Science.gov

Sample records for adsorption isotherm determined

  1. Determination of adsorption isotherms in supercritical fluid chromatography.

    PubMed

    Enmark, Martin; Forssén, Patrik; Samuelsson, Jörgen; Fornstedt, Torgny

    2013-10-18

    In this study we will demonstrate the potential of modern integrated commercial analytical SFC-systems for rapid and reliable acquisition of thermodynamic data. This will be done by transferring the following adsorption isotherm determination methods from liquid chromatography (LC) to supercritical fluid chromatography (SFC): Elution by Characteristic Points (ECP), the Retention Time Method (RTM), the Inverse Method (IM) and the Perturbation Peak (PP) method. In order to transfer these methods to SFC in a reliable, reproducible way we will demonstrate that careful system verification using external sensors of mass flow, temperature and pressure are needed first. The adsorption isotherm data generated by the different methods were analyzed and compared and the adsorption isotherms ability to predict new experimental elution profiles was verified by comparing experiments with simulations. It was found that adsorption isotherm data determined based on elution profiles, i.e., ECP, IM and RTM, were able to accurately predict overloaded experimental elution profiles while the more tedious and time-consuming PP method, based on small injections on concentration plateaus, failed in doing so.

  2. Determination of the Surface Energy of Sand Using Adsorption Isotherm

    NASA Astrophysics Data System (ADS)

    Ma, Lianxi; Holste, James; Hall, Kenneth

    2003-03-01

    The BET isotherm equation for multiplayer adsorption was applied to hexane, methyl propyl ketone, and water adsorption by sand (particle size > 75 mm) at 25¡ãC and accordingly, specific surface area of sand was obtained. Spreading pressures and surface energies of sand were calculated from adsorption isotherms. Hysteresis loops were observed in all isotherms but desorption isotherms approach to original points at low vapor pressure. A modified Toth-Freundlich equation was developed, which agrees with experimental data well over a wider p/p0 range. Plots of Dubinin-Radushkevich show that at low-pressure linear relation was obtained therefore our sand sample can be treated as microporous materials.

  3. Expanding the elution by characteristic point method for determination of various types of adsorption isotherms.

    PubMed

    Samuelsson, Jörgen; Undin, Torgny; Fornstedt, Torgny

    2011-06-17

    Important improvements have recently been made on the elution by characteristic point (ECP) method to increase the accuracy of the determined adsorption isotherms. However, the method has so far been limited/used for only type I adsorption isotherms (e.g. Langmuir, Tóth, bi-Langmuir). In this study, general strategies are developed to expand the ECP method for the determination of more complex adsorption isotherms including such containing inflection points. We will exemplify the methodology with type II, type III and type V isotherms. Guidelines are given for how to determine such isotherms using the ECP method and for the experimental considerations that must be taken into account or that may be eliminated in the particular case.

  4. Determination of competitive adsorption isotherms applying the nonlinear frequency response method. Part II. Experimental demonstration.

    PubMed

    Ilić, Milica; Petkovska, Menka; Seidel-Morgenstern, Andreas

    2009-08-14

    This paper demonstrates an experimental application of the nonlinear frequency response (FR) method extension to determine adsorption isotherms of binary mixtures. This method, based on the analysis of the response of a chromatographic column subjected to the sinusoidal inlet concentration changes, is shown to be an alternative for isotherm determination. The critical issue related to the successful application of the method is to reach experimentally the low frequency asymptotic behaviour of the corresponding frequency response functions (FRFs). Although, there are different possibilities to perform periodical inlet concentration changes, in this paper only simultaneous changes for both components were considered. The adsorption of phenol and 2-phenylethanol on octadecyl silica was analyzed experimentally using a mixture of methanol and water as a solvent. Parameters of competitive isotherms were also estimated for comparison using the classical perturbation method. Despite certain differences between competitive isotherms estimated with the two methods that were found, the obtained results show the potential of the nonlinear FR method for measuring competitive isotherms.

  5. Universal singularities of multilayer adsorption isotherms and determination of surface area of adsorbents

    SciTech Connect

    Aranovich, G.L.; Donohue, M.D.

    1996-07-15

    The singularity in the adsorption isotherm for macroporous and nonporous adsorbents is considered as a universal function that can be characterized with two parameters: a coefficient of proportionality, K, and an exponent, d. It is shown that the value of K is proportional to the adsorbent surface area but does not depend on the nature of the adsorbent. This leads to a new method to determine the surface area of an adsorbent, S, that is independent of the form of the adsorption isotherm at low and moderate reduced pressures. Comparison with the BET areas for nitrogen shows that the new method gives the values of S which are very close to the BET results if K = 1.47 {times} 10{sup {minus}5} mol/m{sup 2} (for nitrogen). Analysis of adsorption data for macroporous adsorbents shows that the BET isotherm gives systematic deviations and that the experimental amount adsorbed is smaller than the value predicted by the BET equation (even in the range of the best agreement with experiment). These deviations lead to systematic error in the values of S of about 43%. Using K equal to K{sub f} = 1/{sigma}N{sub A} (=1.025 {times} 10{sup {minus}5} mol/m{sup 2} for nitrogen), the authors are able to eliminate systematic error in the surface area determination. Here {sigma} is the area occupied by one molecule and N{sub A} is the Avogadro number.

  6. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.

    PubMed

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants.

  7. Adsorption of CO{sub 2} on activated carbon: Simultaneous determination of integral heat and isotherm of adsorption

    SciTech Connect

    Berlier, K.; Frere, M.

    1996-09-01

    Simultaneous measurements of isotherms and integral heats of adsorption of carbon dioxide (CO{sub 2}) at temperatures ranging from 278 K to 327 K (seven temperatures) and at pressures up to 110 kPa on activated carbon are presented.

  8. Theoretical study of the accuracy of the pulse method, frontal analysis, and frontal analysis by characteristic points for the determination of single component adsorption isotherms

    SciTech Connect

    Kaczmarski, Krzysztof; Guiochon, Georges A

    2009-01-01

    The adsorption isotherms of selected compounds are our main source of information on the mechanisms of adsorption processes. Thus, the selection of the methods used to determine adsorption isotherm data and to evaluate the errors made is critical. Three chromatographic methods were evaluated, frontal analysis (FA), frontal analysis by characteristic point (FACP), and the pulse or perturbation method (PM), and their accuracies were compared. Using the equilibrium-dispersive (ED) model of chromatography, breakthrough curves of single components were generated corresponding to three different adsorption isotherm models: the Langmuir, the bi-Langmuir, and the Moreau isotherms. For each breakthrough curve, the best conventional procedures of each method (FA, FACP, PM) were used to calculate the corresponding data point, using typical values of the parameters of each isotherm model, for four different values of the column efficiency (N = 500, 1000, 2000, and 10,000). Then, the data points were fitted to each isotherm model and the corresponding isotherm parameters were compared to those of the initial isotherm model. When isotherm data are derived with a chromatographic method, they may suffer from two types of errors: (1) the errors made in deriving the experimental data points from the chromatographic records; (2) the errors made in selecting an incorrect isotherm model and fitting to it the experimental data. Both errors decrease significantly with increasing column efficiency with FA and FACP, but not with PM.

  9. Adsorption isotherms of charged nanoparticles.

    PubMed

    Dos Santos, Alexandre P; Bakhshandeh, Amin; Diehl, Alexandre; Levin, Yan

    2016-10-19

    We present theory and simulations which allow us to quantitatively calculate the amount of surface adsorption excess of charged nanoparticles onto a charged surface. The theory is very accurate for weakly charged nanoparticles and can be used at physiological concentrations of salt. We have also developed an efficient simulation algorithm which can be used for dilute suspensions of nanoparticles of any charge, even at very large salt concentrations. With the help of the new simulation method, we are able to efficiently calculate the adsorption isotherms of highly charged nanoparticles in suspensions containing multivalent ions, for which there are no accurate theoretical methods available.

  10. Adsorption isotherms of cellulose-based polymers onto cotton fibers determined by means of a direct method of fluorescence spectroscopy.

    PubMed

    Hoffmann, Ingo; Oppel, Claudia; Gernert, Ulrich; Barreleiro, Paula; von Rybinski, Wolfgang; Gradzielski, Michael

    2012-05-22

    We present a novel method for the measurement of polymer adsorption on fibers by employing fluorescently labeled polymers. The method itself can be used for any compound that either shows fluorescence or can be labeled with a fluorescent dye, which renders it ubiquitously applicable for adsorption studies. The main advantage of the method is that the choice of adsorbent is not limited to flat surfaces, thereby allowing the investigation of fibrous and porous systems. As an example of high interest for application we determined the adsorption isotherms of various polysaccharide-based polymers with different charges and different substituents on cotton fibers. These experiments show that the extent of adsorption depends not only on the charge conditions but also very much on the specific interactions between the polymer and fiber. For instance, the cationic hydroxyethyl cellulose can become bound to an extent similar to that of the anionic alginate, while the anionic carboxymethyl cellulose of similar charge density adsorbs much less under these conditions. This shows that the adsorption of polymers depends subtly on the details of the interaction between the polymer and fiber but can be determined with good precision with our direct fluorescence method.

  11. Adsorption Isotherms and Surface Reaction Kinetics

    ERIC Educational Resources Information Center

    Lobo, L. S.; Bernardo, C. A.

    1974-01-01

    Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)

  12. Adsorption Isotherms and Surface Reaction Kinetics

    ERIC Educational Resources Information Center

    Lobo, L. S.; Bernardo, C. A.

    1974-01-01

    Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)

  13. Determination of adsorption isotherm parameters for minor whey proteins by gradient elution preparative liquid chromatography.

    PubMed

    Faraji, Naeimeh; Zhang, Yan; Ray, Ajay K

    2015-09-18

    Ion-Exchange Chromatography (IEC) techniques have been extensively investigated in protein purification processes, due to the more selective and milder separation steps. To date, existing studies of minor whey proteins fractionation in IEC have primarily been conducted as batch uptake studies, which require more experimental search space, time and materials. In this work, the selected resin's (SP Sepharose FF) equilibrium and dynamic binding capacity were first investigated. Next, adsorption of the pure binary mixture of lactoperoxidase and lactoferrin was studied to calibrate steric mass action (SMA) model using a simplified approach with data from single column experiments. The calibrated model was then verified by performing factorial-design based experiments for various process operating conditions assessing process performance on a larger bed height column. The model predicted results demonstrated a realistic agreement with the experiments providing reproducible column elution profile and reduced experimental work. Finally, whey protein isolate was used to evaluate model parameters in real conditions. Results obtained herein are suitable for future large scale applications.

  14. Adsorption isotherm special study. Final report

    SciTech Connect

    1993-05-01

    The study was designed to identify methods to determine adsorption applicable to Uranium Mill Tailings Remedial Action (UMTRA) Project sites, and to determine how changes in aquifer conditions affect metal adsorption, resulting retardation factors, and estimated contaminant migration rates. EPA and ASTM procedures were used to estimate sediment sorption of U, As, and Mo under varying groundwater geochemical conditions. Aquifer matrix materials from three distinct locations at the DOE UMTRA Project site in Rifle, CO, were used as the adsorbents under different pH conditions; these conditions stimulated geochemical environments under the tailings, near the tailings, and downgradient from the tailings. Grain size, total surface area, bulk and clay mineralogy, and petrography of the sediments were characterized. U and Mo yielded linear isotherms, while As had nonlinear ones. U and Mo were adsorbed strongly on sediments acidified to levels similar to tailings leachate. Changes in pH had much less effect on As adsorption. Mo was adsorbed very little at pH 7-7.3, U was weakly sorbed, and As was moderately sorbed. Velocities were estimated for metal transport at different pHs. Results show that the aquifer materials must be characterized to estimate metal transport velocities in aquifers and to develop groundwater restoration strategies for the UMTRA project.

  15. Experimental adsorption isotherms based on inverse gas chromatography.

    PubMed

    Kalogirou, E; Bassiotis, I; Artemiadi, Th; Margariti, S; Siokos, V; Roubani-Kalantzopoulou, F

    2002-09-06

    A new chromatographic perturbation method is used for studying the adsorption-desorption equilibrium in various gas-solid heterogeneous systems. It is the reversed-flow method giving accurate and precise values of many physicochemical constants including the basic and necessary adsorption isotherm values. For four inorganic oxides, namely, Cr2O3, Fe2O3, TiO2 and PbO, and two aromatic hydrocarbons (benzene, toluene) these adsorption isotherms have been determined through a non-linear model.

  16. Numerical determination of non-Langmuirian adsorption isotherms of ibuprofen enantiomers on Chiralcel OD column using ultraviolet-circular dichroism dual detector.

    PubMed

    Li, Hui; Jiang, Xiaoxiao; Xu, Wei; Chen, Yongtao; Yu, Weifang; Xu, Jin

    2016-02-26

    Competitive adsorption isotherm of ibuprofen enantiomers on Chiralcel OD stationary phase at 298K was determined by the application of inverse method. Transport dispersive (TD) chromatography model was used to describe mass balances of the enatiomers. Axial dispersion and mass transfer coefficients were estimated from a series of linear pulse experiments. It was found that the overloaded elution profile of total concentration of racemic ibuprofen cannot be satisfactorily fitted by substituting bi-Langmuir model, the most widely used isotherm model for enantiomers, into TD model and tuning the isotherm parameters. UV-CD dual detector setup was then applied to obtain the individual overloaded elution profiles of both enantiomers. The more informative experimental data revealed non-Langmuirian adsorption behavior of ibuprofen enantiomers on chiralcel OD stationary phase. Two analytical binary isotherm models, both accounting for adsorbate-adsorbate interactions and having the feature of inflection points, were then evaluated. A comparison between quadratic model and Moreau model showed that the former gives better fitting results. The six parameters involved in quadratic model were determined stepwisely. Three of them were first obtained by fitting overloaded elution profiles of S-ibuprofen. The other three were then acquired by fitting overloaded elution profiles of both enantiomers recorded by UV-CD dual detector for racemic ibuprofen. A further attempt was also made at reducing the number of quadratic model parameters.

  17. Moisture adsorption isotherms and glass transition temperature of pectin.

    PubMed

    Basu, Santanu; Shivhare, U S; Muley, S

    2013-06-01

    The moisture adsorption isotherms of low methoxyl pectin were determined at 30-70°C and water activity ranging from 0.11 to 0.94. The moisture adsorption isotherms revealed that the equilibrium moisture content increased with water activity. Increase in temperature, in general, resulted in decreased equilibrium moisture content. However in some cases, equilibrium moisture content values increased with temperature at higher water activities. Selected sorption models (GAB, Halsey, Henderson, Oswin, modified Oswin) were tested for describing the adsorption isotherms. Parameters of each sorption models were determined by nonlinear regression analysis. Oswin model gave the best fit for pectin sorption behaviour. Isosteric heat of sorption decreased with increase in moisture content and varied between 14.607 and 0.552 kJ/mol. Glass transition temperature decreased with increase in moisture content of pectin.

  18. Adsorption isotherm of non-azeotropic solution onto porous adsorbents

    NASA Astrophysics Data System (ADS)

    Bono, A.; Ramlan, N. A.; Anisuzzaman, S. M.; Chu, C. M.; Farm, Y. Y.

    2016-06-01

    Adsorption isotherm is essential component in the understanding of the adsorption process. Several methods of the measurements, analysis and interpretation of adsorption from solution have been reported in the literature. Most of the measurements of adsorption isotherm from solution were involved the measurement of excess isotherm conducted at low region of sorbates concentration. Direct interpretation of excess adsorption isotherm as adsorption isotherm is always been practice. Therefore, in this work a study on the measurement of the adsorption isotherm from solution of non-azeotropic organic solvent mixture onto porous adsorbents for whole range of liquid concentration was conducted. The study included the measurement of excess adsorption isotherm using conventional technique. Theoretical analysis and interpretation of adsorption isotherm from the excess isotherm were conducted using Pseudo Ideal Adsorption, Gibbs Dividing Plane Model and Langmuir-Fruendlich binary isotherm model. For organic solvents, acetone and propanol were chosen as the adsorbates due to the non-azeotropic properties in the mixture. Activated carbon and silicalite were chosen as adsorbents due to the different in their porosity such as macro porous and micro porous structure. The result of the study has revealed that the adsorption isotherm of non-azeotropic mixture onto activated carbon and silicalite can be interpreted as monolayer type of adsorption.

  19. Adsorption of water vapor by poly(styrenesulfonic acid), sodium salt: isothermal and isobaric adsorption equilibria.

    PubMed

    Toribio, F; Bellat, J P; Nguyen, P H; Dupont, M

    2004-12-15

    Air conditioning and dehumidifying systems based on sorption on solids are of great interest, especially in humid climates, because they allow reduction of thermal loads and use of chlorofluorocarbons. Previous studies have shown that hydrophilic polymers such as sulfonic polymers can have very high performance in water adsorption from air. The aim of this study was to characterize the water vapor adsorption properties of fully sulfonated and monosulfonated poly(styrenesulfonic acid), sodium salt, and to elucidate the mechanism of adsorption on these materials. Adsorption isotherms have been determined by TGA between 298 and 317 K for pressures ranging from 0.1 to 45 hPa. They have type II of the IUPAC classification and a small hysteresis loop between adsorption and desorption processes was observed only for the monosulfonated sample. Water content is up to 80% weight at 80% relative humidity. Adsorption isotherms have been well fitted with the FHH model. Adsorption-desorption isobars have been determined by TGA under 37 hPa in the temperature range 298-373 K. They show that these polymers can be completely regenerated by heating at 313 K under humidified air. No degradation of the adsorption properties has been observed after several regenerations. Adsorption enthalpies and entropies have been deduced from the Clapeyron equation and from DSC measurements. A good agreement was found. A mechanism of adsorption is proposed considering two kinds of adsorbate: bounded water in electrostatic interaction with functional groups and free water resulting from condensation.

  20. The Calculation of Adsorption Isotherms from Chromatographic Peak Shapes

    ERIC Educational Resources Information Center

    Neumann, M. G.

    1976-01-01

    Discusses the relationship between adsorption isotherms and elution peak shapes in gas chromatography, and describes a laboratory experiment which involves the adsorption of hexane, cyclohexane, and benzene on alumina at different temperatures. (MLH)

  1. The Calculation of Adsorption Isotherms from Chromatographic Peak Shapes

    ERIC Educational Resources Information Center

    Neumann, M. G.

    1976-01-01

    Discusses the relationship between adsorption isotherms and elution peak shapes in gas chromatography, and describes a laboratory experiment which involves the adsorption of hexane, cyclohexane, and benzene on alumina at different temperatures. (MLH)

  2. Kinetics and isotherms of Neutral Red adsorption on peanut husk.

    PubMed

    Han, Runping; Han, Pan; Cai, Zhaohui; Zhao, Zhenhui; Tang, Mingsheng

    2008-01-01

    Adsorption of Neutral Red (NR) onto peanut husk in aqueous solutions was investigated at 295 K. Experiments were carried out as function of pH, adsorbent dosage, contact time, and initial concentration. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Toth isotherm models. The results indicated that the Toth and Langmuir models provided the best correlation of the experimental data. The adsorption capacity of peanut husk for the removal of NR was determined with the Langmuir and found to be 37.5 mg/g at 295 K. The adsorption kinetic data were modeled using the pseudo-first order, pseudo-second order, and intra-particle diffusion kinetic equations. It was seen that the pseudo-first order and pseudo-second order kinetic equations could describe the adsorption kinetics. The intraparticle diffusion model was also used to express the adsorption process at the two-step stage. It was implied that peanut husk may be suitable as adsorbent material for adsorption of NR from aqueous solutions.

  3. Prediction of the competitive adsorption isotherms of 2-phenylethanol and 3-phenylpropanol by artificial neural networks.

    PubMed

    Wu, Xiuhong; Wang, Shaoyan; Zhang, Renzhuang; Gao, Zhiming

    2014-03-07

    Artificial neural networks (ANNs) were regarded as data-mapping networks with strong nonlinear fitting abilities. A 2-6-2 network was used to determine the competitive adsorption isotherm of 2-phenylethanol (PE) and 3-phenylpropanol (PP). The ANN results were forms of data mapping rather than theoretical mathematical model. The ANN architecture was established after training with a set of experimental data. The established ANN was applied to predict the adsorption isotherms of PE and PP. The selection of parameters for the ANN was discussed. The results indicate that ANN has excellent potential for use in non-linear chromatography for the prediction of adsorption isotherms.

  4. Determination of Cesium (CS+) Adsorption Kinetics and Equilibrium Isotherms from Hanford Waste Simulants Using Resorcinol-Formaldehyde (RF) Resins

    SciTech Connect

    DUFFEY, CHERYL

    2004-03-01

    This report describes the results of cesium sorption kinetics and equilibrium isotherm tests with resorcinol-formaldehyde (RF) resin using Tank AN-105 simulated waste. These tests were conducted at the Savannah River Technology Center in support of the Hanford River Protection Project - Waste Treatment Plant (RPP-WTP). A crucial part of the current treatment process involves the removal of cesium from waste tank supernate solutions using columns containing SuperLig 644 resin. Due to concerns about the chemical and hydraulic performance of SuperLig 644 resin in large-scale operations, RF resin was evaluated as a potential alternative to the baseline material. Extensive testing was conducted at Pacific Northwest National Laboratory on various RF samples (both granular and spherical) obtained from different vendors. Three RF samples (two spherical and one granular) were subsequently delivered to SRTC based on initial screening results at PNNL, which indicated good performance for these materials. A small number of tests were then conducted at SRTC on the RF resin using non-radioactive simulant solutions to support development of a preliminary column performance model.

  5. Characterizing Nitrogen adsorption and desorption isotherms in soils using multifractal analysis

    NASA Astrophysics Data System (ADS)

    Paz Ferreiro, Jorge; Miranda, José G. V.; Vidal Vázquez, Eva

    2010-05-01

    The specific surface area is an attribute known to characterize the soil ability to retain and transport nutrients and water. A number of studies have shown that specific surface area correlates cation exchange capacity, organic matter content, water retention, aggregate stability and clay swelling. In the past fractal theory has been widely used to study different gas adsorption isotherms like water vapour and nitrogen adsorption isotherms. More recently we have shown that nitrogen adsorption isotherms showed multifractal nature. In this work, both N2 adsorption and desorption isotherms measured in a Mollisol were examined as a probability measure using the multifractal formalism in order to determinate its possible multifractal behaviour. Soil samples were collected in two different series of an Argiudoll located in the north of Buenos Aires and in the south of Santa Fe provinces, Argentina. Two treatments of each soil series were sampled at three depths, without replication, resulting in six samples per soil series and a total of twelve samples analyzed. Multifractal analysis was performed using the box counting method. Both, the N2 adsorption and desorption isotherms exhibited a well defined scaling behaviour indicating a fully developed multifractal structure of each isotherm branch. The singularity spectra and Rényi dimension spectra obtained for adsorption and also for desorption isotherms had shapes similar to the spectra of multifractal measures and several parameters were extracted from these spectra. The capacity dimension, D0, for both N2 adsorption and desorption data sets were not significantly different from 1.00. However, nitrogen adsorption and desorption data showed significantly different values of entropy dimension, D1, and correlation dimension, D2. For instance, entropy dimension values extracted from multifractal spectra of adsorption isotherms were on average 0.578 and varied from 0.501 to 0.666. In contrast, the corresponding figures for

  6. Application of water-activated carbon isotherm models to water adsorption isotherms of single-walled carbon nanotubes.

    PubMed

    Kim, Pyoungchung; Agnihotri, Sandeep

    2008-09-01

    The objective of this study is to understand the interactions of water with novel nanocarbons by implementing semiempirical models that were developed to interpret adsorption isotherms of water in common carbonaceous adsorbents. Water adsorption isotherms were gravimetrically determined on several single-walled carbon nanotube (SWNT) and activated carbon samples. Each isotherm was fitted to the Dubinin-Serpinsky (DS) equation, the Dubinin-Astakov equation, the cooperative multimolecular sorption theory, and the Do and Do equations. The applicability of these models was evaluated by high correlation coefficients and the significance of fitting parameters, especially those that delineate the concentration of hydrophilic functional groups, micropore volume, and the size of water clusters. Samples were also characterized by spectroscopic and adsorption techniques, and properties complementary to those quantified by the fitting parameters were extracted from the data collected. The comparison of fitting parameters with sample characterization results was used as the methodology for selecting the most informative and the best-fitting model. We conclude that the Do equation, as modified by Marban et al., is the most suitable semiempirical equation for predicting from experimental isotherms alone the size of molecular clusters that facilitate adsorption in SWNTs, deconvoluting the experimental isotherms into two subisotherms: adsorption onto hydrophilic groups and filling of micropores, and quantifying the concentration of hydrophilic functional groups, as well as determining the micropore volume explored by water. With the exception of the DS equation, the application of other water isotherm models to SWNTs is not computationally tractable. The findings from this research should aid studies of water adsorption in SWNTs by molecular simulation, which remains the most popular tool for understanding the microscopic behavior of water in nanocarbons.

  7. Derivation of the Freundlich Adsorption Isotherm from Kinetics

    ERIC Educational Resources Information Center

    Skopp, Joseph

    2009-01-01

    The Freundlich adsorption isotherm is a useful description of adsorption phenomena. It is frequently presented as an empirical equation with little theoretical basis. In fact, a variety of derivations exist. Here a new derivation is presented using the concepts of fractal reaction kinetics. This derivation provides an alternative basis for…

  8. Derivation of the Freundlich Adsorption Isotherm from Kinetics

    ERIC Educational Resources Information Center

    Skopp, Joseph

    2009-01-01

    The Freundlich adsorption isotherm is a useful description of adsorption phenomena. It is frequently presented as an empirical equation with little theoretical basis. In fact, a variety of derivations exist. Here a new derivation is presented using the concepts of fractal reaction kinetics. This derivation provides an alternative basis for…

  9. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    DOE PAGES

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; ...

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that themore » GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.« less

  10. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    SciTech Connect

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that the GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.

  11. Argon and Krypton Adsorption Isotherms on Single Carbon Nanotube Devices

    NASA Astrophysics Data System (ADS)

    Wang, Zenghui; Morse, Peter; Wei, Jiang; Vilches, Oscar; Cobden, David

    2009-03-01

    We have fabricated mass balances each consisting of an individual single-walled carbon nanotube suspended across a micron-sized trench in an oxidized Si wafer. The vibrational resonance frequency of a nanotube, which is in the range 50-500 MHz, is determined by monitoring the current through it while applying an electrostatic driving signal. By tracking changes in the resonance frequency we have measured isotherms of adsorbed mass vs vapor pressure for Ar ot Kr at liquid nitrogen temperatures. The sensitivity of the balances corresponds to just a few atoms. We have compared the monolayer mass shifts due to Ar and Kr, and measured a family of isotherms of Ar below 77 K. From the latter we calculated the isosteric heat of adsorption on the nanotube surface, which is found to be lower than that of Ar on basal plane graphite and only slightly larger than the latent heat of sublimation of bulk Ar at these temperatures. In one device we observed a phase transition in the adsorbed Ar near monolayer completion. In another device, which probably consists of two nanotubes joined in parallel, we observed enhanced adsorption at lower coverages which may be in the groove between the two nanotubes. This work is supported by the NSF, grant number 0606078.

  12. New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment.

    PubMed

    Khalfaoui, M; Knani, S; Hachicha, M A; Lamine, A Ben

    2003-07-15

    New theoretical expressions to model the five adsorption isotherm types have been established. Using the grand canonical ensemble in statistical physics, we give an analytical expression to each of five physical adsorption isotherm types classified by Brunauer, Emett, and Teller, often called BET isotherms. The establishment of these expressions is based on statistical physics and theoretical considerations. This method allowed estimation of all the mathematical parameters in the models. The physicochemical parameters intervening in the adsorption process that the models present could be deduced directly from the experimental adsorption isotherms by numerical simulation. We determine the adequate model for each type of isotherm, which fixes by direct numerical simulation the monolayer, multilayer, or condensation character. New equations are discussed and results obtained are verified for experimental data from the literature. The new theoretical expressions that we have proposed, based on statistical physics treatment, are rather powerful to better understand and interpret the various five physical adsorption type isotherms at a microscopic level.

  13. Pattern of adsorption isotherms in Ono-Kondo coordinates.

    PubMed

    Sumanatrakul, Panita; Abaza, Sarah; Aranovich, Gregory L; Sangwichien, Chayanoot; Donohue, Marc D

    2012-02-15

    The Ono-Kondo lattice density functional theory is used to analyze adsorbate-adsorbate interactions for supercritical systems. In prior work, this approach has been used to study intermolecular interactions in subcritical adsorbed phases, and this has included the study of adsorbate-adsorbate repulsions in the regime of adsorption compression. In this paper, we present the general pattern of adsorption isotherms in Ono-Kondo coordinates; this has not been done in the past. For this purpose, experimental isotherms for adsorption of supercritical fluids (including nitrogen, methane, and carbon dioxide) are plotted in Ono-Kondo coordinates. In addition, we performed Grand Canonical Monte Carlo simulations of adsorption for Lennard-Jones molecules and plotted isotherms in Ono-Kondo coordinates. Our results indicate a pattern of isotherms with regimes of adsorbate-adsorbate attractions at low surface coverage and adsorbate-adsorbate repulsions at high surface coverage. When the generalized Ono-Kondo model is used over a wide range of pressures - from low pressures of the Henry's law regime to supercritical pressures - the slope of the isotherm varies from positive at low pressures to negative at high pressures. The linear sections of these graphs show when the adsorbate-adsorbate interaction energies are approximately constant. When these linear sections have negative slopes, it indicates that the system is in a state of adsorption compression.

  14. Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies.

    PubMed

    Kumar, Prashant; Lau, Pei Wen; Kale, Sandeep; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet; Lali, Arvind

    2014-08-22

    Kafirin is a natural, hydrophobic and celiac safe prolamin protein obtained from sorghum seeds. Today kafirin is found to be useful in designing delayed delivery systems and coatings of pharmaceuticals and nutraceuticals where its purity is important and this can be obtained by adsorptive chromatography. This study is the first scientific insight into the isotherm and kinetic studies of kafirin adsorption on anion- and cation-exchange resins for practical applications in preparative scale chromatography. Adsorption isotherms of kafirin were determined for five anion- and two cation-exchange resins in batch systems. Isotherm parameters such as maximum binding capacity and dissociation constant were determined from Langmuir isotherm, and adsorptive capacity and affinity constant from Freundlich isotherm. Langmuir isotherm was found to fit the adsorption equilibrium data well. Batch uptake kinetics for kafirin adsorption on these resins was also carried out and critical parameters including the diffusion coefficient, film mass transfer coefficient, and Biot number for film-pore diffusion model were calculated. Both the isotherm and the kinetic parameters were considered for selection of appropriate resin for kafirin purification. UNOsphere Q (78.26 mg/ml) and Toyopearl SP-650M (57.4 mg/ml) were found to offer better kafirin binding capacities and interaction strength with excellent uptake kinetics under moderate operating conditions. With these adsorbents, film diffusion resistance was found to be major governing factor for adsorption (Bi<10 and δ<1). Based on designer objective function, UNOsphere Q was found be best adsorbent for binding of kafirin. The data presented is valuable for designing large scale preparative adsorptive chromatographic kafirin purification systems.

  15. Isotherms for adsorption of aromatic hydrocarbons from liquid paraffins on zeolites

    SciTech Connect

    Fominykh, L.F.; Abaimova, T.Ya.; Druzhkina, S.V.; Kondrat'ev, I.I.; Shevelev, Yu,V.

    1986-07-01

    This paper studies zeolite adsorption, under static conditions, of aromatic hydrocarbons from liquid paraffins obtained by the Parex method, and also the determination of adsorption isotherms. A weighed sample of the zeolite was activated in a muffle furnace at 450 C for 5 h and then cooled in a desiccator. The calculated values of the saturation adsorption of the hydrocarbons and the separation factor for the zeolites are listed.

  16. Study and numerical solution of a generalized mathematical model of isothermal adsorption

    SciTech Connect

    Komissarov, Yu.A.; Vetokhin, V.N.; Tsenev, V.A.; Gordeeva, E.L.

    1995-06-01

    A generalized mathematical model of isothermal adsorption that takes into account mass transfer on the surface of a particle, diffusion in micro- and macropores, and dispersion along the length of the apparatus is considered The parameters {lambda} and {var_phi}{sup 2} determine the dominating effect of any of the mass transfer mechanisms of the adsorption process. A numerical algorithm for solving the generalized adsorption model is suggested.

  17. Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae.

    PubMed

    Chen, Hao; Zhao, Jie; Wu, Junyong; Dai, Guoliang

    2011-08-15

    This paper reports on the development of organo-modified silkworm exuviae (MSE) adsorbent prepared by using hexadecyltrimethylammonium bromide (HDTMAB) for removing methyl orange (MO), a model anionic dye, from aqueous solution. The natural and modified samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and Fourier transform infrared spectroscopy (FT-IR). Batch adsorption experiments were carried out to remove MO from its aqueous solutions using SE and MSE. It was observed that the adsorption capacity of MSE is 5-6 times of SE. The different parameters effecting on the adsorption capacity such as pH of the solution, initial dye concentration, temperature and contact time have been investigated. Analysis of adsorption results obtained at different temperatures showed that the adsorption pattern on the MSE can be described perfectly with Langmuir isotherm model compared with Freundlich and Dubinin-Radushkevich (D-R) isotherm models, and the characteristic parameters for each adsorption isotherm were also determined. The adsorption process has been found exothermic in nature and thermodynamic parameters have been calculated. The adsorption kinetic followed the pseudo-second order kinetic model. The results of FT-IR, EDS and desorption studies all suggest that methyl orange adsorption onto the MSE should be mainly controlled by the hydrophobic interaction mechanism, along with a considerable contribution of the anionic exchange mechanism. The results indicate that HDTMAB-modified silkworm exuviae could be employed as low-cost material for the removal of methyl orange anionic dye from wastewater.

  18. Moisture Adsorption Isotherms and Thermodynamic Characteristics of Tannic Acid

    NASA Astrophysics Data System (ADS)

    Červenka, L.; Cacková, L.

    2016-09-01

    Moisture adsorption isotherms of tannic acid were determined at 5, 15, and 35°C with the use of the static gravimetric method in the range 0.113-0.980 aw (aw is the water activity). It was shown that tannic acid adsorbed more water at 5°C. The experimental data fitted well to the Guggenheim-Anderson-de Boer and Yanniotis-Blahovec equations, giving the corresponding parameters by nonlinear regression. The monolayer moisture content, number of monolayers, and the surface area of sorption were demonstrated to decrease with increasing temperature. Mesopores dominated below the monolayer moisture content followed by the formation of macropores. The variation of the differential enthalpy and entropy with the moisture content showed that water was strongly bound to the surface of tannic acid below the moisture content 5.0 g water/100 g dry basis. The adsorption process was found to be enthalpy-driven; however, it was not spontaneous at a low moisture content, as follows from the enthalpy-entropy compensation theory. The variation of the net integral enthalpy and entropy (at a constant spreading pressure) with the moisture content exhibited maximum and minimum values, respectively. This behavior indicated that water molecules were strongly bound to the tannic acid surface at the moisture content up to its monolayer values.

  19. Calorimetric determination of surfactant/polyelectrolyte binding isotherms.

    PubMed

    Lapitsky, Yakov; Parikh, Maider; Kaler, Eric W

    2007-07-26

    Mixing of oppositely charged surfactants and polyelectrolytes in aqueous solutions leads to cooperative surfactant adsorption onto the polyelectrolyte chains. Experimental determination of surfactant/polyelectrolyte binding isotherms is usually done using custom-built surfactant-ion-specific electrodes. As an alternative, we present an indirect isotherm approximation method that uses conventional isothermal titration calorimetry (ITC). The calorimetric data is fitted to the two-binding-state Satake-Yang adsorption model, which quantifies the extent of binding in terms of the binding constant (Ku) and the cooperativity parameter (u). This approach is investigated using two surfactant/polyelectrolyte mixtures: sodium perfluorooctanoate (FC7) and N,N,N-trimethylammonium derivatized hydroxyethyl cellulose (UCARE Polymer JR-400), whose binding behavior follows the Satake-Yang model, and dodecyltrimethylammonium bromide (DTAB) and poly(styrenesulfonate) (NaPSS), whose behavior deviates dramatically from the Satake-Yang model. These studies demonstrate that, in order to apply the indirect ITC method of binding isotherm determination, the surfactant/polyelectrolyte adsorption process must have no more than two dominant binding states. Thus, the technique works well for the FC7/JR-400 mixture. It fails in the case of the DTAB/NaPSS adsorption, but its mode of failure offers insight into the multiple-binding-state adsorption mechanism.

  20. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part II. Models with more than two parameters.

    PubMed

    Hamdaoui, Oualid; Naffrechoux, Emmanuel

    2007-08-17

    The adsorption equilibrium isotherms of five phenolic compounds, phenol, 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol, from aqueous solutions onto granular activated carbon were studied and modeled. In order to determine the best-fit isotherm, the experimental equilibrium data were analyzed using thirteen adsorption isotherm models with more than two-parameter; nine three-parameter equations - the Redlich-Peterson, Sips, Langmuir-Freundlich, Fritz-Schlunder, Radke-Prasnitz (three models), Tóth, and Jossens isotherms - three four-parameter equation - the Weber-van Vliet, Fritz-Schlunder, and Baudu isotherms - and one five-parameter equation - the Fritz-Schlunder isotherm. The results reveal that the adsorption isotherm models fitted the experimental data in the order: Baudu (four-parameter)>Langmuir-Freundlich (three-parameter)>Sips (three-parameter)>Fritz-Schlunder (five-parameter)>Tóth (three-parameter)>Fritz-Schlunder (four-parameter)>Redlich-Peterson (three-parameter). The influence of solution pH on the adsorption isotherms of 4-CP was investigated. It was shown that the solution pH has not an effect on the adsorption isotherms for pHadsorptive pKa and the pH(PZC).

  1. Novel Silica-Based Hybrid Adsorbents: Lead(II) Adsorption Isotherms

    PubMed Central

    Wang, Xin

    2013-01-01

    Water pollution caused by the lead(II) from the spent liquor has caught much attention. The research from the theoretical model to application fundaments is of vital importance. In this study, lead(II) adsorption isotherms are investigated using a series of hybrid membranes containing mercapto groups (–SH groups) as the hybrid adsorbents. To determine the best fitting equation, the experimental data were analyzed using six two-parameter isotherm equations (i.e., Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Temkin, Harkins-Jura, and Halsey isotherm models). It was found that the lead(II) adsorption on these samples followed the Freundlich, Dubinin-Radushkevich (D-R), and Halsey isotherm models. Moreover, the mean free energy of adsorption was calculated using Dubinin-Radushkevich (D-R) isotherm model and it was confirmed that the adsorption process was physical in nature. These findings are very meaningful in the removal of lead(II) ions from water using the hybrid membranes as adsorbents. PMID:24302877

  2. Novel silica-based hybrid adsorbents: lead(II) adsorption isotherms.

    PubMed

    Liu, Junsheng; Wang, Xin

    2013-01-01

    Water pollution caused by the lead(II) from the spent liquor has caught much attention. The research from the theoretical model to application fundaments is of vital importance. In this study, lead(II) adsorption isotherms are investigated using a series of hybrid membranes containing mercapto groups (-SH groups) as the hybrid adsorbents. To determine the best fitting equation, the experimental data were analyzed using six two-parameter isotherm equations (i.e., Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Temkin, Harkins-Jura, and Halsey isotherm models). It was found that the lead(II) adsorption on these samples followed the Freundlich, Dubinin-Radushkevich (D-R), and Halsey isotherm models. Moreover, the mean free energy of adsorption was calculated using Dubinin-Radushkevich (D-R) isotherm model and it was confirmed that the adsorption process was physical in nature. These findings are very meaningful in the removal of lead(II) ions from water using the hybrid membranes as adsorbents.

  3. Multifractal characteristics of Nitrogen adsorption isotherms from tropical soils

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, Eva; Paz Ferreiro, Jorge

    2010-05-01

    One of the primary methods used to characterize a wide range of porous materials, including soils, are gas adsorption isotherms. An adsorption isotherm is a function relating the amount of adsorbed gas or vapour to the respective equilibrium pressure, during pressure increase at constant temperature. Adsorption data allow easily estimates of specific surface area and also can provide a characterization of pore surface heterogeneity. Most of the properties and the reactivity of soil colloids are influenced by their specific surface area and by parameters describing the surface heterogeneity. For a restricted scale range, linearity between applied pressure and volume of adsorbate holds, which is the basis for current estimations of specific surface area. However, adsorption isotherms contain also non-linear segments of pressure versus volume so that evidence of multifractal scale has been demonstrated. The aim of this study was to analyze the multifractal behaviour of nitrogen adsorption isotherms from a set of tropical soils. Samples were collected form 54 horizons belonging to 19 soil profiles in the state of Minas Gerais, Brazil. The most frequent soil type was Oxisol, according to the Soil Survey Staff, equivalent to Latossolo in the Brazilian soil classification system. Nitrogen adsorption isotherms at standard 77 K were measured using a Thermo Finnigan Sorptomatic 1990 gas sorption analyzer (Thermo Scientific, Waltham, MA). From the raw data a distributions of mass along a support was obtained to perform multifractal analysis. The probability distribution was constructed by dividing the values of the measure in a given segment by the sum of the measure in the whole scale range. The box-counting method was employed to perform multifractal analysis. All the analyzed N2 adsorption isotherms behave like a multifractal system. The singularity spectra, f(α), showed asymmetric concave down parabolic shapes, with a greater tendency toward the left side, where moments

  4. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    SciTech Connect

    Hull, L.C.; Grossman, C.; Fjeld, R.A.; Coates, J.T.; Elzerman, A.W.

    2002-05-10

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth.

  5. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    SciTech Connect

    Hull, Laurence Charles; Grossman, Christopher; Fjeld, R. A.; Coates, C.J.; Elzerman, A.

    2002-08-01

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth.

  6. A model free method for estimation of complicated adsorption isotherms in liquid chromatography.

    PubMed

    Forssén, Patrik; Fornstedt, Torgny

    2015-08-28

    Here we show that even extremely small variations in the adsorption isotherm can have a tremendous effect on the shape of the overloaded elution profiles and that the earlier in the adsorption isotherms the variation take place, the larger its impact on the shape of the elution profile. These variations are so small that they can be "hidden" by the discretization and in the general experimental noise when using traditional experimental methods, such as frontal analysis, to measure adsorption isotherms. But as the effects of these variations are more clearly visible in the elution profiles, the Inverse Method (IM) of adsorption isotherm estimation is an option. However, IM usually requires that one selects an adsorption isotherm model prior to the estimation process. Here we show that even complicated models might not be able to estimate the adsorption isotherms with multiple inflection points that small variations might give rise to. We therefore developed a modified IM that, instead of fixed adsorption isotherm models, uses monotone piecewise interpolation. We first validated the method with synthetic data and showed that it can be used to estimate an adsorption isotherm, which accurately predicts an extremely "strange" elution profile. For this case it was impossible to estimate the adsorption isotherm using IM with a fixed adsorption model. Finally, we will give an example of a real chromatographic system where adsorption isotherm with inflection points is estimated by the modified IM.

  7. Numerical estimation of adsorption energy distributions from adsorption isotherm data with the expectation-maximization method

    SciTech Connect

    Stanley, B.J.; Guiochon, G. |

    1993-08-01

    The expectation-maximization (EM) method of parameter estimation is used to calculate adsorption energy distributions of molecular probes from their adsorption isotherms. EM does not require prior knowledge of the distribution function or the isotherm, requires no smoothing of the isotherm data, and converges with high stability towards the maximum-likelihood estimate. The method is therefore robust and accurate at high iteration numbers. The EM algorithm is tested with simulated energy distributions corresponding to unimodal Gaussian, bimodal Gaussian, Poisson distributions, and the distributions resulting from Misra isotherms. Theoretical isotherms are generated from these distributions using the Langmuir model, and then chromatographic band profiles are computed using the ideal model of chromatography. Noise is then introduced in the theoretical band profiles comparable to those observed experimentally. The isotherm is then calculated using the elution-by-characteristic points method. The energy distribution given by the EM method is compared to the original one. Results are contrasted to those obtained with the House and Jaycock algorithm HILDA, and shown to be superior in terms of robustness, accuracy, and information theory. The effect of undersampling of the high-pressure/low-energy region of the adsorption is reported and discussed for the EM algorithm, as well as the effect of signal-to-noise ratio on the degree of heterogeneity that may be estimated experimentally.

  8. Reliable prediction of adsorption isotherms via genetic algorithm molecular simulation.

    PubMed

    LoftiKatooli, L; Shahsavand, A

    2017-01-01

    Conventional molecular simulation techniques such as grand canonical Monte Carlo (GCMC) strictly rely on purely random search inside the simulation box for predicting the adsorption isotherms. This blind search is usually extremely time demanding for providing a faithful approximation of the real isotherm and in some cases may lead to non-optimal solutions. A novel approach is presented in this article which does not use any of the classical steps of the standard GCMC method, such as displacement, insertation, and removal. The new approach is based on the well-known genetic algorithm to find the optimal configuration for adsorption of any adsorbate on a structured adsorbent under prevailing pressure and temperature. The proposed approach considers the molecular simulation problem as a global optimization challenge. A detailed flow chart of our so-called genetic algorithm molecular simulation (GAMS) method is presented, which is entirely different from traditions molecular simulation approaches. Three real case studies (for adsorption of CO2 and H2 over various zeolites) are borrowed from literature to clearly illustrate the superior performances of the proposed method over the standard GCMC technique. For the present method, the average absolute values of percentage errors are around 11% (RHO-H2), 5% (CHA-CO2), and 16% (BEA-CO2), while they were about 70%, 15%, and 40% for the standard GCMC technique, respectively.

  9. Isotherm study of reactive Blue 19 adsorption by an alum sludge

    NASA Astrophysics Data System (ADS)

    Khim, Ong Keat; Nor, Mohd Asri Md; Mohamad, Syuriya; Nasaruddin, Nas Aulia Ahmad; Jamari, Nor Laili-Azua; Yunus, Wan Md Zin Wan

    2015-05-01

    This study investigates the adsorption of Reactive Blue 19 using dewatered alum sludge. The dewatered alum sludge was a sludge produced from drinking water treatment plant. Batch adsorption experiments were performed to investigate the mechanism of the dye adsorption. The adsorption was rapid at its initial stage but the rate decreased as it approached equilibrium. The adsorption data were evaluated by Langmuir and Freundlich isotherm models but was best described by the Langmuir isotherm model as it gave the highest correlation.

  10. Adsorption isotherms of phenols from water onto macroreticular resins.

    PubMed

    Juang, R; Shiau, J

    1999-12-31

    The amounts of equilibrium adsorption of phenol and 4-chlorophenol from water on non-ionic macroreticular resins were measured in the temperature range 288-318 K. It was shown that the isotherm data could not be fit by any conventional two- or three-parameter equation including the Langmuir, Freundlich, BET, and Redlich-Peterson equations over the entire range of concentration (1-32 mol m(-3)). They were well fit by combined BET equation or its modified form with the Freundlich or Langmuir equation, depending on the types of solutes and the resins. Such different fitting results could be related to the solute-resin interactions owing to the relatively wide pore size distribution of the resins. The effect of temperature on adsorption equilibrium was also discussed.

  11. Effect of pore blockage on adsorption isotherms and dynamics: Anomalous adsorption of iodine on activated carbon

    SciTech Connect

    Bhatia, S.K.; Liu, F.; Arvind, G.

    2000-04-18

    Isotherm hysteresis and pore-clocking effects of trapped molecules on adsorption dynamics is studied here, using the iodine-carbon system in the 300--343 K temperature range. It is found that a portion of the iodine is strongly adsorbed, and does not desorb, even over very long time scales, while the remainder adsorbs reversibly as a homogeneous monolayer with a Langmuirian isotherm in mesopores. The strongly adsorbed iodine appears to adsorb in micropores and at the mesopore mouths, hindering uptake of the reversible iodine. The uptake data for the adsorption and desorption dynamics of the reversible part is found to be best explained by means of a pore mouth resistance control mechanism. it is concluded that the dynamics of the adsorption and desorption at the pore mouth is important at early stages of the process.

  12. Mean field lattice model for adsorption isotherms in zeolite NaA

    NASA Astrophysics Data System (ADS)

    Ayappa, K. G.; Kamala, C. R.; Abinandanan, T. A.

    1999-05-01

    Using a lattice model for adsorption in microporous materials, pure component adsorption isotherms are obtained within a mean field approximation for methane at 300 K and xenon at 300 and 360 K in zeolite NaA. It is argued that the increased repulsive adsorbate-adsorbate interactions at high coverages must play an important role in determining the adsorption behavior. Therefore, this feature is incorporated through a "coverage-dependent interaction" model, which introduces a free, adjustable parameter. Another important feature, the site volume reduction, has been treated in two ways: a van der Waal model and a 1D hard-rod theory [van Tassel et al., AIChE J. 40, 925 (1994)]; we have also generalized the latter to include all possible adsorbate overlap scenarios. In particular, the 1D hard-rod model, with our coverage-dependent interaction model, is shown to be in best quantitative agreement with the previous grand canonical Monte Carlo isotherms. The expressions for the isosteric heats of adsorption indicate that attractive and repulsive adsorbate-adsorbate interactions increase and decrease the heats of adsorption, respectively. It is concluded that within the mean field approximation, our simple model for repulsive interactions and the 1D hard-rod model for site volume reduction are able to capture most of the important features of adsorption in confined regions.

  13. Competitive ion-exchange adsorption of proteins: competitive isotherms with controlled competitor concentration.

    PubMed

    Cano, Tony; Offringa, Natalie D; Willson, Richard C

    2005-06-24

    The competitive adsorption processes inevitably present in chromatographic separations of complex mixtures have not been extensively studied. This is partly due to the difficulty of measuring true competitive isotherms, in which all system parameters (including competitor concentrations) are held constant. We report a novel approach to determining competitive protein adsorption isotherms in which the competitor concentration is held constant across the entire isotherm. By using the heme prosthetic group in cytochrome b5 as a quantitative spectrophotometric label, competitive isotherms between cytochrome b5 and alpha-lactalbumin can be constructed. Similarly, manganese-substituted protoporphyrin IX heme replacement allows the non-perturbing labeling of individual cytochrome b5 conservative surface charge mutants by replacement of a single atom in the interior of the protein. This labeling allows the study of competition between cytochrome b5 charge mutants of identical size and shape, which differ only in charge arrangement. Using these techniques, the effect of competing species on equilibrium behavior and the apparent heterogeneity of anion-exchange adsorbents in the presence of competitors can be quantitatively studied by fitting the data to two popular single-component binding models, the Temkin and the Langmuir-Freundlich (L-F) isotherms.

  14. Water Adsorption Isotherms on Fly Ash from Several Sources.

    PubMed

    Navea, Juan G; Richmond, Emily; Stortini, Talia; Greenspan, Jillian

    2017-10-03

    In this study, horizontal attenuated total reflection (HATR) Fourier-transform infrared (FT-IR) spectroscopy was combined with quartz crystal microbalance (QCM) gravimetry to investigate the adsorption isotherms of water on fly ash, a byproduct of coal combustion in power plants. Because of composition variability with the source region, water uptake was studied at room temperature as a function of relative humidity (RH) on fly ash from several regions: United States, India, The Netherlands, and Germany. The FT-IR spectra show water features growth as a function of RH, with water absorbing on the particle surface in both an ordered (ice-like) and a disordered (liquid-like) structure. The QCM data was modeled using the Brunauer, Emmett, and Teller (BET) adsorption isotherm model. The BET model was found to describe the data well over the entire range of RH, showing that water uptake on fly ash takes place mostly on the surface of the particle, even for poorly combusted samples. In addition, the source region and power-plant efficiency play important roles in the water uptake and ice nucleation (IN) ability of fly ash. The difference in the observed water uptake and IN behavior between the four samples and mullite (3Al2O3·2SiO2), the aluminosilicate main component of fly ash, is attributed to differences in composition and the density of OH binding sites on the surface of each sample. A discussion is presented on the RH required to reach monolayer coverage on each sample as well as a comparison between surface sites of fly ash samples and enthalpies of adsorption of water between the samples and mullite.

  15. Water adsorption isotherms on porous onionlike carbonaceous particles. Simulations with the grand canonical Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Hantal, György; Picaud, Sylvain; Hoang, Paul N. M.; Voloshin, Vladimir P.; Medvedev, Nikolai N.; Jedlovszky, Pál

    2010-10-01

    The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. These soot models are constructed by first removing atoms from onion-fullerene structures in order to create randomly distributed pores inside the soot, and then performing molecular dynamics simulations, based on the reactive adaptive intermolecular reactive empirical bond order (AIREBO) description of the interaction between carbon atoms, to optimize the resulting structures. The obtained results clearly show that the main driving force of water adsorption on soot is the possibility of the formation of new water-water hydrogen bonds with the already adsorbed water molecules. The shape of the calculated water adsorption isotherms at 298 K strongly depends on the possible confinement of the water molecules in pores of the carbonaceous structure. We found that there are two important factors influencing the adsorption ability of soot. The first of these factors, dominating at low pressures, is the ability of the soot of accommodating the first adsorbed water molecules at strongly hydrophilic sites. The second factor concerns the size and shape of the pores, which should be such that the hydrogen bonding network of the water molecules filling them should be optimal. This second factor determines the adsorption properties at higher pressures.

  16. Equilibrium isotherms, kinetics and thermodynamics studies of phenolic compounds adsorption on palm-tree fruit stones.

    PubMed

    Ahmed, Muthanna J; Theydan, Samar K

    2012-10-01

    Adsorption capacity of an agricultural waste, palm-tree fruit stones (date stones), for phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) at different temperatures was investigated. The characteristics of such waste biomass were determined and found to have a surface area and iodine number of 495.71 m2/g and 475.88 mg/g, respectively. The effects of pH (2-12), adsorbent dose (0.6-0.8 g/L) and contact time (0-150 min) on the adsorptive removal process were studied. Maximum removal percentages of 89.95% and 92.11% were achieved for Ph and PNPh, respectively. Experimental equilibrium data for adsorption of both components were analyzed by the Langmuir, Freundlich and Tempkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm equation with maximum adsorption capacities of 132.37 and 161.44 mg/g for Ph and PNPh, respectively. The kinetic data were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion models, and was found to follow closely the pseudo-second order model for both components. The calculated thermodynamic parameters, namely ΔG, ΔH, and ΔS showed that adsorption of Ph and PNPh was spontaneous and endothermic under examined conditions.

  17. Optimal smoothing of site-energy distributions from adsorption isotherms

    SciTech Connect

    Brown, L.F.; Travis, B.J.

    1983-01-01

    The equation for the adsorption isotherm on a heterogeneous surface is a Fredholm integral equation. In solving it for the site-energy distribution (SED), some sort of smoothing must be carried out. The optimal amount of smoothing will give the most information that is possible without introducing nonexistent structure into the SED. Recently, Butler, Reeds, and Dawson proposed a criterion (the BRD criterion) for choosing the optimal smoothing parameter when using regularization to solve Fredholm equations. The BRD criterion is tested for its suitability in obtaining optimal SED's. This criterion is found to be too conservative. While using it never introduces nonexistent structure into the SED, significant information is often lost. At present, no simple criterion for choosing the optimal smoothing parameter exists, and a modeling approach is recommended.

  18. Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures.

    PubMed

    Sadeek, Sadeek A; Negm, Nabel A; Hefni, Hassan H H; Wahab, Mostafa M Abdel

    2015-11-01

    Biosorption of Cu(II), Co(II) and Fe(III) ions from aqueous solutions by rice husk, palm leaf and water hyacinth was investigated as a function of initial pH, initial heavy metal ions concentration and treatment time. The adsorption process was examined by two adsorption isotherms: Langmuir and Freundlich isotherms. The experimental data of biosorption process were analyzed using pseudo-first order, pseudo-second order kinetic models. The equilibrium biosorption isotherms showed that the three studied biosorbents possess high affinity and sorption capacity for Cu(II), Co(II) and Fe(III) ions. Rice husk showed more efficiency than palm leaf and water hyacinth. Adsorption of Cu(II) and Co(II) was more efficient in alkaline medium (pH 9) than neutral medium due to the high solubility of metal ion complexes. The metal removal efficiency of each biosorbent was correlated to its chemical structure. DTA studies showed formation of metal complex between the biosorbents and the metal ions. The obtained results showed that the tested biosorbents are efficient and alternate low-cost biosorbent for removal of heavy metal ions from aqueous media.

  19. Modeling of adsorption isotherms on the addition of an inhibitor Myrmecodia Pendans extract with temperature variation

    NASA Astrophysics Data System (ADS)

    Pradityana, Atria; Sulistijono, Husodo, Nur; Winarto, Gatot Dwi; Bangun, Sri; Sampurno, Bambang

    2017-05-01

    In research carried out measurements of weight loss with API 5L grade B material in a solution of HCl 1 M. Extract Myrmecodia Pendans is used as a corrosion inhibitor. Immersion time was 2 hours, while the temperature variations used are 30, 40 and 50°C. Extracts of the ants 100-500 mg / L (multiples of 100 mg / L). In this study will also be analyzed with some models of adsorption mechanisms, including the Langmuir, Freundlich, and Temkin. This study aimed to determine the appropriate method of adsorption isotherms on each system. Adsorption equations of the model will be obtained values of free energy of a system. With the known value of free energy, it can be seen whether the adsorption occurs in physics or chemistry. This related to the surface protective layer formed on the surface absorption extract Myrmecodia Pendans. The results showed that the adsorption followed the Langmuir adsorption method at 30 and 40°C, while the temperature of 50°C followed Freundlich adsorption methods.

  20. Valorization of agricultural wastes as dye adsorbents: characterization and adsorption isotherms.

    PubMed

    Sepúlveda, Luisa A; Cuevas, Fernando A; Contreras, Elsa G

    2015-01-01

    The purpose of this work is to evaluate the valorization of agricultural waste, wheat straw (WS) and corn cob leaves (CCLs) as textile dye adsorbents. Physico-chemical and superficial characteristics of the agricultural wastes, together with the interactions with the CI Basic Violet 4 (BV4) dye, were investigated by means of the determination of the isotherm adsorption at different temperatures. The morphological characterization showed that the solid surface is coarse with a low pore level. However, through Fourier transformed infrared analysis, the presence of carboxylic and hydroxylic acid groups and hydrophobic methyl groups was detected. The concentration of acid groups is determined by the Boehm method and was found to be 1.00 and 0.89 meq/g for WS and CCLs, respectively. The point zero charge for each adsorbent was 5.76 and 4.08. Adsorption experimental data presented a better-fit Langmuir model, indicating that adsorption occurred in a monolayer with preferential interaction. The maximum adsorption capacity was determined to be 70.0-89.0 and 47.0-68.0 mg/g for CCLs and WS, respectively. The thermodynamic analysis of the Langmuir parameter b showed that the adsorption of the BV4 dye is spontaneous and exothermic with adsorption energies of 14.43 and 5.58 KJ/mol for CCLs and WS, respectively.

  1. Adsorption Isotherm Studies of CH4 on Tubular WS2

    NASA Astrophysics Data System (ADS)

    Mackie, Erica; Alkhafaji, Mazin; Migone, Aldo; Galvan, Donald

    1998-03-01

    We have measured adsorption-desorption isotherm cycles of CH4 on both tubular and non-tubular WS2. The tubular WS2 was produced (by Galvan et al.)(D.H.Galvan, R.Rangel and G.A.Nunez, submitted to Appl. Phys. Lett.) by electron irradiation of WS2 powder. The irradiation process results in WS2 tubes and paricles nanometric in diameter. The WS2 powder was manufactured by Alfa Aesar. We measured the surface area of both types of WS2 samples. We found an increase in surface area from 0.46 m^2/g for the non-irradiated, to 2.6 m^2/g for the irradiated WS2. We will present adsorption-desorption cycles for tubular and non-tubular WS2 subjected to different activation treatments: soaking in nitric acid, and, heating under vacuum to 700 C. Sufrace area comparisons between non-tubular and tubular, and between activated and non-activated WS2, will identify increases due to the potential opening of the tubes, the irradiation process itself, and/or the activation treatment.

  2. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects.

    PubMed

    Jeppu, Gautham P; Clement, T Prabhakar

    2012-03-15

    Analytical isotherm equations such as Langmuir and Freundlich isotherms are widely used for modeling adsorption data. However, these isotherms are primarily useful for simulating data collected at a fixed pH value and cannot be easily adapted to simulate pH-dependent adsorption effects. Therefore, most adsorption studies currently use numerical surface-complexation models (SCMs), which are more complex and time consuming than traditional analytical isotherm models. In this work, we propose a new analytical isotherm model, identified as the modified Langmuir-Freundlich (MLF) isotherm, which can be used to simulate pH-dependent adsorption. The MLF isotherm uses a linear correlation between pH and affinity coefficient values. We validated the proposed MLF isotherm by predicting arsenic adsorption onto two different types of sorbents: pure goethite and goethite-coated sand. The MLF model gave good predictions for both experimental and surface complexation-model predicted datasets for these two sorbents. The proposed analytical isotherm framework can help reduce modeling complexity, model development time, and computational efforts. One of the limitations of the proposed method is that it is currently valid only for single-component systems. Furthermore, the model requires a system-specific pH. vs. affinity coefficient relation. Despite these limitations, the approach provides a promising analytical framework for simulating pH-dependent adsorption effects.

  3. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects

    NASA Astrophysics Data System (ADS)

    Jeppu, Gautham P.; Clement, T. Prabhakar

    2012-03-01

    Analytical isotherm equations such as Langmuir and Freundlich isotherms are widely used for modeling adsorption data. However, these isotherms are primarily useful for simulating data collected at a fixed pH value and cannot be easily adapted to simulate pH-dependent adsorption effects. Therefore, most adsorption studies currently use numerical surface-complexation models (SCMs), which are more complex and time consuming than traditional analytical isotherm models. In this work, we propose a new analytical isotherm model, identified as the modified Langmuir-Freundlich (MLF) isotherm, which can be used to simulate pH-dependent adsorption. The MLF isotherm uses a linear correlation between pH and affinity coefficient values. We validated the proposed MLF isotherm by predicting arsenic adsorption onto two different types of sorbents: pure goethite and goethite-coated sand. The MLF model gave good predictions for both experimental and surface complexation-model predicted datasets for these two sorbents. The proposed analytical isotherm framework can help reduce modeling complexity, model development time, and computational efforts. One of the limitations of the proposed method is that it is currently valid only for single-component systems. Furthermore, the model requires a system-specific pH. vs. affinity coefficient relation. Despite these limitations, the approach provides a promising analytical framework for simulating pH-dependent adsorption effects.

  4. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies.

    PubMed

    Boopathy, Ramasamy; Karthikeyan, Sekar; Mandal, Asit Baran; Sekaran, Ganesan

    2013-01-01

    Ammonium ions are one of the most encountered nitrogen species in polluted water bodies. High level of ammonium ion in aqueous solution imparts unpleasant taste and odor problems, which can interfere with the life of aquatics and human population when discharged. Many chemical methods are developed and being used for removal of ammonium ion from aqueous solution. Among various techniques, adsorption was found to be the most feasible and environmentally friendly with the use of natural-activated adsorbents. Hence, in this study, coconut shell-activated carbon (CSAC) was prepared and used for the removal of ammonium ion by adsorption techniques. Ammonium chloride (analytical grade) was purchased from Merck Chemicals for adsorption studies. The CSAC was used to adsorb ammonium ions under stirring at 100 rpm, using orbital shaker in batch experiments. The concentration of ammonium ion was estimated by ammonia distillate, using a Buchi distillation unit. The influence of process parameters such as pH, temperature, and contact time was studied for adsorption of ammonium ion, and kinetic, isotherm models were validated to understand the mechanism of adsorption of ammonium ion by CSAC. Thermodynamic properties such as ∆G, ∆H, and ∆S were determined for the ammonium adsorption, using van't Hoff equation. Further, the adsorption of ammonium ion was confirmed through instrumental analyses such as SEM, XRD, and FTIR. The optimum conditions for the effective adsorption of ammonium ion onto CSAC were found to be pH 9.0, temperature 283 K, and contact time 120 min. The experimental data was best followed by pseudosecond order equation, and the adsorption isotherm model obeyed the Freundlich isotherm. This explains the ammonium ion adsorption onto CSAC which was a multilayer adsorption with intraparticle diffusion. Negative enthalpy confirmed that this adsorption process was exothermic. The instrumental analyses confirmed the adsorption of ammonium ion onto CSAC.

  5. Correlation of adsorption isotherms of hydrogen isotopes on mordenite adsorbents using reactive vacancy solution theory

    SciTech Connect

    Munakata, K.; Nakamura, A.; Kawamura, Y.

    2015-03-15

    The authors have applied the isotherm equations derived from the reactive vacancy solution theory (RVST) to correlation of experimental and highly non-ideal adsorption isotherms of hydrogen and deuterium on a mordenite adsorbent, and have examined the ability of the isotherm equations to match this correlation. Several isotherm equations such as Langmuir, Freundlich, Toth, Vacancy Solution Theory and so forth were also tested, but they did not work. For the Langmuir-Freundlich equation tests have indicated that its 'ability to correlate' of the adsorption isotherms is not satisfactory. For the multi-site Langmuir-Freundlich (MSLF) equation the correlation of the isotherms appears to be somewhat improved but remains unsatisfactory. The results show that the isotherm equations derived from RVST can better correlate the experimental isotherms.

  6. The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone.

    PubMed

    Asgari, Ghorban; Roshani, Babak; Ghanizadeh, Ghader

    2012-05-30

    In this research work, pumice that is functionalized by the cationic surfactant, hexadecyltrimethyl ammonium (HDTMA), is used as an adsorbent for the removal of fluoride from drinking water. This work was carried out in two parts. The effects of HDTMA loading, pH (3-10), reaction time (5-60 min) and the adsorbent dosage (0.15-2.5 g L(-1)) were investigated on the removal of fluoride as a target contaminate from water through the design of different experimental sets in the first part. The results from this first part revealed that surfactant-modified pumice (SMP) exhibited the best performance at dose 0.5 g L(-1), pH 6, and it adsorbs over 96% of fluoride from a solution containing 10 mg L(-1) fluoride after 30 min of mixing time. The four linear forms of the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms model were applied to determine the best fit of equilibrium expressions. Apart from the regression coefficient (R(2)), four error functions were used to validate the isotherm and kinetics data. The experimental adsorption isotherm complies with Langmuir equation model type 1. The maximum amount of adsorption (Q(max)) was 41 mg g(-1). The kinetic studies indicated that the adsorption of fluoride best fitted with the pseudo-second-order kinetic type 1. Thermodynamic parameters evaluation of fluoride adsorption on SMP showed that the adsorption process under the selected conditions was spontaneous and endothermic. The suitability of SMP in defluoridation at field condition was investigated with natural groundwater samples collected from a nearby fluoride endemic area in the second part of this study. Based on this study's results, SMP was shown to be an affordable and a promising option for the removal of fluoride in drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Kinetic and isotherms studies of phosphorus adsorption onto natural riparian wetland sediments: linear and non-linear methods.

    PubMed

    Zhang, Liang; Du, Chao; Du, Yun; Xu, Meng; Chen, Shijian; Liu, Hongbin

    2015-06-01

    Riparian wetlands provide critical functions for the improvement of surface water quality and storage of nutrients. Correspondingly, investigation of the adsorption characteristic and capacity of nutrients onto its sediments is benefit for utilizing and protecting the ecosystem services provided by riparian areas. The Langmuir and Freundlich isotherms and pseudo-second-order kinetic model were applied by using both linear least-squares and trial-and-error non-linear regression methods based on the batch experiments data. The results indicated that the transformations of non-linear isotherms to linear forms would affect the determination process significantly, but the non-linear regression method could prevent such errors. Non-linear Langmuir and Freundlich isotherms both fitted well with the phosphorus adsorption process (r (2) > 0.94). Moreover, the influences of temperature and ionic strength on the adsorption of phosphorus onto natural riparian wetland sediments were also studied. Higher temperatures were suitable for phosphorus uptake from aqueous solution using the present riparian wetland sediments. The adsorption capacity increased with the enhancement of ionic strength in agreement with the formation of inner-sphere complexes. The quick adsorption of phosphorus by the sediments mainly occurred within 10 min. The adsorption kinetic was well-fitted by pseudo-second-order kinetic model (r (2) > 0.99). The scanning electron microscopy (SEM) and Fourier transformation infrared (FT-IR) spectra analyses before and after phosphorus adsorption revealed the main adsorption mechanisms in the present system.

  8. [Application of classical isothermal adsorption models in heavy metal ions/ diatomite system and related problems].

    PubMed

    Zhu, Jian; Wu, Qing-Ding; Wang, Ping; Li, Ke-Lin; Lei, Ming-Jing; Zhang, Wei-Li

    2013-11-01

    In order to fully understand adsorption nature of Cu2+, Zn2+, Pb2+, Cd2+, Mn2+, Fe3+ onto natural diatomite, and to find problems of classical isothermal adsorption models' application in liquid/solid system, a series of isothermal adsorption tests were conducted. As results indicate, the most suitable isotherm models for describing adsorption of Pb2+, Cd2+, Cu2+, Zn2+, Mn2+, Fe3+ onto natural diatomite are Tenkin, Tenkin, Langmuir, Tenkin, Freundlich and Freundlich, respectively, the adsorption of each ion onto natural diatomite is mainly a physical process, and the adsorption reaction is favorable. It also can be found that, when using classical isothermal adsorption models to fit the experimental data in liquid/solid system, the equilibrium adsorption amount q(e) is not a single function of ion equilibrium concentration c(e), while is a function of two variables, namely c(e) and the adsorbent concentration W0, q(e) only depends on c(e)/W(0). Results also show that the classical isothermal adsorption models have a significant adsorbent effect, and their parameter values are unstable, the simulation values of parameter differ greatly from the measured values, which is unhelpful for practical use. The tests prove that four-adsorption-components model can be used for describing adsorption behavior of single ion in nature diatomite-liquid system, its parameters k and q(m) have constant values, which is favorable for practical quantitative calculation in a given system.

  9. Kinetics of degradation and adsorption-desorption isotherms of thiobencarb and oxadiargyl in calcareous paddy fields.

    PubMed

    Mahmoudi, Mojtaba; Rahnemaie, Rasoul; Es-haghi, Ali; Malakouti, Mohammad J

    2013-05-01

    Herbicides are an important source of contamination in paddy fields. Monitoring their fate and chemical interactions is therefore imperative for sustaining the environment and human health. To meet this purpose, field experiments were conducted to investigate kinetics of thiobencarb and oxadiargyl dissipation in soil and water of two paddy fields. Their adsorption and desorption isotherms were also determined in the soil samples. Variation in concentration was monitored for 60d in soil solution phase and for 315d in soil solid phase. In soil solution, concentrations of both herbicides were rapidly reduced within 5d and reached steady state within 20-30d. Analysis of experimental data resolved a half-life ≈2-4d for both herbicides. In soil solid phase, adsorption reaction played a dominant role in the first 10d. Afterwards, degradation reactions regulated the process. Variation in concentration was minimized after about 150d for thiobencarb and 80d for oxadiargyl. The half-lives were calculated ≈50d for thiobencarb and ≈20d for oxadiargyl, indicating that association with soil particles protect them effectively against degradation reactions. Adsorption isotherms confirmed that both herbicides were strongly adsorbed on soil particles. Furthermore, desorption data indicated that after four successive desorption steps, less than 9% thiobencarb and 1% oxadiargyl were released. This denotes that electrolyte ions in solution cannot adequately compete with and replace adsorbed thiobencarb and oxadiargyl molecules. This would lead to a considerable hysteresis between adsorption and desorption isotherms as was observed experimentally. Overall, it was concluded that both herbicides are among non-persistent and immobile herbicides in the paddy soils.

  10. Adsorption of Phenol from Aqueous Solution Using Lantana camara, Forest Waste: Kinetics, Isotherm, and Thermodynamic Studies

    PubMed Central

    Girish, C. R.; Ramachandra Murty, V.

    2014-01-01

    The present work investigates the potential of Lantana camara, a forest waste, as an adsorbent for the phenol reduction in wastewater. Batch studies were conducted with adsorbent treated with HCl and KOH to determine the influence of various experimental parameters such as pH, contact time, adsorbent dosage, and phenol concentration. The experimental conditions were optimized for the removal of phenol from wastewater. Equilibrium isotherms for the adsorption of phenol were analyzed by Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich isotherm models. Thermodynamic parameters like the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were also determined and they showed that the adsorption process was feasible, spontaneous, and exothermic in the temperature range of 298–328 K. The kinetic data were fitted with pseudo-second-order model. The equilibrium data that followed Langmuir model with the monolayer adsorption capacity was found to be 112.5 mg/g and 91.07 mg/g for adsorbent treated with HCl and KOH, respectively, for the concentration of phenol ranging from 25 to 250 mg/L. This indicates that the Lantana camara was a promising adsorbent for the removal of phenol from aqueous solutions. PMID:27350997

  11. Adsorption of Phenol from Aqueous Solution Using Lantana camara, Forest Waste: Kinetics, Isotherm, and Thermodynamic Studies.

    PubMed

    Girish, C R; Ramachandra Murty, V

    2014-01-01

    The present work investigates the potential of Lantana camara, a forest waste, as an adsorbent for the phenol reduction in wastewater. Batch studies were conducted with adsorbent treated with HCl and KOH to determine the influence of various experimental parameters such as pH, contact time, adsorbent dosage, and phenol concentration. The experimental conditions were optimized for the removal of phenol from wastewater. Equilibrium isotherms for the adsorption of phenol were analyzed by Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich isotherm models. Thermodynamic parameters like the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were also determined and they showed that the adsorption process was feasible, spontaneous, and exothermic in the temperature range of 298-328 K. The kinetic data were fitted with pseudo-second-order model. The equilibrium data that followed Langmuir model with the monolayer adsorption capacity was found to be 112.5 mg/g and 91.07 mg/g for adsorbent treated with HCl and KOH, respectively, for the concentration of phenol ranging from 25 to 250 mg/L. This indicates that the Lantana camara was a promising adsorbent for the removal of phenol from aqueous solutions.

  12. Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis.

    PubMed

    Gimbert, Frédéric; Morin-Crini, Nadia; Renault, François; Badot, Pierre-Marie; Crini, Grégorio

    2008-08-30

    This article describes the adsorption of an anionic dye, namely C.I. Acid Blue 25 (AB 25), from aqueous solutions onto a cationized starch-based adsorbent. Temperature was varied to investigate its effect on the adsorption capacity. Equilibrium adsorption isotherms were measured for the single component system and the experimental data were analyzed by using Langmuir, Freundlich, Tempkin, Generalized, Redlich-Peterson, and Toth isotherm equations. Five error functions were used to determine the alternative single component parameters by non-linear regression due to the bias in using the correlation coefficient resulting from linearization. The error analysis showed that, compared with other models, the Langmuir model described best the dye adsorption data. Both linear regression method and non-linear error functions provided the best-fit to experimental data with the Langmuir model.

  13. Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums.

    PubMed

    Torres, María D; Moreira, Ramón; Chenlo, Francisco; Vázquez, María J

    2012-06-20

    Water adsorption isotherms of carboxymethyl cellulose (CMC), guar gum (GG), locust bean gum (LBG), tragacanth gum (TG) and xanthan gum (XG) were determined at different temperatures (20, 35, 50, and 65°C) using a gravimetric method. Several saturated salt solutions were selected to obtain different water activities in the range from 0.09 to 0.91. Water adsorption isotherms of tested hydrocolloids were classified like type II isotherms. In all cases, equilibrium moisture content decreased with increasing temperature at each water activity value. Three-parameter Guggenheim-Anderson-de Boer (GAB) model was employed to fit the experimental data in the water activity range and statistical analysis indicated that this model gave satisfactory results. CMC and GG were the most and the least hygroscopic gums, respectively. Sorption heats decreased with increasing moisture content. Monolayer moisture content evaluated with GAB model was consistent with equilibrium conditions of maximum stability calculated from thermodynamic analysis of net integral entropy. Values of equilibrium relative humidity at 20°C are proposed to storage adequately the tested gums.

  14. Cadmium-109 Radioisotope Adsorption onto Polypyrrole Coated Sawdust of Dryobalanops aromatic: Kinetics and Adsorption Isotherms Modelling

    PubMed Central

    Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul

    2016-01-01

    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor’s materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents. PMID:27706232

  15. Cadmium-109 Radioisotope Adsorption onto Polypyrrole Coated Sawdust of Dryobalanops aromatic: Kinetics and Adsorption Isotherms Modelling.

    PubMed

    Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul

    2016-01-01

    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor's materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents.

  16. Adsorption of humic acid from aqueous solutions on crosslinked chitosan-epichlorohydrin beads: kinetics and isotherm studies.

    PubMed

    Wan Ngah, W S; Hanafiah, M A K M; Yong, S S

    2008-08-01

    The adsorption of humic acid on crosslinked chitosan-epichlorohydrin (chitosan-ECH) beads was investigated. Chitosan-ECH beads were characterized by Fourier transform infrared spectroscopy (FTIR), surface area and pore size analyses, and scanning electron microscopy (SEM). Batch adsorption experiments were carried out and optimum humic acid adsorption on chitosan-ECH beads occurred at pH 6.0, agitation rate of 300 rpm and contact time of 50 min. Adsorption equilibrium isotherms were analyzed by Langmuir and Freundlich models. Freundlich model was found to show the best fit for experimental data while the maximum adsorption capacity determined from Langmuir model was 44.84 mg g(-1). The adsorption of humic acid on chitosan-ECH beads was best described with pseudo-first-order kinetic model. For desorption study, more than 60% of humic acid could be desorbed from the adsorbent using 1.0M HCl for 180 min.

  17. Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal-Organic Frameworks.

    PubMed

    Kundu, Arpan; Piccini, GiovanniMaria; Sillar, Kaido; Sauer, Joachim

    2016-10-17

    For CO and N2 on Mg(2+) sites of the metal-organic framework CPO-27-Mg (Mg-MOF-74), ab initio calculations of Gibbs free energies of adsorption have been performed. Combined with the Bragg-Williams/Langmuir model and taking into account the experimental site availability (76.5%), we obtained adsorption isotherms in close agreement with those in experiment. The remaining deviations in the Gibbs free energy (about 1 kJ/mol) are significantly smaller than the "chemical accuracy" limit of about 4 kJ/mol. The presented approach uses (i) a DFT dispersion method (PBE+D2) to optimize the structure and to calculate anharmonic frequencies for vibrational partition functions and (ii) a "hybrid MP2:(PBE+D2)+ΔCCSD(T)" method to determine electronic energies. With the achieved accuracy (estimated uncertainty ±1.4 kJ/mol), the ab initio energies become useful benchmarks for assessing different DFT + dispersion methods (PBE+D2, B3LYP+D*, and vdW-D2), whereas the ab initio heats, entropies, and Gibbs free energies of adsorption are used to assess the reliability of experimental values derived from fitting isotherms or from variable-temperature IR studies.

  18. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles

    NASA Astrophysics Data System (ADS)

    Moulin, F.; Picaud, S.; Hoang, P. N. M.; Jedlovszky, P.

    2007-10-01

    The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. The soot particles are modeled by graphite-type layers arranged in an onionlike structure that contains randomly distributed hydrophilic sites, such as OH and COOH groups. The calculated water adsorption isotherm at 298K exhibits different characteristic shapes depending both on the type and the location of the hydrophilic sites and also on the size of the pores inside the soot particle. The different shapes of the adsorption isotherms result from different ways of water aggregation in or/and around the soot particle. The present results show the very weak influence of the OH sites on the water adsorption process when compared to the COOH sites. The results of these simulations can help in interpreting the experimental isotherms of water adsorbed on aircraft soot.

  19. Determining enzyme kinetics via isothermal titration calorimetry.

    PubMed

    Demarse, Neil A; Killian, Marie C; Hansen, Lee D; Quinn, Colette F

    2013-01-01

    Isothermal titration calorimetry (ITC) has emerged as a powerful tool for determining the thermodynamic properties of chemical or physical equilibria such as protein-protein, ligand-receptor, and protein-DNA binding interactions. The utility of ITC for determining kinetic information, however, has not been fully recognized. Methods for collecting and analyzing data on enzyme kinetics are discussed here. The step-by-step process of converting the raw heat output rate into the kinetic parameters of the Michaelis-Menten equation is explicitly stated. The hydrolysis of sucrose by invertase is used to demonstrate the capability of the instrument and method.

  20. Ab initio prediction of adsorption isotherms for small molecules in metal-organic frameworks: the effect of lateral interactions for methane/CPO-27-Mg.

    PubMed

    Sillar, Kaido; Sauer, Joachim

    2012-11-07

    A hybrid method that combines density functional theory for periodic structures with wave function-based electron correlation methods for finite-size models of adsorption sites is employed to calculate energies for adsorption of CH(4) onto different sites in the metal-organic framework (MOF) CPO-27-Mg (Mg-MOF-74) with chemical accuracy. The adsorption energies for the Mg(2+), linker, second layer sites are -27.8, -18.3, and -15.1 kJ/mol. Adsorbate-adsorbate interactions increase the average CH(4) adsorption energy by about 10% (2.4 kJ/mol). The free rotor-harmonic oscillator-ideal gas model is applied to calculate free energies/equilibrium constants for adsorption on the individual sites. This information is used in a multisite Langmuir model, augmented with a Bragg-Williams model for lateral interactions, to calculate adsorption isotherms. This ab initio approach yields the contributions of the individual sites to the final isotherms and also of the lateral interactions that contribute about 15% to the maximum excess adsorption capacity. Isotherms are calculated for both absolute amounts, for calculation of isosteric heats of adsorption as function of coverage, and excess amounts, for comparison with measured isotherms. Agreement with observed excess isotherms is reached if the experimentally determined limited accessibility of adsorption sites (78%) is taken into account.

  1. Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite-like compounds.

    PubMed

    Ramos-Ramírez, Esthela; Ortega, Norma L Gutiérrez; Soto, Cesar A Contreras; Gutiérrez, Maria T Olguín

    2009-12-30

    In under-developed countries, industries such as paint and pigment manufacturing, leather tanning, chrome plating and textile processing, usually discharge effluents containing Cr(VI) and Cr(III) into municipal sanitary sewers. It has been reported that Cr(VI) acts as a powerful epithelial irritant and as a human carcinogen. In the present work, hydrotalcite-like compounds with a Mg/Al ratio=2 were synthesized by the sol-gel method. The hydrotalcite-like compounds and their corresponding thermally treated products were characterized by powder X-ray diffraction, infrared spectroscopy and N(2) adsorption. The hydrotalcite-like compounds and the heated solids were used as adsorbents for Cr(VI) in aqueous solutions. Adsorption isotherm studies of Cr(VI) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models. The Cr(VI) adsorption isotherm data fit best to the Langmuir isotherm model. The maximum Cr(VI) uptake by hydrotalcite and the heated solids was determined using the Langmuir equation and was found to range between 26 and 29 mg Cr(VI)/g adsorbent.

  2. A Sixth-Form Teaching Unit on the Langmuir Adsorption Isotherm

    ERIC Educational Resources Information Center

    Walkley, G. H.

    1973-01-01

    Presents a teaching unit on the Langmuir absorption isotherm suitable for advanced secondary school chemistry classes. Describes the experimental investigation of the isothermal adsorption of sulfur dioxide on charcoal, and discusses the derivation of the Langmuir equation and some applications. (JR)

  3. A Sixth-Form Teaching Unit on the Langmuir Adsorption Isotherm

    ERIC Educational Resources Information Center

    Walkley, G. H.

    1973-01-01

    Presents a teaching unit on the Langmuir absorption isotherm suitable for advanced secondary school chemistry classes. Describes the experimental investigation of the isothermal adsorption of sulfur dioxide on charcoal, and discusses the derivation of the Langmuir equation and some applications. (JR)

  4. Humic substance adsorptive fractionation by minerals and its subsequent effects on pyrene sorption isotherms.

    PubMed

    Hur, Jin; Schlautman, Mark A

    2006-01-01

    Changes in the nonlinearity of pyrene sorption isotherms on humic substance (HS)-coated minerals (kaolinite and hematite) due to HS adsorptive fractionation processes were examined in model environmental systems at low mass fraction organic carbon (f(oc)) levels (0.0001-0.0011) using purified Aldrich humic acid (PAHA) and Suwannee River fulvic acid (SRFA). At a constant pH of 7, higher molecular weight (MW) fractions of PAHA were preferentially adsorbed on kaolinite whereas no adsorptive fractionation of PAHA occurred on hematite. At a constant f(oc) level of 0.0005, preferential adsorption of higher MW PAHA fractions on kaolinite was enhanced with increasing pH. Nonlinear pyrene sorption isotherms were observed with the bulk PAHA-coated mineral systems, whereas more linear pyrene sorption isotherms were observed for the PAHA-mineral systems undergoing adsorptive fractionation. Although the degree of isotherm linearity may be affected by pH and/or structural rearrangement of the adsorbed HS fractions on minerals, this study suggests that HS adsorptive fractionation is more important than are changes in pH and f(oc) levels with regard to the resulting pyrene sorption isotherms. Similar effects were not observed with SRFA, suggesting that the impacts of HS adsorptive fractionation on pyrene sorption isotherm nonlinearity are also influenced by the source and other biogeochemical characteristics of HS.

  5. Isotherms for adsorption of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose

    SciTech Connect

    Medve, J.; Tjerneld, F.; Stahlberg, J.

    1997-04-01

    Adsorption to microcrystalline cellulose (Avicel) of pure cellobiohydrolase I and II (CBH I and CBH II) from Trichoderma reesei has been studied. Adsorption isotherms of the enzymes were measured at 4{degree}C using CBH I and CBH II alone and in reconstituted equimolar mixtures. Several models (Langmuir, Freundlich, Temkin, Jovanovic) were tested to describe the experimental adsorption isotherms. The isotherms did not follow the basic (one site) Langmuir equation that has often been used to describe adsorption isotherms of cellulases; correlation coefficients (R{sup 2}) were only 0.926 and 0.947, for CBH I and II, respectively. The experimental isotherms were best described by a model of Langmuir type with two adsorption sites and by a combined Langmuir-Freundlich model (analogous to the Hill equation); using these models the correlation coefficients were in most cases higher than 0.995. Apparent binding parameters derived from the two sites Langmuir model indicated stronger binding of CBH II compared to CBH I; the distribution coefficients were 20.7 and 3.7 L/g for the two enzymes, respectively. The binding capacity was higher for CBH I than for CBH II. The isotherms when analyzed with the combined model indicated presence of unequal binding sites on cellulose and/or negative cooperativity in the binding of the enzyme molecules. 39 refs., 3 figs., 3 tabs.

  6. Phenol adsorption on surface-functionalized iron oxide nanoparticles: modeling of the kinetics, isotherm, and mechanism

    NASA Astrophysics Data System (ADS)

    Yoon, Soon Uk; Mahanty, Biswanath; Ha, Hun Moon; Kim, Chang Gyun

    2016-06-01

    Phenol adsorption from aqueous solution was carried out using uncoated and methyl acrylic acid (MAA)-coated iron oxide nanoparticles (NPs), having size <10 nm, as adsorbents. Batch adsorption studies revealed that the phenol removal efficiency of MAA-coated NPs (950 mg g-1) is significantly higher than that of uncoated NPs (550 mg g-1) under neutral to acidic conditions. However, this improvement disappears above pH 9. The adsorption data under optimized conditions (pH 7) were modeled with pseudo-first- and pseudo-second-order kinetics and subjected to Freundlich and Langmuir isotherms. The analysis determined that pseudo-second-order kinetics and the Freundlich model are appropriate for both uncoated and MAA-coated NPs (all R 2 > 0.98). X-ray photoelectron spectroscopy analysis of pristine and phenol-adsorbed NPs revealed core-level binding energy and charge for Fe(2 s) and O(1 s) on the NP surfaces. The calculations suggest that phenol adsorption onto MAA-coated NPs is a charge transfer process, where the adsorbate (phenol) acts as an electron donor and the NP surface (Fe, O) as an electron acceptor. However, a physisorption process appears to be the relevant mechanism for uncoated NPs.

  7. On an isotherm thermodynamically consistent in Henry's region for describing gas adsorption in microporous materials.

    PubMed

    Pera-Titus, Marc

    2010-05-15

    The Dubinin-Astakhov and Dubinin-Radushkevich isotherms, originally formulated from the classical volume filling theory of micropores, constitute the most accepted models for describing gas adsorption in microporous materials. The most important weakness of these equations relies on the fact that they do not reduce to Henry's law at low pressures, not providing therefore a proper characterization of adsorbents in the early stage of adsorption. In this paper, we propose a way out of this inherent problem using the thermodynamic isotherm developed in a previous study [J. Llorens, M. Pera-Titus, J. Colloid Interface Sci. 331 (2009) 302]. This isotherm allows the generation of a series of equations that make available a comprehensive description of gas adsorption for the whole set of relative pressures (including Henry's region), also providing explicit information about energy heterogeneity of the adsorbent through the two characteristic m parameters of the thermodynamic isotherm (i.e., m(1) and m(2)). The obtained isotherm converges into the Dubinin-Astakhov isotherm for relative pressures higher than 0.1, the characteristic α parameter of this isotherm being expressed as α=m(2)-1 and the affinity coefficient (β) as a sole function of m(2). An expression differing from the Dubinin-Astakhov isotherm has been obtained for describing Henry's region, providing relevant information about confinement effects when applied to zeolites.

  8. Water adsorption-desorption isotherms of two-dimensional hexagonal mesoporous silica around freezing point.

    PubMed

    Endo, Akira; Yamaura, Toshio; Yamashita, Kyohei; Matsuoka, Fumio; Hihara, Eiji; Daiguji, Hirofumi

    2012-02-01

    Zr-doped mesoporous silica with a diameter of approximately 3.8 nm was synthesized via an evaporation-induced self-assembly process, and the adsorption-desorption isotherms of water vapor were measured in the temperature range of 263-298 K. The measured adsorption-desorption isotherms below 273 K indicated that water confined in the mesopores did not freeze at any relative pressure. All isotherms had a steep curve, resulting from capillary condensation/evaporation, and a pronounced hysteresis. The hysteresis loop, which is associated with a delayed adsorption process, increased with a decrease in temperature. Furthermore, the curvature radius where capillary evaporation/condensation occurs was evaluated by the combined Kelvin and Gibbs-Tolman-Koening-Buff (GTKB) equations for the modification of the interfacial tension due to the interfacial curvature. The thickness of the water adsorption layer for capillary condensation was slightly larger, whereas that for capillary evaporation was slightly smaller than 0.7 nm.

  9. Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution

    NASA Astrophysics Data System (ADS)

    Aouaini, F.; Knani, S.; Ben Yahia, M.; Ben Lamine, A.

    2015-08-01

    Water sorption isotherms of foodstuffs are very important in different areas of food science engineering such as for design, modeling and optimization of many processes. The equilibrium moisture content is an important parameter in models used to predict changes in the moisture content of a product during storage. A formulation of multilayer model with two energy levels was based on statistical physics and theoretical considerations. Thanks to the grand canonical ensemble in statistical physics. Some physicochemical parameters related to the adsorption process were introduced in the analytical model expression. The data tabulated in literature of water adsorption at different temperatures on: chickpea seeds, lentil seeds, potato and on green peppers were described applying the most popular models applied in food science. We also extend the study to the newest proposed model. It is concluded that among studied models the proposed model seems to be the best for description of data in the whole range of relative humidity. By using our model, we were able to determine the thermodynamic functions. The measurement of desorption isotherms, in particular a gas over a solid porous, allows access to the distribution of pore size PSD.

  10. Single and binary adsorption of proteins on ion-exchange adsorbent: The effectiveness of isothermal models.

    PubMed

    Liang, Juan; Fieg, Georg; Shi, Qing-Hong; Sun, Yan

    2012-09-01

    Simultaneous and sequential adsorption equilibria of single and binary adsorption of bovine serum albumin and bovine hemoglobin on Q Sepharose FF were investigated in different buffer constituents and initial conditions. The results in simultaneous adsorption showed that both proteins underwent competitive adsorption onto the adsorbent following greatly by protein-surface interaction. Preferentially adsorbed albumin complied with the universal rule of ion-exchange adsorption whereas buffer had no marked influence on hemoglobin adsorption. Moreover, an increase in initial ratios of proteins was benefit to a growth of adsorption density. In sequential adsorption, hemoglobin had the same adsorption densities as single-component adsorption. It was attributed to the displacement of preadsorbed albumin and multiple layer adsorption of hemoglobin. Three isothermal models (i.e. extended Langmuir, steric mass-action, and statistical thermodynamic (ST) models) were introduced to describe the ion-exchange adsorption of albumin and hemoglobin mixtures. The results suggested that extended Langmuir model gave the lowest deviation in describing preferential adsorption of albumin at a given salt concentration while steric mass-action model could very well describe the salt effect in albumin adsorption. For weaker adsorbed hemoglobin, ST model was the preferred choice. In concert with breakthrough data, the research further revealed the complexity in ion-exchange adsorption of proteins.

  11. Adsorption of emulsified oil from metalworking fluid on activated bleaching earth-chitosan-SDS composites: Optimization, kinetics, isotherms.

    PubMed

    Naowanat, Nitiya; Thouchprasitchai, Nutthavich; Pongstabodee, Sangobtip

    2016-03-15

    The adsorption of emulsified oil from metalworking fluid (MWF) on activated bleaching earth (BE)-chitosan-sodium dodecyl sulfate (SDS) composites (BE/MCS) was investigated under a statistical design of experiments at a 95% confidence interval to identify the critical factors and to optimize the adsorption capacity. The BE/MCS adsorbents were characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller adsorption/desorption isotherms, contact angle analysis (sessile drop technique) and their zeta potential. From the results of a full 2(5) factorial design with three center points, the adsorbent weight and initial pH of the MWF had a significant antagonistic effect on the adsorption capacity while the initial MWF concentration and BE:chitosan:SDS weight ratio had a synergistic influence. Temperature factor has no discernible effect on the capacity. From the FCCC-RSM design, the optimal capacity range of 2840-2922.5 mg g(-1) was achieved at sorbent weight of 1.6-1.9 g, pH of 5.5-6.5, initial MWF concentration of 52-55 g l(-1) and BE:chitosan:SDS (w/w/w) ratio of 4.7:1:1-6.2:1:1. To test the validation and sensitivity of RSM model, the results showed that the estimated adsorption capacity was close to the experimental capacity within an error range of ±3%, suggesting that the RSM model was acceptable and satisfied. From three kinetics models (pseudo-first-order, pseudo-second-order model and Avrami's equation) and two adsorption isotherms (Langmuir model and Freundlich model), assessed using an error function (Err) and the coefficient of determination (R(2)), Avrami's equation and Freundlich isotherm model provided a good fitting for the data, suggesting the presence of more than one reaction pathway in the MWF adsorption process and the heterogeneous surface adsorption of the BC/ABE-5.5 composite.

  12. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite.

    PubMed

    Munagapati, Venkata Subbaiah; Kim, Dong-Su

    2017-07-01

    The present study is concerned with the batch adsorption of congo red (CR) from an aqueous solution using calcium alginate beads impregnated with nano-goethite (CABI nano-goethite) as an adsorbent. The optimum conditions for CR removal were determined by studying operational variables viz. pH, adsorbent dose, contact time, initial dye ion concentration and temperature. The CABI nano-goethite was characterized by Fourier transform infrared spectroscopy (FTIR), X- ray diffraction (XRD) and Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis. The CR sorption data onto CABI nano-goethite were described using Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm model. The maximum adsorption capacity (181.1mg/g) of CR was occurred at pH 3.0. Kinetic studies showed that the adsorption followed a pseudo-second-order model. Desorption experiments were carried out to explore the feasibility of regenerating the adsorbent and the adsorbed CR from CABI nano-goethite. The best desorbing agent was 0.1M NaOH with an efficiency of 94% recovery. The thermodynamic parameters ΔG°, ΔH°, and ΔS° for the CR adsorption were determined by using adsorption capacities at five different temperatures (293, 303, 313, 323 and 303K). Results show that the adsorption process was endothermic and favoured at high temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A new approach in regression analysis for modeling adsorption isotherms.

    PubMed

    Marković, Dana D; Lekić, Branislava M; Rajaković-Ognjanović, Vladana N; Onjia, Antonije E; Rajaković, Ljubinka V

    2014-01-01

    Numerous regression approaches to isotherm parameters estimation appear in the literature. The real insight into the proper modeling pattern can be achieved only by testing methods on a very big number of cases. Experimentally, it cannot be done in a reasonable time, so the Monte Carlo simulation method was applied. The objective of this paper is to introduce and compare numerical approaches that involve different levels of knowledge about the noise structure of the analytical method used for initial and equilibrium concentration determination. Six levels of homoscedastic noise and five types of heteroscedastic noise precision models were considered. Performance of the methods was statistically evaluated based on median percentage error and mean absolute relative error in parameter estimates. The present study showed a clear distinction between two cases. When equilibrium experiments are performed only once, for the homoscedastic case, the winning error function is ordinary least squares, while for the case of heteroscedastic noise the use of orthogonal distance regression or Margart's percent standard deviation is suggested. It was found that in case when experiments are repeated three times the simple method of weighted least squares performed as well as more complicated orthogonal distance regression method.

  14. A New Approach in Regression Analysis for Modeling Adsorption Isotherms

    PubMed Central

    Onjia, Antonije E.

    2014-01-01

    Numerous regression approaches to isotherm parameters estimation appear in the literature. The real insight into the proper modeling pattern can be achieved only by testing methods on a very big number of cases. Experimentally, it cannot be done in a reasonable time, so the Monte Carlo simulation method was applied. The objective of this paper is to introduce and compare numerical approaches that involve different levels of knowledge about the noise structure of the analytical method used for initial and equilibrium concentration determination. Six levels of homoscedastic noise and five types of heteroscedastic noise precision models were considered. Performance of the methods was statistically evaluated based on median percentage error and mean absolute relative error in parameter estimates. The present study showed a clear distinction between two cases. When equilibrium experiments are performed only once, for the homoscedastic case, the winning error function is ordinary least squares, while for the case of heteroscedastic noise the use of orthogonal distance regression or Margart's percent standard deviation is suggested. It was found that in case when experiments are repeated three times the simple method of weighted least squares performed as well as more complicated orthogonal distance regression method. PMID:24672394

  15. Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Chinnakoti, Prathibha; Chunduri, Avinash L. A.; Vankayala, Ranganayakulu K.; Patnaik, Sandeep; Kamisetti, Venkataramaniah

    2016-06-01

    Nano materials in particular nano oxides with enhanced surface area and an excellent catalytic surface serve as potential adsorbents for defluoridation of water. In the present study nano γ-alumina was synthesized through a simple and low cost, surfactant assisted solution combustion method. As synthesized material was characterized by XRD and FESEM for its phase, size and morphological characteristics. Surface properties have been investigated by BET method. Nano γ-alumina was further used for a detailed adsorption study to remove fluoride from water. Batches of experiments were performed at various experimental conditions such as solution pH, adsorbent dose, initial fluoride concentration and contact time to test the defluoridation ability of γ-alumina. Fluoride Adsorption by nano sized γ-alumina was rapid and reached equilibrium within two hours. The adsorption worked well at pH 4.0, where ˜96 % of fluoride was found to be adsorbed on adsorbent. It was possible to reduce fluoride levels to as low as 0.3 mg/L (within the safe limit of WHO: ≤1.5 mg/L) from an initial fluoride levels of 10 mg/L. This could be achieved using a very small quantity, 1 g/L of γ-alumina at pH 4 within 1 h of contact time. Defluoridation capacity of nano γ-alumina was further investigated by fitting the equilibrium data to various isotherm as well as kinetic models. The present study revealed that γ-alumina could be an efficient adsorbent for treating fluoride contaminated water.

  16. Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Chinnakoti, Prathibha; Chunduri, Avinash L. A.; Vankayala, Ranganayakulu K.; Patnaik, Sandeep; Kamisetti, Venkataramaniah

    2017-09-01

    Nano materials in particular nano oxides with enhanced surface area and an excellent catalytic surface serve as potential adsorbents for defluoridation of water. In the present study nano γ-alumina was synthesized through a simple and low cost, surfactant assisted solution combustion method. As synthesized material was characterized by XRD and FESEM for its phase, size and morphological characteristics. Surface properties have been investigated by BET method. Nano γ-alumina was further used for a detailed adsorption study to remove fluoride from water. Batches of experiments were performed at various experimental conditions such as solution pH, adsorbent dose, initial fluoride concentration and contact time to test the defluoridation ability of γ-alumina. Fluoride Adsorption by nano sized γ-alumina was rapid and reached equilibrium within two hours. The adsorption worked well at pH 4.0, where ˜96 % of fluoride was found to be adsorbed on adsorbent. It was possible to reduce fluoride levels to as low as 0.3 mg/L (within the safe limit of WHO: ≤1.5 mg/L) from an initial fluoride levels of 10 mg/L. This could be achieved using a very small quantity, 1 g/L of γ-alumina at pH 4 within 1 h of contact time. Defluoridation capacity of nano γ-alumina was further investigated by fitting the equilibrium data to various isotherm as well as kinetic models. The present study revealed that γ-alumina could be an efficient adsorbent for treating fluoride contaminated water.

  17. High pressure adsorption isotherms of nitrogen onto granular activated carbon for a single bed pressure swing adsorption refrigeration system

    NASA Astrophysics Data System (ADS)

    Palodkar, Avinash V.; Anupam, Kumar; Roy, Zunipa; Saha, B. B.; Halder, G. N.

    2017-10-01

    Adsorption characteristics of nitrogen onto granular activated carbon for the wide range of temperature (303-323 K) and pressure (0.2027-2.0265 MPa) have been reported for a single bed pressure swing adsorption refrigeration system. The experimental data were fitted to Langmuir, Dubinin-Astakhov and Dubinin-Radushkevich (D-R) isotherms. The Langmuir and D-R isotherm models were found appropriate in correlating experimental adsorption data with an average relative error of ±2.0541% and ±0.6659% respectively. The isosteric heat of adsorption data were estimated as a function of surface coverage of nitrogen and temperature using D-R isotherm. The heat of adsorption was observed to decrease from 12.65 to 6.98 kJ.mol-1 with an increase in surface concentration at 303 K and it followed the same pattern for other temperatures. It was found that an increase in temperature enhances the magnitude of the heat of adsorption.

  18. Verification of selected relationships for fractally porous solids by using adsorption isotherms calculated from density functional theory

    NASA Astrophysics Data System (ADS)

    Jaroniec, Mietek; Kruk, Michal; Olivier, James

    1995-11-01

    Methods of calculating the fractal dimension (D) on the basis of single adsorption isotherms were critically tested by using argon composite adsorption isotherms for fractally porous solids. These isotherms were obtained from adsorption data for homogeneous slit-like pores calculated by employing the density functional theory (DFT). The composite adsorption isotherms were used to test the validity of the method based on the Frenkel-Halsey-Hill equation and so called "thermodynamic method" proposed by Neimark. The applicability of these methods was confirmed. However, our studies reveal new aspects of practical usage of both approaches, which need to be taken into consideration in analysis of experimental data.

  19. Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes.

    PubMed

    Chen, Guang-Cai; Shan, Xiao-Quan; Zhou, Yi-Quan; Shen, Xiu-e; Huang, Hong-Lin; Khan, Shahamat U

    2009-09-30

    The adsorption kinetics, isotherms and thermodynamic of atrazine on multiwalled carbon nanotubes (MWCNTs) containing 0.85%, 2.16%, and 7.07% oxygen was studied. Kinetic analyses were performed using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. The regression results showed that the pseudo-second-order law fit the adsorption kinetics. The calculated thermodynamic parameters indicated that adsorption of atrazine on MWCNTs was spontaneous and exothermic. Standard free energy (DeltaG(0)) became less negative when the oxygen content of MWCNTs increased from 0.85% to 7.07% which is consistent with the low adsorption affinity of MWCNTs for atrazine.

  20. Probing the mechanism of water adsorption in carbon micropores with multitemperature isotherms and water preadsorption experiments.

    PubMed

    Rutherford, S W

    2006-11-21

    The phenomenon of water adsorption in carbon micropores is examined through the study of water adsorption equilibrium in molecular sieving carbon. Adsorption and desorption isotherms are obtained over a wide range of concentrations from less than 0.1% to beyond 80% of the vapor pressure. Evidence is provided in support of a proposed bimodal water adsorption mechanism that involves the interaction of water molecules with functional groups at low relative pressures and the adsorption of water molecules between graphene layers at higher pressures. Decomposition of the equilibrium isotherm data through application of the extended cooperative multimolecular sorption theory, together with favorable quantitative comparison, provides support for the proposed adsorption mechanism. Additional support is obtained from a multitemperature study of water equilibrium. Temperatures of 20, 50, and 60 degrees C were probed in this investigation in order to provide isosteric heat of adsorption data for water interaction with the carbon molecular sieve. At low loading, the derived isosteric heat of adsorption is estimated to be 69 kJ/mol. This value is indicative of the adsorption of water to functional groups. At higher loading, the isosteric heat of adsorption decreases with increasing loading and approaches the heat of condensation, indicative of adsorption between graphene layers. Further support for the proposed adsorption mechanism is derived from carbon dioxide adsorption experiments on carbon molecular sieve that is preadsorbed with various amounts of water. Significant exclusion of carbon dioxide occurs, and a quantitative analysis that is based on the proposed bimodal water adsorption mechanism is employed in this investigation.

  1. Kinetics and isothermal modeling of liquid phase adsorption of rhodamine B onto urea modified Raphia hookerie epicarp

    NASA Astrophysics Data System (ADS)

    Inyinbor, A. A.; Adekola, F. A.; Olatunji, G. A.

    2016-09-01

    Epicarp of Raphia hookerie, a bioresource material, was modified with urea (UMRH) to adsorb Rhodamine B (RhB) from aqueous solution. Adsorbent morphology and surface chemistry were established by Brunauer-Emmett-Teller (BET) surface area determination, Fourier transform infrared spectroscopic (FTIR) analysis, scanning electron microscopy (SEM), as well as the pH point of zero charge (pHpzc) determination. Prepared material was subsequently utilized for the uptake of Rhodamine B (RhB). Operational parameters, such as adsorbent dosage, concentration, time, and temperature, were investigated. Evidence of effective urea modification was confirmed by vivid absorption bands at 1670 and 1472 cm-1 corresponding to C=O and C-N stretching vibrations, respectively. Optimum adsorption was obtained at pH 3. Freundlich adsorption isotherm best fits the equilibrium adsorption data, while evidence of adsorbate-adsorbate interaction was revealed by Temkin isotherm model. The maximum monolayer adsorption capacity (q max) was 434.78 mg/g. Kinetics of the adsorption process was best described by the pseudo-second-order kinetics model. Desorption efficiency was less than or equal to 25 % for all the eluents, and it follows the order HCl > H2O > CH3COOH.

  2. Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies.

    PubMed

    Mushtaq, Mehwish; Bhatti, Haq Nawaz; Iqbal, Munawar; Noreen, Saima

    2016-07-01

    Adsorption techniques are widely used to remove pollutants from wastewater; however, composites are gaining more importance due to their excellent adsorption properties. Bentonite composite with Eriobotrya japonica seed was prepared and used for the adsorption of copper (Cu) metal from aqueous media. The process variables such as pH, Cu(II) ions initial concentration, adsorbent dose, contact time and temperature were optimized for maximum Cu(II) adsorption. At pH 5, adsorbent dose 0.1 g, contact time 45 min, Cu(II) ions initial concentration 75 mg/L and temperature 45 °C, maximum Cu(II) adsorption was achieved. Desorption studies revealed that biocomposite is recyclable. Langmuir, Freundlich and Harkins-Jura isotherms as well as pseudo-first and pseudo-second-order kinetics models were applied to understand the adsorption mechanism. Thermodynamic parameters (ΔG(0), ΔH(0) and ΔS(0)) suggest that the adsorption process was spontaneous and endothermic in nature. The pseudo-second-order kinetic model and Langmuir isotherm fitted well to the adsorption data. Results showed that biocomposite was more efficient for Cu(II) adsorption in comparison to individuals native Eriobotrya japonica seed biomass and Na-bentonite.

  3. Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: Adsorption isotherms, kinetics and mechanism.

    PubMed

    Kaur, Harkirat; Bansiwal, Amit; Hippargi, Girivyankatesh; Pophali, Girish R

    2017-09-11

    Adsorption of three pharmaceuticals and personal care products (PPCPs), namely caffeine, ibuprofen and triclosan on commercial powdered activated carbon was examined in aqueous medium. The contaminants were chosen based on their diverse log Kow (octanol-water partition coefficient) viz. - 0.07 for caffeine, 3.97 for ibuprofen and 4.76 for triclosan to examine the role of hydrophobicity on adsorption process. The adsorbent characterisation was achieved using BET surface area, SEM, pore size distribution studies and FTIR. Influence of mass of PAC, contact time, solution pH and initial concentration on adsorption capacity of PAC was studied. Adsorption isotherms and kinetics were applied to establish the mechanism of adsorption. The kinetics followed pseudo-second order with physisorption occurring through particle diffusion. The Freundlich model fitted best among the isotherm models. The adsorption capacity increased in the order CFN < IBU < TCS which correlates with increasing hydrophobicity (log Kow), molecular weight and decreasing water solubility, respectively. We conclude that micro-pollutant hydrophobicity contributes towards adsorption on activated carbon.

  4. Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems.

    PubMed

    Shen, Dazhong; Fan, Jianxin; Zhou, Weizhi; Gao, Baoyu; Yue, Qinyan; Kang, Qi

    2009-12-15

    The performances of polydiallydimethylammonium modified bentonite (PDADMA-bentonite) as an adsorbent to remove anionic dyes, namely Acid Scarlet GR (AS-GR), Acid Turquoise Blue 2G (ATB-2G) and Indigo Carmine (IC), were investigated in single, binary and ternary dye systems. In adsorption from single dye solutions with initial concentration of 100 micromol/L, the dosage of PDADMA-bentonite needed to remove 95% dye was 0.42, 0.68 and 0.75 g/L for AS-GR, ATB-2G and IC, respectively. The adsorption isotherms of the three dyes obeyed the Langmuir isotherm model with the equilibrium constants of 0.372, 0.629 and 4.31 L/micromol, the saturation adsorption amount of 176.3, 149.2 and 228.7 micromol/g for ATB-2G, IC and AS-GR, respectively. In adsorption from mixed dye solutions, the isotherm of each individual dye followed an expanded Langmuir isotherm model and the relationship between the total amount of dyes adsorbed and the total equilibrium dye concentration was interpreted well by Langmuir isotherm model. In the region of insufficient dosage of PDADMA-bentonite, the dye with a larger affinity was preferentially removed by adsorption. Desorption was observed in the kinetic curve of the dye with lower affinity on PDADMA-bentonite surface by the competitive adsorption. The kinetics in single dye solution and the total adsorption of dyes in binary and ternary dye systems nicely followed pseudo-second-order kinetic model.

  5. An evaluation of the reliability of the characterization of the porous structure of activated carbons based on incomplete nitrogen adsorption isotherms.

    PubMed

    Kwiatkowski, Mirosław; Hameed, Bassim H

    2017-08-01

    The paper presents the results of research devoted to reliability evaluation of the analysis of results of the porous structure of activated carbons based on incomplete nitrogen adsorption isotherms using the BET, t-plot, and NLDFT methods, as well as the LBET method comprising the unique numerical fast multivariant procedure of adsorption system identification. The research involved the application of the nitrogen adsorption isotherms obtained for five samples of activated carbons produced from waste materials of organic origin by way of chemical activation with potassium hydroxide, sodium hydroxide, and potassium carbonate with the use of microwave heating. The analyses performed pointed to a good correlation between the results obtained using the BET, t-plot, NLDFT, and LBET methods. Moreover, the parameters of the porous structure determined using these methods based on incomplete adsorption isotherms of nitrogen are in fact as reliable as these methods allow.

  6. Description of Different Solid Adsorbent Surfaces Adsorption Mechanisms Based on a Sequential Decomposition of Isotherms

    NASA Astrophysics Data System (ADS)

    Humpola, Pablo D.; Odetti, Hector S.; Flores, Ethel S. E.; Vicente, Jose Luis

    2013-06-01

    In order to analyze the adsorption capacities of different solid substrates, we present a multi-step method to separately study the isotherm at different pressure ranges (steps). The method is based on simple gas isotherm measurements (nitrogen, methane, carbon dioxide, argon, and oxygen) and is tested to describe the adsorption process and characterize a graphitized surface (GCB) and two different granular activated carbons (GAC). The GCB isotherms are described as a sum of Fowler-Guggenheim-Langmuir shifted curves; isotherm behaviors are quite similar at different temperatures, but change below a certain threshold. In GAC the first steps show the same adsorption characteristics at low pressures (Dubinin's description), but this behavior changes at higher pressure regimes, which allows one to elucidate how heterogeneous the surfaces are or how strong the interactions between adsorbed molecules are for this marginal adsorption to occur. We tested different approaches (from BET multilayer to Aranovich) and found quite different features. We finally conclude that if the description of the adsorption on complex substrates, such as those presented here, is carried using only one model, e. g. Dubinin in case of GACs, the resulting characteristics of the adsorbent would be very biased.

  7. Adsorption isotherm studies of Cu (II) and Co (II) in high concentration aqueous solutions on photocatalytically modified diatomaceous ceramic adsorbents

    NASA Astrophysics Data System (ADS)

    Ajenifuja, E.; Ajao, J. A.; Ajayi, E. O. B.

    2017-01-01

    Photocatalytically modified ceramic adsorbents were synthesized for the removal of high concentration Cu (II) and Co (II) ions from their aqueous solutions. The raw material, diatomaceous aluminosilicate mineral was modified using silver and anatase titanium oxide nanoparticles. Batch adsorption experiment was carried out on the targeted metal ions and the results were analyzed by the Langmuir and Freundlich equation at different concentrations (100-1000 mg/l) and the characteristic parameters for each adsorption isotherm were determined. As-received raw materials do not exhibit any sorption capacity for high concentration Cu2+ and Co2+ adsorbates. However, the adsorption isotherms for modified diatomaceous ceramic adsorbents could be fitted well by the Langmuir model for both Cu2+ and Co2+ with correlation coefficient (R) of up to 0.99953. The highest and lowest monolayer coverage (q max) were 121.803 and 31.289 mg/g for Cu2+ and Co2+, respectively. The separation factor (R L) in the experiment was less than one (<1), indicating that the adsorption of metal ions on the Ag-TiO2-modified ceramic adsorbent is favorable. The highest adsorption capacity (K f) and intensity (n) constants obtained from Freundlich model are 38.832 (Cu2+ on ZEO-T) and 5.801 (Co2+ on STOX-Z).

  8. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers.

    PubMed

    Mittal, Alok; Kurup, Lisha; Mittal, Jyoti

    2007-07-19

    Tartrazine, a yellow menace, is widely being used in cosmetics, foodstuffs, medicines and textile. It is carcinogenic and also catalyzes allergic problems. In the present work the ability to remove Tartrazine from aqueous solutions has been studied using waste material-hen feathers, as adsorbent. Effects of pH, concentration of the dye, temperature and adsorbent dosage have been studied. Equilibrium isotherms for the adsorption of the dye were measured experimentally. Results were analyzed by the Freundlich and Langmuir equation at different temperatures and determined the characteristic parameters for each adsorption isotherm. The adsorption process has been found endothermic in nature and thermodynamic parameters, Gibb's free energy (DeltaG degrees), change in enthalpy (DeltaH degrees) and change in entropy (DeltaS degrees) have been calculated. The paper also includes results on the kinetic measurements of adsorption of the dye on hen feathers at different temperatures. By rate expression and treatment of data it has been established that the adsorption of Tartrazine over hen feathers follows a first-order kinetics and a film diffusion mechanism operates at all the temperatures.

  9. Effect of humic acid on the adsorption/desorption behavior of glyphosate on goethite. Isotherms and kinetics.

    PubMed

    Arroyave, Jeison Manuel; Waiman, Carolina C; Zanini, Graciela P; Avena, Marcelo J

    2016-02-01

    The effects of humic acid (HA) on the adsorption/desorption of glyphosate (Gly) on goethite were investigated under pseudo equilibrium conditions by adsorption isotherms and under kinetic conditions by ATR-FTIR spectroscopy. Isotherms reveal that the attachment of Gly is almost completely inhibited by HA molecules. The opposite effect is not observed: HA adsorption is not affected by the presence of Gly. ATR-FTIR allowed the simultaneous detection of adsorbed HA and Gly during kinetic runs, revealing that HA at the surface decreases markedly the adsorption rate of Gly likely as a result of a decreased availability of sites for Gly adsorption and because of electrostatic repulsion. In addition, HA in solution increases the desorption rate of Gly. The rate law for Gly desorption could be determined giving important insights on the desorption mechanism. The herbicide is desorbed by two parallel processes: i) a direct detachment from the surface, which is first order in adsorbed Gly; and ii) a ligand exchange with HA molecules, which is first order in adsorbed Gly and first order in dissolved HA. Rate constants for both processes were quantified, leading to half-lives of 3.7 h for the first process, and 1.4 h for the second process in a 400 mg L(-1) HA solution. These data are important for modeling the dynamics of glyphosate in environmentally relevant systems, such as soils and surface waters.

  10. Adsorption of pharmaceuticals onto activated carbon fiber cloths - Modeling and extrapolation of adsorption isotherms at very low concentrations.

    PubMed

    Fallou, Hélène; Cimetière, Nicolas; Giraudet, Sylvain; Wolbert, Dominique; Le Cloirec, Pierre

    2016-01-15

    Activated carbon fiber cloths (ACFC) have shown promising results when applied to water treatment, especially for removing organic micropollutants such as pharmaceutical compounds. Nevertheless, further investigations are required, especially considering trace concentrations, which are found in current water treatment. Until now, most studies have been carried out at relatively high concentrations (mg L(-1)), since the experimental and analytical methodologies are more difficult and more expensive when dealing with lower concentrations (ng L(-1)). Therefore, the objective of this study was to validate an extrapolation procedure from high to low concentrations, for four compounds (Carbamazepine, Diclofenac, Caffeine and Acetaminophen). For this purpose, the reliability of the usual adsorption isotherm models, when extrapolated from high (mg L(-1)) to low concentrations (ng L(-1)), was assessed as well as the influence of numerous error functions. Some isotherm models (Freundlich, Toth) and error functions (RSS, ARE) show weaknesses to be used as an adsorption isotherms at low concentrations. However, from these results, the pairing of the Langmuir-Freundlich isotherm model with Marquardt's percent standard of deviation was evidenced as the best combination model, enabling the extrapolation of adsorption capacities by orders of magnitude.

  11. Characterization of CaF2 surfaces using Adsorption-Desorption Isotherms and Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Wadleigh, L. R.; Luhman, D. R.; Bumcrot, P. G.

    2012-02-01

    We are interested in using rough CaF2 films to study the superfluid transition in two-dimensional helium systems. These experiments require quantitative information regarding the topography of the CaF2 surfaces. The surface roughness of CaF2 films is known to increase with film thickness as has been shown with previous atomic force microscopy (AFM) measurements [1]. We have fabricated a series of CaF2 samples of different film thicknesses and thus different surface roughnesses. These surfaces were studied using AFM and adsorption-desorption isotherm measurements with liquid nitrogen at T=77 K. The isotherm measurements allow us to determine the pore size distribution of each CaF2 film thickness. We find the emergence of hysteretic capillary condensation due to deep pores in the CaF2 as the film thickness increases. The development of these deep pores is also seen in our AFM measurements. Our combined results provide a detailed description of CaF2 surface roughness which can be utilized in the planned superfluid experiment. [1] D.R. Luhman and R.B. Hallock, Phys Rev. E 70, 051606 (2004).

  12. Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton.

    PubMed

    Edwards, J Vincent; Castro, Nathan J; Condon, Brian; Costable, Carmen; Goheen, Steven C

    2012-05-01

    Albumin is the most abundant protein found in healing wounds. Traditional and chromatographic protein isotherms of albumin binding on modified cotton fibers are useful in understanding albumin binding to cellulose wound dressings. An important consideration in the design of cellulosic wound dressings is adsorption and accumulation of proteins like albumin at the solid-liquid interface of the biological fluid and wound dressing fiber. To better understand the effect of fiber charge and molecular modifications in cellulose-containing fibers on the binding of serum albumin as observed in protease sequestrant dressings, albumin binding to modified cotton fibers was compared with traditional and chromatographic isotherms. Modified cotton including carboxymethylated, citrate-crosslinked, dialdehyde and phosphorylated cotton, which sequester elastase and collagenase, were compared for their albumin binding isotherms. Albumin isotherms on citrate-cellulose, cross-linked cotton demonstrated a two-fold increased binding affinity over untreated cotton. A comparison of albumin binding between traditional, solution isotherms and chromatographic isotherms on modified cellulose yielded similar equilibrium constants. Application of the binding affinity of albumin obtained in the in vitro protein isotherm to the in vivo wound dressing uptake of the protein is discussed. The chromatographic approach to assessment of albumin isotherms on modified cellulose offers a more rapid approach to evaluating protein binding on modified cellulose over traditional solution approaches.

  13. Kinetic and isotherm error optimization studies for adsorption of atrazine and imidacloprid on bark of Eucalyptus tereticornis L.

    PubMed

    Mandal, Abhishek; Singh, Neera

    2016-01-01

    The aim of this study was to establish the bark of Eucalyptus tereticornis L. (EB) as a low cost bio-adsorbent for the removal of imidacloprid and atrazine from aqueous medium. The pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and intra-particle diffusion (IPD) models were used to describe the kinetic data and rate constants were evaluated. Adsorption data was analysed using ten 2-, 3- and 4-parameter models viz. Freundlich, Jovanovic, Langmuir, Temkin, Koble-Corrigan, Redlich-Peterson, Sips, Toth, Radke-Prausnitz, and Fritz-Schluender isotherms. Six error functions were used to compute the best fit single component isotherm parameters by nonlinear regression analysis. The results showed that the sorption of atrazine was better explained by PSO model, whereas the sorption of imidacloprid followed the PFO kinetic model. Isotherm model optimization analysis suggested that the Freundlich along with Koble-Corrigan, Toth and Fritz-Schluender were the best models to predict atrazine and imidacloprid adsorption onto EB. Error analysis suggested that minimization of chi-square (χ(2)) error function provided the best determination of optimum parameter sets for all the isotherms.

  14. Adsorption of xylenol orange dye on nano ZnO: Kinetics, thermodynamics and isotherm study

    NASA Astrophysics Data System (ADS)

    Priyadarshini, B.; Behera, S. S.; Rath, P. P.; Sahoo, T. R.; Parhi, P. K.

    2017-05-01

    Study on removal of Xylenol Orange (XO) from aqueous solution was investigated using synthesized ZnO nano particle on batch adsorption process. The effectiveness of the microwave combustion route in producing cubic ZnO with fluorite structure was checked by the X-ray powder diffraction pattern and surface morphology of ZnO was investigated by Field Emission Scanning Electron Microscopy (FESEM) micrographs shows irregular nanoparticles with an average size of 18 nm. Effect of operating adsorption factors that influence on the adsorption process such as contact time (1-300 min), initial dye concentration (5-30ppm), solution pH (4.4-7.4), adsorbent dose (100-400mg/L) and temperature (293-333K) were studied. Equilibrium data were analysed by both Langmuir isotherm and Freundlich adsorption isotherm. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° was calculated and the negative value of ΔH° (-0.115 kJ mol-1) corresponds to an exothermic nature of the adsorption process and the positive values of ΔS° (0.053Jmol-1K-1) reveals the increased randomness of the dye during adsorption process. Kinetics result revealed that the adsorption of XO is of pseudo second-order and chemisorptions type.

  15. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    PubMed

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.

  16. Differential heat of adsorption of water vapor on silicified microcrystalline cellulose (SMCC): an investigation using isothermal microcalorimetry.

    PubMed

    Qian, Ken K; Bogner, Robin H

    2011-01-01

    A novel dual-shaft configuration in isothermal microcalorimetry was developed to study the interaction of water vapor with pharmaceutical excipients. An instrument performance test is suggested to validate the experimental data. Reliable experimental results can be collected using a single perfusion shaft; however, there was limitation of the dual-shaft configuration, which resulted deviation in the experimental results. A periodic performance test is recommended. Silicified microcrystalline cellulose (SMCC) was used as a model system to study the interaction using the dual-shaft method. Enthalpy of water vapor adsorption on SMCC was determined and compared to literature data. The data collected using the dual-shaft configuration did not reflect the actual physical system. The deviation was most likely due to the lack of flow control caused by viscous resistance. The enthalpy of adsorption was then calculated using isothermal microcalorimetry coupled with a dynamic vapor sorption apparatus. The results, -55 kJ/mol at low relative humidity (RH) to -22 kJ/mol at high RH, were consistent with the physical phenomenon of water vapor adsorption. Enthalpy of adsorption showed surface heterogeneity of SMCC and suggested multilayer condensation of water at approximately 60% RH. However, at high RH, the results showed the moisture-excipient interaction can be more complex than the proposed mechanism.

  17. Adsorption isotherms, kinetics and thermodynamic studies towards understanding the interaction between cross-linked alginate-guar gum matrix and chymotrypsin.

    PubMed

    Woitovich Valetti, Nadia; Picó, Guillermo

    2016-02-15

    The adsorption kinetics of chymotrypsin, a pancreatic serine protease, onto an alginate-gum guar matrix cross-linked with epichlorohydrin has been performed using a batch-adsorption technique. The effect of various experimental parameters such as pH, salt presence, contact time and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data which shows that the adsorption of the enzyme followed the pseudo-second-order rate expression. The Langmuir, Freundlich and Hill adsorption isotherm models were applied to describe the equilibrium isotherms, and the isotherm constants were determined. It was found that Hill model was more suitable for our data because the isotherm data showed a sigmoidal behavior with the free enzyme concentration increasing in equilibrium. At 8°C and at pH 5.0, 1g hydrate matrix adsorbed about 7mg of chymotrypsin. In the desorption process 80% of the biological activity of chymotrypsin was recovered under the condition of 50mM phosphate buffer, pH 7.00-500mM NaCl. When successive cycles of adsorption/washing/desorption were performed, it was observed that the matrix remained functional until the fourth cycle of repeated batch enzyme adsorption. These results are important in terms of diminishing of cost and waste generation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by langmuir adsorption isotherms alone.

    PubMed Central

    Cseh, R; Benz, R

    1998-01-01

    Phloretin and its analogs adsorb to the surfaces of lipid monolayers and bilayers and decrease the dipole potential. This reduces the conductance for anions and increases that for cations on artificial and biological membranes. The relationship between the change in the dipole potential and the aqueous concentration of phloretin has been explained previously by a Langmuir adsorption isotherm and a weak and therefore negligible contribution of the dipole-dipole interactions in the lipid surface. We demonstrate here that the Langmuir adsorption isotherm alone is not able to properly describe the effects of dipole molecule binding to lipid surfaces--we found significant deviations between experimental data and the fit with the Langmuir adsorption isotherm. We present here an alternative theoretical treatment that takes into account the strong interaction between membrane (monolayer) dipole field and the dipole moment of the adsorbed molecule. This treatment provides a much better fit of the experimental results derived from the measurements of surface potentials of lipid monolayers in the presence of phloretin. Similarly, the theory provides a much better fit of the phloretin-induced changes in the dipole potential of lipid bilayers, as assessed by the transport kinetics of the lipophilic ion dipicrylamine. PMID:9512036

  19. Utilization of two agrowastes for adsorption and removal of methylene blue: kinetics and isotherm studies.

    PubMed

    Dey, Manash Deep; Ahmed, Minhaz; Singh, Ranjana; Boruah, Ratan; Mukhopadhyay, Rupak

    2017-03-01

    Fresh water streams contaminated with synthetic dye-containing effluents pose a threat to aquatic and human life either by preventing aquatic photosynthesis or by entering into the food chain. Adsorptive removal of such dyes with potent biosorbents is an important technique to reduce bioaccumulation and biomagnifications of the dyes in human life. We report use of betel nut (BN) husk and banana peel (BP), two most abundant ligno-cellulosic wastes, as efficient adsorbents for the removal of the basic dye methylene blue (MB). The adsorption by BN and BP was consistently high over wide ranges of pH and temperature, suggesting their dye removal potential in diverse conditions. Physico-chemical studies, e.g. scanning electron microscopy and Fourier transform-infrared spectroscopy studies, revealed changes in surface topology and functional moieties of BN and BP post adsorption, implying dye interaction with the biomass surface. The dye adsorption in both cases followed pseudo-second-order kinetics. While adsorption of MB by BN was better fitted with the Temkin isotherm model, adsorption with BP followed both Langmuir and Freundlich isotherm models. Our studies concluded that both adsorbents efficiently remove MB from its aqueous solution with BP proved to be marginally superior to BN.

  20. Determining Kinetic Parameters for Isothermal Crystallization of Glasses

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Zhang, T.; Reis, S. T.; Brow, R. K.

    2006-01-01

    Non-isothermal crystallization techniques are frequently used to determine the kinetic parameters for crystallization in glasses. These techniques are experimentally simple and quick compared to the isothermal techniques. However, the analytical models used for non-isothermal data analysis, originally developed for describing isothermal transformation kinetics, are fundamentally flawed. The present paper describes a technique for determining the kinetic parameters for isothermal crystallization in glasses, which eliminates most of the common problems that generally make the studies of isothermal crystallization laborious and time consuming. In this technique, the volume fraction of glass that is crystallized as a function of time during an isothermal hold was determined using differential thermal analysis (DTA). The crystallization parameters for the lithium-disilicate (Li2O.2SiO2) model glass were first determined and compared to the same parameters determined by other techniques to establish the accuracy and usefulness of the present technique. This technique was then used to describe the crystallization kinetics of a complex Ca-Sr-Zn-silicate glass developed for sealing solid oxide fuel cells.

  1. Predicting adsorption isotherms using a two-dimensional statistical associating fluid theory

    NASA Astrophysics Data System (ADS)

    Martinez, Alejandro; Castro, Martin; McCabe, Clare; Gil-Villegas, Alejandro

    2007-02-01

    A molecular thermodynamics approach is developed in order to describe the adsorption of fluids on solid surfaces. The new theory is based on the statistical associating fluid theory for potentials of variable range [A. Gil-Villegas et al., J. Chem. Phys. 106, 4168 (1997)] and uses a quasi-two-dimensional approximation to describe the properties of adsorbed fluids. The theory is tested against Gibbs ensemble Monte Carlo simulations and excellent agreement with the theoretical predictions is achieved. Additionally the authors use the new approach to describe the adsorption isotherms for nitrogen and methane on dry activated carbon.

  2. Sb/Si(111) adsorption: hidden phase transitions behind Langmuir-like isotherms.

    PubMed

    Guesmi, H; Lapena, L; Ranguis, A; Müller, P; Tréglia, G

    2005-02-25

    The experimental study of the thermodynamic and kinetic properties of the Sb/Si(111) interface reveals a surprising behavior: a 2D phase condensates when the Sb coverage increases, indicating strong attractive Sb-Sb interactions, whereas the isotherms present a quasi-Langmuir shape, suggesting that these interactions should be negligible. Ab initio calculations raise this contradiction: while the adsorption site evolves from ternary towards the on-top position with increasing coverage, the character of the Sb-Sb effective interactions changes from repulsive towards attractive, resulting in an almost constant average adsorption energy. A simple (Langmuir) thermodynamic behavior can then be the consequence of a surface phase transition.

  3. Predicting adsorption isotherms using a two-dimensional statistical associating fluid theory.

    PubMed

    Martinez, Alejandro; Castro, Martin; McCabe, Clare; Gil-Villegas, Alejandro

    2007-02-21

    A molecular thermodynamics approach is developed in order to describe the adsorption of fluids on solid surfaces. The new theory is based on the statistical associating fluid theory for potentials of variable range [A. Gil-Villegas et al., J. Chem. Phys. 106, 4168 (1997)] and uses a quasi-two-dimensional approximation to describe the properties of adsorbed fluids. The theory is tested against Gibbs ensemble Monte Carlo simulations and excellent agreement with the theoretical predictions is achieved. Additionally the authors use the new approach to describe the adsorption isotherms for nitrogen and methane on dry activated carbon.

  4. Relation between Water Vapor Adsorption Isotherms and Dynamic Dehumidification Performances of Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Inoue, Koji; Matsuguma, Shingo; Jin, Wei-Li; Okano, Hiroshi; Teraoka, Yasutake; Hirose, Tsutomu

    Desiccant rotors with different water vapor adsorption properties were fabricated by the synthesis of silica gels inside the honeycomb matrices. Dynamic dehumidification performances of the rotors were measured under different conditions and they were discussed in relation to water vapor adsorption isotherms. At the reactivation air temperatures of 80 and 140 oC, the best dynamic performance was observed with the rotor on which the adsorbed amount of water vapor at lower relative humidity was highest. When the reactivation air temperature was 50 oC, on the other hand, the rotor of which the isotherm exhibited monotonic and nearly linear increase up to higher relative humidity was the most suitable. The normalized changes of absolute humidity and adsorbed amount were defined, and these phenomena were analyzed. When the dependences of both parameters against the relative humidity were similar, the rotor showed the best dehumidification performance.

  5. Chromatography Models with Langmuir and Steric Mass Action Adsorption Isotherms are of Differential Index One

    NASA Astrophysics Data System (ADS)

    von Lieres, Eric

    2010-09-01

    Chromatography is commonly applied for the separation of bio-molecules in pharmaceutical industry, and chromatography models are increasingly applied for rational process analysis and optimization. A rapid equilibrium assumption is often applied for the adsorption equation, which results in a non-linear system of partial differential-algebraic equations (PDAEs). In this contribution a proof is given, that these PDAEs are of differential index one for the two most prominent isotherm models, Langmuir and steric mass action (SMA).

  6. Oxygen chemisorption on V/sub 2/O/sub 5/: isotherms and isobars of adsorption

    SciTech Connect

    Rey, L.; Gambaro, L.A.; Thomas, H.J.

    1984-06-01

    Experimental results of oxygen adsorption on V/sub 2/O/sub 5/ (isotherms and isobars) are reported. In its normal state V/sub 2/O/sub 5/ is a nonstoichiometric oxide that shows oxygen vacancies with the subsequent formation of V/sup 4 +/ ions. A model is developed for the interaction between oxygen (gaseous, adsorbed, and bulk) and the solid phase (V/sub 2/O/sub 5/). 12 references, 4 figures, 1 table.

  7. The Republic of the Philippines coalbed methane assessment: based on seventeen high pressure methane adsorption isotherms

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Papasin, Ramon F.; Pendon, Ronaldo R.; del Rosario, Rogelio A.; Malapitan, Ruel T.; Pastor, Michael S.; Altomea, Elmer A.; Cuaresma, Federico; Malapitan, Armando S.; Mortos, Benjamin R.; Tilos, Elizabeth N.

    2006-01-01

    Semirara coal led to the present study of determining the adsorption isotherms, or gas (CBM) holding or storage capacity, of coal beds of various ages from selected coal districts in the Philippines. Samples for the study were collected from the Batan Island, Catanduanes, Cagayan-Isabella, Cebu, Negros, Samar, Semirara, Cotabato, Surigao, and Malangas coalfield of the Zamboanga Sibuguey coal districts by five field geology teams from the GCRDD.

  8. Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption.

    PubMed

    Do, D D; Do, H D; Nicholson, D

    2009-01-29

    We present a new approach to calculating excess isotherm and differential enthalpy of adsorption on surfaces or in confined spaces by the Monte Carlo molecular simulation method. The approach is very general and, most importantly, is unambiguous in its application to any configuration of solid structure (crystalline, graphite layer or disordered porous glass), to any type of fluid (simple or complex molecule), and to any operating conditions (subcritical or supercritical). The behavior of the adsorbed phase is studied using the partial molar energy of the simulation box. However, to characterize adsorption for comparison with experimental data, the isotherm is best described by the excess amount, and the enthalpy of adsorption is defined as the change in the total enthalpy of the simulation box with the change in the excess amount, keeping the total number (gas + adsorbed phases) constant. The excess quantities (capacity and energy) require a choice of a reference gaseous phase, which is defined as the adsorptive gas phase occupying the accessible volume and having a density equal to the bulk gas density. The accessible volume is defined as the mean volume space accessible to the center of mass of the adsorbate under consideration. With this choice, the excess isotherm passes through a maximum but always remains positive. This is in stark contrast to the literature where helium void volume is used (which is always greater than the accessible volume) and the resulting excess can be negative. Our definition of enthalpy change is equivalent to the difference between the partial molar enthalpy of the gas phase and the partial molar enthalpy of the adsorbed phase. There is no need to assume ideal gas or negligible molar volume of the adsorbed phase as is traditionally done in the literature. We illustrate this new approach with adsorption of argon, nitrogen, and carbon dioxide under subcritical and supercritical conditions.

  9. A simple method for measuring excess adsorption isotherms of organic eluent components on reversed-phase packing materials.

    PubMed

    Ohashi, Junji; Harada, Makoto; Okada, Tetsuo

    2017-02-01

    A simple frontal analysis method has been developed for the reliable measurement of excess adsorption isotherms of an organic component on reversed-phase adsorbents in a series of programmed concentration steps. In the present method, a peak, which is produced by refractive index change in column eluate, is detected at 589 nm; it represents the elution volume of the boundary. The method is applied to the measurement of the excess adsorption isotherms of organic eluent components from water on commercially available reversed-phase stationary phases. The results are in good agreement with the previously reported isotherms. We also measure the excess adsorption isotherms of organic eluent components from solutions containing electrolytes. There are not any interference peaks on the elution traces. The method is thus reliably applicable to the evaluation of the excess adsorption of organic eluent components in practical systems.

  10. Ni (II) adsorption onto Chrysanthemum indicum: Influencing factors, isotherms, kinetics, and thermodynamics.

    PubMed

    Vilvanathan, Sowmya; Shanthakumar, S

    2016-10-02

    The study explores the adsorption potential of Chrysanthemum indicum biomass for nickel ion removal from aqueous solution. C. indicum flowers in raw (CIF-I) and biochar (CIF-II) forms were used as adsorbents in this study. Batch experiments were conducted to ascertain the optimum conditions of solution pH, adsorbent dosage, contact time, and temperature for varying initial Ni(II) ion concentrations. Surface area, surface morphology, and functionality of the adsorbents were characterized by Brunauer, Emmett, and Teller (BET) surface analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Adsorption kinetics were modeled using pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Bangham's, and Boyd's plot. The equilibrium data were modeled using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) isotherm models. Experimental data provided the best fit to pseudo-second-order kinetic model and Langmuir isotherm model for the adsorption of Ni(II) ion on both CIF-I and CIF-II with maximum adsorption capacities of 23.97 and 44.02 mg g(-1), respectively. Thermodynamic analysis of the data proved the process to be spontaneous and endothermic in nature. Desorption studies were conducted to evaluate the possibility of reusing the adsorbents. Findings of the present study provide substantial evidence for the use of C. indicum flower as an eco-friendly and potential adsorbent for the removal of Ni(II) ions from aqueous solution.

  11. Adsorption isotherms for hydrogen chloride (HCl) on ice surfaces between 190 and 220 K.

    PubMed

    Zimmermann, S; Kippenberger, M; Schuster, G; Crowley, J N

    2016-05-18

    The interaction of hydrogen chloride (HCl) with ice surfaces at temperatures between 190 and 220 K was investigated using a coated-wall flow-tube connected to a chemical ionization mass spectrometer. Equilibrium surface coverages of HCl were determined at gas phase concentrations as low as 2 × 10(9) molecules cm(-3) (∼4 × 10(-8) Torr at 200 K) to derive Langmuir adsorption isotherms. The data are described by a temperature independent partition coefficient: KLang = (3.7 ± 0.2) × 10(-11) cm(3) molecule(-1) with a saturation surface coverage Nmax = (2.0 ± 0.2) × 10(14) molecules cm(-2). The lack of a systematic dependence of KLang on temperature contrasts the behaviour of numerous trace gases which adsorb onto ice via hydrogen bonding and is most likely related to the ionization of HCl at the surface. The results are compared to previous laboratory studies, and the equilibrium partitioning of HCl to ice surfaces under conditions relevant to the atmosphere is evaluated.

  12. Effect of cation type, alkyl chain length, adsorbate size on adsorption kinetics and isotherms of bromide ionic liquids from aqueous solutions onto microporous fabric and granulated activated carbons.

    PubMed

    Hassan, Safia; Duclaux, Laurent; Lévêque, Jean-Marc; Reinert, Laurence; Farooq, Amjad; Yasin, Tariq

    2014-11-01

    The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.

  13. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent--Kinetics and isotherm analysis.

    PubMed

    Radhika, M; Palanivelu, K

    2006-11-02

    Adsorptive removal of parachlorophenol (PCP) and 2,4,6-trichlorophenol (TCP) from aqueous solutions by activated carbon prepared from coconut shell was studied and compared with activated carbon of commercial grade (CAC). Various chemical agents in different concentrations were used (KOH, NaOH, CaCO(3), H(3)PO(4) and ZnCl(2)) for the preparation of coconut shell activated carbon. The coconut shell activated carbon (CSAC) prepared using KOH as chemical agent showed high surface area and best adsorption capacity and was chosen for further studies. Batch adsorption studies were conducted to evaluate the effect of various parameters such as pH, adsorbent dose, contact time and initial PCP and TCP concentration. Adsorption equilibrium reached earlier for CSAC than CAC for both PCP and TCP concentrations. Under optimized conditions the prepared activated carbon showed 99.9% and 99.8% removal efficiency for PCP and TCP, respectively, where as the commercially activated carbon had 97.7% and 95.5% removal for PCP and TCP, respectively, for a solution concentration of 50mg/L. Adsorption followed pseudo-second-order kinetics. The equilibrium adsorption data were analysed by Langmuir, Freundlich, Redlich-Peterson and Sips model using non-linear regression technique. Freundlich isotherms best fitted the data for adsorption equilibrium for both the compounds (PCP and TCP). Similarly, acidic pH was favorable for the adsorption of both PCP and TCP. Studies on pH effect and desorption revealed that chemisorption was involved in the adsorption process. The efficiency of the activated carbon prepared was also tested with real pulp and paper mill effluent. The removal efficiency using both the carbons were found highly satisfactory and was about 98.7% and 96.9% as phenol removal and 97.9% and 93.5% as AOX using CSAC and CAC, respectively.

  14. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.

    PubMed

    Zhu, Xuan; Tsang, Daniel C W; Chen, Feng; Li, Shiyu; Yang, Xin

    2015-01-01

    Ciprofloxacin (CIP) is a commonly used antibiotic and widely detected in wastewaters and farmlands nowadays. This study evaluated the efficacy of next-generation adsorbent (graphene) and conventional adsorbent (granular activated carbon, GAC) for CIP removal. Batch experiments and characterization tests were conducted to investigate the adsorption kinetics, equilibrium isotherms, thermodynamic properties, and the influences of solution chemistry (pH, ionic strength, natural organic matter (NOM), and water sources). Compared to GAC, graphene showed significantly faster adsorption and reached equilibrium within 3 min, confirming the rapid access of CIP into the macroporous network of high surface area of graphene as revealed by the Brunner-Emmet-Teller measurements analysis. The kinetics was better described by a pseudo-second-order model, suggesting the importance of the initial CIP concentration related to surface site availability of graphene. The adsorption isotherm on graphene followed Langmuir model with a maximum adsorption capacity of 323 mg/g, which was higher than other reported carbonaceous adsorbents. The CIP adsorption was thermodynamically favourable on graphene and primarily occurred through π - π interaction, according to the FTIR spectroscopy. While the adsorption capacity of graphene decreased with increasing solution pH due to the speciation change of CIP, the adverse effects of ionic strength (0.01-0.5 mol L(-1)), presence of NOM (5 mg L⁻¹), and different water sources (river water or drinking water) were less significant on graphene than GAC. These results indicated that graphene can serve as an alternative adsorbent for CIP removal in commonly encountered field conditions, if proper separation and recovery is available in place.

  15. Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates.

    PubMed

    Dickson, Dionne; Liu, Guangliang; Cai, Yong

    2017-01-15

    Iron (Fe) nanoparticles, e.g., zerovalent iron (ZVI) and iron oxide nanoparticles (IONP), have been used for remediation and environmental management of arsenic (As) contamination. These Fe nanoparticles, although originally nanosized, tend to form aggregates, in particular in the environment. The interactions of As with both nanoparticles and micron-sized aggregates should be considered when these Fe nanomaterials are used for mitigation of As issue. The objective of this study was to compare the adsorption kinetics and isotherm of arsenite (As(III)) and arsenate (As(V)) on bare hematite nanoparticles and aggregates and how this affects the fate of arsenic in the environment. The adsorption kinetic process was investigated with regards to the aggregation of the nanoparticles and the type of sorbed species. Kinetic data were best described by a pseudo second-order model. Both As species had similar rate constants, ranging from 3.82 to 6.45 × 10(-4) g/(μg·h), as rapid adsorption occurred within the first 8 h regardless of particle size. However, hematite nanoparticles and aggregates showed a higher affinity to adsorb larger amounts of As(V) (4122 ± 62.79 μg/g) than As(III) (2899 ± 71.09 μg/g) at equilibrium. We were able to show that aggregation and sedimentation of hematite nanoparticles occurs during the adsorption process and this might cause the immobilization and reduced bioavailability of arsenic. Isotherm studies were described by the Freundlich model and it confirmed that hematite nanoparticles have a significantly higher adsorption capacity for both As(V) and As(III) than hematite aggregates. This information is useful and can assist in predicting arsenic adsorption behavior and assessing the role of iron oxide nanoparticles in the biogeochemical cycling of arsenic.

  16. Adsorption isotherms and kinetics of methylene blue on a low-cost adsorbent recovered from a spent catalyst of vinyl acetate synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyong; Zhang, Zebiao; Fernández, Y.; Menéndez, J. A.; Niu, Hao; Peng, Jinhui; Zhang, Libo; Guo, Shenghui

    2010-02-01

    A regenerated activated carbon used as catalyst support in the synthesis of vinyl acetate has been tested as a low-cost adsorbent for the removal of dyes. After a thorough textural characterization of the regenerated activated carbon, its adsorption isotherms and kinetics were determined using methylene blue as model compound at different initial concentrations. Both Langmuir and Freundlich isotherm models were developed and then compared. It was found that the equilibrium data were best represented by the Langmuir isotherm model. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and it was found that the best fitting corresponded to the pseudo-second-order kinetic model. The results showed that this novel adsorbent had a high adsorption capacity, making it suitable for use in the treatment of methylene blue enriched wastewater.

  17. Removal of water and iodine by solid sorbents: adsorption isotherms and kinetics

    SciTech Connect

    Lin, R.; Tavlarides, L.L.

    2013-07-01

    Tritium and iodine-129 are two major radioactive elements that are present in off-gases from spent fuel reprocessing plants. Adsorption by solid sorbents is the state-of-the-art technique for removal of these species from off-gases. Modeling and simulating adsorption processes require accurate adsorption equilibrium and kinetic data to permit reasonable estimates of process parameters. We have developed a continuous flow single-pellet adsorption system to gather accurate adsorption equilibrium and kinetic data for adsorption of water by molecular sieve 3A and for adsorption of iodine by silver exchanged mordenite. In this paper, the design of the water and iodine adsorption experimental systems are briefly described and results of water adsorption experiments are presented and discussed. Water uptake curves are fitted with the linear-driving force (LDF) model and the shrinking-core model to determine kinetic parameters. It is shown that the kinetics of water adsorption on zeolite 3A under current experimental conditions is controlled by both the external film resistance and the macro-pore diffusion and can be predicted by both the LDF model and the shrinking-core model with the former one performing slightly better. Preliminary results from iodine adsorption experiments will be presented in the conference.

  18. Accuracy and precision of adsorption isotherm parameters measured by dynamic HPLC methods.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2004-07-23

    The fluctuations of the column temperature, the composition and the flow rate of the mobile phase affect the accuracy and precision of the adsorption isotherm parameters measured by dynamic HPLC methods. Experimental data were acquired by frontal analysis (FA) for phenol in equilibrium between C18-bonded Symmetry and a methanol:water mixture (20:80, v/v), at 303 K and a flow rate of 1 mL/min. The fluctuations of the experimental parameters were 0.1 K for the temperature, 0.1% for the mobile phase composition and 0.001 mL/min for the flow rate. The best isotherm model was shown to be the tri-Langmuir isotherm. Random errors were calculated and shown to agree with experimental results. Overloaded band profiles of phenol were acquired at low (sample size, 100 microL, concentration 3 g/L) and high (same sample size, concentration 60 g/L) loadings, at seven temperatures (298, 300, 302, 303, 304, 306, and 308 K), for seven mobile phase compositions (methanol 16, 18, 19, 20, 21, 22, and 24%), and with seven mobile phase flow rates (0.95, 0.97, 0.99, 1.00, 1.01, 1.03, and 1.05 mL/min), always keeping two experimental parameters at the values selected for the FA runs. Assuming that the isotherm model stays the same, the inverse method (IM) was used to derive the isotherm parameters in each case. Temperature affects the equilibrium constants according to Van't Hoff law. A temperature change of 1 K around 303 K causes a relative variation of 1.5% of the high-energy adsorption constant b3 and of 0.6% of the saturation capacity q3. The isotherm parameters are very sensitive to the mobile phase composition, especially the highest energy mode. Both adsorption constants b2 and b3 follow the linear strength solvent model (LSSM). A methanol volume fraction change of 1% causes a relative decrease of 3.2 and 5.0% of b2 and b3, respectively and a 2% decrease of the saturation capacity q3. Finally, flow rate changes affect only the saturation capacities. A flow rate change of 1 % causes

  19. Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis.

    PubMed

    Ncibi, Mohamed Chaker

    2008-05-01

    In any single component isotherm study, determining the best-fitting model is a key analysis to mathematically describe the involved sorption system and, therefore, to explore the related theoretical assumptions. Hence, several error calculation functions have been widely used to estimate the error deviations between experimental and theoretically predicted equilibrium adsorption values (Q(e,exp)vs.Q(e,theo) as X- and Y-axis, respectively), including the average relative error deviation, the Marquardt's percent standard error deviation, the hybrid fractional error function, the sum of the squares of the errors, the correlation coefficient and the residuals. In this study, five other statistical functions are analysed to investigate their applicability as suitable tools to evaluate isotherm model fitness, namely the Pearson correlation coefficient, the coefficient of determination, the Chi-square test, the F-test and the Student's T-test, using the commonly-used functions as references. The adsorption of textile dye onto Posidonia oceanica seagrass fibres was carried out, as study case, in batch mode at 20 degrees C. Besides, and in order to get an overall approach of the possible utilization of these statistical functions within the studied item, the examination was realized for both linear and non-linear regression analysis. The related results showed that, among the five studied statistical tools, the chi(2) and Student's T-tests were suitable to determine the best-fitting isotherm model for the case of linear modelling approach. On the other hand, dealing with the non-linear analysis, despite the Student's T-test, all the other functions gave satisfactorily results, by agreeing the commonly-used error functions calculation.

  20. A comparative examination of the adsorption mechanism of an anionic textile dye (RBY 3GL) onto the powdered activated carbon (PAC) using various the isotherm models and kinetics equations with linear and non-linear methods

    NASA Astrophysics Data System (ADS)

    Açıkyıldız, Metin; Gürses, Ahmet; Güneş, Kübra; Yalvaç, Duygu

    2015-11-01

    The present study was designed to compare the linear and non-linear methods used to check the compliance of the experimental data corresponding to the isotherm models (Langmuir, Freundlich, and Redlich-Peterson) and kinetics equations (pseudo-first order and pseudo-second order). In this context, adsorption experiments were carried out to remove an anionic dye, Remazol Brillant Yellow 3GL (RBY), from its aqueous solutions using a commercial activated carbon as a sorbent. The effects of contact time, initial RBY concentration, and temperature onto adsorbed amount were investigated. The amount of dye adsorbed increased with increased adsorption time and the adsorption equilibrium was attained after 240 min. The amount of dye adsorbed enhanced with increased temperature, suggesting that the adsorption process is endothermic. The experimental data was analyzed using the Langmuir, Freundlich, and Redlich-Peterson isotherm equations in order to predict adsorption isotherm. It was determined that the isotherm data were fitted to the Langmuir and Redlich-Peterson isotherms. The adsorption process was also found to follow a pseudo second-order kinetic model. According to the kinetic and isotherm data, it was found that the determination coefficients obtained from linear method were higher than those obtained from non-linear method.

  1. Investigation of simultaneous biosorption of copper(II) and chromium(VI) on dried Chlorella vulgaris from binary metal mixtures: Application of multicomponent adsorption isotherms

    SciTech Connect

    Aksu, Z.; Acikel, U.; Kutsal, T.

    1999-02-01

    Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studies the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.

  2. Adsorption isotherms of 2,2,4-trimethylpentane and toluene vapors on hydrocarbon adsorber and light-off catalyst.

    PubMed

    Kim, Dae Jung

    2004-01-15

    Two monolithic hydrocarbon adsorbers and a monolithic light-off catalyst were selected as adsorbents, and the adsorptive capacity of a hydrocarbon for the adsorbents was measured by using a precise volumetric adsorption apparatus. 2,2,4-Trimethylpentane and toluene vapors were chosen as adsorbates. Equilibrium experiments were carried out at three different temperatures of 303.15, 323.15, and 343.15 K. Adsorption data of each hydrocarbon was fitted to the well-known isotherms such as the Langmuir equation and the Freundlich equation. The Freundlich isotherm predicted equilibrium data better than the Langmuir isotherm. Furthermore, the surface energetic heterogeneity of the adsorbents was evaluated using the isosteric heat of adsorption based on Clausius-Clapeyron equation. The surface energetic heterogeneity of the adsorbents depended on the precious metal (PM) loading and H-ZSM5 loading.

  3. Adsorptive removal of α-endosulfan from water by hydrophobic zeolites. An isothermal study.

    PubMed

    Yonli, Arsène H; Batonneau-Gener, Isabelle; Koulidiati, Jean

    2012-02-15

    This paper deals with the removal of α-endosulfan from water over HY and steamed HBEA zeolites. Experiments were performed to understand the adsorption mechanisms of α-endosulfan on zeolites and to determine the most efficient adsorbent for the purification of water contaminated by this pesticide. The experiments exhibit that α-endosulfan was adsorbed in the micropores. In the case of HY zeolites an adsorption of α-endosulfan molecules on BrØnsted sites was pointed out, due to a preferential water adsorption in mesopores. Moreover a physisorption of α-endosulfan occurred in micropores. For steamed HBEA zeolites physisorption in micropores was pointed out as the adsorption mode. For both types of zeolites a decrease of the adsorption capacities was noticed when the acidity of zeolites increased. There was also a linear relation between the adsorption capacities of α-endosulfan and the hydrophobicity (HI) of the samples and by determining the values of HI for a type of zeolite it was possible to deduce the uptake of α-endosulfan. The HY(40) sample was the most efficient for the removal of α-endosulfan from water because of preferential adsorption of water molecules in mesopores and lower acidity. For this sample the adsorption capacity for α-endosulfan was about 833.33 mg/g where for the most effective HBEA sample (St700(3)) the adsorption capacity was about 793.65 mg/g. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Simultaneous adsorption of Remazol brilliant blue and Disperse orange dyes on red mud and isotherms for the mixed dye system.

    PubMed

    Gadigayya Mavinkattimath, Ratnamala; Shetty Kodialbail, Vidya; Govindan, Srinikethan

    2017-06-27

    The paper presents the adsorption of Remazol brilliant blue (RBB) and Disperse orange 25 (DO25) dyes from aqueous solution of the mixture of dyes onto concentrated sulphuric acid-treated red mud (ATRM). First-order derivative spectrophotometric method was developed for the analysis of RBB and DO25 in mixed dye aqueous solution to overcome the limitations arising due to interference in the zero-order spectral method. The optimum conditions to maximize RBB adsorption favoured the adsorption of RBB, and those for DO25 favoured DO25 adsorption from the mixed dye aqueous solutions. Presence of a second dye always inhibited the adsorption of a target dye. The uptake and percentage adsorption of each of the dyes onto ATRM from the aqueous solution of the mixture of dyes decreased considerably with increasing concentrations of the other dye showing the antagonistic effect. Monocomponent Langmuir isotherm fitted the mixed dye adsorption equilibrium data better than the monocomponent Freundlich isotherm. However, monocomponent models are suitable for the fixed concentration of the other dye. Modified Langmuir isotherm model adequately predicted the multi-component adsorption equilibrium data for RBB-DO25-ATRM adsorption system with a good accuracy and is more generic from the application point of view.

  5. Adsorption isotherms of some alkyl aromatic hydrocarbons and surface energies on partially dealuminated Y faujasite zeolite by inverse gas chromatography.

    PubMed

    Kondor, Anett; Dallos, András

    2014-10-03

    Adsorption isotherm data of some alkyl aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) measured in the temperature range of 423-523K on a partially dealuminated faujasite type DAY F20 zeolite by inverse gas chromatography are presented in this work. The temperature dependent form of Tóth's equation has been fitted to the multiple temperature adsorption isotherms of benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene with standard deviations of 4.6, 5.0, 5.9, 4.3, 5.1 and 6.3mmolkg(-1) and coefficients of determinations (r(2)) of 0.977, 0.971, 0.974, 0.975, 0.991 and 0.991, respectively. The gas-solid equilibria and modeling were interpreted on the basis of the interfacial properties of the zeolite, by dispersive, specific and total surface energy heterogeneity profiles and distributions of the adsorbent measured by surface energy analysis.

  6. Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption from water by Mytella falcata waste.

    PubMed

    Silva, Társila S; Meili, Lucas; Carvalho, Sandra Helena V; Soletti, João Inácio; Dotto, Guilherme Luiz; Fonseca, Eduardo Jorge S

    2017-07-08

    This work evaluates the application of Mytella falcata shells, discarded in large quantities in the state of Alagoas, Brazil, as adsorbent for methylene blue dye (MB). It was investigated how the amount of adsorbent (M), the average particle diameter (G), and the agitation speed (A) affected the adsorption. Kinetic and equilibrium studies were conducted, and the pseudo-second-order equation adequately represented the kinetic data and isotherms following Liu's model (q max = 8.81 mg g(-1) at 60 °C). The adsorption was spontaneous, favorable, and endothermic. Mytella falcata shell is a suitable adsorbent for MB and could potentially contribute to its removal from the environment.

  7. Adsorption on molecularly imprinted polymers of structural analogues of a template. Single-component adsorption isotherm data

    SciTech Connect

    Kim, Hyunjung; Guiochon, Georges A

    2005-10-01

    The equilibrium adsorption isotherms on two otherwise identical polymers, one imprinted with Fmoc-L-tryptophan (Fmoc-L-Trp) (MIP), the other nonimprinted (NIP), of compounds that are structural analogues of the template were acquired by frontal analysis (FA) in an acetonitrile/acetic acid (99/1 v/v) mobile phase, over a wide concentration range (from 0.005 to 50 mM). These analogues were Fmoc-L-tyrosine, Fmoc-L-serine, Fmoc-L-phenyalanine, Fmoc-glycine (Fmoc-Gly), Fmoc-L-tryptophan pentafluorophenyl ester (Fmoc-L-Trp(OPfp)), and their antipodes. These substrates have different numbers of functional groups able to interact with the 4-vinylpyridine groups of the polymer. For a given number of the functional groups, these substrates have different hydrophobicities of their side groups (as indicated by their partition coefficients (log P{sub ow}) in the octanol-water system (e.g., from 4.74 for Fmoc-Trp to 2.53 for Fmoc-Gly)). Statistical results from the fitting of the FA data to Langmuirian isotherm models, the calculation of the affinity energy distribution, and the comparison of calculated and experimental band profiles show that all these sets of FA data are best accounted for by a tri-Langmuir isotherm model, except for the data of Fmoc-L-Trp(OPfp) that are best modeled by a simple Langmuir isotherm. So, all compounds but Fmoc-L-Trp(OPfp) find three different types of adsorption sites on both the MIP and the NIP. The properties of these different types of sites were studied systematically. The results show that the affinity of the structural analogues for the NIP is controlled mostly by the number of the functional groups on the substrates and somewhat by the hydrophobicity of their side groups. These two factors control also the MIP affinity toward the enantiomers of the structural analogues that have a stereochemistry different from that of the template. In contrast, the affinity of the highest affinity sites of the MIP toward the enantiomers of these

  8. Adsorption of malachite green by polyaniline-nickel ferrite magnetic nanocomposite: an isotherm and kinetic study

    NASA Astrophysics Data System (ADS)

    Patil, Manohar R.; Shrivastava, V. S.

    2014-11-01

    This work deals with the development of an efficient method for the removal of a MG (malachite green) dye from aqueous solution using polyaniline (PANI)-Nickel ferrite (NiFe2O4) magnetic nanocomposite. It is successfully synthesised in situ through self polymerisation of monomer aniline. Adsorptive removal studies are carried out for water soluble MG dye using PANI-Nickel ferrite magnetic nanocomposite in aqueous solution. Different parameters like dose of adsorbent, contact time, different initial conc., and pH have been studied to optimise reaction condition. It is concluded that adsorptive removal by PANI-Nickel ferrite magnetic nanocomposite is an efficient method for removing a MG dye from aqueous solution than work done before. The optimum conditions for the removal of the dye are initial concentration 30 mg l-1, adsorbent dose 5gm l-1 and pH 7. The adsorption capacity is found 4.09 mg g-1 at optimum condition 30 mg l-1. The adsorption followed pseudo-second-order kinetics. The experimental isotherm is found to fit with Langmuir equation. The prepared adsorbent is characterised by techniques SEM, EDS, XRD and VSM.

  9. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    PubMed

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process.

  10. How soil organic matter composition controls hexachlorobenzene-soil-interactions: adsorption isotherms and quantum chemical modeling.

    PubMed

    Ahmed, Ashour A; Kühn, Oliver; Aziz, Saadullah G; Hilal, Rifaat H; Leinweber, Peter

    2014-04-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soiladsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HCB adsorption. To obtain a molecular level understanding, a test set has been developed on the basis of elemental analysis which comprises 32 representative soil constituents. The calculated binding energy for HCB with each representative system shows that HCB binds to SOM stronger than to soil minerals. For SOM, HCB binds to alkylated aromatic, phenols, lignin monomers, and hydrophobic aliphatic compounds stronger than to polar aliphatic compounds confirming the above adsorption isotherms. Moreover, quantitative structure-activity relationship (QSAR) of the binding energy with independent physical properties of the test set systems for the first time indicated that the polarizability, the partial charge on the carbon atoms, and the molar volume are the most important properties controlling HCB-SOM interactions.

  11. Adsorption kinetics, thermodynamics and isotherm of Hg(II) from aqueous solutions using buckwheat hulls from Jiaodong of China.

    PubMed

    Wang, Zengdi; Yin, Ping; Qu, Rongjun; Chen, Hou; Wang, Chunhua; Ren, Shuhua

    2013-02-15

    The adsorption kinetics and adsorption isotherms of buckwheat hulls in the region of Jiaodong, China (BHJC) for Hg(II) were investigated. Results revealed that the adsorption kinetics of BHJC for Hg(II) were well described by a pseudo second-order reaction model, and the adsorption thermodynamic parameters ΔG, ΔH and ΔS were -5.83 kJ mol(-1)(35°C), 73.1, and 256 JK(-1) mol(-1), respectively. Moreover, Langmuir, Freundlich and Redlich-Peterson isotherm models were applied to analyse the experimental data and to predict the relevant isotherm parameters. The best interpretation for the experimental data was given by the Langmuir isotherm equation, and the maximum adsorption capacity for Hg(II) is 243.90 mg/g at 35°C. Furthermore, investigation of the adsorption selectivity showed that BHJC displayed strong affinity for mercury in the aqueous solutions and exhibited 100% selectivity for mercury in the presence of Zn(II) and Cd(II).

  12. Adsorption of selected emerging contaminants onto PAC and GAC: Equilibrium isotherms, kinetics, and effect of the water matrix.

    PubMed

    Real, Francisco J; Benitez, F Javier; Acero, Juan L; Casas, Francisco

    2017-07-03

    The removal of three emerging contaminants (ECs) (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) dissolved in several water matrices by means of their adsorption onto powdered activated carbon (PAC) and granular activated carbon (GAC) has been investigated. When dissolved in ultrapure water, adsorption of the ECs followed the trend of AH > MS > PE, with a positive effect of the adsorbent dose. According to the analysis of the adsorption isotherms and adsorption kinetics, PAC showed strongly higher adsorption efficiency in both capacity and velocity of the adsorption, in agreement with its higher mesoporosity. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. Pseudo-second order kinetics modeled very successfully the adsorption process. Finally, the effect of the presence of dissolved organic matter (DOM) in the water matrices (ultrapure water, surface water and two effluents from wastewater treatment plants) on the adsorption of the selected ECs onto PAC was established, as well as its performance on the removal of water quality parameters. Results show a negative effect of the DOM content on the adsorption efficiency. Over 50% of organic matter was removed with high PAC doses, revealing that adsorption onto PAC is an effective technology to remove both micro-pollutants and DOM from water matrices.

  13. Modeling and CFD prediction for diffusion and adsorption within room with various adsorption isotherms.

    PubMed

    Murakami, S; Kato, S; Ito, K; Zhu, Q

    2003-01-01

    This paper presents physical models that are used for analyzing numerically the transportation of volatile organic compounds (VOCs) from building materials in a room. The models are based on fundamental physicochemical principles of their diffusion and adsorption/desorption (hereafter simply sorption) both in building materials and in room air. The performance of the proposed physical models is examined numerically in a test room with a technique supported by computational fluid dynamics (CFD). Two building materials are used in this study. One is a VOC emitting material for which the emission rate is mainly controlled by the internal diffusion of the material. The other is an adsorptive material that has no VOC source. It affects the room air concentration of VOCs with its sorption process. The floor is covered with an emission material made of polypropylene styrene-butadiene rubber (SBR). An adsorbent material made of coal-based activated carbon is spread over the sidewalls. The results of numerical prediction show that the physical models and their numerical simulations explain well the mechanism of the transportation of VOCs in a room.

  14. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon.

    PubMed

    Tan, I A W; Ahmad, A L; Hameed, B H

    2009-05-30

    The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich-Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (DeltaH degrees ), standard entropy (DeltaS degrees ), standard free energy (DeltaG degrees ) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.

  15. Linear isotherm determination from linear gradient elution experiments.

    PubMed

    Pfister, David; Steinebach, Fabian; Morbidelli, Massimo

    2015-01-02

    A procedure to estimate equilibrium adsorption parameters as a function of the modifier concentration in linear gradient elution chromatography is proposed and its reliability is investigated by comparison with experimental data. Over the past decades, analytical solutions of the so-called equilibrium model under linear gradient elution conditions were derived assuming that proteins and modifier molecules access the same fraction of the pore size distribution of the porous particles. The present approach developed in this work accounts for the size exclusion effect resulting in different exclusions for proteins and modifier. A new analytical solution was derived by applying perturbation theory for differential equations, and the 1st-order approximated solution is presented in this work. Eventually, a turnkey and reliable procedure to efficiently estimate isotherm parameters as a function of modifier concentration from linear gradient elution experiments is proposed.

  16. Bi-level optimizing control of a simulated moving bed process with nonlinear adsorption isotherms.

    PubMed

    Kim, Kiwoong; Kim, Jin-Il; Park, Hyukmin; Koo, Yoon-Mo; Lee, Kwang Soon

    2011-09-23

    A bi-level optimizing control scheme originally proposed for a simulated moving bed (SMB) with linear isotherms has been extended to an SMB with nonlinear isotherms. Cyclic steady state optimization is performed in the upper level to determine the optimum switching period and time-varying feed/desorbent flow rates, and repetitive model predictive control is run in the lower level for purity regulation, taking the decision variables from the upper level as feed-forward information. Experimental as well as numerical study for an SMB process separating a high-concentration mixture of aqueous L-ribose and L-arabinose solutions showed that the proposed scheme performs satisfactorily against various disturbances. In contrast, an alternative scheme based on an SMB model with linear isotherms showed a limitation in the control performance; this scheme was apt to fail in purity regulation.

  17. Study of the kinetics and the adsorption isotherm of cadmium(II) from aqueous solution using green algae (Ulva lactuca) biomass.

    PubMed

    Asnaoui, H; Laaziri, A; Khalis, M

    2015-01-01

    Batch experiments were conducted to study the adsorption of hazardous cadmium onto low-cost algae biomass in aqueous solution with respect to concentration of adsorbate, adsorbent dosage, contact time, solution pH and temperature. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of cadmium onto Ulva lactuca biomass. Experimental data were tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of Cd(II) followed well pseudo-second-order kinetics. Langmuir and Freundlich models were applied to describe the biosorption isotherm of the metal ions by Ulva lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of Ulva lactuca biomass for cadmium was found to be 3.02 mg/g at pH 5.60 min equilibrium time and 20 °C. The mean free energy which was calculated was 6.24 kJ/mol for Cd(II) biosorption, which shows that the adsorption is physical. The calculated thermodynamic parameters (ΔG0, ΔH0 and ΔS0) showed that the biosorption of Cd(II) onto Ulva lactuca biomass was feasible, spontaneous and exothermic under examined conditions. The results indicate that algae Ulva lactuca could be employed as a low-cost material for the removal of metal ions from aqueous solution.

  18. Bayesian and Frequentist Methods for Estimating Joint Uncertainty of Freundlich Adsorption Isotherm Fitting Parameters

    EPA Science Inventory

    In this paper, we present methods for estimating Freundlich isotherm fitting parameters (K and N) and their joint uncertainty, which have been implemented into the freeware software platforms R and WinBUGS. These estimates were determined by both Frequentist and Bayesian analyse...

  19. Bayesian and Frequentist Methods for Estimating Joint Uncertainty of Freundlich Adsorption Isotherm Fitting Parameters

    EPA Science Inventory

    In this paper, we present methods for estimating Freundlich isotherm fitting parameters (K and N) and their joint uncertainty, which have been implemented into the freeware software platforms R and WinBUGS. These estimates were determined by both Frequentist and Bayesian analyse...

  20. Nonlinear isotherm and kinetics of adsorption of copper from aqueous solutions on bentonite

    NASA Astrophysics Data System (ADS)

    Sadeghalvad, Bahareh; Khosravi, Sara; Azadmehr, Amir Reza

    2016-11-01

    Bentonite is one of the most significant of clay minerals that has been studied extensively due to its potential applications in removal of various environmental pollutants. This ability is related to its high ionic exchange capacity and high specific surface area. Copper is one of the important elements of non-ferrous metals found in industrial waste waters. In the present work, the removal of copper from aqueous solutions with Iranian bentonite (from Birjand area, southeastern Iran) used without any chemical pretreatment, was studied. The experimental results were fitted by adsorption isotherms equations with two or three parameters, which include Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Redlich-Peterson, Khan, and Toth models. The best correlation coefficient ( r 2) is 0.9879 observed for Langmuir model, maximum adsorption capacity of bentonite was 55.71 mg/g. The first-order and pseudo-second-order kinetic equations were used to describe the kinetics of adsorption. The experimental data were well fitted by the pseudo-second-order kinetics.

  1. Langmuir adsorption isotherm analysis on the addition of Myrmecodia Pendans extract as a corrosion inhibitor with a variety of corrosive media

    NASA Astrophysics Data System (ADS)

    Pradityana, Atria; Sulistijono, Subowo, Suhariyanto, Subiyanto, Hari; Rusdiyana, Liza

    2017-05-01

    In this study, the corrosion process was done by potentiodynamic polarization method on API 5L Grade B. Variations corrosion media used were NaCl 3,5%, HCl 1 M and H2SO4 1 M. Organic Inhibitors used are plant Myrmecodia Pendans, while the concentration of the extract used were 100-500 mg / L (multiples of 100 mg / L). In this study, the mechanism of adsorption equation model used is Langmuir. This study aims to determine appropriate corrosive media followed the Langmuir adsorption isotherm when added to extracts of Myrmecodia Pendans as a corrosion inhibitor. The value of free energy of the system have obtained from the adsorption isotherm models. With the known value of free energy, it can be seen whether the adsorption occurs in physics or chemistry. This relates to the surface protective layer formed on the surface adsorption extract. The results showed that the corrosion in 3.5% NaCl solution that follows the Langmuir method.

  2. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies.

    PubMed

    Lin, Kun-Yi Andrew; Liu, Yu-Ting; Chen, Shen-Yi

    2016-01-01

    To provide safe drinking water, fluoride in water must be removed and adsorption processes appear to be the most widely used method. Metal organic frameworks (MOFs) represent a new class of adsorbents that have been used in various adsorption applications. To study the adsorption mechanism of fluoride to MOFs in water and obtain related adsorption parameters, we synthesized a zirconium-based MOF with a primary amine group on its ligand, named UiO-66-NH2. The kinetics, adsorption isotherm and thermodynamics of fluoride adsorption to UiO-66-NH2 were investigated. The crystalline structure of UiO-66-NH2 remained intact and the local structure of zirconium in UiO-66-NH2 did not change significantly after being exposed to fluoride. The kinetics of the fluoride adsorption in UiO-66-NH2 could be well represented by the pseudo second order rate law. The enthalpy of the adsorption indicates that the F(-) adsorption to UiO-66-NH2 was classified as a physical adsorption. However, the comparison between the adsorption capacities of UiO-66-NH2 and UiO-66 suggests that the fluoride adsorption to UiO-66-NH2 might primarily involve a strong interaction between F(-) and the metal site. The fluoride adsorption capacity of UiO-66-NH2 was found to decrease when pH>7. While the presence of chloride/bromide ions did not noticeably change the adsorption capacity of UiO-66-NH2, the ionic surfactants slightly affected the adsorption capacity of UiO-66-NH2. These findings provide insights to further optimize the adsorption process for removal of fluoride using zirconium-based MOFs.

  3. Adsorption of methylene blue onto poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes: kinetics, isotherm and thermodynamics analysis.

    PubMed

    Chen, Zhonghui; Zhang, Jianan; Fu, Jianwei; Wang, Minghuan; Wang, Xuzhe; Han, Runping; Xu, Qun

    2014-05-30

    Poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) nanotubes, an excellent adsorbent, were successfully synthesized by an in situ template method and used for the removal of methylene blue (MB) from aqueous solution. The morphology and structures of as-synthesized PZS nanotubes were characterized by scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopy and N2 adsorption/desorption isotherms. The effects of temperature, concentration, pH and contact time on MB adsorption were studied. It was favorable for adsorption under the condition of basic and high temperature. The pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to fit adsorption data in the kinetic studies. And results showed that the adsorption kinetics were more accurately described by the pseudo-second-order model. The equilibrium isotherms were conducted using Freundlich and Langmuir models. It has been demonstrated that the better agreement was Langmuir isotherm with correlation coefficient of 0.9933, equilibrium absorption capacity of 69.16mg/g and the corresponding contact time of 15min. Thermodynamic analyses showed that MB adsorption onto the PZS nanotubes was endothermic and spontaneous and it was also a physisorption process. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies.

    PubMed

    Lim, Chi Kim; Bay, Hui Han; Neoh, Chin Hong; Aris, Azmi; Abdul Majid, Zaiton; Ibrahim, Zaharah

    2013-10-01

    In this study, the adsorption behavior of azo dye Acid Orange 7 (AO7) from aqueous solution onto macrocomposite (MC) was investigated under various experimental conditions. The adsorbent, MC, which consists of a mixture of zeolite and activated carbon, was found to be effective in removing AO7. The MC were characterized by scanning electron microscopy (SEM), energy dispersive X-ray, point of zero charge, and Brunauer-Emmett-Teller surface area analysis. A series of experiments were performed via batch adsorption technique to examine the effect of the process variables, namely, contact time, initial dye concentration, and solution pH. The dye equilibrium adsorption was investigated, and the equilibrium data were fitted to Langmuir, Freundlich, and Tempkin isotherm models. The Langmuir isotherm model fits the equilibrium data better than the Freundlich isotherm model. For the kinetic study, pseudo-first-order, pseudo-second-order, and intraparticle diffusion model were used to fit the experimental data. The adsorption kinetic was found to be well described by the pseudo-second-order model. Thermodynamic analysis indicated that the adsorption process is a spontaneous and endothermic process. The SEM, Fourier transform infrared spectroscopy, ultraviolet-visible spectral and high performance liquid chromatography analysis were carried out before and after the adsorption process. For the phytotoxicity test, treated AO7 was found to be less toxic. Thus, the study indicated that MC has good potential use as an adsorbent for the removal of azo dye from aqueous solution.

  5. Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study

    PubMed Central

    2013-01-01

    The phenolic compounds are known by their carcinogenicity and high toxicity as well as creating unpleasant taste and odor in water resources. The present study develops a cost-effective technology for the treatment of water contaminated with phenolic compounds, including Phenol (Ph), 2-chlorophenol (2-CP), and 4-chlorophenol (4-CP). So, two sorbents, rice bran ash (RBA) and biomass of brown algae, Cystoseiraindica, were used and results were compared with the commercially granular activated carbon (GAC). The phenolic compounds were determined using a high performance liquid chromatography (HPLC) under batch equilibrium conditions. The effects of contact time, pH, initial adsorbate concentration, and adsorbent dosages on the removal efficiency were studied. The adsorption data were simulated by isotherm and kinetic models. Results indicated that RBA and GAC had the lowest efficiency for the removal of 2-CP, while the order of removal efficiency for C. indica biomass was as follows: 2-CP > 4-CP > phenol. The efficiency of GAC was higher than those of other adsorbents for all of the phenolic compounds. Furthermore, the adsorption capacity of RBA was found to be higher than that of C. indica biomass. The optimal initial pH for the removal of phenol, 2-CP and 4-CP was determined to be 5, 7, and 7 for RBA, GAC, and algal biomass, respectively. Kinetic studies suggested that the pseudo-second order best fitted the kinetic data. PMID:24355013

  6. Characterizing size and porosity of hollow nanoparticles: SAXS, SANS, TEM, DLS, and adsorption isotherms compared.

    PubMed

    Chen, Zhi Hong; Kim, Chanhoi; Zeng, Xiang-bing; Hwang, Sun Hye; Jang, Jyongsik; Ungar, Goran

    2012-10-30

    A combination of experimental methods, including transmission and grazing incidence small-angle X-ray scattering (SAXS and GISAXS), small-angle neutron scattering (SANS), transmission electron microscopy (TEM), dynamic light scattering (DLS), and N(2) adsorption-desorption isotherms, was used to characterize SiO(2)/TiO(2) hollow nanoparticles (HNPs) of sizes between 25 and 100 nm. In the analysis of SAXS, SANS, and GISAXS data, the decoupling approximation and the Percus-Yevick structure factor approximation were used. Brunauer-Emmett-Teller, t-plot, and a spherical pore model based on Kelvin equation were applied in the treatment of N(2) isotherms. Extracted parameters from the scattering and TEM methods are the average outer and inner diameters and polydispersity. Good agreement was achieved between different methods for these extracted parameters. Merits, advantages, and disadvantages of the different methods are discussed. Furthermore, the combination of these methods provided us with information on the porosity of the shells of HNPs and the size of intrawall pores, which are critical to the applications of HNPs as drug delivery vehicles and catalyst supports.

  7. Evaluation of lead(II) immobilization by a vermicompost using adsorption isotherms and IR spectroscopy.

    PubMed

    Carrasquero-Durán, Armando; Flores, Iraima

    2009-02-01

    The immobilization of lead ions by a vermicompost with calcite added was evaluated by adsorption isotherms and the results were explained on basis of the pH dependent surface charge and by IR spectroscopy. The results showed maximum adsorption values between 113.6 mg g(-1) (33 degrees C) and 123.5mg g(-1) (50 degrees C). The point of zero net charge (PZC) was 7.5+/-0.1, indicating the presence of a positive surface charge at the pH of batch experiments. The differences in the IR spectra at pH 3.8 and 7.0 in the region from 1800 to 1300 cm(-1), were interpreted on the basis of the carboxyl acid ionization, that reduced the band intensity around 1725 cm(-1), producing signals at 1550 cm(-1) and 1390 cm(-1) of carboxylate groups. Similar changes were detected at pH 3.8 when Pb2+ was present suggesting that the ion complexation takes place by a cationic exchange equilibrium, between the protons and Pb2+ ions.

  8. Adsorptive removal of Pb2+ form aqueous solution by macrocyclic calix[4]naphthalene: kinetic, thermodynamic, and isotherm analysis.

    PubMed

    Ahmad, Rais; Kumar, Rajeev; Laskar, Mohammad Asaduddin

    2013-01-01

    The adsorption characteristics of Pb(2+) ions from aqueous solutions onto calix[4]naphthalene have been investigated. Calix[4]naphthalene was prepared by the condensation of 1-naphthol and formaldehyde (1:2) in presence of hydrochloric acid at 80 °C. The effect of various operation parameters, such as solution pH, initial metal ion concentration, contact time, and temperature, on the adsorption capacity of calix[4]naphthalene for Pb(2+) have been investigated. Experimental results showed that the adsorption of Pb(2+) ions increased with the increase in solution pH and temperature. Langmuir and Freundlich isotherms models were used to describe the adsorption behavior of Pb(2+) by calix[4]naphthalene. Equilibrium data fitted well with the Langmuir isotherm model and the maximum adsorption capacity of calix[4]naphthalene for Pb(2+) at 30 °C was found to be 29.15 mg g(-1). Kinetic studies indicated that the adsorption followed pseudo-second order model and the thermodynamic studies revealed that the adsorption process was spontaneous and endothermic in nature. The obtained results demonstrated that calix[4]naphthalene can be used as an effective adsorbent for Pb(2+) ions removal from water.

  9. Gas adsorption on commercial magnesium stearate: Effects of degassing conditions on nitrogen BET surface area and isotherm characteristics.

    PubMed

    Lapham, Darren P; Lapham, Julie L

    2017-09-15

    Commercial grades of magnesium stearate have been analysed by nitrogen adsorption having been pre-treated at temperatures between 30°C and 110°C and in the as-received state. Characteristics of nitrogen adsorption/desorption isotherms are assessed through the linearity of low relative pressure isotherm data and the BET transform plot together with the extent of isotherm hysteresis. Comparison is made between thermal gravimetric analysis and mass loss on drying. Features of gas adsorption isotherms considered atypical are identified and possible causes presented. It is shown that atypical isotherm features and issues of applying BET theory to the calculation of SBET are linked to the presence of hydrated water and that these depend on the hydration state: being more pronounced for the di-hydrate than the mono-hydrate. Dehydration reduces the extent of atypical features. SBET of a mono-hydrate sample is 5.6m(2)g(-1) and 3.2m(2)g(-1) at 40°C and 100°C degassing respectively but 23.9m(2)g(1) and 5.9m(2)g(-1) for di-hydrate containing samples under comparable degassing. Di-hydrated samples also show SBET >15m(2)g(1), BET C-values <7 and BET correlation coefficients <0.98 before dehydration. Possible mechanisms for atypical isotherms are critically discussed together with the suitability of applying BET theory to nitrogen adsorption data. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Predicting CH4 adsorption capacity of microporous carbon using N2 isotherm and a new analytical model

    USGS Publications Warehouse

    Sun, Jielun; Chen, S.; Rostam-Abadi, M.; Rood, M.J.

    1998-01-01

    A new analytical pore size distribution (PSD) model was developed to predict CH4 adsorption (storage) capacity of microporous adsorbent carbon. The model is based on a 3-D adsorption isotherm equation, derived from statistical mechanical principles. Least squares error minimization is used to solve the PSD without any pre-assumed distribution function. In comparison with several well-accepted analytical methods from the literature, this 3-D model offers relatively realistic PSD description for select reference materials, including activated carbon fibers. N2 and CH4 adsorption data were correlated using the 3-D model for commercial carbons BPL and AX-21. Predicted CH4 adsorption isotherms, based on N2 adsorption at 77 K, were in reasonable agreement with the experimental CH4 isotherms. Modeling results indicate that not all the pores contribute the same percentage Vm/Vs for CH4 storage due to different adsorbed CH4 densities. Pores near 8-9 A?? shows higher Vm/Vs on the equivalent volume basis than does larger pores.

  11. Heterogeneity of activated carbons in adsorption of phenols from aqueous solutions—Comparison of experimental isotherm data and simulation predictions

    NASA Astrophysics Data System (ADS)

    Podkościelny, P.; Nieszporek, K.

    2007-01-01

    Surface heterogeneity of activated carbons is usually characterized by adsorption energy distribution (AED) functions which can be estimated from the experimental adsorption isotherms by inverting integral equation. The experimental data of phenol adsorption from aqueous solution on activated carbons prepared from polyacrylonitrile (PAN) and polyethylene terephthalate (PET) have been taken from literature. AED functions for phenol adsorption, generated by application of regularization method have been verified. The Grand Canonical Monte Carlo (GCMC) simulation technique has been used as verification tool. The definitive stage of verification was comparison of experimental adsorption data and those obtained by utilization GCMC simulations. Necessary information for performing of simulations has been provided by parameters of AED functions calculated by regularization method.

  12. Determination of the Moisture-Sorption Isotherms and Isosteric Heat of Henna Leaves

    NASA Astrophysics Data System (ADS)

    Bennaceur, S.; Draoui, B.; Touati, B.; Benseddik, A.; Saad, A.; Bennamoun, L.

    2015-01-01

    Equilibrium moisture desorption and adsorption isotherms of Lawsonia inermis L. (commonly known as henna) leaves at temperatures of 30, 40 and 50°C with a water activity ranging from 0.057 to 0.898 were obtained by the gravimetric-static method. It was established that when the temperature of these leaves increases, their moisture content increases too with a hysteresis effect. The experimental data on the sorption of the indicated leaves were compared with the corresponding calculation data obtained with the use of the GAB, modified BET, Henderson-Thompson, modified Halsey, modified Oswin, and Peleg models. Evaluation of these models on the basis of statistical processing of the data obtained with them, including the calculus of the standard error and the correlation coefficient, has shown that the GAB and Peleg models represent sorption curves more adequately. The net isosteric heats of desorption and adsorption of henna leaves were determined by the sorption isotherms constructed using the Clausius-Clapeyron equation. An expression for predicting these thermodynamic properties of plants is proposed.

  13. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    PubMed Central

    Akhtar, Muhammad

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC b/a) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878

  14. Optimizing available phosphorus in calcareous soils fertilized with diammonium phosphate and phosphoric acid using Freundlich adsorption isotherm.

    PubMed

    Naeem, Asif; Akhtar, Muhammad; Ahmad, Waqar

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC(b/a)) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L(-1)) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L(-1), compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation.

  15. Methods for determining the CO2 sorption capacity of coal: Experimental and theoretical high pressure isotherms

    NASA Astrophysics Data System (ADS)

    Weishauptová, Zuzana; Přibyl, Oldřich

    2016-04-01

    One way to reduce CO2 emissions discharged into the atmosphere is by trapping it and storing it in suitable repositories, including coal-bearing strata. The history of coal mining in the Czech Republic is very rich but most of the mines have been closed down in recent years. However, the unmined coal seams are interesting for the purposes of CO2 storage, especially due the opportunities they offer for recovering coal-bed methane. Mine structures of this kind can be found in large parts of the Upper Silesian Basin, where the total storage capacity has been estimated at about 380 Mt CO2. This is an interesting storage potential. In order to identify a suitable high-capacity locality for CO2 storage within a coal seam, it is necessary to study not only the geological conditions within the seam, but also the textural properties of the coal, which control the mechanism and the extent of the storage. The major storage mechanism is by sorption processes that take place in the coal porous system (adsorption in micropores and on the surface of meso/macropores, and absorption in the macromolecular structure). The CO2 sorption capacity is generally indirectly determined in a laboratory by measuring the amount of carbon dioxide captured in a coal sample at a pressure and temperature corresponding to the in situ conditions, using high pressure sorption techniques. The low pressure sorption technique can be used, by setting the partial volumes of CO2 according to its binding and storage mode. The sorption capacity is determined by extrapolation to the saturation pressure as the sum of the individual partially sorbed volumes. The aim of the study was to determine the partial volumes of CO2 bound by different mechanisms in the individual parts of the porous system of the coal, and to compare the sum with the results obtained by the high pressure isotherm. The study was carried out with 3 samples from a borehole survey in the Czech part of the Upper Silesian Basin. A high pressure

  16. Adsorption of Pb(II) from fish sauce using carboxylated cellulose nanocrystal: Isotherm, kinetics, and thermodynamic studies.

    PubMed

    Wang, Nan; Jin, Ru-Na; Omer, A M; Ouyang, Xiao-Kun

    2017-09-01

    In the present study, a new adsorbent based on carboxylated cellulose nanocrystal (CCN) was developed for the adsorption of Pb(II) from fish sauce. The prepared adsorbent material was characterized by zeta potential, FT-IR, XRD, and XPS tools. The changes in the morphological structure of the developed CCN surface were evidenced by SEM and TEM. The favorable adsorption conditions were selected by studying the contact time, initial concentration, temperature, and concentration of the used glutamic acid and NaCl. The results indicated that the Langmuir isotherm model agrees very well with experimental adsorption data (R(2)=0.9962) with a maximum adsorption capacity 232.56mg/g of Pb(II) at 293.2K. Additionally, data of the adsorption kinetics follow the pseudo-second-order kinetics (R(2)>0.9990). On the other hand, the thermodynamics studies show that the adsorption process is spontaneous and endothermic. Furthermore, the developed CCN could be regenerated using acid treatment with a good reusability for Pb(II) adsorption. The results clearly indicated that the synthesized CCN could be effectively applied as a new material for Pb(II) adsorption from fish sauce solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Rapid adsorption of copper(II) and lead(II) by rice straw/Fe₃O₄ nanocomposite: optimization, equilibrium isotherms, and adsorption kinetics study.

    PubMed

    Khandanlou, Roshanak; Ahmad, Mansor B; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles.

  18. Rapid Adsorption of Copper(II) and Lead(II) by Rice Straw/Fe3O4 Nanocomposite: Optimization, Equilibrium Isotherms, and Adsorption Kinetics Study

    PubMed Central

    Khandanlou, Roshanak; Ahmad, Mansor B.; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles. PMID:25815470

  19. Preparation of Ag/TiO2-zeolite adsorbents, their desulfurization performance, and benzothiophene adsorption isotherms

    NASA Astrophysics Data System (ADS)

    Song, Hua; Yang, Gang; Song, Hua-Lin; Wang, Deng; Wang, Xue-Qin

    2017-02-01

    A series of Ag/TiO2-NaY (TY) composite adsorbents were successfully prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, BET, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) techniques. The effects of TiO2 and Ag contents on the structure and desulfurization performance of NaY zeolite were studied. The results show that anatase phase is the main form of TiO2 in AgTY adsorbent, and the Y-zeolite framework remained unchanged. AgTY with 6 wt % of Ag and 50 wt % of TiO2 exhibited the best desulfurization performance with the effluent volume of 63.2 mL/g at 10 mg/L sulfur breakthrough level (desulfurization rate of 95%). The benzothiophene (BT) removal performance of the various adsorbents follows the order: NaY < TiO2 < TY-50 < AgTY-50-6. The equilibrium data were modeled by Langmuir and Freundlich equations. The Langmuir model can describe well the adsorption isotherms of BT over AgTY.

  20. Effect of the endcapping of reversed-phase high-performance liquid chromatography adsorbents on the adsorption isotherm

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2005-09-01

    The retention mechanisms of n-propylbenzoate, 4-t ert-butylphenol, and caffeine on the endcapped Symmetry-C{sub 18} and the non-endcapped Resolve-C{sub 18} are compared. The adsorption isotherms were measured by frontal analysis (FA), using as the mobile phase mixtures of methanol or acetonitrile and water of various compositions. The isotherm data were modeled and the adsorption energy distributions calculated. The surface heterogeneity increases faster with decreasing methanol concentration on the non-endcapped than on the endcapped adsorbent. For instance, for methanol concentrations exceeding 30% (v/v), the adsorption of caffeine is accounted for by assuming three and two different types of adsorption sites on Resolve-C{sub 18} and Symmetry-C{sub 18}, respectively. This is explained by the effect of the mobile phase composition on the structure of the C{sub 18}-bonded layer. The bare surface of bonded silica appears more accessible to solute molecules at high water contents in the mobile phase. On the other hand, replacing methanol by a stronger organic modifier like acetonitrile dampens the differences between non-endcapped and endcapped stationary phase and decreases the degree of surface heterogeneity of the adsorbent. For instance, at acetonitrile concentrations exceeding 20%, the surface appears nearly homogeneous for the adsorption of caffeine.

  1. Crystallisation kinetics of some archetypal ionic liquids: isothermal and non-isothermal determination of the Avrami exponent.

    PubMed

    Pas, Steven J; Dargusch, Matthew S; MacFarlane, Douglas R

    2011-07-07

    The properties of ionic liquids give rise to applications in diverse technology areas including mechanical engineering, mining, aerospace and defence. The arbitrary physical property that defines an ionic liquid is a melting point below 100 °C, and as such, an understanding of crystallisation phenomena is extremely important. This is the first report dealing with the mechanism of crystallisation in ionic liquids. Assuming crystallisation of the ionic liquids is a thermal or mass diffusion-controlled process, the values of the isothermal Avrami exponent obtained from three different ionic liquids with three different anions and cations all indicate that growth occurs with a decreasing nucleation rate (n=1.8-2.2). For one of the ionic liquids it was possible to avoid crystallisation by fast cooling and then observe a devitrification upon heating through the glass transition. The isothermal Avrami exponent of devitrification suggested growth with an increasing nucleating rate (n=4.1), compared to a decreasing nucleation rate when crystallisation occurs on cooling from the melt (n=2.0). Two non-isothermal methods were employed to determine the Avrami exponent of devitrification. Both non-isothermal Avrami exponents were in agreement with the isothermal case (n=4.0-4.15). The applicability of JMAK theory suggests that the nucleation event in the ionic liquids selected is a random stochastic process in the volume of the material. Agreement between the isothermal and non-isothermal techniques for determining the Avrami exponent of devitrification suggests that the pre-exponential factor and the activation energy are independent of thermal history. The heating rate dependence of the glass transition enabled the calculation of the fragility index, which suggests that the ionic liquid is a "strong" glass former. This suggests that the temperature dependence of the rate constant could be close to Arrhenius, as assumed by JMAK theory. More generally, therefore, it can be

  2. Adsorption Isotherms for Xenon and Krypton using INL HZ-PAN and AgZ-PAN Sorbents

    SciTech Connect

    Garn, Troy G.; Greenhalgh, Mitchell; Rutledge, Veronica J.; Law, Jack D.

    2014-08-01

    The generation of adsorption isotherms compliments the scale-up of off-gas processes used to control the emission of encapsulated radioactive volatile fission and activation products released during Used Nuclear Fuel (UNF) reprocessing activities. A series of experiments were conducted to obtain capacity results for varying Kr and Xe gas concentrations using HZ-PAN and AgZ-PAN engineered form sorbents. Gas compositions for Kr ranged from 150-40,000 ppmv and 250-5020 ppmv for Xe in a helium balance. The experiments were all performed at 220 K at a flowrate of 50 sccm. Acquired capacities were then respectively fit to the Langmuir equation using the Langmuir linear regression method to obtain the equilibrium parameters Qmax and Keq. Generated experimental adsorption isotherms were then plotted with the Langmuir predicted isotherms to illustrate agreement between the two. The Langmuir parameters were provided for input into the OSPREY model to predict breakthrough of single component adsorption of Kr and Xe on HZ-PAN and AgZ-PAN sorbents at the experimental conditions tested. Kr and Xe capacities resulting from model breakthrough predictions were then compared to experimental capacities for model validation.

  3. Development of an isothermal titration microcalorimetric system with digital control and dynamic power peltier compensation. II. Characterization and operation mode. Myoglobin adsorption onto polymeric latex particles

    NASA Astrophysics Data System (ADS)

    Velázquez-Campoy, A.; López-Mayorga, O.; Cabrerizo-Vílchez, M. A.

    2000-04-01

    In a previous article a comprehensive description of an isothermal titration microcalorimeter with Peltier compensation was reported. This work deals with the characterization procedure and the operation mode. The transfer function parameters (time constants, calibration constants, and thermal properties of the system components) have been determined using a rigorous physical model for the microcalorimeter. To check the good performance of the instrument, titration experiments of cytidine and adenosine protonation have been carried out. Finally, as an example of the instrument applicability, differential heat measurements of myoglobin adsorption onto polymeric (polystyrene) latex particles are presented.

  4. Relative importance of column and adsorption parameters on the productivity in preparative liquid chromatography II: Investigation of separation systems with competitive Langmuir adsorption isotherms.

    PubMed

    Forssén, Patrik; Samuelsson, Jörgen; Fornstedt, Torgny

    2014-06-20

    In this study we investigated how the maximum productivity for commonly used, realistic separation system with a competitive Langmuir adsorption isotherm is affected by changes in column length, packing particle size, mobile phase viscosity, maximum allowed column pressure, column efficiency, sample concentration/solubility, selectivity, monolayer saturation capacity and retention factor of the first eluting compound. The study was performed by generating 1000 random separation systems whose optimal injection volume was determined, i.e., the injection volume that gives the largest achievable productivity. The relative changes in largest achievable productivity when one of the parameters above changes was then studied for each system and the productivity changes for all systems were presented as distributions. We found that it is almost always beneficial to use shorter columns with high pressure drops over the column and that the selectivity should be greater than 2. However, the sample concentration and column efficiency have very limited effect on the maximum productivity. The effect of packing particle size depends on the flow rate limiting factor. If the pumps maximum flow rate is the limiting factor use smaller packing, but if the pressure of the system is the limiting factor use larger packing up to about 40μm.

  5. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics.

  6. Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber.

    PubMed

    Shrestha, Sohan; Son, Guntae; Lee, Seung Hwan; Lee, Tae Gwan

    2013-08-01

    The Zn (II) adsorption capacity of lignite and coconut shell-based activated carbon fiber (ACF) was evaluated as a function of initial Zn (II) concentration, temperature and contact time in batch adsorption process in this study. Adsorption uptake increased with initial Zn (II) concentration and temperature. Optimal contact time for the adsorption of Zn (II) ions onto lignite and coconut shell-based ACF was found to be 50 min. Removal percentage decreased from 88.0% to 78.54% with the increment in initial Zn (II) concentration from 5 to 50 mg L(-1). Equilibrium data fit well with Langmuir-I isotherm indicating homogeneous monolayer coverage of Zn (II) ions on the adsorbent surface. Maximum monolayer adsorption capacity of Zn (II) ions on ACF was found to be 9.43 mg g(-1). Surface morphology and functionality of ACF prior to and after adsorption were characterized by electron microscopy and infrared spectroscopy. Various thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated.

  7. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent.

    PubMed

    Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz

    2015-11-01

    In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.

  8. Generalized adsorption isotherms for molecular and dissociative adsorption of a polar molecular species on two polar surface geometries: Perovskite (100) (Pm-3m) and fluorite (111) (Fm-3m)

    SciTech Connect

    Danielson, Thomas; Hin, Celine; Savara, Aditya

    2016-08-10

    Lattice based kinetic Monte Carlo (KMC) simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and for estimating the coverage at a certain pressure. The generalized form has been calculated by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. Finally, the equations have been shown to be general for any value of the adsorption equilibrium constant.

  9. Generalized adsorption isotherms for molecular and dissociative adsorption of a polar molecular species on two polar surface geometries: Perovskite (100) (Pm-3m) and fluorite (111) (Fm-3m)

    NASA Astrophysics Data System (ADS)

    Danielson, Thomas; Hin, Celine; Savara, Aditya

    2016-08-01

    Lattice based kinetic Monte Carlo simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and, conversely, for estimating the coverage at a certain pressure. The generalized form has been calculated by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. The equations have been shown to be general for any value of the adsorption equilibrium constant.

  10. Generalized adsorption isotherms for molecular and dissociative adsorption of a polar molecular species on two polar surface geometries: Perovskite (100) (Pm-3m) and fluorite (111) (Fm-3m)

    DOE PAGES

    Danielson, Thomas; Hin, Celine; Savara, Aditya

    2016-08-10

    Lattice based kinetic Monte Carlo (KMC) simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and for estimating the coverage at a certain pressure. The generalized form has been calculatedmore » by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. Finally, the equations have been shown to be general for any value of the adsorption equilibrium constant.« less

  11. Generalized adsorption isotherms for molecular and dissociative adsorption of a polar molecular species on two polar surface geometries: Perovskite (100) (Pm-3m) and fluorite (111) (Fm-3m)

    SciTech Connect

    Danielson, Thomas; Hin, Celine; Savara, Aditya

    2016-08-10

    Lattice based kinetic Monte Carlo (KMC) simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and for estimating the coverage at a certain pressure. The generalized form has been calculated by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. Finally, the equations have been shown to be general for any value of the adsorption equilibrium constant.

  12. Investigation of adsorption kinetics and isotherm of cellulase and B-Glucosidase on lignocellulosic substrates

    USDA-ARS?s Scientific Manuscript database

    Clear understanding of enzyme adsorption during enzymatic hydrolysis of lignocellulosic biomass is essential to enhance the cost-efficiency of hydrolysis. However, conclusions from literatures often contradicted each other because enzyme adsorption is enzyme, biomass/pretreatment and experimental co...

  13. Isothermal Capacitance Transient Spectroscopy for Determination of Deep Level Parameters

    NASA Astrophysics Data System (ADS)

    Okushi, Hideyo; Tokumaru, Yozo

    1980-06-01

    A new measurement method for deep levels in semiconductors is proposed, by which the measurement of the transient change of capacitance is performed under an isothermal condition (Isothermal Capacitance Transient Spectroscopy). The method allows us to construct a precise measurement and analysis system by a programmable calculator. Computer simulation and experiment by the method in the case of Au-doped Si are demonstrated. It is shown that the method is one of useful tools for spectroscopic analysis of deep levels in semiconductors.

  14. Ammonium Removal from Aqueous Solutions by Clinoptilolite: Determination of Isotherm and Thermodynamic Parameters and Comparison of Kinetics by the Double Exponential Model and Conventional Kinetic Models

    PubMed Central

    Tosun, İsmail

    2012-01-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients. PMID:22690177

  15. Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models.

    PubMed

    Tosun, Ismail

    2012-03-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  16. Enzyme kinetics determined by single-injection isothermal titration calorimetry.

    PubMed

    Transtrum, Mark K; Hansen, Lee D; Quinn, Colette

    2015-04-01

    The purposes of this paper are (a) to examine the effect of calorimeter time constant (τ) on heat rate data from a single enzyme injection into substrate in an isothermal titration calorimeter (ITC), (b) to provide information that can be used to predict the optimum experimental conditions for determining the rate constant (k2), Michaelis constant (KM), and enthalpy change of the reaction (ΔRH), and (c) to describe methods for evaluating these parameters. We find that KM, k2 and ΔRH can be accurately estimated without correcting for the calorimeter time constant, τ, if (k2E/KM), where E is the total active enzyme concentration, is between 0.1/τ and 1/τ and the reaction goes to at least 99% completion. If experimental conditions are outside this domain and no correction is made for τ, errors in the inferred parameters quickly become unreasonable. A method for fitting single-injection data to the Michaelis-Menten or Briggs-Haldane model to simultaneously evaluate KM, k2, ΔRH, and τ is described and validated with experimental data. All four of these parameters can be accurately inferred provided the reaction time constant (k2E/KM) is larger than 1/τ and the data include enzyme saturated conditions.

  17. Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin-water system.

    PubMed

    Ng, Chilton; Losso, Jack N; Marshall, Wayne E; Rao, Ramu M

    2002-11-01

    The present study was designed to model the adsorption of geosmin from water under laboratory conditions using the Freundlich isotherm model. This model was used to compare the efficiency of sugarcane bagasse and pecan shell-based powdered activated carbon to the efficiency of a coal-based commercial activated carbon (Calgon Filtrasorb 400). When data were generated from Freundlich isotherms, Calgon Filtrasorb 400 had greater geosmin adsorption at all geosmin concentrations studied than the laboratory produced steam-activated pecan shell carbon, steam-activated bagasse carbon, and the CO2-activated pecan shell carbon. At geosmin concentrations < 0.07 microg/l for the phosphoric acid-activated pecan shell carbon and below 0.08 microg/l for a commercially produced steam-activated pecan shell carbon obtained from Scientific Carbons, these two carbons had a higher calculated geosmin adsorption than Filtrasorb 400. While the commercial carbon was more efficient than some laboratory prepared carbons at most geosmin concentrations, the results indicate that when the amount of geosmin was below the threshold level of human taste (about 0.10 microg/l), the phosphoric acid-activated pecan shell carbon and the Scientific Carbons sample were more efficient than Filtrasorb 400 at geosmin removal.

  18. Liquid phase adsorptions of Rhodamine B dye onto raw and chitosan supported mesoporous adsorbents: isotherms and kinetics studies

    NASA Astrophysics Data System (ADS)

    Inyinbor, A. A.; Adekola, F. A.; Olatunji, G. A.

    2016-04-01

    Irvingia gabonensis endocarp waste was charred (DNc) and subsequently coated with chitosan (CCDNc). Physicochemical characteristics of the two adsorbents were established, while Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area methods were further employed for characterization. Efficiencies of the prepared adsorbents in the uptake of Rhodamine B (RhB) from aqueous effluent were investigated and adsorption data were tested using four isotherms and four kinetics models. The BET surface areas of the prepared adsorbent were 0.0092 and 4.99 m2/g for DNc and CCDNc, respectively, and maximum adsorption was recorded at pH between 3 and 4, respectively. While monolayer adsorption dominates the uptake of RhB onto DNc, uptake of RhB onto CCDNc was onto heterogeneous surface. The maximum monolayer adsorption capacities (q max) obtained from the Langmuir equation are 52.90 and 217.39 mg/g for DNc and CCDNc, respectively. Pseudo second order and Elovich kinetic models well described the kinetics of the two adsorption processes. The mean sorption energy (E) calculated from the D-R model and desorption efficiencies suggests that while the uptake of RhB onto DNc was physical in nature, for RhB-CCDNc system chemisorption dominates.

  19. Liquid phase adsorptions of Rhodamine B dye onto raw and chitosan supported mesoporous adsorbents: isotherms and kinetics studies

    NASA Astrophysics Data System (ADS)

    Inyinbor, A. A.; Adekola, F. A.; Olatunji, G. A.

    2017-09-01

    Irvingia gabonensis endocarp waste was charred (DNc) and subsequently coated with chitosan (CCDNc). Physicochemical characteristics of the two adsorbents were established, while Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area methods were further employed for characterization. Efficiencies of the prepared adsorbents in the uptake of Rhodamine B (RhB) from aqueous effluent were investigated and adsorption data were tested using four isotherms and four kinetics models. The BET surface areas of the prepared adsorbent were 0.0092 and 4.99 m2/g for DNc and CCDNc, respectively, and maximum adsorption was recorded at pH between 3 and 4, respectively. While monolayer adsorption dominates the uptake of RhB onto DNc, uptake of RhB onto CCDNc was onto heterogeneous surface. The maximum monolayer adsorption capacities ( q max) obtained from the Langmuir equation are 52.90 and 217.39 mg/g for DNc and CCDNc, respectively. Pseudo second order and Elovich kinetic models well described the kinetics of the two adsorption processes. The mean sorption energy ( E) calculated from the D-R model and desorption efficiencies suggests that while the uptake of RhB onto DNc was physical in nature, for RhB-CCDNc system chemisorption dominates.

  20. Adsorption of Toluene and Paraxylene from Aqueous Solution Using Pure and Iron Oxide Impregnated Carbon Nanotubes: Kinetics and Isotherms Study

    PubMed Central

    Abbas, Aamir; Ihsanullah; Al-Baghli, Nadhir A. H.

    2017-01-01

    Multiwall carbon nanotubes (CNTs) and iron oxide impregnated carbon nanotubes (CNTs-iron oxide) were investigated for the adsorption of hazardous toluene and paraxylene (p-xylene) from aqueous solution. Pure CNTs were impregnated with iron oxides nanoparticles using wet impregnation technique. Various characterization techniques including thermogravimetric analysis, scanning electron microscopy, elemental dispersion spectroscopy, X-ray diffraction, and nitrogen adsorption analysis were used to study the thermal degradation, surface morphology, purity, and surface area of the materials. Batch adsorption experiments show that iron oxide impregnated CNTs have higher degree of removal of p-xylene (i.e., 90%) compared with toluene (i.e., 70%), for soaking time 2 h, with pollutant initial concentration 100 ppm, at pH 6 and shaking speed of 200 rpm at 25°C. Pseudo-second-order model provides better fitting for the toluene and p-xylene adsorption. Langmuir and Freundlich isotherm models demonstrate good fitting for the adsorption data of toluene and p-xylene. PMID:28386208

  1. Water adsorption isotherms and hydration forces for lysolipids and diacyl phospholipids.

    PubMed Central

    Marsh, D.

    1989-01-01

    The repulsive forces in a wide range of diacyl and monoacyl phospholipid systems have been obtained from the adsorption isotherms for water. From the exponential dependence of the repulsive pressure on the water content, information has been deduced regarding the hydration force. For diacyl phosphatidylcholines the strength of the hydration force and its characteristic decay length are in good agreement with values previously obtained by x-ray diffraction methods. For natural and synthetic diacyl phosphatidylcholines in the fluid lamellar phase, the hydration force extrapolated to zero layer separation (Po) is in the range 4-5.10(8) N.m-2 and the decay length is approximately 0.3 nm. The results for dimyristoyl, dipalmitoyl, and distearoyl phosphatidylcholines in the gel phase are very similar with Po approximately 2.5.10(8) N.m-2 and decay length of approximately 0.2 nm. Egg monomethyl phosphatidylethanolamine is less strongly hydrated: Po = 2.3.10(9) N.m-2, with a decay length of 0.3 nm. Egg phosphatidylethanolamine and bovine phosphatidylserine hydrate even more weakly with Po approximately 1.3.10(8) N.m-2 and decay length of approximately 0.15 nm. Mixtures with cholesterol or phosphatidylcholine increase both Po and the decay length for phosphatidylethanolamine to values closer to those for phosphatidylcholine. The repulsive forces deduced for egg lysophosphatidylcholine at 40 degrees C display a biphasic water dependence, with the low water phase being similar to lamellar egg phosphatidylcholine, and the phase at higher water content having a smaller value of Po = 2.10(8) N.m-2 but a longer decay length of approximately 0.45 nm, corresponding to a nonlamellar configuration. Bovine lysophosphatidylserine similarly yields values of PO = 1.2.108 N.m-2 and an effective decay length of 0.64 nm. The hydration behavior of the various diacyl phospholipids has been interpreted in terms of the mean-field molecular force theory of lipid hydration, and values deduced for

  2. Applicability of the Gibbs Adsorption Isotherm to the analysis of experimental surface-tension data for ionic and nonionic surfactants.

    PubMed

    Martínez-Balbuena, L; Arteaga-Jiménez, Araceli; Hernández-Zapata, Ernesto; Márquez-Beltrán, César

    2017-09-01

    The Gibbs Adsorption Isotherm equation is a two-dimensional analogous of the Gibbs-Duhem equation, and it is one of the cornerstones of interface science. It is also widely used to estimate the surface excess concentration (SEC) for surfactants and other compounds in aqueous solution, from surface tension measurements. However, in recent publications some authors have cast doubt on this method. In the present work, we review some of the best available surface tension experimental data, and compare estimations of the SEC, using the Gibbs isotherm method (GIM), to direct measurements reported in the literature. This is done for both nonionic and ionic surfactants, with and without added salt. Our review leads to the conclusion that the GIM has a very solid agreement with experiments, and that it does estimate accurately the SEC for surfactant concentrations smaller than the critical micellar concentration (CMC). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials.

    PubMed

    Mittal, Alok; Malviya, Arti; Kaur, Dipika; Mittal, Jyoti; Kurup, Lisha

    2007-09-05

    De-Oiled Soya a waste of Soya oil industries and Bottom Ash a waste of thermal power plants have been used as effective adsorbent for recovery and removal of hazardous dye Methyl Orange from wastewater. During the studies effects of amount of dye and adsorbents, pH, sieve sizes, column studies etc. have been carried out. Adsorption of the dye over both the adsorbents has been monitored through Langmuir and Freundlich adsorption isotherm models and feasibility of the process is predicted in both the cases. Different thermodynamic parameters like Gibb's free energy, enthalpy and entropy of the undergoing process are also evaluated through these adsorption models. The kinetic studies confirm the first order process for the adsorption reaction and also play an important role in finding out half-life of the adsorption process and rate constants for both the adsorbents. It is also found that over the entire concentration range the adsorption on Bottom Ash takes place via particle diffusion process, while that of De-Oiled Soya undergoes via film diffusion process. In order to establish the practical utility of the developed process, attempts have been made for the bulk removal of the dye through column operations. For the two columns saturation factors are found as 98.61 and 99.8%, respectively, for Bottom Ash and De-Oiled Soya with adsorption capacity of each adsorbent as 3.618 and 16.664 mg/g, respectively. The dye recovery has been achieved by eluting dil. NaOH through the exhausted columns.

  4. Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: kinetics and isotherms.

    PubMed

    Zhao, Feiping; Repo, Eveliina; Yin, Dulin; Sillanpää, Mika E T

    2013-11-01

    In this study, a novel adsorbent was synthesized by functionalizing chitosan with ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) ligands. The adsorption capability of EGTA-modified chitosan was investigated by the removal of Cd(II) and Pb(II) from aqueous solutions. The adsorption and regeneration studies were performed by batch techniques. The effects of pH, contact time, and initial metal concentration were studied. Metal uptake by EGTA-chitosan was 0.74 mmol g(-1) for Cd(II) and 0.50 mmol g(-1) for Pb(II). The adsorption mechanism, that the adsorbent formed octahedral chelate structures with bivalent metal ions, was proposed tentatively based on the experimental results of FTIR and the theoretically calculated data of point charges. The kinetics of Cd(II) and Pb(II) on EGTA-chitosan complied with the pseudo-second-order model and the adsorption rate was also influenced by intra-particle diffusion. BiLangmuir isotherm model was well fitted to the experimental data of one-component adsorption suggesting the surface heterogeneity of the novel adsorbent. The extended form of the BiLangmuir model was tested for the modeling of two-component adsorption equilibrium of Cd(II) and Pb(II) on EGTA-chitosan. In the two-component solution, both competitive adsorption and positive synergy of chelation between metal ions occurred and the novel adsorbent showed higher affinity toward Cd(II). Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Adsorption Isotherms: North Caroline Apatite Induced Precipitation of Lead, Zinc, Manganese, and Cadmium from the Bunker Hill 4000 Soil

    DTIC Science & Technology

    1995-05-01

    Using the MINTEQ -A2 geochemical model, thermodynamic predictions for ^f0™«0™0? pyromorphytes (Pb5(POJ3 (OH, Cl)), hopeite (Zn3(POJ2 4H20...VERIFICATION OF PRECIPITATED METALS USING MINTEQ -A2 13 2.3.1 Experimental 2.3.2 Results ... 19 3.0 CONCLUSIONS 20 4.0...precipitated Pb-P04 complexes will be illustrated as sharp downward deviations from linearity of the adsorption isotherms, as predicted by MINTEQ -A2

  6. Kinetic modeling, equilibrium isotherm and thermodynamic studies on a batch adsorption of anionic dye onto eco-friendly dried Carpobrotus edulis plant

    NASA Astrophysics Data System (ADS)

    Aziam, R.; Chiban, M.; Eddaoudi, H.; Soudani, A.; Zerbet, M.; Sinan, F.

    2016-11-01

    In the present study, a low-cost bio-adsorbent is developed from the naturally and abundantly available dried Mediterranean plant which is biodegradable. The bio-adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR) and point of zero charge (PZC). A study on the adsorption kinetics and isotherms was performed applying the optimized conditions. The equilibrium data for the adsorption of acid blue 113 on dried plant is tested with various adsorption isotherm models such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich equation. The Langmuir isotherm model is found to be the most suitable one for the acid blue 113 (AB113) adsorption using dried C. edulis plant and the theoretical maximum adsorption capacity obtained with the application of Langmuir isotherm model is 8.2 mg.g-1 at room temperature. The adsorption process follows the second-order kinetics and the corresponding rate constants are obtained. The thermodynamic parameters suggest that the adsorption process is spontaneous and exothermic nature. It can be concluded that the dried C. edulis adsorbent studied has good perspective to be used as adsorbent material in anionic dyes removal from industry effuents.

  7. Kinetic modeling, equilibrium isotherm and thermodynamic studies on a batch adsorption of anionic dye onto eco-friendly dried Carpobrotus edulis plant

    NASA Astrophysics Data System (ADS)

    Aziam, R.; Chiban, M.; Eddaoudi, H.; Soudani, A.; Zerbet, M.; Sinan, F.

    2017-04-01

    In the present study, a low-cost bio-adsorbent is developed from the naturally and abundantly available dried Mediterranean plant which is biodegradable. The bio-adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR) and point of zero charge (PZC). A study on the adsorption kinetics and isotherms was performed applying the optimized conditions. The equilibrium data for the adsorption of acid blue 113 on dried plant is tested with various adsorption isotherm models such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich equation. The Langmuir isotherm model is found to be the most suitable one for the acid blue 113 (AB113) adsorption using dried C. edulis plant and the theoretical maximum adsorption capacity obtained with the application of Langmuir isotherm model is 8.2 mg.g-1 at room temperature. The adsorption process follows the second-order kinetics and the corresponding rate constants are obtained. The thermodynamic parameters suggest that the adsorption process is spontaneous and exothermic nature. It can be concluded that the dried C. edulis adsorbent studied has good perspective to be used as adsorbent material in anionic dyes removal from industry effluents.

  8. Determination of solubility coefficients and sorption isotherms of gases in polymers by means of isothermal desorption with a chromatographic detection

    NASA Astrophysics Data System (ADS)

    Nizhegorodova, Yu. A.; Belov, N. A.; Berezkin, V. G.; Yampol'skii, Yu. P.

    2015-03-01

    A new method is developed for determining the solubility coefficients of gases in polymers that combines the advantages of the static and dynamic approaches to sorption estimation and allows us to determine the equilibrium characteristics of sorption for small quantities of samples (0.1-0.2 g) and low (<0.5 atm) partial pressures of the investigated gas. Sorption isotherms and solubility coefficients of nitrogen, oxygen, carbon dioxide, methane, ethane, and propane in polyvinyltrimethylsilane are obtained, and in poly[3,4-bis(trimethylsilyl)-tricyclononene-7], polyhexafluoropropylene, and OH-containing polyimide for the first time ever. It is shown that the sorption isotherms of gases for all of the gas-polymer systems in the investigated range of pressures are linear. The obtained solubility coefficients are compared to data for other polymers studied earlier.

  9. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies.

    PubMed

    Subbaiah, Munagapati Venkata; Kim, Dong-Su

    2016-06-01

    Present research discussed the utilization of aminated pumpkin seed powder (APSP) as an adsorbent for methyl orange (MO) removal from aqueous solution. Batch sorption experiments were carried to evaluate the influence of pH, initial dye concentration, contact time, and temperature. The APSP was characterized by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The experimental equilibrium adsorption data were fitted using two two-parameter models (Langmuir and Freundlich) and two three-parameter models (Sips and Toth). Langmuir and Sips isotherms provided the best model for MO adsorption data. The maximum monolayer sorption capacity was found to be 200.3mg/g based on the Langmuir isotherm model. The pseudo-first-order and pseudo-second-order model equations were used to analyze the kinetic data of the adsorption process and the data was fitted well with the pseudo-second-order kinetic model (R(2)>0.97). The calculated thermodynamic parameters such as ΔG(0), ΔH(0) and ΔS(0) from experimental data showed that the sorption of MO onto APSP was feasible, spontaneous and endothermic in the temperature range 298-318 K. The FTIR results revealed that amine and carboxyl functional groups present on the surface of APSP. The SEM results show that APSP has an irregular and porous surface which is adequate morphology for dye adsorption. Desorption experiments were carried to explore the feasibility of adsorbent regeneration and the adsorbed MO from APSP was desorbed using 0.1M NaOH with an efficiency of 93.5%. Findings of the present study indicated that APSP can be successfully used for removal of MO from aqueous solution.

  10. Self-assembly in Nafion membranes upon hydration: water mobility and adsorption isotherms.

    PubMed

    Vishnyakov, Aleksey; Neimark, Alexander V

    2014-09-25

    By means of dissipative particle dynamics (DPD) and Monte Carlo (MC) simulations, we explored geometrical, transport, and sorption properties of hydrated Nafion-type polyelectrolyte membranes. Composed of a perfluorinated backbone with sulfonate side chains, Nafion self-assembles upon hydration and segregates into interpenetrating hydrophilic and hydrophobic subphases. This segregated morphology determines the transport properties of Nafion membranes that are widely used as compartment separators in fuel cells and other electrochemical devices, as well as permselective diffusion barriers in protective fabrics. We introduced a coarse-grained model of Nafion, which accounts explicitly for polymer rigidity and electrostatic interactions between anionic side chains and hydrated metal cations. In a series of DPD simulations with increasing content of water, a classical percolation transition from a system of isolated water clusters to a 3D network of hydrophilic channels was observed. The hydrophilic subphase connectivity and water diffusion were studied by constructing digitized replicas of self-assembled morphologies and performing random walk simulations. A non-monotonic dependence of the tracer diffusivity on the water content was found. This unexpected behavior was explained by the formation of large and mostly isolated water domains detected at high water content and high equivalent polymer weight. Using MC simulations, we calculated the chemical potential of water in the hydrated polymer and constructed the water sorption isotherms, which extended to the oversaturated conditions. We determined that the maximum diffusivity and the onset of formation of large water domains corresponded to the saturation conditions at 100% humidity. The oversaturated membrane morphologies generated in the canonical ensemble DPD simulations correspond to the metastable and unstable states of Nafion membrane that are not realized in the experiments.

  11. Description of Chemically and Thermally Treated Multi-Walled Carbon Nanotubes Using Sequential Decomposition of Adsorption Isotherms

    NASA Astrophysics Data System (ADS)

    Albesa, Alberto G.; Rafti, Matías; Vicente, José Luis

    2016-03-01

    The effect of wet acid oxidation by means of sulfuric/nitric acid mixtures, and high-temperature treatment of commercial arc-discharge synthesized multi-walled carbon nanotubes (MWCNTs) was studied. In order to analyze the adsorption capacities of differently treated MWCNTs, we employed a multistep method that considers separately different pressure ranges (zones) on the experimentally obtained isotherms. The method is based on simple gas isotherm measurements (N2, CO2, CH4, etc.). Low pressure ranges can be described using Dubinin’s model, while high pressure regimes can be fitted using different models such as BET multilayer and Freundlich equations. This analysis allows to elucidate how different substrate treatments (chemical and thermal) can affect the adsorbate-adsorbent interactions; moreover, theoretical description of adsorbate-adsorbate interactions can be improved if a combination of adsorption mechanisms are used instead of a unique model. The results hereby presented also show that, while MWCNTs are a promising material for storage applications, gas separation applications should carefully consider the effect of wide nanotube size distribution present on samples after activation procedures.

  12. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO₂ nanoparticles from aqueous media.

    PubMed

    Shaker, Medhat A; Yakout, Amr A

    2016-02-05

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51±3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, (1)H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r(2)) and non-linear Chi-square (χ(2)) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO2 nanoparticles from aqueous media

    NASA Astrophysics Data System (ADS)

    Shaker, Medhat A.; Yakout, Amr A.

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51 ± 3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, 1H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r2) and non-linear Chi-square (χ2) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters.

  14. Kinetic Model for Surface-Active Enzymes Based on the Langmuir Adsorption Isotherm: Phospholipase C (Bacillus cereus) Activity toward Dimyristoyl Phosphatidylcholine/Detergent Micelles

    NASA Astrophysics Data System (ADS)

    Burns, Ramon A.; El-Sayed, Maha Y.; Roberts, Mary F.

    1982-08-01

    A simple kinetic model for the enzymatic activity of surface-active proteins against mixed micelles has been developed. This model uses the Langmuir adsorption isotherm, the classic equation for the binding of gas molecules to metal surfaces, to characterize enzyme adsorption to micelles. The number of available enzyme binding sites is equated with the number of substrate and inhibitor molecules attached to micelles; enzyme molecules are attracted to the micelle due to the affinity of the enzyme active site for the molecules in the micelle. Phospholipase C (Bacillus cereus) kinetics in a wide variety of dimyristoyl phosphatidylcholine/detergent micelles are readily explained by this model and the assumption of competitive binding of the detergent at the enzyme active site. Binding of phospholipase C to pure detergent micelles is demonstrated by gel filtration chromatography. The experimentally determined enzyme-detergent micelle binding constants are used directly in the rate equation. The Langmuir adsorption model predicts a variety of the characteristics observed for phospholipase kinetics, such as differential inhibition by various charged, uncharged, and zwitterionic detergents and surface-dilution inhibition. The essential idea of this model, that proteins can be attracted and bound to bilayers or micelles by possessing a binding site for the molecules composing the surface, may have wider application in the study of water-soluble (extrinsic) protein-membrane interactions.

  15. Determination of coalbed methane potential and gas adsorption capacity in Western Kentucky coals

    USGS Publications Warehouse

    Mardon, S.M.; Takacs, K.G.; Hower, J.C.; Eble, C.F.; Mastalerz, Maria

    2006-01-01

    The Illinois Basin has not been developed for Coalbed Methane (CBM) production. It is imperative to determine both gas content and other parameters for the Kentucky portion of the Illinois Basin if exploration is to progress and production is to occur in this area. This research is part of a larger project being conducted by the Kentucky Geological Survey to evaluate the CBM production of Pennsylvanian-age western Kentucky coals in Ohio, Webster, and Union counties using methane adsorption isotherms, direct gas desorption measurements, and chemical analyses of coal and gas. This research will investigate relationships between CBM potential and petrographic, surface area, pore size, and gas adsorption isotherm analyses of the coals. Maceral and reflectance analyses are being conducted at the Center for Applied Energy Research. At the Indiana Geological Survey, the surface area and pore size of the coals will be analyzed using a Micrometrics ASAP 2020, and the CO2 isotherm analyses will be conducted using a volumetric adsorption apparatus in a water temperature bath. The aforementioned analyses will be used to determine site specific correlations for the Kentucky part of the Illinois Basin. The data collected will be compared with previous work in the Illinois Basin and will be correlated with data and structural features in the basin. Gas composition and carbon and hydrogen isotopic data suggest mostly thermogenic origin of coalbed gas in coals from Webster and Union Counties, Kentucky, in contrast to the dominantly biogenic character of coalbed gas in Ohio County, Kentucky.

  16. On the irreversibility of the adsorption isotherm in a closed-end pore.

    PubMed

    Nguyen, Phuong T M; Do, D D; Nicholson, D

    2013-03-05

    We present a simulation study of argon adsorption in a closed-end mesopore of uniform diameter in order to investigate the occurrence of hysteresis and propose two principal reasons for its existence: the variation in the shape and radius of curvature of the meniscus and the change in the packing of adsorbate during adsorption and desorption. This interpretation differs from classical theories that neglect both of these factors, and therefore find that adsorption-desorption in a closed-end pore is reversible. A detailed simulation study of the effects of temperature on the microscopic behavior of the adsorbate supports the interpretation proposed here.

  17. Kinetics and isotherm of fibronectin adsorption to three-dimensional porous chitosan scaffolds explored by 125I-radiolabelling

    PubMed Central

    Amaral, Isabel F.; Sousa, Susana R.; Neiva, Ismael; Marcos-Silva, Lara; Kirkpatrick, Charles J.; Barbosa, Mário A.; Pêgo, Ana P.

    2013-01-01

    In this study, 125I-radiolabelling was explored to follow the kinetics and isotherm of fibronectin (FN) adsorption to porous polymeric scaffolds, as well as to assess the elution and exchangeability of pre-adsorbed FN following incubation in serum-containing culture medium. Chitosan (CH) porous scaffolds with two different degrees of acetylation (DA 4% and 15%) were incubated in FN solutions with concentrations ranging from 5 to 50 µg/mL. The kinetic and isotherm of FN adsorption to CH were successfully followed using 125I-FN as a tracer molecule. While on DA 4% the levels of adsorbed FN increased linearly with FN solution concentration, on DA 15% a saturation plateau was attained, and FN adsorbed amounts were significantly lower. These findings were supported by immunofluorescent studies that revealed, for the same FN solution concentration, higher levels of exposed cell-binding domains on DA 4% as compared with DA 15%. Following incubation in serum containing medium, DA 4% also revealed higher ability to exchange pre-adsorbed FN by new FN molecules from serum than DA 15%. In accordance, when assessing the efficacy of passively adsorbed FN to promote endothelial cell (EC) adhesion to CH, ECs were found to adhere at higher levels to DA 4% as compared with DA 15%, 5 µg/mL of FN being already efficient in promoting cell adhesion and cytoskeletal organization on CH with DA 4%. Taken together the results show that protein radiolabelling can be used as an effective tool to study protein adsorption to porous polymeric scaffolds, both from single and complex protein solutions. PMID:23635535

  18. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics.

    PubMed

    Putra, Eric Kristia; Pranowo, Ramon; Sunarso, Jaka; Indraswati, Nani; Ismadji, Suryadi

    2009-05-01

    Amoxicillin's traces within pharmaceutical effluents have toxic impact toward the algae and other lower organisms within food web. Adsorption, as an efficient process to remove contaminants from water was chosen; in particular with bentonite and activated carbon as adsorbents. The study was carried out at several pH values. Langmuir and Freundlich models were then employed to correlate the equilibria data on which both models equally well-fit the data. For kinetic data, pseudo-first and second order models are selected. While chemisorption is the dominant adsorption mechanism on the bentonite case, both physisorption and chemisorption play important roles for adsorption onto activated carbon. Also, several possible mechanisms for these adsorption systems were elaborated further.

  19. Adsorption of heavy metal ions using hierarchical CaCO3-maltose meso/macroporous hybrid materials: adsorption isotherms and kinetic studies.

    PubMed

    Ma, Xiaoming; Li, Liping; Yang, Lin; Su, Caiyun; Wang, Kui; Yuan, Shibao; Zhou, Jianguo

    2012-03-30

    Highly ordered hierarchical calcium carbonate is an important phase and has technological interest in the development of functional materials. The work describes hierarchical CaCO(3)-maltose meso/macroporous hybrid materials were synthesized using a simple gas-diffusion method. The uniform hexagonal-shaped CaCO(3)-maltose hybrid materials are formed by the hierarchical assembly of nanoparticles. The pore structure analysis indicates that the sample possesses the macroporous structure of mesoporous framework. The distinguishing features of the hierarchical CaCO(3)-maltose materials in water treatment involve not only high removal capacities, but also decontamination of trace metal ions. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The maximum removal capacity of the CaCO(3)-maltose hybrid materials for Pb(2+), Cd(2+), Cu(2+), Co(2+), Mn(2+) and Ni(2+) ions was 3242.48, 487.80, 628.93, 393.70, 558.66 and 769.23 mg/g, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. The adsorption and precipitation transformation mechanism can be considered due to hierarchical meso/macroporous structure, rich organic ligands of the CaCO(3)-maltose hybrid materials and the larger solubility product of CaCO(3).

  20. Determination of surface-accessible acidic hydroxyls and surface area of lignin by cationic dye adsorption.

    PubMed

    Sipponen, Mika Henrikki; Pihlajaniemi, Ville; Littunen, Kuisma; Pastinen, Ossi; Laakso, Simo

    2014-10-01

    A new colorimetric method for determining the surface-accessible acidic lignin hydroxyl groups in lignocellulose solid fractions was developed. The method is based on selective adsorption of Azure B, a basic dye, onto acidic hydroxyl groups of lignin. Selectivity of adsorption of Azure B on lignin was demonstrated using lignin and cellulose materials as adsorbents. Adsorption isotherms of Azure B on wheat straw (WS), sugarcane bagasse (SGB), oat husk, and isolated lignin materials were determined. The maximum adsorption capacities predicted by the Langmuir isotherms were used to calculate the amounts of surface-accessible acidic hydroxyl groups. WS contained 1.7-times more acidic hydroxyls (0.21 mmol/g) and higher surface area of lignin (84 m(2)/g) than SGB or oat husk materials. Equations for determining the amount of surface-accessible acidic hydroxyls in solid fractions of the three plant materials by a single point measurement were developed. A method for high-throughput characterization of lignocellulosic materials is now available.

  1. Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton

    USDA-ARS?s Scientific Manuscript database

    Albumin is the most abundant protein found in healing wounds. Traditional and chromatogrpahic protein isotherms of albumin binding on modified cotton fibers are useful in understanding albumin binding to cellulose wound dressings. An important consideration in the design of cellulosic wound dressin...

  2. Dye adsorption of cotton fabric grafted with PPI dendrimers: Isotherm and kinetic studies.

    PubMed

    Salimpour Abkenar, Samera; Malek, Reza Mohammad Ali; Mazaheri, Firouzmehr

    2015-11-01

    In this research, the cotton fabrics grafted with two generations of the poly(propylene imine) dendrimers were applied to adsorb textile dyes from aqueous solutions. Direct Red 80 (anionic dye), Disperse Yellow 42 (nonionic dye) and Basic Blue 9 (cationic dye) were selected as model dyes. The effect of various experimental parameters such as initial concentration of dyes, charge of dyes molecule, salt and pH was investigated on the adsorption process. Furthermore, kinetics and equilibrium of the adsorption process on the grafted samples were studied. It was found that maximum adsorption of anionic and disperse dyes took place at around pH 3, while cationic dye could be adsorbed at around pH 11. The Langmuir equation was able to describe the mechanism of dyes adsorption. In addition, the second-order equation was found to be fit with the kinetics data. Interestingly, it seems that the dye adsorption of the grafted fabrics is strongly pH dependent.

  3. Surface properties of coal fines in water. II. Isotherms, electrokinetics and chainlength dependence for cationic surfactant adsorption

    SciTech Connect

    Ayub, A.L.; Hayakawa, K.; Al Taweel, A.M.; Kwak, J.C.T.

    1985-01-01

    The adsorption of the cationic surfactants, dodecylpyridinium chloride, tetradecyl pyridinium bromide and hexadecylpyridinium bromide on run of mine coal at varying pH's has been studied. The effect of these surfactants on the zeta potential as a function of pH was determined. Surfactant adsorption increases in the order C16 >> C14 > C12, and generally increases with increasing pH, especially for the longer chainlengths. Microelectrophoretic zeta potential measurements clearly show the effect of surfactant adsorption, and when pH is greater than iep, i.e. when the coal is negatively charged, charge reversal of the coal surface occurs in all cases. It is concluded that adsorption of cationic surfactants involves both electrostatic (headgroup) and hydrophobic (alkyl chain) interactions with the coal surface. 32 references.

  4. Predicting Phase Diagram of the CaCl2-H2O Binary System from the BET Adsorption Isotherm

    SciTech Connect

    Ally, Moonis Raza

    2008-01-01

    A recent publication in Fluid Phase Equilibria by Zeng (Zeng, Zhou et al. 2007) claimed remarkable accuracy in predicting the solubility of CaCl2-H2O solutions with the Brunaruer-Emett-Teller (BET) model parameters. Their approach necessarily requires prior knowledge of equilibrium water vapor pressures above saturated solutions as a function of temperature for the hydrates of CaCl2 that exist under those conditions. However, the intrinsic BET model does not require prior knowledge of such solubility data that the approach of (Zeng, Zhou et al. 2007) is dependent upon. This paper highlights the differences between the two approaches and covers a much wider range of compositions and temperatures than is done by (Zeng, Zhou et al. 2007). The statistical mechanical description of multilayer adsorption culminating in the BET adsorption isotherm for aqueous electrolytes as developed by Ally and Braunstein (Ally and Braunstein 1993) is used to predict the liquidus behavior of CaCl2-H2O across the entire composition range (from the melting point of pure water to the melting point of anhydrous calcium chloride), including possible metastable crystalline phases. The method requires as input the two BET parameters r, the statistically averaged number of adsorption sites and ε, the energy of adsorption of water in excess of the energy of condensation of pure water. Usually it suffices to keep r and ε constant, typically evaluated at 298.15 K, but in the case of CaCl2-H2O, it is found that both r and ε must be considered temperature dependent in order to predict the liquidus curve, eutectic and peritectic points with reasonable accuracy over the large temperature and compositional range for this binary system.

  5. Adsorption kinetics, isotherms and thermodynamics of atrazine removal using a banana peel based sorbent.

    PubMed

    Chaparadza, Allen; Hossenlopp, Jeanne M

    2012-01-01

    Atrazine removal from water by treated banana peels was studied. The effect of pH, contact time, initial atrazine concentration, and temperature were investigated. Batch experiments demonstrated that 15 g L(-1) adsorbent dosage removed 90-99% of atrazine from 1-150 ppm aqueous solutions. The removal was both pH and temperature dependent with the most atrazine removed between pH 7 and 8.2 and increased with increasing temperature. Equilibrium data fitted well to the Langmuir and Redlich-Peterson models in the concentration and temperature ranges investigated, with a maximum adsorption capacity of 14 mg g(-1). Simple mass transfer models were applied to the experimental data to examine the adsorption mechanism and it was found that both external mass transfer and intraparticle diffusion played important roles in the adsorption mechanisms. The enthalpy of atrazine adsorption was evaluated to be 67.8 ± 6.3 kJ mol(-l) with a Gibbs free energy of -5.7 ± 1.2 kJ mol(-1).

  6. Kinetic and Isotherm Modelling of the Adsorption of
Phenolic Compounds from Olive Mill Wastewater onto Activated Carbon

    PubMed Central

    Casazza, Alessandro A.; Perego, Patrizia

    2015-01-01

    Summary The adsorption of phenolic compounds from olive oil wastewater by commercial activated carbon was studied as a function of adsorbent quantity and temperature. The sorption kinetics and the equilibrium isotherms were evaluated. Under optimum conditions (8 g of activated carbon per 100 mL), the maximum sorption capacity of activated carbon expressed as mg of caffeic acid equivalent per g of activated carbon was 35.8 at 10 °C, 35.4 at 25 °C and 36.1 at 40 °C. The pseudo-second-order model was considered as the most suitable for kinetic results, and Langmuir isotherm was chosen to better describe the sorption system. The results confirmed the efficiency of activated carbon to remove almost all phenolic compound fractions from olive mill effluent. The preliminary results obtained will be used in future studies. The carbohydrate fraction of this upgraded residue could be employed to produce bioethanol, and adsorbed phenolic compounds can be recovered and used in different industries. PMID:27904350

  7. Utilization of water hyacinth weed (Eichhornia crassipes) for the removal of Pb(II), Cd(II) and Zn(II) from aquatic environments: an adsorption isotherm study.

    PubMed

    Mahamadi, C; Nharingo, T

    2010-10-01

    The potential of Eichhornia crassipes biomass for the adsorption of three metal ions, Pb(II), Cd(II) and Zn(II), from aqueous solution was studied using five two-parameter adsorption isotherm equations--Langmuir, Freundlich, Flory-Huggins, Temkin and Redlich-Peterson isotherms. The equilibrium adsorption data were obtained at different initial metal ion concentrations (C0 = 10-60 mg/L), 3 h contact time, 30 degrees C temperature, a dosage of 2 g/L, agitation rate of 150 rpm and buffered at pH 4.84. Langmuir isotherms gave monolayer sorption capacities (qm) of 26.32, 12.60 and 12.55 mg/g for Pb(II), Cd(II) and Zn(II) metal ions, respectively. The same trend of metal uptake was indicated by plots of sorption favourability (S(F)). Negative values of deltaGads0 indicated that the adsorption was spontaneous and exothermic in nature, and values from the Temkin isotherm constant, bT, suggested a mechanism consistent with an ion-exchange process. The results from these studies indicated that E. crassipes biomass has promising potential for the removal of toxic metals from aquatic environments.

  8. Adsorption of oxygen molecule in NaA zeolite: Isotherms and infrared measurements

    NASA Astrophysics Data System (ADS)

    Soussen-Jacob, Janine; Tsakiris, Jean; Cohen De Lara, Evelyne

    1989-08-01

    Isotherm and infrared induced band of O2 have been studied in the temperature range 93-193 K. At low temperature and low coverage, two components of the fundamental vibrational band appear on both sides of the gas frequency. Their intensities with respect to T and to the number of adsorbed molecules have been measured in order to understand the interaction of O2 with NaA zeolite. The frequency shift of each component has been related to the orientation of the molecule, from considerations about the interaction potential.

  9. High resolution N2 adsorption isotherms at 77.4 K and 87.3 K by carbon blacks and activated carbon fibers--analysis of porous texture of activated carbon fibers by αs-method.

    PubMed

    Nakai, Kazuyuki; Nakada, Yoko; Hakuman, Masako; Yoshida, Masayuki; Senda, Yousuke; Tateishi, Yuko; Sonoda, Joji; Naono, Hiromitsu

    2012-02-01

    The standard α(s)-data of N(2) at 87.3 K by graphitized and nongraphitized carbon black samples (GCB-I and NGCB) (cf.Figs. 3 and 4) have been determined on the basis of the high resolution adsorption isotherms of N(2) at 87.3 K, which were repeatedly measured in the pressure range of p/p(o)=5×10(-8)-0.4. The high resolution adsorption isotherms of N(2) by two kinds of activated carbon fibers (ACF-I and ACF-II) were measured from p/p(o)=10(-7) to p/p(o)=0.995 at 77.4 K and from p/p(o)=10(-7) to p/p(o)=0.4 at 87.3 K. Combination of the adsorption isotherms by ACF-I and ACF-II with the standard α(s)-data by NGCB at 77.4 K and 87.3 K make it possible to construct the high resolution α(s)-plots from very low filling (1%) to complete filling (100%). The high resolution α(s)-plots of N(2) at 77.4 K and 87.3 K were analyzed. On the basis of the analyzed result, the porous textures of ACF-I and ACF-II will be discussed.

  10. Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica- multiwall carbon nanotubes.

    PubMed

    Saleh, Tawfik A

    2015-11-01

    Silica combined with 2% multiwall carbon nanotubes (SiO2-CNT) was synthesized and characterized. Its sorption efficacy was investigated for the Hg(II) removal from an aqueous solution. The effect of pH on the percentage removal by the prepared material was examined in the range from 3 to 7. The adsorption kinetics were well fitted by using a pseudo-second-order model at various initial Hg(II) concentrations with R (2) of >0.99. The experimental data were plotted using the interparticle diffusion model, which indicated that the interparticle diffusion is not the only rate-limiting step. The data is well described by the Freundlich isotherm equation. The activation energy (Ea) for adsorption was 12.7 kJ mol(-1), indicating the process is to be physisorption. Consistent with an endothermic process, an increase in the temperature resulted in increasing mercury removal with a ∆H(o) of 13.3 kJ/mol and a ∆S(o) 67.5 J/mol K. The experimental results demonstrate that the combining of silica and nanotubes is a promising alternative material, which can be used to remove the mercury from wastewaters.

  11. Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: Adsorption capacity, kinetic and isotherm studies

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Li, Shunxing; Chen, Jianhua; Zhang, Xueliang; Chen, Yiping

    2014-02-01

    Activated carbons with high mesoporosity and abundant oxygen-containing functional groups were prepared from water hyacinth using H3PO4 activation (WHAC) to eliminate Pb(II) in water. Characterizations of the WHAC were performed using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The BET analysis showed that WHAC possesses a high mesoporosity (93.9%) with a BET surface area of 423.6 m2/g. The presence of oxygen-containing functional groups including hydroxyl, carbonyl, carboxyl and phosphate groups renders the WHAC a favorable adsorbent for Pb(II) with the maximum monolayer capacity (qm) 118.8 mg/g. The adsorption behavior follows pseudo-first order kinetic and Langmuir isotherm. The desorption study demonstrated that the WHAC could be readily regenerated using 0.1 M HCl (pH = 1.0). The desorbed WHAC could be reused at least six times without significant adsorption capacity reduction. The adsorption process was spontaneous and endothermic with ΔG (-0.27, -1.13, -3.02, -3.62, -5.54, and -9.31 kJ/mol) and ΔH (38.72 kJ/mol). Under the optimized conditions, a small amount of the adsorbent (1.0 g/L) could remove as much as 90.1% of Pb(II) (50 mg/L) in 20 min at pH 6.0 and temperature of 298 K. Therefore, the WHAC has a great potential to be an economical and efficient adsorbent in the treatment of lead-contaminated water.

  12. Solvothermal synthesis of different phase N-TiO2 and their kinetics, isotherm and thermodynamic studies on the adsorption of methyl orange.

    PubMed

    Fan, Jimin; Zhao, Zhihuan; Liu, Wenhui; Xue, Yongqiang; Yin, Shu

    2016-05-15

    The different crystal forms of nitrogen doped-titanium oxide (N-TiO2) with different particle sizes were produced by precipitation-solvothermal method and their adsorption mechanism were also investigated. The adsorption kinetics showed that rutile N-TiO2 displayed higher adsorption capacity than anatase for methyl orange (MO) and its adsorption behavior followed the pseudo-second-order kinetics. The equilibrium adsorption rate of N-TiO2 for MO was well fitted by the Langmuir isotherm model and the adsorption process was monolayer adsorption. The adsorption capacity decreased with increasing temperature. The average correlation coefficient was beyond 97%. The thermodynamic parameters (ΔaGm(ө), ΔaHm(ө), and ΔaSm(ө)) were calculated. It was found that anatase and rutile N-TiO2 had different adsorption enthalpy and entropy. The smaller the particle size, the greater the surface area and surface energy was, then ΔaGm(ө) decreased and the standard equilibrium constant increased at the same time. The adsorption process onto different crystalline phase N-TiO2 was exothermic and non-spontaneous.

  13. Kinetic, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid.

    PubMed

    ALOthman, Zeid A; Naushad, Mu; Ali, Rahmat

    2013-05-01

    A particular agricultural waste, peanut shell, has been used as precursor for activated carbon production by chemical activation with H₃PO₄. Unoxidized activated carbon was prepared in nitrogen atmosphere which was then heated in air at a desired temperature to get oxidized activated carbon. The prepared carbons were characterized for surface area, surface morphology, and pore volume and utilized for the removal of Cr(VI) from aqueous solution. Batch mode experiments were conducted to study the effects of pH, contact time, particle size, adsorbent dose, initial concentration of adsorbate, and temperature on the adsorption of Cr(VI). Cr(VI) adsorption was significantly dependent on solution pH, and the optimum adsorption was observed at pH 2. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to analyze the kinetic data obtained at different initial Cr(VI) concentrations. The adsorption kinetic data were described very well by the pseudo-second-order model. Equilibrium isotherm data were analyzed by the Langmuir, Freundlich, and Temkin models. The results showed that the Langmuir adsorption isotherm model fitted the data better in the temperature range studied. The adsorption capacity which was found to increase with temperature showed the endothermic nature of Cr(VI) adsorption. The thermodynamic parameters, such as Gibb's Free energy change (ΔG°), standard enthalpy change (ΔH°), and standard entropy change (ΔS°) were evaluated.

  14. Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries.

    PubMed

    Hsiao, Erik; Marino, Matthew J; Kim, Seong H

    2010-12-15

    This paper explains the origin of the vapor pressure dependence of the asperity capillary force in vapor environments. A molecular adsorbate layer is readily formed on solid surface in ambient conditions unless the surface energy of the solid is low enough and unfavorable for vapor adsorption. Then, the capillary meniscus formed around the solid asperity contact should be in equilibrium with the adsorbate layer, not with the bare solid surface. A theoretical model incorporating the vapor adsorption isotherm into the solution of the Young-Laplace equation is developed. Two contact geometries--sphere-on-flat and cone-on-flat--are modeled. The calculation results show that the experimentally-observed strong vapor pressure dependence can be explained only when the adsorption isotherm of the vapor on the solid surface is taken into account. The large relative partial pressure dependence mainly comes from the change in the meniscus size due to the presence of the adsorbate layer.

  15. Surface heterogeneity of passively oxidized silicon carbide particles: vapor adsorption isotherms.

    PubMed

    Médout-Marère, V; Partyka, S; Dutartre, R; Chauveteau, G; Douillard, J M

    2003-06-15

    The surfaces of silicon carbide particles subjected to two different passive oxidation treatments have been characterized by immersion calorimetry and vapor adsorption techniques. Surface enthalpies and surface free energies have been computed using semiempirical models and are compared to theoretical estimations. The surface entropy term appears higher than in the case of other solids studied with the same analysis. The definition of the surface entropy term is discussed in order to explain the discrepancy between calculation and experiment. An explanation of results is proposed, which is related to the constitution of silicon oxide layers at the surface of silicon carbide, a fact demonstrated by previous XPS measurements.

  16. New method for the simultaneous determination of diffusion and adsorption of dyes in silica hydrogels.

    PubMed

    Perullini, Mercedes; Jobbágy, Matías; Japas, María Laura; Bilmes, Sara A

    2014-07-01

    The fine tuning of porosity in sol gel based devices makes possible the design of novel applications in which the transport of molecules through the oxide gel plays a crucial role. In this work we develop a new method for the simultaneous analysis of diffusion and adsorption of small diffusing probes, as anionic and cationic dyes, through silica mesoporous hydrogels synthesized by sol-gel. The novelty of the work resides in the simplicity of acquisition of the experimental data (by means of a desk scanner) and further mathematical modeling, which is in line with high throughput screening procedures, enabling rapid and simultaneous determination of relevant diffusion and adsorption parameters. Net mass transport and adsorption properties of the silica based hydrogels were contrasted to dye adsorption isotherms and textural characterization of the wet gels by SAXS, as well as that of the corresponding aerogels determined by Field Emission Scanning Electron Microscopy (FESEM) and N2 adsorption. Thus, the validation of the results with well-established characterization methods demonstrates that our approach is robust enough to give reliable physicochemical information on these systems.

  17. Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism.

    PubMed

    Wang, Pan; Du, Mingliang; Zhu, Han; Bao, Shiyong; Yang, Tingting; Zou, Meiling

    2015-04-09

    Silica nanotubes (SNTs) with controlled nanotubular structure were synthesized via an electrospinning and calcination process. In this regard, SNTs were found to be ideal adsorbents for Pb(II) removal with a higher adsorption capacity, and surface modification of the SNTs by sym-diphenylcarbazide (SD-SNTs) markedly enhanced the adsorption ability due to the chelating interaction between imino groups and Pb(II). The pH effect, kinetics, isotherms and adsorption mechanism of SNTs and SD-SNTs on Pb(II) adsorption were investigated and discussed detailedly. The adsorption capacity for Pb(II) removal was found to be significantly improved with the decrease of pH value. The Langmuir adsorption model agreed well with the experimental data. As for kinetic study, the adsorption onto SNTs and SD-SNTs could be fitted to pseudo-first-order and pseudo-second-order model, respectively. In addition, the as-prepared SNTs and SD-SNTs also exhibit high adsorption ability for Cd(II) and Co(II). The experimental results demonstrate that the SNTs and SD-SNTs are potential adsorbents and can be used effectively for the treatment of heavy-metal-ions-containing wastewater.

  18. The use of synthesized aqueous solutions for determining strontium sorption isotherms

    USGS Publications Warehouse

    Liszewski, M.J.; Bunde, R.L.; Hemming, C.; Rosentreter, J.; Welhan, J.

    1998-01-01

    The use of synthesized aqueous solutions for determining experimentally derived strontium sorption isotherms of sediment was investigated as part of a study accessing strontium chemical transport properties. Batch experimental techniques were used to determine strontium sorption isotherms using synthesized aqueous solutions designed to chemically represent water from a natural aquifer with respect to major ionic character and pH. A strontium sorption isotherm for a sediment derived using a synthesized aqueous solution was found to be most comparable to an isotherm derived using natural water when the synthesized aqueous solution contained similar concentrations of calcium and magnesium. However, it is difficult to match compositions exactly due to the effects of disequilibrium between the solution and the sediment. Strong linear relations between sorbed strontium and solution concentrations of calcium and magnesium confirm that these cations are important co-constituents in these synthesized aqueous solutions. Conversely, weak linear relations between sorbed strontium and solution concentrations of sodium and potassium indicate that these constituents do not affect sorption of strontium. The addition of silica to the synthesized aqueous solution does not appreciably affect the resulting strontium sorption isotherm.

  19. Determining DNA supercoiling enthalpy by isothermal titration calorimetry.

    PubMed

    Xu, Xiaozhou; Zhi, Xiaoduo; Leng, Fenfei

    2012-12-01

    DNA supercoiling plays a critical role in certain essential DNA transactions, such as DNA replication, recombination, and transcription. For this reason, exploring energetics of DNA supercoiling is fundamentally important for understanding its biological functions. In this paper, using a unique property of DNA intercalators, such as ethidium bromide and daunorubicin, which bind to supercoiled, nicked, and relaxed DNA templates with different DNA-binding enthalpies, we determined DNA supercoiling enthalpy of plasmid pXXZ6, a 4.5 kb plasmid to be about 11.5 kcal/mol per linking number change. This determination allowed us to partition the DNA supercoiling free energy into enthalpic and entropic contributions where the unfavorable DNA supercoiling free energy exclusively originated from the large positive supercoiling enthalpy and was compensated by a large, favorable entropy term (TΔS). Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. A Simple Adsorption Experiment

    ERIC Educational Resources Information Center

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  1. A Simple Adsorption Experiment

    ERIC Educational Resources Information Center

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  2. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.

    PubMed

    Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R

    2016-07-01

    Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry.

  3. Determination of low levels of amorphous content in inhalation grade lactose by moisture sorption isotherms.

    PubMed

    Vollenbroek, Jasper; Hebbink, Gerald A; Ziffels, Susanne; Steckel, Hartwig

    2010-08-16

    Alpha-lactose monohydrate is widely used as an excipient in dry powder inhalers, and plays a very important role in the efficiency of the drug delivery. Due to the processing, low levels of amorphous lactose could be present in the blends. Varying amounts could have a strong effect on the efficiency of drug delivery of the powder blends. Therefore, the accurate measurement of low levels of amorphous lactose content is very important. A new method was developed to measure the amorphous content, based on dynamic vapour sorption (DVS). In contrast to the traditional re-crystallization approach of amorphous lactose, the new method is based on moisture sorption isotherms. Moisture sorption isotherms of blends of crystalline alpha-lactose and freeze-dried or spray-dried amorphous lactose were measured. By fitting the data with a Brunauer, Emmett, and Teller (BET) isotherm, a linear correlation was found between measured and actual amorphous content for the whole range of 0.1-100%. Differences between freeze-dried and spray-dried lactose, due to different molecular arrangements, could be removed by a preconditioning the samples at 35% RH prior to the isotherm measurement. It was shown that accurate determination of very low concentrations of amorphous lactose content is possible using moisture sorption isotherm analyses. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Kinetic and isotherm studies of bisphenol A adsorption onto orange albedo(Citrus sinensis): Sorption mechanisms based on the main albedo components vitamin C, flavones glycosides and carotenoids.

    PubMed

    Kamgaing, Theophile; Doungmo, Giscard; Melataguia Tchieno, Francis Merlin; Gouoko Kouonang, Jimmy Julio; Mbadcam, Ketcha Joseph

    2017-07-03

    Orange albedo and its adsorption capacity towards bisphenol A (BPA) were studied. Adsorption experiments were conducted in batch mode at 25-55°C. Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Fourier transform infrared (FTIR) spectroscopy were used to characterise the biosorbent. The effects of various parameters including adsorption time, equilibrium pH, adsorbent dosage and initial adsorbate concentration were investigated. The optimum contact time and pH for the removal of BPA were 60 min and 2, respectively. It was found that the adsorption isotherms best matched the Freundlich model, the adsorption of BPA being multilayer and that of the albedo surface heterogeneous. From the kinetic studies, it was found that the removal of BPA best matched the pseudo-second order kinetic model. An adsorption mechanism based on the albedo surface molecules is proposed and gives a good account of π-π interactions and hydrogen bonding. Orange albedo, with a maximum BPA loading capacity of 82.36 mg g(-1) (significantly higher than that of most agricultural residues), is a good candidate for BPA adsorption in aqueous media.

  5. Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: Adsorption isotherms and kinetics studies.

    PubMed

    Tadjarodi, Azadeh; Moazen Ferdowsi, Somayeh; Zare-Dorabei, Rouholah; Barzin, Ahmad

    2016-11-01

    A novel adsorbent, based on modifying graphene oxide (GO) chemically with 2-pyridinecarboxaldehyde thiosemicarbazone (2-PTSC) as ligand, was designed by facile process for removal of Hg(II) from aqueous solution. Characterization of the adsorbent was performed using various techniques, such as FT-IR, XRD, XPS, SEM and AFM analysis. The adsorption capacity was affected by variables such as adsorbent dosage, pH solution, Hg(2+) initial concentration and sonicating time. These variables were optimized by rotatable central composite design (CCD) under response surface methodology (RSM). The predictive model for Hg(II) adsorption was constructed and applied to find the best conditions at which the responses were maximized. In this conditions, the adsorption capacity of this adsorbent for Hg(2+) ions was calculated to be 309mgg(-1) that was higher than that of GO. Appling the ultrasound power combined with adsorption method was very efficient in shortening the removal time of Hg(2+) ions by enhancing the dispersion of adsorbent and metal ions in solution and effective interactions among them. The adsorption process was well described by second-order kinetic and Langmuir isotherm model in which the maximum adsorption capacity (Qm) was found to be 555mgg(-1) for adsorption of Hg(2+) ions over the obtained adsorbent. The performance of adsorbent was examined on the real wastewaters and confirmed the applicability of adsorbent for practical applications.

  6. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.

    PubMed

    Ghaedi, M; Shojaeipour, E; Ghaedi, A M; Sahraei, Reza

    2015-05-05

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1g), contact time (1-40min) and initial MG concentration (5, 10, 20, 70 and 100mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R(2)) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8mg/g at 25°C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model.

  7. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: Artificial neural network modeling and genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Shojaeipour, E.; Ghaedi, A. M.; Sahraei, Reza

    2015-05-01

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1 g), contact time (1-40 min) and initial MG concentration (5, 10, 20, 70 and 100 mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R2) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8 mg/g at 25 °C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20 min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model.

  8. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models.

    PubMed

    Rahman, Md Sayedur; Sathasivam, Kathiresan V

    2015-01-01

    Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb(2+), Cu(2+), Fe(2+), and Zn(2+) onto dried biomass of red seaweed Kappaphycus sp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models). The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweed Kappaphycus sp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment.

  9. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models

    PubMed Central

    Rahman, Md. Sayedur; Sathasivam, Kathiresan V.

    2015-01-01

    Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb2+, Cu2+, Fe2+, and Zn2+ onto dried biomass of red seaweed Kappaphycus sp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models). The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweed Kappaphycus sp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment. PMID:26295032

  10. Adsorption properties for urokinase on local diatomite surface

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiang; Zhang, Jianbo; Yang, Weimin; Wu, Jieda; Chen, Rongsan

    2003-02-01

    In this paper, adsorption isotherm of urokinase on two typical local diatomites were determined at 25 °C and their surface electrical potentials (ζ), isoelectrical point values (IEP) were determined. The properties of diatomites, the relationship among diatomite structure, pore-size distribution, surface ζ and adsorption isotherm were discussed. The adsorption equation of urokinase was calculated from the adsorption isotherm. The adsorption mode of urokinase on diatomite surface was judged by the configuration function α. The relationship between the amount of adsorbed urokinase and IEP value was also discussed.

  11. Removal of 2,4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: characterization, adsorption isotherm, kinetic study, thermodynamics.

    PubMed

    Raoov, Muggundha; Mohamad, Sharifah; Abas, Mohd Radzi

    2013-12-15

    Cyclodextrin-ionic liquid polymer (βCD-BIMOTs-TDI) was firstly synthesized using functionalized β-Cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using toluene diisocyanate (TDI) linker to form insoluble βCD-BIMOTs-TDI. SEM characterization result shows that βCD-BIMOTs-TDI exhibits macropore size while the BET result shows low surface area (1.254 m(2)g(-1)). The unique properties of the ILs allow us to produce materials with different morphologies. The adsorption isotherm and kinetics of 2,4-dichlorophenol (2,4-DCP) onto βCD-BIMOTs-TDI is studied. Freundlich isotherm and pseudo-second order kinetics are found to be the best to represent the data for 2,4-DCP adsorption on the βCD-BIMOTs-TDI. The presence of macropores decreases the mass transfer resistance and increases the adsorption process by reducing the diffusion distance. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for 2,4-DCP on βCD-BIMOTs-TDI were estimated as -55.99 J/Kmol and -18.10 J/mol, respectively. The negative value of Gibbs free energy (ΔG°) indicates that the adsorption process is thermodynamically feasible, spontaneous and chemically controlled. Finally, the interactions between the cavity of βCD-BIMOTs and 2,4-DCP are investigated and the results shows that the inclusion of the complex formation and π-π interaction are the main processes involved in the adsorption process. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Estimation of adsorption isotherm and mass transfer parameters in protein chromatography using artificial neural networks.

    PubMed

    Wang, Gang; Briskot, Till; Hahn, Tobias; Baumann, Pascal; Hubbuch, Jürgen

    2017-03-03

    Mechanistic modeling has been repeatedly successfully applied in process development and control of protein chromatography. For each combination of adsorbate and adsorbent, the mechanistic models have to be calibrated. Some of the model parameters, such as system characteristics, can be determined reliably by applying well-established experimental methods, whereas others cannot be measured directly. In common practice of protein chromatography modeling, these parameters are identified by applying time-consuming methods such as frontal analysis combined with gradient experiments, curve-fitting, or combined Yamamoto approach. For new components in the chromatographic system, these traditional calibration approaches require to be conducted repeatedly. In the presented work, a novel method for the calibration of mechanistic models based on artificial neural network (ANN) modeling was applied. An in silico screening of possible model parameter combinations was performed to generate learning material for the ANN model. Once the ANN model was trained to recognize chromatograms and to respond with the corresponding model parameter set, it was used to calibrate the mechanistic model from measured chromatograms. The ANN model's capability of parameter estimation was tested by predicting gradient elution chromatograms. The time-consuming model parameter estimation process itself could be reduced down to milliseconds. The functionality of the method was successfully demonstrated in a study with the calibration of the transport-dispersive model (TDM) and the stoichiometric displacement model (SDM) for a protein mixture. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Adsorption of nicotine from aqueous solution onto hydrophobic zeolite type USY

    NASA Astrophysics Data System (ADS)

    Lazarevic, Natasa; Adnadjevic, Borivoj; Jovanovic, Jelena

    2011-07-01

    The isothermal adsorption of nicotine from an aqueous solution onto zeolite type USY was investigated. The adsorption isotherms of nicotine onto the zeolite at different temperatures ranging from 298 to 322 K were determined. It was found that the adsorption isotherms can be described by the model of Freundlich adsorption isotherm. Based on the adsorption isotherms the changes of adsorption heat, free energy and entropy with adsorption degree were determined. The determined decrease of adsorption heat with adsorption degree can be explained by the presence of the adsorption centers of different energy and concentration on interface of zeolite-nicotine solution. It was found that the probability function of density distribution of the heat of adsorption (DDF) has exponential form. It was concluded that the possibility of fitting the adsorption isotherms of nicotine onto the zeolite by Freundlich adsorption isotherm was a direct consequence of that. The determined increase in entropy with the increase in adsorption degree can be explained with the change of phase state of adsorbed nicotine.

  14. Selective adsorption of Pb (II) over the zinc-based MOFs in aqueous solution-kinetics, isotherms, and the ion exchange mechanism.

    PubMed

    Wang, Lei; Zhao, Xinhua; Zhang, Jinmiao; Xiong, Zhenhu

    2017-06-01

    Two series of metal-organic frameworks (MOFs) with similar formula units but different central metal ions (M) or organic linkers (L), M-BDC (BDC = terephthalate, M = Zn, Zr, Cr, or Fe), or Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH2), were prepared and employed as the receptors for adsorption lead ions. It was found that the Zn-BDC exhibited a much higher adsorption capacity than the other M-BDC series with various metal ions which have very closely low capacities at same conditions. Furthermore, the Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH2) still have highly efficient adsorption capacity of lead ions, although the adsorption capacity varies with different ligand, as well as the adsorption rate and the equilibrium pH of the solution. This significant high adsorption over Zn-L, different from other M-BDC series with various metal ions (Zr, Cr, or Fe), can be explained by ion exchange between the central metal ions of Zn-L and lead ion in solution. Based on the analysis of FT-IR, X-ray diffraction pattern, the nitrogen adsorption isotherms, the zeta potentials, and the results, a plausible adsorption mechanism is proposed. When equivalent Zn-L were added to equal volume of aqueous solution with different concentration of lead ion, the content of zinc ion in the solution increases with the increase of the initial concentration of lead ions. The new findings could provide a potential way to fabricate new metal organic frameworks with high and selective capacities of the heavy metal ions.

  15. Adsorption energies and prefactor determination for CH3OH adsorption on graphite.

    PubMed

    Doronin, M; Bertin, M; Michaut, X; Philippe, L; Fillion, J-H

    2015-08-28

    In this paper, we have studied adsorption and thermal desorption of methanol CH3OH on graphite surface, with the specific aim to derive from experimental data quantitative parameters that govern the desorption, namely, adsorption energy Eads and prefactor ν of the Polanyi-Wigner law. In low coverage regime, these two values are interconnected and usually the experiments can be reproduced with any couple (Eads, ν), which makes intercomparison between studies difficult since the results depend on the extraction method. Here, we use a method for determining independently the average adsorption energy and a prefactor value that works over a large range of incident methanol coverage, from a limited set of desorption curves performed at different heating rates. In the low coverage regime the procedure is based on a first order kinetic law, and considers an adsorption energy distribution which is not expected to vary with the applied heating rate. In the case of CH3OH multilayers, Eads is determined as 430 meV with a prefactor of 5 × 10(14) s(-1). For CH3OH submonolayers on graphite, adsorption energy of 470 ± 30 meV and a prefactor of (8 ± 3) × 10(16) s(-1) have been found. These last values, which do not change between 0.09 ML and 1 ML initial coverage, suggest that the methanol molecules form island-like structure on the graphite even at low coverage.

  16. Using Isothermal Microcalorimetry to Determine Compatibility of Structural Materials with High Test Hydrogen Peroxide (HTP) Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy; Villegas, Yvonne; Nwosisi, Genne

    2003-01-01

    High-Test Hydrogen Peroxide (HTP) propellant (greater than or equal to 70%) offers many advantages in space launch applications; however, materials used in construction of propulsion systems must be shown to be compatible with HTP. Isothermal Microcalorimetry (IMC) was used to determine the compatibility of several metallic and non-metallic materials with 90% HTP. The results of these experiments agreed with those from immersion bath tests when the values were converted to %Active Oxygen Loss per week (%AOL/wk).

  17. Using Isothermal Microcalorimetry to Determine Compatibility of Structural Materials with High Test Hydrogen Peroxide (HTP) Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy; Villegas, Yvonne; Nwosisi, Genne

    2003-01-01

    High-Test Hydrogen Peroxide (HTP) propellant (greater than or equal to 70%) offers many advantages in space launch applications; however, materials used in construction of propulsion systems must be shown to be compatible with HTP. Isothermal Microcalorimetry (IMC) was used to determine the compatibility of several metallic and non-metallic materials with 90% HTP. The results of these experiments agreed with those from immersion bath tests when the values were converted to %Active Oxygen Loss per week (%AOL/wk).

  18. Equilibrium adsorption isotherm studies of Cu (II) and Co (II) in high concentration aqueous solutions on Ag-TiO2-modified kaolinite ceramic adsorbents

    NASA Astrophysics Data System (ADS)

    Ajenifuja, E.; Ajao, J. A.; Ajayi, E. O. B.

    2017-09-01

    Photocatalytic ceramic adsorbents were prepared from locally sourced kaolinite clay minerals for the removal of copper and cobalt ions from high concentration aqueous solutions. The minerals were treated with mild acid before modification using silver nanoparticles sources and titanium-oxide nanoparticles. Batch adsorption experiment was carried out on the targeted ions and the results were analyzed by Langmuir and Freundlich equation at different concentrations (100-1000 mg/l). As-received raw materials do not exhibit any adsorption capacity. However, the adsorption isotherms for modified kaolinite clay ceramic adsorbents could be fitted well by the Langmuir model for Cu2+ and Co2+ with correlation coefficient ( R) of up to 0.99705. The highest and lowest monolayer coverage ( q max) were 93.023 and 30.497 mg/g for Cu2+ and Co2+, respectively. The separation factor ( R L ) was less than one (<1), indicating that the adsorption of metal ions on modified ceramic adsorbent is favorable. The highest adsorbent adsorption capacity ( K f ) and intensity ( n) constants obtained from Freundlich model are 14.401 (Cu2+ on KLN-T) and 6.057 (Co2+ on KLN-T).

  19. Design of β-cyclodextrin modified TiO(2) nanotubes for the adsorption of Cu(II): Isotherms and kinetics study.

    PubMed

    Triki, Mohamed; Tanazefti, Haythem; Kochkar, Hafedh

    2017-05-01

    This paper builds on previous literature showing the interesting adsorptive properties of TiO2 nanotubes. It further explores the positive effect of β-cyclodextrin on these properties. Hence, β-cyclodextrin modified TiO2 nanotubes were successfully prepared and characterized by XRD, N2 physisorption at 77K, Raman, FTIR-ATR, (1)H NMR, TEM and EPR. The adsorptive interaction of Cu(II) with materials was investigated in aqueous solution at pH 9.25 (NH4(+)/NH3). The main conclusion is that copper(II)-ammonia complexation equilibria play an important role in the adsorption process. The β-cyclodextrin was found to improve the Cu(NH3)4(2+) adsorption mainly by retarding its precipitation to high concentrations values (>400mgL(-1)). Adsorption experimental data showed good fit with the pseudo-second-order model and the Langmuir isotherm model. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Equilibrium adsorption isotherm studies of Cu (II) and Co (II) in high concentration aqueous solutions on Ag-TiO2-modified kaolinite ceramic adsorbents

    NASA Astrophysics Data System (ADS)

    Ajenifuja, E.; Ajao, J. A.; Ajayi, E. O. B.

    2016-03-01

    Photocatalytic ceramic adsorbents were prepared from locally sourced kaolinite clay minerals for the removal of copper and cobalt ions from high concentration aqueous solutions. The minerals were treated with mild acid before modification using silver nanoparticles sources and titanium-oxide nanoparticles. Batch adsorption experiment was carried out on the targeted ions and the results were analyzed by Langmuir and Freundlich equation at different concentrations (100-1000 mg/l). As-received raw materials do not exhibit any adsorption capacity. However, the adsorption isotherms for modified kaolinite clay ceramic adsorbents could be fitted well by the Langmuir model for Cu2+ and Co2+ with correlation coefficient (R) of up to 0.99705. The highest and lowest monolayer coverage (q max) were 93.023 and 30.497 mg/g for Cu2+ and Co2+, respectively. The separation factor (R L ) was less than one (<1), indicating that the adsorption of metal ions on modified ceramic adsorbent is favorable. The highest adsorbent adsorption capacity (K f ) and intensity (n) constants obtained from Freundlich model are 14.401 (Cu2+ on KLN-T) and 6.057 (Co2+ on KLN-T).

  1. Use of solid waste for chemical stabilization: Adsorption isotherms and {sup 13}C solid-state NMR study of hazardous organic compounds sorbed on coal fly ash

    SciTech Connect

    Netzel, D.A.; Lane, D.C.; Rovani, J.F.; Cox, J.D.; Clark, J.A.; Miknis, F.P.

    1993-09-01

    Adsorption of hazardous organic compounds on the Dave Johnston plant fly ash is described. Fly ash from Dave Johnston and Laramie River power plants were characterized using elemental, x-ray, and {sup 29}Si NMR; the Dave Johnston (DJ) fly ash had higher quartz contents, while the Laramie River fly ash had more monomeric silicate anions. Adsorption data for hydroaromatics and chlorobenzenes indicate that the adsorption capacity of DJ coal fly ash is much less than that of activated carbon by a factor of >3000; but it is needed to confirm that solid-gas and solid-liquid equilibrium isotherms can indeed be compared. However, for pyridine, pentachlorophenol, naphthalene, and 1,1,2,2-tetrachloroethane, the DJ fly ash appears to adsorb these compounds nearly as well as activated carbon. {sup 13}C NMR was used to study the adsorption of hazardous org. cpds on coal fly ash; the nuclear spin relaxation times often were very long, resulting in long experimental times to obtain a spectrum. Using a jumbo probe, low concentrations of some hazardous org. cpds could be detected; for pentachlorophenol adsorbed onto fly ash, the chemical shift of the phenolic carbon was changed. Use of NMR to study the adsorption needs further study.

  2. Determination of the catalytic activity of binuclear metallohydrolases using isothermal titration calorimetry.

    PubMed

    Pedroso, Marcelo M; Ely, Fernanda; Lonhienne, Thierry; Gahan, Lawrence R; Ollis, David L; Guddat, Luke W; Schenk, Gerhard

    2014-03-01

    Binuclear metallohydrolases are a large and diverse family of enzymes that are involved in numerous metabolic functions. An increasing number of members find applications as drug targets or in processes such as bioremediation. It is thus essential to have an assay available that allows the rapid and reliable determination of relevant catalytic parameters (k cat, K m, and k cat/K m). Continuous spectroscopic assays are frequently only possible by using synthetic (i.e., nonbiological) substrates that possess a suitable chromophoric marker (e.g., nitrophenol). Isothermal titration calorimetry, in contrast, affords a rapid assay independent of the chromophoric properties of the substrate-the heat associated with the hydrolytic reaction can be directly related to catalytic properties. Here, we demonstrate the efficiency of the method on several selected examples of this family of enzymes and show that, in general, the catalytic parameters obtained by isothermal titration calorimetry are in good agreement with those obtained from spectroscopic assays.

  3. Determination of optimum conditions of crystal violet dye adsorption on almond shells

    NASA Astrophysics Data System (ADS)

    Göksu, Ali; Tanaydin, Mehmet Kayra

    2017-04-01

    Almond shells are considered as agricultural waste. In this study almond shells were chosen as effective adsorbents for removing Crystal Violet (CV) from dye solutions. The experimental data was analyzed via the Langmuir, Freudlich and Tempkin isotherm models to obtain isotherm model for the system and the data shows that the Langmuir isotherm model fitted best. Also, the thermodynamics parameters such as ΔH0, ΔG0 and ΔS0 were investigated. The results of the study show that almond shells are efficient and advantageous economically for removing CV from aqueous solutions. The maximum adsorption capacity was found to be 1.1375mg/g on almond shell. Adsorption kinetic studies indicate that the adsorption data can be represented by a pseudo second order model.

  4. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism.

    PubMed

    Badawi, M A; Negm, N A; Abou Kana, M T H; Hefni, H H; Abdel Moneem, M M

    2017-06-01

    Chitosan was reacted by tannic acid to obtain three modified chitosan biopolymer. Their chemical structures were characterized by FTIR and elemental analysis. The prepared biopolymers were used to adsorb Al(III) and Pb(II) metal ions from industrial wastewater. The factors affecting the adsorption process were biosorbent amount, initial concentration of metal ion and pH of the medium. The adsorption efficiency increased considerably with the increase of the biosorbent amount and pH of the medium. The adsorption process of biosorbent on different metal ions was fitted by Freundlich adsorption model. The adsorption kinetics was followed Pseudo-second-order kinetic model. The adsorption process occurred according to diffusion mechanism which was confirmed by the interparticle diffusion model. The modified biopolymers were efficient biosorbents for removal of Pb(II) and Al(III) metal ions from the medium.

  5. Sorbent Mass Variation Method: A New Possibility for the Determination of Binding Isotherms.

    PubMed

    Nagy, Miklós; Siegl, Zoltán; Szili, Krisztina; Fábos, Viktória; Kántor, Krisztina

    2016-06-28

    Measurement of equilibrium mass fraction of a surfactant as a function of the sorbent mass fraction was performed on gel sorbent-solution systems in order to determine binding isotherms and to calculate fundamental characteristics of the solvation layer. With application of this new method, it was possible to calculate specific solvation/sorption capacity and absolute average local composition of the solvation layer. It has been pointed out by systematic variation of the composition (hydrophobicity) and degree of cross-linking of the gel sorbents that the ratio of components in the solvation layer can be constant in a given range of equilibrium mass fraction of the sodium dodecyl sulfate (SDS) and that the specific solvation/sorption capacity of gel sorbents can be much greater than that of activated carbon type adsorbents. On the basis of a mixed sorbent model, it turned out from calculations that there is no preferential binding of SDS close to the chemical cross-links and that the surfactant molecules prefer vinyl acetate groups as binding sites. The density of cross-links regulates the aggregation number of the bound surfactant as well. For loose gels, both binding isotherms and swelling curves show that the surfactant-polymer interaction is a strongly cooperative process. The result of these experiments may influence the general concept of solvation/sorption isotherms and all related phenomena.

  6. Structural Determinants for Protein adsorption/non-adsorption to Silica Surface

    PubMed Central

    Mathé, Christelle; Devineau, Stéphanie; Aude, Jean-Christophe; Lagniel, Gilles; Chédin, Stéphane; Legros, Véronique; Mathon, Marie-Hélène; Renault, Jean-Philippe; Pin, Serge; Boulard, Yves; Labarre, Jean

    2013-01-01

    The understanding of the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest in both fundamental research and applications such as nanotechnology. However, despite intense research, the mechanisms and the structural determinants of protein/surface interactions are still unclear. We developed a strategy consisting in identifying, in a mixture of hundreds of soluble proteins, those proteins that are adsorbed on the surface and those that are not. If the two protein subsets are large enough, their statistical comparative analysis must reveal the physicochemical determinants relevant for adsorption versus non-adsorption. This methodology was tested with silica nanoparticles. We found that the adsorbed proteins contain a higher number of charged amino acids, particularly arginine, which is consistent with involvement of this basic amino acid in electrostatic interactions with silica. The analysis also identified a marked bias toward low aromatic amino acid content (phenylalanine, tryptophan, tyrosine and histidine) in adsorbed proteins. Structural analyses and molecular dynamics simulations of proteins from the two groups indicate that non-adsorbed proteins have twice as many π-π interactions and higher structural rigidity. The data are consistent with the notion that adsorption is correlated with the flexibility of the protein and with its ability to spread on the surface. Our findings led us to propose a refined model of protein adsorption. PMID:24282583

  7. Characteristics of selective fluoride adsorption by biocarbon-Mg/Al layered double hydroxides composites from protein solutions: kinetics and equilibrium isotherms study.

    PubMed

    Ma, Wei; Lv, Tengfei; Song, Xiaoyan; Cheng, Zihong; Duan, Shibo; Xin, Gang; Liu, Fujun; Pan, Decong

    2014-03-15

    In the study, two novel applied biocarbon-Mg/Al layered double hydroxides composites (CPLDH and CPLDH-Ca) were successfully prepared and characterized by TEM, ICP-AES, XFS, EDS, FTIR, XRD, BET and pHpzc. The fluoride removal efficiency (RF) and protein recovery ratio (RP) of the adsorbents were studied in protein systems of lysozyme (LSZ) and bovine serum albumin (BSA). The results showed that the CPLDH-Ca presented remarkable performance for selective fluoride removal from protein solution. It reached the maximum RF of 92.1% and 94.8% at the CPLDH-Ca dose of 2.0g/L in LSZ and BSA system, respectively. The RP in both systems of LSZ and BSA were more than 90%. Additionally, the RP of CPLDH-Ca increased with the increase of ionic strengths, and it almost can be 100% with more than 93% RF. Fluoride adsorption by the CPLDH-Ca with different initial fluoride concentrations was found to obey the mixed surface reaction and diffusion controlled adsorption kinetic model, and the overall reaction rate is probably controlled by intra-particle diffusion, boundary layer diffusion and reaction process. The adsorption isotherms of fluoride in BSA system fit the Langmuir-Freundlich model well. The BSA has synergistic effect on fluoride adsorption and the degree increased with the increase of the initial BSA concentration.

  8. Temperature dependence of adsorption of PEGylated lysozyme and pure polyethylene glycol on a hydrophobic resin: comparison of isothermal titration calorimetry and van't Hoff data.

    PubMed

    Werner, Albert; Hackemann, Eva; Hasse, Hans

    2014-08-22

    The influence of temperature on the adsorption of PEGylated lysozyme and pure PEG on Toyopearl PPG-600M, a hydrophobic resin, is studied by batch equilibrium measurements and pulse response experiments. Differently PEGylated lysozymes are used for the studies, enabling a systematic variation of the solute properties. Either ammonium sulfate or sodium chloride are added. The enthalpy of adsorption is calculated from a van't Hoff analysis based on these data. It is also directly measured by Isothermal Titration Calorimetry. In the investigated temperature range from 5 °C to 35 °C adsorption is favored by higher temperatures and hence endothermic. The results of the van't Hoff analysis of the equilibrium and the pulse response data agree well. Discrepancies between enthalpies of adsorption obtained by calorimetry and van't Hoff analysis are found and discussed. We conclude that the most likely explanation is that thermodynamic equilibrium is not reached in the experiments even though they were carried out carefully and in the generally accepted way.

  9. Adsorption of Gemini surfactants onto clathrate hydrates.

    PubMed

    Salako, O; Lo, C; Couzis, A; Somasundaran, P; Lee, J W

    2013-12-15

    This work addresses the adsorption of two Gemini surfactants at the cyclopentane (CP) hydrate-water interface. The Gemini surfactants investigated here are Dowfax C6L and Dowfax 2A1 that have two anionic head groups and one hydrophobic tail group. The adsorption of these surfactants was quantified using adsorption isotherms and the adsorption isotherms were determined using liquid-liquid titrations. Even if the Gemini surfactant adsorption isotherms show multi-layer adsorption, they possess the first Langmuir layer with the second adsorption layer only evident in the 2A1 adsorption isotherm. Zeta potentials of CP hydrate particles in the surfactant solution of various concentrations of Dowfax C6L and Dowfax 2A1 were measured to further explain their adsorption behavior at the CP hydrate-water interface. Zeta potentials of alumina particles as a model particle system in different concentrations of sodium dodecyl sulfate (SDS), Dowfax C6L and Dowfax 2A1 were also measured to confirm the configuration of all the surfactants at the interface. The determination of the isotherms and zeta-potentials provides an understanding framework for the adsorption behavior of the two Gemini surfactants at the hydrate-water interface. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Determining isothermal line of laser-welding plasma by computerizing RGB tricolor method

    NASA Astrophysics Data System (ADS)

    Liu, Jinhe; Yang, Decai; Lu, Kaijing; Hu, Wanqian

    1999-09-01

    In this paper, according to the relation of light source, RGB tricolor and color temperature, considering the rule of constant brightness, firstly, the color pictures of laser welding plasma were input into computer in the term of COLOR RGB through AGFA SCANNER, then grading grey scale properly to each picture element's three primary color, so the constant value lines of three primary color and the constant value line of the color picture brightness can be determined. Apparently, each constant value line of brightness corresponds a isothermal line and the denser the constant value lines are, the larger the gradient of temperature change is.

  11. Equilibrium sorption isotherms for nitrate on resin Amberlite IRA 400.

    PubMed

    Chabani, M; Amrane, A; Bensmaili, A

    2009-06-15

    The adsorption isotherms of nitrate on resin Amberlite IRA 400 at various pH, in the range 2-12, were experimentally determined by batch tests. The experimental data have been analysed using the Langmuir, Freundlich, Redlich-Peterson and Sips isotherms models. In order to determine the best fit isotherm, two error analysis methods were used to evaluate the data: the regression correlation coefficient, and the statistic Chi-square test. In the range of pH tested, the Sips model was found to give the best fit of the adsorption isotherm data. The maximum adsorption capacity can be deduced from the obtained correlation coefficients and was found to decrease for increasing pH.

  12. Bioremoval of Basic Violet 3 and Acid Blue 93 by Pseudomonas putida and its adsorption isotherms and kinetics.

    PubMed

    Arunarani, A; Chandran, Preethy; Ranganathan, B V; Vasanthi, N S; Sudheer Khan, S

    2013-02-01

    Basic Violet 3 and Acid Blue 93 are the most important group of synthetic colourants extensively used in textile industries for dyeing cotton, wool, silk and nylon. Release of these dye pollutants in to the environment adversely affects the human health and aquatic organisms. The present study we used Pseudomonas putida MTCC 4910 for the adsorptive removal of Basic Violet 3 and Acid Blue 93 from the aqueous solutions. The pH (4-9) and NaCl concentrations (1mM-1M) did not influence the adsorption process. The equilibrium adsorption process fitted well to Freundlich model than Langmuir model. The kinetics of adsorption fitted well by pseudo-second-order. Thus in the present study an attempt has been made to exploit the dye removal capability of P. putida MTCC 4910, and it was found to be an efficient microbe that could be used for bio removal of dyes from textile effluents.

  13. Determination of kinetics and heat of hydrolysis for non-homogenous substrate by isothermal calorimetry.

    PubMed

    Tafoukt, D; Soric, A; Sigoillot, J-C; Ferrasse, J-H

    2017-04-01

    The competitiveness of the second-generation bioethanol by biotechnological process requires an effective and quantitative control of biochemical reactions. In this study, the potential of isothermal calorimetry technique to measure heat and kinetics of a non-homogeneous substrate enzymatic hydrolysis is intended. Using this technique, optimum temperature of the enzymes used for lignocellulosic molecules hydrolysis was determined. Thus, the amount of substrate-to-enzyme ratio was highlighted as an important parameter of the hydrolysis yield. Furthermore, a new enzymes' cocktail efficiency consisting of a mix of cellulases and cellobiose dehydrogenase (CDH) was qualified by this technique. The results showed that this cocktail allowed the production of a high amount of gluconic acid that could improve the attractiveness of these second-generation biofuels. From the set of experiments, the hydrolysis heat of wheat straw was derived and a meaningful value of -32.2 ± 3.2 J g(-1) (gram reducing sugars product) is calculated. Then, isothermal measurements were used to determine kinetic constants of the cellulases and CDH mix on wheat straw. Results showed that this enzyme cocktail has an optimal rate at 45 °C in the range of temperatures tested (40-55 °C).

  14. Beta-glucan rich composite flour biscuits: modelling of moisture sorption isotherms and determination of sorption heat.

    PubMed

    Panjagari, Narender Raju; Singh, Ashish Kumar; Ganguly, Sangita; Indumati, Kangampalayam Palaniswamy

    2015-09-01

    Moisture adsorption isotherms of beta-glucan rich composite flour biscuits were determined at 28, 37 and 45 °C. Experimental data were fitted to 12 mathematical models. A nonlinear regression analysis method was used to evaluate the constants of the sorption equations. Statistical testing of sorption models was carried out using multiple criteria such as coefficient of determination (R (2) ), reduced chi-square (χ (2) ), mean relative percent deviation modulus (P) and plotting of residuals. BET (R (2)  > 0.99; χ (2)  < 0.09; P < 7.52; RMS% < 9.22) was found suitable for predicting the M e -a w relationship in the a w range of 0.10-0.53. However, in the a w range of 0.10-0.85, although Ferro-Fontan and GAB models were found to have high R (2) values (>0.99), Peleg model was found to meet the multiple statistical criteion (R (2)  > 0.9996; χ (2)  < 0.04; P < 3.97; RMS% < 7.09). Properties of sorbed water were also determined. BET, GAB and Caurie monolayer moisture contents ranged from 2.64 to 3.36, 1.29-2.66 and 1.88-3.38 % d.b., respectively. Second-order regression equation was found to describe the relation between monolayer moisture content, M o and temperature, t (°C). The isosteric heat, calculated using Clausius-Clapeyron equation, was varied between 1.46 and 50.39 kJ g(-1) mol(-1) at moisture levels 1-12 % (d.b.). An exponential relationship was observed between the isosteric heat of sorption and moisture content.

  15. Testing isotherm models and recovering empirical relationships for adsorption in microporous carbons using virtual carbon models and grand canonical Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Terzyk, Artur P.; Furmaniak, Sylwester; Gauden, Piotr A.; Harris, Peter J. F.; Włoch, Jerzy

    2008-09-01

    Using the plausible model of activated carbon proposed by Harris and co-workers and grand canonical Monte Carlo simulations, we study the applicability of standard methods for describing adsorption data on microporous carbons widely used in adsorption science. Two carbon structures are studied, one with a small distribution of micropores in the range up to 1 nm, and the other with micropores covering a wide range of porosity. For both structures, adsorption isotherms of noble gases (from Ne to Xe), carbon tetrachloride and benzene are simulated. The data obtained are considered in terms of Dubinin-Radushkevich plots. Moreover, for benzene and carbon tetrachloride the temperature invariance of the characteristic curve is also studied. We show that using simulated data some empirical relationships obtained from experiment can be successfully recovered. Next we test the applicability of Dubinin's related models including the Dubinin-Izotova, Dubinin-Radushkevich-Stoeckli, and Jaroniec-Choma equations. The results obtained demonstrate the limits and applications of the models studied in the field of carbon porosity characterization.

  16. Reconstruction of the welding thermal cycle and determination of residual stresses from isotherm traces

    NASA Astrophysics Data System (ADS)

    Goldstein, R. V.; Kozintsev, V. M.; Kurov, D. A.; Popov, A. L.; Chelyubeev, D. A.

    2013-01-01

    The earlier method for reconstructing the welding thermal cycle from the dislocation of the temper colors and the cold weld joint boundaries was applied in the case of contact flash welding of rod samples. The possibility of using this method to determine the key parameters of the welding processes such as the approach speed of the welded rods, the temperature at the weld center at the beginning of cooling, and the time in which the characteristic temperature isotherm moves to the largest distance from the weld center, which allow one to reconstruct the temperature distribution curve near the weld at any time after the heating termination, was shown. The reconstructed thermal cycle was used to determine the residual stresses in the weld and in the heat-affected zone.

  17. Kinetics of trypsin-catalyzed hydrolysis determined by isothermal titration calorimetry.

    PubMed

    Maximova, Ksenia; Trylska, Joanna

    2015-10-01

    Isothermal titration calorimetry (ITC) was applied to determine enzymatic activity and inhibition. We measured the Michaelis-Menten kinetics for trypsin-catalyzed hydrolysis of two substrates, casein (an insoluble macromolecule substrate) and Nα-benzoyl-dl-arginine β-naphthylamide (a small substrate), and estimated the thermodynamic parameters in the temperature range from 20 to 37°C. The inhibitory activities of reversible (small molecule benzamidine) and irreversible (small molecule phenylmethanesulfonyl fluoride and macromolecule α1-antitrypsin) inhibitors of trypsin were also determined. We showed the usefulness of ITC for fast and direct measurement of inhibition constants and half-maximal inhibitory concentrations and for predictions of the mechanism of inhibition. ITC kinetic assays could be an easy and straightforward way to estimate Michaelis-Menten constants and the effectiveness of inhibitors as well as to predict the inhibition mechanism. ITC efficiency was found to be similar to that of classical spectrophotometric enzymatic assays.

  18. Importance of the accuracy of experimental data in the nonlinear chromatographic determination of adsorption energy distributions

    SciTech Connect

    Stanley, B.J.; Guiochon, G. Oak Ridge National Lab., TN )

    1994-11-01

    Adsorption energy distributions (AEDs) are calculated from the classical, fundamental integral equation of adsorption using adsorption isotherms and the expectation-maximization method of parameter estimation. The adsorption isotherms are calculated from nonlinear elution profiles obtained from gas chromatographic data using the characteristic points method of finite concentration chromatography. Porous layer open tubular capillary columns are used to support the adsorbent. The performance of these columns is compared to that of packed columns in terms of their ability to supply accurate isotherm data and AEDs. The effect of the finite column efficiency and the limited loading factor on the accuracy of the estimated energy distributions is presented. This accuracy decreases with decreasing efficiency, and approximately 5000 theoretical plates are needed when the loading factor, L[sub f], equals 0.56 for sampling of a unimodal Gaussian distribution. Increasing L[sub f] further increases the contribution of finite efficiency to the AED and causes a divergence at the low-energy endpoint if too high. This occurs as the retention time approaches the holdup time. Data are presented for diethyl ether adsorption on porous silica and its C-18-bonded derivative. 36 refs., 8 figs., 2 tabs.

  19. Precipitation and surface adsorption of metal complexes during electropolishing. Theory and characterization with X-ray nanotomography and surface tension isotherms.

    PubMed

    Nave, Maryana I; Chen-Wiegart, Yu-chen Karen; Wang, Jun; Kornev, Konstantin G

    2015-09-21

    Electropolishing of metals often leads to supersaturation conditions resulting in precipitation of complex compounds. The solubility diagrams and Gibbs adsorption isotherms of the electropolishing products are thus very important to understand the thermodynamic mechanism of precipitation of reaction products. Electropolishing of tungsten wires in aqueous solutions of potassium hydroxide is used as an example illustrating the different thermodynamic scenarios of electropolishing. Electropolishing products are able to form highly viscous films immiscible with the surrounding electrolyte or porous shells adhered to the wire surface. Using X-ray nanotomography, we discovered a gel-like phase formed at the tungsten surface during electropolishing. The results of these studies suggest that the electropolishing products can form a rich library of compounds. The surface tension of the electrolyte depends on the metal oxide ions and alkali-metal complexes.

  20. Idealized Shale Sorption Isotherm Measurements to Determine Pore Volume, Pore Size Distribution, and Surface Area

    NASA Astrophysics Data System (ADS)

    Holmes, R.; Wang, B.; Aljama, H.; Rupp, E.; Wilcox, J.

    2014-12-01

    One method for mitigating the impacts of anthropogenic CO2-related climate change is the sequestration of CO2 in depleted gas and oil reservoirs, including shale. The accurate characterization of the heterogeneous material properties of shale, including pore volume, surface area, pore size distributions (PSDs) and composition is needed to understand the interaction of CO2 with shale. Idealized powdered shale sorption isotherms were created by varying incremental amounts of four essential components by weight. The first two components, organic carbon and clay, have been shown to be the most important components for CO2 uptake in shales. Organic carbon was represented by kerogen isolated from a Silurian shale, and clay groups were represented by illite from the Green River shale formation. The rest of the idealized shale was composed of equal parts by weight of SiO2 to represent quartz and CaCO3 to represent carbonate components. Baltic, Eagle Ford, and Barnett shale sorption measurements were used to validate the idealized samples. The idealized and validation shale sorption isotherms were measured volumetrically using low pressure N2 (77K) and CO2 (273K) adsorbates on a Quantachrome Autosorb IQ2. Gravimetric isotherms were also produced for a subset of these samples using CO2 and CH4adsorbates under subsurface temperature and pressure conditions using a Rubotherm magnetic suspension balance. Preliminary analyses were inconclusive in validating the idealized samples. This could be a result of conflicting reports of total organic carbon (TOC) content in each sample, a problem stemming from the heterogeneity of the samples and different techniques used for measuring TOC content. The TOC content of the validation samples (Eagle Ford and Barnett) was measured by Rock-Eval pyrolysis at Weatherford Laboratories, while the TOC content in the Baltic validation samples was determined by LECO TOC. Development of a uniform process for measuring TOC in the validation samples is

  1. Collecting Variable-concentration Isothermal Titration Calorimetry Datasets in Order to Determine Binding Mechanisms

    PubMed Central

    Freiburger, Lee A.; Mittermaier, Anthony K.; Auclair, Karine

    2011-01-01

    Isothermal titration calorimetry (ITC) is commonly used to determine the thermodynamic parameters associated with the binding of a ligand to a host macromolecule. ITC has some advantages over common spectroscopic approaches for studying host/ligand interactions. For example, the heat released or absorbed when the two components interact is directly measured and does not require any exogenous reporters. Thus the binding enthalpy and the association constant (Ka) are directly obtained from ITC data, and can be used to compute the entropic contribution. Moreover, the shape of the isotherm is dependent on the c-value and the mechanistic model involved. The c-value is defined as c = n[P]tKa, where [P]t is the protein concentration, and n is the number of ligand binding sites within the host. In many cases, multiple binding sites for a given ligand are non-equivalent and ITC allows the characterization of the thermodynamic binding parameters for each individual binding site. This however requires that the correct binding model be used. This choice can be problematic if different models can fit the same experimental data. We have previously shown that this problem can be circumvented by performing experiments at several c-values. The multiple isotherms obtained at different c-values are fit simultaneously to separate models. The correct model is next identified based on the goodness of fit across the entire variable-c dataset. This process is applied here to the aminoglycoside resistance-causing enzyme aminoglycoside N-6'-acetyltransferase-Ii (AAC(6')-Ii). Although our methodology is applicable to any system, the necessity of this strategy is better demonstrated with a macromolecule-ligand system showing allostery or cooperativity, and when different binding models provide essentially identical fits to the same data. To our knowledge, there are no such systems commercially available. AAC(6')-Ii, is a homo-dimer containing two active sites, showing cooperativity between

  2. Optimization of simultaneous ultrasound assisted toxic dyes adsorption conditions from single and multi-components using central composite design: Application of derivative spectrophotometry and evaluation of the kinetics and isotherms.

    PubMed

    Sharifpour, Ebrahim; Haddadi, Hedayat; Ghaedi, Mehrorang

    2017-05-01

    Present study is devoted on the efficient application of Sn (O, S)-NPs -AC for simultaneous sonicated accelerated adsorption of some dyes from single and multi-components systems. Sn (O, S) nanoparticles characterization by FESEM, EDX, EDX mapping and XRD revel its nano size structure with high purity of good crystallinity. Present adsorbent due to its nano spherical shape particles with approximate diameter of 40-60nm seems to be highly effective in this regard. The effects of five variables viz. pH (3.5-9.5), 0.010-0.028g of adsorbent and 0.5-6.5min mixing by sonication is good and practical conditions for well and expected adsorption of MB and CV over concentration range of 3-15mgL(-1). Combination of response surface methodology (RSM) based on central composite design (CCD) and subsequent of analysis of variance (ANOVA) and t-test statistics were used to test the significance of the independent variables and their interactions. Regression analysis reveal that experimental data with high repeatability and efficiency well represented by second-order polynomial model with coefficient of determination value of 0.9988 and 0.9976 for MB and CV, respectively following conditions like pH 8.0, 0.016g adsorbent, 15mgL(-1) of both dyes 4min sonication time is proportional with achievement of experimental removal percentage of 99.80% of MB and 99.87% of CV in batch experiment. Evaluation and estimation of adsorption data with Langmuir and Freundlich isotherm well justify the results based on their correlation coefficient and error analysis confirm that Langmuir model is good model with adsorption capacity of 109.17 and 115.34mgg(-1) in single system and 95.69 and 102.99mgg(-1) in binary system for MB and CV, respectively. MB and CV kinetic and rate of adsorption well fitted by pseudo-second order equation both in single and binary systems and experimental results denote more and favorable adsorption of CV than respective value in single system. The pseudo-second-order rate

  3. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms.

    PubMed

    Malamis, S; Katsou, E

    2013-05-15

    Adsorption and ion exchange can be effectively employed for the treatment of metal-contaminated wastewater streams. The use of low-cost materials as sorbents increases the competitive advantage of the process. Natural and modified minerals have been extensively employed for the removal of nickel and zinc from water and wastewater. This work critically reviews existing knowledge and research on the uptake of nickel and zinc by natural and modified zeolite, bentonite and vermiculite. It focuses on the examination of different parameters affecting the process, system kinetics and equilibrium conditions. The process parameters under investigation are the initial metal concentration, ionic strength, solution pH, adsorbent type, grain size and concentration, temperature, agitation speed, presence of competing ions in the solution and type of adsorbate. The system's performance is evaluated with respect to the overall metal removal and the adsorption capacity. Furthermore, research works comparing the process kinetics with existing reaction kinetic and diffusion models are reviewed as well as works examining the performance of isotherm models against the experimental equilibrium data.

  4. Enzyme activity determination on macromolecular substrates by isothermal titration calorimetry: application to mesophilic and psychrophilic chitinases.

    PubMed

    Lonhienne, T; Baise, E; Feller, G; Bouriotis, V; Gerday, C

    2001-02-09

    Isothermal titration calorimetry has been applied to the determination of the kinetic parameters of chitinases (EC 3.2.1.14) by monitoring the heat released during the hydrolysis of chitin glycosidic bonds. Experiments were carried out using two different macromolecular substrates: a soluble polymer of N-acetylglucosamine and the insoluble chitin from crab shells. Different experimental temperatures were used in order to compare the thermodependence of the activity of two chitinases from the psychrophile Arthrobacter sp. TAD20 and of chitinase A from the mesophile Serratia marcescens. The method allowed to determine unequivocally the catalytic rate constant k(cat), the activation energy (E(a)) and the thermodynamic activation parameters (DeltaG(#), DeltaH(#), DeltaS(#)) of the chitinolytic reaction on the soluble substrate. The catalytic activity has also been determined on insoluble chitin, which displays an effect of substrate saturation by chitinases. On both substrates, the thermodependence of the activity of the psychrophilic chitinases was lower than that observed with the mesophilic counterpart.

  5. Precipitation Kinetics in Solutionized Aluminum Alloy 2124: Determination by Scanning and Isothermal Calorimetry

    NASA Astrophysics Data System (ADS)

    Smith, George W.

    1998-03-01

    Kinetics and energetics of precipitation in solutionized aluminum alloy 2124 have been determined by differential scanning calorimetry (DSC) and differential isothermal calorimetry (DIC). DSC experiments at 7 temperature scan rates, analyzed by a Kissinger method, gave activation energies and rate constants. DIC experiments yielded time constants from a 2-exponential fit and a rate-averaging technique. It appears that the 2-exponential fit is applicable when two distinct processes contribute to precipitation, while the rate-averaged time constant is appropriate when one process is dominant. Activation energies and time constants from DSC and DIC agree well for both GP zone formation and precipitation. Kinetics results for GP zone dissolution were obtainable only from DSC experiments. DSC and DIC both indicate that, after GP zones have formed and dissolved, two processes are involved in precipitation, as DSC studies of Badini et al. showed for a comparable alloy (2024). The two precipitation mechanisms in alloy 2124 may involve formation of CuAl2 and CuMgAl2 phases. ΔQ, the heat evolved during GP zone formation and precipitation, was measured by DICover the temperature range 30 to 300 ^^oC. At the temperature of maximum GP zone formation rate ( 70 ^^oC) ΔQ ≈ -14.7 J/g; at the precipitation maximum ( 270 ^^oC) ΔQ ≈ -27.2 J/g.

  6. Determination of the kinetic parameters of BeO using isothermal decay method.

    PubMed

    Azorin Nieto, Juan; Vega, Claudia Azorin; Montalvo, Teodoro Rivera; Cabrera, Eugenio Torijano

    2016-02-01

    Most of the existing methods for obtaining the frequency factors make use of the trap depth (activation energy) making some assumptions about the order of the kinetics. This causes inconsistencies in the reported values of trapping parameters due that the values of the activation energy obtained by different methods differ appreciably among them. Then, it is necessary to use a method independent of the trap depth making use of the isothermal luminescence decay (ILD) method. The trapping parameters associated with the prominent glow peak of BeO (280°C) are reported using ILD method. As a check, the trap parameters are also calculated by glow curve shape (Chen's) method after isolating the prominent glow peak by thermal cleaning technique. Our results show a very good agreement between the trapping parameters calculated by the two methods. ILD method was used for determining the trapping parameters of BeO. Results obtained applying this method are in good agreement with those obtained using other methods, except in the value of the frequency factor.

  7. Isothermal titration calorimetry as a tool to determine the thermodynamics of demicellization processes

    NASA Astrophysics Data System (ADS)

    Kessler, Anne; Zeeb, Benjamin; Kranz, Bertolt; Menéndez-Aguirre, Orquídea; Fischer, Lutz; Hinrichs, Jörg; Weiss, Jochen

    2012-10-01

    Demicellization of a 90 mM sodium dodecyl sulfate (SDS) solution in water at 10, 22, and 30 °C was studied by isothermal titration calorimetry (ITC). ΔH of the demicellization process was strongly temperature dependent, having an exothermic progression (-20.4 ± 0.9 kJ/mol, max) at 10 °C and an endothermic one (3.7 ± 1.2 kJ/mol, max) at 30 °C. ΔH for micelle dilution followed a slightly endothermic progression (0.9 ± 0.5 kJ/mol at 30 °C, 0.7 ± 1.3 kJ/mol at 22 °C, and 0.0 ± 0.5 kJ/mol at 10 °C) at all studied temperatures. No differences in ΔH for micelle dilution and demicellization was observed at 22 °C. The temperature dependence of ΔH measured by ITC could be related to hydrophobic interactions. Therefore, ITC was shown to be a useful tool to describe the thermodynamics of demicellization processes and in addition to determine alterations in ΔH caused by changes in hydrophobic and steric/electrostatic interactions.

  8. Isothermal titration calorimetry determination of individual rate constants of trypsin catalytic activity.

    PubMed

    Aguirre, César; Condado-Morales, Itzel; Olguin, Luis F; Costas, Miguel

    2015-06-15

    Determination of individual rate constants for enzyme-catalyzed reactions is central to the understanding of their mechanism of action and is commonly obtained by stopped-flow kinetic experiments. However, most natural substrates either do not fluoresce/absorb or lack a significant change in their spectra while reacting and, therefore, are frequently chemically modified to render adequate molecules for their spectroscopic detection. Here, isothermal titration calorimetry (ITC) was used to obtain Michaelis-Menten plots for the trypsin-catalyzed hydrolysis of several substrates at different temperatures (278-318K): four spectrophotometrically blind lysine and arginine N-free esters, one N-substituted arginine ester, and one amide. A global fitting of these data provided the individual rate constants and activation energies for the acylation and deacylation reactions, and the ratio of the formation and dissociation rates of the enzyme-substrate complex, leading also to the corresponding free energies of activation. The results indicate that for lysine and arginine N-free esters deacylation is the rate-limiting step, but for the N-substituted ester and the amide acylation is the slowest step. It is shown that ITC is able to produce quality kinetic data and is particularly well suited for those enzymatic reactions that cannot be measured by absorption or fluorescence spectroscopy.

  9. The Freundlich adsorption isotherm constants and prediction of phosphorus bioavailability as affected by different phosphorus sources in two Kansas soils.

    PubMed

    Shafqat, Mustafa N; Pierzynski, Gary M

    2014-03-01

    Phosphorus (P) adsorption onto soil constituents influences P bioavailability from both agronomic and environmental perspectives. In this study, the P availability from different P sources along with utility of Freundlich adsorption coefficients on the predictability of various crop growth parameters were assessed. Two soils were amended with 150mgPkg(-1) each from six different P sources comprised of manures from two types of ruminants animals, three types of monogastric animals, and inorganic P fertilizer. Corn (Zea mays) was grown and harvested seven times under greenhouse conditions to remove P from the P amended treatments. The application of all P sources reduced the value of Freundlich K and increased the value of Freundlich 1/n and equilibrium P concentration (EPC0) in both soils compared to the un-amended control before cropping. The swine (Sus scrofa) manure (HM) resulted in significant smaller values of Freundlich K and larger values of 1/n in the P deficient Eram-Lebo soil compared to other P sources while, the opposite was true for the turkey (Meleagris gallopava) litter (TL) in the Ulysses soil. The corn biomass, tissue P concentration and P uptake were significantly influenced by all P sources during the first harvest and the total P uptake during seven harvests in both soils compared to the control treatment. Both Freundlich coefficients had strong relationships with the aforementioned corn parameters in the P deficient Eram-Lebo soil while, strength of the association was weak or missing in the Ulysses soil which had optimum levels of antecedent P. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Phycoremediation and adsorption isotherms of cadmium and copper ions by Merismopedia tenuissima and their effect on growth and metabolism.

    PubMed

    Fawzy, Mustafa A

    2016-09-01

    The current study tends to investigate the removal of cadmium and copper ions by Merismopedia tenuissima, grown in different concentrations of cadmium and copper ions, as well to investigate their effects on growth and metabolism. Sorption isotherms of Langmuir and Freundlich were obtained for the quantitative description of cadmium and copper uptake by M. tenuissima. Langmuir model adequately to describe the data of biosorption for these metals. However, the Freundlich model could work well in case of Cu(2+) only. M. tenuissima appears to be more efficient for removing Cd(2+) ions than Cu(2+). However, the affinity constant of Cu(2+) on the biomass of M. tenuissima was higher than Cd(2+) indicating that M. tenuissima is more tolerant to Cd(2+) phytotoxicity than Cu(2+). FTIR analysis of algae with and without biosorption revealed the presence of carboxyl, amino, amide and hydroxyl groups, which were responsible for biosorption of Cd(+2) and Cu(+2) ions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Proton adsorption onto alumina: extension of multisite complexation (MUSIC) theory

    SciTech Connect

    Nagashima, K.; Blum, F.D.

    1999-09-01

    The adsorption isotherm of protons onto a commercial {gamma}-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species.

  12. Determination of affinity and efficacy of acetylcholinesterase inhibitors using isothermal titration calorimetry.

    PubMed

    Draczkowski, Piotr; Tomaszuk, Anna; Halczuk, Pawel; Strzemski, Maciej; Matosiuk, Dariusz; Jozwiak, Krzysztof

    2016-05-01

    Acetylcholinesterase (AChE), an enzyme rapidly terminating nerve signals at synapses of cholinergic neurons is an important drug target in treatment of Alzheimer's disease and related memory loss conditions. Here we present comprehensive use of isothermal titration calorimetry (ITC) for investigation of AChE kinetics and AChE-inhibitor interactions. Acetylcholinesterase (AChE, EC 3.1.1.7) from Electrophorus electricus was assayed for interactions with five well known AChE inhibitors, galanthamine, tacrine, donepezil, edrophonium and ambenonium. In ITC experiments the inhibitors were injected to the enzyme solution solely (for thermodynamic characterization of binding) or in presence of the substrate, acetylcholine (for determination of inhibitors potency). Detailed description of various experimental protocols is presented, allowing evaluation of inhibitors potency (in terms of IC50 and Ki) and thermodynamic parameters of the binding. The potency of tested inhibitors was in nano to micromolar range which corresponded to activities determined in conventional method. Binding of all inhibitors showed to be enthalpy driven and obtained Ka values demonstrated good correlation with the data from standard Ellman's assay. Obtained results confirmed the usability of the ITC technique for comprehensive characterization of AChE-inhibitor interactions and AChE kinetics. The method reduced the complexity of reaction mixture and interference problems with the advantage of using natural substrates. The work reports complete thermodynamic characteristics of the AChE - inhibitor complexes. Due to the universal character of ITC measurements, described protocols can be easily adapted to other enzymatic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd(2+) and Pb(2+) removal by mango peel waste.

    PubMed

    Iqbal, Muhammad; Saeed, Asma; Zafar, Saeed Iqbal

    2009-05-15

    Mango peel waste (MPW) was evaluated as a new sorbent for the removal of Cd(2+) and Pb(2+) from aqueous solution. The maximum sorption capacity of Cd(2+) and Pb(2+) was found to be 68.92 and 99.05mgg(-1), respectively. The kinetics of sorption of both metals was fast, reaching at equilibrium in 60min. Sorption kinetics and equilibria followed pseudo-second order and Langmuir adsorption isotherm models. FTIR analysis revealed that carboxyl and hydroxyl functional groups were mainly responsible for the sorption of Cd(2+) and Pb(2+). Chemical modification of MPW for blocking of carboxyl and hydroxyl groups showed that 72.46% and 76.26% removal of Cd(2+) and Pb(2+), respectively, was due to the involvement of carboxylic group, whereas 26.64% and 23.74% was due to the hydroxyl group. EDX analysis of MPW before and after metal sorption and release of cations (Ca(2+), Mg(2+), Na(+), K(+)) and proton H(+) from MPW with the corresponding uptake of Cd(2+) and Pb(2+) revealed that the main mechanism of sorption was ion exchange. The regeneration experiments showed that the MPW could be reused for five cycles without significant loss in its initial sorption capacity. The study points to the potential of new use of MPW as an effective sorbent for the removal of Cd(2+) and Pb(2+) from aqueous solution.

  14. Isotherms and kinetic study of dihydrogen and hydrogen phosphate ions (H{2}PO{4}- and HPO{4}2-) adsorption onto crushed plant matter of the semi-arid zones of Morocco: Asphodelus microcarpus, Asparagus albus and Senecio anthophorbium

    NASA Astrophysics Data System (ADS)

    Chiban, M.; Benhima, H.; Saadi, B.; Nounah, A.; Sinan, F.

    2005-03-01

    In the present work H{2}PO4- and HPO42- ions adsorption onto organic matter (OM) obtained from ground dried three plants growing in arid zones of Morocco has been studied. The adsorption process is affected by various parameters such as contact time, particle size and initial concentration of phosphate solution (Ci ≤ 30 mg/l). The uptake of both ions is increased by increasing the concentration of them selves. The retention of phosphate ions by Asphodelus microcarpus, Asparagus albus are well defined by several isotherms such as the Langmuir, Temkin and Freundlich.

  15. Determination of Kinetic and Thermodynamic Parameters that Describe Isothermal Seed Germination: A Student Research Project.

    ERIC Educational Resources Information Center

    Hageseth, Gaylord T.

    1982-01-01

    Describes a project for students to collect and fit data to a theoretical mathematical model that describes the rate of isothermal seed germination, including activation energy for substrate and produce and the autocatalytic reaction, and changes in enthalpy, entropy, and the Gibb's free energy. (Author/SK)

  16. Determination of Kinetic and Thermodynamic Parameters that Describe Isothermal Seed Germination: A Student Research Project.

    ERIC Educational Resources Information Center

    Hageseth, Gaylord T.

    1982-01-01

    Describes a project for students to collect and fit data to a theoretical mathematical model that describes the rate of isothermal seed germination, including activation energy for substrate and produce and the autocatalytic reaction, and changes in enthalpy, entropy, and the Gibb's free energy. (Author/SK)

  17. Adsorption of thorium from aqueous solutions by perlite.

    PubMed

    Talip, Z; Eral, M; Hiçsönmez, U

    2009-02-01

    The use of expanded perlite for the adsorption of thorium from aqueous solution by batch technique is presented. The effects of particle size, pH of the solution, initial thorium concentration, shaking time, V/m ratio and temperature were determined. It was found that the adsorption capacity increases by the increase in the pH of the suspensions. The rate of thorium adsorption on expanded perlite was observed to be fast in the first hour of the reaction time. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models and the adsorption experiments conducted at 30 +/- 1 degrees C showed that the adsorption isotherms correlated well with the Langmuir model. From the adsorption data, thermodynamic parameters such as DeltaG(o), DeltaH(o) and DeltaS(o) were calculated as a function of temperature.

  18. Isotherm and kinetic models and cell surface analysis for determination of the mechanism of metal sorption by Aspergillus versicolor.

    PubMed

    Gazem, Mufedah A H; Nazareth, Sarita

    2012-07-01

    The isolate Aspergillus versicolor was obtained from an estuary, which is exposed to metal contamination. It was found to have a good metal tolerance and sorption capacity. Further studies revealed that the rate of metal removal from solution is very rapid in the first 5-10 min, and is favoured by a pH of 6.0. The biosorption data obtained was explained by the Freundlich adsorption isotherm model and followed a pseudo-second order kinetics reaction. The fungus showed a higher accumulation of fatty acids when grown in presence of metals as compared to the mycelium grown in absence of the metal; there was also an increase in the saturation index of fatty acids in presence of Cu(2+) which serves as a protective mechanism for the fungus. Fourier Transform Infrared, scanning electron microscopy and EDAX analysis indicated that metal removal from solution by A. versicolor occurred by a passive adsorption to the fungal cell surface, involving an ion exchange mechanism.

  19. Approaches to determine the enthalpy of crystallisation, and amorphous content, of lactose from isothermal calorimetric data.

    PubMed

    Dilworth, Sarah E; Buckton, Graham; Gaisford, Simon; Ramos, Rita

    2004-10-13

    Amorphous lactose will crystallise rapidly if its glass transition temperature is reduced below its storage temperature. This is readily achieved by storing samples at ambient temperature and a relative humidity (RH) of greater than 50%. If the sample is monitored in an isothermal microcalorimeter as it crystallises, the heat changes associated with the event can be measured; indeed this is one of the methods used to quantify the amorphous content of powders and formulations. However, variations in the calculation methods used to determine these heat changes have led to discrepancies in the values reported in the literature and frequently make comparison of data from different sources difficult. Data analysis and peak integration software allow the selection and integration of specific areas of complex traces with great reproducibility; this has led to the observation that previously ignored artefacts are in fact of sufficient magnitude to affect calculated enthalpies. In this work a number of integration methodologies have been applied to the analysis of amorphous spray-dried lactose, crystallised under 53 or 75% RH at 25 degrees C. The data allowed the selection of a standard methodology from which reproducible heat changes could be determined. The method was subsequently applied to the analysis of partially amorphous lactose samples (containing 1-100% (w/w) amorphous content) allowing the quantification limit of the technique to be established. It was found that the best approach for obtaining reproducible results was (i) to crystallise under an RH of 53%, because this slowed the crystallisation response allowing better experimental measurement and (ii) to integrate all the events occurring in the ampoule, rather than trying to select only that region corresponding to crystallisation, since it became clear that the processes occurring in the cell overlapped and could not be deconvoluted. The technique was able to detect amorphous contents as low as 1% (w

  20. Using Isothermal Microcalorimetry to Determine Compatibility of Structural Materials with High-Test Hydrogen Peroxide (HTP) Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy; Villegas, Yvonne; Nwosisi, Genne; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    High-Test Hydrogen Peroxide (HTP) propellant (equal to or greater than 70%) offers many advantages in space launch applications. However, materials used in construction of propulsion systems must be shown to be compatible with HTP. Isothermal Microcalorimetry (IMC) was used to determine the compatibility of several metallic and non-metallic materials with 90% HTP. The results of these experiments agreed with those from immersion bath tests when the values were converted to % Active Oxygen Loss per week (%AOL/wk).

  1. Using Isothermal Microcalorimetry to Determine Compatibility of Structural Materials with High-Test Hydrogen Peroxide (HTP) Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy; Villegas, Yvonne; Nwosisi, Genne; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    High-Test Hydrogen Peroxide (HTP) propellant (equal to or greater than 70%) offers many advantages in space launch applications. However, materials used in construction of propulsion systems must be shown to be compatible with HTP. Isothermal Microcalorimetry (IMC) was used to determine the compatibility of several metallic and non-metallic materials with 90% HTP. The results of these experiments agreed with those from immersion bath tests when the values were converted to % Active Oxygen Loss per week (%AOL/wk).

  2. Label-Free Determination of the Dissociation Constant of Small Molecule-Aptamer Interaction by Isothermal Titration Calorimetry.

    PubMed

    Vogel, Marc; Suess, Beatrix

    2016-01-01

    Isothermal titration calorimetry (ITC) is a powerful label-free technique to determine the binding constant as well as thermodynamic parameters of a binding reaction and is therefore well suited for the analysis of small molecule-RNA aptamer interaction. We will introduce you to the method and present a protocol for sample preparation and the calorimetric measurement. A detailed note section will point out useful tips and pitfalls.

  3. Multilayer adsorption on fractal surfaces.

    PubMed

    Vajda, Péter; Felinger, Attila

    2014-01-10

    Multilayer adsorption is often observed in liquid chromatography. The most frequently employed model for multilayer adsorption is the BET isotherm equation. In this study we introduce an interpretation of multilayer adsorption measured on liquid chromatographic stationary phases based on the fractal theory. The fractal BET isotherm model was successfully used to determine the apparent fractal dimension of the adsorbent surface. The nonlinear fitting of the fractal BET equation gives us the estimation of the adsorption equilibrium constants and the monolayer saturation capacity of the adsorbent as well. In our experiments, aniline and proline were used as test molecules on reversed phase and normal phase columns, respectively. Our results suggest an apparent fractal dimension 2.88-2.99 in the case of reversed phase adsorbents, in the contrast with a bare silica column with a fractal dimension of 2.54. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Theoretical consideration of the use of a Langmuir adsorption isotherm to describe the effect of light intensity on electron transfer in photosystem II.

    PubMed

    Fragata, Mário; Viruvuru, Venkataramanaiah; Dudekula, Subhan

    2007-03-29

    Electron transport through photosystem II (PSII), measured as oxygen evolution, was investigated in isolated PSII particles and thylakoid membranes irradiated with white light of intensities (I) of 20 to about 4000 micromol of photons/(m2.s). In steady-state conditions, the evolution of oxygen varies with I according to the hyperbolic expression OEth = OEth(max)I/(L1/2 + I) (eq i) where OEth is the theoretical oxygen evolution, OEth(max) is the maximum oxygen evolution, and L1/2 is the light intensity giving OEth(max)/2. In this work, the mathematical derivation of this relationship was performed by using the Langmuir adsorption isotherm and assuming that the photon interaction with the chlorophyll (Chl) in the PSII reaction center is a heterogeneous reaction in which the light is represented as a stream of particles instead of an electromagnetic wave (see discussion in Turro, N. J. Modern Molecular Photochemistry; University Science Books: Mill Valley, CA, 1991). In accordance with this approximation, the Chl molecules (P680) were taken as the adsorption surfaces (or heterogeneous catalysts), and the incident (or exciting) photons as the substrate, or the reagent. Using these notions, we demonstrated that eq i (Langmuir equation) is a reliable interpretation of the photon-P680 interaction and the subsequent electron transfer from the excited state P680, i.e., P680*, to the oxidized pheophytin (Phe), then from Phe- to the primary quinone QA. First, eq i contains specific functional and structural information that is apparent in the definition of OEth(max) as a measure of the maximal number of PSII reaction centers open for photochemistry, and L1/2 as the equilibrium between the electron transfer from Phe- to QA and the formation of reduced Phe in the PSII reaction center by electrons in provenance from P680*. Second, a physiological control mechanism in eq i is proved by the observation that the magnitudes of OEth(max) and L1/2 are affected differently by exogenous

  5. Adsorption of natural organic matter and disinfection byproduct precursors from surface water onto TiO2 nanoparticles: pH effects, isotherm modelling and implications for using TiO2 for drinking water treatment.

    PubMed

    Gora, Stephanie L; Andrews, Susan A

    2017-05-01

    Titanium dioxide is a photocatalyst that can remove organic contaminants of interest to the drinking water treatment industry, including natural organic matter (NOM) and disinfection byproduct (DBP) precursors. The photocatalytic reaction occurs in two steps: adsorption of the contaminant followed by degradation of the adsorbed contaminant upon irradiation with UV light. The second part of this process can lead to the formation of reactive intermediates and negative impacts on treated water quality, such as increased DBP formation potential (DBPfp). Adsorption alone does not result in the formation of reactive intermediates and thus may prove to be a safe way to incorporate TiO2 into drinking water treatment processes. The goal of this study was to expand on the current understanding of NOM adsorption on TiO2 and examine it in a drinking water context by observing NOM adsorption from real water sources and evaluating the effects of the resulting reductions on the DBPfp of the treated water. Bottle point isotherm tests were conducted with raw water from two Canadian water treatment plants adjusted to pH 4, pH 6 and pH 8 and dosed with TiO2 nanoparticles. The DOC results were a good fit to a modified Freundlich isotherm. DBP precursors and liquid chromatography with organic carbon detection NOM fractions associated with DBP formation were removed to some extent at all pHs, but most effectively at pH 4.

  6. Determination of hysteresis loops in thermo-mechanical fatigue using isothermal stress-strain data

    NASA Astrophysics Data System (ADS)

    Skelton, R. P.

    1994-04-01

    Thermo-mechanical fatigue stress-strain data on ferritic/austenitic steels and superalloys from a variety of sources are analyzed with regard to hysteresis loop stress asymmetry. This arises from a decoupling of the thermal and mechanical strain signals in the test technique so that many tension-compression load combinations are possible. Data from simplified isothermal and bithermal tests are also examined. Taking a typical example of an 'out-of-phase' thermo-mechanical loop on a 1/2CrMoV steel cycled between 200 and 550 C, isothermal stress-strain data were generated at 50 C intervals on material from the same cast and, used in conjunction with the elastic characteristics of the apparatus, an attempt was made to re-create this loop. The methods employed were: (1) a graphical construction between appropriate isothermal yield contours; (2) a tangent modulus calculation; and (3) a secant modulus calculation. Method (1) appeared to give the closest agreement in the present case.

  7. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes

    SciTech Connect

    Björklund, Sebastian Kocherbitov, Vitaly

    2015-05-15

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.

  8. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes.

    PubMed

    Björklund, Sebastian; Kocherbitov, Vitaly

    2015-05-01

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.

  9. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes

    NASA Astrophysics Data System (ADS)

    Björklund, Sebastian; Kocherbitov, Vitaly

    2015-05-01

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.

  10. Isotherm parameters and intraparticle mass transfer kinetics on molecularly imprinted polymers in acetonitrile/buffer mobile phases

    SciTech Connect

    Kim, Hyunjung; Kaczmarski, Krzysztof; Guiochon, Georges A

    2006-03-01

    The equilibrium isotherm and the intraparticle mass transfer kinetics of the enantiomers of the template were investigated on an Fmoc-L-tryptophan (Fmoc-L-Trp) imprinted polymer at different pHs and water concentrations in acetonitrile/aqueous buffer mobile phases. The equilibrium isotherm data were measured using frontal analysis at 25 {+-} 2 C. The adsorption energy distribution was found to be trimodal, with narrow modes. Consistent with this distribution, the adsorption data were modeled using a tri-Langmuir isotherm equation and the best estimates of the isotherm parameters were determined. The intraparticle mass transfer parameters were derived by comparing the profiles of experimental overloaded bands and the profiles calculated using the isotherm model and the lumped pore diffusion (POR) model of chromatography. These results showed that different adsorption and mass transfer mechanisms exist in mobile phases made of acetonitrile/aqueous buffer and of acetonitrile/acetic acid solutions.

  11. An improved single crystal adsorption calorimeter for determining gas adsorption and reaction energies on complex model catalysts

    NASA Astrophysics Data System (ADS)

    Fischer-Wolfarth, Jan-Henrik; Hartmann, Jens; Farmer, Jason A.; Flores-Camacho, J. Manuel; Campbell, Charles T.; Schauermann, Swetlana; Freund, Hans-Joachim

    2011-02-01

    A new ultrahigh vacuum microcalorimeter for measuring heats of adsorption and adsorption-induced surface reactions on complex single crystal-based model surfaces is described. It has been specifically designed to study the interaction of gaseous molecules with well-defined model catalysts consisting of metal nanoparticles supported on single crystal surfaces or epitaxial thin oxide films grown on single crystals. The detection principle is based on the previously described measurement of the temperature rise upon adsorption of gaseous molecules by use of a pyroelectric polymer ribbon, which is brought into mechanical/thermal contact with the back side of the thin single crystal. The instrument includes (i) a preparation chamber providing the required equipment to prepare supported model catalysts involving well-defined nanoparticles on clean single crystal surfaces and to characterize them using surface analysis techniques and in situ reflectivity measurements and (ii) the adsorption/reaction chamber containing a molecular beam, a pyroelectric heat detector, and calibration tools for determining the absolute reactant fluxes and adsorption heats. The molecular beam is produced by a differentially pumped source based on a multichannel array capable of providing variable fluxes of both high and low vapor pressure gaseous molecules in the range of 0.005-1.5 × 1015 molecules cm-2 s-1 and is modulated by means of the computer-controlled chopper with the shortest pulse length of 150 ms. The calorimetric measurements of adsorption and reaction heats can be performed in a broad temperature range from 100 to 300 K. A novel vibrational isolation method for the pyroelectric detector is introduced for the reduction of acoustic noise. The detector shows a pulse-to-pulse standard deviation ≤15 nJ when heat pulses in the range of 190-3600 nJ are applied to the sample surface with a chopped laser. Particularly for CO adsorption on Pt(111), the energy input of 15 nJ (or 120 nJ cm

  12. Experimental determination of the thermodynamic parameters affecting the adsorption behaviour and dispersion effectiveness of PCE superplasticizers

    SciTech Connect

    Plank, J.; Sachsenhauser, B.; Reese, J. de

    2010-05-15

    For adsorption of three different allylether-based PCE superplasticizers on CaCO{sub 3} surface, the thermodynamic parameters DELTAH, DELTAS and DELTAG were determined experimentally. The GIBBS standard free energy of adsorption DELTAG{sub 0ads}, the standard enthalpy of adsorption DELTAH{sub 0ads} and the standard entropy of adsorption DELTAS{sub 0ads} applying to an unoccupied CaCO{sub 3} surface were obtained via a linear regression of ln K (equilibrium constant) versus 1 / T (VAN'T HOFF plot). Additionally, the thermodynamic parameters characteristic for a CaCO{sub 3} surface loaded already with polymer (isosteric conditions) were determined using a modified CLAUSIUS-CLAPEYRON equation. For all PCE molecules, negative DELTAG values were found, indicating that adsorption of these polymers is energetically favourable and a spontaneous process. Adsorption of PCEs possessing short side chains is mainly instigated by electrostatic attraction and a release of enthalpy. Contrary to this, adsorption of PCEs with long side chains occurs because of a huge gain in entropy. The gain in entropy results from the release of counter ions attached to the carboxylate groups of the polymer backbone and of water molecules and ions adsorbed on the CaCO{sub 3} surface. With increased surface loading, however, DELTAG{sub isosteric} decreases and adsorption ceases when DELTAG becomes 0. The presence of Ca{sup 2+} ions in the pore solution strongly impacts PCE adsorption, due to complexation of carboxylate groups and a reduced anionic charge amount of the molecule. In the presence of Ca{sup 2+}, adsorption of allylether-based PCEs is almost exclusively driven by a gain in entropy. Consequently, PCEs should produce a strong entropic effect upon adsorption to be effective cement dispersants. Molecular architecture, anionic charge density and molecular weight as well as the type of anchor groups present in a superplasticizer determine whether enthalpy or entropy is the dominant force for

  13. Comparison of micellar isotherms of benzene determined by headspace gas chromatography and micellar electrokinetic chromatography. Assessment on impact of buffer and solubilization-induced conductivity change.

    PubMed

    Liu, Siyuan; Davis, Joe M

    2007-04-13

    The possibility is discussed that micellar isotherms determined by vacancy-micellar electrokinetic chromatography (vacancy-MEKC) differ from isotherms in electrolyte-free surfactants due to thermodynamic effects of buffer. Also discussed is the possibility that they are biased at high solute concentrations by solubilization-induced changes of electrical conductivity. Such bias could invalidate a theory on peak asymmetry of neutral solutes in MEKC that is based on thermodynamic interpretation of the isotherms. To evaluate these possibilities, the nonlinear concave upward isotherm of benzene in a pH 7.0, 0.0060 M sodium phosphate buffer containing 50 mM sodium dodecyl sulfate (SDS) was measured by headspace gas chromatography. Of interest is the finding that benzene is more stable in the surfactant-free buffer than in water. The isotherm was compared to that previously measured by vacancy-MEKC in the same buffer and 10, 30, or 50 mM SDS. No difference was found between the isotherms. However, the isotherm indeed differed from that of benzene in buffer-free 50 mM SDS, which was also determined and agreed favorably with previous results. A partial explanation is given for the independence of the vacancy-MEKC isotherm of solubilization-induced conductivity changes.

  14. A novel method for the determination of adsorption partition coefficients of minor gases in a shale sample by headspace gas chromatography.

    PubMed

    Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming

    2013-10-04

    A novel method has been developed for the determination of adsorption partition coefficient (Kd) of minor gases in shale. The method uses samples of two different sizes (masses) of the same material, from which the partition coefficient of the gas can be determined from two independent headspace gas chromatographic (HS-GC) measurements. The equilibrium for the model gas (ethane) was achieved in 5h at 120°C. The method also involves establishing an equation based on the Kd at higher equilibrium temperature, from which the Kd at lower temperature can be calculated. Although the HS-GC method requires some time and effort, it is simpler and quicker than the isothermal adsorption method that is in widespread use today. As a result, the method is simple and practical and can be a valuable tool for shale gas-related research and applications.

  15. Using Isothermal Titration Calorimetry to Determine Thermodynamic Parameters of Protein–Glycosaminoglycan Interactions

    PubMed Central

    Dutta, Amit K.; Rösgen, Jörg; Rajarathnam, Krishna

    2015-01-01

    It has now become increasingly clear that a complete atomic description of how biomacromolecules recognize each other requires knowledge not only of the structures of the complexes but also of how kinetics and thermodynamics drive the binding process. In particular, such knowledge is lacking for protein–glycosaminoglycan (GAG) complexes. Isothermal titration calorimetry (ITC) is the only technique that can provide various thermodynamic parameters—enthalpy, entropy, free energy (binding constant), and stoichiometry—from a single experiment. Here we describe different factors that must be taken into consideration in carrying out ITC titrations to obtain meaningful thermodynamic data of protein–GAG interactions. PMID:25325962

  16. Using isothermal titration calorimetry to determine thermodynamic parameters of protein-glycosaminoglycan interactions.

    PubMed

    Dutta, Amit K; Rösgen, Jörg; Rajarathnam, Krishna

    2015-01-01

    It has now become increasingly clear that a complete atomic description of how biomacromolecules recognize each other requires knowledge not only of the structures of the complexes but also of how kinetics and thermodynamics drive the binding process. In particular, such knowledge is lacking for protein-glycosaminoglycan (GAG) complexes. Isothermal titration calorimetry (ITC) is the only technique that can provide various thermodynamic parameters-enthalpy, entropy, free energy (binding constant), and stoichiometry-from a single experiment. Here we describe different factors that must be taken into consideration in carrying out ITC titrations to obtain meaningful thermodynamic data of protein-GAG interactions.

  17. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy.

    PubMed

    Tan, Yih Horng; Davis, Jason A; Fujikawa, Kohki; Ganesh, N Vijaya; Demchenko, Alexei V; Stine, Keith J

    2012-01-01

    Nitrogen adsorption/desorption isotherms are used to investigate the Brunauer, Emmett, and Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size distribution of physically modified, thermally annealed, and octadecanethiol functionalized np-Au monoliths. We present the full adsorption-desorption isotherms for N(2) gas on np-Au, and observe type IV isotherms and type H1 hysteresis loops. The evolution of the np-Au under various thermal annealing treatments was examined using scanning electron microscopy (SEM). The images of both the exterior and interior of the thermally annealed np-Au show that the porosity of all free standing np-Au structures decreases as the heat treatment temperature increases. The modification of the np-Au surface with a self-assembled monolayer (SAM) of C(18)-SH (coverage of 2.94 × 10(14) molecules cm(-2) based from the decomposition of the C(18)-SH using thermogravimetric analysis (TGA)), was found to reduce the strength of the interaction of nitrogen gas with the np-Au surface, as reflected by a decrease in the 'C' parameter of the BET equation. From cyclic voltammetry studies, we found that the surface area of the np-Au monoliths annealed at elevated temperatures followed the same trend with annealing temperature as found in the BET surface area study and SEM morphology characterization. The study highlights the ability to control free-standing nanoporous gold monoliths with high surface area, and well-defined, tunable pore morphology.

  18. Determination of Adsorption Equations for Chloro Derivatives of Aniline on Halloysite Adsorbents Using Inverse Liquid Chromatography.

    PubMed

    Słomkiewicz, Piotr M; Szczepanik, Beata; Garnuszek, Magdalena; Rogala, Paweł; Witkiewicz, Zygfryd

    2017-07-13

    Chloro derivatives of aniline are commonly used in the production of dyes, pharmaceuticals, and agricultural agents. They are toxic compounds with a large accumulation ability and low natural biodegradability. Halloysite is known as an efficient adsorbent of toxic compounds, such as phenols or herbicides, from wastewater. Inverse LC was applied to measure the adsorption of aniline and 2-chloroaniline (2-CA), 3-chloroaniline (3-CA), and 4-chloroaniline (4-CA) on halloysite adsorbents. A peak division (PD) method was used to determine a Langmuir equation in accordance with the adsorption measurement results. The values of adsorption equilibrium constants and enthalpy were determined and compared by breakthrough curve and PD methods. The physical sense of the calculated adsorption enthalpy values was checked by applying Boudart's entropy criteria. Of note, adsorption enthalpy values for halloysite adsorbents decreased in the following order: aniline > 4-CA > 2-CA > 3-CA.

  19. Determining the association constant and adsorption properties of ion pairs in water by fitting surface tension data.

    PubMed

    Pradines, Vincent; Lavabre, Dominique; Micheau, Jean-Claude; Pimienta, Véronique

    2005-11-22

    Association constants and adsorption parameters of tetraalkylammoniumdodecyl sulfate (TAADS) ion pairs in water were determined. We have analyzed water/air surface tension measurements obtained for mixtures of sodium dodecyl sulfate (SDS) and tetraalkylammonium bromide of increasing chain lengths (TMAB, TEAB, TPAB, and TBAB). To reproduce the experimental isotherms, we coupled the association equilibrium of the ion pairs to the equations proposed by Fainerman and co-workers to model the adsorption of binary mixtures of surfactants (SDS and TAADS) with different molar areas at a nonideal surface layer. The parameters found showed that the model is not convenient to describe the effect of the addition of TMAB but a clear coherency was obtained for the three longer compounds. Ranging from TEADS to TBADS increasing hydrophobic interactions give rise to a higher associability but to a lower surface activity. Self-interactions coefficients extracted by the fitting procedure confirmed the importance of attractive interactions between the ion pairs. The calculated surface coverage showed that in every case the compound mainly adsorbed at the interface was the ion pair. For TBADS strong attractive interactions result in a phase transition at very low concentration.

  20. Enhancement of the adsorption capacity of the light-weight expanded clay aggregate surface for the metronidazole antibiotic by coating with MgO nanoparticles: Studies on the kinetic, isotherm, and effects of environmental parameters.

    PubMed

    Kalhori, Ebrahim Mohammadi; Al-Musawi, Tariq J; Ghahramani, Esmaeil; Kazemian, Hossein; Zarrabi, Mansur

    2017-02-09

    The synthesized MgO nanoparticles were used to coat the light-weight expanded clay aggregates (LECA) and as a metronidazole (MNZ) adsorbent. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier-transformed infrared (FTIR) techniques were employed to study the surface morphology and characteristics of the adsorbents. MgO/LECA clearly revealed the advantages of the nanocomposite particles, showing high specific surface area (76.12 m(2)/g), significant adsorption sites and functional groups. Between pH 5 and 9, the MNZ sorption was not significantly affected. Kinetic studies revealed that the MNZ adsorption closely followed the Avrami model, with no dominant process controlling the sorption rate. The study of the effects of foreign ions revealed that the addition of carbonate raised the MNZ removal efficiency of LECA by 8% and the total removal of MNZ by MgO/LECA. Furthermore, nitrate and hardness only marginally influenced the MNZ removal efficiency and their effects can be ranked in the order of carbonate>nitrate>hardness. The isotherm adsorption of MNZ was best fitted with the Langmuir model enlighten the monolayer MNZ adsorption on the homogeneous LECA and MgO/LECA surfaces. The maximum adsorption capacity under optimum conditions was enhanced from 56.31 to 84.55 mg/g for LECA and MgO/LECA, respectively. These findings demonstrated that the MgO/LECA nanocomposite showed potential as an efficient adsorbent for MNZ removal.

  1. Substrate binding properties of potato tuber ADP-glucose pyrophosphorylase as determined by isothermal titration calorimetry.

    PubMed

    Cakir, Bilal; Tuncel, Aytug; Green, Abigail R; Koper, Kaan; Hwang, Seon-Kap; Okita, Thomas W; Kang, ChulHee

    2015-06-04

    Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism.

  2. Determination of ABO blood group genotypes using the real-time loop-mediated isothermal amplification method

    PubMed Central

    ZHANG, CHAO; ZHU, JUANLI; YANG, JIANGCUN; WAN, YINSHENG; MA, TING; CUI, YALI

    2015-01-01

    ABO genotyping is commonly used in several situations, including blood transfusion, personal identification and disease detection. The present study developed a novel method for ABO genotyping, using loop-mediated isothermal amplification (LAMP). This method allows the simultaneous determination of six ABO genotypes under 40 min at a constant temperature of 62°C. The genotypes of 101 blood samples were determined to be AA (n=6), AO (n=38), BB (n=12), BO (n =29), AB (n=8) and OO (n=8) by the LAMP assay. The results were compared with the phenotypes determined by serological assay and the genotypes determined by direct sequencing, and no discrepancies were observed. This novel and rapid method, with good accuracy and reasonably cost effective, provides a supplement to routine serological ABO typing and may also be useful in other point-of-care testing. PMID:26238310

  3. Soft computing modelling of moisture sorption isotherms of milk-foxtail millet powder and determination of thermodynamic properties.

    PubMed

    Simha, H V Vikram; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Kumar, P Arun; Manimala, K

    2016-06-01

    Moisture sorption isotherms of spray-dried milk-foxtail millet powder were determined at 10, 25 and 40 °C. Sorption data was fitted using classical and soft-computing approaches. The isotherms were of type II, and equilibrium moisture content (EMC) was temperature dependent. The BET monolayer moisture content decreased from 3.30 to 2.67 % as temperature increased from 10 to 40 °C. Amongst the classical models, Ferro-Fontan gave the best fit of EMC-aw data. However, the Sugeno-type adaptive neuro-fuzzy inference system (ANFIS) with generalized bell-shaped membership function performed better than artificial neural network and classical models with RMSE as low as 0.0099. The isosteric heat of sorption decreased from 150.32 kJ mol(-1) at 1 % moisture content to 44.11 kJ mol(-1) at 15 % moisture. The enthalpy-entropy compensation theory was validated, and the isokinetic and harmonic mean temperatures were determined as 333.1 and 297.5 K, respectively.

  4. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity

    SciTech Connect

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M.

    2011-07-27

    Laboratory experiments were performed to investigate the contribution of variable grain sizes to uranium adsorption/desorption in a sediment collected from the US DOE Hanford site. The sediment was wet-sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.05-0.2 mm), and clay/silt fraction (< 0.05mm). For each size fraction and their composite (sediment), batch experiments were performed to determine uranium adsorption isotherms, and stirred flow-cell experiments were conducted to derive kinetic data of uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size-specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment, but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. Our analysis also showed that uranium adsorption site concentration estimated from the adsorption isotherms was 3 orders of magnitude less than a site concentration estimated from sediment surface area and generic site density. One important implication of this study is that grain size distribution may be used to estimate uranium adsorption site, and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  5. Adsorption of phenolic compound by aged-refuse.

    PubMed

    Xiaoli, Chai; Youcai, Zhao

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  6. Adsorption modeling for off-gas treatment

    SciTech Connect

    Ladshaw, A.; Sharma, K.; Yiacoumi, S.; Tsouris, C.; De Paoli, D.W.

    2013-07-01

    Off-gas generated from the reprocessing of used nuclear fuel contains a mixture of several radioactive gases including {sup 129}I{sub 2}, {sup 85}Kr, HTO, and {sup 14}CO{sub 2}. Over the past few decades, various separation and recovery processes have been studied for capturing these gases. Adsorption data for gaseous mixtures of species can be difficult to determine experimentally. Therefore, procedures capable of predicting the adsorption behavior of mixtures need to be developed from the individual isotherms of each of the pure species. A particular isotherm model of interest for the pure species is the Generalized Statistical Thermodynamic Adsorption isotherm. This model contains an adjustable number of parameters and will therefore describe a wide range of adsorption isotherms for a variety of components. A code has been developed in C++ to perform the non-linear regression analysis necessary for the determination of the isotherm parameters, as well as the least number of parameters needed to describe an entire set of data. (authors)

  7. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study.

    PubMed

    Maghsoudi, M; Ghaedi, M; Zinali, A; Ghaedi, A M; Habibi, M H

    2015-01-05

    In this research, ZnO nanoparticle loaded on activated carbon (ZnO-NPs-AC) was synthesized simply by a low cost and nontoxic procedure. The characterization and identification have been completed by different techniques such as SEM and XRD analysis. A three layer artificial neural network (ANN) model is applicable for accurate prediction of dye removal percentage from aqueous solution by ZnO-NRs-AC following conduction of 270 experimental data. The network was trained using the obtained experimental data at optimum pH with different ZnO-NRs-AC amount (0.005-0.015 g) and 5-40 mg/L of sunset yellow dye over contact time of 0.5-30 min. The ANN model was applied for prediction of the removal percentage of present systems with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) in the hidden layer with 6 neurons. The minimum mean squared error (MSE) of 0.0008 and coefficient of determination (R(2)) of 0.998 were found for prediction and modeling of SY removal. The influence of parameters including adsorbent amount, initial dye concentration, pH and contact time on sunset yellow (SY) removal percentage were investigated and optimal experimental conditions were ascertained. Optimal conditions were set as follows: pH, 2.0; 10 min contact time; an adsorbent dose of 0.015 g. Equilibrium data fitted truly with the Langmuir model with maximum adsorption capacity of 142.85 mg/g for 0.005 g adsorbent. The adsorption of sunset yellow followed the pseudo-second-order rate equation.

  8. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study

    NASA Astrophysics Data System (ADS)

    Maghsoudi, M.; Ghaedi, M.; Zinali, A.; Ghaedi, A. M.; Habibi, M. H.

    2015-01-01

    In this research, ZnO nanoparticle loaded on activated carbon (ZnO-NPs-AC) was synthesized simply by a low cost and nontoxic procedure. The characterization and identification have been completed by different techniques such as SEM and XRD analysis. A three layer artificial neural network (ANN) model is applicable for accurate prediction of dye removal percentage from aqueous solution by ZnO-NRs-AC following conduction of 270 experimental data. The network was trained using the obtained experimental data at optimum pH with different ZnO-NRs-AC amount (0.005-0.015 g) and 5-40 mg/L of sunset yellow dye over contact time of 0.5-30 min. The ANN model was applied for prediction of the removal percentage of present systems with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) in the hidden layer with 6 neurons. The minimum mean squared error (MSE) of 0.0008 and coefficient of determination (R2) of 0.998 were found for prediction and modeling of SY removal. The influence of parameters including adsorbent amount, initial dye concentration, pH and contact time on sunset yellow (SY) removal percentage were investigated and optimal experimental conditions were ascertained. Optimal conditions were set as follows: pH, 2.0; 10 min contact time; an adsorbent dose of 0.015 g. Equilibrium data fitted truly with the Langmuir model with maximum adsorption capacity of 142.85 mg/g for 0.005 g adsorbent. The adsorption of sunset yellow followed the pseudo-second-order rate equation.

  9. Water adsorption on goethite: Application of multilayer adsorption models

    NASA Astrophysics Data System (ADS)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  10. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    PubMed

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions.

  11. Enthalpy of the B-to-Z Conformational Transition of a DNA Oligonucleotide Determined by Isothermal Titration Calorimetry

    PubMed Central

    Ferreira, Jaime M.; Sheardy, Richard D.

    2006-01-01

    The influence of high concentrations of Na+ or [Co(NH3)6]3+ on the conformation of two related DNA oligomers was investigated by circular dichroism spectropolarimetry (CD), isothermal titration calorimetry (ITC), and differential scanning calorimetry (DSC). As revealed by CD, DNA oligomers, (dC-dG)4 and (dm5C-dG)4, both form right-handed double helical structures (B-DNA) in standard phosphate buffer with 115 mM Na+ at 25°C. However, at 2.0 M Na+ or 200 μM [Co(NH3)6]3+, (dm5C-dG)4 assumes a left-handed double helical structure (Z-DNA), whereas the unmethylated (dC-dG)4 analog remains right-handed under those conditions. ITC was then used to determine the enthalpy change upon increasing the concentration of either Na+ or [Co(NH3)6]3+ for both DNA oligomers at 25°C. The titration with Na+ resulted in endothermic isotherms with (dm5C-dG)4 being more endothermic than (dC-dG)4 by 700 cal/mol basepair. In contrast, titration with [Co(NH3)6]3+ resulted in exothermic isotherms with (dC-dG)4 being more exothermic than (dm5C-dG)4 by 720 cal/mol basepair. We attribute the enthalpy difference to the conformational transition from B-form DNA to Z-form DNA for (dm5C-dG)4, a transition which does not occur for the unmethylated (dC-dG)4. The value of ∼700 cal/mol basepair for the enthalpy of the B-Z transition compares favorably with previously published results obtained by different techniques. DSC was used to monitor the duplex to single strand transitions for both oligomers under the different concentrations. These results indicated that methylation of the cytidine destabilizes (dm5C-dG)4 relative to (dC-dG)4. Coupling the DSC data with the ITC data allowed construction of a thermodynamic cycle which gives insight into the influence of both temperature and ionic strength on the heat content of the two DNA systems studied. Further, this study reveals the utility of using ITC for determinations of transition enthalpies with the appropriate choice of control. PMID:16920828

  12. Enthalpy of the B-to-Z conformational transition of a DNA oligonucleotide determined by isothermal titration calorimetry.

    PubMed

    Ferreira, Jaime M; Sheardy, Richard D

    2006-11-01

    The influence of high concentrations of Na(+) or [Co(NH(3))(6)](3+) on the conformation of two related DNA oligomers was investigated by circular dichroism spectropolarimetry (CD), isothermal titration calorimetry (ITC), and differential scanning calorimetry (DSC). As revealed by CD, DNA oligomers, (dC-dG)(4) and (dm(5)C-dG)(4), both form right-handed double helical structures (B-DNA) in standard phosphate buffer with 115 mM Na(+) at 25 degrees C. However, at 2.0 M Na(+) or 200 microM [Co(NH(3))(6)](3+), (dm(5)C-dG)(4) assumes a left-handed double helical structure (Z-DNA), whereas the unmethylated (dC-dG)(4) analog remains right-handed under those conditions. ITC was then used to determine the enthalpy change upon increasing the concentration of either Na(+) or [Co(NH(3))(6)](3+) for both DNA oligomers at 25 degrees C. The titration with Na(+) resulted in endothermic isotherms with (dm(5)C-dG)(4) being more endothermic than (dC-dG)(4) by 700 cal/mol basepair. In contrast, titration with [Co(NH(3))(6)](3+) resulted in exothermic isotherms with (dC-dG)(4) being more exothermic than (dm(5)C-dG)(4) by 720 cal/mol basepair. We attribute the enthalpy difference to the conformational transition from B-form DNA to Z-form DNA for (dm(5)C-dG)(4), a transition which does not occur for the unmethylated (dC-dG)(4). The value of approximately 700 cal/mol basepair for the enthalpy of the B-Z transition compares favorably with previously published results obtained by different techniques. DSC was used to monitor the duplex to single strand transitions for both oligomers under the different concentrations. These results indicated that methylation of the cytidine destabilizes (dm(5)C-dG)(4) relative to (dC-dG)(4). Coupling the DSC data with the ITC data allowed construction of a thermodynamic cycle which gives insight into the influence of both temperature and ionic strength on the heat content of the two DNA systems studied. Further, this study reveals the utility of using ITC for

  13. Polychelated cryogels: hemoglobin adsorption from human blood.

    PubMed

    Erol, Kadir

    2017-02-01

    The separation and purification methods are extremely important for the hemoglobin (Hb) which is a crucial biomolecule. The adsorption technique is popular among these methods and the cryogels have been used quite much due to their macropores and interconnected flow channels. In this study, the Hb adsorption onto the Cu(II) immobilized poly(2-hydroxyethyl methacrylate-glycidyl methacrylate), poly(HEMA-GMA)-Cu(II), cryogels was investigated under different conditions (pH, interaction time, initial Hb concentration, temperature and ionic strength) to optimize adsorption conditions. The swelling test, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), surface area (BET), elemental and ICP-OES analysis were performed for the characterization of cryogels. Polyethyleneimine (PEI) molecule was used as a Cu(II)-chelating ligand. The Hb adsorption capacity of cryogels was determined as 193.8 mg Hb/g cryogel. The isolation of Hb from human blood was also studied under optimum adsorption conditions determined and the Hb (124.5 mg/g cryogel) was isolated. The adsorption model was investigated in the light of Langmuir and Freundlich adsorption isotherm models and it was determined to be more appropriate to the Langmuir adsorption isotherm model.

  14. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy

    PubMed Central

    Tan, Yih Horng; Davis, Jason A.; Fujikawa, Kohki; Ganesh, N. Vijaya; Demchenko, Alexei V.

    2012-01-01

    Nitrogen adsorption/desorption isotherms are used to investigate the Brunauer, Emmett, and Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size distribution of physically modified, thermally annealed, and octadecanethiol functionalized np-Au monoliths. We present the full adsorption-desorption isotherms for N2 gas on np-Au, and observe type IV isotherms and type H1 hysteresis loops. The evolution of the np-Au under various thermal annealing treatments was examined using scanning electron microscopy (SEM). The images of both the exterior and interior of the thermally annealed np-Au show that the porosity of all free standing np-Au structures decreases as the heat treatment temperature increases. The modification of the np-Au surface with a self-assembled monolayer (SAM) of C18-SH (coverage of 2.94 × 1014 molecules cm−2 based from the decomposition of the C18-SH using thermogravimetric analysis (TGA)), was found to reduce the strength of the interaction of nitrogen gas with the np-Au surface, as reflected by a decrease in the ‘C’ parameter of the BET equation. From cyclic voltammetry studies, we found that the surface area of the np-Au monoliths annealed at elevated temperatures followed the same trend with annealing temperature as found in the BET surface area study and SEM morphology characterization. The study highlights the ability to control free-standing nanoporous gold monoliths with high surface area, and well-defined, tunable pore morphology. PMID:22822294

  15. Relationship between Crystal Thickness and Isothermal Crystallization Temperature for Determination of Equilibrium Melting Temperature for Syndiotatic Polypropylene

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Hsiao Hsiao, Benjamin; Srinivas, Srivatsan; Crist, Buckley

    2000-03-01

    Syndiotatic polypropylene (sPP) was used to investigate the relationship between isothermal crystallization temperature (Tc = 70-115^oC), crystal thickness and subsequent melting using simultaneous synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) in conjunction with DSC. The thickest lamellar crystals melt at the end of the DSC endotherm. At this temperature, the SAXS intensity (corrected formelt scattering) showed a diffuse profile, and the crystalline feature in the WAXD pattern was completely absent. This crystal thickness was estimated using an approach based on the single lamella structure factor, which will also be compared to the value determined by the interface distribution function. The equilibrium melting temperature obtained this way will be contrasted by other methods such as the Hoffman-Weeks approach. Acknowledgement: This work was supported by by a NSF grant (DMR 9732653).

  16. Inhibition of beta-amylase activity by calcium, magnesium and zinc ions determined by spectrophotometry and isothermal titration calorimetry.

    PubMed

    Dahot, M Umar; Saboury, A A; Moosavi-Movahedi, A A

    2004-04-01

    The inhibition effect of metal ions on beta amylase activity was studied. The inhibitor-binding constant (Ki) was determined by spectrophotometric and isothermal titration calorimetric (ITC) methods. The binding of calcium, magnesium and zinc ion as inhibitors at the active site of barley beta amylase was studied at pH = 4.8 (sodium acetate 16 mM) and T = 300K. The Ki and enthalpy of binding for calcium (13.4, 13.1 mM and -14.3 kJ/mol), magnesium (18.6, 17.8mM and -17.7 kJ/mol) and zinc (17.5, 17.7 mM and -20.0 kJ/mol) were found by spectrophotometric and ITC methods respectively.

  17. DEVELOPMENT OF THE CHARCOAL ADSORPTION TECHNIQUE FOR DETERMINATION OF RADON CONTENT IN NATURAL GAS.

    PubMed

    Paewpanchon, P; Chanyotha, S

    2017-09-18

    A technique for the determination of the radon concentration in natural gas using charcoal adsorption has been developed to study the effects of parameters that influence the adsorption efficiency of radon onto activated charcoal. Several sets of experiments were conducted both in the laboratory and in an actual natural gas field for comparison. The results show that the adsorption capability of radon onto activated charcoal varies inversely with temperature, hydrocarbon concentration and the humidity contained within the natural gas. A technique utilizing dry ice as a coolant was found to be the most effective for trapping radon in natural gas samples at the production site. A desiccant can be used to remove moisture from the sampling gas. The technique described here increases the adsorption efficiency of activated charcoal by 10-20% compared to our previous study. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Thermodynamics and Kinetics Study of the Adsorption and Diffusion of p-Xylene in Silicalite-1

    NASA Astrophysics Data System (ADS)

    Meng, Xiuhong; Duan, Linhai; Wang, Qiang; Chung, Jong Shik; Song, Lijuan; Sun, Zhaolin

    2009-03-01

    Gravimetric equilibrium isotherms, thermodynamic parameters, and diffusion of p-xylene in silicalite-1 were investigated at several temperatures using an intelligent gravimetric analyzer (IGA). Both plateau and hysteresis loops appeared in the isotherms obtained at 323 and 343 K, respectively. Heat of sorption (Qst ), free energy change (ΔG), entropy change (ΔS), and entropy (Sa ) of the adsorbed phase at various sorption coverages were determined from the adsorption isotherms. The diffusion coefficients at different loadings were also calculated using Fick's equation. The calculated thermodynamic and kinetic parameters satisfactorily explain the adsorption process and isotherm features.

  19. Adsorption of Pb(II) ions from aqueous environment using eco-friendly chitosan schiff's base@Fe3O4 (CSB@Fe3O4) as an adsorbent; kinetics, isotherm and thermodynamic studies.

    PubMed

    Weijiang, Zhang; Yace, Zhang; Yuvaraja, Gutha; Jiao, Xu

    2017-07-12

    Chitosan and its derivatives can be used to modify magnetic materials to promote the adsorption properties of the magnetic materials for the removal of meal ions. In this study a novel CSB@Fe3O4 was prepared, characterized by XRD, FTIR, SEM, TEM, and VSM analysis and utilized as an adsorbent material for the removal of Pb(II) ions from aqueous solution. Batch studies were performed to evaluate the influences of various experimental parameters like pH, adsorbent dosage, contact time, initial concentration, and the effect of temperature. Optimum conditions for Pb(II) removal were found to be pH 5, adsorbent dosage 0.5g and equilibrium time of 105min. The pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to analyze kinetic data. The data fit well with the second-order kinetic model. The equilibrium data were analyzed using the Langmuir, and Freundlich isotherm models. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacity was found to be 83.33mg/g for CSB@Fe3O4. The calculated thermodynamic parameters ΔG°(-9.728, -9.034 and -7.883kJ/mol for 303, 313, and 323K), ΔH° (20.39kJ/mol) and ΔS° (0.0947J/molK) showed that the adsorption of Pb(II) ions were feasible, spontaneous and endothermic in nature. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means.

    PubMed

    Subramanyam, Busetty; Das, Ashutosh

    2014-01-01

    In adsorption study, to describe sorption process and evaluation of best-fitting isotherm model is a key analysis to investigate the theoretical hypothesis. Hence, numerous statistically analysis have been extensively used to estimate validity of the experimental equilibrium adsorption values with the predicted equilibrium values. Several statistical error analysis were carried out. In the present study, the following statistical analysis were carried out to evaluate the adsorption isotherm model fitness, like the Pearson correlation, the coefficient of determination and the Chi-square test, have been used. The ANOVA test was carried out for evaluating significance of various error functions and also coefficient of dispersion were evaluated for linearised and non-linearised models. The adsorption of phenol onto natural soil (Local name Kalathur soil) was carried out, in batch mode at 30 ± 20 C. For estimating the isotherm parameters, to get a holistic view of the analysis the models were compared between linear and non-linear isotherm models. The result reveled that, among above mentioned error functions and statistical functions were designed to determine the best fitting isotherm.

  1. Adsorptive Stripping Voltammetry of Environmental Indicators: Determination of Zinc in Algae

    ERIC Educational Resources Information Center

    Collado-Sanchez, C.; Hernandez-Brito, J. J.; Perez-Pena, J.; Torres-Padron, M. E.; Gelado-Caballero, M. D.

    2005-01-01

    A method for sample preparation and for the determination of average zinc content in algae using adsorptive stripping voltammetry are described. The students gain important didactic advantages through metal determination in environmental matrices, which include carrying out clean protocols for sampling and handling, and digesting samples using…

  2. Determination of oxcarbazepine by Square Wave Adsorptive Stripping Voltammetry in pharmaceutical preparations.

    PubMed

    Calvo, M Encarnación Burgoa; Renedo, Olga Domínguez; Martínez, M Julia Arcos

    2007-02-19

    A procedure for the determination of oxcarbazepine (OXC) by Square Wave Adsorptive Stripping Voltammetry (SWAdSV) has been optimized. Selection of the experimental parameters was made using experimental design methodology. The detection limit was 1.74 x 10(-7) mol dm(-3). This method was used to determine oxcarbazepine in pharmaceutical preparations.

  3. Adsorptive Stripping Voltammetry of Environmental Indicators: Determination of Zinc in Algae

    ERIC Educational Resources Information Center

    Collado-Sanchez, C.; Hernandez-Brito, J. J.; Perez-Pena, J.; Torres-Padron, M. E.; Gelado-Caballero, M. D.

    2005-01-01

    A method for sample preparation and for the determination of average zinc content in algae using adsorptive stripping voltammetry are described. The students gain important didactic advantages through metal determination in environmental matrices, which include carrying out clean protocols for sampling and handling, and digesting samples using…

  4. Mechanistic understanding and performance of biosorption of metal ions by grapefruit peel using FTIR spectroscopy, kinetics and adsorption isotherms modeling, alkali and alkaline metal displacement and EDX analysis

    USDA-ARS?s Scientific Manuscript database

    The performance and mechanism of the sorptive removal of Ni2+ and Zn2+ from aqueous solution using grapefruit peel (GFP) as a new sorbent was investigated. The sorption process was fast, equilibrium was established in 60 min. The equilibrium process was described well by the Langmuir isotherm model,...

  5. Loop Mediated Isothermal Amplification (LAMP) for Embryo Sex Determination in Pregnant Women at Eight Weeks of Pregnancy

    PubMed Central

    Almasi, Mohammad Amin; Almasi, Galavizh

    2017-01-01

    Background: In human, SRY (sex-determining region of the Y chromosome) is the major gene for the testis-determining factor which is found in normal XY males and in the rare XX males, and it is absent in normal XX females and many XY females. There are several methods which can indicate a male genotype by the presence of the amplified product of SRY gene. The aim of this study was to identify the SRY gene for embryo sex determination in human during pregnancy using loop mediated isothermal amplification (LAMP) method. Methods: A total of 15 blood samples from pregnant women at eight weeks of pregnancy were collected, and Plasma DNA was extracted. LAMP assay was performed using DNA obtained for detection of SRY gene. Furthermore, colorimetric LAMP assay for rapid and easy detection of SRY gene was developed. Results: LAMP results revealed that the positive reaction was highly specific only with samples containing XY chromosomes, while no amplification was found in samples containing XX chromosomes. A total of 15 blood samples from pregnant women were seven male embryos (46.6%) and eight female embryos (53.4%). All used visual components in the colorimetric assay could successfully make a clear distinction between positive and negative ones. Conclusion: The LAMP assay developed in this study is a valuable tool capable of monitoring the purity and detection of SRY gene for sex determination. PMID:28377900

  6. BSA adsorption on bimodal PEO brushes.

    PubMed

    Bosker, W T E; Iakovlev, P A; Norde, W; Cohen Stuart, M A

    2005-06-15

    BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) block copolymers and using the Langmuir-Blodgett technique. Pi-A isotherms of (mixtures of) the block copolymers were measured to establish the brush regime. The isotherms of PS(29)-PEO(48) show hysteresis between compression and expansion cycles, indicating aggregation of the PS(29)-PEO(48) upon compression. Mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) demonstrate a similar hysteresis effect, which eventually vanishes when the ratio of PS(37)-PEO(770) to PS(29)-PEO(48) is increased. The adsorption of BSA was determined at brushes for which the grafting density of the long PEO chains was varied, while the total grafting density was kept constant. BSA adsorption onto monomodal PEO(48) and PEO(770) brushes was determined for comparison. The BSA adsorption behavior of the bimodal brushes is similar to the adsorption of BSA at PEO(770) monomodal brushes. The maximum of BSA adsorption at low grafting density of PEO(770) can be explained by ternary adsorption, implying an attraction between BSA and PEO. The contribution of primary adsorption to the total adsorbed amount is negligible.

  7. Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials--Bottom Ash and De-Oiled Soya, as adsorbents.

    PubMed

    Mittal, Alok; Mittal, Jyoti; Kurup, Lisha

    2006-08-25

    Adsorbents, Bottom Ash (a power plant waste) and De-Oiled Soya (an agricultural waste) exhibit good efficacy to adsorb a highly toxic dye, Tartrazine. Through the batch technique equilibrium uptake of the dye is observed at different concentrations, pH of the solution, dosage of adsorbents and sieve size of adsorbents. Langmuir and Freundlich adsorption isotherms are successfully employed on both the adsorbents and on the basis of these models the thermodynamic parameters are evaluated. Kinetic investigations reveal that more than 50% adsorption of dye is achieved in about 1h in both the cases, whereas, equilibrium establishment takes about 3-4h. The linear plots obtained in rate constant and mass transfer studies further confirm the applicability of first order rate expression and mass transfer model, respectively. The kinetic data treated to identify rate controlling step of the ongoing adsorption processes indicate that for both the systems, particle diffusion process is predominant at higher concentrations, while film diffusion takes place at lower concentrations. The column studies reveal that about 96% saturation of both the columns is attained during their exhaustion, while about 88 and 84% of the dye material is recovered by eluting dilute NaOH solution through exhausted Bottom Ash and De-Oiled Soya columns, respectively.

  8. Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder.

    PubMed

    Ghaemi, Ahad; Torab-Mostaedi, Meisam; Ghannadi-Maragheh, Mohammad

    2011-06-15

    In this research, adsorption technique was applied for strontium and barium removal from aqueous solution using dolomite powder. The process has been investigated as a function of pH, contact time, temperature and adsorbate concentration. The experimental data was analyzed using equilibrium isotherm, kinetic and thermodynamic models. The isotherm data was well described by Langmuir isotherm model. The maximum adsorption capacity was found to be 1.172 and 3.958 mg/g for Sr(II) and Ba(II) from the Langmuir isotherm model at 293 K, respectively. The kinetic data was tested using first and pseudo-second order models. The results indicated that adsorption fitted well with the pseudo-second order kinetic model. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were also determined using the equilibrium constant value obtained at different temperatures. The results showed that the adsorption for both ions was feasible and exothermic.

  9. In vitro adsorption of tilidine HCl by activated charcoal.

    PubMed

    Cordonnier, J A; Van den Heede, M A; Heyndrickx, A M

    In vitro studies were carried out in order to determine the adsorption of tilidine HCl, a narcotic analgesic, by activated charcoal (max. adsorption capacity 185.5 mg/g of charcoal). The path of the adsorption isotherms at pH 1.2 and 7.5 suggests that the in vivo adsorption of tilidine HCl may be increased when the drug passes from the stomach to the intestine, unless the intestinal content exerts a displacing effect. Nevertheless, the adsorption was dependent on the quantity of activated charcoal used, becoming more complete when the quantity of activated charcoal was increased. The effects of additives on the adsorption capacity of activated charcoal were also investigated in vitro. Ethanol, sorbitol and sucrose significantly reduced drug adsorption, while cacao powder, milk and starch had no effect on tilidine adsorption. At an acid pH, Federa Activated Charcoal significantly adsorbed more drug than either Norit A or Activated Charcoal Merck.

  10. Sorption isotherms and isosteric heats of sorption of mint variety (Mentha viridis) leaves and stems: Experimental and mathematical investigations

    NASA Astrophysics Data System (ADS)

    Taoufik, Fatima; El Hadek, Miloud; Hnini, Moulay Chrif; Benchanaa, M'Barek; El Hammioui, Mustapha; Hassani, Lala Mina Idrissi

    2016-08-01

    Knowledge of sorption isotherms of agricultural products is necessary to control rehydration/dehydration and storage processes. The aim of this work is to determine moisture adsorption and desorption isotherms of Moroccan mint leaves and stems (Mentha viridis). The sorption isotherms of the plants was determined within the range of 0.0549-0.964 relative air humidity at three different temperatures (40, 50 and 60 ∘C) using saturated salt solutions method. Guggenheim, Anderson and Boer (GAB) model was used to describe the experimental data. The isosteric heats of desorption and adsorption were determined. Then, the isosteric heat of desorption was compared to the isosteric heat of adsorption and both decreased continuously with increasing the equilibrium moisture content. Finally, the comparison between the sorption net isosteric of mint leaves and stems was studied.

  11. Sorption isotherms and isosteric heats of sorption of mint variety ( Mentha viridis) leaves and stems: Experimental and mathematical investigations

    NASA Astrophysics Data System (ADS)

    Taoufik, Fatima; El Hadek, Miloud; Hnini, Moulay Chrif; Benchanaa, M'Barek; El Hammioui, Mustapha; Hassani, Lala Mina Idrissi

    2017-04-01

    Knowledge of sorption isotherms of agricultural products is necessary to control rehydration/dehydration and storage processes. The aim of this work is to determine moisture adsorption and desorption isotherms of Moroccan mint leaves and stems ( Mentha viridis). The sorption isotherms of the plants was determined within the range of 0.0549-0.964 relative air humidity at three different temperatures (40, 50 and 60 ∘C) using saturated salt solutions method. Guggenheim, Anderson and Boer (GAB) model was used to describe the experimental data. The isosteric heats of desorption and adsorption were determined. Then, the isosteric heat of desorption was compared to the isosteric heat of adsorption and both decreased continuously with increasing the equilibrium moisture content. Finally, the comparison between the sorption net isosteric of mint leaves and stems was studied.

  12. Temperature-dependent adsorption of nitrogen on porous vycor glass

    NASA Astrophysics Data System (ADS)

    Huber, Tito E.; Tsou, Hsi Lung

    1998-03-01

    Adsorption isotherms of N2 have been measured in the temperature range from 77 to 120 K in samples of porous vycor glass. From the Brunauer-Emmett-Teller theory the surface layer coverages are determined. These are found to be temperature dependent. When adsorption-isotherm coverage data are expressed as a function of the adsorption potential δμ, the result is roughly temperature independent for coverages ranging from submonolayer to thin film, below capillary condensation. This characteristic curve, which represents the distribution of adsorption sites vs the adsorption potential, is compared with results from two models for the adsorbate: Dubinin's isotherm for microporous solids and its extension to rough surfaces, which places importance on the porosity of the surface, and Halsey's extension of the Frankel-Halsey-Hill isotherm, which takes into account the long-range variations of the substrate adsorption potential. The impact of this work on the interpretation of N2 adsorption data in terms of a surface area is discussed.

  13. Evaluation of surface excess isotherms in liquid chromatography.

    PubMed

    Vajda, Péter; Felinger, Attila; Guiochon, Georges

    2013-05-24

    Methods are proposed to calculate surface excess isotherms and to use them to derive adsorption isotherms in liquid chromatography. The consequences of these methods are discussed. The excess isotherm of isopropyl alcohol from its aqueous solutions on a C18 adsorbent was obtained using the minor disturbance method. The slope of the inflection tangent of the excess isotherm provides the position of the plane separating the adsorbed layer and the bulk phase, from which the adsorption isotherm was derived. At low concentrations of isopropyl alcohol, frontal analysis was used to derive the adsorption isotherm on the same adsorbent using an independent method. The isotherm was thus derived from both frontal analysis data and the minor disturbance method. The results obtained are compared. Our results show that the use of the same concentration unit for the calculation and the representation of the data is the only correct way to calculate the excess isotherms in practical applications of liquid chromatography.

  14. Cell wall reactivity of acidophilic and alkaliphilic bacteria determined by potentiometric titrations and Cd adsorption experiments.

    PubMed

    Kenney, Janice P L; Fein, Jeremy B

    2011-05-15

    In this study, we used potentiometric titrations and Cd adsorption experiments to determine the binding capacities of two acidophilic (A. cryptum and A. acidophilum) and two alkaliphilic (B. pseudofirmus and B. circulans) bacterial species in order to determine if any consistent trends could be observed relating bacterial growth environment to proton and Cd binding properties and to compare those binding behaviors to those of neutrophilic bacteria. All of the bacterial species studied exhibited significant proton buffering over the pH range in this study, with the alkaliphiles exhibiting significantly higher acidity constants than the acidophiles as well as the neutrophilic bacterial consortia. The calculated average site concentrations for each of the bacteria in this study are within 2σ experimental error of each other, with the exception of A. cryptum, which has a significantly higher Site 2 concentration than the other species. Despite differing acidity constants between the acidophiles and alkaliphiles, all bacteria except A. cryptum exhibited remarkably similar Cd adsorption behavior to each other, and the observed extent of adsorption was also similar to that predicted from a generalized model derived using neutrophilic bacterial consortia. This study demonstrates that bacteria that grow under extreme conditions exhibit similar proton and metal adsorption behavior to that of previously studied neutrophilic species and that a single set of proton and metal binding constants can be used to model the behavior of bacterial adsorption under a wide range of environmental conditions.

  15. Folding equilibrium constants of telomere G-quadruplexes in free state or associated with proteins determined by isothermal differential hybridization.

    PubMed

    Wang, Quan; Ma, Li; Hao, Yu-Hua; Tan, Zheng

    2010-11-15

    Guanine rich (G-rich) nucleic acids form G-quadruplex structures that are implicated in many biological processes, pharmaceutical applications, and molecular machinery. The folding equilibrium constant (K(F)) of the G-quadruplex not only determines its stability and competition against duplex formation in genomic DNA but also defines its recognition by proteins and drugs and technical specifications. The K(F) is most conveniently derived from thermal melting analysis that has so far yielded extremely diversified results for the human telomere G-quadruplex. Melting analysis cannot be used for nucleic acids associated with proteins, thus has difficulty to study how protein association affects the folding equilibrium of G-quadruplex structure. In this work, we established an isothermal differential hybridization (IDH) method that is able to determine the K(F) of G-quadruplex, either alone or associated with proteins. Using this method, we studied the folding equilibrium of the core sequence G(3)(T(2)AG(3))(3) from vertebrate telomere in K(+) and Na(+) solutions and how it is affected by proteins associated at its adjacent regions. Our results show that the K(F) obtained for the free G-quadruplex is within 1 order of magnitude of most of those obtained by melting analysis and protein binding beside a G-quadruplex can dramatically destabilize the G-quadruplex.

  16. Application des modèles de Langmuir et Freundlich aux isothermes d'adsorption des métaux lourds par l'argile purifiée

    NASA Astrophysics Data System (ADS)

    Ayari, F.; Srasra, E.; Trabelsi-Ayadi, M.

    2004-12-01

    Bentonite, which consist essentially of clay minerals belonging to the smectite group, have a wide range of chemical and industrial uses. The structure chemical composition, exchangeable-ion type and small crystal size of smectite are responsible for several properties, including a large chemically active surface area, a high cation-exchange capacity and interlamellar surface having usual hydratation characteristics. A sample collected from Zaghouan (North East Tunisia, North Africa) is studied through some physico-chemical methods. Results from X-ray diffraction, chemical analysis, infrared spectroscopy, thermogravimetric analysis (TGA) and differential thermal analysis (DTA), cation exchange capacities, specific and total surfaces, confirm the general smectite character of the sample. The adsorption capacity of this clay was tested out using three metallic ions (Pb2+, Zn2+, Ni2+). The results showed that, in all cases, adsorption can be illustrated by Freundlich or Langmuir isotherms. However, for 10-3M Pb2+ the low value of the correlation coefficient (R2) indicated that the experimental data for the adsorption didn't fit to any linear form of the Langmuir equation. Metal adsorbed onto Zaghouan clay varied in the decreasing order PbPb2+ > Zn2+ > Ni2+ and fitted in satisfactorily with the uptake capacity. For Pb2+ the amount of adsorbed ions remained higher than the CEC (cation exchange capacity) of the clay fraction. This result may be due to adsorption of hydroxy lead complex in addition to sorption of bivalent lead form which explains the high amount of Pb2+ removed from aqueous solution.

  17. BORONATE AFFINITY ADSORPTION OF RNA: POSSIBLE ROLE OF CONFORMATIONAL CHANGES. (R825354)

    EPA Science Inventory

    Batch equilibrium adsorption isotherm determination is used to characterize the adsorption of mixed yeast RNA on agarose-immobilized m-aminophenylboronic acid. It is shown that the affinity-enhancing influence of divalent cations depends strongly on the precise nature of t...

  18. Specific surface area effect on adsorption of chlorpyrifos and TCP by soils and modeling

    USDA-ARS?s Scientific Manuscript database

    The adsorption of chlorpyrifos and TCP (3,5,6, trichloro-2-pyridinol) was determined in four soils (Mollisol, Inceptisol, Entisol, Alfisol) having different specific surface areas (19–84 m2/g) but rather similar organic matter content (2.4–3.5%). Adsorption isotherms were derived from batch equilibr...

  19. Selective adsorption and determination of iron(III): Mn3O4/TiO2 composite nanosheets as marker of iron for environmental applications

    NASA Astrophysics Data System (ADS)

    Khan, Sher Bahadar; Rahman, Mohammed M.; Marwani, Hadi M.; Asiri, Abdullah M.; Alamry, Khalid A.; Rub, Malik Abdul

    2013-10-01

    Mn3O4/TiO2 composite nanosheets have been synthesized by simple and low temperature magnetic stirring method and applied for water treatment application. The synthesized Mn3O4/TiO2 composite nanosheets were characterized by using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The spectroscopic techniques agreed that synthesized product is well crystalline nanosheets composed of Mn3O4/TiO2. The analytical potential of synthesized Mn3O4/TiO2 composite nanosheets was studied for a selective separation of Fe3+ prior to its determination by inductively coupled plasma-optical emission spectrometry. The selectivity of Mn3O4/TiO2 composite nanosheets toward different metal ions, including Au3+, Cd2+, Co2+, Cr3+, Fe3+, Pd2+ and Zn2+ was investigated. Results of the selectivity study demonstrated that Mn3O4/TiO2 composite nanosheets were the most selective toward Fe3+. The adsorption capacity of Fe3+ was found to be 69.80 mg g-1. Moreover, adsorption isotherm data also provided that the adsorption process was mainly monolayer on a homogeneous adsorbent surface.

  20. Importance of surface diffusivities in pesticide adsorption kinetics onto granular versus powdered activated carbon: experimental determination and modeling.

    PubMed

    Baup, S; Wolbert, D; Laplanche, A

    2002-10-01

    Three pesticides (atrazine, bromoxynil and diuron) and two granular activated carbons are involved in equilibrium and kinetic adsorption experiments. Equilibrium is represented by Freundlich isotherm law and kinetic is described by the Homogeneous Surface Diffusion Model, based on external mass transfer and intraparticle surface diffusion. Equilibrium and long-term experiments are conducted to compare Powdered Activated Carbon and Granular Activated Carbon. These first investigations show that crushing GAC into PAC improves the accessibility of the adsorption sites without increasing the number of these sites. In a second part, kinetics experiments are carried out using a Differential Column Batch Reactor. Thanks to this experimental device, the external mass transfer coefficient k(f) is calculated from empirical correlation and the effect of external mass transfer on adsorption is likely to be minimized. In order to obtain the intraparticle surface diffusion coefficient D. for these pesticides, comparisons between experimental kinetic data and simulations are conducted and the best agreement leads to the Ds coefficient. This procedure appears to be an efficient way to acquire surface diffusion coefficients for the adsorption of pesticides onto GAC. Finally it points out the role of surface diffusivity in the adsorption rate. As a matter of fact, even if the amount of the target-compound that could be potentially adsorbed is really important, its surface diffusion coefficient may be small, so that its adsorption may not have enough contact time to be totally achieved.

  1. Determination of colloidal gold nanoparticle surface areas, concentrations, and sizes through quantitative ligand adsorption.

    PubMed

    Gadogbe, Manuel; Ansar, Siyam M; He, Guoliang; Collier, Willard E; Rodriguez, Jose; Liu, Dong; Chu, I-Wei; Zhang, Dongmao

    2013-01-01

    Determination of the true surface areas, concentrations, and particle sizes of gold nanoparticles (AuNPs) is a challenging issue due to the nanoparticle morphological irregularity, surface roughness, and size distributions. A ligand adsorption-based technique for determining AuNP surface areas in solution is reported. Using a water-soluble, stable, and highly UV-vis active organothiol, 2-mercaptobenzimidazole (MBI), as the probe ligand, we demonstrated that the amount of ligand adsorbed is proportional to the AuNP surface area. The equivalent spherical AuNP sizes and concentrations were determined by combining the MBI adsorption measurement with Au(3+) quantification of aqua regia-digested AuNPs. The experimental results from the MBI adsorption method for a series of commercial colloidal AuNPs with nominal diameters of 10, 30, 50, and 90 nm were compared with those determined using dynamic light scattering, transmission electron microscopy, and localized surface plasmonic resonance methods. The ligand adsorption-based technique is highly reproducible and simple to implement. It only requires a UV-vis spectrophotometer for characterization of in-house-prepared AuNPs.

  2. Adsorptive stripping voltammetric determination of the antidepressant drug sulpiride.

    PubMed

    Farghaly, O A

    2000-10-01

    The electrochemical behaviour of the antidepressant drug sulpiride (SP) at a hanging mercury drop electrode (HMDE) is investigated. Linear sweep cathodic stripping voltammetry (LSCSV) was used to determine sulpiride in the presence of 0.01 M sodium acetate medium pH 10.5 and 25 +/- 1 degrees C. Different parameters such as, supporting electrolyte, pH, accumulation potential, scan rate, accumulation time and ionic strength, were tested to optimize the conditions for the determination of SP. The adsorbed form is reduced irreversibly. The linear concentration range is from 2 x 10(-9) to 5 x 10(-8) M SP. Experimentally, 2 x 10(-9) M (0.68 ppb) with accumulation time 60 s can be determined successfully. Furthermore, a theoretical detection limit of 2 x 10(-10) M (0.068 ppb) Sp was calculated. The interferences of some metal ions, ascorbic acid and some amino acids were studied. The method was applied to the analysis of tablets and spiked urine, with recoveries of 104 +/- 3 and 101 + 3, and the relative standard deviation of 3.3 and 3.4%, respectively.

  3. Development of a technique to determine bicyclomycin-rho binding and stoichiometry by isothermal titration calorimetry and mass spectrometry.

    PubMed

    Brogan, Andrew P; Widger, William R; Bensadek, Dalila; Riba-Garcia, Isabel; Gaskell, Simon J; Kohn, Harold

    2005-03-02

    Bicyclomycin (1) is the only natural product inhibitor of the transcription termination factor rho. Rho is a hexameric helicase that terminates nascent RNA transcripts utilizing ATP hydrolysis and is an essential protein for many bacteria. The paucity of information concerning the 1-rho interaction stems from the weak binding affinity of 1. We report a novel technique using imine formation with rho to enhance the affinity of a bicyclomycin analogue and determine the binding stoichiometry by isothermal titration calorimetry (ITC) and mass spectrometry (MS). Our designed bicyclomycin ligand, 5a-(3-formyl-phenylsulfanyl)-dihydrobicyclomycin (2) (apparent I(50) = 4 muM), inhibits rho an order of magnitude more efficiently than 1 (I(50) = 60 muM). MS shows that 2 selectively forms an imine with K181 in rho. We found that despite the heterogeneity of ATP binding (three tight and three weak) imposed on the rho hexamer, the nearby bicyclomycin binding pocket is not affected, and both 1 and 2 bind with equal affinity to all six subunits.

  4. Meningococcal carriage rates in healthy individuals in Japan determined using Loop-Mediated Isothermal Amplification and oral throat wash specimens.

    PubMed

    Takahashi, Hideyuki; Haga, Masae; Sunagawa, Tomimasa; Saitoh, Takehito; Kitahara, Takeru; Matsumoto, Sohkichi; Ohnishi, Makoto

    2016-07-01

    The detailed epidemiology of meningococcal diseases in Japan has yet to be determined and, moreover, the healthy carriage rate is also unknown. In this study, to obtain insight into the carriage rate of Neisseria meningitidis in healthy individuals in Japan, we developed a new method to detect the N. meningitidis-specific ctrB gene, one of the genes encoding enzymes for capsule synthesis, by Loop-Mediated Isothermal Amplification (LAMP) and examined the meningococcal carriage rate by using self-collected oral throat wash specimens from 836 students at a university. Examination by LAMP showed that 7 out of 836 samples were positive for N. meningitidis DNA, and the results were also verified by the nested PCR method for the meningococcus specific ggt gene. The N. meningitidis carriage rate in healthy individuals was estimated to be 0.84%. Moreover, we further confirmed by the nested-PCR-based serogroup typing method that 5 of the positive samples belonged to serogroup Y, 1 belonged to group B and 1 was unidentifiable. Considering the epidemiology for meningococcal diseases in Japan, the carriage rate and the serogroup profile seem to be consistent with low incidence of meningococcal diseases and serogroup distribution of clinical meningococcal isolates in Japan, respectively. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant.

    PubMed

    Marković, Marija; Daković, Aleksandra; Rottinghaus, George E; Kragović, Milan; Petković, Anđela; Krajišnik, Danina; Milić, Jela; Mercurio, Mariano; de Gennaro, Bruno

    2017-03-01

    In this study, organozeolites were prepared by treatment of the natural zeolites (clinoptilolite and phillipsite) with cetylpyridinium chloride (CP) equivalent to 50 and 100% of their external cation exchange capacities (ECEC). Organoclinoptilolites (ZCPs) and organophillipsites (PCPs) were characterized by FTIR spectroscopy, thermal analysis, determination of the point of zero charge and zeta potential. Adsorption of zearalenone (ZEN) by ZCPs and PCPs at pH 3 and 7 was investigated. Results showed that adsorption of ZEN increases with increasing amounts of CP at the zeolitic surfaces for both ZCPs and PCPs but the adsorption mechanism was different. Adsorption of ZEN by ZCPs followed a linear type of isotherm at pH 3 and 7 while ZEN adsorption by PCPs showed non linear (Langmuir and Freundlich) type of isotherm at both pH values. Different interactions between the ZEN molecule (or ion) and ZCPs and PCPs occurred: partition (linear isotherms) and adsorption in addition to partition (non linear isotherms), respectively. For the highest level of organic phase at the zeolitic surfaces, the maximum adsorbed amount of ZEN was 5.73mg/g for organoclinoptilolite and 6.86mg/g for organophillipsite at pH 3. Slightly higher adsorption: 6.98mg/g for organoclinoptilolite and 7.54mg/g for organophillipsite was achieved at pH 7. The results confirmed that CP ions at both zeolitic surfaces are responsible for ZEN adsorption and that organophillipsites are as effective in ZEN adsorption as organoclinoptilolites.

  6. Zn adsorption by different fractions of Galician soils.

    PubMed

    Covelo, E F; Alvarez, N; Andrade Couce, M L; Vega, F A; Marcet, P

    2004-12-15

    To evaluate the contribution of organic matter, oxides, and clay fraction to Zn adsorption in six soils from Galicia (Spain), after soil characterization, adsorption isotherms were obtained by adding nine solutions containing between 20 and 500 mg L(-1) concentrations of Zn(NO(3))(2). Distribution coefficients were obtained from the data of adsorption isotherms. Zn adsorption isotherms corresponding to untreated soil and to the organic matter removed samples and organic matter and oxides removed samples were compared with curves pattern and adjusted to Langmuir and Freundlich empirical models. Untreated soils described L-curves whereas when soils were deprived of any component, the curves described were S-type. Distribution coefficients allowed knowing the Zn adsorption capacity of the untreated soil, and of the organic matter, oxides, and clay fraction. Soil organic matter is the main component that affects Zn adsorption as long as soil pH is near neutrality. At acid pH, the oxides are the main component that affects Zn adsorption, although to a much smaller extent than the organic matter near neutral conditions. So soil pH is the main soil factor that determines Zn adsorption, before any other soil property.

  7. Application of the Dubinin-Astakhov equation to the evaluation of the benzene and cyclohexane adsorption isotherms on steam gasified humic acids chars from brown coal

    SciTech Connect

    Siemieniewska, T.; Tomkow, K.; Kaczmarczyk, J.; Albiniak, A.; Grillet, Y.; Francois, M.

    1988-01-01

    The aim of this work was to establish, for a suite of carbonaceous materials, the values of n (exponent in the Dubinin-Astakhov equation) for which a satisfactory agreement would be obtained between the experimental adsorption data and the DA equation, trying also to verify the obtained DA parameters referring to related results calculated, or obtained experimentally, independently. As adsorptives benzene (frequently used as standard) and cyclohexane (to avoid the presence of /pi/ - electrons in the molecule) were chosen. To have a suite of samples characterized by a systematically changing porosity, humic acids steam gasified chars were prepared with varying burn-offs. Humic acids from brown coals can be obtained with a low mineral matter content and they are thought to be representative for the organic substance of low rank coals. Additionally, two industrial active carbons, described elsewhere were investigated.

  8. Comparative studies on removal of Erythrosine using ZnS and AgOH nanoparticles loaded on activated carbon as adsorbents: Kinetic and isotherm studies of adsorption.

    PubMed

    Ghaedi, M; Rozkhoosh, Z; Asfaram, A; Mirtamizdoust, B; Mahmoudi, Z; Bazrafshan, A A

    2015-03-05

    Erythrosine adsorption (Er) onto ZnS and AgOH nanoparticle-loaded activated carbon (ZnS-NP-AC and AgOH-NP-AC) was studied and results were compared. Subsequent preparation were fully analyzed by different approach such as BET to obtain knowledge about surface area, pore volume, while FT-IR analysis give comprehensive information about functional group the dependency of removal percentage to adsorbent mass, initial Er concentration and contact time were investigated and optimum conditions for pH, adsorbent dosage, Er concentration and contact time was set as be 3.2, 0.016g, 20mg/L and 16min and 3.2, 0.015g, 19mg/L and 2min for ZnS-NP-AC and AgOH-NP-AC, respectively. The equilibrium data correspond to adsorption strongly follow Langmuir model by ZnS-NP-AC and Freundlich model for AgOH-NP-AC. High adsorption capacity for of 55.86-57.80mgg(-1) and 67.11-89.69mgg(-1) for ZnS-NP-AC and AgOH-NP-AC, respectively. The result of present study confirm the applicability of small amount of these adsorbent (<0.02g) for efficient removal of Er (>95%) in short reasonable time (20min).

  9. Comparative studies on removal of Erythrosine using ZnS and AgOH nanoparticles loaded on activated carbon as adsorbents: Kinetic and isotherm studies of adsorption

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Rozkhoosh, Z.; Asfaram, A.; Mirtamizdoust, B.; Mahmoudi, Z.; Bazrafshan, A. A.

    2015-03-01

    Erythrosine adsorption (Er) onto ZnS and AgOH nanoparticle-loaded activated carbon (ZnS-NP-AC and AgOH-NP-AC) was studied and results were compared. Subsequent preparation were fully analyzed by different approach such as BET to obtain knowledge about surface area, pore volume, while FT-IR analysis give comprehensive information about functional group the dependency of removal percentage to adsorbent mass, initial Er concentration and contact time were investigated and optimum conditions for pH, adsorbent dosage, Er concentration and contact time was set as be 3.2, 0.016 g, 20 mg/L and 16 min and 3.2, 0.015 g, 19 mg/L and 2 min for ZnS-NP-AC and AgOH-NP-AC, respectively. The equilibrium data correspond to adsorption strongly follow Langmuir model by ZnS-NP-AC and Freundlich model for AgOH-NP-AC. High adsorption capacity for of 55.86-57.80 mg g-1 and 67.11-89.69 mg g-1 for ZnS-NP-AC and AgOH-NP-AC, respectively. The result of present study confirm the applicability of small amount of these adsorbent (<0.02 g) for efficient removal of Er (>95%) in short reasonable time (20 min).

  10. Rapid Differentiation of Methicillin-Susceptible Staphylococcus aureus from Methicillin-Resistant S. aureus and MIC Determinations by Isothermal Microcalorimetry ▿

    PubMed Central

    von Ah, Ueli; Wirz, Dieter; Daniels, A. U.

    2008-01-01

    In this study, the use of isothermal microcalorimetry (IMC) for differentiation between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) and MIC determination was evaluated. It was possible to differentiate between MRSA and MSSA within 4 h, whereas the standard method required 24 h. The MICs of cefoxitin were successfully determined for MRSA and MSSA by using IMC. PMID:18417657

  11. Rapid and high-capacity ultrasonic assisted adsorption of ternary toxic anionic dyes onto MOF-5-activated carbon: Artificial neural networks, partial least squares, desirability function and isotherm and kinetic study.

    PubMed

    Askari, Hanieh; Ghaedi, Mehrorang; Dashtian, Kheibar; Azghandi, Mohammad Hossein Ahmadi

    2017-07-01

    The present paper focused on the ultrasonic assisted simultaneous removal of fast green (FG), eosin Y (EY) and quinine yellow (QY) from aqueous media following using MOF-5 as a metal organic framework and activated carbon hybrid (AC-MOF-5). The structure and morphology of AC-MOF-5 was identified by SEM, FTIR and XRD analysis. The interactive and main effects of variables such as pH, initial dyes concentration (mgL(-1)), adsorbent dosage (mg) and sonication time (min) on removal percentage were studied by central composite design (CCD), subsequent desirability function (DF) permit to achieved real variable experimental condition. Optimized values were found 7.06, 5.68, 7.59 and 5.04mgL(-1), 0.02g and 2.55min for pH, FG, EY and QY concentration, adsorbent dosage and sonication time, respectively. Under this conditions removal percentage were obtained 98.1%, 98.1% and 91.91% for FG, EY and QY, respectively. Two models, namely partial least squares (PLS) and multi-layer artificial neural network (ANN) model were used for building up to construct an empirical model to predict the dyes under study removal behavior. The obtained results show that ANN and PLS model is a powerful tool for prediction of under-study dyes adsorption by AC-MOF-5. The evaluation and estimation of equilibrium data from traditional isotherm models display that the Langmuir model indicated the best fit to the equilibrium data with maximum adsorption capacity of 21.230, 20.242 and 18.621mgg(-1), for FG, EY and QY, respectively, while the adsorption rate efficiently follows the pseudo-second-order model. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Adsorptive cathodic stripping voltammetric determination of cefoperazone in bulk powder, pharmaceutical dosage forms, and human urine.

    PubMed

    Hoang, Vu Dang; Huyen, Dao Thi; Phuc, Phan Hong

    2013-01-01

    The electroreduction behaviour and determination of cefoperazone using a hanging mercury drop electrode were investigated. Cyclic voltammograms of cefoperazone recorded in universal Britton-Robinson buffers pH 3-6 exhibited a single irreversible cathodic peak. The process was adsorption-controlled. Britton-Robinson buffer 0.04 M pH 4.0 was selected as a supporting electrolyte for quantitative purposes by differential pulse and square wave adsorptive cathodic stripping voltammetry. The experimental voltammetric conditions were optimized using Central Composite Face design. A reduction wave was seen in the range from -0.7 to -0.8 V. These voltammetric techniques were successfully validated as per ICH guidelines and applied for the determination of cefoperazone in its single and sulbactam containing powders for injection and statistically comparable to USP-HPLC. They were further extended to determine cefoperazone in spiked human urine with no matrix effect.

  13. Adsorptive Cathodic Stripping Voltammetric Determination of Cefoperazone in Bulk Powder, Pharmaceutical Dosage Forms, and Human Urine

    PubMed Central

    Hoang, Vu Dang; Huyen, Dao Thi; Phuc, Phan Hong

    2013-01-01

    The electroreduction behaviour and determination of cefoperazone using a hanging mercury drop electrode were investigated. Cyclic voltammograms of cefoperazone recorded in universal Britton-Robinson buffers pH 3–6 exhibited a single irreversible cathodic peak. The process was adsorption-controlled. Britton-Robinson buffer 0.04 M pH 4.0 was selected as a supporting electrolyte for quantitative purposes by differential pulse and square wave adsorptive cathodic stripping voltammetry. The experimental voltammetric conditions were optimized using Central Composite Face design. A reduction wave was seen in the range from −0.7 to −0.8 V. These voltammetric techniques were successfully validated as per ICH guidelines and applied for the determination of cefoperazone in its single and sulbactam containing powders for injection and statistically comparable to USP-HPLC. They were further extended to determine cefoperazone in spiked human urine with no matrix effect. PMID:24109542

  14. Adsorption of hexavalent chromium onto sisal pulp/polypyrrole composites

    NASA Astrophysics Data System (ADS)

    Tan, Y. Y.; Wei, C.; Gong, Y. Y.; Du, L. L.

    2017-02-01

    Sisal pulp/polypyrrole composites(SP/PPy) utilized for the removal of hexavalent chromium [Cr(VI)] from wastewater, were prepared via in-situ chemical oxidation polymerization approach. The structure and morphology of the SP/PPy were analyzed by polarizing optical microscopy (POM), field-emission scanning electron microscopy (SEM)), Energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), the results indicated SP could be efficient dispersion of PPy. The hexavalent chromium adsorption results indicate adsorption capacity of the SP/PPy were dependent on the initial pH, with an optimum pH of 2.0. The sorption kinetic data fitted well to the pseudo-second order model and isotherm data fitted well to the Langmuir isotherm model. The maximum adsorption capacity determined from the Langmuir isotherm is 336.70 mg/g at 25° C.

  15. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    PubMed

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  16. Hydrogen adsorption on functionalized nanoporous activated carbons.

    PubMed

    Zhao, X B; Xiao, B; Fletcher, A J; Thomas, K M

    2005-05-12

    There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.

  17. Methylene blue adsorption from aqueous solution by activated carbon: effect of acidic and alkaline solution treatments.

    PubMed

    Ijagbemi, Christianah O; Chun, Ji I; Han, Da H; Cho, Hye Y; O, Se J; Kim, Dong S

    2010-01-01

    The removal of Methylene Blue (MB) from aqueous solution using activated carbon (AC) has been investigated. Adsorption experiments were conducted and the maximum adsorption capacity was determined. The effect of experimental parameters such as pH, dye concentration and temperature were studied on the adsorption process. Equilibrium data were mathematically modeled using the Langmuir and Freundlich adsorption models to describe the equilibrium isotherms at different dye concentrations and temperature. Parameters of best-fit model were calculated and discussed. To understand the mechanism of adsorption, kinetic models were employed to follow the adsorption processes; the pseudo-first-order best described the adsorption of MB onto AC. It was found that pH plays a major role in the adsorption process; adsorption capacity was influenced by the physical and surface chemical properties of carbon and the pH of the solution. 99.0% MB removal was achieved at equilibrium.

  18. Adsorption of tannic acid on polyelectrolyte monolayers determined in situ by streaming potential measurements.

    PubMed

    Oćwieja, M; Adamczyk, Z; Morga, M

    2015-01-15

    Physicochemical characteristics of tannic acid (tannin) suspensions comprising its stability for a wide range of ionic strength and pH were thoroughly investigated using UV-vis spectrophotometry, dynamic light scattering and microelectrophoretic measurements. These studies allowed to determine the hydrodynamic diameter of the tannic acid that was 1.63 nm for the pH range 3.5-5.5. For pH above 6.0 the hydrodynamic diameter significantly decreased as a result of the tannin hydrolysis. The electrophoretic mobility measurements confirmed that tannic acid is negatively charged for these values of pH and ionic strength 10(-4)-10(-2) M. Therefore, in order to promote adsorption of tannin molecules on negatively charged mica, the poly(allylamine hydrochloride) (PAH) supporting monolayers were first adsorbed under diffusion transport conditions. The coverage of polyelectrolyte monolayers was regulated by changing bulk concentration of PAH and the adsorption time. The electrokinetic characteristics of bare and PAH-covered mica were determined using the streaming potential measurements. The zeta potential of these PAH monolayers was highly positive, equal to 46 mV for ionic strength of 10(-2) M. The kinetics of tannin adsorption on these PAH supporting monolayers was evaluated by the in situ the streaming potential measurements. The zeta potential of PAH monolayers abruptly decreases with the adsorption of tannin molecules that was quantitatively interpreted in terms of the three-dimensional electrokinetic model. The acid-base characteristics of tannin monolayers were acquired via the streaming potential measurements for a broad range of pH. The obtained results indicate that it is possible to control adsorption of tannin on positively charged surfaces in order to designed new multilayer structures of desirable electrokinetic properties and stability.

  19. Design, construction, and calibration of an isothermal titration calorimeter and its application in the study of the adsorption of phenolic compounds.

    PubMed

    Moreno-Piraján, Juan Carlos; Giraldo, Liliana

    2012-01-01

    An isothermal calorimetric titration was designed and built, and some of the results obtained are presented here. For this purpose, a Calvet heat-conducting microcalorimeter was developed and connected to a titration unit built for this experiment to record titration thermograms. The microcalorimeter was electrically calibrated to establish its sensitivity and reproducibility, obtaining K = 13.56 ± 0.21 W V(-1). Additionally, the equipment was tested using the heat of neutralisation for the tris-hydroxymethyl-aminomethane-HCl (THAM-HCl) system, obtaining ΔH = -30.92 ± 0.03 kJ mol(-1). The unit was assembled to obtain titration heats and the corresponding thermodynamic variables (ΔH, ΔG, ΔS, and K(e)) with a system of phenolic derivatives-activated carbon (synthesised from potato peel).

  20. Design, construction, and calibration of an isothermal titration calorimeter and its application in the study of the adsorption of phenolic compounds

    NASA Astrophysics Data System (ADS)

    Moreno-Piraján, Juan Carlos; Giraldo, Liliana

    2012-01-01

    An isothermal calorimetric titration was designed and built, and some of the results obtained are presented here. For this purpose, a Calvet heat-conducting microcalorimeter was developed and connected to a titration unit built for this experiment to record titration thermograms. The microcalorimeter was electrically calibrated to establish its sensitivity and reproducibility, obtaining K = 13.56 ± 0.21 W V-1. Additionally, the equipment was tested using the heat of neutralisation for the tris-hydroxymethyl-aminomethane-HCl (THAM-HCl) system, obtaining ΔH = -30.92 ± 0.03 kJ mol-1. The unit was assembled to obtain titration heats and the corresponding thermodynamic variables (ΔH, ΔG, ΔS, and Ke) with a system of phenolic derivatives-activated carbon (synthesised from potato peel).

  1. Application of isothermal titration calorimetry for characterizing thermodynamic parameters of biomolecular interactions: peptide self-assembly and protein adsorption case studies.

    PubMed

    Kabiri, Maryam; Unsworth, Larry D

    2014-10-13

    The complex nature of macromolecular interactions usually makes it very hard to identify the molecular-level mechanisms that ultimately dictate the result of these interactions. This is especially evident in the case of biological systems, where the complex interaction of molecules in various situations may be responsible for driving biomolecular interactions themselves but also has a broader effect at the cell and/or tissue level. This review will endeavor to further the understanding of biomolecular interactions utilizing the isothermal titration calorimetry (ITC) technique for thermodynamic characterization of two extremely important biomaterial systems, viz., peptide self-assembly and nonfouling polymer-modified surfaces. The advantages and shortcomings of this technique will be presented along with a thorough review of the recent application of ITC to these two areas. Furthermore, the controversies associated with the enthalpy-entropy compensation effect as well as thermodynamic equilibrium state for such interactions will be discussed.

  2. Isotherm investigation for the sorption of fluoride onto Bio-F: comparison of linear and non-linear regression method

    NASA Astrophysics Data System (ADS)

    Yadav, Manish; Singh, Nitin Kumar

    2017-08-01

    A comparison of the linear and non-linear regression method in selecting the optimum isotherm among three most commonly used adsorption isotherms (Langmuir, Freundlich, and Redlich-Peterson) was made to the experimental data of fluoride (F) sorption onto Bio-F at a solution temperature of 30 ± 1 °C. The coefficient of correlation (r2 ) was used to select the best theoretical isotherm among the investigated ones. A total of four Langmuir linear equations were discussed and out of which linear form of most popular Langmuir-1 and Langmuir-2 showed the higher coefficient of determination (0.976 and 0.989) as compared to other Langmuir linear equations. Freundlich and Redlich-Peterson isotherms showed a better fit to the experimental data in linear least-square method, while in non-linear method Redlich-Peterson isotherm equations showed the best fit to the tested data set. The present study showed that the non-linear method could be a better way to obtain the isotherm parameters and represent the most suitable isotherm. Redlich-Peterson isotherm was found to be the best representative (r2 = 0.999) for this sorption system. It is also observed that the values of β are not close to unity, which means the isotherms are approaching the Freundlich but not the Langmuir isotherm.

  3. Chromatographic determination of the differential isosteric adsorption enthalpies and differential entropies on ordered silica materials.

    PubMed

    Grajek, H; Paciura-Zadrozna, J; Witkiewicz, Z

    2008-06-13

    The adsorption properties of the ordered mesoporous siliceous materials: MCM-41C16 (denoted as C16), MCM-41C16-SH and MCM-41C16-NH(2) (known as MCMs) having different surface functionalities were studied by inverse gas chromatography to assess their suitability for adsorption of analytes from gas and liquid phases. Polar and non-polar adsorbates were employed. The differential isosteric enthalpies, -DeltaH(ads), and differential entropies, -DeltaS(ads), of adsorption of different 'molecular probes' were determined chromatographically. A mathematical link between the -DeltaH(ads), and -DeltaS(ads) magnitudes and experimental data was derived through an Antoine-type equation. The present studies have been entirely restricted to the region of low adsorbate concentration. The problem of the interrelationship between the -DeltaH(ads), and -DeltaS(ads) values, known as the 'thermodynamic compensation effect', and interpretation of chromatographic data for the adsorption of different adsorbates on the MCMs have been considered in the light of both experimental data obtained in the present studies and the data available in the literature for siliceous adsorbents with randomly ordered structures. It was shown chromatographically that there is substantial parallelism between the magnitudes of the differential isosteric enthalpy and differential entropy for some 'molecular probes' chromatographed on C16 and its derivatives. Complementary information was obtained by atomic-force microscopy (AFM), X-ray photoelectron spectroscopy and X-ray diffraction (XRD) spectroscopy.

  4. Determination of the adsorption model of alkenes and alcohols on sulfonic copolymer by inverse gas chromatography.

    PubMed

    Słomkiewicz, P M

    2004-04-23

    The determination of a number of adsorption sites on sulfonated styrene-divinylbenzene copolymer for alkenes (propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, isobutene, 2-methyl-1-butene, 2-methyl-2-butene, 2-methyl-1-pentene, 2-methyl-2-pentene and 2-methyl-2-hexene) and alcohols (methanol, ethanol and n-propanol, n-butanol, 2-butanol and tert-butanol) was performed by the saturation copolymer with vapors of adsorbate, by removing the excess of adsorbate from copolymer by blowing the inert gas through copolymer bed and by the desorption of adsorbed alcohol in the programmed increase of temperature. The adsorption measurements were performed on sulfonated ion-exchange resin (Amberlyst 15) with different concentrations of the acid group, which means with a varying number of adsorption sites. The following adsorption models for alkenes were suggested: the first in which one molecule of alkene is adsorbed by two sulfonic groups, for linear alcohols, the second in which one sulfonic group can adsorb one molecule of alcohol and for non-linear alcohols the third where one molecule of alcohol is adsorbed by two or more sulfonic groups.

  5. Adsorption and correlation with their thermodynamic properties of triazine herbicides on soils.

    PubMed

    Yang, Wei-chun; Liu, Wei-ping; Liu, Hui-jun; Liu, Guang-shen

    2003-07-01

    Adsorption of atrazine, prometryne and prometon was determined on six soils with different physical and chemical properties. The adsorption isotherms of three herbicides could well fit Freundlich equation. On all of six soils, adsorption of herbicides increased in the order: atrazine approximately = prometon < prometryne. This order is quite the same to the calculation result of by means of excess thermodynamic properties of triazine. The Freundlich adsorption constants, Kf, showed to have good correlation with organic matter (OM%) of soils for each of these herbicides, suggesting that OM is the main factor, which dominates in the adsorption process of these triazine herbicides.

  6. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon.

    PubMed

    Onal, Y; Akmil-Başar, C; Sarici-Ozdemir, C

    2007-07-19

    Lignite was used to prepare activated carbon (T3K618) by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N2 adsorption isotherm. BET surface area of activated carbon is determined as 1000 m2/g. Adsorption capacity of malachite green (MG) onto T3K618 activated carbon was investigated in a batch system by considering the effects of various parameters like initial concentration (100, 150 and 200 mg/L) and temperature (25, 40 and 50 degrees C). The adsorption process was relatively fast and equilibrium was reached after about 20 min for 100, 150 mg/L at all adsorption temperature. Equilibrium time for 200 mg/L was determined as 20 min and 40 min at 298, 313 and 323 K, respectively. Simple mass and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion. Pseudo second-order model was found to explain the kinetics of MG adsorption most effectively. It was found that both mass transfer and pore diffusion are important in determining the adsorption rates. The intraparticle diffusion rate constant, external mass transfer coefficient, film and pore diffusion coefficient at various temperatures were evaluated. The activation energy (Ea) was determined as 48.56, 63.16, 67.93 kJ/mol for 100, 150, 200 mg/L, respectively. The Langmiur and Freundlich isotherm were used to describe the adsorption equilibrium studies at different temperatures. Langmiur isotherm shows better fit than Freundlich isotherm in the temperature range studied. The thermodynamic parameters, such as DeltaG degrees, DeltaS and DeltaH degrees were calculated. The thermodynamics of dyes-T3K618 system indicates endothermic process.

  7. Ethane adsorption on aggregates of dahlia-like nanohorns: experiments and computer simulations.

    PubMed

    Russell, Brice A; Migone, Aldo D; Petucci, Justin; Mercedes Calbi, M; Yudasaka, Masako; Iijima, Sumio

    2016-06-01

    This is a report on a study of the adsorption characteristics of ethane on aggregates of unopened dahlia-like carbon nanohorns. This sorbent presents two main groups of adsorption sites: the outside surface of individual nanohorns and deep, interstitial spaces between neighbouring nanohorns towards the interior of the aggregates. We have explored the equilibrium properties of the adsorbed ethane films by determining the adsorption isotherms and isosteric heat of adsorption. Computer simulations performed on different model structures indicate that the majority of ethane adsorption occurs on the outer region of the aggregates, near the ends of the nanohorns. We have also measured the kinetics of adsorption of ethane on this sorbent. The measurements and simulations were conducted along several isotherms spanning the range between 120 K and 220 K.

  8. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies.

    PubMed

    Hameed, B H; Din, A T M; Ahmad, A L

    2007-03-22

    Bamboo, an abundant and inexpensive natural resource in Malaysia was used to prepare activated carbon by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO(2)) as the activating agents at 850 degrees C for 2h. The adsorption equilibrium and kinetics of methylene blue dye on such carbon were then examined at 30 degrees C. Adsorption isotherm of the methylene blue (MB) on the activated carbon was determined and correlated with common isotherm equations. The equilibrium data for methylene blue adsorption well fitted to the Langmuir equation, with maximum monolayer adsorption capacity of 454.2mg/g. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. The adsorption of methylene blue could be best described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed.

  9. Utilization of powdered waste sludge (PWS) for removal of textile dyestuffs from wastewater by adsorption.

    PubMed

    Ozmihci, Serpil; Kargi, Fikret

    2006-11-01

    Acid pre-treated powdered waste sludge (PWS) was used for removal of textile dyestuffs from aqueous medium by adsorption as an alternative to the use of powdered activated carbon (PAC). The rate and extent of dysetuff removals were determined for four different dyestuffs at different PWS concentrations varying between 1 and 6 gl(-1). Biosorbed dyestuff concentrations at equilibrium decreased with increasing PWS concentration for all dyestuffs tested. PWS was more effective for adsorption of Remazol red RR and Chrisofonia direct yellow 12 as compared to the other dyestuffs tested. More than 80% percent dyestuff removal was obtained for all dyestuffs at PWS concentrations above 4 gl(-1) after 6h of incubation. Similar to percent dyestuff removal, the rate of adsorption was maximum at a PWS concentration of 4 gl(-1). Kinetics of adsorption of dyestuffs was investigated by using the first- and second-order kinetic models and the kinetic constants were determined. Second-order kinetics was found to fit the experimental data better than the first-order model for all dyestuffs tested. Adsorption isotherms were established for all dyestuffs used and the isotherm constants were determined by using the experimental data. Langmuir and the generalized adsorption isotherms were found to be more suitable than the Freundlich isotherm for correlation of equilibrium adsorption data. Acid pre-treated PWS was proven to be an effective adsorbent for dyestuff removal as compared to the other adsorbents reported in literature studies.

  10. The adsorption of nicotine from aqueous solutions on different zeolite structures.

    PubMed

    Rakić, Vesna; Damjanović, Ljiljana; Rac, Vladislav; Stosić, Dusan; Dondur, Vera; Auroux, Aline

    2010-03-01

    The present work is focused on the adsorption of nicotine from aqueous solutions. Based on the data available in the literature, serious concern is claimed regarding the appearance of nicotine in ground, surface and municipal wastewaters. In order to investigate the possibility of abatement by adsorption, three different types of zeolites (BEA, MFI and HEU) have been applied as adsorbents. In addition, the adsorption was performed on activated carbon, a solid customarily used for removal of pollutants from water. The adsorption of nicotine was studied by isothermal microcalorimetry, which provided the heats evolved as a result of adsorption. The values of these heats revealed that the investigated solids are energetically heterogeneous for the adsorption of nicotine from aqueous solution. Additionally, the amounts of adsorbed pollutant were determined and presented in the form of adsorption isotherms. The obtained adsorption isotherms were interpreted using Langmuir, Freundlich, and Sips equations; the latter was found to express high level of agreement with experimental data of nicotine adsorption on the investigated solids. The possibilities to regenerate the adsorbents were examined by means of thermogravimetry coupled with mass spectrometry. From all obtained results, it was possible to distinguish zeolite BEA as a material which possesses the capacity for adsorption of nicotine comparable to that of activated carbon.

  11. Protein Adsorption Patterns and Analysis on IV Nanoemulsions—The Key Factor Determining the Organ Distribution

    PubMed Central

    Keck, Cornelia M.; Jansch, Mirko; Müller, Rainer H.

    2012-01-01

    Intravenous nanoemulsions have been on the market for parenteral nutrition since the 1950s; meanwhile, they have also been used successfully for IV drug delivery. To be well tolerable, the emulsions should avoid uptake by the MPS cells of the body; for drug delivery, they should be target-specific. The organ distribution is determined by the proteins adsorbing them after injection from the blood (protein adsorption pattern), typically analyzed by two-dimensional polyacrylamide gel electrophoresis, 2-D PAGE. The article reviews the 2-D PAGE method, the analytical problems to be faced and the knowledge available on how the composition of emulsions affects the protein adsorption patterns, e.g., the composition of the oil phase, stabilizer layer and drug incorporation into the interface or oil core. Data were re-evaluated and compared, and the implications for the in vivo distribution are discussed. Major results are that the interfacial composition of the stabilizer layer is the main determining factor and that this composition can be modulated by simple processes. Drug incorporation affects the pattern depending on the localization of the drug (oil core versus interface). The data situation regarding in vivo effects is very limited; mainly, it has to be referred to in the in vivo data of polymeric nanoparticles. As a conclusion, determination of the protein adsorption patterns can accelerate IV nanoemulsion formulation development regarding optimized organ distribution and related pharmacokinetics. PMID:24300396

  12. Mechanisms of fibrinogen adsorption on latex particles determined by zeta potential and AFM measurements.

    PubMed

    Adamczyk, Zbigniew; Bratek-Skicki, Anna; Dąbrowska, Paulina; Nattich-Rak, Małgorzata

    2012-01-10

    The adsorption of fibrinogen on polystyrene latex particles was studied using the concentration depletion method combined with the AFM detection of residual protein after adsorption. Measurements were carried out for a pH range of 3.5-11 and an ionic strength range of 10(-3)-0.15 M NaCl. First, the bulk physicochemical properties of fibrinogen and the latex particle suspension were characterized for this range of pH and ionic strength. The zeta potential and the number of uncompensated (electrokinetic) charges on the protein were determined from microelectrophoretic measurements. It was revealed that fibrinogen molecules exhibited amphoteric characteristics, being on average positively charged for pH <5.8 (isolectric point) and negative otherwise. However, the latex particles did not show any isoelectric point, remaining strongly negative for this pH range. Afterward, systematic measurements of the electrophoretic mobility of fibrinogen-covered latex were carried out as a function of the amount of adsorbed protein, expressed as the surface concentration. A monotonic increase in the electrophoretic mobility (zeta potential) of the latex was observed in all cases, indicating a significant adsorption of fibrinogen on latex for pH below 11. It was also proven that fibrinogen adsorption was irreversible, with the maximum surface concentration varying between 2.5 and 5 × 10(3) μm(-2) (weight concentration of a bare molecule was 1.4 to 2.8 mg m(-2)). These measurements revealed two main adsorption mechanisms of fibrinogen: (i) the unoriented (random) mechanism prevailing for lower ionic strength, where adsorbing molecules significantly penetrate the fuzzy polymeric layer on the latex core and (ii) the side-on adsorption mechanism prevailing for pH > 5.8 and a higher ionic strength of 0.15 M. It was also shown that in the latter case, variations in the zeta potential with the protein coverage could be adequately described in terms of the electrokinetic model, previously

  13. Adsorption studies of Cd(II) onto Al 2O 3/Nb 2O 5 mixed oxide dispersed on silica matrix and its on-line preconcentration and determination by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mendonça Costa, Lucimara; Ribeiro, Emerson Schwingel; Segatelli, Mariana Gava; do Nascimento, Danielle Raphael; de Oliveira, Fernanda Midori; Tarley, César Ricardo Teixeira

    2011-05-01

    The present study describes the adsorption characteristic of Cd(II) onto Nb 2O 5/Al 2O 3 mixed oxide dispersed on silica matrix. The characterization of the adsorbent has been carried out by infrared spectroscopy (IR), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), energy dispersive X-ray fluorescence analysis (EDXRF) and specific surface area ( SBET). From batch experiments, adsorption kinetic of Cd(II) was described by a pseudo-second-order kinetic model. The Langmuir linear isotherm fitted to the experimental adsorption isotherm very well, and the maximum adsorption capacity was found to be 17.88 mg g -1. Using the effective material, a method for Cd(II) preconcentration at trace level was developed. The method was based on on-line adsorption of Cd(II) onto SiO 2/Al 2O 3/Nb 2O 5 at pH 8.64, in which the quantitative desorption occurs with 1.0 mol L -1 hydrochloric acid towards FAAS detector. The experimental parameters related to the system were studied by means of multivariate analysis, using 2 4 full factorial design and Doehlert matrix. The effect of SO 42-, Cu 2+, Zn 2+ and Ni 2+ foreign ions showed no interference at 1:100 analyte:interferent proportion. Under the most favorable experimental conditions, the preconcentration system provided a preconcentration factor of 18.4 times, consumption index of 1.08 mL, sample throughput of 14 h -1, concentration efficiency of 4.35 min -1, linear range from 5.0 up to 35.0 μg L -1 and limits of detection and quantification of 0.19 and 0.65 μg L -1 respectively. The feasibility of the proposed method for Cd(II) determination was assessed by analysis of water samples, cigarette sample and certified reference materials TORT-2 (Lobster hepatopancreas) and DOLT-4 (Dogfish liver).

  14. Quantification of the effects of organic and carbonate buffers on arsenate and phosphate adsorption on a goethite-based granular porous adsorbent.

    PubMed

    Kanematsu, Masakazu; Young, Thomas M; Fukushi, Keisuke; Sverjensky, Dimitri A; Green, Peter G; Darby, Jeannie L

    2011-01-15

    Interest in the development of oxide-based materials for arsenate removal has led to a variety of experimental methods and conditions for determining arsenate adsorption isotherms, which hinders comparative evaluation of their adsorptive capacities. Here, we systematically investigate the effects of buffer (HEPES or carbonate), adsorbent dose, and solution pH on arsenate and phosphate adsorption isotherms for a previously well characterized goethite-based adsorbent (Bayoxide E33 (E33)). All adsorption isotherms obtained at different adsorbate/adsorbent concentrations were identical when 1 mM of HEPES (96 mg C/L) was used as a buffer. At low aqueous arsenate and phosphate concentration (∼1.3 μM), however, adsorption isotherms obtained using 10 mM of NaHCO(3) buffer, which is a reasonable carbonate concentration in groundwater, are significantly different from those obtained without buffer or with HEPES. The carbonate competitive effects were analyzed using the extended triple layer model (ETLM) with the adsorption equilibrium constant of carbonate calibrated using independent published carbonate adsorption data for pure goethite taking into consideration the different surface properties. The successful ETLM calculations of arsenate adsorption isotherms for E33 under various conditions allowed quantitative comparison of the arsenate adsorption capacity between E33 and other major adsorbents initially tested under varied experimental conditions in the literature.

  15. Assessment of in vitro binding of isolated pectic domains to cellulose by adsorption isotherms, electron microscopy, and X-ray diffraction methods.

    PubMed

    Zykwinska, Agata; Gaillard, Cédric; Buléon, Alain; Pontoire, Bruno; Garnier, Catherine; Thibault, Jean-François; Ralet, Marie-Christine

    2007-01-01

    Isolated pectic domains representative of the pectic backbone and the neutral sugar side chains were tested for their ability to interact with cellulose in comparison to the well-known binding of xyloglucan. Pectic side chains displayed a significant in vitro binding capacity to cellulose, whereas pectic backbone domains exhibited only slight adsorption to cellulose microfibrils. To support the binding results, electron microscopy and X-ray diffraction were applied. Celluloses from bacteria and sugar beet cell walls were used as substrates for the precipitation of isolated pectic domains or xyloglucan by acetone vapor diffusion. Pectic side chains grew attached to the cellulose surfaces, whereas pectic backbone domains were observed separately from cellulose microfibrils. Xyloglucan seeded with cellulose provoked a decrease of microfibrils entanglement, but no clear cross-links between neighboring microfibrils were observed. These results led to the elucidation of the pectic domains responsible for binding with cellulose microfibrils.

  16. Combination of computational methods, adsorption isotherms and selectivity tests for the conception of a mixed non-covalent-semi-covalent molecularly imprinted polymer of vanillin.

    PubMed

    Puzio, Kinga; Delépée, Raphaël; Vidal, Richard; Agrofoglio, Luigi A

    2013-08-06

    A novel molecularly imprinted polymer (MIP) for vanillin was prepared by photo initiated polymerization in dichloromethane using a mixed semi-covalent and non-covalent imprinting strategy. Taking polymerisable syringaldehyde as "dummy" template, acrylamide was chosen as functional monomer on B3LYP/6-31+G(d,p) density functional theory computational method basis with counterpoise. The binding parameters for the recognition of vanillin on imprinted polymers were studied with three different isotherm models (Langmuir, bi-Langmuir and Langmuir-Freundlich) and compared. The results indicate an heterogeneity of binding sites. It was found and proved by DFT calculations that the specific binding of vanillin in the cavities is due to non-covalent interactions of the template with the hydroxyphenyl- and the amide-moieties. The binding geometry of vanillin in the MIP cavity was also modelled. The obtained MIP is highly specific for vanillin (with an imprinting factor of 7.4) and was successfully applied to the extraction of vanillin from vanilla pods, red wine spike with vanillin, natural and artificial vanilla sugar with a recovery of 80%.

  17. Determination of binding capacity and adsorption enthalpy between Human Glutamate Receptor (GluR1) peptide fragments and kynurenic acid by surface plasmon resonance experiments.

    PubMed

    Csapó, E; Majláth, Z; Juhász, Á; Roósz, B; Hetényi, A; Tóth, G K; Tajti, J; Vécsei, L; Dékány, I

    2014-11-01

    The interaction between kynurenic acid (KYNA) and two peptide fragments (ca. 30 residues) of Human Glutamate Receptor 201-300 (GluR1) using surface plasmon resonance (SPR) spectroscopy was investigated. Because of the medical interest in the neuroscience, GluR1 is one of the important subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). AMPARs are ionotoropic glutamate receptors, which are mediating fast synaptic transmission and are crucial for plasticity in the brain. On the other hand, KYNA has been suggested to have neuroprotective activity and it has been considered for apply in therapy in certain neurobiological disorders. In this article the adsorption of the GluR1201-230 and GluR1231-259 peptides were studied on gold biosensor chip. The peptides were chemically bonded onto the gold surface via thiol group of L-cysteine resulted in the formation of peptide monolayer on the SPR chip surface. Because the GluR1231-259 peptide does not contain L-cysteine the Val256 was replaced by Cys256. The cross sectional area and the surface orientation of the studied peptides were determined by SPR and theoretical calculations (LOMETS) as well. The binding capability of KYNA on the peptide monolayer was studied in the concentration range of 0.1-5.0 mM using 150 mM NaCl ionic strength at pH 7.4 (±0.02) in phosphate buffer solutions. In order to determine the binding enthalpy the experiments were carried out between +10°C and +40°C. The heat of adsorption was calculated by using adsorption isotherms at different surface loading of KYNA on the SPR chip.

  18. Adsorptive stripping voltammetry of trimethoprim: mechanistic studies and application to the fast determination in pharmaceutical suspensions.

    PubMed

    Carapuça, Helena M; Cabral, David J; Rocha, Luciana S

    2005-06-15

    The adsorptive stripping voltammetric behaviour of trimethoprim (TMP) was studied at pH 3.8 and 7.0 by linear-sweep (LS) and cyclic voltammetry at the hanging mercury drop electrode. The charges and surface concentrations of the protonated TMP species were determined at both pH values. Taking advantage of the adsorption features of TMP fast voltammetric techniques (LS and square-wave (SW) voltammetry) were applied to the determination of TMP at the 10(-7)mol dm(-3) concentration level (pH 3.8). For these concentrations the relative standard deviations were <2% (N=8) and the detection limit was 10nM (3 ng/mL) for the SW-AdCSV (3s; accumulation time 10s, frequency 100 Hz). The use of SW-adsorptive cathodic stripping voltammetry originated a very fast and sensitive method for the direct analysis of TMP in pharmaceutical suspensions without any matrix effects or interference from sulfamethoxazole. No sample pre-treatments or solvent extraction procedures were needed. The quantitative results were in agreement with the data supplied by the manufacturer.

  19. Isothermal thermoluminescence dating of K-feldspar from sediments to determine fault slip rates: development and assessment

    NASA Astrophysics Data System (ADS)

    Rhodes, E. J.; Roder, B. J.; Lawson, M. J.; Dolan, J. F.; McGill, S. F.; McAuliffe, L.

    2012-04-01

    Faults in California accommodate most of the relative motion between the Pacific and North American tectonic plates, along either one main strike-slip fault, - the San Andreas fault - or a network of sub-parallel faults (e.g., the San Jacinto, Elsinore and San Andreas faults). Slip is also accommodated along many other associated faults and folds, and the region suffers frequent damaging earthquakes. Contemporary movements of different fault-bounded blocks are relatively well established on decadal timescales using remote sensing and GPS, and on timescales of 106 to 107 years, by dating offset geologic features with radiometric methods. However, on timescales of decades to several hundred thousand years, determining total fault offset and mean slip rate is harder. Critical questions for understanding fault dynamics and improving earthquake risk assessment include the degree to which slip is clustered into episodes of more rapid movement, and how slip is accommodated by different sub-parallel faults. In many cases, streams with offset courses can be recognised, and in some cases offset terrace surfaces can be located, especially when using LiDAR data to complement field mapping. Radiocarbon and terrestrial cosmogenic nuclides have been used to date these features, but both have limitations of age range, sample suitability and availability. OSL (optically stimulated luminescence) and IRSL (infra-red stimulated luminescence) have great potential to complement these techniques, though the characteristics of quartz in some parts of southern California are suboptimal, displaying low sensitivity and other limitations. In order to overcome these limitations encountered using quartz OSL, we are developing a new geochronometer based on the isothermal thermoluminescence (ITL) signal of K feldspar measured at 250°C. Preliminary ITL age estimates from the paleoseismic site of El Paso Peaks on the Central Garlock fault in the Mojave Desert, California, agree well with a well

  20. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rood, M.J.; Rostam-Abadi, M.

    2005-01-01

    Gravimetric techniques were employed to determine the adsorption capacities of commercially available purified electric arc and HiPco single-walled carbon nanotubes (SWNTs) for organic compounds (toluene, methyl ethyl ketone (MEK), hexane and cyclohexane) at relative pressures, p/p0, ranging from 1 ?? 10-4 to 0.95 and at isothermal conditions of 25, 37 and 50 ??C. The isotherms displayed both type I and type II characteristics. Adsorption isotherm modeling showed that SWNTs are heterogeneous adsorbents, and the Freundlich equation best describes the interaction between organic molecules and SWNTs. The heats of adsorption were 1-4 times the heats of vaporization, which is typical for physical adsorption of organic vapors on porous carbons. ?? 2005 Elsevier Ltd. All rights reserved.

  1. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    PubMed

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption.

  2. Adsorption mechanism of cadmium on juniper bark and wood

    Treesearch

    Eun Woo Shin; K. G. Karthikeyan; Mandla A. Tshabalala

    2007-01-01

    In this study the capacity of sorbents prepared from juniper wood (JW) and bark (JB) to adsorb cadmium (Cd) from aqueous solutions at different pH values was compared. Adsorption behavior was characterized through adsorption kinetics, adsorption isotherms, and adsorption edge experiments. Results from kinetics and isotherm experiments showed that JB (76.3–91.6 lmol Cd...

  3. Adsorption of Crystal Violet Dye Using Zeolite A Synthesized From Coal Fly Ash

    NASA Astrophysics Data System (ADS)

    Jumaeri; Kusumastuti, E.; Santosa, S. J.; Sutarno

    2017-02-01

    Adsorption of Crystal Violet (CV) dye using zeolite A synthesized from coal fly ash (ZA) has been done. Effect of pH, contact time, and the initial concentration of dye adsorption was studied in this adsorption. Model experimental of adsorption isotherms and adsorption kinetics were also studied. The adsorption is done in a batch reactor at room temperature. A total of 0.01 g of zeolite A was added to the Erlenmeyer flask 50 mL containing 20 mL of the dye solution of Crystal Violet in a variety of conditions of pH, contact time and initial concentration. Furthermore, Erlenmeyer flask and its contents were shaken using an orbital shaker at a speed of 200 rpm. After a specified period of adsorption, the solution was centrifuged for 2 minutes so that the solids separated from the solution. The concentration of the dye after adsorption determined using Genesis-20 Spectrophotometer. The results showed that the Zeolite A synthesized from coal fly ash could be used as an effective adsorbent for Crystal Violet dye. The optimum adsorption occurs at pH 6, and contact time 45 minutes. At the initial concentration of 2 to 6 mg/L, adsorption is reduced from 79 to 62.8%. Crystal Violet dye adsorption in zeolite A fulfilled kinetic model of pseudo-order 2 and model of Freundlich adsorption isotherm.

  4. A model for predicting contaminant removal by adsorption within the International Space Station water processor: 1. Multicomponent equilibrium modeling.

    PubMed

    Bulloch, J L; Hand, D W; Crittenden, J C

    1998-01-01

    A thermodynamic model is developed to predict adsorption equilibrium in the International Space Station water processor's multifiltration beds. The model predicts multicomponent adsorption equilibrium behavior using single-component isotherm parameters and fictitious components representing the background matrix. The fictitious components are determined by fitting total organic carbon and tracer isotherms with the ideal adsorbed solution theory. Multicomponent isotherms using a wastewater with high surfactant and organic compound concentrations are used to validate the equilibrium description on a coconut-shell-based granular activated carbon (GAC), coal-based GAC, and a polymeric adsorbent.

  5. Protein Adsorption in Microengraving Immunoassays

    PubMed Central

    Song, Qing

    2015-01-01

    Microengraving is a novel immunoassay forcharacterizing multiple protein secretions from single cells. During the immunoassay, characteristic diffusion and kinetic time scales τD and τK determine the time for molecular diffusion of proteins secreted from the activated single lymphocytes and subsequent binding onto the glass slide surface respectively. Our results demonstrate that molecular diffusion plays important roles in the early stage of protein adsorption dynamics which shifts to a kinetic controlled mechanism in the later stage. Similar dynamic pathways are observed for protein adsorption with significantly fast rates and rapid shifts in transport mechanisms when C0* is increased a hundred times from 0.313 to 31.3. Theoretical adsorption isotherms follow the trend of experimentally obtained data. Adsorption isotherms indicate that amount of proteins secreted from individual cells and subsequently captured on a clean glass slide surface increases monotonically with time. Our study directly validates that protein secretion rates can be quantified by the microengraving immunoassay. This will enable us to apply microengraving immunoassays to quantify secretion rates from 104–105 single cells in parallel, screen antigen-specific cells with the highest secretion rate for clonal expansion and quantitatively reveal cellular heterogeneity within a small cell sample. PMID:26501282

  6. Protein adsorption in microengraving immunoassays.

    PubMed

    Song, Qing

    2015-10-16

    Microengraving is a novel immunoassay for characterizing multiple protein secretions from single cells. During the immunoassay, characteristic diffusion and kinetic time scales  and  determine the time for molecular diffusion of proteins secreted from the activated single lymphocytes and subsequent binding onto the glass slide surface respectively. Our results demonstrate that molecular diffusion plays important roles in the early stage of protein adsorption dynamics which shifts to a kinetic controlled mechanism in the later stage. Similar dynamic pathways are observed for protein adsorption with significantly fast rates and rapid shifts in transport mechanisms when  is increased a hundred times from 0.313 to 31.3. Theoretical adsorption isotherms follow the trend of experimentally obtained data. Adsorption isotherms indicate that amount of proteins secreted from individual cells and subsequently captured on a clean glass slide surface increases monotonically with time. Our study directly validates that protein secretion rates can be quantified by the microengraving immunoassay. This will enable us to apply microengraving immunoassays to quantify secretion rates from 10⁴-10⁵ single cells in parallel, screen antigen-specific cells with the highest secretion rate for clonal expansion and quantitatively reveal cellular heterogeneity within a small cell sample.

  7. Direct determination of molybdenum in seawater by adsorption cathodic stripping square-wave voltammetry.

    PubMed

    Sun, Y C; Mierzwa, J; Lan, C R

    2000-06-30

    A reliable and very sensitive procedure for the determination of trace levels of molybdenum in seawater is proposed. The complex of molybdenum with 8-hydroxyquinoline (Oxine) is analyzed by cathodic stripping square-wave voltammetry based on the adsorption collection onto a hanging mercury drop electrode (HMDE). This procedure of molybdenum determination was found to be more favorable than differential pulse cathodic stripping voltammetry because of inherently faster scan rate and much better linearity obtained through the one-peak (instead of one-of-two peaks) calibration. The variation of polarographic peak and peak current with a pH, adsorption time, adsorption potential, and some instrumental parameters such as scan rate and pulse height were optimized. The alteration of polarographic wave and its likely mechanism are also discussed. The relationship between peak current and molybdenum concentration is linear up to 150 mug l(-1). Under the optimal analytical conditions, the determination limit of 0.5 mug l(-1) Mo was reached after 60 s of the stirred collection. The estimated detection limit is better than 0.1 mug l(-1) of Mo. The applicability of this method to analysis of seawater was assessed by the determination of molybdenum in two certified reference seawater samples (CASS-2 and NASS-2) and the comparison of the analytical results for real seawater samples (study on a vertical distribution of Mo in the seawater column) with the results obtained by Zeeman-corrected electrothermal atomization atomic absorption spectrometry (Zeeman ETAAS). A good agreement between two used methods of molybdenum determination was obtained.

  8. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method?

    PubMed

    Wang, Faming; Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar

    2011-08-01

    This paper addresses selection between two calculation options, i.e heat loss option and mass loss option, for thermal manikin measurements on clothing evaporative resistance conducted in an isothermal condition (T(manikin) = T(a) = T(r)). Five vocational clothing ensembles with a thermal insulation range of 1.05-2.58 clo were selected and measured on a sweating thermal manikin 'Tore'. The reasons why the isothermal heat loss method generates a higher evaporative resistance than that of the mass loss method were thoroughly investigated. In addition, an indirect approach was applied to determine the amount of evaporative heat energy taken from the environment. It was found that clothing evaporative resistance values by the heat loss option were 11.2-37.1% greater than those based on the mass loss option. The percentage of evaporative heat loss taken from the environment (H(e,env)) for all test scenarios ranged from 10.9 to 23.8%. The real evaporative cooling efficiency ranged from 0.762 to 0.891, respectively. Furthermore, it is evident that the evaporative heat loss difference introduced by those two options was equal to the heat energy taken from the environment. In order to eliminate the combined effects of dry heat transfer, condensation, and heat pipe on clothing evaporative resistance, it is suggested that manikin measurements on the determination of clothing evaporative resistance should be performed in an isothermal condition. Moreover, the mass loss method should be applied to calculate clothing evaporative resistance. The isothermal heat loss method would appear to overestimate heat stress and thus should be corrected before use.

  9. Sex determination in the wild: a field application of loop-mediated isothermal amplification successfully determines sex across three raptor species.

    PubMed

    Centeno-Cuadros, A; Abbasi, I; Nathan, R

    2017-03-01

    PCR-based methods are the most common technique for sex determination of birds. Although these methods are fast, easy and accurate, they still require special facilities that preclude their application outdoors. Consequently, there is a time lag between sampling and obtaining results that impedes researchers to take decisions in situ and in real time considering individuals' sex. We present an outdoor technique for sex determination of birds based on the amplification of the duplicated sex-chromosome-specific gene Chromo-Helicase-DNA binding protein using a loop-mediated isothermal amplification (LAMP). We tested our method on Griffon Vulture (Gyps fulvus), Egyptian Vulture (Neophron percnopterus) and Black Kite (Milvus migrans) (family Accipitridae). We introduce the first fieldwork procedure for sex determination of animals in the wild, successfully applied to raptor species of three different subfamilies using the same specific LAMP primers. This molecular technique can be deployed directly in sampling areas because it only needs a voltage inverter to adapt a thermo-block to a car lighter and results can be obtained by the unaided eye based on colour change within the reaction tubes. Primers and reagents are prepared in advance to facilitate their storage at room temperature. We provide detailed guidelines how to implement this procedure, which is simpler (no electrophoresis required), cheaper and faster (results in c. 90 min) than PCR-based laboratory methods. Our successful cross-species application across three different raptor subfamilies posits our set of markers as a promising tool for molecular sexing of other raptor families and our field protocol extensible to all bird species.

  10. Determination of organic compounds in landfill leachates treated by Fenton-Adsorption.

    PubMed

    Ramírez-Sosa, Dorian R; Castillo-Borges, Elba R; Méndez-Novelo, Roger I; Sauri-Riancho, María R; Barceló-Quintal, Manuel; Marrufo-Gómez, José M

    2013-02-01

    The objective of this study was to identify the organic compounds removed from the leachate when treated with Fenton-Adsorption by gas chromatography coupled to mass spectrometry (GC-MS) in order to identify toxic compounds that could be harmful for the environment or human health. The physicochemical characterization of the raw leachate was carried out before and after the Fenton-Adsorption process. The effluent from each stage of this process was characterized: pH, Biological Oxygen Demand (BOD(5)), Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), Total Carbon (TC), Inorganic Carbon (IC), Total Solids (TS), Total Suspended Solids (TSS) and Color. The organic compounds were determined by GC-MS. The removal of COD and color reached over 99% in compliance with the Mexican Standard NOM-001-SEMARNAT-1996, which establishes the maximum permissible limits for contaminants present in wastewater discharges to water and national goods. The chromatographic analysis from the Fenton-Adsorption effluent proved that this treatment removed more than 98% of the organic compounds present in the initial sample. The mono (2-ethylhexyl) ester 1,2-benzenedicarboxylic acid persisted, although it is not considered as toxic compound by the NOM-052-SEMARNAT-2005. Therefore, the treated effluent can be safely disposed of into the environment. Copyright © 2012. Published by Elsevier Ltd.

  11. Determination of trace cobalt concentrations in human serum by adsorptive stripping voltammetry.

    PubMed

    Kajic, Petra; Milosev, Ingrid; Pihlar, Boris; Pisot, Venceslav

    2003-01-01

    The goal of our study was to develop an accurate and reliable method for determining trace cobalt concentrations in human serum. The method was used to determine cobalt in the sera of healthy persons and patients with orthopaedic implants containing cobalt - a possible source of systemic release of cobalt into the human body. This goal is of vital interest since cobalt and its compounds are classified by IARC as potentially carcinogenic to humans. We used an electrochemical method, adsorptive stripping voltammetry (AdSV), which made possible the low detection limit and high sensitivity needed for measurements in human serum. The serum was acid digested by a combination of H2SO4, HNO3 and H2O2 in a 10 mL Kjeldhal flask. The digested sample was then dissolved in 0.1 mol/L ammonia buffer, pH 9.0 +/- 0.2. The determination is based on the adsorptive collection of the complex of cobalt (II) with dimethylglyoxime on a hanging mercury drop electrode (HMDE). The optimum values of adsorption potential and time were determined to be -0.8 V and 60 s. The optimisation of the sample digestion protocol and measurement procedures ensured the reliable assessment of low cobalt concentrations, down to 0.03 microg/L. The mean concentration of serum cobalt in four healthy persons was 0.11 +/- 0.06 microg/L, and in four patients with total hip replacements 0.34 +/- 0.07 microg/L. This method will be used routinely for measuring serum cobalt levels in patients with total hip replacements.

  12. Determination of Sudan I in drinks containing Sunset yellow by adsorptive stripping voltammetry.

    PubMed

    Gómez, Marisol; Arancibia, Verónica; Aliaga, Margarita; Núñez, Claudia; Rojas-Romo, Carlos

    2016-12-01

    An efficient, fast and sensitive method for the determination of Sudan I (SI) in drinks containing Sunset yellow (Sy) is developed and validated using an adsorptive stripping voltammetric procedure. Sy is currently added to a large number of foods; however during their synthesis SI may be produced. The determination is based on adsorption of Sy and SI onto HMDE and later reduction of the azo group at -0.71 and -0.82V, respectively. Using the best set of the experimental conditions (pH 12.3; Eads: -0.40V) for the determination of SI in Sy, a linear response for SI in the concentration range 0.5-27.2μgL(-1) was found, with a detection limit of 1.5μgL(-1) in a tads of only 30s. The method was applied to the determination of SI in commercial drinks with satisfactory results. The presence of SI was confirmed by mass spectrometry.

  13. Determination and evaluation of gas holdup time with the quadratic equation model and comparison with nonlinear equation models for isothermal gas chromatography

    PubMed Central

    Wu, Liejun; Chen, Maoxue; Chen, Yongli; Li, Qing X.

    2013-01-01

    Gas holdup time (tM) is a basic parameter in isothermal gas chromatography (GC). Determination and evaluation of tM and retention behaviors of n-alkanes under isothermal GC conditions have been extensively studied since the 1950s, but still remains unresolved. The difference equation (DE) model [J. Chromatogr. A 1260:215–223] reveals retention behaviors of n-alkanes excluding tM, while the quadratic equation (QE) model [J. Chromatogr. A 1260:224–231] including tM is suitable for applications. In the present study, tM values were calculated with the QE model, which is referred to as tMT, evaluated and compared with other three typical nonlinear models. The QE model gives an accurate estimation of tM in isothermal GC. The tMT values are highly accurate, stable, and easy to calculate and use. There is only one tMT value at each GC condition. The proper classification of tM values can clarify their disagreement and facilitate GC retention data standardization for which tMT values are promising reference tM values. PMID:23726077

  14. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study.

    PubMed

    Liu, Na; Charrua, Alberto Bento; Weng, Chih-Huang; Yuan, Xiaoling; Ding, Feng

    2015-12-01

    The physicochemical properties of biochars produced from soybeans (SBB), corn stalks (CSB), rice stalks (RSB), poultry manure (PMB), cattle manure (CMB), and pig manure (PgMB) and their adsorption characteristics of atrazine were investigated. The adsorption capacity increased with the increase of temperature and initial atrazine concentration. More atrazine was removed from basic solutions than acidic solutions, due to the effects of adsorption and hydrolysis. The Freundlich isotherm adsorption parameters indicated that the adsorption capacity decreased in the order SBB>RSB>CMB>CSB>PMB>PgMB, which is associated to the pore volume of biochars. The total pore volume and biochar pH were concluded to play important roles in determining the adsorption capacity, and they may have contributed to physical adsorption mechanisms dominating the overall adsorption process (the low activation energy for all of the biochars). Modified Freundlich and intraparticle diffusion models were used to describe the kinetics of the adsorption process.

  15. Temperature-dependent adsorption of hydrogen, deuterium, and neon on porous Vycor glass

    NASA Astrophysics Data System (ADS)

    Huber, T. E.; Scardino, D.; Tsou, H. L.

    1995-10-01

    Adsorption isotherms of H2, D2, and Ne have been measured in the temperature range from 15 K to the corresponding critical points in samples of porous Vycor glass. From the Brunauer-Emmett-Teller theory the surface layer coverages are determined. These are found to be temperature dependent. A model-independent approach allows us to fit the data for coverages ranging from submonolayer to thin film, below capillary condensation, for each adsorbate at all temperatures with a temperature-independent curve. This characteristic curve represents the distribution of adsorption sites versus the adsorption potential. In the intermediate coverage range, the isotherms exhibit the modified Frenkel-Halsey-Hill (FHH) behavior. The adsorption saturates for low-adsorption potentials. The characteristic curve is a useful universal curve since it is roughly the same for the three species investigated. We examine the relative strengths of the surface potentials and densities of the two isotopic modifications of hydrogen and of the more classical Ne adsorbed on porous Vycor glass. The characteristic adsorption curve is compared with results from two models for the adsorbate: Dubinin's isotherm for microporous solids and its extension to rough surfaces which places importance on the porosity of the surface, and Halsey's model, which is an extension of the FHH isotherm that takes into account the long-range variations of substrate adsorption potential.

  16. Determination of the surface area and sizes of supported copper nanoparticles through organothiol adsorption-Chemisorption

    NASA Astrophysics Data System (ADS)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2016-12-01

    The mechanisms involving the nanoparticle surfaces in catalytic reactions are more difficult to elucidate due to the nanoparticle surface unevenness, size distributions, and morphological irregularity. True surface area and particle sizes determination are key aspects of the activity of metal nanoparticle catalysts. Here we report on the organothiol adsorption-based technique for the determination of specific surface area of Cu nanoparticles, and their resultant sizes on γ-Al2O3 supports. Quantification of ligand packing density on copper nanoparticles is also reported. The concentration of the probe ligand, 2-mercaptobenzimidazole (2-MBI) before and after immersion of supported copper catalysts was determined by ultraviolet-visible spectrometry (UV-vis). The amount of ligand adsorbed was found to be proportional to the copper nanoparticles surface area. Atomic absorption spectrometry (AAS), N2-physisorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were used for the characterization of the catalysts. A fair agreement was found between particle sizes obtained from ligand adsorption and TEM methods. The catalytic activity of the copper nanoparticles related to their inherent surface area was evaluated using the model reaction of the oxidation of morin by hydrogen peroxide.

  17. Functionalization of delaminated zeolite ITQ-6 for the adsorption of carbon dioxide

    SciTech Connect

    Zukal, A.; Dominguez, I.; Mayerova, J.; Cejka, J.

    2009-09-15

    Novel functionalized adsorbents for CO{sub 2} separation were synthesized by grafting 3-aminopropyl, 3-(methylamino) propyl, or 3-(phenylamino)propyl ligands in the delaminated zeolite ITQ-6. On the basis of the texture parameters determined from nitrogen adsorption isotherms recorded at 77 K and the results of chemical analysis, physicochemical properties of functionalized ITQ-6 were evaluated and compared with those of mesoporous SBA-15 silica functionalized with the same ligands. To examine carbon dioxide adsorption on functionalized materials, adsorption isotherms at 293 K were measured. To obtain information on the surface energetics of CO{sub 2} adsorption on selected samples, isotherms were taken in the temperature range front 273 to 333 K and adsorption isosteres were calculated. Isosteric adsorption heats determined from the slope of adsorption isosteres proved that all of the 3-aminopropyl ligands in ITQ-6 take part in CO{sub 2} adsorption. It was found that in the whole region of CO{sub 2} pressures the efficiency of the amine ligand, defined as the number of adsorbed CO{sub 2} molecules per one airline ligand, is higher for functionalized ITQ-6 than for functionalized SBA-15 silica.

  18. Adsorption of naphthalene onto sonicated talc from aqueous solutions.

    PubMed

    Sener, Savaş; Ozyilmaz, Azat

    2010-06-01

    The adsorption behavior of naphthalene onto naturally hydrophobic talc from aqueous solution was investigated in this study. The natural talc was first pretreated by sonication to improve the surface characteristics and enhance the uptake capacity by increasing the specific surface area (SSA) of talc. The naphthalene uptake of talc was found as 276 mg g(-1) and increased to 359 mg g(-1) after the sonication. Adsorption studies also showed that the adsorption of naphthalene onto the sonicated talc was not affected by changes in pH suggesting that the main driving forces for naphthalene adsorption onto talc was hydrophobic bonding rather than electrostatic force. The pseudo-first and pseudo-second orders and intraparticle diffusion equation were used to evaluate the kinetic data and the constants were determined. Adsorption process of naphthalene onto talc followed the pseudo-second-order rate expression for different initial naphthalene concentrations. The Langmuir and Freundlich isotherm models were used to model the isotherm data for their applicability. The Freundlich isotherm best fitted for the adsorption of naphthalene onto talc.

  19. Electrochemical determination of closantel in the commercial formulation by square-wave adsorptive stripping voltammetry.

    PubMed

    Brycht, Mariola; Nosal-Wiercińska, Agnieszka; Sipa, Karolina; Rudnicki, Konrad; Skrzypek, Sławomira

    2017-01-01

    In this paper, the square-wave adsorptive stripping voltammetric (SWAdSV) determination of the veterinary drug closantel using a renewable silver amalgam film electrode (Hg(Ag)FE) is presented. As observed in SWAdSV, closantel provided one well-shaped reduction peak suitable for analytical purposes at potential ca. -1.4 V in the Britton-Robinson (B-R) buffer at pH 7.0. At optimal conditions, the SWAdSV response of Hg(Ag)FE for determining closantel was linear over two concentration ranges of 5.0 × 10(-8) to 2.0 × 10(-7) mol dm(-3) and 2.0 × 10(-7) to 1.2 × 10(-6) mol dm(-3) with a detection limit of 1.1 × 10(-8) mol dm(-3). In addition, a relevance of the developed SWAdSV method was successfully verified by the quantitative analysis of closantel in the commercial formulation Closamectin Pour-On with satisfactory results (RSD = 5.8%, recovery = 101.8%). The results showed that the developed procedure can be adequate for screening purposes. Also, the electrochemical behavior of closantel was characterized by cyclic voltammetry, and it was found that closantel exhibited a quasi-reversible behavior with cathodic peak on the forward scan at ca. -1.4 V and anodic peak on the reverse scan at ca. -1.35 V vs. Ag/AgCl in B-R buffer, pH 7.0. As the obtained results showed that the electrode mechanism of closantel is controlled by the adsorption, the effect of adsorption was studied using the electrochemical impedance spectroscopy technique.

  20. Adsorptive removal of Cu(II) from aqueous solutions using collagen-tannin resin.

    PubMed

    Sun, Xia; Huang, Xin; Liao, Xue-pin; Shi, Bi

    2011-02-28

    The collagen-tannin resin (CTR), as a novel adsorbent, was prepared via a reaction of collagen with black wattle tannin and aldehyde, and its adsorption properties to Cu(II) were systematically investigated, including pH effect, adsorption equilibrium, adsorption kinetics, and column adsorption. The adsorption capacity of Cu(II) on CTR was pH-dependent, and it increased with the increase of solution pH. The adsorption isotherms were well described by Langmuir isotherm model with correlating constant (R(2)) higher than 0.99. The adsorption capacity determined at 303 K was high up to 0.26 mmol/g, which was close to the value (0.266 mmol/g) estimated from Langmuir equation. The adsorption capacity was increased with the increase of temperature, and thermodynamic calculations suggested that the adsorption of Cu(II) on CTR is an endothermic process. The adsorption kinetics were well fitted by the pseudo-second-order rate model. Further column studies suggested that CTR was effective for the removal of Cu(II) from solutions, and more than 99% of Cu(II) was desorbed from column using 0.1 mol/L HNO(3) solution. The CTR column can be reused to adsorb Cu(II) without any loss of adsorption capacity. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  1. Anodic adsorptive stripping voltammetric determination of the anesthetic drug: methohexital sodium.

    PubMed

    Farghaly, O A; El-Wadood, H M; Ghandour, M A

    1999-11-01

    Methohexital (MS) determination is based on the formation of insoluble mercury salt on a hanging mercury drop electrode after preaccumulation by adsorption. This property was exploited in developing a highly sensitive stripping voltammetric procedure for the determination of the drug. The anodic current of adsorbed compound is measured by linear sweep anodic stripping voltammetry (LSASV), preceded by a period of preconcentration. The effect of various parameters such as supporting electrolyte composition, pH, initial potential, scan rate, accumulation time and ionic strength are discussed to characterize the interfacial and redox behavior. The detection limit was found to be 2x10(-7) M (56.8 ppb) with 180-s accumulation time. The interference of some amino acids, ascorbic acid and some metal ions was investigated. The application of this method was tested in the determination of methohexital in spiked urine samples. The precision of the method is satisfactory with a relative standard deviation of 2.5%.

  2. Cathodic adsorptive stripping voltammetric determination of uranium with potassium hydrogen phthalate.

    PubMed

    Farghaly, O A; Ghandour, M A

    1999-06-01

    The adsorption properties of dioxouranium (II)-Phathalate complexes onto hanging mercury drop electrode are exploited in developing a highly sensitive and selective stripping voltammetric procedure for the determination of uranium (VI). The reduction current of adsorbed complex ions of U(VI) was measured by both linear sweep (LSCSV) and differential pulse cathodic stripping voltammetry (DPCSV), preceded by a period of preconcentration onto the electrode surface. As low as 2x10(-9) mol dm(-3) (0.5 mug/l) and 2x10(-8) mol dm(-3) (4.8 mug/l) with accumulation time 240 and 120 s using DPCSV and LSCSV, respectively, have been determined successfully. The relative standard deviation of 2.2% at the 5 ppm level was obtained. The interferences of some metal ions and anions were studied. The application of this method was tested in the determination of uranium in superphosphate fertilizer.

  3. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    PubMed

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials.

  4. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches.

    PubMed

    Alam, M Zahangir; Muyibi, Suleyman A; Toramae, Juria

    2007-01-01

    The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation of activation time with 30 min at 800 degrees C. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R2 = 0.93) for removal of 2,4-dichlorophenol by the activated carbon rather than Freundlich isotherm (R2 = 0.88).

  5. Pore size distribution analysis of activated carbons prepared from coconut shell using methane adsorption data

    NASA Astrophysics Data System (ADS)

    Ahmadpour, A.; Okhovat, A.; Darabi Mahboub, M. J.

    2013-06-01

    The application of Stoeckli theory to determine pore size distribution (PSD) of activated carbons using high pressure methane adsorption data is explored. Coconut shell was used as a raw material for the preparation of 16 different activated carbon samples. Four samples with higher methane adsorption were selected and nitrogen adsorption on these adsorbents was also investigated. Some differences are found between the PSD obtained from the analysis of nitrogen adsorption isotherms and their PSD resulting from the same analysis using methane adsorption data. It is suggested that these differences may arise from the specific interactions between nitrogen molecules and activated carbon surfaces; therefore caution is required in the interpretation of PSD obtained from the nitrogen isotherm data.

  6. Adsorption of fluoranthene in surfactant solution on activated carbon: equilibrium, thermodynamic, kinetic studies.

    PubMed

    Liu, Jianfei; Chen, Jiajun; Jiang, Lin; Wang, Xingwei

    2014-02-01

    Adsorption of fluoranthene (FLA) in surfactant solution on activated carbon (AC) was investigated. Isotherm, thermodynamic, and kinetic attributes of FLA adsorption in the presence of the surfactant on AC were studied. Effects of AC dosage, initial concentration of TX100, initial concentration of FLA, and addition of fulvic acid on adsorption were studied. The experimental data of both TX100 and FLA fitted the Langmuir isotherm model and the pseudo-second-order kinetic model well. Positive enthalpy showed that adsorption of FLA on AC was endothermic. The efficiency of selective FLA removal generally increased with increasing initial surfactant concentration and decreasing fulvic acid concentration. The surface chemistry of AC may determine the removal of polycyclic aromatic hydrocarbons. The adsorption process may be controlled by the hydrophobic interaction between AC and the adsorbate. The microwave irradiation of AC may be a feasible method to reduce the cost of AC through its regeneration.

  7. Adsorption characteristics of methylene blue onto agricultural wastes lotus leaf in bath and column modes.

    PubMed

    Han, Xiuli; Wang, Wei; Ma, Xiaojian

    2011-01-01

    The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble-Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g(-1) at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.

  8. Adsorption of glyphosate on resin supported by hydrated iron oxide: equilibrium and kinetic studies.

    PubMed

    Jia, Dongmei; Zhou, Chao; Li, Changhai

    2011-09-01

    Hydrated iron oxide supported on resin (D301) was prepared as a new sorbent for the removal of glyphosate from wastewater. Batch adsorption studies were performed on glyphosate aqueous solutions with different initial glyphosate concentrations and temperatures. Experimental data were analyzed using the Langmuir and Freundlich isotherms, and the adsorption data were best fit to the Langmuir isotherm model. The thermodynamic parameters AG, AH, and AS also were calculated for the adsorption processes. Adsorption rate constants were determined using the pseudo-first-order and pseudo-second-order rate equations and Kannan-Sundaram intraparticle diffusion models. Adsorption of glyphosate clearly followed the pseudo-second-order model and was controlled by both film diffusion and intraparticle diffusion.

  9. Adsorption and Dispersion of Selected Organic Gases Flowing Through Activated Carbon Adsorber Beds.

    NASA Astrophysics Data System (ADS)

    Forsythe, Robert Kenneth, Jr.

    An experimental investigation of the adsorption and dispersion of selected organic gases and vapors was performed for nominal 100-ppm concentrations of adsorptive in a helium carrier flowing through cylindrical adsorber beds containing Columbia 4LXC 12/28 activated carbon. The total pressure of the adsorptive and carrier gases was a nominal one atmosphere, and the temperature of the gas stream and adsorber bed was 25.0^circ C. The solid-phase concentration of adsorbate and the adsorption capacity were measured for the adsorptives methane, acetylene, ethane, methanol, acetaldehyde, propane, ethanol, acetone, Freon-113, and toluene. These parameters were determined from dynamic adsorption experiments with a mass-balance analysis of the breakthrough curves. The dimensionless adsorption capacity, defined as the ratio of the solid-phase concentration of adsorbate to the gas -phase concentration of adsorptive, ranged from 40.1 for methane to 6.71 times 10 ^5 for toluene. The adsorption isotherms for five of the selected gases on activated carbon were determined from dynamic adsorption experiments with input concentrations as high as 10,000 ppm. The isotherms encountered were linear, near-linear, and nonlinear; they could be represented by Langmuir and Chakravarti-Dhar theoretical functional forms. The isotherm of acetone was analyzed also with the Dubinin -Radushkevich equation and the Polanyi adsorption potential to predict the micropore volume of the carbon. The dispersion of the adsorptive gases was analyzed from the bed outlet concentration as a function of time. The diffusion coefficients for methane and acetylene were determined from the theories of the longitudinal- and homogeneous -solid-diffusion models. The effects of molecular, intraparticle, and eddy diffusion were measured and compared at various flow velocities. Input concentration boundary conditions included step-up and step-down functions, positive and negative rectangular pulses, positive and negative

  10. Adsorption of humic acids and trace metals in natural waters

    NASA Technical Reports Server (NTRS)

    Leung, W. H.

    1982-01-01

    Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.

  11. Moisture sorption isotherms and thermodynamic properties of mexican mennonite-style cheese.

    PubMed

    Martinez-Monteagudo, Sergio I; Salais-Fierro, Fabiola

    2014-10-01

    Moisture adsorption isotherms of fresh and ripened Mexican Mennonite-style cheese were investigated using the static gravimetric method at 4, 8, and 12 °C in a water activity range (aw) of 0.08-0.96. These isotherms were modeled using GAB, BET, Oswin and Halsey equations through weighed non-linear regression. All isotherms were sigmoid in shape, showing a type II BET isotherm, and the data were best described by GAB model. GAB model coefficients revealed that water adsorption by cheese matrix is a multilayer process characterized by molecules that are strongly bound in the monolayer and molecules that are slightly structured in a multilayer. Using the GAB model, it was possible to estimate thermodynamic functions (net isosteric heat, differential entropy, integral enthalpy and entropy, and enthalpy-entropy compensation) as function of moisture content. For both samples, the isosteric heat and differential entropy decreased with moisture content in exponential fashion. The integral enthalpy gradually decreased with increasing moisture content after reached a maximum value, while the integral entropy decreased with increasing moisture content after reached a minimum value. A linear compensation was found between integral enthalpy and entropy suggesting enthalpy controlled adsorption. Determination of moisture content and aw relationship yields to important information of controlling the ripening, drying and storage operations as well as understanding of the water state within a cheese matrix.

  12. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    PubMed

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent.

  13. Clarifications regarding the use of model-fitting methods of kinetic analysis for determining the activation energy from a single non-isothermal curve.

    PubMed

    Sánchez-Jiménez, Pedro E; Pérez-Maqueda, Luis A; Perejón, Antonio; Criado, José M

    2013-02-05

    This paper provides some clarifications regarding the use of model-fitting methods of kinetic analysis for estimating the activation energy of a process, in response to some results recently published in Chemistry Central journal. The model fitting methods of Arrhenius and Savata are used to determine the activation energy of a single simulated curve. It is shown that most kinetic models correctly fit the data, each providing a different value for the activation energy. Therefore it is not really possible to determine the correct activation energy from a single non-isothermal curve. On the other hand, when a set of curves are recorded under different heating schedules are used, the correct kinetic parameters can be clearly discerned. Here, it is shown that the activation energy and the kinetic model cannot be unambiguously determined from a single experimental curve recorded under non isothermal conditions. Thus, the use of a set of curves recorded under different heating schedules is mandatory if model-fitting methods are employed.

  14. Adsorption mechanism of chloroacetanilide herbicides to modified montmorillonite.

    PubMed

    El-Nahhal, Yasser

    2003-09-01

    This study was undertaken to characterize the adsorption mechanism of alachlor and metolachlor on montmorillonite modified with cationic surfactants. Adsorbed amounts of cationic surfactant on montmorillonite surfaces were determined by CNHSO analyzer. Equilibrium concentrations of alachlor and metolachlor were determined by GC and adsorption results were fit to a linear regression equation. The slope of the isotherms (Kd) was normalized to the fraction of organic carbon on montmorillonite complexes to produce corresponding Koc. Adsorption of surfactants fit very well to Langmuir equation. Increased basal spacing indicates that surfactant molecules could penetrate through the interlayer spacing and arrange themselves in different ways. Equilibrium data of alachlor and metolachlor suggest that adsorption may occur via physical or chemical bonds. Koc values of alachlor or metolachlor decreased as the fraction of the organic carbon increased in montmorillonite complexes indicating independent adsorption process. Changes of the molar free energy of the adsorption reactions were in the range of physical adsorption, indicating that adsorption reactions are spontaneous and the molecules either adsorb on the surface or penetrate into the inter-layers of montmorillonite-surfactant complex. Careful investigation of the adsorption data suggests that interaction may occur via the active groups such as carbonyl group (-C=O), anilidic (C-N) group and/or phenyl rings. This information may provide better understanding on adsorption mechanism and be useful in designing ecologically acceptable herbicide formulations.

  15. Response surface methodology approach for optimization of simultaneous dye and metal ion ultrasound-assisted adsorption onto Mn doped Fe3O4-NPs loaded on AC: kinetic and isothermal studies.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Goudarzi, Alireza; Rajabi, Maryam

    2015-09-07

    high performance can be represented by Langmuir isotherms and a pseudo second-order kinetic model. The maximum adsorption capacities for the single component system, 229.4 mg g(-1) for MB, 159.7 mg g(-1) for SO, 139.5 mg g(-1) for Pb(2+) ions and 267.4 mg g(-1) for Cr(3+) ions, support the high efficiency of Mn-Fe3O4-NPs-AC as a new adsorbent.

  16. Adsorption of hydrogen chloride on microcrystalline silica. [solid rocket propellant exhaust

    NASA Technical Reports Server (NTRS)

    Kang, Y.; Wightman, J. P.

    1979-01-01

    The interaction of hydrogen chloride with quartz was studied to determine the extent to which silica can irreversibly remove hydrogen chloride from the atmosphere. Adsorption isotherms were measured at 30 C for hydrogen chloride on silica outgassed between 100 C and 400 C. Readsorption isotherms were also measured. The silica surface was characterized further by infrared spectroscopy, electron spectroscopy for chemical analysis, scanning electron microscopy, and immersional calorimetry. Ground debris samples obtained from the Kennedy Space Center, were likewise examined.

  17. Determination of Lamotrigine in Pharmaceutical Preparations by Adsorptive Stripping Voltammetry Using Screen Printed Electrodes

    PubMed Central

    Domínguez-Renedo, Olga; Calvo, M. Encarnación Burgoa; Arcos-Martínez, M. Julia

    2008-01-01

    This paper describes a procedure that has been optimized for the determination of lamotrigine by Differential Pulse Adsorptive Stripping Voltammetry (DPAdSV) using carbon screen-printed electrodes (CSPE) and mercury coated carbon screen-printed electrodes. Selection of the experimental parameters was made using experimental design methodology. The detection limit found was 5.0 × 10-6 M and 2.0 × 10-6 M for the non modified and Hg modified CSPE, respectively. In terms of reproducibility, the precision of the above mentioned methods was calculated in %RSD values at 9.83% for CSPE and 2.73% for Hg-CSPE. The Hg-coated CSPEs developed in this work were successfully applied in the determination of lamotrigine in pharmaceutical preparations. PMID:27879931

  18. H2S adsorption onto Cu-Zn-Ni nanoparticles loaded activated carbon and Ni-Co nanoparticles loaded γ-Al2O3: Optimization and adsorption isotherms.

    PubMed

    Daneshyar, A; Ghaedi, M; Sabzehmeidani, M M; Daneshyar, A

    2017-03-15

    The nanocomposites based on copper, zinc and nickel were loaded on activated carbon (Cu-Zn-Ni-NPs-AC) and cobalt and nickel nanoparticles was loaded on γ-alumina (Ni-Co-NPs-γAl2O3) and applied for removal of hydrogen sulfide (H2S) from natural gas and their efficiency were compared. Cu-Zn-Ni/AC and Ni-Co/γ-Al2O3 was characterized using different techniques such as energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The effects of variables such as amount of adsorbent, flow rate, temperature, pressure and volume of gas on H2S removal were examined and optimum values were found to be 0.3g adsorbent, and flow rate of 0.15L/min and 15°C and 7Psi for both adsorbent and also 5.5 and 6.5L of sample by Cu-Zn-Ni/C and Co-Ni/γ-Al2O3, respectively. Setting conditions at the above optimum conditions lead to achievement of maximum removal of H2S (94% and 91.6%) by Cu-Zn-Ni/AC and Co-Ni/γ-Al2O3. The negative value of ΔG° and its numerical value confirm physisorption nature of adsorption. The experimental equilibrium data with high efficiency were explained and represented by Langmuir model for both adsorbents with the highest correlation coefficients.

  19. Adsorptive cathodic stripping voltammetric determination of dexamethasone in formulations and biological fluids.

    PubMed

    Ghoneim, Enass M; El-Attar, Mona A; Ghoneim, Mohamed M

    2009-01-01

    The electrochemical behavior of dexamethasone at a hanging mercury drop electrode (HMDE) in a universal buffer series of pH 2-10 was studied using cyclic voltammetry. Based on the interfacial adsorptive character of dexamethasone onto the HMDE (electrode surface coverage = 1.4 x 10(-10) mol/cm2), a fully validated simple square-wave adsorptive cathodic stripping voltammetric method is described for its determination in bulk form with a limit of detection (LOD) of 3.1 x 10(-9) M. The described method was successfully applied to analysis of dexamethasone in its pharmaceutical formulations (deltasone tablets and fortecortin ampule) and in spiked samples of human urine, bovine urine, and protein-free bovine milk. The achieved LODs of dexamethasone in human urine, bovine urine, and protein-free bovine milk were 1.5 x 10(-8), 2 x 10(-8), and 9 x 10(-9) M, respectively. The mean percentage recoveries of 4 x 10(-7) M dexamethasone in bulk form, spiked human urine, bovine urine, and bovine milk, based on the average of 3 replicate measurements, were 99.8 +/- 0.25, 100.4 +/- 0.96, 99.6 +/- 0.79, and 100.1 +/- 0.26, respectively.

  20. A Validated Adsorptive Stripping Voltammetric Determination of Antidiabetic Agent Pioglitazone HCl in Tablets and Biological Fluids

    PubMed Central

    Al-Arfaj, Nawal Ahmad; Al-Abdulkareem, Eman Abdullah; Aly, Fatma Ahmad

    2008-01-01

    Square-wave adsorptive cathodic stripping voltammetry was used to determine pioglitazone HCl in Britton Robinson buffer of pH5. The adsorptive cathodic peak was observed at -1.5 V vs. Ag/AgCl. The peak response was characterized with respect to pH, supporting electrolyte, frequency, scan increment, pulse-amplitude, accumulation potential and pre-concentration time. Under optimal conditions, the peak current is proportional to the concentration of pioglitazone HCl, and a linear calibration graphs were obtained within the concentration levels of 10-8 and 10-4 M following different accumulation time periods (0-300 s). The obtained results were analyzed and the statistical parameters were calculated. The detection limit is 8.08 × 10-9 M (3.17 ng ml-1) using 300 s pre-concentration time, whereas the quantitative limit is 2.45 × 10-8 M (9.63 ng ml-1). The proposed method was applied to assay the drug in pharmaceutical formulations and biological fluids. The pharmacokinetic parameters of drug in human plasma were estimated as: Cmax=785.8 ng ml-1, tmax=1.5 h, Ke=0.125 h-1 and t1/2=8 h which are favorably compared with those reported in literature. PMID:23675103

  1. Applicability of 2-hydroxybenzaldehyde benzoylhydrazone in the determination of trace metals by adsorptive cathodic stripping voltammetry: relevancy of simultaneous determinations.

    PubMed

    Espada-Bellido, Estrella; Galindo-Riaño, M Dolores; Aouarram, Abdellah; García-Vargas, Manuel

    2009-07-01

    The applicability of 2-hydroxybenzaldehyde benzoylhydrazone (2-HBBH) for determining Cd(II), Cu(II), Pb(II) and Bi(III) ions by adsorptive cathodic stripping voltammetry was studied. The sensitivity of metal reduction peak currents was highly enhanced with the addition of 2-HBBH to metallic solutions, showing the adsorptive characteristics of the complexes. Variable factors affecting the response (mainly: the influences of pH, supporting electrolyte and deposition potential on selectivity and sensitivity) were investigated. Limits of detection suitable for trace analysis were obtained: 0.28 microg L(-1) for Cd(II) at pH 10; 0.026 microg L(-1) for Pb(II) at pH 9; 0.285 microg L(-1) for Bi(III) at pH 8 and 0.051 microg L(-1) for Cu(II) at pH 9.5. Simultaneous determinations of two groups of elements, consisting of Cd(II)-Pb(II)-Cu(II) and Cd(II)-Pb(II)-Bi(III), at pH 9.5 and 9, respectively, were described with good resolution and sensitivities. Metals were quantified at concentrations in the range from 0.5 to 14 microg L(-1). The RSD at a concentration level of 5 microg L(-1) of metal was 4.28% for Cd(II), 2.99% for Pb(II), 4.82% for Bi(III) and 1.35% for Cu(II). The method was applied to the simultaneous determination of metals in certified reference water (TMDA-62) and in synthetic water samples with satisfactory results.

  2. Isotherm studies for the determination of Cd (II) ions removal capacity in living biomass of a microalga with high tolerance to cadmium toxicity.

    PubMed

    Torres, Enrique; Mera, Roi; Herrero, Concepción; Abalde, Julio

    2014-11-01

    The biosorption characteristics of Cd (II) ions using the living biomass of the marine diatom Phaeodactylum tricornutum were investigated. This microalga is a highly tolerant species to cadmium toxicity; for this reason, it is interesting to know its potential for use in the removal of this metal. The use of living biomass offers better possibilities than that of dead biomass since cadmium can also be bioaccumulated inside the cells. For this purpose, tolerant species are necessary. P. tricornutum is within this category with an EC50,96h of 19.1 ± 3.5 mg Cd (II)/L, and in the present manuscript, it is demonstrated that this microalga has a very good potential for bioremediation of Cd (II) ions in saline habitats. Cadmium removed by the cells was divided into three fractions: total, intracellular and bioadsorbed. The experiments were conducted for 96 h in natural seawater with a concentration range of 1-100 mg Cd (II)/L. Each fraction was characterized every 24 h by sorption isotherms. The experimental isotherm data were analyzed using the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin equations. The biosorption was well described by Langmuir isotherm followed by Freundlich. The worst model was Temkin. The biosorption capacity of this microalga for Cd (II) ions was found to be 67.1 ± 3.2 mg/g after 96 h with approximately 40 % of this capacity in the intracellular fraction. The bioconcentration factor determined was 2,204.7 after 96 h and with an initial Cd (II) concentration of 1 mg/L.

  3. Growth kinetics of Listeria monocytogenes in broth and beef frankfurters--determination of lag phase duration and exponential growth rate under isothermal conditions.

    PubMed

    Huang, L

    2008-06-01

    The objective of this study was to develop a new kinetic model to describe the isothermal growth of microorganisms. The new model was tested with Listeria monocytogenes in tryptic soy broth and frankfurters, and compared with 2 commonly used models-Baranyi and modified Gompertz models. Bias factor (BF), accuracy factor (AF), and root mean square errors (RMSE) were used to evaluate the 3 models. Either in broth or in frankfurter samples, there were no significant differences in BF (approximately 1.0) and AF (1.02 to 1.04) among the 3 models. In broth, the mean RMSE of the new model was very close to that of the Baranyi model, but significantly lower than that of the modified Gompertz model. However, in frankfurters, there were no significant differences in the mean RMSE values among the 3 models. These results suggest that these models are equally capable of describing isothermal bacterial growth curves. Almost identical to the Baranyi model in the exponential and stationary phases, the new model has a more identifiable lag phase and also suggests that the bacteria population would increase exponentially until the population approaches to within 1 to 2 logs from the stationary phase. In general, there is no significant difference in the means of the lag phase duration and specific growth rate between the new and Baranyi models, but both are significantly lower than those determined from the modified Gompertz models. The model developed in this study is directly derived from the isothermal growth characteristics and is more accurate in describing the kinetics of bacterial growth in foods.

  4. Surface science of DNA adsorption onto citrate-capped gold nanoparticles.

    PubMed

    Zhang, Xu; Servos, Mark R; Liu, Juewen

    2012-02-28

    Single-stranded DNA can be adsorbed by citrate capped gold nanoparticles (AuNPs), resulting in increased AuNP stability, which forms the basis of a number of biochemical and analytical applications, but the fundamental interaction of this adsorption reaction remains unclear. In this study, we measured DNA adsorption kinetics, capacity, and isotherms, demonstrating that the adsorption process is governed by electrostatic forces. The charge repulsion among DNA strands and between DNA and AuNPs can be reduced by adding salt, reducing pH or by using noncharged peptide nucleic acid (PNA). Langmuir adsorption isotherms are obtained, indicating the presence of both adsorption and desorption of DNA from AuNPs. While increasing salt concentration facilitates DNA adsorption, the desorption rate is also enhanced in higher salt due to DNA compaction. DNA adsorption capacity is determined by DNA oligomer length, DNA concentration, and salt. Previous studies indicated faster adsorption of short DNA oligomers by AuNPs, we find that once adsorbed, longer DNAs are much more effective in protecting AuNPs from aggregation. DNA adsorption is also facilitated by using low pH buffers and high alcohol concentrations. A model based on electrostatic repulsion on AuNPs is proposed to rationalize the DNA adsorption/desorption behavior. © 2012 American Chemical Society

  5. Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-γ-alumina

    NASA Astrophysics Data System (ADS)

    Zolgharnein, Javad; Bagtash, Maryam; Shariatmanesh, Tahere

    2015-02-01

    The present study deals with the simultaneous removal of Brilliant Green (BG) and Crystal Violet (CV) by surfactant-modified alumina. The utilization of alumina nanoparticles with an anionic surfactant (sodium dodecyl sulfate (SDS)) as a novel and efficient adsorbent is successfully carried out to remove two cationic dyes from aqueous solutions in binary batch systems. A first-order derivative spectrophotometric method is developed for the simultaneous determination of BG and CV in binary solutions. The linear concentration range and limits of detection for the simultaneous determination of BG and CV were found to be: 1-20, 1-15 mg/L, 0.3 and 0.5 mg/L, respectively. The influence of various parameters, such as contact time, initial concentration of dyes and sorbent mass on the dye adsorption is investigated. A response surface methodology achieved through performing the Box-Behnken design is utilized to optimize the removal of dyes by surfactant-modified nanoparticle alumina through a batch adsorption process. The proposed quadratic model resulting from the Box-Behnken design approach fitted very well with the experimental data. The optimal conditions for dye removal were contact time t = 50 min, sorbent dose = 0.036 g, CBG (Initial BG concentration) = 215 mg/L and CCV (Initial CV concentration) = 170 mg/L. Furthermore, FT-IR analysis, the isotherms and kinetics of adsorption were also explored.

  6. Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns.

    PubMed

    Mohammed, Nishil; Grishkewich, Nathan; Waeijen, Herman Ambrose; Berry, Richard M; Tam, Kam Chiu

    2016-01-20

    The adsorption behavior of methylene blue by cellulose nanocrystal-alginate (CNC-ALG) hydrogel beads in a fixed bed column was studied by varying the initial dye concentrations, bed depths and flow rates. An unusual phenomenon was observed in the early phase of the adsorption, and the phenomenon was elucidated by varying other critical design parameters, such as the flow direction, diameter of column and composition of adsorbent. The swelling and shrinkage of hydrogel beads during the adsorption was responsible for the anomalous concentration versus time profile of the adsorption process. The maximum adsorption capacity of the column was 255.5mg/g, which is in agreement with the batch study determined from the Langmuir adsorption isotherm. A comprehensive understanding on the adsorption mechanism of CNC-ALG hydrogel beads during the early stages of adsorption was derived from this study.

  7. Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste.

    PubMed

    Olgun, Asim; Atar, Necip

    2009-01-15

    In this study, the adsorption characteristics of Basic Yellow 28 (BY 28) and Basic Red 46 (BR 46) onto boron waste (BW), a waste produced from boron processing plant were investigated. The equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of two dyes could be described reasonably well by a generalized isotherm. Kinetic studies indicated that the kinetics of the adsorption of BY 28 and BR 46 onto BW follows a pseudo-second-order model. The result showed that the BW exhibited high-adsorption capacity for basic dyes and the capacity slightly decreased with increasing temperature. The maximum adsorption capacities of BY 28 and BR 46 are reported at 75.00 and 74.73mgg(-1), respectively. The dye adsorption depended on the initial pH of the solution with maximum uptake occurring at about pH 9 and electrokinetic behavior of BW. Activation energy of 15.23kJ/mol for BY 28 and 18.15kJ/mol for BR 46 were determined confirming the nature of the physisorption onto BW. These results indicate that BW could be employed as low-cost material for the removal of the textile dyes from effluents.

  8. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry.

    PubMed

    Merli, Daniele; Zamboni, Daniele; Protti, Stefano; Pesavento, Maria; Profumo, Antonella

    2014-12-01

    Lysergic acid diethylamide (LSD) is hardly detectable and quantifiable in biological samples because of its low active dose. Although several analytical tests are available, routine analysis of this drug is rarely performed. In this article, we report a simple and accurate method for the determination of LSD, based on adsorptive stripping voltammetry in DMF/tetrabutylammonium perchlorate, with a linear range of 1-90 ng L(-1) for deposition times of 50s. LOD of 1.4 ng L(-1) and LOQ of 4.3 ng L(-1) were found. The method can be also applied to biological samples after a simple extraction with 1-chlorobutane. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Determination of the adsorption geometry of PTCDA on the Cu(100) surface

    NASA Astrophysics Data System (ADS)

    Weiß, Simon; Krieger, Ina; Heepenstrick, Timo; Soubatch, Serguei; Sokolowski, Moritz; Tautz, F. Stefan

    2017-08-01

    The adsorption geometry, namely the height and the site, of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on the Cu(100) surface was determined by the normal incidence x-ray standing wave (NIXSW) technique including triangulation. The two PTCDA molecules in the superstructure unit cell, which have perpendicular azimuthal orientation, are both located at bridge sites, the long molecular axis being parallel to the bridge. Carboxylic oxygen atoms and several atoms of the carbon backbone are located close to on-top positions. The vertical distortion motif of PTCDA on Cu(100) differs from that on the three low-index Ag surfaces, because significant downward displacement of the carboxylic oxygen atoms is lacking. In particular, the carbon backbone of PTCDA adsorbs closer to the surface than extrapolated from Ag data. This suggests a relative increase of the attractive interactions between the carbon backbone of PTCDA and the Cu(100) surface versus the attractive interactions on the carboxylic oxygen atoms.

  10. Mechanisms of fibrinogen adsorption at the silica substrate determined by QCM-D measurements.

    PubMed

    Kubiak, Katarzyna; Adamczyk, Zbigniew; Wasilewska, Monika

    2015-11-01

    Adsorption kinetics of fibrinogen at a silica substrate was thoroughly studied in situ using the QCM-D method. Because of low dissipation, the Sauerbrey's equation was used for calculating the wet mass per unit area (wet coverage of the protein). Measurements were done for various bulk suspension concentrations, flow rates and pHs. These experimental data were compared with the theoretical dry coverage data derived from the solution of the mass transfer equation. In this way, the hydration functions and water factors of fibrinogen monolayers were quantitatively evaluated for various pHs. In the case of pH 7.4 and ionic strength of 0.15 M, the hydration function changed from 0.75 to 0.6 for the dry coverage Γ(d) equal to 0 and 4 mg m(-2), respectively. Interestingly, for pH 7.4 and 4.5 (ionic strength of 10(-2) M) a minimum of the hydration function appeared at Γ(d) ca. 2 mg m(-2). Analytical polynomial expressions were formulated for the interpolation of the experimental results. By using the hydration functions, the fibrinogen adsorption/desorption runs derived from QCM-D measurements were converted to the Γ(d) vs. the time relationships. This allowed to precisely determine the maximum coverage that varied between 1.2 mg m(-2) at pH 3.5 and 4.2 mg m(-2) at pH 7.4 for ionic strength of 0.15 M. These results agree with theoretical modeling and previous experimental data derived by using ellipsometry, OWLS and TIRF. Various fibrinogen adsorption mechanisms were revealed by exploiting the maximum coverage data whose validity was also confirmed by the dissipation vs. the dry mass relationships. Beside significance to basic science, these results enable to develop a robust technique, based on the QCM-D measurements, suitable for precisely determining the dry mass of protein monolayers adsorbed under various physicochemical conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent--silkworm pupa.

    PubMed

    Noroozi, B; Sorial, G A; Bahrami, H; Arami, M

    2007-01-02

    In this work the use of silkworm pupa, which is the waste of silk spinning industries has been investigated as an adsorbent for the removal of C.I. Basic Blue 41. The amino acid nature of the pupa provided a reasonable capability for dye removal. Equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of the dye could be described reasonably well by either Langmuir or Freundlich models. The characteristic parameters for each isotherm have been determined. The monolayer adsorption capacity was determined to be 555 mg/g. Kinetic studies indicated that the adsorption follows pseudo-second-order kinetics with a rate constant of 0.0434 and 0.0572 g/min mg for initial dye concentration of 200 mg/l at 20 and 40 degrees C, respectively. Kinetic studies showed that film diffusion and intra-particle diffusion were simultaneously operating during the adsorption process. The rate constant for intra-particle diffusion was estimated to be 1.985 mg/g min(0.5).

  12. Sorption isotherm measurements by NMR.

    PubMed

    Leisen, Johannes; Beckham, Haskell W; Benham, Michael

    2002-01-01

    An experimental setup is described for the automated recording of sorption isotherms by NMR experiments at precisely defined levels of relative humidity (RH). Implementation is demonstrated for a cotton fabric; Bloch decays. T1 and T2* relaxation times were measured at predefined steps of increasing and decreasing relative humidities (RHs) so that a complete isotherm of NMR properties was obtained. Bloch decays were analyzed by fitting to relaxation functions consisting or a slow- and a fast-relaxing component. The fraction of slow-relaxing component was greater than the fraction of sorbed moisture determined from gravimetric sorption data. The excess slow-relaxing component was attributed to plasticized segments of the formerly rigid cellulose matrix. T1 and T2* sorption isotherms exhibit hysteresis similar to gravimetric sorption isotherms. However, correlating RH to moisture content (MC) reveals that both relaxation constants depend only on MC, and not on the history of moisture exposure.

  13. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  14. Boronate affinity adsorption of RNA: possible role of conformational changes

    NASA Technical Reports Server (NTRS)

    Singh, N.; Willson, R. C.; Fox, G. E. (Principal Investigator)

    1999-01-01

    Batch equilibrium adsorption isotherm determination is used to characterize the adsorption of mixed yeast RNA on agarose-immobilized m-aminophenylboronic acid. It is shown that the affinity-enhancing influence of divalent cations depends strongly on the precise nature of the cation used, with barium being far more effective than the conventionally-used magnesium. This adsorption-promoting influence of barium is suggested to arise primarily from ionic influences on the structure and rigidity of the RNA molecule, as the adsorption of ribose-based small molecules is not similarly affected. The substitution of barium for the standard magnesium counterion does not greatly promote the adsorption of DNA, implying that the effect is specific to RNA and may be useful in boronate-based RNA separations. RNA adsorption isotherms exhibit sharp transitions as functions of temperature, and these transitions occur at different temperatures with Mg2+ and with Ba2+. Adsorption affinity and capacity were found to increase markedly at lower temperatures, suggestive of an enthalpically favored interaction process. The stoichiometric displacement parameter, Z, in Ba2+ buffer is three times the value in Mg2+ buffer, and is close to unity.

  15. Laboratory investigation of steam adsorption in geothermal reservoir rocks

    SciTech Connect

    Luetkehans, J.

    1988-02-01

    Some vapor-dominated geothermal reservoirs and low-permeability gas reservoirs exhibit anomalous behavior that may be caused by surface adsorption. For example, geothermal reservoirs in the Larderello are of Italy and reservoirs in the Geysers Geothermal Field, California produce little, if any, liquid. Yet to satisfy material balance constraints, another phase besides steam must be present. If steam adsorption occurring in significant amounts is not accounted for, the reserves will be grossly under-estimated. In addition, well tests may be misinterpreted because the pressure response is delayed owing to be adsorbed material leaving or entering the gaseous phase. In the present research the role of adsorption in geothermal reservoirs in investigated. Two sets of laboratory equipment were constructed to measure adsorption isotherms of cores from Berea sandstone, Larderello, and The Geysers. Seven experimental runs were completed using nitrogen on the low temperature apparatus at -196/sup 0/C. Eight runs were conducted using steam on the high temperature apparatus at temperatures ranging from 150 C to 207/sup 0/C. The largest specific surface area and the greatest nitrogen adsorption isotherm were measured on the Berea sandstone, followed by a core from Larderello and then The Geysers. Difficulties in determining whether a system had reached equilibrium at the end of each step lead to questions regarding the magnitude of adsorption measured by the steam runs. Nevertheless, adsorption was observed and the difficulties themselves were useful indicators of needed future research.

  16. A comparative study of capillary electrophoresis and isothermal titration calorimetry for the determination of binding constant of human serum albumin to monoclonal antibody.

    PubMed

    Andrási, Melinda; Lehoczki, Gábor; Nagy, Zoltán; Gyémánt, Gyöngyi; Pungor, András; Gáspár, Attila

    2015-06-01

    This paper focuses on the investigation of the interactions between the anti-HSA-mAb and its protein antigen using CZE, ACE, and isothermal titration calorimetry. The CZE revealed the formation of the anti-HSA-mAb·HSA and anti-HSA-mAb·(HSA)2 complexes and the binding constants determined by plotting the amount of the bound anti-HSA-mAb as a function of the concentration of HSA. The ACE provided information on the binding strength from the change in effective electrophoretic mobility of the anti-HSA-mAb. These two separation techniques estimated the presence of two binding sites. The equilibrium dissociation constant values obtained by CZE and ACE were found to be 2.26 × 10(-6) M for anti-HSA-mAb·HSA, 1.22 × 10(-6) M for anti-HSA-mAb·(HSA)2 and 4.45 × 10(-8) M for anti-HSA-mAb·HSA, 1.08 × 10(-7) M for anti-HSA-mAb·(HSA)2 , respectively. The dissociation constant data obtained by ACE were in congruence with the values obtained by isothermal titration calorimetry (2.74 × 10(-8) M, 1.04 × 10(-7) M).

  17. Determination of glyphosate and aminomethylphosphonic acid in aqueous soil matrices: a critical analysis of the 9-fluorenylmethyl chloroformate derivatization reaction and application to adsorption studies.

    PubMed

    Báez, María E; Fuentes, Edwar; Espina, María José; Espinoza, Jeannette

    2014-11-01

    The assessment of the environmental fate of glyphosate and its degradation product (aminomethylphosphonic acid) is of great interest given the widespread use of the herbicide. Studies of adsorption-desorption and transport processes in soils require analytical methods with sensitivity, accuracy, and precision suitable for determining the analytes in aqueous equilibrium solutions of varied complexity. In this work, the effect of factors on the yield of the derivatization of both compounds with 9-fluorenylmethyl chloroformate for applying in aqueous solutions derived from soils was evaluated through factorial experimental designs. Interference effects coming from background electrolytes and soil matrices were established. The whole method had a linear response up to 640 ng/mL (R(2) > 0.999) under optimized conditions for high-performance liquid chromatography with fluorescence detection. Limits of detection were 0.6 and 0.4 ng/mL for glyphosate and aminomethylphosphonic acid, respectively. The relative standard deviation was 4.4% for glyphosate (20 ng/mL) and 5.9% for aminomethylphosphonic acid (10 ng/mL). Adsorption of compounds on four different soils was assessed. Isotherm data fitted well the Freundlich model (R(2) > 0.97). Kf constants varied between 93 ± 3.1 and 2045 ± 157 for glyphosate and between 99 ± 4.1 and 1517 ± 56 (μg(1-1/) (n)  mL(1/) (n) ( ) g(-1) ) for aminomethylphosphonic acid, showing the broad range of applicability of the proposed method.

  18. Investigation of uranium (VI) adsorption by polypyrrole.

    PubMed

    Abdi, S; Nasiri, M; Mesbahi, A; Khani, M H

    2017-06-15

    The purpose of this study was to investigate the adsorption of uranium (VI) ions on the polypyrrole adsorbent. Polypyrrole was synthesized by a chemical method using polyethylene glycol, sodium dodecylbenzenesulfonate, and cetyltrimethylammonium bromide as the surfactant and iron (III) chloride as an oxidant in the aqueous solution. The effect of various surfactants on the synthesized polymers and their performance as the uranium adsorbent were investigated. Adsorbent properties were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. The effect of different parameters such as pH, contact time, initial metal ion concentrations, adsorbent dose, and the temperature was investigated in the batch system for uranium adsorption process. It has been illustrated that the adsorption equilibrium time is 7min. The results showed that the Freundlich model had the best agreement and the maximum adsorption capacity of polypyrrole for uranium (VI) was determined 87.72mg/g from Langmuir isotherm. In addition, the mentioned adsorption process was fast and the kinetic data were fitted to the Pseudo first and second order models. The adsorption kinetic data followed the pseudo-second-order kinetic model. Moreover, the thermodynamic parameters ΔG(0), ΔH(0) and ΔS(0) showed that the uranium adsorption process by polypyrrole was endothermic and spontaneous. Copyright © 2017. Published by Elsevier B.V.

  19. Determination of trace amounts of thallium by adsorptive cathodic stripping voltammetry with xylenol orange.

    PubMed

    Shams, Esmaeil; Yekehtaz, Mehdi

    2002-09-01

    Trace amounts of thallium(I) can be determined using adsorptive cathodic stripping voltammetry in the presence of Xylenol Orange (XO). The reduction current of the thallium(I)-XO complex ion was measured by square-wave cathodic stripping voltammetry. The peak potential was at -0.44 V vs. Ag/AgCl. The effect of various parameters (pH, ligand concentration, accumulation potential and collection time) on the response are discussed. The response was linearly related to the thallium concentration in the range 0.5-110 ng ml(-1) and 110-2000 ng ml(-1). The limit of detection was 0.2 ng ml(-1). The relative standard deviation for the determination of 80 ng ml(-1) thallium was 2.8%. Many common anions and cations did not interfere with the determination of thallium. The interference of lead was reduced by the addition of 0.003 M sodium carbonate. The voltammetric procedure was then successfully applied to the determination of thallium in various complex samples.

  20. Evaluation of loop-mediated isothermal amplification for the rapid identification of bacteria and resistance determinants in positive blood cultures.

    PubMed

    Rödel, J; Bohnert, J A; Stoll, S; Wassill, L; Edel, B; Karrasch, M; Löffler, B; Pfister, W

    2017-06-01

    The use of molecular assays to rapidly identify pathogens and resistance genes directly from positive blood cultures (BCs) contribute to shortening the time required for the diagnosis of bloodstream infections. In this work, loop-mediated isothermal amplification (LAMP) assays have been examined for their potential use in BC diagnosis. Three different assays were applied. The commercially available eazyplex® MRSA test detects Staphylococcus aureus, S. epidermidis, mecA, and mecC. Two in-house assays [Gram-positive (GP) and Gram-negative (GN)] have been developed for the detection of streptococci, enterococci, vanA, vanB, Pseudomonas spp., Enterobacteriaceae, and the bla CTX-M family. A total of 370 positive BCs were analyzed. LAMP test results were obtained within 30 min, including sample preparation. Amplification was measured by real-time fluorescence detection. The threshold time for fluorescence intensity values ranged from 6.25 to 13.75 min. The specificity and sensitivity of the assays varied depending on the target. Overall, from 87.7% of BCs, true-positive results were obtained, compared to routine standard diagnosis. Twenty-one tests were true-negative because of the lack of an appropriate target (5.7%). The concordance of positive test results for resistance genes with subsequent antibiotic susceptibility testing was 100%. From 15 BC bottles with mixed cultures, eazyplex® assays produced correct results in 73% of the cases. This study shows that LAMP assays are fast and cost-saving tools for rapid BC testing in order to expedite the diagnostic report and improve the antibiotic stewardship for sepsis patients.

  1. Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals: Silica and alumina

    USGS Publications Warehouse

    Su, Y.-H.; Zhu, Y.-G.; Sheng, G.; Chiou, C.T.

    2006-01-01

    To characterize the linear adsorption phenomena in aqueous nonionic organic solute-mineral systems, the adsorption isotherms of some low-molecular- weightnonpolar nonionic solutes (1,2,3-trichlorobenzene, lindane, phenanthrene, and pyrene) and polar nonionic solutes (1,3-dinitrobenzene and 2,4-dinitrotoluene) from single-and binary-solute solutions on hydrophilic silica and alumina were established. Toward this objective, the influences of temperature, ionic strength, and pH on adsorption were also determined. It is found that linear adsorption exhibits low exothermic heats and practically no adsorptive competition. The solute-solid configuration and the adsorptive force consistent with these effects were hypothesized. For nonpolar solutes, the adsorption occurs presumably by London (dispersion) forces onto a water film above the mineral surface. For polar solutes, the adsorption is also assisted by polar-group interactions. The reduced adsorptive forces of solutes with hydrophilic minerals due to physical separation by the water film and the low fractions of the water-film surface covered by solutes offer a theoretical basis for linear solute adsorption, low exothermic heats, and no adsorptive competition. The postulated adsorptive forces are supported by observations that ionic strength or pH poses no effect on the adsorption of nonpolar solutes while it exhibits a significant effect on the uptake of polar solutes. ?? 2006 American Chemical Society.

  2. Adsorptive stripping voltammetry determination of molybdenum(VI) in water and soil.

    PubMed

    Zhao, Z; Pei, J; Zhang, X; Zhou, X

    1990-10-01

    A differential pulse stripping voltammetry method for the trace determination of molybdenum(VI) in water and soil has been developed. In 0.048M oxalic acid and 6 x 10(-5)M Toluidine Blue (pH 1.8) solution, Mo(V), the reduction product of Mo(VI) in the sample solution, can form a ternary complex, which can be concentrated by adsorption on a static mercury drop electrode at -0.1 V (vs. Ag/AgCl). The adsorbed complex gives a well-defined cathodic stripping current peak at -0.30 V, which can be used for determining Mo(VI) in the range 5 x 10(-10)-7 x 10(-9)M, with a detection limit of 1 x 10(-10)M (4 min accumulation). The method is also selective. Most of the common ions do not interfere but Sn(IV) and large amounts of Cu(2+), Ag(+) and Au(3+) affect the determination.

  3. Determination of soluble chromium in simulated PWR coolant by differential-pulse adsorptive stripping voltammetry.

    PubMed

    Torrance, K; Gatford, C

    1987-11-01

    An analytical method has been developed for the determination of dissolved chromium at concentrations less than 2 mug/l. in PWR coolant by differential-pulse adsorptive stripping voltammetry at a hanging mercury drop electrode. Concentrations above 2 mug/l. can be determined by appropriate dilution of the sample. The method is based on measurement of the current associated with reduction of a chromium(III)-DTPA (diethylenetriaminepenta-acetic acid) complex adsorbed at the surface of the mercury drop. The effects of boric acid, pH, DTPA concentration, accumulation potential and time were investigated together with the oxidation state of the chromium. No interference was observed from other transition metal ions expected to be present in PWR coolant. No alternative chemical technique of similar sensitivity was available for comparison with the results obtained in solutions containing <1 mug/l. chromium. Recoveries from simulated coolant solutions were greater than 95% and the relative standard deviations for single determinations were in the range 12-25%. The statistical limit of detection at the 95% confidence level was 0.023 mug/l. This method of analysis should prove valuable in corrosion studies and is uniquely capable of following the changes in soluble chromium concentration in PWR coolant that follow operational changes in the reactor.

  4. Chromium adsorption by lignin

    SciTech Connect

    Lalvani, S.B.; Huebner, A.; Wiltowski, T.S.

    2000-01-01

    Hexavalent chromium is a known carcinogen, and its maximum contamination level in drinking water is determined by the US Environmental Protection Agency (EPA). Chromium in the wastewaters from plating and metal finishing, tanning, and photographic industries poses environmental problems. A commercially available lignin was used for the removal of hexavalent as well as trivalent chromium from aqueous solution. It is known that hexavalent chromium is present as an anionic species in the solution. It was found that lignin can remove up to 63% hexavalent and 100% trivalent chromium from aqueous solutions. The removal of chromium ions was also investigated using a commercially available activated carbon. This absorbent facilitated very little hexavalent and almost complete trivalent chromium removal. Adsorption isotherms and kinetics data on the metal removal by lignin and activated carbon are presented and discussed.

  5. Determining the Mechanism and Efficiency of Industrial Dye Adsorption through Facile Structural Control of Organo-montmorillonite Adsorbents.

    PubMed

    Huang, Peng; Kazlauciunas, Algy; Menzel, Robert; Lin, Long

    2017-08-09

    The structural evolution of cost-effective organo-clays (montmorillonite modified with different loadings of CTAB (cetyltrimethylammonium bromide)) is investigated and linked to the adsorption uptake and mechanism of an important industrial dye (hydrolyzed Remazol Black B). Key organo-clay characteristics, such as the intergallery spacing and the average number of well-stacked layers per clay stack, are determined by low-angle X-ray diffraction, while differential thermogravimetric analysis is used to differentiate between surface-bound and intercalated CTAB. Insights into the dye adsorption mechanism are gained through the study of the adsorption kinetics and through the characterization of the organo-clay structure and surface charge after dye adsorption. It is shown that efficient adsorption of anionic industrial dyes is driven by three key parameters: (i) sufficiently large intergallery spacing to enable accommodation of the relatively large dye molecules, (ii) crystalline disorder in the stacking direction of the clay platelets to facilitate dye access, (iii) and positive surface charge to promote interaction with the anionic dyes. Specifically, it is shown that, at low modifier loadings (0.5 cation exchange capacity (0.5CEC)), CTAB molecules exclusively intercalate as a monolayer into the clay intergallery spaces, while, with increasing modifier loadings, the CTAB molecules adopt a bilayer arrangement and adsorb onto the exterior clay surface. Bilayer intercalation results in sufficiently large expansion of the intergallery spaces and significant disordering along the (001) stacking direction to enable high and relatively fast dye uptake via intraparticle diffusion. Poor and slow dye uptake is observed for the organo-clays with a monolayer structure, suggesting relatively inefficient dye adsorption at the clay edges. The optimized bilayer organo-clays (montmorillonite modified with 3CEC of CTAB) also show enhanced adsorption efficiencies for other important

  6. Determination of nickel by flame atomic-absorption spectrophotometry after separation by adsorption of its nioxime complex on microcrystalline naphthalene.

    PubMed

    Nagahiro, T; Puri, B K; Katyal, M; Satake, M

    1984-11-01

    A method has been developed for the determination of nickel in alloys by flame atomic-absorption spectrophotometry after formation of a water-insoluble complex, its adsorption on microcrystalline naphthalene, and dissolution of the complex and naphthalene in nitric acid and xylene.

  7. Kinetics and thermodynamics of the adsorption of some dyestuffs and p-nitrophenol by chitosan and MCM-chitosan from aqueous solution.

    PubMed

    Uzun, Ilhan; Güzel, Fuat

    2004-06-15

    The effect of initial concentration, temperature, and shaking rate on the adsorption of three dyestuffs [orange II (O-II), crystal violet (CV), and reactive blue 5 (RB5)] and an ideal adsorbate, p-nitrophenol (PNP), by chitosan (Sigma C-3646) and the effect of temperature on the adsorption of O-II and CV by monocarboxymethylated chitosan (MCM-chitosan) were investigated. Kinetic data obtained for the adsorption of each dyestuff and PNP by chitosan and of O-II and CV by MCM-chitosan at different temperatures were applied to the Lagergren equation, and adsorption rate constants (k(ads)) at these temperatures were determined. These rate constants related to the adsorption of O-II and RB5 by chitosan and of O-II by MCM-chitosan were applied to the Arrhenius equation, and activation energies (E(a)) were determined. In addition, the isotherms for adsorption, at different temperatures, of each dyestuff and PNP by chitosan and of O-II and CV by MCM-chitosan were also determined. These isothermal data were applied to linear forms of isotherm equations that they fit, and isotherm constants were calculated. Because the isotherm curves obtained for the adsorption of O-II and CV by chitosan and of CV by MCM-chitosan fit the Langmuir adsorption isotherm, b constants were applied to thermodynamic equations, and thermodynamic parameters (delta G, delta H, and delta S) were calculated. Lastly, chitosan and MCM-chitosan were compared with respect to the ability to take up the dyestuffs and PNP.

  8. Determination of Se(IV) in natural waters by adsorptive stripping voltammetry of 5-nitropiazselenol.

    PubMed

    Ashournia, Mehdi; Aliakbar, Alireza

    2010-02-15

    The high tendency of 5-nitropiazselenol for self-accumulation on thin mercury film electrode was used innovatively for determination of Se(IV) in natural waters. 5-Nitropiazselenol was formed by reaction between Se(IV) and 4-nitro-1,2-phenylenediamine in acidic solution and self-accumulation process was carried out directly from reaction media. The adsorbed 5-nitropiazselenol was stripped in HCl solution by DP cathodic potential scan. All parameters influencing the measurement were optimized and evaluated. Detection limit of this method is 0.06 ng mL(-1). Interferences of various cations and anions were studied. The adsorption tendency of some other piazselenols made by some aromatic ortho-diamines was also investigated. The problems arising from applying potential during accumulation process in natural waters analysis were discussed. This method was applied for determination of Se(IV) in natural waters collected from some internationally registrated lagoons south of Caspian Sea. The obtained results were compared with the results of ICP-AES and DPCSV after electrochemical preconcentration.

  9. Determination of copper speciation in highway stormwater runoff using competitive ligand exchange - Adsorptive cathodic stripping voltammetry.

    PubMed

    Nason, Jeffrey A; Sprick, Matthew S; Bloomquist, Don J

    2012-11-01

    Low concentrations of dissolved copper have been shown to adversely affect the olfactory system of salmonid species, impairing their ability to avoid predators and likely increasing mortality. These studies have resulted in increased regulatory scrutiny of stormwater discharges to surface waters inhabited by threatened and endangered salmonid species. Because it is primarily the free ionic (Cu(2+)) and weakly complexed forms of copper that are bioavailable, it is critical to understand the speciation of copper in stormwater. This paper reports on the characterization of copper binding ligands and copper speciation in composite samples of highway stormwater runoff collected at four sites in Oregon, USA using competitive ligand exchange - adsorptive cathodic stripping voltammetry (CLE-ACSV). Although the concentration and strength of copper binding ligands in stormwater varied considerable between sites and storms, the vast majority (>99.9%) of the total dissolved copper in composite samples was complexed by organic ligands in stormwater. Although total dissolved copper concentrations range from 2 to 20 μg/L, the analytically determined free ionic copper concentrations did not exceed 10(-10) M (6.3 ng/L) in any of the fully characterized samples, suggesting that much of the copper in highway stormwater is not bioavailable. Analytically determined free ionic copper concentrations were compared with those predicted by a readily available chemical equilibrium models and found to be in reasonable agreement. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules.

    PubMed

    Sidoli, Pauline; Baran, Nicole; Angulo-Jaramillo, Rafael

    2016-03-01

    Adsorption of the herbicide glyphosate and its main metabolite AMPA (aminomethylphosphonic acid) was investigated on 17 different agricultural soils. Batch equilibration adsorption data are shown by Freundlich adsorption isotherms. Glyphosate adsorption is clearly affected by equilibration concentrations, but the nonlinear AMPA adsorption isotherms indicate saturation of the adsorption sites with increasing equilibrium concentrations. pHCaCl2 (i.e. experimental pH) is the major parameter governing glyphosate and AMPA adsorption in soils. However, considering pHCaCl2 values, available phosphate amount, and amorphous iron and aluminium oxide contents by using a nonlinear multiple regression equation, obtains the most accurate and powerful pedotransfer rule for predicting the adsorption constants for these two molecules. As amorphous iron and aluminium oxide contents in soil are not systematically determined, we also propose a pedotransfer rule with two variables-pHCaCl2 values and available phosphate amount-that remains acceptable for both molecules. Moreover, the use of the commonly measured pHwater or pHKCl values gives less accurate results compared to pHCaCl2 measurements. To our knowledge, this study is the first AMPA adsorption characterization for a significant number of temperate climate soils.

  11. Simultaneous adsorption of phenol and cadmium on amphoteric modified soil.

    PubMed

    Meng, Zhao-Fu; Zhang, Yi-Ping; Zhang, Zeng-Qiang

    2008-11-30

    Surface modification is an effective way to enhance adsorption of pollutants by soil. In this study, we investigated the individual adsorption of cadmium ion (Cd(2+)) and phenol and also in combination by the clay layer of a loessial soil treated with the amphoteric modifier, duodalkylbetaine (BS-12). Three levels of BS-12 modification were compared in this experiment: (1) unmodified soil (CK), (2) modification with an amount of BS-12 equivalent to 50% of the soil's CEC (50BS) and (3) modification with an amount of BS-12 equivalent to 100% of the soil's CEC (100BS). Cd(2+) adsorption was 0.92-1.70 times higher in the amphoteric modified soil compared to unmodified soil. Adsorption isotherms for Cd(2+) displayed a L1-type shape. Phenol adsorption was 1.25-4.35 times higher in the amphoteric modified soil compared to the unmodified control. The adsorption isotherms of phenol on amphoteric modified soils were generally linear, but changed to L1-type isotherms for modified soil in the Cd(2+)+phenol treatment at 40 degrees C. The results clearly showed that amphoteric modified soil had the ability to simultaneously adsorb Cd(2+) and phenol. Cd(2+) adsorption by the amphoteric modified soil was related to the initial concentration of Cd(2+) in the supernatant. Cd(2+) adsorption in the 100BS treatment exceeded adsorption in the 50BS treatment when Cd(2+) initial concentrations were higher than approximate 200 microg mL(-1). Phenol adsorption by modified soils decreased in the order: 100BS>50BS>CK and was primarily determined by the surface hydrophobicity of the soil. For the unmodified soil, total adsorption in the Cd(2+)+phenol treatment was slightly lower compared to treatments that contained only Cd(2+) or phenol. This indicated an antagonistic effect between the adsorption of Cd(2+) and phenol, which was reduced after amphoteric modification. A comparison of temperature effects on Cd(2+) and phenol adsorption indicated that Cd(2+) was both physically and chemically

  12. Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.

    PubMed

    Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G

    2015-01-01

    Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices.

  13. Effective surface areas of coals measured by dye adsorption

    SciTech Connect

    Spitzer, D.P.

    1988-01-01

    The primary interest has been to examine adsorption behavior especially at short contact times, ten minutes to an hour, to determine whether such measurements might give useful data on effective surface areas - i.e., the surface that would be accessible to reagents within times comparable to those typical of most coal processing. Accordingly, most of the emphasis is on the effect of time on adsorption, rather than on traditional adsorption isotherms. Although most literature on cationic dye adsorption (mostly on carbons) uses methylene blue, it happened that the authors originally used safranin O instead because this dye was reported to be useful in distinguishing oxidized coals from fresh coals. Many of their experiments were repeated using methylene blue (in water), with very similar results. It was noted early that swelling of coals in water was common, especially for more oxidized or lower rank coals, and adsorption experiments were also done in another solvent, namely methanol. This produced quite striking differences for some coals. Coal surfaces that are readily accessible to adsorption by safranin are found to correlate well with N/sub 2/ surface areas, with adsorption of 1.0 mg safranin per gram of coal corresponding to essentially a surface area of 1.0 m/sup 2//g. Highly oxidized coals were found to swell considerably in water, with correspondingly increased adsorption. Areas of such coals can be estimated by adsorption of safranin from methanol solutions.

  14. Adsorption of NH4(+)-N on Chinese loess: Non-equilibrium and equilibrium investigations.

    PubMed

    Xie, Haijian; Wang, Shaoyi; Qiu, Zhanhong; Jiang, Jianqun

    2017-11-01

    NH4(+)-N is a crucial pollutant in landfill leachate and can be in high concentrations for a long period of time due to anaerobic condition of landfills. The adsorption properties of NH4(+)-N on the Chinese loess were investigated using Batch test. The influences of ammonium concentration, temperature, reaction time, slurry concentration, and pH on the adsorption process are evaluated. Adsorption kinetics and isotherm behaviors were studied by applying different models to the test data to determine the adsorption parameters. The equilibrating duration was shown to be less than 60 min. The data on adsorption kinetics can be well fitted by the pseudo-second-order kinetics model. According to the Langmuir isotherm model, the adsorption capacity of Chinese loess about NH4(+)-N was predicted to be 72.30 mg g(-1). The uptake of NH4(+)-N by Chinese loess was considered to be the type of physical adsorption on the basis of D-R isotherm analysis. The optimal pH and slurry concentration are 4 and 2 g/50 ml, respectively. According to the calculated values of free energy, enthalpy and entropy change, the adsorption process is determined to be exothermic. The disorder of the system appeared lowest at temperature of 308.15 K. The predicted Gibb's free energies also indicate the adsorption process is endothermic and spontaneous. The FTIR spectrum and EDX analysis showed the adsorption process of NH4(+) involves cation exchange and dissolution of calcite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Applications and limits of theoretical adsorption models for predicting the adsorption properties of adsorbents.

    PubMed

    Park, Hyun Ju; Nguyen, Duc Canh; Na, Choon-Ki; Kim, Chung-il

    2015-01-01

    The objective of this study is to evaluate the applicability of adsorption models for predicting the properties of adsorbents. The kinetics of the adsorption of NO3- ions on a PP-g-AA-Am non-woven fabric have been investigated under equilibrium conditions in both batch and fixed bed column processes. The adsorption equilibrium experiments in the batch process were carried out under different adsorbate concentration and adsorbent dosage conditions and the results were analyzed using adsorption isotherm models, energy models, and kinetic models. The results of the analysis indicate that the adsorption occurring at a fixed adsorbate concentration with a varying adsorbent dosage occur more easily compared to those under a fixed adsorbent dosage with a varying adsorbate concentration. In the second part of the study, the experimental data obtained using fixed bed columns were fit to Bed Depth Service Time, Bohart-Adams, Clark, and Wolborska models, to predict the breakthrough curves and determine the column kinetic parameters. The adsorption properties of the NO3- ions on the PP-g-AA-Am non-woven fabric were differently described by different models for both the batch and fixed bed column process. Therefore, it appears reasonable to assume that the adsorption properties were dominated by multiple mechanisms, depending on the experimental conditions.

  16. Equilibrium and heat of adsorption for organic vapors and activated carbons

    SciTech Connect

    David Ramirez; Shaoying Qi; Mark J. Rood; K. James Hay

    2005-08-01

    Determination of the adsorption properties of novel activated carbons is important to develop new air quality control technologies that can solve air quality problems in a more environmentally sustainable manner. Equilibrium adsorption capacities and heats of adsorption are important parameters for process analysis and design. Experimental adsorption isotherms were thus obtained for relevant organic vapors with activated carbon fiber cloth (ACFC) and coal-derived activated carbon adsorbents (CDAC). The Dubinin-Astakhov (DA) equation was used to describe the adsorption isotherms. The DA parameters were analytically and experimentally shown to be temperature independent. The resulting DA equations were used with the Clausius-Clapeyron equation to analytically determine the isosteric heat of adsorption ({Delta}H{sub s}) of the adsorbate-adsorbent systems studied here. ACFC showed higher adsorption capacities for organic vapors than CDAC. {Delta}H{sub s} values for the adsorbates were independent of the temperature for the conditions evaluated. {Delta}H{sub s} values for acetone and benzene obtained in this study are comparable with values reported in the literature. This is the first time that {Delta}H{sub s} values for organic vapors and these adsorbents are evaluated with an expression based on the Polanyi adsorption potential and the Clausius-Clapeyron equation. 28 refs., 5 figs., 5 tabs., 3 appends.

  17. BTEX and MTBE adsorption onto raw and thermally modified diatomite.

    PubMed

    Aivalioti, Maria; Vamvasakis, Ioannis; Gidarakos, Evangelos

    2010-06-15

    The removal of BTEX (benzene, toluene, ethyl-benzene and xylenes) and MTBE (methyl tertiary butyl ether) from aqueous solution by raw (D(R)) and thermally modified diatomite at 550, 750 and 950 degrees C (D(550), D(750) and D(950) respectively) was studied. Physical characteristics of both raw and modified diatomite such as specific surface, pore volume distribution, porosity and pH(solution) were determined, indicating important structural changes in the modified diatomite, due to exposure to high temperatures. Both adsorption kinetic and isotherm experiments were carried out. The kinetics data proved a closer fit to the pseudo-second order model. Maximum values for the rate constant, k(2), were obtained for MTBE and benzene (48.9326 and 18.0996 g mg(-1)h(-1), respectively) in sample D(550). The isotherm data proved to fit the Freundlich model more closely, which produced values of the isotherm constant 1/n higher than one, indicating unfavorable adsorption. The highest adsorption capacity, calculated through the values of the isotherm constant k(F), was obtained for MTBE (48.42 mg kg(-1) (mg/L)(n)) in sample D(950). Copyright 2010 Elsevier B.V. All rights reserved.

  18. Titanium dioxide solid phase for inorganic species adsorption and determination: the case of arsenic.

    PubMed

    Vera, R; Fontàs, C; Anticó, E

    2017-04-01

    We have evaluated a new titanium dioxide (Adsorbsia As600) for the adsorption of both inorganic As (V) and As (III) species. In order to characterize the sorbent, batch experiments were undertaken to determine the capacities of As (III) and As (V) at pH 7.3, which were found to be 0.21 and 0.14 mmol g(-1), respectively. Elution of adsorbed species was only possible using basic solutions, and arsenic desorbed under batch conditions was 50 % when 60 mg of loaded titanium dioxide was treated with 0.5 M NaOH solution. Moreover, its use as a sorbent for solid-phase extraction and preconcentration of arsenic species from well waters has been investigated, without any previous pretreatment of the sample. Solid-phase extraction was implemented by packing several minicolumns with Adsorbsia As600. The method has been validated showing good accuracy and precision. Acceptable recoveries were obtained when spiked waters at 100-200 μg L(-1) were measured. The presence of major anions commonly found in waters did not affect arsenic adsoption, and only silicate at 100 mg L(-1) level severely competed with arsenic species to bind to the material. Finally, the measured concentrations in water samples containing arsenic from the Pyrinees (Catalonia, Spain) showed good agreement with the ICP-MS results.

  19. Removal of Reactofix Navy Blue 2 GFN from aqueous solutions using adsorption techniques.

    PubMed

    Gupta, Vinod Kumar; Jain, Rajeev; Varshney, Shaily; Saini, Vipin Kumar

    2007-03-15

    The wheat husk, an agricultural by-product, has been activated and used as an adsorbent for the adsorption of Reactofix Navy Blue 2 GFN from aqueous solution. In this work, adsorption of Reactofix Navy Blue 2 GFN on wheat husk and charcoal has been studied by using batch studies. The equilibrium adsorption level was determined to be a function of the solution pH, adsorbent dosage, dye concentration and contact time. The equilibrium adsorption capacities of wheat husk and charcoal for dye removal were obtained using Freundlich and Langmuir isotherms. Thermodynamic parameters such as the free energies, enthalpies and entropies of adsorption were also evaluated. Adsorption process is considered suitable for removing color, COD from waste water.

  20. Determination of Micro-Quantities of Chrysotile Asbestos by Dye Adsorption

    ERIC Educational Resources Information Center

    Markham, M. Clare; Wosczyna, Karen

    1976-01-01

    Airborne asbestos is analyzed by differential dye adsorption. Quantities can be estimated down to 100 mg. For industrial use, asbestos samples must be separated from interfering minerals by density flotation. (Author/BT)

  1. Determination of Micro-Quantities of Chrysotile Asbestos by Dye Adsorption

    ERIC Educational Resources Information Center

    Markham, M. Clare; Wosczyna, Karen

    1976-01-01

    Airborne asbestos is analyzed by differential dye adsorption. Quantities can be estimated down to 100 mg. For industrial use, asbestos samples must be separated from interfering minerals by density flotation. (Author/BT)

  2. Determination of peptide-surface adsorption free energy for material surfaces not conducive to SPR or QCM using AFM.

    PubMed

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2012-04-03

    The interactions between peptides and proteins with material surfaces are of primary importance in many areas of biotechnology. While surface plasmon resonance spectroscopy (SPR) and quartz crystal microbalance (QCM) methods have proven to be very useful in measuring fundamental properties characterizing adsorpt