme protein unfolding upon adsorption. The origin of this discrepancy is attributed to a poor description of the water entropic forces at interfaces in the implicit solvent methods.

  8. The role of chemistry and pH of solid surfaces for specific adsorption of biomolecules in solution--accurate computational models and experiment.

    PubMed

    Heinz, Hendrik

    2014-06-18

    Adsorption of biomolecules and polymers to inorganic nanostructures plays a major role in the design of novel materials and therapeutics. The behavior of flexible molecules on solid surfaces at a scale of 1-1000 nm remains difficult and expensive to monitor using current laboratory techniques, while playing a critical role in energy conversion and composite materials as well as in understanding the origin of diseases. Approaches to implement key surface features and pH in molecular models of solids are explained, and distinct mechanisms of peptide recognition on metal nanostructures, silica and apatite surfaces in solution are described as illustrative examples. The influence of surface energies, specific surface features and protonation states on the structure of aqueous interfaces and selective biomolecular adsorption is found to be critical, comparable to the well-known influence of the charge state and pH of proteins and surfactants on their conformations and assembly. The representation of such details in molecular models according to experimental data and available chemical knowledge enables accurate simulations of unknown complex interfaces in atomic resolution in quantitative agreement with independent experimental measurements. In this context, the benefits of a uniform force field for all material classes and of a mineral surface structure database are discussed.

  9. Interplay of vapor adsorption and liquid imbibition in nanoporous Vycor glass

    NASA Astrophysics Data System (ADS)

    Kiepsch, Sebastian; Pelster, Rolf

    2016-04-01

    We have studied the kinetics of spontaneous capillary rise and of the concurrent vapor adsorption in nanoporous, monolithic samples of Vycor glass with a mean pore diameter of 7.5 nm. As liquids, we have chosen n -alcohols (n =4 -10 ) whose vapor pressures at room temperature range from p0=965 Pa down to p0=0.743 Pa. Dielectric measurements allow us to achieve spatial selectivity to predefined parts of the porous Vycor glass. In this way, we are able to measure the overall uptake of molecules as well as vapor adsorption from the surroundings in unfilled parts of the pore network, i.e., above the liquid menisci of the rising imbibition front. We show that the latter process is unaltered compared to free adsorption in samples suspended above a liquid reservoir. Only at low vapor pressures, i.e., for long alcohols, vapor adsorption can be neglected and the capillary rise follows the theoretical predictions of the Lucas-Washburn √{t } law. The more volatile the alcohol, the more important the additional adsorption of molecules becomes. We show that the overall filling process in the pore network is well described by a superposition of the Lucas-Washburn law and the measured vapor adsorption. In addition, the experiments give insight into the vapor diffusion dynamics in the porous matrix.

  10. Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite

    PubMed Central

    2014-01-01

    In this work the adsorption features of activated carbon and the magnetic properties of iron oxides were combined in a composite to produce magnetic adsorbent. Batch experiments were conducted to study the adsorption behavior of arsenate onto the synthetic magnetic adsorbent. The effects of initial solution pH, contact time, adsorbent dosage and co-existing anionic component on the adsorption of arsenate were investigated. The results showed that the removal percentage of arsenate could be over 95% in the conditions of adsorbent dosage 5.0 g/L, initial solution pH 3.0-8.0, and contact time 1 h. Under the experimental conditions, phosphate and silicate caused greater decrease in arsenate removal percentage among the anions, and sulfate had almost no effect on the adsorption of arsenate. Kinetics study showed that the overall adsorption rate of arsenate was illustrated by the pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the arsenate adsorption data was tested. Both the models adequately describe the experimental data. Moreover, the magnetic composite adsorbent could be easily recovered from the medium by an external magnetic field. It can therefore be potentially applied for the treatment of water contaminated by arsenate. PMID:24602339

  11. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    PubMed

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids.

  12. Adsorption of water vapor by poly(styrenesulfonic acid), sodium salt: isothermal and isobaric adsorption equilibria.

    PubMed

    Toribio, F; Bellat, J P; Nguyen, P H; Dupont, M

    2004-12-15

    Air conditioning and dehumidifying systems based on sorption on solids are of great interest, especially in humid climates, because they allow reduction of thermal loads and use of chlorofluorocarbons. Previous studies have shown that hydrophilic polymers such as sulfonic polymers can have very high performance in water adsorption from air. The aim of this study was to characterize the water vapor adsorption properties of fully sulfonated and monosulfonated poly(styrenesulfonic acid), sodium salt, and to elucidate the mechanism of adsorption on these materials. Adsorption isotherms have been determined by TGA between 298 and 317 K for pressures ranging from 0.1 to 45 hPa. They have type II of the IUPAC classification and a small hysteresis loop between adsorption and desorption processes was observed only for the monosulfonated sample. Water content is up to 80% weight at 80% relative humidity. Adsorption isotherms have been well fitted with the FHH model. Adsorption-desorption isobars have been determined by TGA under 37 hPa in the temperature range 298-373 K. They show that these polymers can be completely regenerated by heating at 313 K under humidified air. No degradation of the adsorption properties has been observed after several regenerations. Adsorption enthalpies and entropies have been deduced from the Clapeyron equation and from DSC measurements. A good agreement was found. A mechanism of adsorption is proposed considering two kinds of adsorbate: bounded water in electrostatic interaction with functional groups and free water resulting from condensation.

  13. Phosphoryl functionalized mesoporous silica for uranium adsorption

    NASA Astrophysics Data System (ADS)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-04-01

    Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N2 adsorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) confirmed that the adsorption process was endothermic and spontaneous.

  14. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces

    SciTech Connect

    Chen, De-Li; Al-Saidi, W A; Johnson, J Karl

    2012-10-03

    Adsorption of noble gases on metal surfaces is determined by weak interactions. We applied two versions of the nonlocal van der Waals density functional (vdW-DF) to compute adsorption energies of Ar, Kr, and Xe on Pt(111), Pd(111), Cu(111), and Cu(110) metal surfaces. We have compared our results with data obtained using other density functional approaches, including the semiempirical vdW corrected DFT-D2. The vdW-DF results show considerable improvements in the description of adsorption energies and equilibrium distances over other DFTbased methods, giving good agreement with experiments. We have also calculated perpendicular vibrational energies for noble gases on the metal surfaces using vdWDF data and found excellent agreement with available experimental results. Our vdW-DF calculations show that adsorption of noble gases on low-coordination sites is energetically favored over high-coordination sites, but only by a few meV. Analysis of the 2-dimensional potential energy surface shows that the high-coordination sites are local maxima on the 2-dimensional potential energy surface and therefore unlikely to be observed in experiments, which provides an explanation of the experimental observations. The DFT-D2 approach with the standard parameterization was found to overestimate the dispersion interactions, and to give the wrong adsorption site preference for four of the nine systems we studied.

  15. Adsorption and desorption of arsenic to aquifer sediment on the Red River floodplain at Nam Du, Vietnam

    PubMed Central

    Thi Hoa Mai, Nguyen; Postma, Dieke; Thi Kim Trang, Pham; Jessen, Søren; Hung Viet, Pham; Larsen, Flemming

    2016-01-01

    The adsorption of arsenic onto aquifer sediment from the Red River floodplain, Vietnam, was determined in a series of batch experiments. Due to water supply pumping, river water infiltrates into the aquifer at the field site and has leached the uppermost aquifer sediments. The leached sediments, remain anoxic but contain little reactive arsenic and iron, and are used in our experiments. The adsorption and desorption experiments were carried out by addition or removal of arsenic from the aqueous phase in sediment suspensions under strictly anoxic conditions. Also the effects of HCO3, Fe(II), PO4 and Si on arsenic adsorption were explored. The results show much stronger adsorption of As(V) as compared to As(III), full reversibility for As(III) adsorption and less so for As(V). The presence or absence of HCO3 did not influence arsenic adsorption. Fe(II) enhanced As(V) sorption but did not influence the adsorption of As(III) in any way. During simultaneous adsorption of As(III) and Fe(II), As(III) was found to be fully desorbable while Fe(II) was completely irreversibly adsorbed and clearly the two sorption processes are uncoupled. Phosphate was the only solute that significantly could displace As(III) from the sediment surface. Compiling literature data on arsenic adsorption to aquifer sediment in Vietnam and Bangladesh revealed As(III) isotherms to be almost identical regardless of the nature of the sediment or the site of sampling. In contrast, there was a large variation in As(V) adsorption isotherms between studies. A tentative conclusion is that As(III) and As(V) are not adsorbing onto the same sediment surface sites. The adsorption behavior of arsenic onto aquifer sediments and synthetic Fe-oxides is compared. Particularly, the much stronger adsorption of As(V) than of As(III) onto Red River as well as on most Bangladesh aquifer sediments, indicates that the perception that arsenic, phosphate and other species compete for the same surface sites of iron oxides in

  16. Adsorption and desorption of arsenic to aquifer sediment on the Red River floodplain at Nam Du, Vietnam

    NASA Astrophysics Data System (ADS)

    Thi Hoa Mai, Nguyen; Postma, Dieke; Thi Kim Trang, Pham; Jessen, Søren; Hung Viet, Pham; Larsen, Flemming

    2014-10-01

    The adsorption of arsenic onto aquifer sediment from the Red River floodplain, Vietnam, was determined in a series of batch experiments. Due to water supply pumping, river water infiltrates into the aquifer at the field site and has leached the uppermost aquifer sediments. The leached sediments remain anoxic but contain little reactive arsenic and iron, and are used in our experiments. The adsorption and desorption experiments were carried out by addition or removal of arsenic from the aqueous phase in sediment suspensions under strictly anoxic conditions. Also the effects of HCO3, Fe(II), PO4 and Si on arsenic adsorption were explored. The results show much stronger adsorption of As(V) as compared to As(III), full reversibility for As(III) adsorption and less so for As(V). The presence or absence of HCO3 did not influence arsenic adsorption. Fe(II) enhanced As(V) sorption but did not influence the adsorption of As(III) in any way. During simultaneous adsorption of As(III) and Fe(II), As(III) was found to be fully desorbable while Fe(II) was completely irreversibly adsorbed and clearly the two sorption processes are uncoupled. Phosphate was the only solute that significantly could displace As(III) from the sediment surface. Compiling literature data on arsenic adsorption to aquifer sediment in Vietnam and Bangladesh revealed As(III) isotherms to be almost identical regardless of the nature of the sediment or the site of sampling. In contrast, there was a large variation in As(V) adsorption isotherms between studies. A tentative conclusion is that As(III) and As(V) are not adsorbing onto the same sediment surface sites. The adsorption behavior of arsenic onto aquifer sediments and synthetic Fe-oxides is compared. Particularly, the much stronger adsorption of As(V) than of As(III) onto Red River as well as on most Bangladesh aquifer sediments, indicates that the perception that arsenic, phosphate and other species compete for the same surface sites of iron oxides in

  17. Adsorption orientations and immunological recognition of antibodies on graphene

    NASA Astrophysics Data System (ADS)

    Vilhena, J. G.; Dumitru, A. C.; Herruzo, Elena T.; Mendieta-Moreno, Jesús I.; Garcia, Ricardo; Serena, P. A.; Pérez, Rubén

    2016-07-01

    Large-scale molecular dynamics (MD) simulations and atomic force microscopy (AFM) in liquid are combined to characterize the adsorption of Immunoglobulin G (IgG) antibodies over a hydrophobic surface modeled with a three-layer graphene slab. We consider explicitly the water solvent, simulating systems with massive sizes (up to 770 000 atoms), for four different adsorption orientations. Protocols based on steered MD to speed up the protein diffusion stage and to enhance the dehydration process are combined with long simulation times (>150 ns) in order to make sure that the final adsorption states correspond to actual stable configurations. Our MD results and the AFM images demonstrate that the IgG antibodies are strongly adsorbed, do not unfold, and retain their secondary and tertiary structures upon deposition. Statistical analysis of the AFM images shows that many of the antibodies adopt vertical orientations, even at very small coverages, which expose at least one Fab binding site for recognition events. Single molecule force spectroscopy experiments demonstrate the immunological response of the deposited antibodies by recognizing its specific antigens. The above properties together with the strong anchoring and preservation of the secondary structure, make graphene an excellent candidate for the development of immunosensors.Large-scale molecular dynamics (MD) simulations and atomic force microscopy (AFM) in liquid are combined to characterize the adsorption of Immunoglobulin G (IgG) antibodies over a hydrophobic surface modeled with a three-layer graphene slab. We consider explicitly the water solvent, simulating systems with massive sizes (up to 770 000 atoms), for four different adsorption orientations. Protocols based on steered MD to speed up the protein diffusion stage and to enhance the dehydration process are combined with long simulation times (>150 ns) in order to make sure that the final adsorption states correspond to actual stable configurations. Our

  18. Studies on Vapor Adsorption Systems

    NASA Technical Reports Server (NTRS)

    Shamsundar, N.; Ramotowski, M.

    1998-01-01

    The project consisted of performing experiments on single and dual bed vapor adsorption systems, thermodynamic cycle optimization, and thermal modeling. The work was described in a technical paper that appeared in conference proceedings and a Master's thesis, which were previously submitted to NASA. The present report describes some additional thermal modeling work done subsequently, and includes listings of computer codes developed during the project. Recommendations for future work are provided.

  19. Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes

    NASA Technical Reports Server (NTRS)

    Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.

    2008-01-01

    Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.

  20. Nitrate removal from aqueous solution by adsorption onto various materials.

    PubMed

    Oztürk, Neşe; Bektaş, T Ennil

    2004-08-09

    In this study sepiolite, sepiolite activated by HCl, slag and powdered activated carbon were used as adsorbent with a particle size was between 71 and 80 microm (200-170 mesh). NaNO3 solution (100 mg/l) was used in batch adsorption experiments for nitrate removal. First kinetic studies were carried out and it was determined that slag was not effective for nitrate removal, then contact time, pH and adsorbent dosage effects on nitrate removal by adsorption were investigated using other adsorbents except slag. The equilibrium time was found to be 30, 45, 5 min for sepiolite, powdered activated carbon and activated sepiolite, respectively. The most effective pH value for nitrate removal was 2 for powdered activated carbon. pH value did not affect nitrate removal significantly for other adsorbents. Adsorbent dosages were varied from 5 to 20 g/l solutions. An increase in adsorbent dosage increased the percent removal of nitrate. A series of isotherm studies were undertaken and the data evaluated for compliance with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanisms, three simplified kinetic models, i.e., first-, second-order and intraparticle diffusion were tested. Adsorption followed second-order rate kinetics. The correlation coefficients for second order kinetic model are greater than 0.996. Experimental data show that sepiolite activated by HCl was effective for nitrate removal.

  1. Composition dependent adsorption of multiple CO molecules on binary silver-gold clusters Ag(n)Au(m)+ (n + m = 5): theory and experiment.

    PubMed

    Popolan, Denisia M; Nössler, Melanie; Mitrić, Roland; Bernhardt, Thorsten M; Bonacić-Koutecký, Vlasta

    2010-07-28

    The binding energies of multiple CO molecules to five-atom silver-gold cluster cations have been obtained employing temperature dependent gas phase ion trap measurements and ab initio calculations. The CO binding energies to Ag(n)Au(m)(+) (n + m = 5) decrease with increasing number of silver atoms. Most strikingly, after the adsorption of the fourth CO to Au(5)(+) and of the third CO to Ag(5)(+), respectively, a pronounced decrease in the binding energies of further CO molecules was observed. This is related to a CO-induced structural transformation yielding more compact metal cluster geometries. First principles calculations revealed that the exact structure of the carbonyl complexes with multiple CO and the nature of the CO-induced structural transformation strongly depend on the composition of the metal cluster as well as on the number of adsorbed CO molecules.

  2. Adsorption ability comparison of plasma proteins on amorphous carbon surface

    NASA Astrophysics Data System (ADS)

    Takeda, Aoi; Akasaka, Hiroki; Ohshio, Shigeo; Toda, Ikumi; Nakano, Masayuki; Saitoh, Hidetoshi

    2012-11-01

    To understand why amorphous carbon (a-C:H) film shows antithrombogenicity, an adsorption ability of plasma proteins on a-C:H surface was investigated. Protein adsorption is the initial process of clot formation. The protein adsorption ability on a-C:H film surface was compared by the detection using the surface plasmon resonance (SPR) phenomenon to estimate the protein adsorption. The protein adsorption abilities of a fibrinogen (Fib) and a human γ-globulin (HGG) were estimated by the SPR method using a multilayer structure of a-C:H/Au/Cr/glass. Although the adsorption of HGG for a-C:H was saturated at 32 μM in HGG concentration, the adsorption of Fib was not saturated under the detection limit of this method. These results indicated that the adsorption ability to the a-C:H film surface of Fib was higher than HGG.

  3. Neutron-Rich {sup 62,64,64}Fe Show Enhanced Collectivity: The Washout of N = 40 in Terms of Experiment, Valence Proton Symmetry and Shell Model

    SciTech Connect

    Rother, W.; Dewald, A.; Fransen, C.; Hackstein, M.; Jolie, J.; Pissulla, Th.; Zel, K.-O.; Iwasaki, H.; Baugher, T.; Brown, B. A.; Gade, A.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Voss, P.; Walsh, K. A.; Lenzi, S. M.; Ur, C. A.; Starosta, K.; Bazin, D.

    2011-10-28

    Probing shell structure at a large neutron excess has been of particular interest in recent times. Neutron-rich nuclei between the proton shell closures Z = 20 and Z = 28 offer an exotic testing ground for shell evolution. The development of the N = 40gap between neutron fp and lg{sub 9/2} shells gives rise to highly interesting variations of collectivity for nuclei in this region. While {sup 68}Ni shows doubly magic properties in level energies and transition strengths, this was not observed in neighbouring nuclei. Especially neutron-rich Fe isotopes proved particularly resistant to calculational approaches using the canonical valence space (fpg) resulting in important deviations of the predicted collectivity. Only an inclusion of the d{sub 5/2}-orbital could solve the problem [1]. Hitherto no transition strengths for {sup 66}Fe have been reported. We determined B(E2,2{sup +}{sub 1}{yields}0{sup +}{sub 1}) values from lifetimes measured with the recoil distance Doppler-shift method using the Cologne plunger for radioactive beams at National Superconducting Cyclotron Laboratory at Michigan State University. Excited states were populated by projectile Coulomb excitation for {sup 62,64,66}Fe. The data show a rise in collectivity for Fe isotopes towards N = 40. Results [2] are interpreted by means of a modified version of the Valence Proton Symmetry [3] and compared to shell model calculations using a new effective interaction recently developed for the fpgd valence space [4].

  4. Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies.

    PubMed

    Salem Attia, Tamer Mohamed; Hu, Xia Lin; Yin, Da Qiang

    2013-11-01

    The contamination of fresh water with pharmaceutical and personal care products (PPCPs) has risen during the last few years. The adsorption of some PPCPs namely, Diclofenac-Na, Naproxen, Gemfibrozil and Ibuprofen from aqueous solution has been studied, magnetic nanoparticles coated zeolite (MNCZ) has been used as the adsorbent. Batch adsorption experiment was conducted to study the influences of different adsorption parameters such as contact time, solution pH and PPCPs concentrations in order to optimize the reaction conditions. The removal was favored at low pH values. Thus, as pH turns from acidic to basic conditions these compounds were less efficiently removed. The initial concentration does not appear to exert a noticeable effect on the removal efficiency of the studied PPCPs at low concentrations, but it showed less removal efficiency during high concentration of PPCPs especially for Ibuprofen. The removal of Diclofenac-Na was independent on time, while the contact time was of significant effect on the adsorption of Naproxen, Gemfibrozil and Ibuprofen even though these compounds were removed up to 95% during 10 min using MNCZ. From the isotherm adsorption study, the adsorption of PPCPs studied on MNCZ was best fitted with Freundlich isotherm equation. Pseudo-second order model providing the best fit model with the experimental data. Column adsorption study was conducted to compare the removal efficiency of MNCZ with other processes used at drinking water treatment plants (DWTPs), MNCZ showed high removal efficiency (>99%) than other used processes at DWTPs.

  5. EDTA-Cross-Linked β-Cyclodextrin: An Environmentally Friendly Bifunctional Adsorbent for Simultaneous Adsorption of Metals and Cationic Dyes.

    PubMed

    Zhao, Feiping; Repo, Eveliina; Yin, Dulin; Meng, Yong; Jafari, Shila; Sillanpää, Mika

    2015-09-01

    The discharge of metals and dyes poses a serious threat to public health and the environment. What is worse, these two hazardous pollutants are often found to coexist in industrial wastewaters, making the treatment more challenging. Herein, we report an EDTA-cross-linked β-cyclodextrin (EDTA-β-CD) bifunctional adsorbent, which was fabricated by an easy and green approach through the polycondensation reaction of β-cyclodextrin with EDTA as a cross-linker, for simultaneous adsorption of metals and dyes. In this setting, cyclodextrin cavities are expected to capture dye molecules through the formation of inclusion complexes and EDTA units as the adsorption sites for metals. The adsorbent was characterized by FT-IR, elemental analysis, SEM, EDX, ζ-potential, and TGA. In a monocomponent system, the adsorption behaviors showed a monolayer adsorption capacity of 1.241 and 1.106 mmol g(-1) for Cu(II) and Cd(II), respectively, and a heterogeneous adsorption capacity of 0.262, 0.169, and 0.280 mmol g(-1) for Methylene Blue, Safranin O, and Crystal Violet, respectively. Interestingly, the Cu(II)-dye binary experiments showed adsorption enhancement of Cu(II), but no significant effect on dyes. The simultaneous adsorption mechanism was further confirmed by FT-IR, thermodynamic study, and elemental mapping. Overall, its facile and green fabrication, efficient sorption performance, and excellent reusability indicate that EDTA-β-CD has potential for practical applications in integrative and efficient treatment of coexistenting toxic pollutants.

  6. Kinetic modelling of cytochrome c adsorption on SBA-15.

    PubMed

    Yokogawa, Yoshiyuki; Yamauchi, Rie; Saito, Akira; Yamato, Yuta; Toma, Takeshi

    2017-01-01

    The adsorption capacity of mesoporous silicate (MPS) materials as an adsorbent for protein adsorption from the aqueous phase and the mechanism of the adsorption processes by comparative analyses of the applicability of five kinetic transfer models, pseudo-first-order model, pseudo-second-order model, Elovich kinetic model, Bangham's equation model, and intraparticle diffusion model, were investigated. A mixture of tetraethyl orthosilicate (TEOS) and triblock copolymer as a template was stirred, hydrothermally treated to form the mesoporous SBA-15 structure, and heat-treated at 550°C to form the MPS material, SBA-15. The synthesized SBA-15 was immersed in a phosphate buffered saline (PBS) solution containing cytochrome c for 2, 48, and 120 hours at 4°C. The TEM observations of proteins on/in mesoporous SBA-15 revealed the protein behaviors. The holes of the MPS materials were observed to overlap those of the stained proteins for the first 2 hours of immersion. The stained proteins were observed between primary particles and partly inside the mesoporous channels in the MPS material when it had been immersed for 48 hours. For MPS when it had been immersed for 120 hours, stained proteins were observed in almost all meso-scale channels of MPS. The time profiles for adsorption of proteins can be described well by Bangham's equation model and the intraparticle diffusion model. The Bangham's equation model is based on the assumption that pore diffusion was the only rate controlling step during adsorption, whose contribution to the overall mechanism of cytochrome c adsorption on SBA-15 should not be neglected. The kinetic curves obtained from the experiment for cytochrome c adsorption on SBA-15 could show the three steps: the initial rapid increase of the adsorbed amount of cytochrome c, the second gradual increase, and the final equilibrium stage. These three adsorption steps can be interpreted well by the multi-linearity of the intraparticle diffusion model

  7. Adsorption of xenon and krypton on shales

    NASA Technical Reports Server (NTRS)

    Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.

    1981-01-01

    A method that uses a mass spectrometer as a manometer is employed in the measurement of Xe and Kr adsorption parameters on shales and related samples, where gas partial pressures were lower than 10 to the -11th atm, corresponding adsorption coverages are only small fractions of a monolayer, and Henry's Law behavior is expected and observed. Results show heats of adsorption in the 2-7 kcal/mol range, and Henry constants at 0-25 C of 1 cu cm STP/g per atmosphere are extrapolated. Although the adsorption properties obtained are variable by sample, the range obtained suggests that shales may be capable of an equilibrium adsorption with modern air high enough to account for a significant fraction of the atmospheric inventory of Xe, and perhaps even of Kr. This effect will nevertheless not account for the factor-of-25 defficiency of atmospheric Xe, in comparison with the planetary gas patterns observed in meteorites.

  8. BSA adsorption on bimodal PEO brushes.

    PubMed

    Bosker, W T E; Iakovlev, P A; Norde, W; Cohen Stuart, M A

    2005-06-15

    BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) block copolymers and using the Langmuir-Blodgett technique. Pi-A isotherms of (mixtures of) the block copolymers were measured to establish the brush regime. The isotherms of PS(29)-PEO(48) show hysteresis between compression and expansion cycles, indicating aggregation of the PS(29)-PEO(48) upon compression. Mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) demonstrate a similar hysteresis effect, which eventually vanishes when the ratio of PS(37)-PEO(770) to PS(29)-PEO(48) is increased. The adsorption of BSA was determined at brushes for which the grafting density of the long PEO chains was varied, while the total grafting density was kept constant. BSA adsorption onto monomodal PEO(48) and PEO(770) brushes was determined for comparison. The BSA adsorption behavior of the bimodal brushes is similar to the adsorption of BSA at PEO(770) monomodal brushes. The maximum of BSA adsorption at low grafting density of PEO(770) can be explained by ternary adsorption, implying an attraction between BSA and PEO. The contribution of primary adsorption to the total adsorbed amount is negligible.

  9. [Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution].

    PubMed

    Lin, Jian-wei; Wang, Hong; Zhan, Yan-hui; Chen, Dong-mei

    2016-01-15

    A series of composites of lanthanum hydroxide/natural zeolite ( La( OH) 3/NZ composites) were prepared by co-precipitation method, and these composites were used as adsorbents to remove phosphate from aqueous solution. The phosphate adsorption capacities of different composites prepared with different precipitated pH values were compared in batch mode. The adsorption characteristics of phosphate from aqueous solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 was investigated using batch experiments. The results showed that the La(OH)3/NZ composite prepared with the precipitated pH values of 5-7 and 13 had a low adsorption capacity for phosphate in aqueous solution, while the La( OH) 3/NZ composites prepared with the precipitated pH values of 9-12 exhibited much higher phosphate adsorption capacity. The phosphate adsorption capacity of the La (OH)3/NZ composite increased with the increase of the precipitated pH value from 9 to 11, but remained basically unchanged with the increase of the precipitated pH value from 11 to 12. The equilibrium adsorption data of phosphate from aqueous solution on the La ( OH ) 3/NZ composite prepared with the precipitated pH value of 11 could be described by the Langmuir isotherm model with the predicted maximum phosphate adsorption of 44 mg x g(-1) (phosphate solution pH 7 and 30 degrees C). The kinetic data of phosphate adsorption from low concentration phosphate solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 well followed a pseudo-second-order model. The presence of Cl- and SO4(2-) in low concentration phosphate solution had no negative effect on phosphate adsorption onto the La(OH)3/NZ composite prepared with the precipitated pH value of 11, while the presence of HCO3- slightly inhibited the adsorption of phosphate. Coexisting humic acid had a negative effect on the adsorption of phosphate at low concentration on the La(OH)3/NZ composite prepared with the

  10. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.

  11. Adsorption of arsenic from a Nova Scotia groundwater onto water treatment residual solids.

    PubMed

    Gibbons, Meaghan K; Gagnon, Graham A

    2010-11-01

    Water treatment residual solids were examined in batch adsorption and column adsorption experiments using a groundwater from Halifax Regional Municipality that had an average arsenic concentration of 43 μg/L (±4.2 μg/L) and a pH of 8.1. The residual solids studied in this paper were from five water treatment plants, four surface water treatment plants that utilized either alum, ferric, or lime in their treatment systems, and one iron removal plant. In batch adsorption experiments, iron-based residual solids and lime-based residual solids pre-formed similarly to GFH, a commercially-available adsorbent, while alum-based residual solids performed poorly. Langmuir isotherm modeling showed that ferric residuals had the highest adsorptive capacity for arsenic (Q(max) = 2230 mg/kg and 42,910 mg/kg), followed by GFH (Q(max) = 640 mg/kg), lime (Q(max) = 160 mg/kg) and alum (Q(max) = <1 mg/kg and 3 mg/kg). Similarly, the maximum arsenic removal was >93% for the ferric and lime residuals and GFH, while the maximum arsenic removal was <49% for the alum residuals under the same conditions. In a column adsorption experiment, ferric residual solids achieved arsenic removal of >26,000 bed volumes before breakthrough past 10 μg As/L, whereas the effluent arsenic concentration from the GFH column was under the method detection limit at 28,000 bed volumes. Overall, ferric and lime water treatment residuals were promising adsorbents for arsenic adsorption from the groundwater, and alum water treatment residuals did not achieve high levels of arsenic adsorption.

  12. Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics.

    PubMed

    Köhnke, Tobias; Ostlund, Asa; Brelid, Harald

    2011-07-11

    This study presents results that show that the fine structure of arabinoxylan affects its interaction with cellulosic surfaces, an important understanding when designing and evaluating properties of xylan-cellulose-based materials. Arabinoxylan samples, with well-defined structures, were prepared from a wheat flour arabinoxylan with targeted enzymatic hydrolysis. Turbidity measurements and analyses using NMR diffusometry showed that the solubility and the hydrodynamic properties of arabinoxylan are determined not only by the degree of substitution but also by the substitution pattern. On the basis of results obtained from adsorption experiments on microcrystalline cellulose particles and on cellulosic model surfaces investigated with quartz crystal microbalance with dissipation monitoring, it was also found that arabinoxylan adsorbs irreversibly on cellulosic surfaces and that the adsorption characteristics, as well as the properties of the adsorbed layer, are controlled by the fine structure of the xylan molecule.

  13. Study of adsorption Ag and Pb in liquid sample using Berea sandstone by commercial laser-induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Suyanto, H.; Wendri, N.; Agustiningrum, U.; Manurung, M.

    2016-11-01

    Qualitative and quantitative analysis of Pb and Ag elements in liquid samples had been done by commercial laser-induced breakdown spectroscopy (LIBS) using adsorption method on a Berea Sandstone. The aim of this study is to identify the thickness of the Berea Sandstone for adsorbing Pb and Ag elements in liquid. The experiment was started with characterizing the Berea Sandstone that contains Si, Na, H, Li, K, Ca, O, N, Be, Ti, Al, Mg and Ba. Some of these elements have ability to adsorb Pb and Ag elements in the liquid. To prove this phenomenon, it is required to look for the experiment parameter optimum conditions such as laser energy, adsorption time and sample temperature. The experiment was conducted by dropping 2 ml standard liquid containing 1000 ppm of Pb and Ag to the Berea Sandstone surface. The result showed that the parameter optimum conditions for analyzing Pb and Ag elements in liquid sample with adsorption method were adsorption delay-time of 15 minutes, laser energy of 120 mJ and sample heating of 80 °C. The next experiment was focused on the number of adsorption as a function of depth. The data showed that Pb and Ag elements in liquid sample of 2 ml, 1000 ppm were fully adsorbed by the Berea Sandstone until the depth of 0.372 mm and 10.40 mm from the surface, respectively. The data also showed that the limit of detection predicted to about 22.76 ppm.

  14. Adsorption Refrigeration System

    SciTech Connect

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  15. Adsorption studies of Cu(II) onto biopolymer chitosan and its nanocomposite 5%bentonite/chitosan.

    PubMed

    Moussout, Hamou; Ahlafi, Hammou; Aazza, Mustapha; Zegaoui, Omar; El Akili, Charaf

    2016-01-01

    Chitosan (CS) and nanocomposite 5%bentonite/chitosan (5%Bt/CS) prepared from the natural biopolymer CS were tested to remove Cu(II) ions using a batch adsorption experiment at various temperatures (25, 35 and 45°C). X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis (TGA/DTA) were used in CS and the nanocomposite characterisation. This confirmed the exfoliation of bentonite (Bt) to form the nanocomposite. The adsorption kinetics of copper on both solids was found to follow a pseudo-second-order law at each studied temperature. The Cu(II) adsorption capacity increased as the temperature increased from 25 to 45°C for nanocomposite adsorbent but slightly increased for CS. The data were confronted to the nonlinear Langmuir, Freundlich and Redlich-Peterson models. It was found that the experimental data fitted very well the Langmuir isotherm over the whole temperature and concentration ranges. The maximum monolayer adsorption capacity for the Cu(II) was 404-422 mg/g for CS and 282-337 mg/g for 5%Bt/CS at 25-45°C. The thermodynamic study showed that the adsorption process was spontaneous and endothermic. The complexation of Cu(II) with NH(2) and C = O groups as active sites was found to be the main mechanism in the adsorption processes.

  16. Adsorption Behavior of Ferromagnetic Carbon Nanotubes for Methyl Orange from Aqueous Solution.

    PubMed

    Wang, Liping; Zhang, Mingyu; Zhao, Chenxi; Yang, Shan

    2016-03-01

    The ferromagnetic carbon nanotubes which can be easily separated from aqueous solution were prepared and characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Batch experiments were carried out to investigate the adsorption behavior of ferromagnetic carbon nanotubes for removing methyl orange (MO). The results showed that these ferromagnetic carbon nanotubes were richer in surface function groups than the carbon nanotubes did, furthermore, both γ-Fe2O3 and Fe with ferromagnetism were found on the surface of carbon nanotubes. The results also demonstrated that ferromagnetic carbon nanotubes possessed stronger adsorption ability for MO than carbon nanotubes did. The adsorption isotherms followed Langmuir isotherm equation and the adsorption kinetics could be well described with the pseudo second-order kinetic model. The adsorption process involved an intraparticle diffusion, while it was not the only rate-controlling step. The values of AG were negative and the value of ΔH is -12.37 kJ/mol, proving that the adsorption of MO onto ferromagnetic carbon nanotubes was a spontaneous and exothermic process.

  17. Adsorption of Procion Red MX 8B using spent tea leaves as adsorbent

    NASA Astrophysics Data System (ADS)

    Heraldy, Eddy; Osa, Riesta Ramdhaniyati; Suryanti, Venty

    2016-02-01

    The adsorption of Procion Red MX 8B using spent tea leaves (STL) as adsorbent, has been studied by batch adsorption technique. The adsorbent was activated by NaOH 4% for 24 hours for delignification process. The adsorbent was characterized using FTIR to indetify the functional groups of cellulose was shown by uptake -OH, C-H and C-O. The optimum conditions of adsorption experiments were achieved when pH was set as 6 with contact time of 75 minutes and capacity of adsorption was 3.28 mg/g. The equilibrium data were fitted to Langmuir and Isotherm Freundlichs. The kinetic models, pseudo first order and pseudo second order were employed to describe the adsorption mechanism. The experimental results showed that the pseudo second order equation was the best model that described the adsorption behavior with the coefficient of correlation (R2) was equal higher than 0.99 The results suggested that STL had high potential to be used as effective adsorbent for Procion Red MX 8B removal.

  18. Preparation of activated carbon from corn cob and its adsorption behavior on Cr(VI) removal.

    PubMed

    Tang, Shuxiong; Chen, Yao; Xie, Ruzhen; Jiang, Wenju; Jiang, Yanxin

    2016-01-01

    Operation experiments were conducted to optimize the preparation of activated carbons from corn cob. The Cr(VI) adsorption capacity of the produced activated carbons was also evaluated. The impact of the adsorbent dosage, contact time, initial solution pH and temperature was studied. The results showed that the produced corn cob activated carbon had a good Cr(VI) adsorptive capacity; the theoretical maximum adsorption was 34.48 mg g(-1) at 298 K. The Brunauer-Emmett-Teller and iodine adsorption value of the produced activated carbon could be 924.9 m(2) g(-1) and 1,188 mg g(-1), respectively. Under the initial Cr(VI) concentration of 10 mg L(-1) and the original solution pH of 5.8, an adsorption equilibrium was reached after 4 h, and Cr(VI) removal rate was from 78.9 to 100% with an adsorbent's dosage increased from 0.5 to 0.7 g L(-1). The kinetics and equilibrium data agreed well with the pseudo-second-order kinetics model and the Langmuir isotherm model. The equilibrium adsorption capacity improved with the increment of the temperature.

  19. Characterizing o- and p-nitrophenols adsorption onto innovative activated carbon prepared from date pits.

    PubMed

    Altaher, Hossam; Dietrich, Andrea M

    2014-01-01

    The production and performance of activated carbon prepared from date pits was investigated. Date pits are an abundant local waste product in many countries; converting them to a commercial product would increase the sustainability of this fruit crop. The date pit activated carbon was shown to have similar characteristics of pore size and surface functional groups as other commercial carbons. Batch experiments were conducted with o- and p-nitrophenol to evaluate the performance of this carbon. Results were analyzed according to Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms. The adsorption capacity of o-nitrophenol was 142.9 mg/g while that of p-nitrophenol was 108.7 mg/g. The adsorption process was physical in nature. The position of the -NO(2) group in the benzene ring has a considerable effect on the adsorption capacity and rate of uptake. The kinetic results showed that a pseudo second-order model appropriately describes the experimental data. The analysis of kinetic data revealed that the mechanism of adsorption is complex with both liquid film diffusion and intraparticle diffusion contributing to adsorption of both adsorbates.

  20. Statistical optimization, interaction analysis and desorption studies for the azo dyes adsorption onto chitosan films.

    PubMed

    Rêgo, T V; Cadaval, T R S; Dotto, G L; Pinto, L A A

    2013-12-01

    Chitosan films (CF) were applied to remove azo dyes (tartrazine and amaranth) from aqueous solutions by adsorption. CF were prepared by casting technique and characterized. Response surface methodology was employed to optimize the adsorption process as a function of pH (2, 3 and 4) and CF concentration (100, 150 and 200 mg L(-1)). The possible interactions CF-dyes were investigated by Fourier transform infrared spectroscopy, dispersive energy X-ray spectroscopy, thermogravimetric analysis and color parameters. Adsorption-desorption cycles were also performed. The more appropriate conditions for the adsorption of both dyes were pH of 2 and CF concentration of 100 mg L(-1). Under these conditions, the tartrazine and amaranth adsorption capacities were 413.8 and 278.3 mg g(-1), respectively. The interactions between the CF protonated amino groups and anionic form of the dyes at pH 2 were confirmed. Desorption experiments showed that the CF can keep its adsorption capacity maximum for two cycles.

  1. Importance of surface diffusivities in pesticide adsorption kinetics onto granular versus powdered activated carbon: experimental determination and modeling.

    PubMed

    Baup, S; Wolbert, D; Laplanche, A

    2002-10-01

    Three pesticides (atrazine, bromoxynil and diuron) and two granular activated carbons are involved in equilibrium and kinetic adsorption experiments. Equilibrium is represented by Freundlich isotherm law and kinetic is described by the Homogeneous Surface Diffusion Model, based on external mass transfer and intraparticle surface diffusion. Equilibrium and long-term experiments are conducted to compare Powdered Activated Carbon and Granular Activated Carbon. These first investigations show that crushing GAC into PAC improves the accessibility of the adsorption sites without increasing the number of these sites. In a second part, kinetics experiments are carried out using a Differential Column Batch Reactor. Thanks to this experimental device, the external mass transfer coefficient k(f) is calculated from empirical correlation and the effect of external mass transfer on adsorption is likely to be minimized. In order to obtain the intraparticle surface diffusion coefficient D. for these pesticides, comparisons between experimental kinetic data and simulations are conducted and the best agreement leads to the Ds coefficient. This procedure appears to be an efficient way to acquire surface diffusion coefficients for the adsorption of pesticides onto GAC. Finally it points out the role of surface diffusivity in the adsorption rate. As a matter of fact, even if the amount of the target-compound that could be potentially adsorbed is really important, its surface diffusion coefficient may be small, so that its adsorption may not have enough contact time to be totally achieved.

  2. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    PubMed

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions.

  3. Kinetics and mechanism studies of p-nitroaniline adsorption on activated carbon fibers prepared from cotton stalk by NH4H2PO4 activation and subsequent gasification with steam.

    PubMed

    Li, Kunquan; Li, Ye; Zheng, Zheng

    2010-06-15

    Activated carbon fibers (ACFs) were prepared for the removal of p-nitroaniline (PNA) from cotton stalk by chemical activation with NH(4)H(2)PO(4) and subsequent physical activation with steam. Surface properties of the prepared ACFs were performed using nitrogen adsorption, FTIR spectroscopy and SEM. The influence of contact time, solution temperature and surface property on PNA adsorption onto the prepared ACFs was investigated by conducting a series of batch adsorption experiments. The kinetic rates at different temperatures were modeled by using the Lagergren-first-order, pseudo-second-order, Morris's intraparticle diffusion and Boyd's film-diffusion models, respectively. It was found that the maximum adsorption of PNA on the ACFs was more than 510 mg/L, and over 60% adsorption occurred in first 25 min. The effect of temperature on the adsorption was related to the contacting time and the micropore structure of the adsorbents. And the increase of micropore surface area favored the adsorption process. Kinetic rates fitted the pseudo-second-order model very well. The pore diffusion played an important role in the entire adsorption period, and intraparticle diffusion was the rate-limiting step in the beginning 20 min. The Freundlich model provided a better data fitting as compared with the Langmuir model. The surface micrograph of the ACF after adsorption showed a distinct roughness with oval patterns. The results revealed that the adsorption was in part with multimolecular layers of coverage.

  4. Magnetic Zn (II) ion-imprinted polymer prepared by the surface imprinting technique and its adsorption properties.

    PubMed

    Zhang, Hui-xin; Dou, Qian; Jin, Xiu-hong; Zhang, Jie; Yang, Ting-ru; Han, Xu; Wang, Dong-dong

    2015-01-01

    A novel magnetic Zn (II) ion-imprinted polymer was prepared by the surface ion-imprinted technique by using magnetic Fe3O4@SiO2 microspheres as supporter, methacrylic acid and salicylaldoxime as monomers, ethylene glycol dimethacrylate as the crosslinker. The products were characterized by Fourier transform infrared, X-ray photoelectron spectrometer, vibrating sample magnetometer and scanning electron microscope. The adsorption experiments showed that the imprinted polymer was employed successfully in comparison with non-imprinted polymer. When the temperature was in a range of 291-297 K, the maximum adsorption was about 52.69 mg g(-1) with an optimal pH 6.0 for an equilibrium time of 40 min. The imprinted polymer possessed high selectivity and specific recognition towards Zn (II). The Langmuir adsorption model was more favourable than the Freundlich or the Temkin adsorption model. Thermodynamic experiment showed that the adsorption was a spontaneous and endothermic process for Zn (II). The mechanism for Zn (II) adsorption on the imprinted polymer was investigated.

  5. Fixed-bed adsorption study of methylene blue onto pyrolytic tire char

    NASA Astrophysics Data System (ADS)

    Makrigianni, Vassiliki; Giannakas, Aris; Papadaki, Maria; Albanis, Triantafyllos; Konstantinou, Ioannis

    2016-04-01

    In this work, the adsorption efficiency of acid treated pyrolytic tire char to cationic methylene blue (MB) dye adsorption from aqueous solutions was investigated by fixed-bed adsorption column experiments. The effects of the initial dye concentration (10 - 40 mg L-1) and feed flow rate (50 - 150 mL min -1) with a fixed bed height (15 cm) were studied in order to determine the breakthrough characteristics of the adsorption system. The Adams-Bohart, Yoon-Nelson and Thomas model were applied to the adsorption of MB onto char at different operational conditions to predict the breakthrough curves and to determine the characteristic parameters of the column. The results showed that the maximum adsorbed quantities decreased with increasing flow rate and increased with increasing initial MB concentration. Breakthrough time and exhaustion time increased with decreasing inlet dye concentration and flow rate. In contrast with Adams-Bohart model, Yoon-Nelson model followed by Thomas model were found more suitable to describe the fixed-bed adsorption of methylene blue by char. The correlation coefficient values R2 for both models at different operating conditions are higher than 0.9 and the low average relative error values provided very good fittings of experimental data at different operating conditions. Higher adsorption capacity of 3.85 mg g -1 was obtained at 15 cm of adsorbent bed height, flow rate of 100 mL min -1and initial MB concentration of 40 mg L-1. Although that activated carbons exhibited higher adsorption capacities in the literature, acid-treated pyrolytic tire char was found to be considerably efficient adsorbent for the removal of MB dye column taking into account the advantages of the simpler production process compared to activated carbons, as well as, the availability of waste tire feedstock and concurrent waste tire management.

  6. Effect of Na+ impregnated activated carbon on the adsorption of NH4(+)-N from aqueous solution.

    PubMed

    Shi, Mo; Wang, Zhengfang; Zheng, Zheng

    2013-08-01

    Two kinds of activated carbons modified by Na+ impregnation after pre-treatments involving oxidation by nitric acid or acidification by hydrochloric acid (denoted as AC/N-Na and AC/HCl-Na, respectively), were used as adsorbents to remove NH4(+)-N. The surface features of samples were investigated by BET, SEM, XRD and FT-IR. The adsorption experiments were conducted in equilibrium and kinetic conditions. Influencing factors such as initial solution pH and initial concentration were investigated. A possible mechanism was proposed. Results showed that optimal NH4(+)-N removal efficiency was achieved at a neutral pH condition for the modified ACs. The Langmuir isotherm adsorption equation provided a better fit than other models for the equilibrium study. The adsorption kinetics followed both the pseudo second-order kinetics model and intra-particle kinetic model. Chemical surface analysis indicated that Na+ ions form ionic bonds with available surface functional groups created by pre-treatment, especially oxidation by nitric acid, thus increasing the removal efficiency of the modified ACs for NH4(+)-N. Na(+)-impregnated ACs had a higher removal capability in removing NH4(+)-N than unmodified AC, possibly resulting from higher numbers of surface functional groups and better intra-particle diffusion. The good fit of Langmuir isotherm adsorption to the data indicated the presence of monolayer NH4(+)-N adsorption on the active homogenous sites within the adsorbents. The applicability of pseudo second-order and intra-particle kinetic models revealed the complex nature of the adsorption mechanism. The intra-particle diffusion model revealed that the adsorption process consisted not only of surface adsorption but also intra-particle diffusion.

  7. Adsorption of pesticides on resins.

    PubMed

    Kyriakopoulos, Grigorios; Hourdakis, Adamadia; Doulia, Danae

    2003-03-01

    The objective of this work was to assess the capability of organic hydrophobic polymeric resins Amberlite XAD-4 and XAD-7 to remove the pesticides alachlor and amitrole from water. The pesticides adsorption on the two different adsorbents was measured by batch equilibrium technique and isotherm types and parameters were estimated. Two theoretical models were applied based on a Freundlich and a Langmuir isotherms. The effect of pesticides chemical composition and structure as well as the nature of solid surface on the efficiency of adsorption was evaluated. The influence of pH also was studied. In low pH solutions adsorption of amitrole was higher upon the nonionic aliphatic acrylic ester copolymer XAD-7 in comparison to the nonionic, crosslinked macroreticular copolymer of styrene divinylbenzene XAD-4. In neutral and intermediate pH solutions the polar acrylic ester copolymer XAD-7 was more effective to the retention of alachlor. The acrylic ester copolymer showed at pH 3 the lower effectiveness in alachlor removal from water. The data of the adsorption isotherms of pesticides upon the examined polymeric resins seemed to conform to both the Freundlich and the Langmuir isotherm models.

  8. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials.

    PubMed

    Zhou, Yang; Apul, Onur Guven; Karanfil, Tanju

    2015-08-01

    In this study, adsorption of ten environmentally halogenated aliphatic synthetic organic compounds (SOCs) by a pristine graphene nanosheet (GNS) and a reduced graphene oxide (rGO) was examined, and their adsorption behaviors were compared with those of a single-walled carbon nanotube (SWCNT) and a granular activated carbon (GAC). In addition, the impacts of background water components (i.e., natural organic matter (NOM), ionic strength (IS) and pH) on the SOC adsorption behavior were investigated. The results indicated HD3000 and SWCNT with higher microporous volumes exhibited higher adsorption capacities for the selected aliphatic SOCs than graphenes, demonstrating microporosity of carbonaceous adsorbents played an important role in the adsorption. Analysis of adsorption isotherms demonstrated that hydrophobic interactions were the dominant contributor to the adsorption of aliphatic SOCs by graphenes. However, π-π electron donor-acceptor and van der Waals interactions are likely the additional mechanisms contributing to the adsorption of aliphatic SOCs on graphenes. Among the three background solution components examined, NOM showed the most influential effect on adsorption of the selected aliphatic SOCs, while pH and ionic strength had a negligible effects. The NOM competition on aliphatic adsorption was less pronounced on graphenes than SWCNT. Overall, in terms of adsorption capacities, graphenes tested in this study did not exhibit a major advantage over SWCNT and GAC for the adsorption of aliphatic SOCs.

  9. Functionalized SBA-15 materials for bilirubin adsorption

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Zhao, Yanling; Xu, Yao; Wu, Dong; Xu, Jun; Deng, Feng

    2011-05-01

    To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH 3-SBA-15 (MS), NH 2-SBA-15 (AS), and CH 3/NH 2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m 2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N 2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.

  10. Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces.

    PubMed

    Zhong, Hua; Jiang, Yongbing; Zeng, Guangming; Liu, Zhifeng; Liu, Liuxia; Liu, Yang; Yang, Xin; Lai, Mingyong; He, Yibin

    2015-03-21

    The effects of low-concentration monorhamnolipid (monoRL) on the adsorption of Pseudomonas aeruginosa ATCC 9027 grown on glucose or hexadecane to glass beads with hydrophobic or hydrophilic surfaces was investigated using batch adsorption experiments. Results showed that adsorption isotherms of the cells on both types of glass beads fitted the Freundlich equation better than the Langmuir equation. The Kf of the Freundlich equation for adsorption of hexadecane-grown cell to glass beads with hydrophobic surface was remarkably higher than that for adsorption of hexadecane-grown cell to glass beads with hydrophilic surface, or glucose-grown cell to glass beads with either hydrophilic or hydrophobic surface. Furthermore, it decreased with the increasing monoRL concentration. For both groups of cells, the zeta potential was close to each other and stable with the increase of monoRL concentration. The surface hydrophobicity of hexadecane-grown cells, however, was significantly higher than that of the glucose-grown cells and it decreased with the increase of monoRL concentration. The results indicate the importance of hydrophobic interaction on adsorption of bacterial cells to surfaces and monoRL plays a role in reducing the bacterial adsorption by affecting cell surface hydrophobicity.

  11. Effect of Polarity of Activated Carbon Surface, Solvent and Adsorbate on Adsorption of Aromatic Compounds from Liquid Phase.

    PubMed

    Goto, Tatsuru; Amano, Yoshimasa; Machida, Motoi; Imazeki, Fumio

    2015-01-01

    In this study, introduction of acidic functional groups onto a carbon surface and their removal were carried out through two oxidation methods and outgassing to investigate the adsorption mechanism of aromatic compounds which have different polarity (benzene and nitrobenzene). Adsorption experiments for these aromatics in aqueous solution and n-hexane solution were conducted in order to obtain the adsorption isotherms for commercial activated carbon (BAC) as a starting material, its two types of oxidized BAC samples (OXs), and their outgassed samples at 900 °C (OGs). Adsorption and desorption kinetics of nitrobenzene for the BAC, OXs and OGs in aqueous solution were also examined. The results showed that the adsorption of benzene molecules was significantly hindered by abundant acidic functional groups in aqueous solution, whereas the adsorbed amount of nitrobenzene on OXs gradually increased as the solution concentration increased, indicating that nitrobenzene can adsorb favourably on a hydrophilic surface due to its high dipole moment, in contrast to benzene. In n-hexane solution, it was difficult for benzene to adsorb on any sample owing to the high affinity between benzene and n-hexane solvent. On the other hand, adsorbed amounts of nitrobenzene on OXs were larger than those of OGs in n-hexane solution, implying that nitrobenzene can adsorb two adsorption sites, graphene layers and surface acidic functional groups. The observed adsorption and desorption rate constants of nitrobenzene on the OXs were lower than those on the BAC due to disturbance of diffusion by the acidic functional groups.

  12. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral.

    PubMed

    El-Bayaa, A A; Badawy, N A; Alkhalik, E Abd

    2009-10-30

    It is important to assess the effects of ionic strength when studying adsorption of metal ions on clay mineral because the background salt may complex metals and compete for adsorption sites. The sorption behavior of vermiculite pure clay mineral has been studied with respect to copper and chromium as a function of ionic strength in single metal ion solutions. Background electrolytes used in these experiments were KCl, NaCl and NH4Cl. The studies were conducted by a batch method at temperature 25 degrees C. The adsorption capacity and adsorption energy for each metal ion were calculated from the Langmuir adsorption isotherm. Also the competitive adsorption behavior of some heavy metal ions such as Cr(III), Cu(II), Ni(II) and Co(II) by vermiculite pure clay mineral was studied. The result shows the competition between coexisting heavy metal cations for the same adsorption sites of an adsorbent. However, when trivalent metal was added to the solution it competitively replaced divalent ions that had been previously adsorbed onto the vermiculite pure clay mineral, resulting in the desorption of these metals into the solution.

  13. Adsorption of crude oil on anhydrous and hydrophobized vermiculite.

    PubMed

    da Silva, Umberto G; de F Melo, Marcus A; da Silva, Adaílton F; de Farias, Robson F

    2003-04-15

    This publication reports the adsorption of crude oil on vermiculite samples, expanded and hydrophobized with carnauba (Copernícia Cerífera) wax. The adsorption studies were performed by using columns filled with the vermiculite matrices and by dispersion of the vermiculite samples in an oil-water (50 ppm of oil) emulsion. The hydrate vermiculite exhibits a very low adsorption capacity against crude oil. On the other hand, anhydrous (expanded) and hydrophobized matrices show a high adsorption capacity. The 10% hydrophobized matrix show a 50% increased adsorption capacity, in comparison with the expanded one. For adsorption performed in the water-oil emulsion, saturation of the solid hydrophobized matrix is achieved after 60 min. The hydrophobized samples exhibit adsorption factors in the 0.7-1.0 range.

  14. Synthesis, characterization and study of arsenate adsorption from aqueous solution by {alpha}- and {delta}-phase manganese dioxide nanoadsorbents

    SciTech Connect

    Singh, Mandeep; Thanh, Dong Nguyen; Ulbrich, Pavel; Strnadova, Nina; Stepanek, Frantisek

    2010-12-15

    Single-phase {alpha}-MnO{sub 2} nanorods and {delta}-MnO{sub 2} nano-fiber clumps were synthesized using manganese pentahydrate in an aqueous solution. These nanomaterials were characterized using the Transmission Electron Microscope (TEM), Field Emission Scanning Electron Microscope (FE-SEM), Powder X-ray diffraction (XRD) and the Brunauer-Elmet-Teller nitrogen adsorption technique (BET-N{sub 2} adsorption). The structural analysis shows that {alpha}-MnO{sub 2} (2x2 tunnel structure) has the form of needle-shaped nanorods and {delta}-MnO{sub 2} (2D-layered structure) consists of fine needle-like fibers arranged in ball-like aggregates. Batch adsorption experiments were carried out to determine the effect of pH on adsorption kinetics and adsorption capacity for the removal of As(V) from aqueous solution onto these two types of nanoadsorbents. The adsorption capacity of As(V) was found to be highly pH dependent. The adsorption of As(V) onto {alpha}-MnO{sub 2} reached equilibrium more rapidly with higher adsorption capacity compared to {delta}-MnO{sub 2}. -- Graphical abstract: {alpha}-MnO{sub 2} (2x2 tunnel structure) nanorods and {delta}-MnO{sub 2} (2-D layered structure) nano-fiber clumps were synthesized in a facile way in an aqueous solution and characterized by TEM, FE-SEM, XRD and BET-N{sub 2} adsorption techniques. The structural analysis shows that {alpha}-MnO{sub 2} is needle shaped nanorods and {delta}-MnO{sub 2} consists of 2-D platelets of fine needle-like fibers arranged in ball-like aggregates. Further batch experiments confirmed that both nanoadsorbents are potential candidates for the adsorption of As(V) with a capacity of 19.41 and 15.33 mg g{sup -1} for {alpha}-MnO{sub 2} and {delta}-MnO{sub 2}, respectively. The presence of As3d peak in XPS study indicates that arsenic on the surface of nanoadsorbents is in the stable form of As(V) with a percentage of arsenate onto {alpha}-MnO{sub 2} is 0.099% as compared to 0.021% onto {delta}-MnO{sub 2

  15. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Meng, Yuying; Chen, Deyang; Sun, Yitao; Jiao, Dongling; Zeng, Dechang; Liu, Zhongwu

    2015-01-01

    Chitosan-modified Mn ferrite nanoparticles were synthesized by a one-step microwave-assisted hydrothermal method. These Mn ferrite magnetic composite nanoparticles were employed to absorb Cu2+ ions in water. XRD verified the spinel structure of the MnFe2O4 nanoparticles. Chitosan modification does not result in any phase change of MnFe2O4. FTIR and zeta potentials curves for all samples suggest that chitosan can be successfully coated on the Mn ferrites. TEM characterization showed that the modified MnFe2O4 nanoparticles have a cubic shape with a mean diameter of ∼100 nm. For adsorption behavior, the effects of experiment parameters such as solution pH value, contact time and initial Cu2+ ions concentration on the adsorption efficiency were systematically investigated. The results showed that increasing solution pH value and extending contact time are favorable for improving adsorption efficiency. Especially, adsorption efficiency can reach up to 100% and 96.7% after 500 min adsorption at pH 6.5 for the solutions with initial Cu2+ ions concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and 0.00189 g/mg/min for solutions with initial Cu2+ ions of 50 and 100 mg/L, respectively.

  16. Cu and Zn adsorption to a heterogeneous natural sediment: Influence of leached cations and natural organic matter.

    PubMed

    Fisher-Power, Leanne M; Cheng, Tao; Rastghalam, Zahra Sadat

    2016-02-01

    Adsorption of heavy metals by natural sediments has important implications to the fate and transport of contaminants in subsurface environments. Although the importance of major multivalent cations and dissolved organic matter (DOM) in heavy metal adsorption had been previously demonstrated, the leaching of major cations and DOM from sediments and its influence on heavy metal adsorption have not been fully examined. In this study, the concentrations of Ca, Mg, Al, Fe, and natural organic matter that leached from a natural sediment in Cu and Zn adsorption experiments were measured and used in surface complexation models to elucidate their effects on Cu and Zn adsorption. Experimental results showed that the leaching of cations and DOM was substantial and pH-dependent. The leached concentrations of Ca and Mg were reasonably simulated based on BaCl2 extractable Ca and Mg at pH < 5, and Al and Fe activities were accurately predicted for specific pH ranges by assuming solubility control by Al(OH)3 and Fe(OH)3. Visual MINTEQ simulations showed that the leached cations markedly decreased Cu adsorption at pH < 6 and Zn adsorption at pH 3-8. Due to varying affinity for DOM between Cu and Zn, DOM was found to decrease Cu adsorption at pH > 6 due to formation of Cu-DOM aqueous complexes, but increase Zn adsorption at pH 4-7 due to formation of aqueous complexes between DOM and major cations, which reduced competition from these cations against Zn for binding sites on the sediment.

  17. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater.

    PubMed

    Wu, Zhibin; Zhong, Hua; Yuan, Xingzhong; Wang, Hou; Wang, Lele; Chen, Xiaohong; Zeng, Guangming; Wu, Yan

    2014-12-15

    In this article, a rhamnolipid-functionalized graphene oxide (RL-GO) hybrid was prepared by one-step ultrasonication and adsorptive removal of methylene blue (MB) from both artificial and real wastewater by the RL-GO was investigated. The Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) area and Zeta potential analysis were used to characterize the adsorbent. The results showed that RL-GO had abundant functional groups and a mesopores feature. MB adsorption by the RL-GO increased with increase in adsorbent dose, pH, temperature and initial MB concentration, while it was insensitive to ionic strength variation. The adsorption kinetics fitted well to the pseudo-second-order model with correlation coefficients greater than 0.999. The Intra-particle diffusion and Boyd's film-diffusion models showed that the rate-controlled step was dominated by film-diffusion in the beginning and then followed by intra-particle diffusion. The adsorption isotherm was fitted by adsorption models with the suitability in order of BET > Freundlich > Langmuir > Temkin, based on comparison between correlation coefficients. Thermodynamic analysis of equilibriums suggested that the adsorption MB on RL-GO was spontaneous and endothermic. The adsorption mechanism was also proposed to be electrostatic attraction, π-π interaction and hydrogen bond. In addition, the real wastewater experiment, the regeneration study and the comparative cost analysis showed that the RL-GO composites could be a cost-effective and promising sorbent for MB wastewater treatment owing to its high efficiency and excellent reusability.

  18. [Adsorption dynamics and breakthrough characteristics based on the fluidization condition].

    PubMed

    Wang, Jun; Wang, Yao; Huang, Xing; Yuan, Yi-Long; Chen, Rui-Hui; Zhou, Hang; Zhou, Dan-Dan

    2014-02-01

    Few studies on the adsorption dynamics and breakthrough characteristics based on the fluidization condition have been reported. In a fluidized bed adsorption reactor with phenol as the adsorbate and granular activated carbon as the adsorbent, the adsorption efficiency, adsorption dynamic characteristics, adsorption breakthrough curves and adsorption capacities were studied and compared with those of a fixed bed operated under the same conditions. The results showed that the adsorption efficiencies exceeded 93% in 5 min in both the fluidized conditions and fixed conditions at the superficial velocities of 8 mm x s(-1) and 13 mm x s(-1). Meanwhile, the above adsorption reactions fitted to Pseudo-second-order with linear correlation coefficients greater than 0.999. The adsorption capacity of fluidized conditions was 8.77 mg x g(-1) and 24.70 mg x g(-1) at the superficial velocities of 6 mm x s(-1) and 8 mm x s(-1). Generally, the fluidized bed reactor showed a higher adsorption efficiency and greater adsorption capacity than the fixed bed reactor.

  19. Rapid adsorption of copper(II) and lead(II) by rice straw/Fe₃O₄ nanocomposite: optimization, equilibrium isotherms, and adsorption kinetics study.

    PubMed

    Khandanlou, Roshanak; Ahmad, Mansor B; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles.

  20. Rapid Adsorption of Copper(II) and Lead(II) by Rice Straw/Fe3O4 Nanocomposite: Optimization, Equilibrium Isotherms, and Adsorption Kinetics Study

    PubMed Central

    Khandanlou, Roshanak; Ahmad, Mansor B.; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles. PMID:25815470

  1. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    SciTech Connect

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  2. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite.

    PubMed

    Munagapati, Venkata Subbaiah; Kim, Dong-Su

    2017-03-24

    The present study is concerned with the batch adsorption of congo red (CR) from an aqueous solution using calcium alginate beads impregnated with nano-goethite (CABI nano-goethite) as an adsorbent. The optimum conditions for CR removal were determined by studying operational variables viz. pH, adsorbent dose, contact time, initial dye ion concentration and temperature. The CABI nano-goethite was characterized by Fourier transform infrared spectroscopy (FTIR), X- ray diffraction (XRD) and Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis. The CR sorption data onto CABI nano-goethite were described using Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm model. The maximum adsorption capacity (181.1mg/g) of CR was occurred at pH 3.0. Kinetic studies showed that the adsorption followed a pseudo-second-order model. Desorption experiments were carried out to explore the feasibility of regenerating the adsorbent and the adsorbed CR from CABI nano-goethite. The best desorbing agent was 0.1M NaOH with an efficiency of 94% recovery. The thermodynamic parameters ΔG°, ΔH°, and ΔS° for the CR adsorption were determined by using adsorption capacities at five different temperatures (293, 303, 313, 323 and 303K). Results show that the adsorption process was endothermic and favoured at high temperature.

  3. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    PubMed

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  4. Models of pure CO2 and pure CH4 adsorption on the late paleozoic coals from the Kailuan Coalfield, Hebei, China

    USGS Publications Warehouse

    Dai, S.; Zhang, B.; Peng, S.; Zhang, X.; Chou, C.

    2009-01-01

    Isothermal adsorption experiments of pure CO2 and CH4 on different coals in rank (the No. 11 Coal from the Linnancang Mine and the No. 9 Coal from the Majiagou Mine) from the Kailuan Coalfield of Hebei Province, China, have been studied. Four different models (Langmuir, BET, D-R, and D-A) were used to fit the experimental data of CO2 and CH4 adsorption and their fitting degree were investigated. The results showed that the adsorption capacity of the Majiagou coal(Ro, ran = 1. 21%) is higher than that of the Linnancang coal (Ro, ran = 0. 58%). The adsorption capacity of CO2 is higher than that of CH4 on the same coal under the same pressure. The adsorption isotherms of pure CO 2 and pure CH4 on the Majiagou coal can be classified as Type I and their fitting errors of curves are very weak; thus the experimental data can be presented using the Langmuir isotherm. However, the adsorption of Linnancang coal is more complicated, and can be presented using D-A model because of its minimum error. Monolayer adsorption occurs during the adsorption of pure CO2 and pure CH4 on the No. 11 Coal and that of pure CH4 on the No. 9 Coal.

  5. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    PubMed

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  6. Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation.

    PubMed

    Sun, Yuanyuan; Li, Hong; Li, Guangci; Gao, Baoyu; Yue, Qinyan; Li, Xuebing

    2016-10-01

    As biomass wastes, Arundo donax Linn and pomelo peel were used as precursors for activated carbons (ALAC and PPAC) preparation by phosphoric acid activation. The pore structure and surface acidic functional groups of both carbons were characterized by nitrogen adsorption/desorption experiment, NH3-temperature-programmed desorption (NH3-TPD) and Fourier transform infrared spectroscopy (FTIR). A batch of experiments was carried out to investigate the adsorption performances of ciprofloxacin under different conditions. Results showed that PPAC exhibited larger surface area (1252m(2)/g) and larger portion of mesoporous, while ALAC was typical of microporous materials. Results from NH3-TPD suggested that ALAC was characteristic of more acidic functional group than PPAC. The maximum monolayer adsorption capability was 244mg/g for ALAC and 400mg/L for PPAC. Kinetics studies showed intra-particle diffusion was not the unique rate-controlling step. Boundary layer resistance existed between adsorbent and adsorbate.

  7. Adsorption of Vanadium (V) from SCR Catalyst Leaching Solution and Application in Methyl Orange.

    PubMed

    Sha, Xuelong; Ma, Wei; Meng, Fanqing; Wang, Ren; Fuping, Tian; Wei, Linsen

    2016-12-01

      In this study, we explored an effective and low-cost catalyst and its adsorption capacity and catalytic capacity for Methyl Orange Fenton oxidation degradation were investigated. The catalyst was directly prepared by reuse of magnetic iron oxide (Fe3O4) after saturated adsorption of vanadium (V) from waste SCR (Selective Catalytic Reduction) catalyst. The obtained catalyst was characterized by FTIR, XPS and the results showed that vanadium (V) adsorption process of Fe3O4 nanoparticles was non-redox reaction. The effects of pH, adsorption kinetics and equilibrium isotherms of adsorption were assessed. Adsorption of vanadium (V) ions by Fe3O4 nanoparticles could be well described by the Sips isotherm model which controlled by the mixed surface reaction and diffusion (MSRDC) adsorption kinetic model. The results show that vanadium (V) was mainly adsorbed on external surface of the Fe3O4 nanoparticles. The separation-recovering tungsten (VI) and vanadium (V) from waste SCR catalyst alkaline solution through pH adjustment was also investigated in this study. The results obtained from the experiments indicated that tungsten (VI) was selectively adsorbed from vanadium (V)/tungsten (VI) mixed solution in certain acidic condition by Fe3O4 nanoparticle to realize their recovery. Tungsten (V) with some impurity can be obtained by releasing from adsorbent, which can be confirmed by ICP-AES. The Methyl Orange degradation catalytic performance illustrated that the catalyst could improve Fenton reaction effectively at pH = 3.0 compare to Fe3O4 nanoparticles alone. Therefore, Fe3O4 nanoparticle adsorbed vanadium (V) has a potential to be employed as a heterogeneous Fenton-like catalyst in the present contribution, and its catalytic activity was mainly evaluated in terms of the decoloration efficiency of Methyl Orange.

  8. Effect of biochar amendment on tylosin adsorption-desorption and transport in two different soils.

    PubMed

    Jeong, Chang Yoon; Wang, Jim J; Dodla, Syam K; Eberhardt, Thomas L; Groom, Les

    2012-01-01

    The role of biochar as a soil amendment on the adsorption-desorption and transport of tylosin, a macrolide class of veterinary antibiotic, is little known. In this study, batch and column experiments were conducted to investigate the adsorption kinetics and transport of tylosin in forest and agricultural corn field soils amended with hardwood and softwood biochars. Tylosin adsorption was rapid at initial stages, followed by slow and continued adsorption. Amounts of adsorption increased as the biochar amendment rate increased from 1 to 10%. For soils with the hardwood biochar, tylosin adsorption was 10 to 18% higher than that when using the softwood biochar. Adsorption kinetics was well described by Elovich equation ( ≥ 0.921). As the percent of biochar was increased, the rates of initial reactions were generally increased, as indicated by increasing α value at low initial tylosin concentration, whereas the rates during extended reaction times were generally increased, as indicated by decreasing β value at high initial tylosin concentration. A considerably higher amount of tylosin remained after desorption in the corn field soil than in the forest soil regardless of the rate of biochar amendment, which was attributed to the high pH and silt content of the former. The breakthrough curves of tylosin showed that the two soils with biochar amendment had much greater retardation than those of soils without biochar. The CXTFIT model for the miscible displacement column study described well the peak arrival time as well as the maximum concentration of tylosin breakthrough curves but showed some underestimation at advanced stages of tylosin leaching, especially in the corn field soil. Overall, the results indicate that biochar amendments enhance the retention and reduce the transport of tylosin in soils.

  9. [Adsorption of phenanthrene from aqueous solution on cetylpyridinium bromide (CPB) -modified zeolite].

    PubMed

    Li, Jia; Lin, Jian-Wei; Zhan, Yan-Hui; Chen, Zu-Mei; Wang, Peng-Jun

    2014-02-01

    Surfactant-modified zeolites (SMZs) with different coverage types were prepared by loading of different amounts of cetylpyridinium bromide (CPB) onto natural zeolites and were used as adsorbents to remove phenanthrene from aqueous solution. The adsorption of phenanthrene from aqueous solution on monolayer and bilayer SMZs as a function of adsorbent dosage, initial phenanthrene concentration, contact time, and temperature was investigated using batch experiments. Results showed monolayer and bilayer SMZs were effective for the removal of phenanthrene from aqueous solution. The phenanthrene removal efficiency of SMZs increased with increasing adsorbent dosage, but the amount of phenanthrene adsorbed on SMZs decreased with increasing adsorbent dosage. The adsorption kinetics of phenanthrene on SMZs well followed a pseudo-second-order kinetic model. The equilibrium adsorption data of phenanthrene on SMZs at a low concentration of phenanthrene in solution could be described by the Linear equation and Freundlich equation. The main mechanism for phenanthrene adsorption onto monolayer SMZ is hydrophobic interaction, and the main mechanism for phenanthrene adsorption onto bilayer SMZ is organic partitioning. The calculated thermodynamic parameters such as Gibbs free energy change (deltaG(theta)), enthalpy changes (deltaH(theta)), and entropy change (deltaS(theta)) showed that the adsorption process of phenanthrene on SMZs is spontaneous and exothermic in nature. When the CPB loading amount of bilayer SMZ was twice as much as that of monolayer SMZ, the phenanthrene adsorption capacity for bilayer SMZ was slightly higher than that for monolayer SMZ. In a conclusion, both monolayer and bilayer SMZs are promising adsorbents for the removal of phenanthrene from water and wastewater, and monolayer SMZ is a more cost-effective adsorbent for phenanthrene removal than bilayer SMZ.

  10. Adsorption behavior and mechanism of Cr(VI) using Sakura waste from aqueous solution

    NASA Astrophysics Data System (ADS)

    Qi, Wenfang; Zhao, Yingxin; Zheng, Xinyi; Ji, Min; Zhang, Zhenya

    2016-01-01

    A forestall waste, Sakura leave, has been studied for the adsorption of Cr(VI) from aqueous solution. The materials before and after adsorption were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). To investigate the adsorption performance of Sakura waste, batch experiments were conducted under different adsorbent dosage, contact time, initial concentration of Cr(VI), and co-existing ions. Results showed the data fitted pseudo-second-order better than pseudo-first-order kinetic model. Equilibrium data was analyzed with Langmuir, Freundlich and Redlich-Peterson isotherm models at temperature ranges from 25 °C to 45 °C. The maximum adsorption capacity from the Langmuir model was 435.25 mg g-1 at pH 1.0. The presence of Cl-, SO42- and PO43- would lead to an obvious negative effect on Cr(VI) adsorption, and their influence order follows PO43- > SO42- > Cl-. The study developed a new way to reutilize wastes and showed a great potential for resource recycling.

  11. Heterogeneous photocatalysis of methylene blue over titanate nanotubes: effect of adsorption.

    PubMed

    Xiong, Lin; Sun, Weiling; Yang, Ye; Chen, Cheng; Ni, Jinren

    2011-04-01

    Titanate nanotubes were synthesized with hydrothermal reaction using TiO(2) and NaOH as the precursors and subsequent calcination at 400°C for 2h. The products were characterized with SEM and XRD. Adsorption and photocatalysis of methylene blue over titanate nanotubes and TiO(2) were investigated. The results indicated that titanate nanotubes exhibited a better photocatalytic degradation of methylene blue in a simultaneous adsorption and photodegradation system than that in equilibrium adsorption followed by a photodegradation system, whereas TiO(2) showed no significant differences in photocatalytic activity in the two systems. The methylene blue overall removal efficiency over TNTs in the first system even exceeded that over TiO(2). The different catalytic performances of titanate nanotubes in the two systems were tentatively attributed to different effects of adsorption of methylene blue, i.e., the promoting effect in the former and the inhibition effect in the latter. Decantation experiments showed that the titanate nanotube photocatalyst could be easily separated from the reaction medium by sedimentation. Thus titanate nanotubes with high sedimentation rates and concurrent adsorption represent a new catalyst system with a strong potential for commercial applications.

  12. Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation.

    PubMed

    Nassar, Nashaat N; Hassan, Azfar; Pereira-Almao, Pedro

    2011-08-01

    This study investigates the effect of surface acidity and basicity of aluminas on asphaltene adsorption followed by air oxidation. Equilibrium batch adsorption experiments were conducted at 25°C with solutions of asphaltenes in toluene at concentrations ranging from 100 to 3000 g/L using three conventional alumina adsorbents with different surface acidity. Data were found to better fit to the Freundlich isotherm model showing a multilayer adsorption. Results showed that asphaltene adsorption is strongly affected by the surface acidity, and the adsorption capacities of asphaltenes onto the three aluminas followed the order acidic>basic and neutral. Asphaltenes adsorbed over aluminas were subjected to oxidation in air up to 600°C in a thermogravimetric analyzer to study the catalytic effect of aluminas with different surface acidity. A correlation was found between Freundlich affinity constant (1/n) and the catalytic activity. Basic alumina that has the lowest 1/n value, depicting strongest interactions, has the highest catalytic activity, followed by neutral and acidic aluminas, respectively.

  13. Adsorption and synergism of cellobiohydrolase I and II of Trichoderma reesei during hydrolysis of microcrystalline cellulose

    SciTech Connect

    Medve, J.; Tjerneld, F. . Dept. of Biochemistry); Staahlberg, J. . Dept. of Molecular Biology)

    1994-11-05

    Hydrolysis of microcrystalline cellulose (Avicel) by cellobiohydrolase I and II (CBH I and II) from Trichoderma reesei has been studied. Adsorption and synergism of the enzymes were investigated. Experiments were performed at different temperatures and enzyme/substrate ratios using CBH I and CBH II alone and in reconstituted equimolar mixtures. Fast protein liquid chromatography (FPLC) analysis was found to be an accurate and reproducible method to follow the enzyme adsorption. A linear correlation was found between the conversion and the amount of adsorbed enzyme when Avicel was hydrolyzed by increasing amounts of CBH I and/or CBH II. CBH I had lower specific activity compared to CBH II although, over a wide concentration range, more CBH I was adsorbed than CBH II. Synergism between the cellobiohydrolases during hydrolysis of the amorphous fraction of Avicel showed a maximum as a function of total enzyme concentration. Synergism measured as a function of bound enzyme showed a continuous increase, which indicates that by decreasing the distance between the two enzymes the synergism is enhanced. The adsorption process for both enzymes was slow. Depending on the enzyme/substrate ratio it took 30--90 min to reach 95% of the equilibrium binding. The amount of bound enzyme decreased with increasing temperature. The two enzymes compete for the adsorption sites but also bind to specific sites. Stronger competition for adsorption sites was shown by CBH I.

  14. Not a "reality" show.

    PubMed

    Wrong, Terence; Baumgart, Erica

    2013-01-01

    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show.

  15. Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine.

    PubMed

    Owlad, Mojdeh; Aroua, Mohamed Kheireddine; Wan Daud, Wan Mohd Ashri

    2010-07-01

    Removal of Cr(VI) ions from aqueous solution was investigated using modified palm shell activated carbon. Low Molecular Weight Polyethyleneimine (LMW PEI) was used for impregnation purpose. The maximum amount of LMW PEI adsorbed on activated carbon was determined to be approximately 228.2mg/g carbon. The adsorption experiments were carried out in a batch system using potassium dichromate K(2)Cr(2)O(7) as the source of Cr(VI) in the synthetic waste water and modified palm shell activated carbon as the adsorbent. The effects of pH, concentration of Cr(VI) and PEI loaded on activated carbon were studied. The adsorption data were found to fit well with the Freundlich isotherm model. This modified Palm shell activated carbon showed high adsorption capacity for chromium ions.

  16. Adsorption of carbon black using carboxymethyl chitosan in deinking process

    NASA Astrophysics Data System (ADS)

    Muryeti, Budimulyani, Estuti; Sinurat, Ellya

    2017-03-01

    The study about synthesis, characterization, and application carboxymethyl chitosan as adsorbent in deinking process was conducted. Adsorption of carbon black onto carboxymethyl chitosan has been investigated in a batch system. This research was conducted to obtain the adsorption capacity of carboxymethyl chitosan. The experiments were carried out to study the effect of carbon black concentration, contact time and dosage of carboxymethyl chitosan to the adsorption capacity of carboxymethyl chitosan. The optimum condition of carbon black adsorption was achieved at contact time of 60 min and weight doses of 1.0 g. The adsorption capacity of carboxymethyl chitosan was 14.34 mg/g and the adsorption effectivity was 70.54%. The result indicates that carboxymethyl chitosan could be used as adsorbent of carbon black in deinking process.

  17. Computational Investigation of Conformational Changes in Proteins upon Adsorption

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Anand, Gaurav; Belfort, Georges; Kumar, Sanat K.

    2009-03-01

    Amyloidogenic diseases, such as, Alzheimer's, are caused by adsorption and aggregation of partially unfolded proteins. Protein adsorption is often accompanied by conformational rearrangements, which are thought to affect many properties such as their adhesion strength to the surface, biological activity, and aggregation tendency. Experiments have shown that many proteins, upon adsorption to hydrophobic surfaces, undergo a helix to sheet or random coil secondary structural rearrangement. To better understand the equilibrium structural complexities of this phenomenon, we have performed Monte Carlo (MC) simulations and Single Chain Mean Field calculations of adsorption of different proteins, modeled as lattice chains, to study the adsorption behavior and equilibrium protein conformations at different temperatures, protein concentration and surface hydrophobicity. Free energy and entropic effects on adsorption have been studied by determining density of states using Weighted Histogram Analysis Method. Conformational transitions of proteins on surfaces will be discussed as a function of surface hydrophobicity.

  18. Biocomposite fiber of calcium alginate/multi-walled carbon nanotubes with enhanced adsorption properties for ionic dyes.

    PubMed

    Sui, Kunyan; Li, Yujin; Liu, Rongzhan; Zhang, Yang; Zhao, Xin; Liang, Hongchao; Xia, Yanzhi

    2012-09-01

    A bioadsorbent of calcium alginate/multi-walled carbon nanotubes (CA/MWCNTs) composite fiber was fabricated by wet spinning and was characterized. Adsorptions of methylene blue (MB) and methyl orange (MO) ionic dyes onto CA/MWCNT composite fibers were investigated with different MWCNTs content and pH values. The results showed that introduction of MWCNTs of CA/MWCNTs composite fiber could not only sharply increase the adsorption capacity of MO onto bioadsorbent by 3 times, but enhanced the adsorption rate for MB compared to that of native CA fiber. Adsorption kinetics was determined by fitting pseudo-first, second-order and the intra-particle diffusion models to the experimental data, with the second-order model providing the best description of MB and MO adsorption onto CA/MWCNT fibers. The equilibrium adsorption data were analyzed by two widely applied isotherms: Langmuir and Freundlich. The desorption experiments showed the percentage of desorption were found to be 79.7% and 80.2% for MB and MO, respectively.

  19. Selective adsorption and recycle of Cu(2+) from aqueous solution by modified sugarcane bagasse under dynamic condition.

    PubMed

    Chen, Jia-Dong; Yu, Jun-Xia; Wang, Fen; Tang, Jia-Qi; Zhang, Yue-Fei; Xu, Yuan-Lai; Chi, Ru-An

    2017-02-20

    Tetraethylenepentamine modified sugarcane bagasse was prepared and applied to test its feasibility in removing and recovering Cu(2+) from wastewater under dynamic condition. Results showed that the Cu(2+) could be selectively absorbed from wastewater by the modified SCB fixed bed column. To understand the adsorption mechanism, Cd(2+) had been selected as the model interfering ion to investigate how co-ions influence the adsorption of Cu(2+) on the sorbent. It was observed that the adsorption capacity of the sorbent for Cu(2+) (0.26 mmol g(-1)) was significantly higher than that of Cd(2+) (0.03 mmol g(-1)), even when the Cd(2+) initial concentration was 100 times higher than that of Cu(2+) in the binary system. This finding indicated that the presence of Cd(2+) in the solution exerted negligible influence on the adsorption of Cu(2+) on the modified SCB. The selectivity of the modified sorbent was further confirmed in the Cu/Cd/Mg/Pb/K quinary system. Further analysis to dynamic adsorption experiment illustrated that, due to the presence of amine groups, the modified SCB showed strong coordination ability to Cu(2+), which allowed the other adsorbed ions (e.g., Cd(2+)) desorbed. This high adsorption selectivity toward Cu(2+) suggested that this prepared sorbent would be a promising candidate for removing and recovering Cu(2+) from wastewater.

  20. The influence of using Jordanian natural zeolite on the adsorption, physical, and mechanical properties of geopolymers products.

    PubMed

    Yousef, Rushdi Ibrahim; El-Eswed, Bassam; Alshaaer, Mazen; Khalili, Fawwaz; Khoury, Hani

    2009-06-15

    Geopolymers consist of an amorphous, three-dimensional structure resulting from the polymerization of aluminosilicate monomers that result from dissolution of kaolin in an alkaline solution at temperatures around 80 degrees C. One potential use of geopolymers is as Portland cement replacement. It will be of great importance to provide a geopolymer with suitable mechanical properties for the purpose of water storage and high adsorption capacity towards pollutants. The aim of this work is to investigate the effect of using Jordanian zeolitic tuff as filler on the mechanical performance and on the adsorption capacity of the geopolymers products. Jordanian zeolitic tuff is inexpensive and is known to have high adsorption capacity. The results confirmed that this natural zeolitic tuff can be used as a filler of stable geopolymers with high mechanical properties and high adsorption capacity towards methylene blue and Cu(II) ions. The XRD measurements showed that the phillipsite peaks (major mineral constituent of Jordanian zeolite) were disappeared upon geopolymerization. The zeolite-based geopolymers revealed high compressive strength compared to reference geopolymers that employ sand as filler. Adsorption experiments showed that among different geopolymers prepared, the zeolite-based geopolymers have the highest adsorption capacity towards methylene blue and copper(II) ions.

  1. Adsorption of nisin and pediocin on nanoclays.

    PubMed

    Meira, Stela Maris Meister; Jardim, Arthur Izé; Brandelli, Adriano

    2015-12-01

    Three different nanoclays (bentonite, octadecylamine-modified montmorillonite and halloysite) were studied as potential carriers for the antimicrobial peptides nisin and pediocin. Adsorption occurred from peptide solutions in contact with nanoclays at room temperature. Higher adsorption of nisin and pediocin was obtained on bentonite. The antimicrobial activity of the resultant bacteriocin-nanoclay systems was analyzed using skimmed milk agar as food simulant and the largest inhibition zones were observed against Gram-positive bacteria for halloysite samples. Bacteriocins were intercalated into the interlayer space of montmorillonites as deduced from the increase of the basal spacing measured by X-ray diffraction (XRD) assay. Infrared spectroscopy suggested non-electrostatic interactions, such as hydrogen bonding between siloxane groups from clays and peptide molecules. Transmission electron microscopy did not show any alteration in morphologies after adsorption of antimicrobial peptides on bentonite and halloysite. These results indicate that nanoclays, especially halloysite, are suitable nanocarriers for nisin and pediocin adsorption.

  2. Effective surface areas of coals measured by dye adsorption

    SciTech Connect

    Spitzer, D.P.

    1988-01-01

    The primary interest has been to examine adsorption behavior especially at short contact times, ten minutes to an hour, to determine whether such measurements might give useful data on effective surface areas - i.e., the surface that would be accessible to reagents within times comparable to those typical of most coal processing. Accordingly, most of the emphasis is on the effect of time on adsorption, rather than on traditional adsorption isotherms. Although most literature on cationic dye adsorption (mostly on carbons) uses methylene blue, it happened that the authors originally used safranin O instead because this dye was reported to be useful in distinguishing oxidized coals from fresh coals. Many of their experiments were repeated using methylene blue (in water), with very similar results. It was noted early that swelling of coals in water was common, especially for more oxidized or lower rank coals, and adsorption experiments were also done in another solvent, namely methanol. This produced quite striking differences for some coals. Coal surfaces that are readily accessible to adsorption by safranin are found to correlate well with N/sub 2/ surface areas, with adsorption of 1.0 mg safranin per gram of coal corresponding to essentially a surface area of 1.0 m/sup 2//g. Highly oxidized coals were found to swell considerably in water, with correspondingly increased adsorption. Areas of such coals can be estimated by adsorption of safranin from methanol solutions.

  3. Applications and limits of theoretical adsorption models for predicting the adsorption properties of adsorbents.

    PubMed

    Park, Hyun Ju; Nguyen, Duc Canh; Na, Choon-Ki; Kim, Chung-il

    2015-01-01

    The objective of this study is to evaluate the applicability of adsorption models for predicting the properties of adsorbents. The kinetics of the adsorption of NO3- ions on a PP-g-AA-Am non-woven fabric have been investigated under equilibrium conditions in both batch and fixed bed column processes. The adsorption equilibrium experiments in the batch process were carried out under different adsorbate concentration and adsorbent dosage conditions and the results were analyzed using adsorption isotherm models, energy models, and kinetic models. The results of the analysis indicate that the adsorption occurring at a fixed adsorbate concentration with a varying adsorbent dosage occur more easily compared to those under a fixed adsorbent dosage with a varying adsorbate concentration. In the second part of the study, the experimental data obtained using fixed bed columns were fit to Bed Depth Service Time, Bohart-Adams, Clark, and Wolborska models, to predict the breakthrough curves and determine the column kinetic parameters. The adsorption properties of the NO3- ions on the PP-g-AA-Am non-woven fabric were differently described by different models for both the batch and fixed bed column process. Therefore, it appears reasonable to assume that the adsorption properties were dominated by multiple mechanisms, depending on the experimental conditions.

  4. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite.

    PubMed

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g · L(-1), in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics.

  5. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite

    PubMed Central

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g·L-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics. PMID:26698573

  6. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  7. Hybrid adsorptive membrane reactor

    SciTech Connect

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  8. Adsorption Behavior of Nonplanar Phthalocyanines: Competition of Different Adsorption Conformations

    PubMed Central

    2016-01-01

    Using density functional theory augmented with state-of-the-art van der Waals corrections, we studied the geometric and electronic properties of nonplanar chlorogallium-phthalocyanine GaClPc molecules adsorbed on Cu(111). Comparing these results with published experimental data for adsorption heights, we found indications for breaking of the metal–halogen bond when the molecule is heated during or after the deposition process. Interestingly, the work-function change induced by this dissociated geometry is the same as that computed for an intact adsorbate layer in the “Cl-down” configuration, with both agreeing well with the experimental photoemission data. This is unexpected, as the chemical natures of the adsorbates and the adsorption distances are markedly different in the two cases. The observation is explained as a consequence of Fermi-level pinning due to fractional charge transfer at the interface. Our results show that rationalizing the adsorption configurations on the basis of electronic interface properties alone can be ambiguous and that additional insight from dispersion-corrected DFT simulations is desirable. PMID:27066160

  9. Phosphorus recovery using pelletized adsorptive materials ...

    EPA Pesticide Factsheets

    Phosphorous (P) is one of the essential nutrients for growth and is generally the most limiting nutrient since, it cannot be fixed from the atmosphere. Methods for recovering phosphorous from water systems already exist, but advances are being made to find a more economic, efficient, effective and easy to use method that can allow for reuse of the recovered P. One area of study is in adsorption, which involves finding the best material for adsorption of phosphorous from water and for releasing it back into the environment through desorption or leaching. The goal of this research was to first optimize the capacity for a pelletized adsorptive material that was synthesized with varying amounts of a binder material from 0-20 % and then to study recovering the phosphate for reuse. The pelletized materials were studied through kinetics experiments as well as isotherm experiments to gain insight into the adsorption capacity and mechanism. Following successful adsorption, a simple leaching study was conducted to see how much phosphate would be released back into water without any added desorption aid. Desorption was then studied by changing the pH of solution. Presenting my thesis work with a poster at ACS.

  10. Methylene blue adsorption from aqueous solution by activated carbon: effect of acidic and alkaline solution treatments.

    PubMed

    Ijagbemi, Christianah O; Chun, Ji I; Han, Da H; Cho, Hye Y; O, Se J; Kim, Dong S

    2010-01-01

    The removal of Methylene Blue (MB) from aqueous solution using activated carbon (AC) has been investigated. Adsorption experiments were conducted and the maximum adsorption capacity was determined. The effect of experimental parameters such as pH, dye concentration and temperature were studied on the adsorption process. Equilibrium data were mathematically modeled using the Langmuir and Freundlich adsorption models to describe the equilibrium isotherms at different dye concentrations and temperature. Parameters of best-fit model were calculated and discussed. To understand the mechanism of adsorption, kinetic models were employed to follow the adsorption processes; the pseudo-first-order best described the adsorption of MB onto AC. It was found that pH plays a major role in the adsorption process; adsorption capacity was influenced by the physical and surface chemical properties of carbon and the pH of the solution. 99.0% MB removal was achieved at equilibrium.

  11. Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters.

    PubMed

    Henryk, Kołoczek; Jarosław, Chwastowski; Witold, Żukowski

    2016-01-01

    Batch adsorption experiments were performed for the removal of chromium (III) and chromium (VI) ions from aqueous solutions using Canadian peat and coconut fiber. The Langmuir model was used to describe the adsorption isotherm. The maximum adsorption for peat reached 18.75 mg/g for Cr(III) and 8.02 mg/g for Cr(VI), whereas the value for fiber was slightly higher and reached 19.21 mg/g for Cr(III) and 9.54 mg/g for Cr(VI). Both chromium forms could be easily eluted from the materials. The adsorption of chromium forms to organic matter could be explained in terms of formation of donor-acceptor chemical covalent bound with hydroxyl groups as ligands and chromium as the central atom in the formed complex. The chromate-reducing activities were monitored with the use of electron paramagnetic resonance spectroscopy. The results showed that both adsorption and reduction occurred simultaneously and the maximum adsorption capacity of hexavalent chromium being equal to 95% for fiber and 92% for peat was obtained at pH 1.5. The reduction of Cr(VI) in wastewaters began immediately and disappeared after 20 h. Both materials contained yeast and fungi species which can be responsible for reduction of chromium compounds, due to their enzymatic activity (Chwastowski and Koloczek (Acta Biochim Pol 60: 829-834, 2013)). The reduction of Cr(VI) is a two-phase process, the first phase being rapid and based on chemical reaction and the second phase having biological features. After the recovery step, both types of organic materials can be used again for chromium adsorption without any loss in the metal uptake. Both of the materials could be used as biofilters in the wastewater treatment plants.

  12. Adsorption of barium and calcium chloride onto negatively charged alpha-Fe(2)O(3) particles.

    PubMed

    Pochard, Isabelle; Denoyel, Renaud; Couchot, Pierre; Foissy, Alain

    2002-11-01

    Adsorption of cations (Na(+), Ca(2+), Ba(2+)) onto negatively charged (pH 10.4) hematite (alpha-Fe(2)O(3)) particles has been studied. The oxide material was carefully prepared in order to obtain monodisperse suspensions of well-crystallized, quasi-spherical particles (50 nm in diameter). The isoelectric point (IEP) is located at pH 8.5. Adsorption of barium ions onto oxide particles was carried out and the electrophoretic mobility was measured throughout the adsorption experiment. Comparison with calcium adsorption at full coverage reveals a higher uptake of Ba(2+). In both cases it shows also that chloride ions coadsorb with M(2) ions. Simultaneous uptake of the positive and negative ions explains why the electrophoretic mobility does not reverse to cationic migration. A theoretical study of the surface speciation has been carried out, using the MuSiC model. It reveals the presence of negative as well as positive sites on both sides of the point of zero charge (PZC) of the hematite particles, which may explain the coadsorption of Ba(2+) and Cl(-) at pH 10.4. The effective charge of the oxide particles, calculated from the electrophoretic mobility, is in very good agreement with the results found with the MuSiC modelization and the chloride/barium adsorption ratio. It also verifies the theory of ionic condensation. Calorimetric measurements gave a negative heat for the overall reaction occurring when Ba(2+)/Cl(-) ions adsorb onto hematite. Despite the fact that anions (Cl(-) and OH(-)) adsorption onto mineral oxides is an exothermic phenomenon, it is likely that barium and calcium adsorption is endothermic, denoting the formation of an inner-sphere complex as reported in the literature.

  13. Effect of organic acids on the adsorption of copper, lead, and zinc by goethite

    NASA Astrophysics Data System (ADS)

    Perelomov, L. V.; Pinskiy, D. L.; Violante, A.

    2011-01-01

    The adsorption of Cu, Pb, and Zn by synthetic goethite was studied in the absence and presence of oxalic, citric, and glutamic acids at different pH values. It was shown that, in the absence of an acid, the content of adsorbed metals increased with the increasing pH. The content of adsorbed cations at constant pH values decreased in the sequence: Cu > Pb > Zn. The simultaneous addition of metal cations and organic acids to the goethite suspension increased the content of the adsorbed elements. The oxalic and citric acids had similar effects on the adsorption of copper and lead in the studied pH range. The metal: acid concentration ratios significantly affected the adsorption of the heavy metals by goethite. An increase in the metal adsorption was observed to a certain metal: acid ratio, which was followed by a gradual decrease. The adsorption of the metals by goethite also depended on the properties of the metal cations and the organic ligands. The observed tendencies were attributed to the complexation of heavy metals with organic acid anions and the simultaneous sorption of acids at positively charged sites on the goethite surface with the formation of mineral-organic compounds, which significantly modified the surface properties of the mineral. The study of the effect of increasing lead concentrations in the solution on the copper adsorption by goethite in the absence, in the presence, and at the addition of an oxalic acid solution to the goethite suspension one hour before the beginning of the experiment showed that lead decreased the adsorption of copper in all the treatments. The possible mechanisms of the processes occurring in the system were considered.

  14. [Elimination of carbendazim from fruit conditioning waters by adsorption on different materials].

    PubMed

    Giry, G; Ayele, J; Gauthier, C

    2001-07-01

    The main aim of this work is to test different materials (activated carbon and other more "rustic" materials like clay and coal) as potential adsorbents in order to evaluate their adsorption capacity for carbendazime. The experiments were realized with certified carbendazim or with benlate solutions left to change long enough to suppose all the benomyl converted into carbendazim. The results were introduced through adsorption kinetic and isotherm forms or interpreted according to the Langmuir model. They pointed out that final elimination percentages of certified carbendazim don't exceed 55%. But even the activated carbon remains the most effective adsorbent, clay and coal present an interesting adsorption capacity, 45% for clay (but its performance is varied), 35% for coal. The presence of formulation additives has an inhibitive effect whatever the materials is. Some adsorption attempts with clay and coal mixtures (100 mg l(-1) of each one) were realized, there isn't a cumulative adsorption, final percentages of elimination are about 45%. Characterization attempts of the adsorbents pointed out that all the materials have a negative global surface charge. But clay possesses a surface charge far more negative than coal, sodipolary lap of carbendazim can further the adsorption. The measures of surface functions according to Boehm titration and capillary rising technique showed that coal differentiates from the other materials by its high capacity to establish Lifshitz-Van der Waals interactions. Carbendazim molecule can present a dipolary moment which could lead to the formation of hydrogen bonds. But results of capillary rising are to be considered by surface unities that could explain the superior adsorption capacity of clay (internal surface: 800m2 g(-1)).

  15. Adsorption studies of chromium (VI) removal from water by lanthanum diethanolamine hybrid material.

    PubMed

    Mandal, Sandip; Sahu, Manoj Kumar; Giri, Anil Kumar; Patel, Raj Kishore

    2014-01-01

    In the present research work, lanthanum diethanolamine hybrid material is synthesized by co-precipitation method and used for the removal of Cr(VI) from synthetic dichromate solution and hand pump water sample. The sorption experiments were carried out in batch mode to optimize various influencing parameters such as adsorbent dose, contact time, pH, competitive anions and temperature. The characterization of the material and mechanism of Cr(VI) adsorption on the material was studied by using scanning electron microscope, Fourier transform infrared, X-ray diffraction, Brunauer-Emmett-Teller and thermogravimetric analysis-differential thermal analysis. Adsorption kinetics studies reveal that the adsorption process followed first-order kinetics and intraparticle diffusion model with correlation coefficients (R2) of 0.96 and 0.97, respectively. The adsorption data were best fitted to linearly transformed Langmuir isotherm with correlation coefficient (R2) of 0.997. The maximum removal of Cr(VI) is found to be 99.31% at optimal condition: pH = 5.6 of the solution, adsorbent dose of 8 g L(-1) with initial concentration of 10mgL(-1) of Cr(VI) solution and an equilibrium time of 50 min. The maximum adsorption capacity of the material is 357.1 mg g(-1). Thermodynamic parameters were evaluated to study the effect of temperature on the removal process. The study shows that the adsorption process is feasible and endothermic in nature. The value of E (260.6 kJ mol(-1)) indicates the chemisorption nature of the adsorption process. The material is difficult to be regenerated. The above studies indicate that the hybrid material is capable of removing Cr(VI) from water.

  16. Adsorption of chloridazon from aqueous solution on heat and acid treated sepiolites.

    PubMed

    González-Pradas, E; Socías-Viciana, M; Ureña-Amate, M D; Cantos-Molina, A; Villafranca-Sánchez, M

    2005-05-01

    The adsorption of chloridazon on heat treated sepiolite samples at 110 degrees C (S-110), 200 degrees C (S-200), 400 degrees C (S-400), 600 degrees C (S-600) and acid treated samples with H2SO4 solutions of two different concentrations (0.25 and 1.0M) (S-0.25 and S-1.0, respectively) from pure water at 25 degrees C has been studied by using batch experiments. In addition, column experiments were carried out with the natural (S-110) and 600 degrees C (S-600) heat treated samples, using a 10.30 mg l-1 aqueous solution of chloridazon. The adsorption experimental data points have been fitted to the Freundlich equation in order to calculate the adsorption capacities (Kf) of the samples; Kf values range from 2.89 mg kg-1 for the S-1.0 sample up to 164 mg kg-1 for the S-600 sample; so, the heat treatment given to the sepiolite greatly increases its adsorption capacity for the herbicide chloridazon whereas the acid treatment produces a clear decrease in the amount of chloridazon adsorbed. The removal efficiency (R) has also been calculated; R values ranging from 5.08% for S-1.0 up to 60.9% for S-600. The batch experiments showed that the strongest heat treatment is more effective than the natural and acid treated sepiolite in relation to adsorption of chloridazon. The column experiments also showed that 600 degrees C heat treated sepiolite might be reasonably used in removing chloridazon from water. Thus, as this type of clay is relatively plentiful, these activated samples might be reasonably used in order to remove chloridazon from water.

  17. Comparative adsorption of arsenic, boron, chromium, molybdenum and selenium on fresh and weathered fly ash.

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Donahoe, R. J.; Graham, E. Y.; Patel, D. V.

    2004-12-01

    Coal-fired electric power plants in the US generated over 130 million tons of fly ash and other combustion waste materials last year. While approximately 35% of the produced coal combustion by-products (CCBs) are recycled for beneficial use, the majority of the waste is impounded in lagoons and landfills located throughout the country. The EPA is currently re-evaluating these disposal facilities for regulation under Subtitle D. The objective of this study is to determine and compare the adsorption capacities of fresh and weathered fly ash for the toxic metals arsenic, boron, chromium, molybdenum, and selenium in order to evaluate the long-term mobility of these metals in the ash disposal environment. Two power plant sites were selected for study, one producing acidic ash and the other alkaline ash. Weathered ash samples were collected at each site from cores drilled from the surface through the bottom of ponds that have been closed for more than 35 years. Fresh fly ash was obtained directly from the power plants. Batch experiments were performed to study the competitive adsorption of As, B, Cr, Mo and Se on fresh and weathered ash materials. Experiments performed at pH values of 3, 4, 6, 8 and 10, using initial metal concentrations of 5 mg/L, show similar adsorption behavior for both ash compositions. The metal selectivity sequence for fresh fly ash is As >> Mo > Cr ~ Se ~ B. Maximum arsenic adsorption on fresh fly ash occurs at pH = 6 with almost 100% removal, while maximum arsenic adsorption on weathered ash takes place at pH = 3. Maximum adsorption of B, Cr, Mo and Se occurs at pH = 3 for both fresh and weathered ash. The experiments indicate that the adsorption capacity of fly ash for the metals of interest is reduced by weathering. Experiments are currently underway to compare the adsorption capacity of fresh and weathered fly ash for varying initial metal concentrations, ionic strength and solid/liquid ratio.

  18. Adsorption studies of cadmium ions on alginate-calcium carbonate composite beads

    NASA Astrophysics Data System (ADS)

    Mahmood, Zahid; Amin, Athar; Zafar, Uzma; Raza, Muhammad Amir; Hafeez, Irfan; Akram, Adnan

    2015-07-01

    Alginate-calcium carbonate composite material was prepared in the form of beads and characterized using Fourier transform infra red (FT-IR) spectroscopy and scanning electron microscope (SEM) techniques. The adsorption of Cd2+ ions was studied through batch experiments. The adsorption parameters such as contact time (120 min), adsorbent dose (1.5 g), initial metal ion concentration(10 mg/L), pH (6) and agitation speed (150 rpm) were optimized at room temperature. Langmuir and Freundlich isotherms were applied to the data and it was noted that the adsorption of Cd2+ ions is better explained by Freundlich model. The kinetic studies showed that the adsorption of Cd2+ ions followed pseudo-first order kinetics. Thermodynamic parameters like ∆G 0, ∆H 0 and ∆S 0 were calculated and on the basis of these values it was established that the adsorption process is feasible and endothermic in nature. It was concluded from the study that the composite material of alginate and calcium carbonate can effectively be used to recover Cd2+ ions from wastewater.

  19. Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal.

    PubMed

    Huang, Xiao-Yi; Mao, Xiao-Yun; Bu, Huai-Tian; Yu, Xiao-Yuan; Jiang, Gang-Biao; Zeng, Ming-Hua

    2011-07-15

    To utilize the contribution of introduced amino groups to the adsorption of an anionic dye (eosin Y), a batch adsorption system was applied to study the adsorption of eosin Y from aqueous solution by tetraethylenepentamine (TEPA) modified chitosan (TEPA-CS). Experiments were carried out as a function of particle size, initial pH, agitation rate, adsorbent dosage, agitation period, temperature and initial concentration of eosin Y. The Langmuir and Freundlich models were used to fit the adsorption isotherms. From the values of correlation coefficients (R2), it was observed that the experimental data fit very well to the Langmuir model, giving a maximum sorption capacity of 292.4mg/g at 298K. Kinetic studies showed that the kinetic data were well described by the pseudo-second-order kinetic model. The thermodynamic study revealed negative value of enthalpy change (ΔH°) and free energy change (ΔG°), indicating spontaneous and endothermic nature of the adsorption of eosin Y on to TEPA-CS.

  20. Influence of the inherent properties of drinking water treatment residuals on their phosphorus adsorption capacities.

    PubMed

    Bai, Leilei; Wang, Changhui; He, Liansheng; Pei, Yuansheng

    2014-12-01

    Batch experiments were conducted to investigate the phosphorus (P) adsorption and desorption on five drinking water treatment residuals (WTRs) collected from different regions in China. The physical and chemical characteristics of the five WTRs were determined. Combined with rotated principal component analysis, multiple regression analysis was used to analyze the relationship between the inherent properties of the WTRs and their P adsorption capacities. The results showed that the maximum P adsorption capacities of the five WTRs calculated using the Langmuir isotherm ranged from 4.17 to 8.20mg/g at a pH of 7 and further increased with a decrease in pH. The statistical analysis revealed that a factor related to Al and 200 mmol/L oxalate-extractable Al (Alox) accounted for 36.5% of the variations in the P adsorption. A similar portion (28.5%) was attributed to an integrated factor related to the pH, Fe, 200 mmol/L oxalate-extractable Fe (Feox), surface area and organic matter (OM) of the WTRs. However, factors related to other properties (Ca, P and 5 mmol/L oxalate-extractable Fe and Al) were rejected. In addition, the quantity of P desorption was limited and had a significant negative correlation with the (Feox+Alox) of the WTRs (p<0.05). Overall, WTRs with high contents of Alox, Feox and OM as well as large surface areas were proposed to be the best choice for P adsorption in practical applications.

  1. Argon adsorption in open-ended single-wall carbon nanotubes

    SciTech Connect

    Rols, S.; Johnson, M.R.; Zeppenfeld, P.; Bienfait, M.; Vilches, O.E.; Schneble, J.

    2005-04-15

    Thermodynamic and neutron-diffraction measurements combined with molecular dynamics simulation are used to determine the adsorption energies and the structure of argon condensed in the various adsorption sites of purified open-ended single-wall nanotube bundles. On the basis of these experiments and the simulation results, a consistent adsorption scenario has been derived. The adsorption proceeds first by the population of the walls inside the open nanotubes and the formation of one-dimensional Ar chains in the grooves at the outer surface of the bundles, followed by the filling of the remaining axial sites inside the nanotubes and the completion of a quasihexagonal monolayer on the outer surface of the bundle. The measurements also provide an estimate of the relative abundance of the various adsorption sites revealing that a major part of the adsorbed Ar is stored inside the open-ended nanotubes. Nanotube bundles generally show a certain degree of heterogeneity and some interstitial sites should be populated over a range of Ar chemical potential. However, for the sample used here, diffraction data and simulations suggest that heterogeneity is not a key feature of the bundles and there is little direct evidence of interstitial sites being populated.

  2. Adsorption of chloridazon from aqueous solution on modified kerolite-rich materials.

    PubMed

    Ureña-Amate, María D; Socías-Viciana, María M; González-Pradas, E; Cantos-Molina, A; Villafranca-Sánchez, M; López-Teruel, C

    2008-02-01

    The adsorption of chloridazon (5-amine-4-chloro-2-phenylpyridazin-3(2H)-one) on kerolite samples heated at 110 degrees C (K-110), 200 degrees C (K-200), 400 degrees C (K-400), 600 degrees C (K-600) and acid-treated with H(2)SO(4) solutions of two different concentrations (0.25 and 0.5 M) (K-0.25 and K-0.5, respectively) from pure water at 25 degrees C has been studied by using batch and column experiments. The adsorption experimental data points were fitted to the Freundlich equation in order to calculate the adsorption capacities (K(f)) of the samples; K(f) values ranged from 184.7 mg kg(-1) (K-0.5) up to 2253 mg kg(-1) (K-600). This indicated that the heat treatment given to the kerolite greatly increases its adsorption capacity for the herbicide whereas the acid treatment produces a clear decrease in the amount of chloridazon adsorbed. The removal efficiency (R) was also calculated; R values ranging from 52.8% (K-0.5) up to 88.3% (K-600). Thus, the results showed that the 600 degrees C heat-treated kerolite was more effective in relation to adsorption of chloridazon and it might be reasonably used in removing this herbicide from water.

  3. Adsorption of colored pollutants from distillery spent wash by native and treated fungus: neurospora intermedia.

    PubMed

    Kaushik, Garima; Thakur, Indu Shekhar

    2013-02-01

    The native and physico-chemically treated fungal biomasses of Neurospora intermedia were used for adsorption of colored pollutants from distillery spent wash in batch systems. Experiments were conducted at varying color concentrations of the effluent (1,000-6,500 CU). The kinetics of effect of initial sorbate concentration, dose of biosorbent, temperature, and pH on adsorption were studied. Physical and chemical pretreatments of biomass resulted in an increase or decrease in color removal capacity. This effect was further studied by FTIR analysis of the dried fungal mycelium. The maximum color uptake on all the tested fungal biomass preparations was observed at pH 3.0 and temperature 30 °C, within first 4 h. The Langmuir and Freundlich adsorption models were used for the mathematical description of the biosorption equilibrium and the data showed an optimal fit to these isotherms. Kinetic parameters indicated the dominance of Lagergren pseudo first-order kinetic model for adsorption. On the basis of maximum adsorption capacity, the color removal capacity by fungal preparations was in the order of native > heat > acid, base.

  4. Pursuing "zero" protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma.

    PubMed

    Yang, Wei; Xue, Hong; Li, Wei; Zhang, Jinli; Jiang, Shaoyi

    2009-10-06

    Human blood serum and plasma pose significant challenges to blood-contacting devices and implanted materials because of their high nonspecific adsorption onto surfaces. In this work, we investigated nonspecific protein adsorption from single protein solutions and complex media such as undiluted human blood serum and plasma onto poly(carboxybetaine acrylamide) (polyCBAA)-grafted surfaces at different temperatures. The polyCBAA grafting was done via atom-transfer radical polymerization (ATRP) with varying film thicknesses. The objective is to create a surface that experiences "zero" protein adsorption from complex undiluted human blood serum and plasma. Results show that protein adsorption from undiluted human blood serum, plasma, and aged serum on the polyCBAA-grafted surface is undetectable at both 25 and 37 degrees C by a surface plasmon resonance (SPR) sensor. This was achieved with a film thickness of approximately 21 nm. Furthermore, it is demonstrated that the polyCBAA surfaces after antibody immobilization maintain undetectable protein adsorption from undiluted human blood serum. This is the first time that an effective nonfouling material suitable for applications in complex blood media has been demonstrated.

  5. The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash.

    PubMed

    Shim, Young-Sook; Kim, Young-Keun; Kong, Sung-Ho; Rhee, Seung-Whee; Lee, Woo-Keun

    2003-01-01

    The incineration rate of municipal solid waste (MSW) has been increased because of difficulty in securing a proper disposal site for MSW in Korea. The advantage of incineration is reduction of the volume of waste; however, significant amounts of bottom ash and fly ash were generated in the incineration process. Their treatment has attracted growing interest because of the potential toxicity of hazardous heavy metals. Generally, heavy metals are less released from bottom ash than from fly ash. In this study the adsorption characteristics of heavy metals were investigated using various particle sizes of MSWI bottom ash. Since bottom ash has a broad particle size distribution, it was sieved to size classes of +20, -20, -48, -80, -100 mesh. Cation exchange capacity (CEC) was analyzed by the ammonium acetate method to evaluate the potential as an adsorbent. The CEC values and surface areas increase as the range of particle size becomes finer. The adsorption experiment was conducted using synthetic (Cu and Ni) and plating rinse water as a function of reaction time (10-180 min), liquid/solid ratio (2-100) and particle size (+20 to -100 mesh), respectively. The adsorption rate increased with decreasing particle size and with increasing liquid/solid ratio; however, the removal efficiency of Cu was higher than that of Ni. In the case of plating rinse water, the adsorption rate decreased sharply at high liquid/solid ratio, and it showed over 80% of adsorption rates for Cu and Ni at an initial pH of 3.

  6. Computational study of hydrocarbon adsorption in metal-organic framework Ni2(dhtp).

    PubMed

    Sun, Xiuquan; Wick, Collin D; Thallapally, Praveen K; McGrail, B Peter; Dang, Liem X

    2011-03-31

    Enhancing the efficiency of the Rankine cycle, which is utilized for multiple renewable energy sources, requires the use of a working fluid with a high latent heat of vaporization. To further enhance its latent heat, a working fluid can be placed in a metal organic heat carrier (MOHC) with a high heat of adsorption. One such material is Ni\\DOBDC, in which linear alkanes have a higher heat of adsorption than cyclic alkanes. We carried out molecular dynamics simulations to investigate the structural, diffusive, and adsorption properties of n-hexane and cyclohexane in Ni\\DOBDC. The strong binding for both n-hexane and cyclohexane with Ni\\DOBDC is attributed to the increase of the heat of adsorption observed in experiments. Our structural results indicate the organic linkers in Ni\\DOBDC are the primary binding sites for both n-hexane and cyclohexane molecules. However, at all temperatures and loadings examined in present work, n-hexane clearly showed stronger binding with Ni\\DOBDC than cyclohexane. This was found to be the result of the ability of n-hexane to reconfigure its structure to a greater degree than cyclohexane to gain more contacts between adsorbates and adsorbents. The geometry and flexibility of guest molecules were also related to their diffusivity in Ni\\DOBDC, with higher diffusion for flexible molecules. Because of the large pore sizes in Ni\\DOBDC, energetic effects were the dominant force for alkane adsorption and selectivity.

  7. Kinetic, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid.

    PubMed

    ALOthman, Zeid A; Naushad, Mu; Ali, Rahmat

    2013-05-01

    A particular agricultural waste, peanut shell, has been used as precursor for activated carbon production by chemical activation with H₃PO₄. Unoxidized activated carbon was prepared in nitrogen atmosphere which was then heated in air at a desired temperature to get oxidized activated carbon. The prepared carbons were characterized for surface area, surface morphology, and pore volume and utilized for the removal of Cr(VI) from aqueous solution. Batch mode experiments were conducted to study the effects of pH, contact time, particle size, adsorbent dose, initial concentration of adsorbate, and temperature on the adsorption of Cr(VI). Cr(VI) adsorption was significantly dependent on solution pH, and the optimum adsorption was observed at pH 2. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to analyze the kinetic data obtained at different initial Cr(VI) concentrations. The adsorption kinetic data were described very well by the pseudo-second-order model. Equilibrium isotherm data were analyzed by the Langmuir, Freundlich, and Temkin models. The results showed that the Langmuir adsorption isotherm model fitted the data better in the temperature range studied. The adsorption capacity which was found to increase with temperature showed the endothermic nature of Cr(VI) adsorption. The thermodynamic parameters, such as Gibb's Free energy change (ΔG°), standard enthalpy change (ΔH°), and standard entropy change (ΔS°) were evaluated.

  8. Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon.

    PubMed

    Roosta, M; Ghaedi, M; Daneshfar, A; Sahraei, R

    2014-03-25

    In this research, the adsorption rate of safranine O (SO) onto tin sulfide nanoparticle loaded on activated carbon (SnS-NPAC) was accelerated by the ultrasound. SnS-NP-AC was characterized by different techniques such as SEM, XRD and UV-Vis measurements. The present results confirm that the ultrasound assisted adsorption method has remarkable ability to improve the adsorption efficiency. The influence of parameters such as the sonication time, adsorbent dosage, pH and initial SO concentration was examined and evaluated by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF). Conducting adsorption experiments at optimal conditions set as 4 min of sonication time, 0.024 g of adsorbent, pH 7 and 18 mg L(-1) SO make admit to achieve high removal percentage (98%) and high adsorption capacity (50.25 mg g(-)(1)). A good agreement between experimental and predicted data in this study was observed. The experimental equilibrium data fitting to Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo-second-order and intraparticle diffusion models.

  9. Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon

    NASA Astrophysics Data System (ADS)

    Roosta, M.; Ghaedi, M.; Daneshfar, A.; Sahraei, R.

    2014-03-01

    In this research, the adsorption rate of safranine O (SO) onto tin sulfide nanoparticle loaded on activated carbon (SnS-NPAC) was accelerated by the ultrasound. SnS-NP-AC was characterized by different techniques such as SEM, XRD and UV-Vis measurements. The present results confirm that the ultrasound assisted adsorption method has remarkable ability to improve the adsorption efficiency. The influence of parameters such as the sonication time, adsorbent dosage, pH and initial SO concentration was examined and evaluated by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF). Conducting adsorption experiments at optimal conditions set as 4 min of sonication time, 0.024 g of adsorbent, pH 7 and 18 mg L-1 SO make admit to achieve high removal percentage (98%) and high adsorption capacity (50.25 mg g-1). A good agreement between experimental and predicted data in this study was observed. The experimental equilibrium data fitting to Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo-second-order and intraparticle diffusion models.

  10. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption

    SciTech Connect

    Tanju Karanfil; Seyed A. Dastgheib; Dina Mauldin

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers ACF10 and ACF20H and two granular activated carbons, coal-based F400 and Macro preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 {angstrom}. It also had the highest volume in pores 5-8 {angstrom}, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve during preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 {angstrom}, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the way that the carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption. 40 refs., 3 figs., 2 tabs.

  11. Adsorption hysteresis in nanopores

    PubMed

    Neimark; Ravikovitch; Vishnyakov

    2000-08-01

    Capillary condensation hysteresis in nanopores is studied by Monte Carlo simulations and the nonlocal density functional theory. Comparing the theoretical results with the experimental data on low temperature sorption of nitrogen and argon in cylindrical channels of mesoporous siliceous molecular sieves of MCM-41 type, we have revealed four qualitatively different sorption regimes depending on the temperature and pore size. As the pore size increases at a given temperature, or as the temperature decreases at a given pore size, the following regimes are consequently observed: volume filling without phase separation, reversible stepwise capillary condensation, irreversible capillary condensation with developing hysteresis, and capillary condensation with developed hysteresis. We show that, in the regime of developed hysteresis (pores wider than 5 nm in the case of nitrogen sorption at 77 K), condensation occurs spontaneously at the vaporlike spinodal while desorption takes place at the equilibrium. A quantitative agreement is found between the modeling results and the experimental hysteresis loops formed by the adsorption-desorption isotherms. The results obtained provide a better understanding of the general behavior of confined fluids and the specifics of sorption and phase transitions in nanomaterials.

  12. Chemisorption of estrone in nylon microfiltration membranes: Adsorption mechanism and potential use for estrone removal from water.

    PubMed

    Han, Jie; Qiu, Wei; Hu, Jiangyong; Gao, Wei

    2012-03-01

    Estrone is a representative steroid estrogen contaminant that has been detected in effluents from sewage treatment facilities, as well as in surface and ground waters. Our study shows that estrone can be readily removed from water via a unique chemisorption mechanism using nylon microfiltration membranes. Experiments on a laboratory in-line filtration system showed instant removal of estrone from 200 μg/l aqueous solutions by 0.45-μm nylon membranes (ca. 35 L per m(2) membrane). Comparisons with 0.45-μm PVDF, PTFE and glass microfiber membranes suggested that the significant estrone adsorption in nylon membrane should be predominately driven by a different mechanism rather than common physical adsorption. Fourier transform infrared spectroscopy study on nylon membranes and a model compound, N-methylacetamide, showed that the significant adsorption originated from the hydrogen bonding between terminal -OH groups on estrone molecules and nucleophile -C=O groups in amide groups of nylon 6,6. The saturated nylon membrane showed very low leachability in ambient water, while it could be effectively regenerated in alkaline or ethanol solutions. Preliminary reusability study showed that the membrane maintained a consistent adsorption capacity for estrone during ten cycles of reuse. The chemisorption-based polymeric adsorption may provide a new alternative approach for removing estrone and potentially other trace organic contaminants from water.

  13. Adsorption of SOx and NOx in activated viscose fibers.

    PubMed

    Plens, Ana Carolina O; Monaro, Daniel L G; Coutinho, Aparecido R

    2015-01-01

    SOx and NOx are emissions resulting from combustion processes and are the main agents that contribute to the formation of acid rain, which causes harm to humans and the environment. Several techniques for removing these pollutants are applied in i.e. oil refineries, thermoelectric that use petroleum oils and vehicular pollution. Among these, highlight the adsorption of contaminants by the usage of activated carbon fibers and activated carbon, which are characterized by high surface area and uniform distribution of pores, providing appropriate conditions for application in processes of removing environmental contaminants. In the present work, activated viscose fibers (AVF) were prepared and applied in adsorption experiments of NO and SO2. The materials produced showed high values of surface area, with a predominance of micro pores with diameters in the range of 1.0 nm. The AVF had satisfactory performance in the removal of contaminants and are compatible with other synthetic fibers. Thus, the formation of active sites of carbon provides contaminants adsorption, demonstrating that carbon fibers cloth can be applied for the removal of pollutants.

  14. Adsorption orientations and immunological recognition of antibodies on graphene.

    PubMed

    Vilhena, J G; Dumitru, A C; Herruzo, Elena T; Mendieta-Moreno, Jesús I; Garcia, Ricardo; Serena, P A; Pérez, Rubén

    2016-07-07

    Large-scale molecular dynamics (MD) simulations and atomic force microscopy (AFM) in liquid are combined to characterize the adsorption of Immunoglobulin G (IgG) antibodies over a hydrophobic surface modeled with a three-layer graphene slab. We consider explicitly the water solvent, simulating systems with massive sizes (up to 770 000 atoms), for four different adsorption orientations. Protocols based on steered MD to speed up the protein diffusion stage and to enhance the dehydration process are combined with long simulation times (>150 ns) in order to make sure that the final adsorption states correspond to actual stable configurations. Our MD results and the AFM images demonstrate that the IgG antibodies are strongly adsorbed, do not unfold, and retain their secondary and tertiary structures upon deposition. Statistical analysis of the AFM images shows that many of the antibodies adopt vertical orientations, even at very small coverages, which expose at least one Fab binding site for recognition events. Single molecule force spectroscopy experiments demonstrate the immunological response of the deposited antibodies by recognizing its specific antigens. The above properties together with the strong anchoring and preservation of the secondary structure, make graphene an excellent candidate for the development of immunosensors.

  15. SANS Investigations of CO2 Adsorption in Microporous Carbon

    DOE PAGES

    Bahadur, Jitendra; Melnichenko, Yuri B.; He, Lilin; ...

    2015-08-07

    The high pressure adsorption behavior of CO2 at T = 296 K in microporous carbon was investigated by small-angle neutron scattering (SANS) technique. A strong densification of CO2 in micropores accompanied by non-monotonic adsorption-induced pore deformation was observed. The density of confined CO2 increases rapidly with pressure and reaches the liquid –like density at 20 bar, which corresponds to the relative pressure of P/Psat ~0.3. At P > 20 bar density of confined CO2 increases slowly approaching a plateau at higher pressure. The size of micropores first increases with pressure, reaches a maximum at 20 bar,more » and then decreases with pressure. A complementary SANS experiment conducted on the same microporous carbon saturated with neutron-transparent and non-adsorbing inert gas argon shows no deformation of micropores at pressures up to ~200 bars. This result demonstrates that the observed deformation of micropores in CO2 is an adsorption-induced phenomenon, caused by the solvation pressure - induced strain and strong densification of confined CO2 .« less

  16. Adsorption of thorium cation on modified clays MTTZ derivative.

    PubMed

    Guerra, Denis L; Viana, Rúbia R; Airoldi, Claudio

    2009-09-15

    Diquite (D) and bentonite (B) mineral samples from the Amazon region, Brazil, were modified by MTTZ derivative (5-mercapto-1-methyltetrazole) using heterogeneous route. These materials were characterized by textural and elemental analysis, transmission electron microscopy (TEM), power X-ray diffraction and (13)C NMR spectroscopy. The chemically modified clay (D(MTTZ) and B(MTTZ)) samples showed modification of its physical-chemical properties including: specific area 41.4 (B) to 398.5m(2)g(-1) (B(MTTZ)) and 25.0 (D) to 178.8m(2)g(-1) (D(MTTZ)). The adsorption experiments performed under batch process with Th(IV) concentration, pH and contact time as variables. The ability of these materials to remove thorium from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 2.0, with variable concentration of Th(IV). The maximum number of moles adsorbed was determined to be 10.45 x 10(-2) and 12.76 x 10(-2)mmol g(-1) for D(MTTZ) and B(MTTZ), respectively. The energetic effects (Delta(int)H degrees , Delta(int)G degrees and Delta(int)S degrees ) caused by thorium cation adsorption were determined through calorimetric titrations.

  17. Methane Adsorption on Graphitic Nanostructures: Every Molecule Counts

    PubMed Central

    2012-01-01

    Bundles of single-walled nanotubes are promising candidates for storage of hydrogen, methane, and other hydrogen-rich molecules, but experiments are hindered by nonuniformity of the tubes. We overcome the problem by investigating methane adsorption on aggregates of fullerenes containing up to six C60; the systems feature adsorption sites similar to those of nanotube bundles. Four different types of adsorption sites are distinguished, namely, registered sites above the carbon hexagons and pentagons, groove sites between adjacent fullerenes, dimple sites between three adjacent fullerenes, and exterior sites. The nature and adsorption energies of the sites in C60 aggregates are determined by density functional theory and molecular dynamics (MD) simulations. Excellent agreement between experiment and theory is obtained for the adsorption capacity in these sites. PMID:23378887

  18. Gas adsorption capacity of wood pellets

    DOE PAGES

    Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim; ...

    2016-02-03

    In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO2) uptake compared to the regular and torrefied pellets. The high CO2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pellets was challengingmore » due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.« less

  19. Gas adsorption capacity of wood pellets

    SciTech Connect

    Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim; Lau, A.; Bi, X. T.

    2016-02-03

    In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO2) uptake compared to the regular and torrefied pellets. The high CO2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pellets was challenging due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.

  20. Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.

    PubMed

    Sheshdeh, Reza Khalighi; Abbasizadeh, Saeed; Nikou, Mohammad Reza Khosravi; Badii, Khashayar; Sharafi, Mohammad Sadegh

    2014-01-01

    The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH 6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage = 0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution.

  1. Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon.

    PubMed

    Santhy, K; Selvapathy, P

    2006-07-01

    The removal efficiency of activated carbon prepared from coir pith towards three highly used reactive dyes in textile industry was investigated. Batch experiments showed that the adsorption of dyes increased with an increase in contact time and carbon dose. Maximum de-colorisation of all the dyes was observed at acidic pH. Adsorption of dyes was found to follow the Freundlich model. Kinetic studies indicated that the adsorption followed first order and the values of the Lagergren rate constants of the dyes were in the range of 1.77 x 10(-2)-2.69 x 10(-2)min(-1). The column experiments using granular form of the carbon (obtained by agglomeration with polyvinyl acetate) showed that adsorption efficiency increased with an increase in bed depth and decrease of flow rate. The bed depth service time (BDST) analysis carried out for the dyes indicated a linear relationship between bed depth and service time. The exhausted carbon could be completely regenerated and put to repeated use by elution with 1.0M NaOH. The coir pith activated carbon was not only effective in removal of colour but also significantly reduced COD levels of the textile wastewater.

  2. Enhanced adsorption of puerarin onto a novel hydrophilic and polar modified post-crosslinked resin from aqueous solution.

    PubMed

    Zeng, Xiaowei; Chen, Hongbo; Zheng, Yi; Tao, Wei; Fan, Yunge; Huang, Laiqiang; Mei, Lin

    2012-11-01

    A novel of hydrophilic and polar N-vinylpyrrolidone modified post-crosslinked resin was synthesized and the adsorption behaviors toward puerarin from aqueous solution were investigated. The post-crosslinked adsorbent PNVP-DVBpc was prepared by Friedel-Crafts reaction of residual double bonds without external crosslinking agent. The specific surface area of precursor PNVP-DVB increased obviously after post-crosslinking modification. The synthesized adsorbents were characterized by BET surface area, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The adsorption behaviors of puerarin from aqueous solution onto precursor PNVP-DVB and post-crosslinked adsorbent PNVP-DVBpc were thoroughly researched. Commercial polymeric adsorbents Amberlite XAD-4 and AB-8 were chosen as the comparison. Among the four media, PNVP-DVBpc presented the largest adsorption capacity of puerarin, which resulted from the synergistic effect of high specific surface area and polar groups (amide groups) onto the adsorbent matrix. Experimental results showed that equilibrium isotherms could be fitted by Freundlich model and the kinetic data could be characterized by pseudo-second order model reasonably. Column adsorption experiments indicated that the puerarin could be completely desorbed by 4.0 BV industrial alcohol. Continuous column adsorption-regeneration cycles demonstrated the PNVP-DVBpc without any significant adsorption capacity loss during operation.

  3. Adsorption of arsenite and arsenate onto ferrihydrite under competitive conditions : kinetics, isotherm, and pH effect

    NASA Astrophysics Data System (ADS)

    Qi, P.; Pichler, T.

    2014-12-01

    Competitive adsorption of As(III) and As(V) onto ferrihydrite was investigated in both single and bi-component systems using batch experiments. The adsorption of As(III) was inhibited by the presence of As(V) over the whole pH range when compared to As(III) only conditions. As(V) was adsorbed to a similar extent with As(III) at low pH under competitive conditions. Isotherm studies also showed that As(V) significantly decreased the adsorption of As(III) at pH 5, while the presence of As(III) had a small effect on As(V) adsorption. The Freundlich isotherm equation was successfully fitted to both single and bi-component adsorption scenarios of As(III) and As(V). At the same time intervals in the first 2 h under competitive conditions, kinetics studies suggested that the amount of As(III) adsorbed in the presence of As(V) was reduced compared to the single component system at low pH. The effect of As(III) on the adsorption rate of As(V) was negligible. A pseudo-second-order model could be fitted perfectly to each species under both single and competitive conditions. The spectra of ferrihydrite with adsorbed As(III), As(V) or both As species have a similar shape by ATR-FTIR, indicating that competition may be at play.

  4. Amine-functionalized monodispersed porous silica microspheres with enhanced CO2 adsorption performance and good cyclic stability.

    PubMed

    Le, Yao; Guo, Daipeng; Cheng, Bei; Yu, Jiaguo

    2013-10-15

    Carbon dioxide capture using solid adsorbent has caused more and more attention in the world. Herein, amine-functionalized monodispersed porous silica microspheres (MPSM) were prepared by the hydrolysis and condensation of tetraethoxysilane (TEOS) in a water-ethanol-dodecylamine mixed solution, then calcined at 600°C, and finally functionalized with tetraethylenepentamine (TEA). The CO2 adsorption performance of the prepared samples was measured using a Chemisorb 2720 pulse chemisorption system (Micromeritics, USA). The results showed that the specific surface area and pore volume of the 600°C-calcined SiO2 microspheres reached 921m(2)/g and 0.48cm(3)/g, respectively. All the TEA-functionalized samples exhibited good CO2 adsorption performance, which were related to the amount of loaded TEA, adsorption temperatures, and the specific surface areas of the prepared samples. An optimal TEA loading amount (34wt%) and adsorption temperature (75°C) were determined. The maximum CO2 adsorption amount (4.27mmolg(-1) adsorbent) was achieved on the 600°C-calcined SiO2 microsphere sample with TEA loading of 34wt%. Repeated adsorption/desorption cycle experiments revealed that the TEA-functionalized SiO2 microspheres were good CO2 adsorbents exhibiting excellent cyclic stability.

  5. Simultaneous adsorption of Cd2+ and phenol on modified N-doped carbon nanotubes: experimental and DFT studies.

    PubMed

    Diaz-Flores, Paola E; López-Urías, Florentino; Terrones, Mauricio; Rangel-Mendez, J Rene

    2009-06-15

    Carbon nanotubes are novel materials that have been investigated for diverse applications, but only a few studies have been focused on environmental issues. In this work, we report on the efficient adsorption of phenol and cadmium ions on N-doped carbon nanotubes (CNx), which have been modified in air at different temperatures. The pristine and modified CNx nanotubes were characterized by SEM, TGA, elemental analysis and their surface areas were also determined. The adsorption experiments of toxic pollutants were carried out in batch reactors at 25 degrees C. The characterization of modified CNx by these techniques showed an increase in oxygen content and surface area in comparison with the pristine CNx tubes. The individual adsorption capacity was 0.10 and 0.07 mmol/g for phenol and Cd(2+), respectively. The experimental data of the competitive adsorption of phenol and Cd(2+) revealed that the cadmium removal was favored as the phenol concentration increased, whereas the phenol adsorption capacity was slightly affected at any cadmium concentration. These results suggest that modified CNx tubes have a great potential in environmental applications as adsorbents of organic and inorganic compounds in aqueous phases. In addition, first-principles calculations were carried out in order to elucidate the mechanism of Cd(2+) adsorption on CNx.

  6. Accurate Treatment of Electrostatics during Molecular Adsorption in Nanoporous Crystals without Assigning Point Charges to Framework Atoms

    SciTech Connect

    Watanabe, Taku; Manz, Thomas A.; Sholl, David S.

    2011-02-28

    Molecular simulations have become an important complement to experiments for studying gas adsorption and separation in crystalline nanoporous materials. Conventionally, these simulations use force fields that model adsorbate-pore interactions by assigning point charges to the atoms of the adsorbent. The assignment of framework charges always introduces ambiguity because there are many different choices for defining point charges, even when the true electron density of a material is known. We show how to completely avoid such ambiguity by using the electrostatic potential energy surface (EPES) calculated from plane wave density functional theory (DFT). We illustrate this approach by simulating CO2 adsorption in four metal-organic frameworks (MOFs): IRMOF-1, ZIF-8, ZIF-90, and Zn(nicotinate)2. The resulting CO2 adsorption isotherms are insensitive to the exchange-correlation functional used in the DFT calculation of the EPES but are sensitive to changes in the crystal structure and lattice parameters. Isotherms computed from the DFT EPES are compared to those computed from several point charge models. This comparison makes possible, for the first time, an unbiased assessment of the accuracy of these point charge models for describing adsorption in MOFs. We find an unusually high Henry’s constant (109 mmol/g·bar) and intermediate isosteric heat of adsorption (34.9 kJ/mol) for Zn(nicotinate)2, which makes it a potentially attractive material for CO2 adsorption applications.

  7. Accurate Treatment of Electrostatics during Molecular Adsorption in Nanoporous Crystals without Assigning Point Charges to Framework Atoms

    SciTech Connect

    Watanabe, T; Manz, TA; Sholl, DS

    2011-03-24

    Molecular simulations have become an important complement to experiments for studying gas adsorption and separation in crystalline nanoporous materials. Conventionally, these simulations use force fields that model adsorbate-pore interactions by assigning point charges to the atoms of the adsorbent. The assignment of framework charges always introduces ambiguity because there are many different choices for defining point charges, even when the true electron density of a material is known. We show how to completely avoid such ambiguity by using the electrostatic potential energy surface (EPES) calculated from plane wave density functional theory (DFT). We illustrate this approach by simulating CO(2) adsorption in four metal-organic frameworks (MOFs): IRMOF-1, ZIE-8, ZIE-90, and Zn(nicotinate)(2). The resulting CO(2) adsorption isotherms are insensitive to the exchange-correlation functional used in the DFT calculation of the EPES but are sensitive to changes in the crystal structure and lattice parameters. Isotherms computed from the DFT EPES are compared to those computed from several point charge models. This comparison makes possible, for the first time, an unbiased assessment of the accuracy of these point charge models for describing adsorption in MOFs. We find an unusually high Henry's constant (109 mmol/g.bar) and intermediate isosteric heat of adsorption (34.9 kJ/mol) for Zn(nicotinate)(2), which makes it a potentially attractive mateiial for CO(2) adsorption applications.

  8. The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption.

    PubMed

    Liu, Zhen; Du, Zhenyu; Song, Hao; Wang, Chuangye; Subhan, Fazle; Xing, Wei; Yan, Zifeng

    2014-02-15

    N-doped carbon material constitutes abundant of micropores and basic nitrogen species that have potential implementation for CO2 capture. In this paper, porous carbon material with high nitrogen content was simply fabricated by carbonizing low cost and widely available urea formaldehyde resin, and then followed by KOH activation. CO2 capture experiment showed high adsorption capacity of 3.21 mmol g(-1) at 25 °C under 1 atm for UFCA-2-600. XRD, SEM, XPS and FT-IR analysis confirmed that a graphitic-like structure was retained even after high temperature carbonization and strong base activation. Textural property analysis revealed that narrow micropores, especially below 0.8 nm, were effective for CO2 adsorption by physical adsorption mechanism. Chemical evolved investigation revealed that graphitic-like embedded basic nitrogen groups are generated from bridged and terminal amines of urea formaldehyde resin from thermal carbonization and KOH activation treatment, which is responsible for the enrichment of CO2 capacity by chemical adsorption mechanism. The relationship between CO2 adsorption capacity and pore size or basic N species was also studied, which turned out that both of them played crucial role by physical and chemical adsorption mechanism, respectively.

  9. The role of nanostructures and hydrophilicity in osseointegration: In-vitro protein-adsorption and blood-interaction studies.

    PubMed

    Kopf, Brigitte S; Ruch, Sylvie; Berner, Simon; Spencer, Nicholas D; Maniura-Weber, Katharina

    2015-08-01

    Protein adsorption and blood coagulation play important roles in the early stages of osseointegration and are strongly influenced by surface properties. We present a systematic investigation of the influence of different surface properties on the adsorption of the blood proteins fibrinogen and fibronectin and the degree of early blood coagulation. Experiments on custom-made and commercially available, microroughened hydrophobic titanium (Ti) surfaces (Ti SLA-Hphob ), hydrophilic (Hphil ) microroughened Ti surfaces with nanostructures (Ti SLActive-Hphil NS), and on bimetallic Ti zirconium alloy (TiZr, Roxolid®) samples were performed, to study the biological response in relation to the surface wettability and the presence of nanostructures (NS). Protein adsorption on the different substrates showed a highly significant effect of surface NS. Hydrophilicity alone did not significantly enhance protein adsorption. Overall, the combination of NS and hydrophilicity led to the highest adsorption levels; independent of whether Ti or TiZr were used. Hydrophilicity induced a strong effect on blood coagulation, whereas the effect of NS alone was weak. The combination of both surface characteristics led to early and most pronounced blood-coagulation. Therefore, nanostructured, hydrophilic Ti and TiZr surfaces may perform better in terms of osseointegration due to continuous protein adsorption and the formation of a layer of blood components on the implant surface.

  10. Preparation and Characterization of Chitosan/Feldspar Biohybrid as an Adsorbent: Optimization of Adsorption Process via Response Surface Modeling

    PubMed Central

    Yazdani, Maryam; Bahrami, Hajir; Arami, Mokhtar

    2014-01-01

    Chitosan/feldspar biobased beads were synthesized, characterized, and tested for the removal of Acid Black 1 dye from aquatic phases. A four-factor central composite design (CCD) accompanied by response surface modeling (RSM) and optimization was used to optimize the dye adsorption by the adsorbent (chitosan/feldspar composite) in 31 different batch experiments. Independent variables of temperature, pH, initial dye concentration, and adsorbent dose were used to change to coded values. To anticipate the responses, a quadratic model was applied. Analysis of variance (ANOVA) tested the significance of the process factors and their interactions. The adequacy of the model was investigated by the correlation between experimental and predicted data of the adsorption and the calculation of prediction errors. The results showed that the predicted maximum adsorption amount of 21.63 mg/g under the optimum conditions (pH 3, temperature 15°C, initial dye concentration 125 mg/L, and dose 0.2 g/50 mL) was close to the experimental value of 19.85 mg/g. In addition, the results of adsorption behaviors of the dye illustrated that the adsorption process followed the Langmuir isotherm model and the pseudo-second-order kinetic model. Langmuir sorption capacity was found to be 17.86 mg/g. Besides, thermodynamic parameters were evaluated and revealed that the adsorption process was exothermic and favourable. PMID:24587722

  11. Influence of Environmental Factors on the Adsorption Capacity and Thermal Conductivity of Silica Nano-Porous Materials.

    PubMed

    Zhang, Hu; Gu, Wei; Li, Ming-Jia; Fang, Wen-Zhen; Li, Zeng-Yao; Tao, Wen-Quan

    2015-04-01

    In this work, the influence of temperature and humidity environment on the water vapor adsorption capacity and effective thermal conductivity of silica nano-porous material is conducted within a relative humidity range from 15% to 90% at 25 °C, 40 °C and 55 °C, respectively. The experiment results show that both the temperature and relative humidity have significant influence on the adsorption capacity and effective thermal conductivity of silica nano-porous materials. The adsorption capacity and effective thermal conductivity increase with humidity because of the increases of water vapor concentration. The effective thermal conductivity increases linearly with adsorption saturation capacity at constant temperature. Because adsorption process is exothermic reaction, the increasing temperature is not conducive to the adsorption. But the effective thermal conductivity increases with the increment of temperature at the same water uptake because of the increment of water thermal conductivity with temperature Geometric models and unit cell structure are adopted to predict the effective thermal conductivity and comparisons with the experimental result are made, and for the case of moist silica nano-porous materials with high porosity no quantitative agreement is found. It is believed that the adsorbed water will fill in the nano-pores and gap and form lots of short cuts, leading to a significant reduction of the thermal resistance.

  12. The study of adsorption characteristics of electrospun polymer nanofibers for benzenes in water.

    PubMed

    Sun, Jing; Kang, Xue-Jun; Ma, Yu-Qin; Chen, Li-Qin; Wang, Yu; Gu, Zhong-Ze

    2011-01-01

    The adsorption properties of benzene, p-dichlorobenzene and nitrobenzene on polymer nanofibers were studied. Compared with polyacrylonitrile nanofiber, polystyrene (PS) nanofiber presented better adsorption performance. Langmuir and Freundlich adsorption models were used for the mathematical description of adsorption equilibria, and Freundlich isotherms fitted better. Kinetic studies showed that the adsorption of PS nanofiber followed pseudo first-order model. Various thermodynamic parameters such as standard free energy (delta G), enthalpy (delta H) and entropy (delta S) were calculated for predicting the adsorption nature of PS nanofiber for three benzenes, which indicated that the adsorption was spontaneous and a physical process. The regeneration efficiency maintains over 80% after five cycles of adsorption/desorption tests. It showed that PS nanofibers are promising candidates for adsorption and removal of aromatic hydrocarbons from water.

  13. Adsorption of ammonium on biochar prepared from giant reed.

    PubMed

    Hou, Jie; Huang, Lei; Yang, Zhimin; Zhao, Yaqi; Deng, Chaoren; Chen, Yucheng; Li, Xin

    2016-10-01

    Giant reed was used as precursor for making biochar in order for the adsorption of NH4 (+)-N from aqueous solution. And the adsorption of the product to NH4 (+)-N was examined. The surface features of biochar were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), and X-ray diffraction (XRD). XRD patterns showed several peaks and correspond to the high amount of crystalline material. The crystals contain KCl, K2O, CaO, MgO, and SiO and possess high surface area which enhances adsorption. The influence of different parameters such as initial concentration, adsorption time, pH, and ionic strength has been carried out. The adsorption could reach equilibrium through 24 h reaction and had the best adsorption amount at the solution pH values from 7 to 9. The cation has great influence on the adsorption of NH4 (+)-N, whereas the anion exerted a weaker effect. The adsorption followed pseudo-first-order and pseudo-second-order models. And the intraparticle diffusion and desorption studies further elucidated that the mechanism of adsorption on the product was ion exchange. The product equilibrium data was well described by the Langmuir and Freundlich model. The maximum adsorption capacities were 1.490 mg/g. Biochar derived from giant reed at 500 °C was suggested as a promising adsorbent for the removal of NH4 (+)-N from slightly polluted wastewater.

  14. Titanium-incorporated organic–inorganic hybrid adsorbent for improved CO{sub 2} adsorption performance

    SciTech Connect

    Zhang, Xiaoyun; Qin, Hongyan; Zhang, Sisi; Wu, Wei

    2015-02-15

    Highlights: • Titanium-incorporated organic–inorganic hybrid adsorbent was prepared. • The incorporation of Ti to the adsorbent showed significant effect. • The sorbent shows high CO{sub 2} capture capacity both in pure and diluted CO{sub 2} at RT. • The sorbent exhibits a high recycling stability after 15 cycling runs. - Abstract: The CO{sub 2} adsorption performance of acrylonitrile (AN)–tetraethylenepentamine (TEPA) adduct (hereafter referred to as TN) impregnated adsorbent was greatly enhanced by introduction of Titanium atom into the silica matrix. The adsorbents were characterized by X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption/desorption, UV–vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy. The adsorption experiments together with the physicochemical characterization demonstrated that these adsorbents containing an optimal amount of Titanium (Ti/Si ≈ 0.1) remarkably reinforced the CO{sub 2} adsorption capacity and recycling stability. The highest CO{sub 2} uptakes reached 4.65 and 1.80 mmol CO{sub 2}/g adsorbent at 25 °C under 90% CO{sub 2} (CO{sub 2}/N{sub 2}, 90:10 V/V) and 1% CO{sub 2} (CO{sub 2}/N{sub 2}, 1:99 V/V) conditions for sample Ti(0.1)-DMS-TN, respectively. Repeated adsorption/desorption cycles revealed that the Ti-incorporated adsorbent showed only a tiny decrease in adsorption capacity (1.778 mmol CO{sub 2}/g adsorbent after 15 cycles, decreased by 0.95%), significantly enhanced the adsorbent recycling stability.

  15. Synthesis of Quercetin Loaded Nanoparticles Based on Alginate for Pb(II) Adsorption in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qi, Yun; Jiang, Meng; Cui, Yuan-Lu; Zhao, Lin; Zhou, Xia

    2015-10-01

    Pb(II) is a representative heavy metal in industrial wastewater, which may frequently cause serious hazard to living organisms. In this study, comparative studies between alginate nanoparticles (AN) and quercetin-decorated alginate nanoparticles (Q-AN) were investigated for Pb(II) ion adsorption. Characterization of AN and Q-AN were analysed by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffractometer (XRD), and thermogravimetric analysis (TG-DTG-DSC). The main operating conditions such as pH, initial concentration of Pb(II), and co-existing metal ions were also investigated using a batch experiment. AN and Q-AN, with a diameter of 95.06 and 58.23 nm, were constituted by many small primary nanoparticles. It revealed that when initial concentration of Pb(II) is between 250 and 1250 mg L-1, the adsorption rate and equilibrium adsorption were increased with the increase of pH from 2 to 7. The maximum adsorption capacities of 147.02 and 140.37 mg L-1 were achieved by AN and Q-AN, respectively, with 0.2 g adsorbents in 1000 mg L-1 Pb(II) at pH 7. The adsorption rate of Pb(II) was little influenced by the co-existing metal ions, such as Mn(II), Co(II), and Cd(II). Desorption experiments showed that Q-AN possessed a higher desorption rate than AN, which were 90.07 and 83.26 %, respectively. AN and Q-AN would probably be applied as adsorbents to remove Pb(II) and then recover it from wastewater for the advantages of simple preparation, high adsorption capacity, and recyclability.

  16. [Process of adsorption and separating recovery solvents from vapor mixture directly].

    PubMed

    Wang, Hong-Yu; Qiang, Ning; Hu, Xia

    2011-12-01

    Experiment on process feasibility of adsorption and separating recovery of organic compounds directly from waste gas was conducted with the activated carbon column train consists of 4 units in serial. Isopropyl alcohol and toluene vapor mixture was used as target gas, which are the common constituents of the gas emitted from fine ceramic manufacture. The experimental results showed obvious adsorption stratification phenomena alone the activated carbon column length for the vapor mixture. Under the condition of superficial gas velocity of 0.42 m x s(-1), inlet concentration of 477 mg x m(-3) and 746 mg x m(-3) for isopropyl alcohol and toluene respectively, 26 cm total carbon packing length of the four column serial train, when the adsorption time reached 798 min, the adsorption capacities for toluene and isopropyl alcohol are 184.5 mg x g(-1) and 0 mg x g(-1) respectively in 0-10 cm section, and 0.92 mg x g(-1) and 91.2 mg x g(-1) respectively in 21-26 cm section, liquids with over 99% purity of isopropyl alcohol and toluene were recovered separately from the two end columns of the carbon column train. There is a gaseous concentration amplifier zone in the carbon column for the weaker adsorbate, isopropyl alcohol, which make the adsorption capacity of isopropyl alcohol increase over 27% in part of the down flow zone in this experiment. It is possible to directly recover the pure solvent liquid separately from the vapor mixture by the way of a serial adsorption column with separating stage recovering.

  17. Adsorption of Roxarsone onto Drinking Water Treatment Residuals: Preliminary Studies

    NASA Astrophysics Data System (ADS)

    Salazar, J.; Sarkar, D.; Datta, R.; Sharma, S.

    2006-05-01

    Roxarsone (3-nitro-4-hydroxyphenyl-arsonic acid) is an organo-arsenical compound, commonly used as a feed additive in the broiler poultry industry to control coccidial intestinal parasites. Roxarsone is not toxic to the birds not only because of the low dose, and also because it most likely does not convert to toxic inorganic arsenic (As) in their systems. However, upon excretion, roxarsone may undergo transformation to inorganic As, posing a serious risk of contaminating the agricultural land and water bodies via surface runoff or leaching. The use of poultry litter as fertilizer results in As accumulation rates of up to 50 metric tons per year in agricultural lands. The immediate challenge, as identified by the various regulatory bodies in recent years is to develop an efficient, yet cost-effective and environmentally sound approach to cleaning up such As- contaminated soils. Recent studies conducted by our group have suggested that the drinking water treatment residuals (WTRs) can effectively retain As, thereby decreasing its mobility in the environment. The WTRs are byproducts of drinking water treatment processes and are typically composed of amorphous Fe/Al oxides, activated C and cationic polymers. They can be obtained free-of-cost from water treatment plants. It is well demonstrated that the environmental mobility of As is controlled by adsorption/desorption reactions onto mineral surfaces. Hence, knowledge of adsorption and desorption of As onto the WTRs is of environmental relevance. The reported study examined the adsorption and desorption characteristics of As using two types of WTRs, namely the Fe-WTRs (byproduct of Fe salt treatment), and the Al-WTRs (byproduct of Al salt treatment). All adsorption experiments were carried out in batch and As retention on the WTRs was investigated as a function of solid/solution ratio (1:5, 1:10, 1:25 and 1:50), equilibration time (10 min - 48 hr), pH (2 - 10) and initial As load (100, 500, 1000 and 2000 mg As/L). The

  18. Single and binary adsorption of proteins on ion-exchange adsorbent: The effectiveness of isothermal models.

    PubMed

    Liang, Juan; Fieg, Georg; Shi, Qing-Hong; Sun, Yan

    2012-09-01

    Simultaneous and sequential adsorption equilibria of single and binary adsorption of bovine serum albumin and bovine hemoglobin on Q Sepharose FF were investigated in different buffer constituents and initial conditions. The results in simultaneous adsorption showed that both proteins underwent competitive adsorption onto the adsorbent following greatly by protein-surface interaction. Preferentially adsorbed albumin complied with the universal rule of ion-exchange adsorption whereas buffer had no marked influence on hemoglobin adsorption. Moreover, an increase in initial ratios of proteins was benefit to a growth of adsorption density. In sequential adsorption, hemoglobin had the same adsorption densities as single-component adsorption. It was attributed to the displacement of preadsorbed albumin and multiple layer adsorption of hemoglobin. Three isothermal models (i.e. extended Langmuir, steric mass-action, and statistical thermodynamic (ST) models) were introduced to describe the ion-exchange adsorption of albumin and hemoglobin mixtures. The results suggested that extended Langmuir model gave the lowest deviation in describing preferential adsorption of albumin at a given salt concentration while steric mass-action model could very well describe the salt effect in albumin adsorption. For weaker adsorbed hemoglobin, ST model was the preferred choice. In concert with breakthrough data, the research further revealed the complexity in ion-exchange adsorption of proteins.

  19. Adsorption of star polymers

    NASA Astrophysics Data System (ADS)

    Halperin, A.; Joanny, J. F.

    1991-06-01

    The adsorption of star polymers on a flat solid surface is analyzed by means of scalling arguments based on the Daoud-Cotton blob model. For the adsorption of a single star, consisting of f arms comprising each N monomers, we distinguish three regimes determined by the adsorption energy of a monomer at the surface, δ kT. 1) Strong adsorption characterized by the full adsorption of all arms occurs for δ > (f/N)^{3/5}. 2) A “Sombrero” like structure comprising f_ads fully adsorbed arms and f{-}f_ads free arms is obtained for (f/N)^{3/5}> δ > f^{9/20}/N^{3/5}. 3) Weakly adsorbed stars retain, essentially, the structure of a free star. This regime occurs for δ < f^{9/20}/N^{3/5}. The weakly adsorbed structure may also exist as a metastable state if δ > f^{9/5}/N^{3/5}. Nous étudions l'adsorption de polymères en étoile sur une surface solide en utilisant une approche de lois d'échelles basée sur le modèle de blobs de Daoud et Cotton. Pour une étoile formée de f bras contenant chacun N monomères, nous distinguons trois régimes suivant la valeur de l'énergie d'adsorption d'un monomère sur la surface δ kT. 1) L'adsorption forte caractérisée par une adsorption complète de tous les bras se produit lorsque δ > (f/N)^{3/5}. 2) Une structure en “sombrero” avec f_ads bras adsorbés et f{-}f_ads bras libres est obtenue si f^{9/20}/N^{3/5}δ < (f/N)^{3/5}. 3) Les étoiles faiblement adsorbées gardent une structure très similaire à celle des étoiles libres en solution. Ce régime existe si δ < f^{9/20}/N^{3/5}. La structure correspondant aux étoiles faiblement adsorbées peut aussi exister comme un état métastable si δ > f^{9/5}/N^{3/5}.

  20. Zn isotope fractionation during adsorption on birnessite

    NASA Astrophysics Data System (ADS)

    Bryan, A. L.; Dong, S.; Wasylenki, L. E.

    2013-12-01

    The biogeochemical cycling of zinc (Zn), an important micronutrient in the ocean, may influence primary productivity and species composition within surface waters. The chemical speciation and bioavailability of Zn is governed by diverse abiotic and biotic processes. These processes include adsorption reactions at mineral/water interfaces, as nanoparticles of oxyhydroxide minerals are known to adsorb significant amounts of Zn in surface waters (and during formation of ferromanganese crusts). Investigation of Zn isotope fractionation caused by adsorption onto birnessite, the dominant manganese oxide mineral in ferromanganese crusts, may help to explain the enrichment of heavy Zn isotopes in ferromanganese crusts. This will provide insight into the role of adsorption of Zn to nanoparticulate minerals in surface waters and into the overall biogeochemical cycling of Zn. This work aims to determine the mechanism and magnitude of Zn isotope fractionation during adsorption onto synthetic birnessite (KMn2O4.1.5H2O). Our simple-system experiments involve mixing solutions of 130 ppb Zn with aliquots of birnessite suspension (proportions varied to give a range of surface coverage) and a fixed pH near that of seawater at ~8.5. The mixtures react for 48 hours. The recovered dissolved Zn and adsorbed Zn are then separated, purified, and analyzed isotopically on a Nu Plasma MC-ICP-MS. Preliminary results show enrichment of light Zn isotopes on the mineral surfaces (Δ66/64Znsorbed-aqueous = -0.3‰). A time series will reveal whether this process is governed by equilibrium or Rayleigh fractionation. Contrary to our results, previously published studies led us to hypothesize that isotopically heavy Zn would adsorb compared to co-existing dissolved Zn. Maréchal et al. (2000) recorded ferromanganese crusts that were heavier than seawater with a mean δ66Zn value of 0.90‰. Dissolved Zn is octahedrally coordinated with oxygen atoms, but an EXAFS study by Manceau et al. (2002

  1. Study on the adsorption feature of rutin aqueous solution on macroporous adsorption resins.

    PubMed

    Chen, Zhenbin; Zhang, Anjie; Li, Jie; Dong, Fang; Di, Duolong; Wu, Youzhi

    2010-04-15

    The adsorption feature of different kinds of polystyrene-based macroporous adsorption resins (MARs) was investigated systemically at constant temperature employing Rutin as the adsorbate. Different from traditional adsorption patterns, Langmuir and Freundlich adsorption, and the results showed interesting aspects: (1) With the increase of the volume of the initial solution, the adsorption capacity increased to the maximum, and then decreased gradually. (2) Experimental results clearly verified the opinion that the adsorption process of MARs could be divided into three stages-macropores, mesopores, and micropores-by the capillary effects occurring at the two intersections, and the adsorption feature for every stage could be described well by the fourth type of Brunauer model. (3) The model that the inductive effect transmitted to the first layer could not interpret our experimental results reasonably. Thus, the model that the inductive effect passed on to a higher layer was proposed by investigating regression of the experimental results and the conclusion that the inductive effect transmitted to the third layer was drawn.

  2. Molecular simulation of carbon dioxide adsorption for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Tenney, Craig M.

    Capture of CO2 from fossil fuel power plants and sequestration in unmineable coal seams are achievable methods for reducing atmospheric emissions of this greenhouse gas. To aid the development of effective CO2 capture and sequestration technologies, a series of molecular simulation studies were conducted to study the adsorption of CO2 and related species onto heterogeneous, solid adsorbents. To investigate the influence of surface heterogeneity upon adsorption behavior in activated carbons and coal, isotherms were generated via grand canonical Monte Carlo (GCMC) simulation for CO2 adsorption in slit-shaped pores with several variations of chemical and structural heterogeneity. Adsorption generally increased with increasing oxygen content and the presence of holes or furrows, which acted as preferred binding sites. To investigate the potential use of the flexible metal organic framework (MOF) Cu(BF4)2(bpy)2 (bpy=bipyridine) for CO2 capture, pure- and mixed-gas adsorption was simulated at conditions representative of power plant process streams. This MOF was chosen because it displays a novel behavior in which the crystal structure reversibly transitions from an empty, zero porosity state to a saturated, expanded state at the "gate pressure". Estimates of CO2 capacity above the gate pressure from GCMC simulations using a rigid MOF model showed good agreement with experiment. The CO2 adsorption capacity and estimated heats of adsorption are comparable to common physi-adsorbents under similar conditions. Mixed-gas simulations predicted CO2/N2 and CO2/H 2selectivities higher than typical microporous materials. To more closely investigate this gating effect, hybrid Monte-Carlo/molecular-dynamics (MCMD) was used to simulate adsorption using a flexible MOF model. Simulation cell volumes remained relatively constant at low gas pressures before increasing at higher pressure. Mixed-gas simulations predicted CO2/N 2 selectivities comparable to other microporous adsorbents. To

  3. Adsorption on Highly Ordered Porous Alumina

    NASA Astrophysics Data System (ADS)

    Mistura, Giampaolo; Bruschi, Lorenzo; Lee, Woo

    2016-10-01

    Porous anodic aluminum oxide (AAO) is characterized by a regular arrangement of the pores with a narrow pore size distribution over extended areas, uniform pore depth, and solid pore walls without micropores. Thanks to significant improvements in anodization techniques, structural engineering of AAO allows to accurately tailor the pore morphology. These features make porous AAO an excellent substrate to study adsorption phenomena. In this paper, we review recent experiments involving the adsorption in porous AAO. Particular attention will be devoted to adsorption in straight and structured pores with a closed end which shed new light on fundamental issues like the origin of hysteresis in closed end pores and the nature of evaporation from ink-bottle pores. The results will be compared to those obtained in other synthetic materials like porous silicon and silica.

  4. Adsorption kinetics of silicic acid on akaganeite.

    PubMed

    Naren, Gaowa; Ohashi, Hironori; Okaue, Yoshihiro; Yokoyama, Takushi

    2013-06-01

    As part of a series of studies on the interaction between ferric ions and silicic acid in the hydrosphere, the adsorption of silicic acid on akaganeite was investigated kinetically at various pH values. The adsorption of silicic acid increased with increasing pH over an initial pH range of 4-11.5. In the kinetic experiment, the Cl(-) was released from akaganeite much faster than silicic acid was adsorbed. From this result, we concluded that chloride ions bound on the surface of akaganeite are released and Fe-OH or Fe-O(-) sites are formed, which then acts as an adsorption site for silicic acid. The uptake mechanism of silicic acid by akaganeite is significantly different from that by schwertmannite, despite the presence of the same tunnel structure.

  5. Adsorption of Amelogenin onto Self-Assembled and Fluoroapatite Surfaces

    SciTech Connect

    Tarasevich, Barbara J.; Lea, Alan S.; Bernt, William; Engelhard, Mark H.; Shaw, Wendy J.

    2009-02-19

    Abstract. The interactions of proteins at surfaces are of great importance to biomineralizaton processes and to the development and function of biomaterials. Amelogenin is a unique biomineralization protein because it self-assembles to form supramolecular structures called “nanospheres,” spherical aggregates of monomers that are 20-60 nm in diameter. Although the nanosphere quaternary structure has been observed in solution, the quaternary structure of amelogenin adsorbed onto surfaces is also of great interest because the surface structure is critical to its function. We report studies of the adsorption of the amelogenin onto self-assembled monolayers (SAMs) with COOH and CH3 end group functionality and single crystal fluoroapatite (FAP). Dynamic light scattering (DLS) experiments showed that the solutions contained nanospheres and aggregates of nanospheres. Protein adsorption onto the various substrates was evidenced by null ellipsometry, x-ray photoelectron spectroscopy (XPS), and external reflectance Fourier transform infrared spectroscopy (ERFTIR). Although only nanospheres were observed in solution, ellipsometry and atomic force microscopy (AFM) indicated that the protein adsorbates were much smaller structures than the original nanospheres, from monomers to small oligomers in size. Monomer adsorption was promoted onto the CH3 surfaces and small oligomer adsorption was promoted onto the COOH and FAP substrates. In some cases, remnants of the original nanospheres adsorbed as multilayers on top of the underlying subnanosphere layers. This work suggests that amelogenin can adsorb by the “shedding” or disassembling of substructures from the nanospheres onto substrates and indicates that amelogenin may have a range of possible quaternary structures depending on whether it is in solution or interacting with surfaces.

  6. Adsorption studies of methylene blue dye on tunisian activated lignin

    NASA Astrophysics Data System (ADS)

    Kriaa, A.; Hamdi, N.; Srasra, E.

    2011-02-01

    Activated carbon prepared from natural lignin, providing from a geological deposit, was used as the adsorbent for the removal of methylene blue (MB) dye from aqueous solutions. Batch adsorption studies were conducted to evaluate various experimental parameters like pH and contact time for the removal of this dye. Effective pH for MB removal was 11. Kinetic study showed that the adsorption of dye was gradual process. Quasi equilibrium reached in 4 h. Pseudo-first-order, pseudo-second-order were used to fit the experimental data. Pseudo-second-order rate equation was able to provide realistic description of adsorption kinetics. The experimental isotherms data were also modelled by the Langmuir and Freundlich equation of adsorption. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 147 mg/g. Activated lignin was shown to be a promising material for adsorption of MB from aqueous solutions.

  7. Communication: Thermodynamic analysis of critical conditions of polymer adsorption

    NASA Astrophysics Data System (ADS)

    Cimino, R.; Rasmussen, C. J.; Neimark, A. V.

    2013-11-01

    Polymer adsorption to solid surfaces is a ubiquitous phenomenon, which has attracted long-lasting attention. Dependent on the competition between the polymer-solid adsorption and polymer-solvent solvation interactions, a chain may assume either 3d solvated conformation when adsorption is weak or 2d adsorbed conformation when adsorption is strong. The transition between these conformations occurring upon variation of adsorption strength is quite sharp, and in the limit of "infinite" chain length, can be treated as a critical phenomenon. We suggest a novel thermodynamic definition of the critical conditions of polymer adsorption from the equality of incremental chemical potentials of adsorbed and free chains. We show with the example of freely jointed Lennard-Jones chains tethered to an adsorbing surface that this new definition provides a link between thermodynamic and geometrical features of adsorbed chains and is in line with classical scaling relationships for the fraction of adsorbed monomers, chain radii of gyration, and free energy.

  8. CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS

    SciTech Connect

    Xiao, S.; Heung, L.

    2010-10-07

    Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

  9. Communication: Thermodynamic analysis of critical conditions of polymer adsorption

    SciTech Connect

    Cimino, R.; Neimark, A. V.; Rasmussen, C. J.

    2013-11-28

    Polymer adsorption to solid surfaces is a ubiquitous phenomenon, which has attracted long-lasting attention. Dependent on the competition between the polymer-solid adsorption and polymer-solvent solvation interactions, a chain may assume either 3d solvated conformation when adsorption is weak or 2d adsorbed conformation when adsorption is strong. The transition between these conformations occurring upon variation of adsorption strength is quite sharp, and in the limit of “infinite” chain length, can be treated as a critical phenomenon. We suggest a novel thermodynamic definition of the critical conditions of polymer adsorption from the equality of incremental chemical potentials of adsorbed and free chains. We show with the example of freely jointed Lennard-Jones chains tethered to an adsorbing surface that this new definition provides a link between thermodynamic and geometrical features of adsorbed chains and is in line with classical scaling relationships for the fraction of adsorbed monomers, chain radii of gyration, and free energy.

  10. DNA adsorption by indium tin oxide nanoparticles.

    PubMed

    Liu, Biwu; Liu, Juewen

    2015-01-01

    The high conductivity and optical transparency of indium tin oxide (ITO) has made it a popular material in the electronic industry. Recently, its application in biosensors is also explored. To understand its biointerface chemistry, we herein investigate its interaction with fluorescently labeled single-stranded oligonucleotides using ITO nanoparticles (NPs). The fluorescence of DNA is efficiently quenched after adsorption, and the interaction between DNA and ITO NPs is strongly dependent on the surface charge of ITO. At low pH, the ITO surface is positively charged to afford a high DNA adsorption capacity. Adsorption is also influenced by the sequence and length of DNA. For its components, In2O3 adsorbs DNA more strongly while SnO2 repels DNA at neutral pH. The DNA adsorption property of ITO is an averaging result from both components. DNA adsorption is confirmed to be mainly by the phosphate backbone via displacement experiments using free phosphate or DNA bases. Last, DNA-induced DNA desorption by forming duplex DNA is demonstrated on ITO, while the same reaction is more difficult to achieve on other metal oxides including CeO2, TiO2, and Fe3O4 because these particles adsorb DNA more tightly.

  11. Kinetics and mechanism of adsorption of methylene blue from aqueous solution by nitric-acid treated water-hyacinth.

    PubMed

    El-Khaiary, Mohammad I

    2007-08-17

    Kinetics adsorption experiments were conducted to evaluate the adsorption characteristics of a cationic dye (methylene blue, MB) onto nitric-acid treated water-hyacinth (N-WH). Results showed that N-WH can remove MB effectively from aqueous solution. The loading of MB onto N-WH was found to increase significantly with increasing the initial MB concentration, but the residual concentration of MB in solution also increased. A complete removal of MB from solution was only achieved at the lower range of initial MB concentration (less than 286 mg/L). Temperature had a slight effect on the amount adsorbed at equilibrium. The adsorption rate was fast and more than half of the adsorbed-MB was removed in the first 15 min at room temperature, which makes the process practical for industrial application. The adsorption kinetics at room temperature could be expressed by the pseudo second order model, while at higher temperatures (45-80 degrees C) and low MB concentration (97 mg/L) both Lagergren's model and the pseudo second order model can be used to predict the kinetics of adsorption. The overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, then gradually changed to intraparticle diffusion control at a later stage. The initial period where external mass transfer is the rate controlling step was found to increase with increasing initial MB concentration and decrease with increasing temperature. The increase in temperature was also found to increase the rate of adsorption and reduce the time required to reach equilibrium. The initial rate of adsorption, h(o), was calculated, it was found to increase with increasing temperature, while the increase in MB concentration decreased h(o) at the lower concentration range then increased h(o) again at high concentration. The value of the activation coefficient, E, was found to be 8.207 kJ/mol, which indicates a diffusion controlled process.

  12. Adsorption of emulsified oil from metalworking fluid on activated bleaching earth-chitosan-SDS composites: Optimization, kinetics, isotherms.

    PubMed

    Naowanat, Nitiya; Thouchprasitchai, Nutthavich; Pongstabodee, Sangobtip

    2016-03-15

    The adsorption of emulsified oil from metalworking fluid (MWF) on activated bleaching earth (BE)-chitosan-sodium dodecyl sulfate (SDS) composites (BE/MCS) was investigated under a statistical design of experiments at a 95% confidence interval to identify the critical factors and to optimize the adsorption capacity. The BE/MCS adsorbents were characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller adsorption/desorption isotherms, contact angle analysis (sessile drop technique) and their zeta potential. From the results of a full 2(5) factorial design with three center points, the adsorbent weight and initial pH of the MWF had a significant antagonistic effect on the adsorption capacity while the initial MWF concentration and BE:chitosan:SDS weight ratio had a synergistic influence. Temperature factor has no discernible effect on the capacity. From the FCCC-RSM design, the optimal capacity range of 2840-2922.5 mg g(-1) was achieved at sorbent weight of 1.6-1.9 g, pH of 5.5-6.5, initial MWF concentration of 52-55 g l(-1) and BE:chitosan:SDS (w/w/w) ratio of 4.7:1:1-6.2:1:1. To test the validation and sensitivity of RSM model, the results showed that the estimated adsorption capacity was close to the experimental capacity within an error range of ±3%, suggesting that the RSM model was acceptable and satisfied. From three kinetics models (pseudo-first-order, pseudo-second-order model and Avrami's equation) and two adsorption isotherms (Langmuir model and Freundlich model), assessed using an error function (Err) and the coefficient of determination (R(2)), Avrami's equation and Freundlich isotherm model provided a good fitting for the data, suggesting the presence of more than one reaction pathway in the MWF adsorption process and the heterogeneous surface adsorption of the BC/ABE-5.5 composite.

  13. Arsenic(V) adsorption-desorption in agricultural and mine soils: Effects of organic matter addition and phosphate competition.

    PubMed

    Arco-Lázaro, Elena; Agudo, Inés; Clemente, Rafael; Bernal, M Pilar

    2016-09-01

    High total and bioavailable concentrations of As in soils represent a potential risk for groundwater contamination and entry in the food chain. The use of organic amendments in the remediation of As-contaminated soils has been found to produce distinct effects on the solubility of As in the soil. Therefore, knowledge about As adsorption-desorption processes that govern its solubility in soil is of relevance in order to predict the behaviour of this element during these processes. In this paper, the objective was to determine As adsorption and desorption in four different soils, with and without compost addition, and also in competition with phosphate, through the determination of sorption isotherms. Batch experiments were carried out using three soils affected differently by previous mining activity of the Sierra Minera of La Unión-Cartagena (SE Spain) and an agricultural soil from Segovia province (central Spain). Adsorption was higher in the mining soils (and highest in the acidic one) than in the agricultural soils, although the latter were not affected negatively by organic matter or phosphate competition for sorption sites. The results show that As adsorption in most soils, both with and without compost, fitted better a multimolecular layer model (Freundlich), whereas As adsorption in competition with P fitted a monolayer model (Langmuir). Moreover, the use of compost and phosphate reduced the adsorption of As in the mining soils, while in the agricultural soils compost increased their low adsorption capacity. Therefore, the use of compost can be a good option to favour As immobilisation in soils of low adsorption, but knowledge of the soil composition will be crucial to predict the effects of organic amendments on As solubility in soils and its associated environmental risk.

  14. Adsorption of hydraulic fracturing fluid components 2-butoxyethanol and furfural onto granular activated carbon and shale rock.

    PubMed

    Manz, Katherine E; Haerr, Gregory; Lucchesi, Jessica; Carter, Kimberly E

    2016-12-01

    The objective of this study was to understand the adsorption ability of a surfactant and a non-surfactant chemical additive used in hydraulic fracturing onto shale and GAC. Experiments were performed at varying temperatures and sodium chloride concentrations to establish these impacts on the adsorption of the furfural (a non-surfactant) and 2-Butoxyethanol (2-BE) (a surfactant). Experiments were carried out in continuously mixed batch experiments with Langmuir and Freundlich isotherm modeling. The results of the experiments showed that adsorption of these compounds onto shale does not occur, which may allow these compounds to return to the surface in flowback and produced waters. The adsorption potential for these chemicals onto GAC follows the assumptions of the Langmuir model more strongly than those of the Freundlich model. The results show uptake of furfural and 2-BE occurs within 23 h in the presence of DI water, 0.1 mol L(-1) sodium chloride, and in lab synthesized hydraulic fracturing brine. Based on the data, 83% of the furfural and 62% of the 2-BE was adsorbed using GAC.

  15. Ozone adsorption on carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles < 50 nm), under magnetic stirring. The aerosol was then mixed with ozone in an aerosol flow tube. Ozone uptake experiments were performed with different particles concentrations with a fixed ozone concentration. The influence of several factors on kinetics was examined: initial ozone concentration, particle size (50 nm ≤ Dp ≤ 200 nm) and competitive adsorption (with probe molecule and water). The effect of initial ozone concentration was first studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were

  16. Selective Ion Pair Adsorption of Cobalt and Copper Salts on Cationically Produced Poly(1,3-divinylimidazolid-2-one)/Silica Hybrid Particles.

    PubMed

    Meyer, Torsten; Prause, Silvio; Spange, Stefan; Friedrich, Manfred

    2001-04-15

    For quantitative metal salt adsorption, poly(1,3-divinylimidazolid-2-one)/silica [poly BVU(cat.)/silica] particles with different polymer contents have been synthesized by a cationic surface polymerization of 1,3-divinylimidazolid-2-one onto silica. Preliminary experiments with the metal ion salts CoCl(2), CoI(2), CuCl(2), and FeCl(3) on poly-BVU(cat.)/silica particles, a radically produced poly-BVU(rad.) resin, and a cationically produced poly-BVU(cat.) resin have been carried in acetone solution to check the suitability of the adsorbents. The adsorption mechanism for Co(2+) and Cu(2+) on poly-BVU(cat.)/silica is in accordance with the Langmuir model for monolayer adsorption as shown by quantitative adsorption measurements by means of UV/vis spectroscopy. An ion pair adsorption mechanism is suggested for CoCl(2), CoI(2), and CuCl(2) on poly-BVU(cat.)/silica because both environments cationically produced poly-BVU and residual silanol groups are required for linking the cation and anion. ESR spectroscopic results of CoCl(2)-, CuCl(2)-, and FeCl(3)-poly-BVU(cat.)/silica hybrid adsorbates show selective adsorption for Co(2+) and Cu(2+). However, two different adsorption sites are indicated for Fe(3+) on poly-BVU(cat.)/silica. Copyright 2001 Academic Press.

  17. Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers: II. Adsorption kinetics.

    PubMed

    Tao, Yinying; Carta, Giorgio; Ferreira, Gisela; Robbins, David

    2011-03-18

    Single and multicomponent batch adsorption kinetics were obtained for deamidated mAb variants on two commercial cation exchangers, one with an open macroporous structure--UNOsphere S--and the other with charged dextran grafts--Capto S. The adsorption kinetics for the macroporous matrix was found to be controlled largely by pore diffusion. The effective diffusivity estimated from single component data was a fraction of the mAb free solution diffusivity, and its value could be used to accurately predict the adsorption kinetics for two- and three-component systems. In this case, when two or more variants were adsorbed simultaneously, both experimental and predicted results showed a temporary overshoot of the amount adsorbed above the equilibrium value for the more deamidated variant followed by a gradual approach to equilibrium. Adsorption rates on the dextran grafted material were much faster than those observed for the macroporous matrix for both single component and simultaneous adsorption cases. In this case, no significant overshoot was observed for the more deamidated forms. The Capto S adsorption kinetics could be described well by a diffusion model with an adsorbed phase driving force for single component adsorption and for the simultaneous adsorption of multiple variants. However, this model failed to predict the adsorption kinetics when more deamidated forms pre-adsorbed on the resin were displaced by less deamidated ones. In this case, the kinetics of the displacement process was much slower indicating that the pre-adsorbed components severely hindered transport of the more strongly bound variants. Overall, the results indicate that despite the lower capacity, the macroporous resin may be more efficient in process applications where displacement of one variant by another takes place as a result of the faster and more predictable kinetics.

  18. [Adsorption of Cd2+ on biochar from aqueous solution].

    PubMed

    Guo, Wen-juan; Liang, Xue-feng; Lin, Da-song; Xu, Ying-ming; Wang, Lin; Sun, Yue-bing; Qin, Xu

    2013-09-01

    Biomass-based materials such as biochar have a good performance in heavy metal adsorption. The adsorption of Cd2+ on biochar converted from cotton straw was studied. Adsorption isotherm, kinetics and effect factors such as temperature, pH and ionic strength were investigated. The adsorption of Cd2+ on biochar can be fitted by the Freundlich isotherm better than the Langmuir isotherm. The maximum adsorption amounts of Cd2+ at different temperatures were 9.738 mg x g(-1) (288.15 K), 10.14 mg x g(-1) (298.15 K), 10.40 mg x g(-1) (308.15 K) and 10.71 mg x g(-1) (318.15 K), respectively. The free energies AG(theta) were from -8.346 kJ x mol(-1) to -10.276 kJ x mol(-1) at different temperatures, indicating that the adsorption of Cd2+ onto biochar is spontaneous and is an endothermic process. The adsorption process can reach equilibrium within 40 minutes and can be fitted by the pseudo second order kinetic model. pH showed a significant effect on the adsorption of Cd2+ on biochar in the range of 2-8. The adsorption amount of Cd2+ on biochar shows a reducing trend with the increasing ionic strength.

  19. DNA adsorption to and elution from silica surfaces: influence of amino acid buffers.

    PubMed

    Vandeventer, Peter E; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S; Niemz, Angelika

    2013-09-19

    Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction.

  20. Adsorption of aqueous copper on peanut hulls

    NASA Astrophysics Data System (ADS)

    Davis, Kanika Octavia

    , scanning electron microscopy images coupled with energy dispersive X-ray spectroscopy showed that the percentage of copper on the modified hulls (2.5 %) was greater than on the unmodified hulls (1.6 %). This study concluded that the adsorption of copper using peanut hulls is a potential method for wastewater treatment and delignification and oxidation of the hulls increases the adsorption capacity approximately three-fold.

  1. Adsorption isotherms of cellulose-based polymers onto cotton fibers determined by means of a direct method of fluorescence spectroscopy.

    PubMed

    Hoffmann, Ingo; Oppel, Claudia; Gernert, Ulrich; Barreleiro, Paula; von Rybinski, Wolfgang; Gradzielski, Michael

    2012-05-22

    We present a novel method for the measurement of polymer adsorption on fibers by employing fluorescently labeled polymers. The method itself can be used for any compound that either shows fluorescence or can be labeled with a fluorescent dye, which renders it ubiquitously applicable for adsorption studies. The main advantage of the method is that the choice of adsorbent is not limited to flat surfaces, thereby allowing the investigation of fibrous and porous systems. As an example of high interest for application we determined the adsorption isotherms of various polysaccharide-based polymers with different charges and different substituents on cotton fibers. These experiments show that the extent of adsorption depends not only on the charge conditions but also very much on the specific interactions between the polymer and fiber. For instance, the cationic hydroxyethyl cellulose can become bound to an extent similar to that of the anionic alginate, while the anionic carboxymethyl cellulose of similar charge density adsorbs much less under these conditions. This shows that the adsorption of polymers depends subtly on the details of the interaction between the polymer and fiber but can be determined with good precision with our direct fluorescence method.

  2. Optimizing the physical-chemical properties of carbon nanotubes (CNT) and graphene nanoplatelets (GNP) on Cu(II) adsorption.

    PubMed

    Rosenzweig, Shirley; Sorial, George A; Sahle-Demessie, Endalkachew; McAvoy, Drew C

    2014-08-30

    Systematic experiments of copper adsorption on 10 different commercially available nanomaterials were studied for the influence of physical-chemical properties and their interactions. Design of experiment and response surface methodology was used to develop a polynomial model to predict maximum copper adsorption (initial concentration, Co=10mg/L) per mass of nanomaterial, qe, using multivariable regression and maximum R-square criterion. The best subsets of properties to predict qe in order of significant contribution to the model were: bulk density, ID, mesopore volume, tube length, pore size, zeta-charge, specific surface area and OD. The highest experimental qe observed was for an alcohol-functionalized MWCNT (16.7mg/g) with relative high bulk density (0.48g/cm(3)), ID (2-5nm), 10-30μm long and OD<8nm. Graphene nanoplatelets (GNP) showed poor adsorptive capacity associated to stacked-nanoplatelets, but good colloidal stability due to high functionalized surface. Good adsorption results for pristine SWCNT indicated that tubes with small diameter were more associated with good adsorption than functionalized surface. XPS and ICP analysis explored surface chemistry and purity, but pHpzc and zeta-charge were ultimately applied to indicate the degree of functionalization. Optimum CNT were identified in the scatter plot, but actual manufacturing processes introduced size and shape variations which interfered with final property results.

  3. Evaluation of the isosteric heat of adsorption at zero coverage for hydrogen on activated carbons

    NASA Astrophysics Data System (ADS)

    Dohnke, E.; Beckner, M.; Romanos, J.; Olsen, R.; Wexler, C.; Pfeifer, P.

    2011-03-01

    Activated carbons made from corn cob show promise as materials for high-capacity hydrogen storage. As part of our characterization of these materials, we are interested in learning how different production methods affect the adsorption energies. In this talk, we will show how hydrogen adsorption isotherms may be used to calculate these adsorption energies at zero coverage using Henry's law. We will additionally discuss differences between the binding energy and the isosteric heat of adsorption by applying this analysis at different temperatures.

  4. Hey Teacher, Your Personality's Showing!

    ERIC Educational Resources Information Center

    Paulsen, James R.

    1977-01-01

    A study of 30 fourth, fifth, and sixth grade teachers and 300 of their students showed that a teacher's age, sex, and years of experience did not relate to students' mathematics achievement, but that more effective teachers showed greater "freedom from defensive behavior" than did less effective teachers. (DT)

  5. Effect of cropping systems on adsorption of metals by soils: I. Single-metal adsorption

    SciTech Connect

    Basta, N.T.; Tabatabai, M.A. )

    1992-02-01

    The effect of long-term cropping systems on adsorption of metals was studied for soils obtained from two sites, Clarion-Webster Research Center (CWRC site) at Kanawha and Galva-Primghar Research Center (GPRC site) at Sutherland, under long-term rotation experiments in Iowa. Each experiment consisted of three cropping systems: continuous corn (CCCC), corn-soybean-corn-soybean (CSCS), and corn-oats-meadow-meadow (COMM), and treated with (+N) and without (0 N) ammoniacal fertilizer. In general, CSCS and COMM cropping systems did not significantly affect the metal adsorption maxima of soils obtained from both sites. Cadmium, Cu, and Pb adsorption were significantly correlated with pH and percentage base saturation for soils from both sites.

  6. Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon.

    PubMed

    Namasivayam, C; Kavitha, D

    2003-03-17

    Adsorption of 2-chlorophenol (2-CP) by coir pith carbon was carried out by varying the parameters such as agitation time, 2-CP concentration, adsorbent dose, pH and temperature. Adsorption equilibrium reached at 40, 60, 80 and 100 min for 2-CP concentration of 10, 20, 30 and 40 mg/l, respectively. Adsorption followed second-order kinetics. The adsorption equilibrium data obeyed Freundlich isotherm. Acidic pH was favorable for the adsorption of 2-CP. Desorption studies showed that chemisorption plays a major role in the adsorption process.

  7. Towards an accurate estimation of the isosteric heat of adsorption - A correlation with the potential theory.

    PubMed

    Askalany, Ahmed A; Saha, Bidyut B

    2017-03-15

    Accurate estimation of the isosteric heat of adsorption is mandatory for a good modeling of adsorption processes. In this paper a thermodynamic formalism on adsorbed phase volume which is a function of adsorption pressure and temperature has been proposed for the precise estimation of the isosteric heat of adsorption. The estimated isosteric heat of adsorption using the new correlation has been compared with measured values of prudently selected several adsorbent-refrigerant pairs from open literature. Results showed that the proposed isosteric heat of adsorption correlation fits the experimentally measured values better than the Clausius-Clapeyron equation.

  8. Direct coupling between stress, strain and adsorption reactions - A study on coal-CO2 systems

    NASA Astrophysics Data System (ADS)

    Hol, S.; Peach, C. J.; Spiers, C. J.

    2012-12-01

    Though it is well-known that adsorption reactions frequently assist deformation of porous rocks, very little understanding exists on the direct coupling with stress state and strain. One of the materials in which adsorption plays a large role is coal, as is observed in the particular case of Enhanced Coalbed Methane Production (ECBM), which involves the geological storage of CO2 and the recovery of CH4. In this case, adsorption and the associated swelling cause significant injectivity problems, which is experienced in almost all pilot field projects to date. This suggests that indeed a strong fundamental coupling exists between CO2 sorption, changes in the mechanical state of the coal matrix and changes in the transport properties of the system, and illustrates the need to understand coupled stress-strain-sorption behaviour. In this contribution, we describe several important observations made on coal-CO2 systems that can learn us about many other natural, stressed adsorbate-adsorbent systems. In our experiments, first of all, the adsorption of CO2 in the coal matrix gave rise to swelling. Although this is well-known, we found that the total volumetric strain occurring under unconfined conditions can be realistically modelled (up to at least 100 MPa) as the sum of an adsorption-related expansion term and an elastic compression term. Second, effective in situ stresses will directly reduce the sorption capacity, and associated swelling of the coal matrix significantly. Our general thermodynamic model for the effect of a 3D stress state on adsorbed CO2 concentration supports this observation, and also shows that "self-stressing", as a result of CO2 adsorption occurring under conditions of restricted or zero strain (i.e. fully constrained conditions), will more than double the expected in situ stresses. A constitutive equation was developed to describe the full coupling between stress state, total strain (i.e. combined strain of adsorption processes and poroelasticity

  9. Magnetically-enhanced adsorption of inorganic pollutants from water

    SciTech Connect

    Navratil, J.D.; Kochen, R.L.; Ritter, J.A.

    1995-12-31

    The purpose of this study was to demonstrate magnetic effects on adsorptive properties for the removal of metal ions from waste water. Magnetic adsorbent material in a fixed-bed (column) mode was used for the experiments. A typical experiment involved energizing the magnet to create a field strength of approximately 0.3 Tesla, pumping waste water through the column, and monitoring effluents as a function of time. Magnetic polyamine-epichlorohydrin (MPE) resin was evaluated for plutonium and americium removal; results showed that 325 liters of actinide solution were lowered to 2.77x10{sup -8} g/l plutonium and 7.17x10{sup -10} g/l americium before the plutonium activity in the effluent started to increase. For comparison purpose, the polyamine-epichlorohydrin (PE) resin without magnetite was also evaluated. Minimum concentration observed for plutonium and americium were comparable to the MPE resin; however, breakthrough occurred two orders of magnitude sooner. The results show that the non-magnetic PE resin contributed very little to the adsorption capacity exhibited by the MPE resin, and suggest a synergistic effect between the magnetic field and a porous, magnetic adsorbent material.

  10. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method.

    PubMed

    Tran, Hai Nguyen; You, Sheng-Jie; Chao, Huan-Ping

    2017-03-01

    Activated carbon (AC) was synthesized from golden shower (GS) through a new chemical activation process. The three-stage process comprised (1) hydrothermal carbonization of GS to produce hydrochar, (2) pyrolysis of hydrochar to produce biochar, and (3) subsequent chemical activation of biochar with K2CO3 to obtain GSHBAC. The traditional synthesis processes (i.e., one-stage and two-stage) were also examined for comparison. In the one-stage process, GS that was impregnated with K2CO3 was directly pyrolyzed (GSAC), and the two-stage process consisted of (1) pyrolytic or hydrothermal carbonization to produce biochar or hydrochar and (2) subsequent chemical activation was defined as GSBAC and GSHAC, respectively. The synthesized ACs were characterized by scanning electron microscope, Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared spectrometry, point zero charge, and Boehm titration. The adsorption results demonstrated that the MG5 adsorption process was not remarkably affected by neither the solution pH (2.0-10) nor ionic strength (0-0.5 M NaCl). Kinetic studies showed that the adsorption equilibrium was quickly established, with a low activation energy required for adsorption (Ea; 3.30-27.8 kJ/mol), and the ACs removed 50-73% of the MG5 concentration from solution within 01 min. Desorption studies confirmed the adsorption was irreversible. Thermodynamic experiments suggested that the MG5 adsorption was spontaneous (-ΔG°) and endothermic (+ΔH°), and increased the randomness (+ΔS°) in the system. Although the specific surface areas of the ACs followed the order GSAC (1,413) > GSHAC (1,238) > GSHBAC (903) > GSBAC (812 m(2)/g), the maximum adsorption capacities determined from the Langmuir model (Q(o)max) at 30 °C exhibited the following order: GSHBAC (531) > GSAC (344) > GSHAC (332) > GSBAC (253 mg/g). Oxygenation of the ACs' surface through a hydrothermal process with acrylic acid resulted in a decrease in MG5

  11. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  12. Toward Accurate Adsorption Energetics on Clay Surfaces

    PubMed Central

    2016-01-01

    Clay minerals are ubiquitous in nature, and the manner in which they interact with their surroundings has important industrial and environmental implications. Consequently, a molecular-level understanding of the adsorption of molecules on clay surfaces is crucial. In this regard computer simulations play an important role, yet the accuracy of widely used empirical force fields (FF) and density functional theory (DFT) exchange-correlation functionals is often unclear in adsorption systems dominated by weak interactions. Herein we present results from quantum Monte Carlo (QMC) for water and methanol adsorption on the prototypical clay kaolinite. To the best of our knowledge, this is the first time QMC has been used to investigate adsorption at a complex, natural surface such as a clay. As well as being valuable in their own right, the QMC benchmarks obtained provide reference data against which the performance of cheaper DFT methods can be tested. Indeed using various DFT exchange-correlation functionals yields a very broad range of adsorption energies, and it is unclear a priori which evaluation is better. QMC reveals that in the systems considered here it is essential to account for van der Waals (vdW) dispersion forces since this alters both the absolute and relative adsorption energies of water and methanol. We show, via FF simulations, that incorrect relative energies can lead to significant changes in the interfacial densities of water and methanol solutions at the kaolinite interface. Despite the clear improvements offered by the vdW-corrected and the vdW-inclusive functionals, absolute adsorption energies are often overestimated, suggesting that the treatment of vdW forces in DFT is not yet a solved problem. PMID:27917256

  13. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-08-22

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  14. Preparation and properties of ion-imprinted hollow particles for the selective adsorption of silver ions.

    PubMed

    Hou, Hongbin; Yu, Demei; Hu, Guohe

    2015-02-03

    Four kinds of silver ion-imprinted particles (Ag-IIPs) with different morphologies were prepared by the surface ion-imprinting technology (SIIT) and were used for the selective removal and concentration of silver ions from wastewater. The favorable adsorptivity and selectivity of Ag-IIPs for Ag(+) were confirmed by a series of adsorption experiments at a suitable pH value. The adsorption mechanism was elucidated by analyzing the adsorption isotherms, adsorption thermodynamics, and adsorption kinetics systematically. The Ag(+) adsorption onto the Ag-IIPs was well-described by the Langmuir isotherm model, and it was likely to be a monolayer chemical adsorption. This conclusion was also confirmed by the thermodynamic parameters. Moreover, the adsorption kinetics indicated that the adsorption rate would be controlled jointly by the intraparticle diffusion and the inner surface adsorption process, and the latter process was generally associated with the formation and breaking of chemical bonds. Finally, the effects of different morphologies of the Ag-IIPs for Ag(+) adsorption were also investigated. In aqueous solution, the adsorptivity of the Ag(+) ion-imprinting single-hole hollow particles (Ag-IISHPs) for Ag(+) was highest (80.5 mg g(-1)) because of a specific morphology that features a single hole in the shell. In an oil-water mixture, Ag(+) in the water phase could be adsorbed efficiently by the Ag(+) ion-imprinting Janus hollow particles (Ag-IIJHPs), with emulsifiability originating from the Janus structure.

  15. New Adsorption Methods.

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    1984-01-01

    Discusses a simple method for following the movement of a solute in an adsorption or ion exchange system. This movement is used to study a variety of operational methods, including continuous flow and pulsed flow counter-current operations and simulated counter-current systems. Effect of changing thermodynamic variables is also considered. (JM)

  16. SEPARATION BY ADSORPTION

    DOEpatents

    Lowe, C.S.

    1959-06-16

    Separation of Pu from fission products by adsorption on hydrous aluminum silicate is described. The Pu in a HNO/sub 3/ solution is oxidized to the hexavalent state and contacted with the silicate which adsorbs fission products. (T.R.H.)

  17. [Experience of medical backup of military parade on Red Square. Authors showed data about medical backup of military personnel taking part in the parade on Red Square dedicating to anniversary of victory in the Great Patriotic War].

    PubMed

    Malykh, A B; Iakovlev, S V; Valevskiĭ, V V

    2014-03-01

    Authors showed data about medical backup of military personnel taking part in the parade on Red Square dedicating to anniversary of Victory in the Great Patriotic War. Experience of running such events allowed to work out an algorithm for medical service: preparatory stage, training stage, running of parade, stage of move out to permanent base. During the parade on Red Square for medical care asked 18 people (participants of parade and civilians). Authors came to conclusion that as a result of medical backup of military personnel taking part in the parade no infectious and group diseases were registered.

  18. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    SciTech Connect

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  19. Television Quiz Show Simulation

    ERIC Educational Resources Information Center

    Hill, Jonnie Lynn

    2007-01-01

    This article explores the simulation of four television quiz shows for students in China studying English as a foreign language (EFL). It discusses the adaptation and implementation of television quiz shows and how the students reacted to them.

  20. Determination of binding capacity and adsorption enthalpy between Human Glutamate Receptor (GluR1) peptide fragments and kynurenic acid by surface plasmon resonance experiments. Part 2: Interaction of GluR1270-300 with KYNA.

    PubMed

    Csapó, E; Bogár, F; Juhász, Á; Sebők, D; Szolomájer, J; Tóth, G K; Majláth, Z; Vécsei, L; Dékány, I

    2015-09-01

    In the course of our previous work, the interactions of two peptide fragments (GluR1201-230 and GluR1231-259) of human glutamate receptor (GluR1201-300) polypeptide with kynurenic acid (KYNA) were investigated by surface plasmon resonance (SPR) spectroscopy. Besides quantitation of the interactions, the enthalpies of binding of KYNA on certain peptide fragment-modified gold surfaces were also reported. In the present work, a third peptide fragment (GluR1270-300) of the glutamate receptor was synthesized and its interaction with KYNA was investigated by an SPR technique. This 31-membered peptide was chemically bonded onto a gold-coated SPR chip via a cysteine residue. The peptide-functionalized biosensor chip was analyzed by atomic force microscopy (AFM) and theoretical calculations were performed on the structure and dimensions of the peptide on the gold surface. In order to determine the isosteric heat of adsorption of the binding of KYNA on the peptide-functionalized gold thin film, SPR experiments were carried out between +10°C and +40°C. The results on the GluR1270-300-KYNA system were compared with the previously published binding parameters of the interactions of GluR1201-230 and GluR1231-259 with KYNA. The binding abilities of KYNA with all three peptide fragments immobilized on the gold surface were estimated by a molecular docking procedure and the binding free energies of these AMPA receptor subunits with KYNA were determined.

  1. Synthesis of Large-Pore Stabilized MIL-53(Al) Compounds with Increased CO2 Adsorption and Decreased Water Adsorption

    DTIC Science & Technology

    2014-01-01

    isotherms showed typical Type I behaviour as per the IUPAC classification. Gas adsorption An Intelligent Gravimetric Analyzer ( IGA -1 series, Hiden...40 min was used for each point in the isotherm. Water adsorption An Intelligent Gravimetric Analyzer ( IGA -3 series, Hiden Analytical Ltd.) was used

  2. Enhancing adsorption efficiency of dichloroacetic acid onto mesoporous carbons: Procedure optimization, mechanism and characterization.

    PubMed

    Ding, Ying; Zhu, Jianzhong; Ji, Dongliang; Cao, Yang; Ling, Xiaojia; Chen, Wei

    2015-08-15

    Highly ordered mesoporous carbon may be directly synthesized via supramolecular self-assembly with in situ evaporation-induced crystallization process by controlling thermal reaction temperatures and carbon mass loading. In the present study, the effects of thermal reaction temperatures on the structural characterization and adsorption capacity of mesoporous carbon have been investigated and analyzed with orthogonal test experiments. The results show the carbonization temperature (R=32.1) plays a more important role than the self-assembly temperature (R=8.5) and thermal polymerization temperature (R=10.1) in manipulating the pore texture structures. The optimization grouping temperature was 40-110-500 °C. The optimum mesoporous carbon sample had the highest BET specific surface area (474 m(2)/g), the largest pore volume (0.46 cm(3)/g), and with reasonable uniform pore size distribution. The adsorption evaluation also shows the adsorption capacity is strongly correlated with the pore structure of mesoporous carbon, the optimized mesoporous carbon sample displayed the largest adsorption capacity (350 mg/g) at an initial concentration of 20.0 mg/L of dichloroacetic acid. The study results indicate optimization of thermal reaction parameters is an effective approach for synthesis of ordered mesoporous carbons.

  3. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    PubMed

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process.

  4. CR-100 synthetic zeolite adsorption characteristics toward Northern Banat groundwater ammonia.

    PubMed

    Tomić, Željko; Kukučka, Miroslav; Stojanović, Nikoleta Kukučka; Kukučka, Andrej; Jokić, Aleksandar

    2016-10-14

    The adsorption characteristics of synthetic zeolite CR-100 in a fixed-bed system using continuous flow of groundwater containing elevated ammonia concentration were examined. The possibilities for adsorbent mass calculation throughout mass transfer zone using novel mathematical approach as well as zeolite adsorption capacity at every sampling point in time or effluent volume were determined. The investigated adsorption process consisted of three clearly separated steps indicated to sorption kinetics. The first step was characterized by decrease and small changes in effluent ammonia concentration vs. experiment time and quantity of adsorbed ammonia per mass unit of zeolite. The consequences of this phenomenon were showed in the plots of the Freundlich and the Langmuir isotherm models through a better linear correlation according as graphical points contingent to the first step were not accounted. The Temkin and the Dubinin-Radushkevich isotherm models showed the opposite tendency with better fitting for overall measurements. According to the obtained isotherms parameter data, the investigated process was found to be multilayer physicochemical adsorption, and also that synthetic zeolite CR-100 is a promising material for removal of ammonia from Northern Banat groundwater with an ammonia removal efficiency of 90%.

  5. Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells.

    PubMed

    Zhang, Jianying; Ding, Tengda; Zhang, Zhijian; Xu, Liping; Zhang, Chunlong

    2015-01-01

    The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino) groups to effectively remove arsenic in its toxic As(III) form (arsenite) predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III) concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III) at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III) adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film) and internal (intraparticle) diffusion can be rate-determining for As(III) adsorption. Fourier transform infrared spectroscopy (FTIR) indicated that the thiol and amino groups potentially responsible for As(III) adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS) further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III) and thiol groups, and through the surface complexation between As(III) and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III) adsorption capacity holds promise for the treatment of As(III) containing wastewater.

  6. Enhanced Adsorption of Trivalent Arsenic from Water by Functionalized Diatom Silica Shells

    PubMed Central

    Zhang, Zhijian; Xu, Liping; Zhang, Chunlong

    2015-01-01

    The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino) groups to effectively remove arsenic in its toxic As(III) form (arsenite) predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III) concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III) at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III) adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film) and internal (intraparticle) diffusion can be rate-determining for As(III) adsorption. Fourier transform infrared spectroscopy (FTIR) indicated that the thiol and amino groups potentially responsible for As(III) adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS) further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III) and thiol groups, and through the surface complexation between As(III) and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III) adsorption capacity holds promise for the treatment of As(III) containing wastewater. PMID:25837498

  7. Fractionation of Natural Organic Matter Upon Adsorption to the Bacterium, Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Manecki, M.; Maurice, P. A.; Fein, J. B.

    2001-12-01

    High pressure size exclusion chromatography (HPSEC) was used to measure changes in molecular weight distribution and average molecular weight upon adsorption of fulvic acid onto Bacillus subtilis at pH 3-7. The FA was an XAD-8 extract from a stream in the New Jersey Pine Barrens (USA), and had a weight average molecular weight of 1890 Da. Adsorption of aqueous FA onto B.subtilis was relatively fast, with steady state attained within 2 hours. An adsorption isotherm at pH 4.5 revealed a strong affinity of FA for the B.subtilis surface. The maximum adsorption capacity of a 20g bacteria/L suspension was greater than 9 mg C/L of FA at pH 4.5. Adsorption of FA onto B.subtilis was strongly pH dependent, increasing markedly with decreasing pH over the pH range 3-7. Comparison of HPSEC analysis of control (FA not reacted with bacteria) versus reacted samples showed that in all experiments, the weight average molecular weight (Mw) of FA remaining in solution decreased by several hundred Da. The observed decrease in solution Mw upon adsorption indicated that the higher molecular weight FA components adsorbed preferentially to the bacterial surfaces, at all studied pH values (3-7). Additionally, there was a low molecular weight FA fraction that did not adsorb, even at low pH. Our results suggest that hydrophobic interactions may be important for FA sorption to B.subtilis and that low molecular weight, more hydrophilic components may thus be less likely to adsorb than higher molecular weight, more hydrophobic components.

  8. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.

    PubMed

    Zhu, Xuan; Tsang, Daniel C W; Chen, Feng; Li, Shiyu; Yang, Xin

    2015-01-01

    Ciprofloxacin (CIP) is a commonly used antibiotic and widely detected in wastewaters and farmlands nowadays. This study evaluated the efficacy of next-generation adsorbent (graphene) and conventional adsorbent (granular activated carbon, GAC) for CIP removal. Batch experiments and characterization tests were conducted to investigate the adsorption kinetics, equilibrium isotherms, thermodynamic properties, and the influences of solution chemistry (pH, ionic strength, natural organic matter (NOM), and water sources). Compared to GAC, graphene showed significantly faster adsorption and reached equilibrium within 3 min, confirming the rapid access of CIP into the macroporous network of high surface area of graphene as revealed by the Brunner-Emmet-Teller measurements analysis. The kinetics was better described by a pseudo-second-order model, suggesting the importance of the initial CIP concentration related to surface site availability of graphene. The adsorption isotherm on graphene followed Langmuir model with a maximum adsorption capacity of 323 mg/g, which was higher than other reported carbonaceous adsorbents. The CIP adsorption was thermodynamically favourable on graphene and primarily occurred through π - π interaction, according to the FTIR spectroscopy. While the adsorption capacity of graphene decreased with increasing solution pH due to the speciation change of CIP, the adverse effects of ionic strength (0.01-0.5 mol L(-1)), presence of NOM (5 mg L⁻¹), and different water sources (river water or drinking water) were less significant on graphene than GAC. These results indicated that graphene can serve as an alternative adsorbent for CIP removal in commonly encountered field conditions, if proper separation and recovery is available in place.

  9. Comparative isosteric ion adsorption for minerals

    NASA Technical Reports Server (NTRS)

    Omenyi, Samuel N.; Herren, Blair J.; Snyder, Robert S.; Seaman, Geoffrey V. F.

    1986-01-01

    A comparative isosteric ion adsorption study for minerals (kaolinite, rutile, and quartz) was performed in aqueous solutions of CaCl2, LaCl3, and Th(NO3)4 in the presence of the neutral salt NaCl. It was observed that the concentration of Ca(2+) ions required to produce a standard reduction in the electrophoretic mobility of mineral particles was always appreciably greater than the concentration required for the Th(4+) ions. The effectiveness of adsorption of the cations differed from particle to particle and showed that ion adsorption on a mineral surface depends, among other things, on the nature of the mineral surface and on the particular adsorbed cation. The number of cation binding sites on mineral surfaces and the electrochemical free energies of cation adsorption were calculated. It was found that the adsorption energy of La(3+) and Th(4+) ions on rutile, kaolinite, and quartz was greater than that of Ca(2+) on these minerals.

  10. Volatile organic acid adsorption and cation dissociation by porphyritic andesite for enhancing hydrolysis and acidogenesis of solid food wastes.

    PubMed

    Cheng, Fan; Li, Ming; Li, Dawei; Chen, Ling; Jiang, Weizhong; Kitamura, Yutaka; Li, Baoming

    2010-07-01

    Volatile organic acid adsorption, cation dissociation by porphyritic andesite, and their effects on the hydrolysis and acidogenesis of solid food wastes were evaluated through batch experiments. The acetic acid adsorption experiments show that pH was mainly regulated by H(+) adsorption. The mono-layer and multi-layer adsorption were found under the low (8.3-83.2 mmol/L) and high (133.22-532.89 mmol/L) initial acetic acid concentration, respectively. The dissociated cations concentration in acidic solution showed the predominance of Ca(2+). Porphyritic andesite addition elevated the pH levels and accelerated hydrolysis and acidogenesis in the batch fermentation experiment. Leachate of porphyritic andesite addition achieved the highest hydrolysis constant of 22.1 x 10(-3)kgm(-2)d(-1) and VS degradation rates of 3.9 g L(-1)d(-1). The highest activity of microorganisms represented by specific growth rate of ATP, 0.16d(-1), and specific consumption rate of Ca(2+), 0.18d(-1), was obtained by adding leachate of porphyritic andesite.

  11. [Simulation study on the effect of salinity on the adsorption behavior of mercury in wastewater-irrigated area].

    PubMed

    Zheng, Shun-An; Li, Xiao-Hua; Xu, Zhi-Yu

    2014-05-01

    This study was designed to pinpoint the impact of salinity ( NaCl and Na2SO4, added at salinity levels of 0-5%, respectively) on the adsorption behavior of mercury in wastewater-irrigated areas of Tianjin City by batch and kinetic experiments. The results showed that, the Langmuir isotherm and the Elovich equation can well fitted batch and kinetic experimental data, respectively. As NaCI spiked in soil, Hg( II) adsorption capacity and strength had marked decreases, from 868.64 mgkg-1 and 1. 32 at control to 357.48 mgkg-1 and 0.63 at 5% salinity level of NaCI, respectively. As Na2SO4 spiked in soil, Hg(II) adsorption capacity (parameter qm in Langmuir isotherm) and strength (parameter k in Langmuir isotherm) changed slightly, from 868.64 mg kg-1 and 1.32 at control to 739.44 mg.kg-1 and 1. 18 at 5% salinity level of Na2 SO4, respectively. Kinetic data showed that, Hg( II) adsorption rate (parameter b in Elovich equation) in soil was not influenced by Na2SO, addition. However, the addition of NaC1 had a great effect on mercury adsorption rate. Hg(II ) adsorption capacity as a function of CI- or SO(2-)(4) content in soil could be simulated by the natural logarithm model, while Hg( II ) adsorption rate as a function of CI- content in soil could be simulated by the linear model. The study manifested that NaCI can significantly increase migration of Hg( II ) in the soil irrigated with wastewater, which may enhance Hg( II) bioavailability in the soil and cause a hazard to surface water. Especially, it will be harmful to human body through the food chain.

  12. Adsorptive removal of PPCPs by biomorphic HAP templated from cotton.

    PubMed

    Huang, Bin; Xiong, Dan; Zhao, Tingting; He, Huan; Pan, Xuejun

    2016-01-01

    Biomorphic nano-hydroxyapatite (HAP) was fabricated by a co-precipitation method using cotton as bio-templates and employed in adsorptive removal of ofloxacin (OFL) and triclosan (TCS) that are two representative pharmaceuticals and personal care products (PPCPs). The surface area and porosity, crystal phase, functional group, morphology and micro-structure of the synthesized HAP were characterized by Brunauer-Emmett-Teller isotherm, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron macroscopic and transmission electron microscopy. The effects of initial pH, ionic strength, initial concentration, contact time and temperature on the removal of PPCPs were studied in a batch experiment. The adsorption of OFL and TCS was rapid and almost accomplished within 50 min. Kinetic studies indicated that the adsorption process of OFL and TCS followed the pseudo-first-order and pseudo-second-order models, respectively. The Freundlich isotherm described the OFL adsorption process well but the adsorption of TCS fitted the Langmuir isotherm better. Thermodynamics and isotherm parameters suggested that both OFL and TCS adsorption were feasible and spontaneous. Hydrogen bond and Lewis acid-base reaction may be the dominating adsorption mechanism of OFL and TCS, respectively. Compared to other adsorbents, biomorphic HAP is environmentally friendly and has the advantages of high adsorption capacity, exhibiting potential application for PPCPs removal.

  13. Adsorption of soluble oil from water to graphene.

    PubMed

    Wang, Na; Zhang, Yuchang; Zhu, Fuzhen; Li, Jingyi; Liu, Shuaishuai; Na, Ping

    2014-05-01

    The toxicity of soluble oil to the aquatic environment has started to attract wide attention in recent years. In the present work, we prepare graphene according to oxidation and thermal reduction methods for the removal of soluble oil from the solution. Characterization of the as-prepared graphene are performed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, and contact angle analysis. The adsorption behavior of soluble oil on graphene is examined, and the obtained adsorption data are modeled using conventional theoretical models. Adsorption experiments reveal that the adsorption rate of soluble oil on graphene is notably fast, especially for the soluble diesel oil, which could reach equilibrium within 30 min, and the kinetics of adsorption is perfectly consistent with a pseudo-second-order model. Furthermore, it is determined that the adsorption isotherm of soluble diesel oil with graphene fit the Freundlich model best, and graphene has a very strong adsorption capacity for soluble diesel oil in the solution. These results demonstrate that graphene is the material that provided both good adsorptive capacity and good kinetics, implying that it could be used as a promising sorbent for soluble oil removal from wastewater.

  14. Adsorption of sulfur compound utilizing rice husk ash modified with niobium

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Rodrigo M.; Pessoa Júnior, Wanison A. G.; Braga, Valdeilson S.; Barros, Ivoneide de C. L.

    2015-11-01

    Adsorbents based in rice husk ash (RHA) modified with niobium pentoxide were prepared for impregnation methods and applied in sulfur removal in liquid fuels. The solids were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen physisorption and thermal analysis; they show that there was no qualitative change in the amorphous structure of the RHA; however, the method of impregnation could modify the particle size and topology of RHA particles. The larger sulfur removal (>50%) was achieved using RHA with 5 wt.% Nb2O5 at a dosage of 10 g L-1, after 4 h of contact with the model fuel. The kinetic study of adsorption of thiophene showed that the models of pseudo-second order and intra-particle diffusion best fit the experimental data. The adsorption experiments with the thiophenic derivatives compounds show a large selectivity of the adsorbent.

  15. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue.

    PubMed

    Chen, Suhong; Yue, Qinyan; Gao, Baoyu; Xu, Xing

    2010-09-01

    A new adsorbent modified from wheat residue was synthesized after reaction with epichlorohydrin and triethylamine by using the modifying agents of diethylenetriamine in the presence of organic medium of N,N-dimethylformamide. The performance of the modified wheat straw (MWS) was characterized by Fourier transform infrared spectroscopy and point of zero charge analysis. The adsorption was investigated in a batch adsorption system, including both equilibrium adsorption isotherms and kinetics. Results showed that MWR had great anion-adsorbing capacity, due to the existence of a large number of introduced amino groups, and the value of pH(PZC) was around 5.0. Equilibrium data were analyzed using the Langmuir, Freundlich, and Temkin isotherm models and were found to be best represented by the Freundlich isotherm model. Evaluation of the adsorption process identified its endothermic nature. The maximum adsorption capacity of MWS for the removal of Cr(VI) was 322.58mg/g at 328K, indicating that MWS has high chromium removal efficiency, compared to other adsorbents reported. The kinetics of adsorption followed the pseudo-second-order kinetic equation. The mechanism of adsorption was investigated using the intraparticle diffusion model. Thermodynamic parameters (free energy change, enthalpy change, and entropy change) revealed that the adsorption of Cr(VI) onto MWS was endothermic and spontaneous; additionally, the adsorption can be characterized as an ion-exchange process. The results suggest that MWS is an inexpensive and efficient adsorbent for removing Cr(VI) ions from aqueous solution.

  16. Reversibility of substrate adsorption for the cellulases Cel7A, Cel6A, and Cel7B from Hypocrea jecorina.

    PubMed

    Pellegrini, Vanessa O A; Lei, Nina; Kyasaram, Madhuri; Olsen, Johan P; Badino, Silke F; Windahl, Michael S; Colussi, Francieli; Cruys-Bagger, Nicolaj; Borch, Kim; Westh, Peter

    2014-10-28

    Adsorption of cellulases on the cellulose surface is an integral part of the catalytic mechanism, and a detailed description of the adsorption process is therefore required for a fundamental understanding of this industrially important class of enzymes. However, the mode of adsorption has proven intricate, and several key questions remain open. Perhaps most notably it is not clear whether the adsorbed enzyme is in dynamic equilibrium with the free population or irreversibly associated with no or slow dissociation. To address this, we have systematically investigated adsorption reversibility for two cellobiohydrolases (Cel7A and Cel6A) and one endoglucanase (Cel7B) on four types of pure cellulose substrates. Specifically, we monitored dilution-induced release of adsorbed enzyme in samples that had previously been brought to a steady state (constant concentration of free enzyme). In simple dilution experiments (without centrifugation), the results consistently showed full reversibility. In contrast to this, resuspension of enzyme-substrate pellets separated by centrifugation showed extensive irreversibility. We conclude that these enzymes are in a dynamic equilibrium between free and adsorbed states but suggest that changes in the physical properties of cellulose caused by compaction of the pellet hampers subsequent release of adsorbed enzyme. This latter effect may be pertinent to both previous controversies in the literature on adsorption reversibility and the development of enzyme recycling protocols in the biomass industry.

  17. Adsorption and disjoining pressure isotherms of confined polymers using dissipative particle dynamics.

    PubMed

    Goicochea, A Gama

    2007-11-06

    The adsorption and disjoining pressure isotherms of polymers confined by planar walls are obtained using Monte Carlo (MC) simulations in the Grand Canonical (GC) ensemble in combination with the mesoscopic technique known as dissipative particle dynamics (DPD). Two models of effective potentials for the confining surfaces are used: one with both an attractive and a repulsive term and one with a purely repulsive term. As for the polymer, seven-bead linear model of polyethylene glycol (PEG) dissolved in water is used. The results indicate remarkably good agreement between the trends shown by our adsorption isotherms and those obtained from experiments of PEG on oxide surfaces. Additionally, the disjoining pressure isotherm of water shows oscillations, while those of PEG display the same trend for both wall models. Moreover, it is found that the disjoining pressure isotherms are in qualitative agreement with those from experiments on confined linear polymers.

  18. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B.

    PubMed

    Li, Li; Liu, Shuangxi; Zhu, Tan

    2010-01-01

    Activated carbon derived from solid hazardous waste scrap tires was evaluated as a potential adsorbent for cationic dye removal. The adsorption process with respect to operating parameters was investigated to evaluate the adsorption characteristics of the activated pyrolytic tire char (APTC) for Rhodamine B (RhB). Systematic research including equilibrium, kinetics and thermodynamic studies was performed. The results showed that APTC was a potential adsorbent for RhB with a higher adsorption capacity than most adsorbents. Solution pH and temperature exert significant influence while ionic strength showed little effect on the adsorption process. The adsorption equilibrium data obey Langmuir isotherm and the kinetic data were well described by the pseudo second-order kinetic model. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption process. Thermodynamic study confirmed that the adsorption was a physisorption process with spontaneous, endothermic and random characteristics.

  19. Bromate adsorption using Fe-pillared bentonite.

    PubMed

    He, Shilong; Zhang, Dandan; Gu, Li; Zhang, Shenghua; Yu, Xin

    2012-01-01

    Bromate is an emerging hazardous substance in drinking water. In this study, the removal ofbromate by Fe-pillared bentonite was investigated using various experimental parameters: contact time, initial concentration (Co), temperature, initial pH and competing anions. The adsorption ofbromate followed the pseudo-second-order kinetic better than it followed other kinetic models, and the pseudo-second-order kinetic study showed that equilibrium could be achieved within 60 min. Equilibrium isotherms were analyzed by Freundlich, Langmuir, Redlich-Peterson and Toth isotherm models. The Toth and Redlich-Peterson models better represented the bromate adsorption. Results also indicated that, other than the competing anions and solution pH, temperature was a key parameter affecting adsorption. It was ultimately concluded that Fe-pillared bentonite was effective at removing bromate from water.

  20. Adsorption of the harmful hormone ethinyl estradiol inside hydrophobic cavities of CTA(+) intercalated montmorillonite.

    PubMed

    Burgos, A E; Ribeiro-Santos, Tatiana A; Lago, Rochel M

    Hydrophobic cavities produced by cetyltrimethylammonium cation (CTA(+)) exchanged and trapped in the interlayer space of montmorillonite were used to remove the harmful hormone contaminant ethinyl estradiol (EE2) from water. X-ray diffraction, thermogravimetry/derivative thermogravimetry, elemental analysis (carbon, hydrogen, nitrogen), Fourier transform infrared, scanning electron microscopy/energy dispersive spectroscopy, Brunauer-Emmett-Teller and contact angle analyses showed that the intercalation of 9, 16 and 34 wt% CTA(+) in the montmorillonite resulted in the d001 expansion from 1.37 to 1.58, 2.09 and 2.18 nm, respectively. EE2 adsorption experiments showed that the original clay montmorillonite does not remove EE2 from water whereas the intercalated composites showed high efficiency with adsorption capacities of 4.3, 8.8 and 7.3 mg g(-1) for M9CTA(+), M16CTA(+) and M34CTA(+), respectively. Moreover, experiments with montmorillonite simply impregnated with cetyltrimethylammonium bromide showed that the intercalation of CTA(+) to form the hydrophobic cavity is very important for the adsorption properties. Simple solvent extraction can be used to remove the adsorbed EE2 without significant loss of CTA(+), which allows the recovery and reuse of the adsorbent for at least five times.

  1. Adsorption of ions onto high silica volcanic glass.

    PubMed

    Steinhauser, Georg; Bichler, Max

    2008-01-01

    Chemical fingerprint techniques are frequently applied to airborne volcanic eruption products, so-called tephra, such as ash and pumice for archeological and geoscientific purposes. However, in some cases, a meaningful interpretation of the results is complicated by superficial contaminations. Therefore, this situation was simulated by the use of powdered rhyolitic pumice to investigate its capability to adsorb several ions from aqueous solutions. Using neutron activation analysis, adsorption could be proven for Cr(3+), Cr(2)O(7)(2-) (dichromate), Fe(3+), Co(2+), HAsO(4)(2-) (hydrogen arsenate), Rb(+), Sr(2+), Cs(+), Ba(2+), La(3+), Ce(3+), Ce(4+), Sm(3+), Th(4+) and UO(2)(2+), which is a clear evidence for the interaction of those ions with the volcanic glass. In our experiments, pumice powder showed the ability to adsorb ions in the range from 1.8 mg kg(-1) (in case of HAsO(4)(2-)) to 5.8 wt% (in case of Fe(3+)). Adsorption is probably due to ion-exchange reactions. It could also be shown that a few ions are not adsorbed in detectable quantities: Na(+), K(+), Fe(2+), Zn(2+) and Nd(3+). The knowledge about adsorption of ions enables us not only to examine the possible influence of contaminations where chemical fingerprinting methods are applied to volcanic material for archaeometry, but it also suggests the technical application of pumiceous materials for technical purposes, like water purification or as an adsorbent in the final storage of nuclear waste. In another series of INAA supported experiments, the influence of chemicals like ascorbic acid, acetic acid, HCl, HF, HNO(3), H(2)O, H(2)O(2), H(3)PO(4), H(2)SO(4), NaOH and NH(3) on the bulk composition of pumice powder was investigated-resulting in no detectable change. We conclude that superficially contaminated tephra can be washed in diluted HF to remove contaminations without influencing the chemical fingerprint.

  2. Reuse of Solid Waste in Adsorption of the Textile Dye

    NASA Astrophysics Data System (ADS)

    Meziti, Chafika; Boukerroui, Abdelhamid

    This work presents the study of the reuse of a regenerated spent bleaching earth (RSBE). The RSBE material was tested in the removal of a basic textile dye presents in aqueous solution. The effect of physicochemical parameters such as stirring speed, initial concentration, contact time and temperature have been invested and thermodynamic nature of the adsorption process was determined by calculating the ΔH°, ΔS° and ΔG° values The results obtained show that the adsorption mechanism was described by the Langmuir model and the adsorption capacity, qmax (72.41 to 82.37 mg.g-1), increases with temperature (20-50 °C). The thermodynamic parameters show a presence of a strong affinity between two phases (liquid-solid) and an endothermic equilibrium adsorption process. However, the phenomenon of the adsorption kinetic follows the pseudo second order kinetic model.

  3. Evaluation of the adsorption capacity of alkali-treated waste materials for the adsorption of sulphamethoxazole.

    PubMed

    Kurup, Lisha

    2012-01-01

    The present work is to develop potential adsorbents from waste material and employ them for the removal of a hazardous antibacterial, sulphamethoxazole, from the wastewater by the Adsorption technique. The Adsorption technique was used to impound the dangerous antibiotics from wastewater using Deoiled Soya (DOS), an agricultural waste, and Water Hyacinth (WH), a prolific colonizer. The adsorption capacity of these adsorbents was further enhanced by treating them with sodium hydroxide solution and it was seen that the adsorption capacity increases by 10 to 25%. Hence a comparative account of the adsorption studies of all the four adsorbents, i.e. DOS, Alkali-treated DOS, WH and Alkali-treated Water Hyacinth has been discussed in this paper. Different isotherms like Freundlich, Langmuir and Dubinin-Radushkevich were also deduced from the adsorption data. Isotherm studies were in turn used in estimating the thermodynamic parameters. DOS showed sorption capacity of 0.0007 mol g(-1) while Alkali-treated Deoiled Soya exhibited 0.0011 mol g(-1) of sorption capacity, which reveals that the adsorption is higher in case of alkali-treated adsorbent. The mean sorption energy (E) was obtained between 9 and 12 kJ mol, which shows that the reaction proceeds by ion exchange reaction. Kinetic study reveals that the reaction follows pseudo-second-order rate equation. Moreover, mass transfer studies performed for the ongoing processes show that the mass transfer coefficient obtained for alkali-treated moieties was higher than the parent moieties. The breakthrough curves plotted from the column studies show percentage saturation of 90-98%. About 87-97% of sulphamethoxazole was recovered from column by desorption.

  4. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity.

    PubMed

    Wang, Xinghao; Qu, Ruijuan; Liu, Jiaoqin; Wei, Zhongbo; Wang, Liansheng; Yang, Shaogui; Huang, Qingguo; Wang, Zunyao

    2016-01-01

    Experiments were conducted to investigate the effect of four different carbon nanotubes single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) and hydroxylated and carboxylated multi-walled carbon nanotubes (OH-MWCNTs and COOH-MWCNTs) on Cd toxicity to the aquatic organism Daphnia magna. The acute toxicity results indicated that all CNTs could enhance the toxicity of Cd to D. magna. Furthermore, the filtrate toxicity and adsorption tests showed that the toxicity-increasing effect of SWCNTs and MWCNTs in the overall system was mainly caused by catalysts impurities from the pristine CNTs, whereas the greater adsorption of Cd onto OH-MWCNTs (30.52 mg/g) and COOH-MWCNTs (24.93 mg/g) was the key factor contributing to the enhanced toxicity. This result raised a concern that the metal catalyst impurities, adsorption capacities, and accumulation of waterborne CNTs were responsible for the toxicity of Cd to aquatic organism.

  5. Preparative separation and purification of Rebaudioside A from Stevia rebaudiana Bertoni crude extracts by mixed bed of macroporous adsorption resins.

    PubMed

    Li, Jie; Chen, Zhenbin; Di, Duolong

    2012-05-01

    The separation and purification of Rebaudioside A (RA) from Stevia rebaudiana Bertoni crude extracts (Steviosides) by macroporous adsorption resin (MAR) mixed bed were systematically investigated. MAR mixed bed of HPD750-LSA40-LSA30-DS401 was selected due to its better separation degree. Based on the kinetics/thermodynamics experiment of the mixed bed, it was found that the experimental data fitted better to the pseudo-second-order model, and intra-particle diffusion was rate-limiting step. The adsorption isotherm was consistent with IV equilibrium adsorption isotherm classified by Brunauer. Furthermore, the influencing factors for the separation of RA based on HPLC were also investigated. Under the optimal conditions, the separation degree for RA (DAS) increased from 0.771 to 1.54. Moreover, the experimental results showed that the purity of the obtained product increased from 60% to 97%.

  6. [Phosphorus adsorption and regeneration of electric arc furnace steel slag as wetland medium].

    PubMed

    Zhai, Li-hua; He, Lian-sheng; Xi, Bei-dou; Chen, Yue; Meng, Rui; Huo, Shou-liang; Liu, Hong-liang

    2008-12-01

    The long-term phosphorus (P) adsorption and retention capacities of electric arc furnace (EAF) steel slag materials derived from one batch and a 278-d column experiments with a synthetic P solution were compared. The investigations of the regeneration of the P adsorption capacity by water level decrease was conducted. It was revealed column experiment on a long-term basis can determine P saturation of EAF accurately. And the results can be used for realistic estimations of constructed wetland systems (CWS) longevity. EAF slag showed a high afinity for P, reaching a saturation value of 1.65 g/kg. Regeneration experiment of the P adsorbing capacity by this material showed that, after 4 weeks of water level decrease, EAF steel slag was able to increase its initial P adsorption capacity to 2.65 g/kg. A sequential P fractionation experiment was performed to quantify the proportion of P bound to mineral compounds in EAF. From the most loosely bound to the most strongly bound P fraction, P1 was associated with resin extractable (13%), Fe extractable (0.5 mol/L Na2CO3, 39%), Al extractable (0.1 mol/L NaOH, 21%), Ca extractable (1 mol/L HCl, 13%), and Ca in a stable residual pool (concentrated hot HCl, 14%). X-ray fluorescence analyses of EAF steel slag chemical composition revealed that the continuous application of a P solution resulted in 300% and 170% increases in K2O and P2O5, respectively. Al2O3 and FeO increased by 8%, while the portion of CaO remained unchanged. The investigated properties (P retention potential, regeneration of P adsorption, P fractionation) provide useful data about the suitability of slag material as a media for longterm P removal and dry-wet operation can improve P retention capacity of EAF to prolong the longevity of full-scale CWS.

  7. Amino-functionalized mesoporous MCM-41 silica as an efficient adsorbent for water treatment: batch and fixed-bed column adsorption of the nitrate anion

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Gatkash, Mehdi; Younesi, Habibollah; Shahbazi, Afsaneh; Heidari, Ava

    2015-11-01

    In the present study, amino-functionalized Mobil Composite Material No. 41 (MCM-41) was used as an adsorbent to remove nitrate anions from aqueous solutions. Mono-, di- and tri-amino functioned silicas (N-MCM-41, NN-MCM-41 and NNN-MCM-41) were prepared by post-synthesis grafting method. The samples were characterized by means of X-ray powder diffraction, FTIR spectroscopy, thermogravimetric analysis, scanning electron microscopy and nitrogen adsorption-desorption. The effects of pH, initial concentration of anions, and adsorbent loading were examined in batch adsorption system. Results of adsorption experiments showed that the adsorption capacity increased with increasing adsorbent loading and initial anion concentration. It was found that the Langmuir mathematical model indicated better fit to the experimental data than the Freundlich. According to the constants of the Langmuir equation, the maximum adsorption capacity for nitrate anion by N-MCM-41, NN-MCM-41 and NNN-MCM-41 was found to be 31.68, 38.58 and 36.81 mg/g, respectively. The adsorption kinetics were investigated with pseudo-first-order and pseudo-second-order model. Adsorption followed the pseudo-second-order rate kinetics. The coefficients of determination for pseudo-second-order kinetic model are >0.99. For continuous adsorption experiments, NNN-MCM-41 adsorbent was used for the removal of nitrate anion from solutions. Breakthrough curves were investigated at different bed heights, flow rates and initial nitrate anion concentrations. The Thomas and Yan models were utilized to calculate the kinetic parameters and to predict the breakthrough curves of different bed height. Results from this study illustrated the potential utility of these adsorbents for nitrate removal from water solution.

  8. Highly efficient and selective adsorption of In3+ on pristine Zn/Al layered double hydroxide (Zn/Al-LDH) from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Barnabas, Mary Jenisha; Parambadath, Surendran; Mathew, Aneesh; Park, Sung Soo; Vinu, Ajayan; Ha, Chang-Sik

    2016-01-01

    A pristine Zn/Al-layered double hydroxide (Zn/Al-LDH) showed excellent adsorption ability and selectivity towards In3+ ions from aqueous solutions. The adsorption behaviour as a function of the contact time, solution pH, ionic strength, and amount of adsorbent under ambient conditions revealed a strong dependency on the pH and ionic strength over In3+ intake. The structure and properties of Zn/Al-LDH and In3+ adsorbed Zn/Al-LDH (In-Zn/Al-LDH) were examined carefully by X-ray diffraction, Fourier transform infrared spectroscopy, N2-sorption/desorption, UV-vis spectroscopy, and X-ray photoelectron spectroscopy. The adsorbent had a sufficient number of active sites that were responsible for the In3+ adsorption and quite stable even after the adsorption process. The selective adsorption of In3+ on Zn/Al-LDH was also observed even from a mixture containing competing ions, such as Mn2+, Co2+, Ni2+, Cd2+, Pb2+, and Cu2+. The adsorption experiments showed that Zn/Al-LDH is a promising material for the pre-concentration and selective removal of In3+ from large volumes of aqueous solutions.

  9. Adsorption and desorption characteristics of arsenic onto ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Feng, Qinzhong; Zhang, Zhiyong; Ma, Yuhui; He, Xiao; Zhao, Yuliang; Chai, Zhifang

    2012-01-01

    The rapid increase in the use of engineered nanoparticles [ENPs] has resulted in an increasing concern over the potential impacts of ENPs on the environmental and human health. ENPs tend to adsorb a large variety of toxic chemicals when they are emitted into the environment, which may enhance the toxicity of ENPs and/or adsorbed chemicals. The study was aimed to investigate the adsorption and desorption behaviors of arsenic on ceria NPs in aqueous solution using batch technique. Results show that the adsorption behavior of arsenic on ceria NPs was strongly dependent on pH and independent of ionic strength, indicating that the electrostatic effect on the adsorption of these elements was relatively not important compared to surface chemical reactions. The adsorption isotherms fitted very well to both the Langmuir and Freundlich models. The thermodynamic parameters (Δ H 0 , Δ S 0 , and Δ G 0 ) for the adsorption of arsenic were determined at three different temperatures of 283, 303, and 323 K. The adsorption reaction was endothermic, and the process of adsorption was favored at high temperature. The desorption data showed that desorption hysteresis occurred at the initial concentration studied. High adsorption capacity of arsenic on ceria NPs suggests that the synergistic effects of ceria NPs and arsenic on the environmental systems may exist when they are released into the environment.

  10. Preparative chromatography of xylanase using expanded bed adsorption.

    PubMed

    Silvino, DosSantosEveraldo; Guirardello, Reginaldo; Teixeira, Franco Telma

    2002-01-25

    Expanded bed adsorption was used to purify a marketable xylanase often used in the kraft pulp bleaching process. Experiments in packed and expanded beds were carried out mainly to study the adsorption of xylanase on to a cationic adsorbent (Streamline SP) in the presence of cells. In order to study the presence of cells, a Bacillus pumilus mass (5% wet mass) was mixed with the enzyme extract and submitted to an expanded bed adsorption system. One xylanase was purified to homogeneity in the packed bed. However, the 5% cell content hampered purification.

  11. Regenerable adsorption system

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Perry, Jay (Inventor); Walsh, Dennis (Inventor)

    2006-01-01

    A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent.

  12. Diffusion Influenced Adsorption Kinetics.

    PubMed

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  13. Adsorption of perfluorooctane sulfonate on soils: Effects of soil characteristics and phosphate competition.

    PubMed

    Qian, Jin; Shen, Mengmeng; Wang, Peifang; Wang, Chao; Hou, Jun; Ao, Yanhui; Liu, Jingjing; Li, Kun

    2017-02-01

    Perfluorooctane sulfonate (PFOS) is an emerging contaminant, whose presence has been detected in different compartments of the environment in many countries. In this study, the effects of soil characteristics and phosphate competition on the adsorption of PFOS on soils were investigated. Results from batch sorption experiments showed that all the adsorption isotherms of PFOS on three tested soils were nonlinear. In experiments without the addition of phosphate (P) to the soil solution, the Freundlich sorption affinity (Kf) of PFOS on S (original soil), S1 (soil from which soil organic matter (SOM) had been removed), and S2 (soil from which both SOM and ferric oxides had been removed) were 23.13, 10.37 and 15.95, respectively. The results suggested that a high amount of SOM in soil can increase the sorption affinity of PFOS on soils and that a greater amount of ferric oxides can reduce it. The addition of P in the soil solution reduced the Kf of PFOS on S, S1, and S2 by approximately 25%, 50%, and 15%, respectively. For the binary system of PFOS and P, soil with higher ferric oxide content showed greater Kf reduction after P addition; whereas soil with higher SOM content showed less Kf reduction. Our results suggest that for soils dominated by ferric oxides, P is a more effective competitor than PFOS for the adsorption sites in the binary system; whereas in soils containing more SOM, P is a weak competitor.

  14. Adsorption behavior of the catechins and caffeine onto polyvinylpolypyrrolidone.

    PubMed

    Dong, Zhan-Bo; Liang, Yue-Rong; Fan, Fang-Yuan; Ye, Jian-Hui; Zheng, Xin-Qiang; Lu, Jian-Liang

    2011-04-27

    Adsorbent is one of the most important factors for separation efficiency in fixed-bed purification techniques. The adsorption behavior of catechins and caffeine onto polyvinylpolypyrrolidone (PVPP) was investigated by static adsorption tests. The results showed that catechins rather than caffeine were preferred to adsorb onto PVPP since the adsorption selectivity coefficient of total catechins vs caffeine was around 22.5, and that adsorption of catechins could be described by the pseudo-second-order model. Adsorption amount of caffeine onto PVPP in green tea extracts solution was much higher than that in purified caffeine solution although the initial concentration of caffeine was similar in the two solutions, indicating the caffeine might be attached with catechins which were adsorbed by PVPP instead of being adsorbed by PVPP directly. The results also showed that the adsorption capacity of catechins and caffeine decreased with an increase in temperature, and that Freundlich and Langmuir models were both suitable for describing the isothermal adsorption of catechins, but not suitable for caffeine. The predicted maximum monolayer adsorption capacity of total catechins by PVPP was 671.77 mg g(-1) at 20 °C, which was significantly higher than that by other reported adsorbents. The thermodynamics analyses indicated that the adsorption of catechins onto PVPP was a spontaneous and exothermic physisorption process, revealing lower temperature was favorable for the adsorption of catechins. Elution tests showed that the desorption rates of catechins and caffeine were higher than 91% and 99% after two elution stages; in detail, almost all of the caffeine could be washed down at the water eluting stage, while catechins could be recovered at the dimethyl sulfoxide/ethanol solution eluting stage. Thus, the PVPP could be used as an excellent alternative adsorbent candidate for separating catechins from crude tea extracts, although some investigations, such as exploring the new

  15. Uranium(VI) adsorption and surface complexation modeling onto background sediments from the F-Area Savannah River Site.

    PubMed

    Dong, Wenming; Tokunaga, Tetsu K; Davis, James A; Wan, Jiamin

    2012-02-07

    The mobility of an acidic uranium waste plume in the F-Area of Savannah River Site is of great concern. In order to understand and predict uranium mobility, U(VI) adsorption experiments were performed as a function of pH using background F-Area aquifer sediments and reference goethite and kaolinite (major reactive phases of F-Area sediments), and a component-additivity (CA) based surface complexation model (SCM) was developed. Our experimental results indicate that the fine fractions (≤45 μm) in sediments control U(VI) adsorption due to their large surface area, although the quartz sands show a stronger adsorption ability per unit surface area than the fine fractions at pH < 5.0. Kaolinite is a more important sorbent for U(VI) at pH < 4.0, while goethite plays a major role at pH > 4.0. Our CA model combines an existing U(VI) SCM for goethite and a modified U(VI) SCM for kaolinite along with estimated relative surface area abundances of these component minerals. The modeling approach successfully predicts U(VI) adsorption behavior by the background F-Area sediments. The model suggests that exchange sites on kaolinite dominate U(VI) adsorption at pH < 4.0, goethite and kaolinite edge sites cocontribute to U(VI) adsorption at pH 4.0-6.0, and goethite dominates U(VI) adsorption at pH > 6.0.

  16. Removal of water and iodine by solid sorbents: adsorption isotherms and kinetics

    SciTech Connect

    Lin, R.; Tavlarides, L.L.

    2013-07-01

    Tritium and iodine-129 are two major radioactive elements that are present in off-gases from spent fuel reprocessing plants. Adsorption by solid sorbents is the state-of-the-art technique for removal of these species from off-gases. Modeling and simulating adsorption processes require accurate adsorption equilibrium and kinetic data to permit reasonable estimates of process parameters. We have developed a continuous flow single-pellet adsorption system to gather accurate adsorption equilibrium and kinetic data for adsorption of water by molecular sieve 3A and for adsorption of iodine by silver exchanged mordenite. In this paper, the design of the water and iodine adsorption experimental systems are briefly described and results of water adsorption experiments are presented and discussed. Water uptake curves are fitted with the linear-driving force (LDF) model and the shrinking-core model to determine kinetic parameters. It is shown that the kinetics of water adsorption on zeolite 3A under current experimental conditions is controlled by both the external film resistance and the macro-pore diffusion and can be predicted by both the LDF model and the shrinking-core model with the former one performing slightly better. Preliminary results from iodine adsorption experiments will be presented in the conference.

  17. Adsorption energies and prefactor determination for CH3OH adsorption on graphite.

    PubMed

    Doronin, M; Bertin, M; Michaut, X; Philippe, L; Fillion, J-H

    2015-08-28

    In this paper, we have studied adsorption and thermal desorption of methanol CH3OH on graphite surface, with the specific aim to derive from experimental data quantitative parameters that govern the desorption, namely, adsorption energy Eads and prefactor ν of the Polanyi-Wigner law. In low coverage regime, these two values are interconnected and usually the experiments can be reproduced with any couple (Eads, ν), which makes intercomparison between studies difficult since the results depend on the extraction method. Here, we use a method for determining independently the average adsorption energy and a prefactor value that works over a large range of incident methanol coverage, from a limited set of desorption curves performed at different heating rates. In the low coverage regime the procedure is based on a first order kinetic law, and considers an adsorption energy distribution which is not expected to vary with the applied heating rate. In the case of CH3OH multilayers, Eads is determined as 430 meV with a prefactor of 5 × 10(14) s(-1). For CH3OH submonolayers on graphite, adsorption energy of 470 ± 30 meV and a prefactor of (8 ± 3) × 10(16) s(-1) have been found. These last values, which do not change between 0.09 ML and 1 ML initial coverage, suggest that the methanol molecules form island-like structure on the graphite even at low coverage.

  18. Adsorption of polycyclic aromatic hydrocarbons from aqueous solutions by modified periodic mesoporous organosilica.

    PubMed

    Vidal, Carla B; Barros, Allen L; Moura, Cícero P; de Lima, Ari C A; Dias, Francisco S; Vasconcellos, Luiz C G; Fechine, Pierre B A; Nascimento, Ronaldo F

    2011-05-15

    A novel procedure was developed for the synthesis of a periodic mesoporous organosilica (PMO), which was used to remove polycyclic aromatic hydrocarbons (PAHs) from aqueous solutions. Adsorption equilibrium isotherms and adsorption kinetics experiments were carried out in solutions of PAHs (2-60 mg L(-1)), using the PMO as adsorbent. Adsorption models were used to predict the mechanisms involved. The adsorption kinetics data best fitted the pseudo-first-order kinetic model for naphthalene, and to the pseudo-second-order model for fluorene, fluoranthene, pyrene, and acenaphtene. The intraparticle model was also tested and pointed to the occurrence of such processes in all cases. The isotherm models which best represented the data obtained were the Freundlich model for fluoranthene, pyrene, and fluorene, the Temkin model for naphthalene, and the Redlich-Peterson model for acenaphtene. PAHs showed similar behavior regarding kinetics after 24 h of contact between adsorbent and PAHs. FTIR, XRD, BET, and SEM techniques were used for the characterization of the adsorbent material.

  19. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers.

    PubMed

    Maksin, Danijela D; Nastasović, Aleksandra B; Milutinović-Nikolić, Aleksandra D; Suručić, Ljiljana T; Sandić, Zvjezdana P; Hercigonja, Radmila V; Onjia, Antonije E

    2012-03-30

    Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25-70°C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q(max), at pH 1.8 and 25°C was 143 mg g(-1) for PGME2-deta (sample with the highest amino group concentration) while at 70°C Q(max) reached the high value of 198 mg g(-1). Thermodynamic parameters revealed spontaneous and endothermic nature of Cr(VI) adsorption onto PGME-deta.

  20. Engineering application of activated alumina adsorption dams for emergency treatment of arsenic-contaminated rivers.

    PubMed

    Dou, Junfeng; Qin, Wei; Ding, Aizhong; Xie, En; Zheng, Lei; Ding, Wencheng

    2015-01-01

    A batch of lab-based adsorption experiments were performed to investigate the arsenic (As) removal efficacy by activated alumina. Four factors including contact time, pH, initial As concentration and different coexisting ions were examined. The adsorbent made of activated alumina (AA) with particles of 2-4 mm diameter showed a high As removal efficiency and the As concentrations of the samples were below 0.05 mg/L when the hydraulic retention time (HRT) was operated above 5 min. The As concentrations of the samples could remain below 0.05 mg/L for 30 days. A series of AA adsorption dams coupled with several other supporting adsorption techniques were employed for As-contaminated river restoration. The engineering project functioned well, and the effluent As concentration was below 0.05 mg/L when the influent was between 0.2 and 0.7 mg/L, which met the discharge requirement of the Surface Water Quality Standards criteria III in China. The results demonstrated that AA adsorption dams could be applied for emergency treatments of small- or medium-sized rivers contaminated with As.

  1. Effect of oxidation degree on the synthesis and adsorption property of magnetite/graphene nanocomposites

    NASA Astrophysics Data System (ADS)

    Luo, Kun; Mu, Yuanying; Wang, Peng; Liu, Xiaoteng

    2015-12-01

    A facile approach is demonstrated to synthesize a series of magnetite/graphene nanocomposites by solvothermal method, which can be easily collected after removal of pollutants without secondary pollution of graphene powders. Raman and FT-IR analyses show that the reduction of the mixing vapor of ammonia and hydrazine at different reaction periods generates the discrepancy of oxidation degree for reduced graphene oxide (rGO), which can be kept after the solvothermal synthesis of Fe3O4/rGO nanocomposites. Batch adsorption experiments indicate that the nanocomposite with maximum oxidation degree of rGO presents the largest magnetization of 35.4 emu g-1 and adsorption capacity of 59.2 mg g-1 for Cu2+, while the one with minimum oxidation degree exhibits the strongest adsorption of 39.0 mg g-1 for methylene blue accompanied with appropriate magnetization of 9.0 emu g-1, and only 23% of initial capacity was lost after seven recycling use. The adsorption kinetics of the both composites follows the pseudo-second-order model, suggestive of physical and chemical interactions between the pollutants and adsorbent. The results suggest that the oxidation degree of the rGO substrate can apparently influence both the structure and the adsorbing behavior of Fe3O4/rGO nanocomposites, which allows the control over the adsorbent performance according to the pollutant of interest.

  2. The adsorption of lead and copper from aqueous solution on modified peat-resin particles.

    PubMed

    Sun, Q Y; Lu, P; Yang, L Z

    2004-01-01

    Raw peat was modified with sulfuric acid, then mixed modified with resin to prepare the modified peat-resin part