Science.gov

Sample records for adsorption isotherm determined

  1. Determination of gas phase adsorption isotherms--a simple constant volume method.

    PubMed

    Kim, Daekeun; Cai, Zhangli; Sorial, George A

    2006-08-01

    Single and ternary solute gas phase adsorption isotherms were conducted in this study to evaluate the effectiveness of a simple constant volume method, which was utilized by using Tedlar gas sampling bags as a constant volume batch reactor. For this purpose, gas phase adsorption of toluene, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK) on two types of activated carbons, BPL-bituminous base and OVC--coconut base, were investigated. For the single solute adsorption, the experimental adsorption data were found to be well correlated with Freundlich and Myers adsorption equations. The pore size distribution of adsorbents was found to affect their adsorption capacities; its effect was dependant on the solute concentration. The ternary adsorption experimental isotherms were accurately predicted by using the well-known model, i.e., ideal adsorbed solution theory (IAST).

  2. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.

    PubMed

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants.

  3. Determination of the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon using thermogravimetric analysis

    SciTech Connect

    Hsun-Yu Lin; Chung-Shin Yuan; Wei-Ching Chen; Chung-Hsuang Hung

    2006-11-15

    This study investigated the use of thermogravimetric analysis (TGA) to determine the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon (PAC). The technique is commonly applied to remove mercury-containing air pollutants from gas streams emitted from municipal solid waste incinerators. An alternative form of powdered activated carbon derived from a pyrolyzed tire char was prepared for use herein. The capacity of waste tire-derived PAC to adsorb vapor-phase HgCl{sub 2} was successfully measured using a self-designed TGA adsorption system. Experimental results showed that the maximum adsorptive capacities of HgCl{sub 2} were 1.75, 0.688, and 0.230 mg of HgCl{sub 2} per gram of powdered activated carbon derived from carbon black at 30, 70, and 150{sup o} for 500 {mu}g/m{sup 3} of HgCl{sub 2}, respectively. Four adsorption isotherms obtained using the Langmuir, Freundlich, Redlich-Peterson, and Brunauer-Emmett-eller (BET) models were used to simulate the adsorption of HgCl{sub 2}. The comparison of experimental data associated with the four adsorption isotherms indicated that BET fit the experimental results better than did the other isotherms at 30{sup o}, whereas the Freundlich isotherm fit the experimental results better at 70 and 150{sup o}. Furthermore, the calculations of the parameters associated with Langmuir and Freundlich isotherms revealed that the adsorption of HgCl{sub 2} by PAC-derived carbon black favored adsorption at various HgCl{sub 2} concentrations and temperatures. 35 refs., 7 figs., 3 tabs.

  4. The special features of protein adsorption isotherms on silica adsorbents

    NASA Astrophysics Data System (ADS)

    Chukhrai, E. S.; Atyaksheva, L. F.; Pilipenko, O. S.

    2011-05-01

    The adsorption isotherms of hemoglobin, peroxidase, and β-galactosidase on silochrome and mesoporous and biporous silicas were comparatively studied. Adsorption developed in two stages, including fast "reversible" protein adsorption (equilibrium was reached in t ≤ 1-2 h) and a "slow stage" of irreversible binding in t ≫ 24 h (multipoint adsorption). The corresponding equilibrium constants were determined. The mechanism of unlimited linear association of peroxidase in the adsorption layer on the surface of silochrome was established.

  5. Adsorption mechanism of sodium dodecyl benzene sulfonate on carbon blacks by adsorption isotherm and zeta potential determinations.

    PubMed

    Zhao, Yapei; Lu, Pei; Li, Caiting; Fan, Xiaopeng; Wen, Qingbo; Zhan, Qi; Shu, Xin; Xu, Tieliang; Zeng, Guangming

    2013-01-01

    Surfactant solutions were propounded to remove fine and hydrophobic carbon black particles from coal-fired flue gas. The adsorption mechanisms between sodium dodecyl benzene sulfonate (SDBS, an anionic surfactant) and carbon black particles in suspension were investigated. The influence of inorganic salt (NaCl) was also considered. As results showed, hydrophobic interactions contributed to the strong adsorption between SDBS and carbon black particles in the absence of NaCl, and adding NaCl affected the adsorption process. The adsorption amount of SDBS significantly increased when NaCl was added into the SDBS solution; however, when SDBS was in low concentration, the amount of adsorbed SDBS, which was responsible for the shift of zeta potentials, varied little under different concentrations of NaCl. This indicated that the adsorption of SDBS was mainly caused by hydrophobic interaction and Na+ could not change the adsorption of SDBS on adsorption site when SDBS was in low concentration. Moreover, the adsorbed SDBS and Na+ were retained in the Stern layer. PMID:23530331

  6. Adsorption Isotherms and Surface Reaction Kinetics

    ERIC Educational Resources Information Center

    Lobo, L. S.; Bernardo, C. A.

    1974-01-01

    Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)

  7. Determination of adsorption isotherm parameters for minor whey proteins by gradient elution preparative liquid chromatography.

    PubMed

    Faraji, Naeimeh; Zhang, Yan; Ray, Ajay K

    2015-09-18

    Ion-Exchange Chromatography (IEC) techniques have been extensively investigated in protein purification processes, due to the more selective and milder separation steps. To date, existing studies of minor whey proteins fractionation in IEC have primarily been conducted as batch uptake studies, which require more experimental search space, time and materials. In this work, the selected resin's (SP Sepharose FF) equilibrium and dynamic binding capacity were first investigated. Next, adsorption of the pure binary mixture of lactoperoxidase and lactoferrin was studied to calibrate steric mass action (SMA) model using a simplified approach with data from single column experiments. The calibrated model was then verified by performing factorial-design based experiments for various process operating conditions assessing process performance on a larger bed height column. The model predicted results demonstrated a realistic agreement with the experiments providing reproducible column elution profile and reduced experimental work. Finally, whey protein isolate was used to evaluate model parameters in real conditions. Results obtained herein are suitable for future large scale applications.

  8. Adsorption isotherm special study. Final report

    SciTech Connect

    1993-05-01

    The study was designed to identify methods to determine adsorption applicable to Uranium Mill Tailings Remedial Action (UMTRA) Project sites, and to determine how changes in aquifer conditions affect metal adsorption, resulting retardation factors, and estimated contaminant migration rates. EPA and ASTM procedures were used to estimate sediment sorption of U, As, and Mo under varying groundwater geochemical conditions. Aquifer matrix materials from three distinct locations at the DOE UMTRA Project site in Rifle, CO, were used as the adsorbents under different pH conditions; these conditions stimulated geochemical environments under the tailings, near the tailings, and downgradient from the tailings. Grain size, total surface area, bulk and clay mineralogy, and petrography of the sediments were characterized. U and Mo yielded linear isotherms, while As had nonlinear ones. U and Mo were adsorbed strongly on sediments acidified to levels similar to tailings leachate. Changes in pH had much less effect on As adsorption. Mo was adsorbed very little at pH 7-7.3, U was weakly sorbed, and As was moderately sorbed. Velocities were estimated for metal transport at different pHs. Results show that the aquifer materials must be characterized to estimate metal transport velocities in aquifers and to develop groundwater restoration strategies for the UMTRA project.

  9. Experimental adsorption isotherms based on inverse gas chromatography.

    PubMed

    Kalogirou, E; Bassiotis, I; Artemiadi, Th; Margariti, S; Siokos, V; Roubani-Kalantzopoulou, F

    2002-09-01

    A new chromatographic perturbation method is used for studying the adsorption-desorption equilibrium in various gas-solid heterogeneous systems. It is the reversed-flow method giving accurate and precise values of many physicochemical constants including the basic and necessary adsorption isotherm values. For four inorganic oxides, namely, Cr2O3, Fe2O3, TiO2 and PbO, and two aromatic hydrocarbons (benzene, toluene) these adsorption isotherms have been determined through a non-linear model. PMID:12385379

  10. Numerical determination of non-Langmuirian adsorption isotherms of ibuprofen enantiomers on Chiralcel OD column using ultraviolet-circular dichroism dual detector.

    PubMed

    Li, Hui; Jiang, Xiaoxiao; Xu, Wei; Chen, Yongtao; Yu, Weifang; Xu, Jin

    2016-02-26

    Competitive adsorption isotherm of ibuprofen enantiomers on Chiralcel OD stationary phase at 298K was determined by the application of inverse method. Transport dispersive (TD) chromatography model was used to describe mass balances of the enatiomers. Axial dispersion and mass transfer coefficients were estimated from a series of linear pulse experiments. It was found that the overloaded elution profile of total concentration of racemic ibuprofen cannot be satisfactorily fitted by substituting bi-Langmuir model, the most widely used isotherm model for enantiomers, into TD model and tuning the isotherm parameters. UV-CD dual detector setup was then applied to obtain the individual overloaded elution profiles of both enantiomers. The more informative experimental data revealed non-Langmuirian adsorption behavior of ibuprofen enantiomers on chiralcel OD stationary phase. Two analytical binary isotherm models, both accounting for adsorbate-adsorbate interactions and having the feature of inflection points, were then evaluated. A comparison between quadratic model and Moreau model showed that the former gives better fitting results. The six parameters involved in quadratic model were determined stepwisely. Three of them were first obtained by fitting overloaded elution profiles of S-ibuprofen. The other three were then acquired by fitting overloaded elution profiles of both enantiomers recorded by UV-CD dual detector for racemic ibuprofen. A further attempt was also made at reducing the number of quadratic model parameters. PMID:26846132

  11. Numerical determination of non-Langmuirian adsorption isotherms of ibuprofen enantiomers on Chiralcel OD column using ultraviolet-circular dichroism dual detector.

    PubMed

    Li, Hui; Jiang, Xiaoxiao; Xu, Wei; Chen, Yongtao; Yu, Weifang; Xu, Jin

    2016-02-26

    Competitive adsorption isotherm of ibuprofen enantiomers on Chiralcel OD stationary phase at 298K was determined by the application of inverse method. Transport dispersive (TD) chromatography model was used to describe mass balances of the enatiomers. Axial dispersion and mass transfer coefficients were estimated from a series of linear pulse experiments. It was found that the overloaded elution profile of total concentration of racemic ibuprofen cannot be satisfactorily fitted by substituting bi-Langmuir model, the most widely used isotherm model for enantiomers, into TD model and tuning the isotherm parameters. UV-CD dual detector setup was then applied to obtain the individual overloaded elution profiles of both enantiomers. The more informative experimental data revealed non-Langmuirian adsorption behavior of ibuprofen enantiomers on chiralcel OD stationary phase. Two analytical binary isotherm models, both accounting for adsorbate-adsorbate interactions and having the feature of inflection points, were then evaluated. A comparison between quadratic model and Moreau model showed that the former gives better fitting results. The six parameters involved in quadratic model were determined stepwisely. Three of them were first obtained by fitting overloaded elution profiles of S-ibuprofen. The other three were then acquired by fitting overloaded elution profiles of both enantiomers recorded by UV-CD dual detector for racemic ibuprofen. A further attempt was also made at reducing the number of quadratic model parameters.

  12. Moisture adsorption isotherms and glass transition temperature of pectin.

    PubMed

    Basu, Santanu; Shivhare, U S; Muley, S

    2013-06-01

    The moisture adsorption isotherms of low methoxyl pectin were determined at 30-70°C and water activity ranging from 0.11 to 0.94. The moisture adsorption isotherms revealed that the equilibrium moisture content increased with water activity. Increase in temperature, in general, resulted in decreased equilibrium moisture content. However in some cases, equilibrium moisture content values increased with temperature at higher water activities. Selected sorption models (GAB, Halsey, Henderson, Oswin, modified Oswin) were tested for describing the adsorption isotherms. Parameters of each sorption models were determined by nonlinear regression analysis. Oswin model gave the best fit for pectin sorption behaviour. Isosteric heat of sorption decreased with increase in moisture content and varied between 14.607 and 0.552 kJ/mol. Glass transition temperature decreased with increase in moisture content of pectin. PMID:24425957

  13. Use of lipophilic ion adsorption isotherms to determine the surface area and the monolayer capacity of a chromatographic packing, as well as the thermodynamic equilibrium constant for its adsorption.

    PubMed

    Cecchi, T

    2005-04-29

    A method that champions the approaches of two independent research groups, to quantitate the chromatographic stationary phase surface available for lipophilic ion adsorption, is presented. For the first time the non-approximated expression of the electrostatically modified Langmuir adsorption isotherm was used. The non approximated Gouy-Chapman (G-C) theory equation was used to give the rigorous surface potential. The method helps model makers, interested in ionic interactions, determine whether the potential modified Langmuir isotherm can be linearized, and, accordingly, whether simplified retention equations can be properly used. The theory cultivated here allows the estimates not only of the chromatographically accessible surface area, but also of the thermodynamic equilibrium constant for the adsorption of the amphiphile, the standard free energy of its adsorption, and the monolayer capacity of the packing. In addition, it establishes the limit between a theoretical and an empirical use of the Freundlich isotherm to determine the surface area. Estimates of the parameters characterising the chromatographic system are reliable from the physical point of view, and this greatly validates the present comprehensive approach.

  14. Adsorption isotherm of non-azeotropic solution onto porous adsorbents

    NASA Astrophysics Data System (ADS)

    Bono, A.; Ramlan, N. A.; Anisuzzaman, S. M.; Chu, C. M.; Farm, Y. Y.

    2016-06-01

    Adsorption isotherm is essential component in the understanding of the adsorption process. Several methods of the measurements, analysis and interpretation of adsorption from solution have been reported in the literature. Most of the measurements of adsorption isotherm from solution were involved the measurement of excess isotherm conducted at low region of sorbates concentration. Direct interpretation of excess adsorption isotherm as adsorption isotherm is always been practice. Therefore, in this work a study on the measurement of the adsorption isotherm from solution of non-azeotropic organic solvent mixture onto porous adsorbents for whole range of liquid concentration was conducted. The study included the measurement of excess adsorption isotherm using conventional technique. Theoretical analysis and interpretation of adsorption isotherm from the excess isotherm were conducted using Pseudo Ideal Adsorption, Gibbs Dividing Plane Model and Langmuir-Fruendlich binary isotherm model. For organic solvents, acetone and propanol were chosen as the adsorbates due to the non-azeotropic properties in the mixture. Activated carbon and silicalite were chosen as adsorbents due to the different in their porosity such as macro porous and micro porous structure. The result of the study has revealed that the adsorption isotherm of non-azeotropic mixture onto activated carbon and silicalite can be interpreted as monolayer type of adsorption.

  15. The Calculation of Adsorption Isotherms from Chromatographic Peak Shapes

    ERIC Educational Resources Information Center

    Neumann, M. G.

    1976-01-01

    Discusses the relationship between adsorption isotherms and elution peak shapes in gas chromatography, and describes a laboratory experiment which involves the adsorption of hexane, cyclohexane, and benzene on alumina at different temperatures. (MLH)

  16. Characterizing Nitrogen adsorption and desorption isotherms in soils using multifractal analysis

    NASA Astrophysics Data System (ADS)

    Paz Ferreiro, Jorge; Miranda, José G. V.; Vidal Vázquez, Eva

    2010-05-01

    The specific surface area is an attribute known to characterize the soil ability to retain and transport nutrients and water. A number of studies have shown that specific surface area correlates cation exchange capacity, organic matter content, water retention, aggregate stability and clay swelling. In the past fractal theory has been widely used to study different gas adsorption isotherms like water vapour and nitrogen adsorption isotherms. More recently we have shown that nitrogen adsorption isotherms showed multifractal nature. In this work, both N2 adsorption and desorption isotherms measured in a Mollisol were examined as a probability measure using the multifractal formalism in order to determinate its possible multifractal behaviour. Soil samples were collected in two different series of an Argiudoll located in the north of Buenos Aires and in the south of Santa Fe provinces, Argentina. Two treatments of each soil series were sampled at three depths, without replication, resulting in six samples per soil series and a total of twelve samples analyzed. Multifractal analysis was performed using the box counting method. Both, the N2 adsorption and desorption isotherms exhibited a well defined scaling behaviour indicating a fully developed multifractal structure of each isotherm branch. The singularity spectra and Rényi dimension spectra obtained for adsorption and also for desorption isotherms had shapes similar to the spectra of multifractal measures and several parameters were extracted from these spectra. The capacity dimension, D0, for both N2 adsorption and desorption data sets were not significantly different from 1.00. However, nitrogen adsorption and desorption data showed significantly different values of entropy dimension, D1, and correlation dimension, D2. For instance, entropy dimension values extracted from multifractal spectra of adsorption isotherms were on average 0.578 and varied from 0.501 to 0.666. In contrast, the corresponding figures for

  17. Derivation of the Freundlich Adsorption Isotherm from Kinetics

    ERIC Educational Resources Information Center

    Skopp, Joseph

    2009-01-01

    The Freundlich adsorption isotherm is a useful description of adsorption phenomena. It is frequently presented as an empirical equation with little theoretical basis. In fact, a variety of derivations exist. Here a new derivation is presented using the concepts of fractal reaction kinetics. This derivation provides an alternative basis for…

  18. Simulated Water Adsorption Isotherms in Hydrophilic and Hydrophobic Cylinderical Nanopores

    SciTech Connect

    StrioloDr., A; Naicker, P. K.; Chialvo, Ariel A; Cummings, Peter T; Gubbins, Dr. K. E.

    2005-01-01

    Grand canonical Monte Carlo simulations are performed to study the adsorption of water in single-walled carbon nanotubes (SWCNs). At room temperature the resulting adsorption isotherms in (10:10) and wider SWCNs are characterized by negligible amount of water uptake at low pressures, sudden and complete pore filling once a threshold pressure is reached, and wide adsorption/desorption hysteresis loops. The width of these loops decreases as pore diameter narrows. Adsorption/desorption hysteresis loops are not observed for water adsorption in (6:6) SWCNs. When the nanotubes are doped with small amounts of oxygenated sites it is possible to obtain adsorption isotherms in which the water uptake increases gradually as the pressure increases. Simulated X-ray diffraction patterns for confined water are also reported.

  19. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    SciTech Connect

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that the GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.

  20. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    DOE PAGES

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that themore » GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.« less

  1. Study and numerical solution of a generalized mathematical model of isothermal adsorption

    SciTech Connect

    Komissarov, Yu.A.; Vetokhin, V.N.; Tsenev, V.A.; Gordeeva, E.L.

    1995-06-01

    A generalized mathematical model of isothermal adsorption that takes into account mass transfer on the surface of a particle, diffusion in micro- and macropores, and dispersion along the length of the apparatus is considered The parameters {lambda} and {var_phi}{sup 2} determine the dominating effect of any of the mass transfer mechanisms of the adsorption process. A numerical algorithm for solving the generalized adsorption model is suggested.

  2. Adsorption Isotherm studies of Methyl Bromide adsorbed on Magnesium Oxide

    NASA Astrophysics Data System (ADS)

    Burns, Teresa; Sprung, Michael

    2005-03-01

    Understanding the interaction of polar molecules with ionic surfaces is technologically very important. Using high precision, volumetric adsorption isotherms the layering properties of methyl bromide on the MgO(100) surface were examined between 164 K and 179 K. Methyl bromide (Triple point = 179.49K) is found to exhibit two layering transitions within this temperature interval. Thermodynamic quantities derived from this study including the layering transition temperatures, the 2D compressibility, layer enthalpy and entropy of adsorption, and the isosteric enthalpy of adsorption will be presented. Comparisons with the adsorption properties of methyl chloride and methyl iodide will also be included.

  3. Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth.

    PubMed

    Ayranci, Erol; Hoda, Numan

    2005-09-01

    Adsorption of pesticides ametryn, aldicarb, dinoseb and diuron from aqueous solution onto high specific area activated carbon-cloth was studied. Kinetics of adsorption was followed by in situ UV-spectroscopy and the data were treated according to various rate models. The extent of adsorption was determined at the end of 125 min adsorption period. Rate constants and the extent of adsorption for the four pesticides were found to follow the order: dinoseb > ametryn > diuron > aldicarb. Adsorption isotherms were derived at 25 degrees C on the basis of batch analysis. Isotherm data were treated according to Langmuir and Freundlich models. The fits of experimental data to these equations were examined. The types of interactions between the surface and pesticide molecules were discussed. PMID:16083766

  4. A thermodynamically consistent explicit competitive adsorption isotherm model based on second-order single component behaviour.

    PubMed

    Ilić, Milica; Flockerzi, Dietrich; Seidel-Morgenstern, Andreas

    2010-04-01

    A competitive adsorption isotherm model is derived for binary mixtures of components characterized by single component isotherms which are second-order truncations of higher order equilibrium models suggested by multi-layer theory and statistical thermodynamics. The competitive isotherms are determined using the ideal adsorbed solution (IAS) theory which, in case of complex single component isotherms, does not generate explicit expressions to calculated equilibrium loadings and causes time consuming iterations in simulations of adsorption processes. The explicit model derived in this work is based on an analysis of the roots of a cubic polynomial resulting from the set of IAS equations. The suggested thermodynamically consistent and widely applicable competitive isotherm model can be recommended as a flexible tool for efficient simulations of fixed-bed adsorber dynamics.

  5. Isothermal Adsorption Measurement for the Development of High Performance Solid Sorption Cooling System

    NASA Astrophysics Data System (ADS)

    Saha, Bidyut Baran; Koyama, Shigeru; Alam, K. C. Amanul; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao; Ng, Kim Choon; Chua, Hui Tong

    Interest in low-grade thermal heat powered solid sorption system using natural refrigerants has been increased. However, the drawbacks of these adsorption systems are their poor performance. The objective of this paper is to improve the performance of thermally powered adsorption cooling system by selecting new adsorbent-refrigerant pairs. Adsorption capacity of adsorbent-refrigerant pair depends on the thermophysical properties (pore size, pore volume and pore diameter) of adsorbent and isothermal characteristics of the adsorbent-refrigerant pair. In this paper, the thermophysical properties of three types of silica gels and three types of pitch based activated carbon fibers are determined from the nitrogen adsorption isotherms. The standard nitrogen gas adsorption/desorption measurements on various adsorbents at liquid nitrogen of temperature 77.4 K were performed. Surface area of each adsorbent was determined by the Brunauer, Emmett and Teller (BET) plot of nitrogen adsorption data. Pore size distribution was measured by the Horvath and Kawazoe (HK) method. Adsorption/desorption isotherm results showed that all three carbon fibers have no hysteresis and had better adsorption capacity in comparison with those of silica gels.

  6. Characterization of nitrogen adsorption isotherms of thermally-treated organoclays using multifractal analysis

    NASA Astrophysics Data System (ADS)

    Lado, Marcos; Borisover, Mikhail; Paz-Gonzalez, Antonio

    2013-04-01

    Nitrogen adsorption isotherms of soils have been reported to exhibit multifractal behavior. In the present work, multifractal analysis is used to characterize changes in N2 adsorption isotherms of organoclays prepared with different cations and exposed to various thermal treatments. Wyoming bentonite was exchanged with benzyltrimethylammonium (BTMA-clay), tetraethylammonium (TEA-clay), and hexadecyltrimethylammonium exchanged at 41 and 90% of the cation exchange capacity of the clay (HDTMA41- and HDTMA90-clay). The resulting organoclays were exposed to temperatures ranging from 25 to 420°C during two hours, freeze-dried, and N2 adsorption isotherms were measured at 77°K. The obtained isotherms showed multifractal behavior, and parameters derived from Rényi and singularity spectra varied with changes in the organic cation and the treatment temperature. The type of cation was the dominant factor responsible for changes in spectra, and significant interactions were observed between type of cation and temperature for several parameters. Significant correlations were found between organic carbon content and multifractal parameters, indicating a relation between changes in N2 sorption sites and thermal transformations of the organic cations. Significant correlations were also found between some multifractal parameters and the heterogeneity exponent of a Freundlich model fitted to nitrobenzene isotherms measured in the organoclays, suggesting that multifractal analysis of N2 adsorption isotherms could be useful to analyze the heterogeneity of sorption sites when sorption determinations yield a limited amount of data.

  7. Multifractal characteristics of Nitrogen adsorption isotherms from tropical soils

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, Eva; Paz Ferreiro, Jorge

    2010-05-01

    One of the primary methods used to characterize a wide range of porous materials, including soils, are gas adsorption isotherms. An adsorption isotherm is a function relating the amount of adsorbed gas or vapour to the respective equilibrium pressure, during pressure increase at constant temperature. Adsorption data allow easily estimates of specific surface area and also can provide a characterization of pore surface heterogeneity. Most of the properties and the reactivity of soil colloids are influenced by their specific surface area and by parameters describing the surface heterogeneity. For a restricted scale range, linearity between applied pressure and volume of adsorbate holds, which is the basis for current estimations of specific surface area. However, adsorption isotherms contain also non-linear segments of pressure versus volume so that evidence of multifractal scale has been demonstrated. The aim of this study was to analyze the multifractal behaviour of nitrogen adsorption isotherms from a set of tropical soils. Samples were collected form 54 horizons belonging to 19 soil profiles in the state of Minas Gerais, Brazil. The most frequent soil type was Oxisol, according to the Soil Survey Staff, equivalent to Latossolo in the Brazilian soil classification system. Nitrogen adsorption isotherms at standard 77 K were measured using a Thermo Finnigan Sorptomatic 1990 gas sorption analyzer (Thermo Scientific, Waltham, MA). From the raw data a distributions of mass along a support was obtained to perform multifractal analysis. The probability distribution was constructed by dividing the values of the measure in a given segment by the sum of the measure in the whole scale range. The box-counting method was employed to perform multifractal analysis. All the analyzed N2 adsorption isotherms behave like a multifractal system. The singularity spectra, f(α), showed asymmetric concave down parabolic shapes, with a greater tendency toward the left side, where moments

  8. The Langmuir isotherm: a commonly applied but misleading approach for the analysis of protein adsorption behavior.

    PubMed

    Latour, Robert A

    2015-03-01

    The Langmuir adsorption isotherm provides one of the simplest and most direct methods to quantify an adsorption process. Because isotherm data from protein adsorption studies often appear to be fit well by the Langmuir isotherm model, estimates of protein binding affinity have often been made from its use despite that fact that none of the conditions required for a Langmuir adsorption process may be satisfied for this type of application. The physical events that cause protein adsorption isotherms to often provide a Langmuir-shaped isotherm can be explained as being due to changes in adsorption-induced spreading, reorientation, clustering, and aggregation of the protein on a surface as a function of solution concentration in contrast to being due to a dynamic equilibrium adsorption process, which is required for Langmuir adsorption. Unless the requirements of the Langmuir adsorption process can be confirmed, fitting of the Langmuir model to protein adsorption isotherm data to obtain thermodynamic properties, such as the equilibrium constant for adsorption and adsorption free energy, may provide erroneous values that have little to do with the actual protein adsorption process, and should be avoided. In this article, a detailed analysis of the Langmuir isotherm model is presented along with a quantitative analysis of the level of error that can arise in derived parameters when the Langmuir isotherm is inappropriately applied to characterize a protein adsorption process.

  9. A model free method for estimation of complicated adsorption isotherms in liquid chromatography.

    PubMed

    Forssén, Patrik; Fornstedt, Torgny

    2015-08-28

    Here we show that even extremely small variations in the adsorption isotherm can have a tremendous effect on the shape of the overloaded elution profiles and that the earlier in the adsorption isotherms the variation take place, the larger its impact on the shape of the elution profile. These variations are so small that they can be "hidden" by the discretization and in the general experimental noise when using traditional experimental methods, such as frontal analysis, to measure adsorption isotherms. But as the effects of these variations are more clearly visible in the elution profiles, the Inverse Method (IM) of adsorption isotherm estimation is an option. However, IM usually requires that one selects an adsorption isotherm model prior to the estimation process. Here we show that even complicated models might not be able to estimate the adsorption isotherms with multiple inflection points that small variations might give rise to. We therefore developed a modified IM that, instead of fixed adsorption isotherm models, uses monotone piecewise interpolation. We first validated the method with synthetic data and showed that it can be used to estimate an adsorption isotherm, which accurately predicts an extremely "strange" elution profile. For this case it was impossible to estimate the adsorption isotherm using IM with a fixed adsorption model. Finally, we will give an example of a real chromatographic system where adsorption isotherm with inflection points is estimated by the modified IM.

  10. Immobilization of Acetobacter aceti on cellulose ion exchangers: adsorption isotherms

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1986-08-01

    The adsorptive behavior of cells of Acetobacter aceti, ATCC 23746, on DEAE-, TEAE-, and DEHPAE-cellulose ion exchangers in a modified Hoyer's medium at 30 degrees Centigrade was investigated. The maximum observed adsorption capacities varied from 46 to 64 mg dry wt/g resin. The Langmuir isotherm form was used to fit the data, since the cells formed a monolayer on the resin and exhibited saturation. The equilibrium constant in the Langmuir expression was qualitatively correlated with the surface charge density of the resin. The adsorption was also ''normalized'' by considering the ionic capacities of the resins. The exceptionally high normalized adsorption capacity of ECTEOLA-cellulose, 261 mg dry/meq, may be explained by an interaction between the cell wall and the polyglyceryl chains of the exchanging groups in addition to the electrostatic effects. The effect of pH on the bacterial adsorption capacity of ECTEOLA-, TEAE-, and phosphate-cellulose resins was studied and the pH of the bacteria was estimated to be 3.0. 17 references.

  11. Isotherm study of reactive Blue 19 adsorption by an alum sludge

    NASA Astrophysics Data System (ADS)

    Khim, Ong Keat; Nor, Mohd Asri Md; Mohamad, Syuriya; Nasaruddin, Nas Aulia Ahmad; Jamari, Nor Laili-Azua; Yunus, Wan Md Zin Wan

    2015-05-01

    This study investigates the adsorption of Reactive Blue 19 using dewatered alum sludge. The dewatered alum sludge was a sludge produced from drinking water treatment plant. Batch adsorption experiments were performed to investigate the mechanism of the dye adsorption. The adsorption was rapid at its initial stage but the rate decreased as it approached equilibrium. The adsorption data were evaluated by Langmuir and Freundlich isotherm models but was best described by the Langmuir isotherm model as it gave the highest correlation.

  12. Suitability of adsorption isotherms for predicting the retention capacity of active slag filters removing phosphorus from wastewater.

    PubMed

    Pratt, C; Shilton, A

    2009-01-01

    Active slag filters are an emerging technology for removing phosphorus (P) from wastewater. A number of researchers have suggested that adsorption isotherms are a useful tool for predicting P retention capacity. However, to date the appropriateness of using isotherms for slag filter design remains unverified due to the absence of benchmark data from a full-scale, field filter operated to exhaustion. This investigation compared the isotherm-predicted P retention capacity of a melter slag with the P adsorption capacity determined from a full-scale, melter slag filter which had reached exhaustion after five years of successfully removing P from waste stabilization pond effluent. Results from the standard laboratory batch test showed that P adsorption correlated more strongly with the Freundlich Isotherm (R(2)=0.97, P<0.01) than the Langmuir Isotherm, a similar finding to previous studies. However, at a P concentration of 10 mg/L, typical of domestic effluent, the Freundlich equation predicted a retention capacity of 0.014 gP/kg slag; markedly lower than the 1.23 gP/kg slag adsorbed by the field filter. Clearly, the result generated by the isotherm bears no resemblance to actual field capacity. Scanning electron microscopy analysis revealed porous, reactive secondary minerals on the slag granule surfaces from the field filter which were likely created by weathering. This slow weathering effect, which generates substantial new adsorption sites, is not accounted for by adsorption isotherms rendering them ineffective in slag filter design. PMID:19403982

  13. Effect of pore blockage on adsorption isotherms and dynamics: Anomalous adsorption of iodine on activated carbon

    SciTech Connect

    Bhatia, S.K.; Liu, F.; Arvind, G.

    2000-04-18

    Isotherm hysteresis and pore-clocking effects of trapped molecules on adsorption dynamics is studied here, using the iodine-carbon system in the 300--343 K temperature range. It is found that a portion of the iodine is strongly adsorbed, and does not desorb, even over very long time scales, while the remainder adsorbs reversibly as a homogeneous monolayer with a Langmuirian isotherm in mesopores. The strongly adsorbed iodine appears to adsorb in micropores and at the mesopore mouths, hindering uptake of the reversible iodine. The uptake data for the adsorption and desorption dynamics of the reversible part is found to be best explained by means of a pore mouth resistance control mechanism. it is concluded that the dynamics of the adsorption and desorption at the pore mouth is important at early stages of the process.

  14. Water adsorption isotherms on porous onionlike carbonaceous particles. Simulations with the grand canonical Monte Carlo method.

    PubMed

    Hantal, György; Picaud, Sylvain; Hoang, Paul N M; Voloshin, Vladimir P; Medvedev, Nikolai N; Jedlovszky, Pál

    2010-10-14

    The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. These soot models are constructed by first removing atoms from onion-fullerene structures in order to create randomly distributed pores inside the soot, and then performing molecular dynamics simulations, based on the reactive adaptive intermolecular reactive empirical bond order (AIREBO) description of the interaction between carbon atoms, to optimize the resulting structures. The obtained results clearly show that the main driving force of water adsorption on soot is the possibility of the formation of new water-water hydrogen bonds with the already adsorbed water molecules. The shape of the calculated water adsorption isotherms at 298 K strongly depends on the possible confinement of the water molecules in pores of the carbonaceous structure. We found that there are two important factors influencing the adsorption ability of soot. The first of these factors, dominating at low pressures, is the ability of the soot of accommodating the first adsorbed water molecules at strongly hydrophilic sites. The second factor concerns the size and shape of the pores, which should be such that the hydrogen bonding network of the water molecules filling them should be optimal. This second factor determines the adsorption properties at higher pressures. PMID:20950025

  15. Water adsorption isotherms on porous onionlike carbonaceous particles. Simulations with the grand canonical Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Hantal, György; Picaud, Sylvain; Hoang, Paul N. M.; Voloshin, Vladimir P.; Medvedev, Nikolai N.; Jedlovszky, Pál

    2010-10-01

    The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. These soot models are constructed by first removing atoms from onion-fullerene structures in order to create randomly distributed pores inside the soot, and then performing molecular dynamics simulations, based on the reactive adaptive intermolecular reactive empirical bond order (AIREBO) description of the interaction between carbon atoms, to optimize the resulting structures. The obtained results clearly show that the main driving force of water adsorption on soot is the possibility of the formation of new water-water hydrogen bonds with the already adsorbed water molecules. The shape of the calculated water adsorption isotherms at 298 K strongly depends on the possible confinement of the water molecules in pores of the carbonaceous structure. We found that there are two important factors influencing the adsorption ability of soot. The first of these factors, dominating at low pressures, is the ability of the soot of accommodating the first adsorbed water molecules at strongly hydrophilic sites. The second factor concerns the size and shape of the pores, which should be such that the hydrogen bonding network of the water molecules filling them should be optimal. This second factor determines the adsorption properties at higher pressures.

  16. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Bera, Achinta; Kumar, T.; Ojha, Keka; Mandal, Ajay

    2013-11-01

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  17. Valorization of agricultural wastes as dye adsorbents: characterization and adsorption isotherms.

    PubMed

    Sepúlveda, Luisa A; Cuevas, Fernando A; Contreras, Elsa G

    2015-01-01

    The purpose of this work is to evaluate the valorization of agricultural waste, wheat straw (WS) and corn cob leaves (CCLs) as textile dye adsorbents. Physico-chemical and superficial characteristics of the agricultural wastes, together with the interactions with the CI Basic Violet 4 (BV4) dye, were investigated by means of the determination of the isotherm adsorption at different temperatures. The morphological characterization showed that the solid surface is coarse with a low pore level. However, through Fourier transformed infrared analysis, the presence of carboxylic and hydroxylic acid groups and hydrophobic methyl groups was detected. The concentration of acid groups is determined by the Boehm method and was found to be 1.00 and 0.89 meq/g for WS and CCLs, respectively. The point zero charge for each adsorbent was 5.76 and 4.08. Adsorption experimental data presented a better-fit Langmuir model, indicating that adsorption occurred in a monolayer with preferential interaction. The maximum adsorption capacity was determined to be 70.0-89.0 and 47.0-68.0 mg/g for CCLs and WS, respectively. The thermodynamic analysis of the Langmuir parameter b showed that the adsorption of the BV4 dye is spontaneous and exothermic with adsorption energies of 14.43 and 5.58 KJ/mol for CCLs and WS, respectively.

  18. Valorization of agricultural wastes as dye adsorbents: characterization and adsorption isotherms.

    PubMed

    Sepúlveda, Luisa A; Cuevas, Fernando A; Contreras, Elsa G

    2015-01-01

    The purpose of this work is to evaluate the valorization of agricultural waste, wheat straw (WS) and corn cob leaves (CCLs) as textile dye adsorbents. Physico-chemical and superficial characteristics of the agricultural wastes, together with the interactions with the CI Basic Violet 4 (BV4) dye, were investigated by means of the determination of the isotherm adsorption at different temperatures. The morphological characterization showed that the solid surface is coarse with a low pore level. However, through Fourier transformed infrared analysis, the presence of carboxylic and hydroxylic acid groups and hydrophobic methyl groups was detected. The concentration of acid groups is determined by the Boehm method and was found to be 1.00 and 0.89 meq/g for WS and CCLs, respectively. The point zero charge for each adsorbent was 5.76 and 4.08. Adsorption experimental data presented a better-fit Langmuir model, indicating that adsorption occurred in a monolayer with preferential interaction. The maximum adsorption capacity was determined to be 70.0-89.0 and 47.0-68.0 mg/g for CCLs and WS, respectively. The thermodynamic analysis of the Langmuir parameter b showed that the adsorption of the BV4 dye is spontaneous and exothermic with adsorption energies of 14.43 and 5.58 KJ/mol for CCLs and WS, respectively. PMID:25655393

  19. Comparison of multifractal parameters form adsorption isotherms, desorption isotherms and mercury intrusion curves

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Mon, Rodolfo; Vidal Vázquez, Eva

    2013-04-01

    The soil pore space is composed of a continuum of pores extremely variable in size, which range from equivalent diameter sizes smaller than nanometers to an upper limit of the order of centimeters. So, it is quite typical for soil pore space to display a size range of more than a factor of 106 in scale. Nitrogen sorption and mercury injection provide pores size distributions in the range from about 0.1 to 0.001 μm and 150 to 0.005 μm, respectively. The aims of this study were to evaluate the scaling properties of nitrogen adsorption isotherms (NAI), nitrogen desorption isotherms (NDI) and mercury intrusion porosimetry (MIP) curves of agricultural soils from "La Pampa húmeda", in the north of Buenos Aires and south of Santa Fé provinces, Argentina. Both NAIs, NDIs and MIPs exhibited multifractal behavior but its scaling properties were different so that the multifractality index, assessed by the width of the generalized dimension and the singularity spectra ranked as follows: NAI > NDI > MIP. Also, parameterization by the Hurst exponent indicates NAIs were less persistent than NDIs and in turn, these were less persistent than MIPs. The multfractal approach was useful to characterize the heterogeneity of various domains of the soil nano- micro- and mesopore system at the scale of small aggregates.

  20. A regularization method for the reconstruction of adsorption isotherms in liquid chromatography

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Lin, Guang-Liang; Forssén, Patrik; Gulliksson, Mårten; Fornstedt, Torgny; Cheng, Xiao-Liang

    2016-10-01

    Determining competitive adsorption isotherms is an open problem in liquid chromatography. Since traditional experimental trial-and-error approaches are too complex and expensive, a modern technique of obtaining adsorption isotherms is to solve the inverse problem so that the simulated batch separation coincides with actual experimental results. This is a typical ill-posed problem. Moreover, in almost all cases the observed concentration at the outlet is the total response of all components, which makes the problem more difficult. In this work, we tackle the ill-posedness with a new regularization method, which is based on the fact that the adsorption isotherms do not depend on the injection profile. The proposed method transfers the original problem to an optimization problem with a time-dependent convection-diffusion equation constraint. Iterative algorithms for solving constraint optimization problems for both the equilibrium-dispersive and the transport-dispersive models are developed. The mass transfer resistance is also estimated by the proposed inverse method. A regularization parameter selection method and the convergence property of the proposed algorithm are discussed. Finally, numerical tests for both synthetic problems and real-world problems are given to show the efficiency and feasibility of the proposed regularization method.

  1. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects

    NASA Astrophysics Data System (ADS)

    Jeppu, Gautham P.; Clement, T. Prabhakar

    2012-03-01

    Analytical isotherm equations such as Langmuir and Freundlich isotherms are widely used for modeling adsorption data. However, these isotherms are primarily useful for simulating data collected at a fixed pH value and cannot be easily adapted to simulate pH-dependent adsorption effects. Therefore, most adsorption studies currently use numerical surface-complexation models (SCMs), which are more complex and time consuming than traditional analytical isotherm models. In this work, we propose a new analytical isotherm model, identified as the modified Langmuir-Freundlich (MLF) isotherm, which can be used to simulate pH-dependent adsorption. The MLF isotherm uses a linear correlation between pH and affinity coefficient values. We validated the proposed MLF isotherm by predicting arsenic adsorption onto two different types of sorbents: pure goethite and goethite-coated sand. The MLF model gave good predictions for both experimental and surface complexation-model predicted datasets for these two sorbents. The proposed analytical isotherm framework can help reduce modeling complexity, model development time, and computational efforts. One of the limitations of the proposed method is that it is currently valid only for single-component systems. Furthermore, the model requires a system-specific pH. vs. affinity coefficient relation. Despite these limitations, the approach provides a promising analytical framework for simulating pH-dependent adsorption effects.

  2. Correlation of adsorption isotherms of hydrogen isotopes on mordenite adsorbents using reactive vacancy solution theory

    SciTech Connect

    Munakata, K.; Nakamura, A.; Kawamura, Y.

    2015-03-15

    The authors have applied the isotherm equations derived from the reactive vacancy solution theory (RVST) to correlation of experimental and highly non-ideal adsorption isotherms of hydrogen and deuterium on a mordenite adsorbent, and have examined the ability of the isotherm equations to match this correlation. Several isotherm equations such as Langmuir, Freundlich, Toth, Vacancy Solution Theory and so forth were also tested, but they did not work. For the Langmuir-Freundlich equation tests have indicated that its 'ability to correlate' of the adsorption isotherms is not satisfactory. For the multi-site Langmuir-Freundlich (MSLF) equation the correlation of the isotherms appears to be somewhat improved but remains unsatisfactory. The results show that the isotherm equations derived from RVST can better correlate the experimental isotherms.

  3. The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone.

    PubMed

    Asgari, Ghorban; Roshani, Babak; Ghanizadeh, Ghader

    2012-05-30

    In this research work, pumice that is functionalized by the cationic surfactant, hexadecyltrimethyl ammonium (HDTMA), is used as an adsorbent for the removal of fluoride from drinking water. This work was carried out in two parts. The effects of HDTMA loading, pH (3-10), reaction time (5-60 min) and the adsorbent dosage (0.15-2.5 g L(-1)) were investigated on the removal of fluoride as a target contaminate from water through the design of different experimental sets in the first part. The results from this first part revealed that surfactant-modified pumice (SMP) exhibited the best performance at dose 0.5 g L(-1), pH 6, and it adsorbs over 96% of fluoride from a solution containing 10 mg L(-1) fluoride after 30 min of mixing time. The four linear forms of the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms model were applied to determine the best fit of equilibrium expressions. Apart from the regression coefficient (R(2)), four error functions were used to validate the isotherm and kinetics data. The experimental adsorption isotherm complies with Langmuir equation model type 1. The maximum amount of adsorption (Q(max)) was 41 mg g(-1). The kinetic studies indicated that the adsorption of fluoride best fitted with the pseudo-second-order kinetic type 1. Thermodynamic parameters evaluation of fluoride adsorption on SMP showed that the adsorption process under the selected conditions was spontaneous and endothermic. The suitability of SMP in defluoridation at field condition was investigated with natural groundwater samples collected from a nearby fluoride endemic area in the second part of this study. Based on this study's results, SMP was shown to be an affordable and a promising option for the removal of fluoride in drinking water.

  4. Heterogeneous three-site lattice model for adsorption of aromatics in ZSM-5 zeolites: Temperature dependence of adsorption isotherms

    SciTech Connect

    Narkiewicz-Michalek, J.; Szabelski, P.; Rudzinski, W.; Chiang, A.S.T.

    1999-08-31

    The three-site lattice model of collective localized adsorption of aromatics in ZSM-5 zeolites, presented in previous publications, is extended by taking into account the effects of energetic heterogeneity of the sites of the same type. The appropriate theoretical equations are derived and used for simultaneous description of the experimental adsorption isotherms and heats of adsorption of benzene and p-xylene in silicalite at 303 K. It is shown that taking into account this additional level of heterogeneity leads to a much better description of both the adsorption isotherms and the related heats of adsorption in these systems. The extended model also allows one to predict correctly the adsorption isotherms of benzene and p-xylene in silicalite at different temperatures using the parameters found at one temperature.

  5. Adsorption of Phenol from Aqueous Solution Using Lantana camara, Forest Waste: Kinetics, Isotherm, and Thermodynamic Studies

    PubMed Central

    Girish, C. R.; Ramachandra Murty, V.

    2014-01-01

    The present work investigates the potential of Lantana camara, a forest waste, as an adsorbent for the phenol reduction in wastewater. Batch studies were conducted with adsorbent treated with HCl and KOH to determine the influence of various experimental parameters such as pH, contact time, adsorbent dosage, and phenol concentration. The experimental conditions were optimized for the removal of phenol from wastewater. Equilibrium isotherms for the adsorption of phenol were analyzed by Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich isotherm models. Thermodynamic parameters like the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were also determined and they showed that the adsorption process was feasible, spontaneous, and exothermic in the temperature range of 298–328 K. The kinetic data were fitted with pseudo-second-order model. The equilibrium data that followed Langmuir model with the monolayer adsorption capacity was found to be 112.5 mg/g and 91.07 mg/g for adsorbent treated with HCl and KOH, respectively, for the concentration of phenol ranging from 25 to 250 mg/L. This indicates that the Lantana camara was a promising adsorbent for the removal of phenol from aqueous solutions. PMID:27350997

  6. Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums.

    PubMed

    Torres, María D; Moreira, Ramón; Chenlo, Francisco; Vázquez, María J

    2012-06-20

    Water adsorption isotherms of carboxymethyl cellulose (CMC), guar gum (GG), locust bean gum (LBG), tragacanth gum (TG) and xanthan gum (XG) were determined at different temperatures (20, 35, 50, and 65°C) using a gravimetric method. Several saturated salt solutions were selected to obtain different water activities in the range from 0.09 to 0.91. Water adsorption isotherms of tested hydrocolloids were classified like type II isotherms. In all cases, equilibrium moisture content decreased with increasing temperature at each water activity value. Three-parameter Guggenheim-Anderson-de Boer (GAB) model was employed to fit the experimental data in the water activity range and statistical analysis indicated that this model gave satisfactory results. CMC and GG were the most and the least hygroscopic gums, respectively. Sorption heats decreased with increasing moisture content. Monolayer moisture content evaluated with GAB model was consistent with equilibrium conditions of maximum stability calculated from thermodynamic analysis of net integral entropy. Values of equilibrium relative humidity at 20°C are proposed to storage adequately the tested gums.

  7. The Effect of Pore Connectivity on Water Adsorption Isotherms in Non-activated Graphitic Nanopores

    SciTech Connect

    StrioloDr., A; Gubbins, Dr. K. E.; Chialvo, Ariel A; Cummings, Peter T

    2005-01-01

    The adsorption of water in graphitic carbons is usually simulated via a weighted average of the adsorption isotherms simulated in carbon-slit pore of different widths. By following this procedure, details about pore morphology and pore connectivity may be overlooked. Towards a better match between virtual and real experiments, we present simulated adsorption isotherms for SPC/E model water in porous carbons composed by interconnected carbon-slit pores. The pores are separated from each other by one graphene layer. Imperfections (lack of carbon atoms) in the graphene layers result in interconnections between pores. The grand canonical Monte Carlo algorithm is used here to simulate water adsorption. Our results show that while the qualitative features obtained in the simulation of independent slit-shaped pores are reproduced when interconnected pores are considered, the adsorption isotherms rise more gradually and the adsorption/desorption hysteresis loops are narrower in the latter case.

  8. Cadmium-109 Radioisotope Adsorption onto Polypyrrole Coated Sawdust of Dryobalanops aromatic: Kinetics and Adsorption Isotherms Modelling

    PubMed Central

    Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul

    2016-01-01

    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor’s materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents. PMID:27706232

  9. Predicting the adsorption capacity and isotherm curvature of organic compounds onto activated carbons in natural waters.

    PubMed

    Hung, H W; Lin, T F

    2006-03-01

    A simple approach to predict the adsorption capacity and isotherm curvature of organic compounds onto activated carbon in natural water was investigated. A combination of the well-known equivalent background compound (EBC), and the simplified competitive adsorption model (SCAM) was employed to delineate the equilibrium capacity. This SCAM-EBC approach may reduce the numerical and experimental effort to obtain the parameters required to predict the adsorption capacity for a specific adsorption system. Several sets of experimental data, including weakly adsorbing (MTBE), strongly adsorbing compounds (TCP, atrazine, and chloroform), and two taste and odor causing compounds (MIB and geosmin) onto different activated carbons in three natural waters and a synthetic groundwater, were tested to verify the SCAM-EBC approach. Based on the approach, a parameter, called relative adsorptivity, describing the adsorption preference of the adsorbent between EBC and the target compound was employed to simulate the isotherm curvature in natural water. The relative adsorptivity of the SCAM-EBC approach is constant and can be directly obtained from the SCAM-EBC parameters in a specific adsorption system. The potential and extent of isotherm curvature can be simulated by only changing the parameter of relative adsorptivity. The marked isotherm curvature was found while the relative adsorptivity is larger than 2.0 to 4.0 for all the systems tested.

  10. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles

    NASA Astrophysics Data System (ADS)

    Moulin, F.; Picaud, S.; Hoang, P. N. M.; Jedlovszky, P.

    2007-10-01

    The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. The soot particles are modeled by graphite-type layers arranged in an onionlike structure that contains randomly distributed hydrophilic sites, such as OH and COOH groups. The calculated water adsorption isotherm at 298K exhibits different characteristic shapes depending both on the type and the location of the hydrophilic sites and also on the size of the pores inside the soot particle. The different shapes of the adsorption isotherms result from different ways of water aggregation in or/and around the soot particle. The present results show the very weak influence of the OH sites on the water adsorption process when compared to the COOH sites. The results of these simulations can help in interpreting the experimental isotherms of water adsorbed on aircraft soot.

  11. Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite-like compounds.

    PubMed

    Ramos-Ramírez, Esthela; Ortega, Norma L Gutiérrez; Soto, Cesar A Contreras; Gutiérrez, Maria T Olguín

    2009-12-30

    In under-developed countries, industries such as paint and pigment manufacturing, leather tanning, chrome plating and textile processing, usually discharge effluents containing Cr(VI) and Cr(III) into municipal sanitary sewers. It has been reported that Cr(VI) acts as a powerful epithelial irritant and as a human carcinogen. In the present work, hydrotalcite-like compounds with a Mg/Al ratio=2 were synthesized by the sol-gel method. The hydrotalcite-like compounds and their corresponding thermally treated products were characterized by powder X-ray diffraction, infrared spectroscopy and N(2) adsorption. The hydrotalcite-like compounds and the heated solids were used as adsorbents for Cr(VI) in aqueous solutions. Adsorption isotherm studies of Cr(VI) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models. The Cr(VI) adsorption isotherm data fit best to the Langmuir isotherm model. The maximum Cr(VI) uptake by hydrotalcite and the heated solids was determined using the Langmuir equation and was found to range between 26 and 29 mg Cr(VI)/g adsorbent.

  12. A Sixth-Form Teaching Unit on the Langmuir Adsorption Isotherm

    ERIC Educational Resources Information Center

    Walkley, G. H.

    1973-01-01

    Presents a teaching unit on the Langmuir absorption isotherm suitable for advanced secondary school chemistry classes. Describes the experimental investigation of the isothermal adsorption of sulfur dioxide on charcoal, and discusses the derivation of the Langmuir equation and some applications. (JR)

  13. Ab initio prediction of adsorption isotherms for small molecules in metal-organic frameworks: the effect of lateral interactions for methane/CPO-27-Mg.

    PubMed

    Sillar, Kaido; Sauer, Joachim

    2012-11-01

    A hybrid method that combines density functional theory for periodic structures with wave function-based electron correlation methods for finite-size models of adsorption sites is employed to calculate energies for adsorption of CH(4) onto different sites in the metal-organic framework (MOF) CPO-27-Mg (Mg-MOF-74) with chemical accuracy. The adsorption energies for the Mg(2+), linker, second layer sites are -27.8, -18.3, and -15.1 kJ/mol. Adsorbate-adsorbate interactions increase the average CH(4) adsorption energy by about 10% (2.4 kJ/mol). The free rotor-harmonic oscillator-ideal gas model is applied to calculate free energies/equilibrium constants for adsorption on the individual sites. This information is used in a multisite Langmuir model, augmented with a Bragg-Williams model for lateral interactions, to calculate adsorption isotherms. This ab initio approach yields the contributions of the individual sites to the final isotherms and also of the lateral interactions that contribute about 15% to the maximum excess adsorption capacity. Isotherms are calculated for both absolute amounts, for calculation of isosteric heats of adsorption as function of coverage, and excess amounts, for comparison with measured isotherms. Agreement with observed excess isotherms is reached if the experimentally determined limited accessibility of adsorption sites (78%) is taken into account.

  14. Isotherms for adsorption of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose

    SciTech Connect

    Medve, J.; Tjerneld, F.; Stahlberg, J.

    1997-04-01

    Adsorption to microcrystalline cellulose (Avicel) of pure cellobiohydrolase I and II (CBH I and CBH II) from Trichoderma reesei has been studied. Adsorption isotherms of the enzymes were measured at 4{degree}C using CBH I and CBH II alone and in reconstituted equimolar mixtures. Several models (Langmuir, Freundlich, Temkin, Jovanovic) were tested to describe the experimental adsorption isotherms. The isotherms did not follow the basic (one site) Langmuir equation that has often been used to describe adsorption isotherms of cellulases; correlation coefficients (R{sup 2}) were only 0.926 and 0.947, for CBH I and II, respectively. The experimental isotherms were best described by a model of Langmuir type with two adsorption sites and by a combined Langmuir-Freundlich model (analogous to the Hill equation); using these models the correlation coefficients were in most cases higher than 0.995. Apparent binding parameters derived from the two sites Langmuir model indicated stronger binding of CBH II compared to CBH I; the distribution coefficients were 20.7 and 3.7 L/g for the two enzymes, respectively. The binding capacity was higher for CBH I than for CBH II. The isotherms when analyzed with the combined model indicated presence of unequal binding sites on cellulose and/or negative cooperativity in the binding of the enzyme molecules. 39 refs., 3 figs., 3 tabs.

  15. Comparative adsorption isotherms and modeling of methylene blue onto activated carbons

    NASA Astrophysics Data System (ADS)

    Belhachemi, Meriem; Addoun, Fatima

    2011-12-01

    The adsorption of methylene blue (MB) on activated carbons prepared from date stones with different degree of activation has been investigated. Equilibrium adsorption data of MB was carried out at 298 K. Four isotherm models (Freundlich, Langmuir, Redlich-Peterson and Sips) were tested for modeling the adsorption isotherms by nonlinear method. The three-parameter equations (Redlich-Peterson and Sips) showed more applicability than the two-parameter equations (Freundlich and Langmuir), which can be explained by the fact that these have three adjustable parameters. The best fit was achieved with the Redlich-Peterson equation according to the high value of correlation coefficient. All the samples were capable of retaining the MB, with the best result being reached by the sample with higher burn-off. Date stones activated carbon showed high adsorption capacity of 460 mg/g, calculated from the Sips isotherm model.

  16. Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution

    NASA Astrophysics Data System (ADS)

    Aouaini, F.; Knani, S.; Ben Yahia, M.; Ben Lamine, A.

    2015-08-01

    Water sorption isotherms of foodstuffs are very important in different areas of food science engineering such as for design, modeling and optimization of many processes. The equilibrium moisture content is an important parameter in models used to predict changes in the moisture content of a product during storage. A formulation of multilayer model with two energy levels was based on statistical physics and theoretical considerations. Thanks to the grand canonical ensemble in statistical physics. Some physicochemical parameters related to the adsorption process were introduced in the analytical model expression. The data tabulated in literature of water adsorption at different temperatures on: chickpea seeds, lentil seeds, potato and on green peppers were described applying the most popular models applied in food science. We also extend the study to the newest proposed model. It is concluded that among studied models the proposed model seems to be the best for description of data in the whole range of relative humidity. By using our model, we were able to determine the thermodynamic functions. The measurement of desorption isotherms, in particular a gas over a solid porous, allows access to the distribution of pore size PSD.

  17. A New Approach in Regression Analysis for Modeling Adsorption Isotherms

    PubMed Central

    Onjia, Antonije E.

    2014-01-01

    Numerous regression approaches to isotherm parameters estimation appear in the literature. The real insight into the proper modeling pattern can be achieved only by testing methods on a very big number of cases. Experimentally, it cannot be done in a reasonable time, so the Monte Carlo simulation method was applied. The objective of this paper is to introduce and compare numerical approaches that involve different levels of knowledge about the noise structure of the analytical method used for initial and equilibrium concentration determination. Six levels of homoscedastic noise and five types of heteroscedastic noise precision models were considered. Performance of the methods was statistically evaluated based on median percentage error and mean absolute relative error in parameter estimates. The present study showed a clear distinction between two cases. When equilibrium experiments are performed only once, for the homoscedastic case, the winning error function is ordinary least squares, while for the case of heteroscedastic noise the use of orthogonal distance regression or Margart's percent standard deviation is suggested. It was found that in case when experiments are repeated three times the simple method of weighted least squares performed as well as more complicated orthogonal distance regression method. PMID:24672394

  18. Adsorption of emulsified oil from metalworking fluid on activated bleaching earth-chitosan-SDS composites: Optimization, kinetics, isotherms.

    PubMed

    Naowanat, Nitiya; Thouchprasitchai, Nutthavich; Pongstabodee, Sangobtip

    2016-03-15

    The adsorption of emulsified oil from metalworking fluid (MWF) on activated bleaching earth (BE)-chitosan-sodium dodecyl sulfate (SDS) composites (BE/MCS) was investigated under a statistical design of experiments at a 95% confidence interval to identify the critical factors and to optimize the adsorption capacity. The BE/MCS adsorbents were characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller adsorption/desorption isotherms, contact angle analysis (sessile drop technique) and their zeta potential. From the results of a full 2(5) factorial design with three center points, the adsorbent weight and initial pH of the MWF had a significant antagonistic effect on the adsorption capacity while the initial MWF concentration and BE:chitosan:SDS weight ratio had a synergistic influence. Temperature factor has no discernible effect on the capacity. From the FCCC-RSM design, the optimal capacity range of 2840-2922.5 mg g(-1) was achieved at sorbent weight of 1.6-1.9 g, pH of 5.5-6.5, initial MWF concentration of 52-55 g l(-1) and BE:chitosan:SDS (w/w/w) ratio of 4.7:1:1-6.2:1:1. To test the validation and sensitivity of RSM model, the results showed that the estimated adsorption capacity was close to the experimental capacity within an error range of ±3%, suggesting that the RSM model was acceptable and satisfied. From three kinetics models (pseudo-first-order, pseudo-second-order model and Avrami's equation) and two adsorption isotherms (Langmuir model and Freundlich model), assessed using an error function (Err) and the coefficient of determination (R(2)), Avrami's equation and Freundlich isotherm model provided a good fitting for the data, suggesting the presence of more than one reaction pathway in the MWF adsorption process and the heterogeneous surface adsorption of the BC/ABE-5.5 composite. PMID:26731309

  19. Adsorption of emulsified oil from metalworking fluid on activated bleaching earth-chitosan-SDS composites: Optimization, kinetics, isotherms.

    PubMed

    Naowanat, Nitiya; Thouchprasitchai, Nutthavich; Pongstabodee, Sangobtip

    2016-03-15

    The adsorption of emulsified oil from metalworking fluid (MWF) on activated bleaching earth (BE)-chitosan-sodium dodecyl sulfate (SDS) composites (BE/MCS) was investigated under a statistical design of experiments at a 95% confidence interval to identify the critical factors and to optimize the adsorption capacity. The BE/MCS adsorbents were characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller adsorption/desorption isotherms, contact angle analysis (sessile drop technique) and their zeta potential. From the results of a full 2(5) factorial design with three center points, the adsorbent weight and initial pH of the MWF had a significant antagonistic effect on the adsorption capacity while the initial MWF concentration and BE:chitosan:SDS weight ratio had a synergistic influence. Temperature factor has no discernible effect on the capacity. From the FCCC-RSM design, the optimal capacity range of 2840-2922.5 mg g(-1) was achieved at sorbent weight of 1.6-1.9 g, pH of 5.5-6.5, initial MWF concentration of 52-55 g l(-1) and BE:chitosan:SDS (w/w/w) ratio of 4.7:1:1-6.2:1:1. To test the validation and sensitivity of RSM model, the results showed that the estimated adsorption capacity was close to the experimental capacity within an error range of ±3%, suggesting that the RSM model was acceptable and satisfied. From three kinetics models (pseudo-first-order, pseudo-second-order model and Avrami's equation) and two adsorption isotherms (Langmuir model and Freundlich model), assessed using an error function (Err) and the coefficient of determination (R(2)), Avrami's equation and Freundlich isotherm model provided a good fitting for the data, suggesting the presence of more than one reaction pathway in the MWF adsorption process and the heterogeneous surface adsorption of the BC/ABE-5.5 composite.

  20. Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Chinnakoti, Prathibha; Chunduri, Avinash L. A.; Vankayala, Ranganayakulu K.; Patnaik, Sandeep; Kamisetti, Venkataramaniah

    2016-06-01

    Nano materials in particular nano oxides with enhanced surface area and an excellent catalytic surface serve as potential adsorbents for defluoridation of water. In the present study nano γ-alumina was synthesized through a simple and low cost, surfactant assisted solution combustion method. As synthesized material was characterized by XRD and FESEM for its phase, size and morphological characteristics. Surface properties have been investigated by BET method. Nano γ-alumina was further used for a detailed adsorption study to remove fluoride from water. Batches of experiments were performed at various experimental conditions such as solution pH, adsorbent dose, initial fluoride concentration and contact time to test the defluoridation ability of γ-alumina. Fluoride Adsorption by nano sized γ-alumina was rapid and reached equilibrium within two hours. The adsorption worked well at pH 4.0, where ˜96 % of fluoride was found to be adsorbed on adsorbent. It was possible to reduce fluoride levels to as low as 0.3 mg/L (within the safe limit of WHO: ≤1.5 mg/L) from an initial fluoride levels of 10 mg/L. This could be achieved using a very small quantity, 1 g/L of γ-alumina at pH 4 within 1 h of contact time. Defluoridation capacity of nano γ-alumina was further investigated by fitting the equilibrium data to various isotherm as well as kinetic models. The present study revealed that γ-alumina could be an efficient adsorbent for treating fluoride contaminated water.

  1. Kinetic Interpretation of Water Vapor Adsorption-Desorption Behavior of a Desiccant Rotor Showing S-shaped Adsorption Isotherm

    NASA Astrophysics Data System (ADS)

    Okamoto, Kumiko; Oshima, Kazunori; Takewaki, Takahiko; Kodama, Akio

    Adsorption / desorption behavior of water vapor in a desiccant rotor containing an iron aluminophosphate type zeolite FAM-Z01 (Functional Adsorbent Material Zeolite 01) was experimentally investigated for humidity swing. This rotor exhibited an S-shaped adsorption isotherm with its temperature dependence. Humidity swing, using a small piece of the rotor, could be usefully applied to interpret adsorption / desorption mechanisms by observing their rates. The most significant finding was that the adsorption / desorption rates in humidity swing could be described by the amount of adsorption, temperature and amplitude of the humidity swing, not by cycle time. Also, using the liner driving force (LDF) model, the overall mass transfer coefficient changed with the elapse of time or with the amount of adsorbed water. This implied that the LDF model, considering constant value of the overall mass transfer coefficient, was probably unable to explain the water adsorption / desorption behavior of FAM-Z01 desiccant rotor.

  2. Kinetics and isothermal modeling of liquid phase adsorption of rhodamine B onto urea modified Raphia hookerie epicarp

    NASA Astrophysics Data System (ADS)

    Inyinbor, A. A.; Adekola, F. A.; Olatunji, G. A.

    2016-09-01

    Epicarp of Raphia hookerie, a bioresource material, was modified with urea (UMRH) to adsorb Rhodamine B (RhB) from aqueous solution. Adsorbent morphology and surface chemistry were established by Brunauer-Emmett-Teller (BET) surface area determination, Fourier transform infrared spectroscopic (FTIR) analysis, scanning electron microscopy (SEM), as well as the pH point of zero charge (pHpzc) determination. Prepared material was subsequently utilized for the uptake of Rhodamine B (RhB). Operational parameters, such as adsorbent dosage, concentration, time, and temperature, were investigated. Evidence of effective urea modification was confirmed by vivid absorption bands at 1670 and 1472 cm-1 corresponding to C=O and C-N stretching vibrations, respectively. Optimum adsorption was obtained at pH 3. Freundlich adsorption isotherm best fits the equilibrium adsorption data, while evidence of adsorbate-adsorbate interaction was revealed by Temkin isotherm model. The maximum monolayer adsorption capacity (q max) was 434.78 mg/g. Kinetics of the adsorption process was best described by the pseudo-second-order kinetics model. Desorption efficiency was less than or equal to 25 % for all the eluents, and it follows the order HCl > H2O > CH3COOH.

  3. Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies.

    PubMed

    Mushtaq, Mehwish; Bhatti, Haq Nawaz; Iqbal, Munawar; Noreen, Saima

    2016-07-01

    Adsorption techniques are widely used to remove pollutants from wastewater; however, composites are gaining more importance due to their excellent adsorption properties. Bentonite composite with Eriobotrya japonica seed was prepared and used for the adsorption of copper (Cu) metal from aqueous media. The process variables such as pH, Cu(II) ions initial concentration, adsorbent dose, contact time and temperature were optimized for maximum Cu(II) adsorption. At pH 5, adsorbent dose 0.1 g, contact time 45 min, Cu(II) ions initial concentration 75 mg/L and temperature 45 °C, maximum Cu(II) adsorption was achieved. Desorption studies revealed that biocomposite is recyclable. Langmuir, Freundlich and Harkins-Jura isotherms as well as pseudo-first and pseudo-second-order kinetics models were applied to understand the adsorption mechanism. Thermodynamic parameters (ΔG(0), ΔH(0) and ΔS(0)) suggest that the adsorption process was spontaneous and endothermic in nature. The pseudo-second-order kinetic model and Langmuir isotherm fitted well to the adsorption data. Results showed that biocomposite was more efficient for Cu(II) adsorption in comparison to individuals native Eriobotrya japonica seed biomass and Na-bentonite.

  4. Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies.

    PubMed

    Mushtaq, Mehwish; Bhatti, Haq Nawaz; Iqbal, Munawar; Noreen, Saima

    2016-07-01

    Adsorption techniques are widely used to remove pollutants from wastewater; however, composites are gaining more importance due to their excellent adsorption properties. Bentonite composite with Eriobotrya japonica seed was prepared and used for the adsorption of copper (Cu) metal from aqueous media. The process variables such as pH, Cu(II) ions initial concentration, adsorbent dose, contact time and temperature were optimized for maximum Cu(II) adsorption. At pH 5, adsorbent dose 0.1 g, contact time 45 min, Cu(II) ions initial concentration 75 mg/L and temperature 45 °C, maximum Cu(II) adsorption was achieved. Desorption studies revealed that biocomposite is recyclable. Langmuir, Freundlich and Harkins-Jura isotherms as well as pseudo-first and pseudo-second-order kinetics models were applied to understand the adsorption mechanism. Thermodynamic parameters (ΔG(0), ΔH(0) and ΔS(0)) suggest that the adsorption process was spontaneous and endothermic in nature. The pseudo-second-order kinetic model and Langmuir isotherm fitted well to the adsorption data. Results showed that biocomposite was more efficient for Cu(II) adsorption in comparison to individuals native Eriobotrya japonica seed biomass and Na-bentonite. PMID:27039361

  5. Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems.

    PubMed

    Shen, Dazhong; Fan, Jianxin; Zhou, Weizhi; Gao, Baoyu; Yue, Qinyan; Kang, Qi

    2009-12-15

    The performances of polydiallydimethylammonium modified bentonite (PDADMA-bentonite) as an adsorbent to remove anionic dyes, namely Acid Scarlet GR (AS-GR), Acid Turquoise Blue 2G (ATB-2G) and Indigo Carmine (IC), were investigated in single, binary and ternary dye systems. In adsorption from single dye solutions with initial concentration of 100 micromol/L, the dosage of PDADMA-bentonite needed to remove 95% dye was 0.42, 0.68 and 0.75 g/L for AS-GR, ATB-2G and IC, respectively. The adsorption isotherms of the three dyes obeyed the Langmuir isotherm model with the equilibrium constants of 0.372, 0.629 and 4.31 L/micromol, the saturation adsorption amount of 176.3, 149.2 and 228.7 micromol/g for ATB-2G, IC and AS-GR, respectively. In adsorption from mixed dye solutions, the isotherm of each individual dye followed an expanded Langmuir isotherm model and the relationship between the total amount of dyes adsorbed and the total equilibrium dye concentration was interpreted well by Langmuir isotherm model. In the region of insufficient dosage of PDADMA-bentonite, the dye with a larger affinity was preferentially removed by adsorption. Desorption was observed in the kinetic curve of the dye with lower affinity on PDADMA-bentonite surface by the competitive adsorption. The kinetics in single dye solution and the total adsorption of dyes in binary and ternary dye systems nicely followed pseudo-second-order kinetic model.

  6. Effect of humic acid on the adsorption/desorption behavior of glyphosate on goethite. Isotherms and kinetics.

    PubMed

    Arroyave, Jeison Manuel; Waiman, Carolina C; Zanini, Graciela P; Avena, Marcelo J

    2016-02-01

    The effects of humic acid (HA) on the adsorption/desorption of glyphosate (Gly) on goethite were investigated under pseudo equilibrium conditions by adsorption isotherms and under kinetic conditions by ATR-FTIR spectroscopy. Isotherms reveal that the attachment of Gly is almost completely inhibited by HA molecules. The opposite effect is not observed: HA adsorption is not affected by the presence of Gly. ATR-FTIR allowed the simultaneous detection of adsorbed HA and Gly during kinetic runs, revealing that HA at the surface decreases markedly the adsorption rate of Gly likely as a result of a decreased availability of sites for Gly adsorption and because of electrostatic repulsion. In addition, HA in solution increases the desorption rate of Gly. The rate law for Gly desorption could be determined giving important insights on the desorption mechanism. The herbicide is desorbed by two parallel processes: i) a direct detachment from the surface, which is first order in adsorbed Gly; and ii) a ligand exchange with HA molecules, which is first order in adsorbed Gly and first order in dissolved HA. Rate constants for both processes were quantified, leading to half-lives of 3.7 h for the first process, and 1.4 h for the second process in a 400 mg L(-1) HA solution. These data are important for modeling the dynamics of glyphosate in environmentally relevant systems, such as soils and surface waters. PMID:26657085

  7. Effect of humic acid on the adsorption/desorption behavior of glyphosate on goethite. Isotherms and kinetics.

    PubMed

    Arroyave, Jeison Manuel; Waiman, Carolina C; Zanini, Graciela P; Avena, Marcelo J

    2016-02-01

    The effects of humic acid (HA) on the adsorption/desorption of glyphosate (Gly) on goethite were investigated under pseudo equilibrium conditions by adsorption isotherms and under kinetic conditions by ATR-FTIR spectroscopy. Isotherms reveal that the attachment of Gly is almost completely inhibited by HA molecules. The opposite effect is not observed: HA adsorption is not affected by the presence of Gly. ATR-FTIR allowed the simultaneous detection of adsorbed HA and Gly during kinetic runs, revealing that HA at the surface decreases markedly the adsorption rate of Gly likely as a result of a decreased availability of sites for Gly adsorption and because of electrostatic repulsion. In addition, HA in solution increases the desorption rate of Gly. The rate law for Gly desorption could be determined giving important insights on the desorption mechanism. The herbicide is desorbed by two parallel processes: i) a direct detachment from the surface, which is first order in adsorbed Gly; and ii) a ligand exchange with HA molecules, which is first order in adsorbed Gly and first order in dissolved HA. Rate constants for both processes were quantified, leading to half-lives of 3.7 h for the first process, and 1.4 h for the second process in a 400 mg L(-1) HA solution. These data are important for modeling the dynamics of glyphosate in environmentally relevant systems, such as soils and surface waters.

  8. Electrochemically enhanced adsorption of nonylphenol on carbon nanotubes: Kinetics and isotherms study.

    PubMed

    Li, Xiaona; Chen, Shuo; Li, Liying; Quan, Xie; Zhao, Huimin

    2014-02-01

    Removal of nonylphenol (NP) from aqueous solution has attracted widely attention due to its aquatic toxicity and potential to disrupt the endocrine system. In an effort to develop the effective and environment-friendly treatment method for NP, adsorption of 4-n-nonylphenol (4-NP) on multi-walled carbon nanotubes (MWCNTs) under electrochemical assistance was studied. The adsorption kinetics and isotherms were investigated at different polarization potentials and compared with those of open circuit (OC) and powder MWCNTs adsorption. The adsorption kinetics was simulated by the model including pseudo-first-order model, pseudo-second-order model and intraparticle diffusion model. The isotherm was simulated with Langmuir model and Freudlich model, respectively. Experimental results indicated that 4-NP is able to be efficiently removed at a potential of -0.6V. Comparing with that of powder MWCNTs adsorption, the initial adsorption rate υ0 at -0.6V increased 7.9-fold according to pseudo-second-order model and the maximum adsorption capacity qm improved 1.7-fold according to Langmuir model. The improved adsorption effect at negative potential was ascribed to enhanced π-π electron-donor-acceptor (EDA) interaction between 4-NP and MWCNTs under electrochemical assistance.

  9. Adsorption of pharmaceuticals onto activated carbon fiber cloths - Modeling and extrapolation of adsorption isotherms at very low concentrations.

    PubMed

    Fallou, Hélène; Cimetière, Nicolas; Giraudet, Sylvain; Wolbert, Dominique; Le Cloirec, Pierre

    2016-01-15

    Activated carbon fiber cloths (ACFC) have shown promising results when applied to water treatment, especially for removing organic micropollutants such as pharmaceutical compounds. Nevertheless, further investigations are required, especially considering trace concentrations, which are found in current water treatment. Until now, most studies have been carried out at relatively high concentrations (mg L(-1)), since the experimental and analytical methodologies are more difficult and more expensive when dealing with lower concentrations (ng L(-1)). Therefore, the objective of this study was to validate an extrapolation procedure from high to low concentrations, for four compounds (Carbamazepine, Diclofenac, Caffeine and Acetaminophen). For this purpose, the reliability of the usual adsorption isotherm models, when extrapolated from high (mg L(-1)) to low concentrations (ng L(-1)), was assessed as well as the influence of numerous error functions. Some isotherm models (Freundlich, Toth) and error functions (RSS, ARE) show weaknesses to be used as an adsorption isotherms at low concentrations. However, from these results, the pairing of the Langmuir-Freundlich isotherm model with Marquardt's percent standard of deviation was evidenced as the best combination model, enabling the extrapolation of adsorption capacities by orders of magnitude. PMID:26606322

  10. Kinetic and isotherm error optimization studies for adsorption of atrazine and imidacloprid on bark of Eucalyptus tereticornis L.

    PubMed

    Mandal, Abhishek; Singh, Neera

    2016-01-01

    The aim of this study was to establish the bark of Eucalyptus tereticornis L. (EB) as a low cost bio-adsorbent for the removal of imidacloprid and atrazine from aqueous medium. The pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich and intra-particle diffusion (IPD) models were used to describe the kinetic data and rate constants were evaluated. Adsorption data was analysed using ten 2-, 3- and 4-parameter models viz. Freundlich, Jovanovic, Langmuir, Temkin, Koble-Corrigan, Redlich-Peterson, Sips, Toth, Radke-Prausnitz, and Fritz-Schluender isotherms. Six error functions were used to compute the best fit single component isotherm parameters by nonlinear regression analysis. The results showed that the sorption of atrazine was better explained by PSO model, whereas the sorption of imidacloprid followed the PFO kinetic model. Isotherm model optimization analysis suggested that the Freundlich along with Koble-Corrigan, Toth and Fritz-Schluender were the best models to predict atrazine and imidacloprid adsorption onto EB. Error analysis suggested that minimization of chi-square (χ(2)) error function provided the best determination of optimum parameter sets for all the isotherms.

  11. Experimental studies of hydrogen on boron nitride: I. Adsorption isotherms of HD

    SciTech Connect

    Evans, M.D.; Sullivan, N.S.

    1995-09-01

    The authors report the results of measurements of adsorption isotherms of deuterium hydride (HD) adsorbed onto boron nitride. From this data they derive both the two-dimensional critical point temperatures (using Larher`s method) and the heat of adsorption for the first few layers of this system. These results are compared with similar measurements of HD adsorbed onto graphite and MgO. While substantial substeps within some adlayer steps are evident in the adsorption isotherms of HD on graphite and MgO and have been shown to indicate a two-dimensional liquid-solid transition within the layer, no substep is evident at the level of one percent of a step level for HD adsorbed onto BN.

  12. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    PubMed

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.

  13. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    PubMed

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water. PMID:26803100

  14. Adsorption isotherms, kinetics and thermodynamic studies towards understanding the interaction between cross-linked alginate-guar gum matrix and chymotrypsin.

    PubMed

    Woitovich Valetti, Nadia; Picó, Guillermo

    2016-02-15

    The adsorption kinetics of chymotrypsin, a pancreatic serine protease, onto an alginate-gum guar matrix cross-linked with epichlorohydrin has been performed using a batch-adsorption technique. The effect of various experimental parameters such as pH, salt presence, contact time and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data which shows that the adsorption of the enzyme followed the pseudo-second-order rate expression. The Langmuir, Freundlich and Hill adsorption isotherm models were applied to describe the equilibrium isotherms, and the isotherm constants were determined. It was found that Hill model was more suitable for our data because the isotherm data showed a sigmoidal behavior with the free enzyme concentration increasing in equilibrium. At 8°C and at pH 5.0, 1g hydrate matrix adsorbed about 7mg of chymotrypsin. In the desorption process 80% of the biological activity of chymotrypsin was recovered under the condition of 50mM phosphate buffer, pH 7.00-500mM NaCl. When successive cycles of adsorption/washing/desorption were performed, it was observed that the matrix remained functional until the fourth cycle of repeated batch enzyme adsorption. These results are important in terms of diminishing of cost and waste generation. PMID:26849187

  15. Adsorption isotherms, kinetics and thermodynamic studies towards understanding the interaction between cross-linked alginate-guar gum matrix and chymotrypsin.

    PubMed

    Woitovich Valetti, Nadia; Picó, Guillermo

    2016-02-15

    The adsorption kinetics of chymotrypsin, a pancreatic serine protease, onto an alginate-gum guar matrix cross-linked with epichlorohydrin has been performed using a batch-adsorption technique. The effect of various experimental parameters such as pH, salt presence, contact time and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data which shows that the adsorption of the enzyme followed the pseudo-second-order rate expression. The Langmuir, Freundlich and Hill adsorption isotherm models were applied to describe the equilibrium isotherms, and the isotherm constants were determined. It was found that Hill model was more suitable for our data because the isotherm data showed a sigmoidal behavior with the free enzyme concentration increasing in equilibrium. At 8°C and at pH 5.0, 1g hydrate matrix adsorbed about 7mg of chymotrypsin. In the desorption process 80% of the biological activity of chymotrypsin was recovered under the condition of 50mM phosphate buffer, pH 7.00-500mM NaCl. When successive cycles of adsorption/washing/desorption were performed, it was observed that the matrix remained functional until the fourth cycle of repeated batch enzyme adsorption. These results are important in terms of diminishing of cost and waste generation.

  16. Kinetics and isotherm analysis of Tropaeoline 000 adsorption onto unsaturated polyester resin (UPR): a non-carbon adsorbent.

    PubMed

    Jain, Rajeev; Sharma, Pooja; Sikarwar, Shalini

    2013-03-01

    The presence of dyes in water is undesirable due to the toxicological impact of their entrance into the food chain. Owing to the recalcitrant nature of dyes to biological oxidation, a tertiary treatment like adsorption is required. In the present study, unsaturated polyester resin (UPR) has been used as a sorbent in the treatment of dye-contaminated water. Different concentrations of Tropaeoline 000 containing water were treated with UPR. The preliminary investigations were carried out by batch adsorption to examine the effects of pH, adsorbate concentration, adsorbent dosage, contact time, and temperature. A plausible mechanism for the ongoing adsorption process and thermodynamic parameters have also been obtained from Langmuir and Freundlich adsorption isotherm models. Thermodynamic parameter showed that the sorption process of Tropaeoline 000 onto activated carbon (AC) and UPR were feasible, spontaneous, and endothermic under studied conditions. The estimated values for (ΔG) are -10.48 × 10(3) and -6.098 × 10(3) kJ mol(-1) over AC and UPR at 303 K (30 °C), indicating towards a spontaneous process. The adsorption process followed pseudo-first-order model. The mass transfer property of the sorption process was studied using Lagergren pseudo-first-order kinetic models. The values of % removal and k (ad) for dye systems were calculated at different temperatures (303-323 K). The mechanism of the adsorption process was determined from the intraparticle diffusion model. PMID:22689095

  17. Determining Kinetic Parameters for Isothermal Crystallization of Glasses

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Zhang, T.; Reis, S. T.; Brow, R. K.

    2006-01-01

    Non-isothermal crystallization techniques are frequently used to determine the kinetic parameters for crystallization in glasses. These techniques are experimentally simple and quick compared to the isothermal techniques. However, the analytical models used for non-isothermal data analysis, originally developed for describing isothermal transformation kinetics, are fundamentally flawed. The present paper describes a technique for determining the kinetic parameters for isothermal crystallization in glasses, which eliminates most of the common problems that generally make the studies of isothermal crystallization laborious and time consuming. In this technique, the volume fraction of glass that is crystallized as a function of time during an isothermal hold was determined using differential thermal analysis (DTA). The crystallization parameters for the lithium-disilicate (Li2O.2SiO2) model glass were first determined and compared to the same parameters determined by other techniques to establish the accuracy and usefulness of the present technique. This technique was then used to describe the crystallization kinetics of a complex Ca-Sr-Zn-silicate glass developed for sealing solid oxide fuel cells.

  18. Relation between Water Vapor Adsorption Isotherms and Dynamic Dehumidification Performances of Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Inoue, Koji; Matsuguma, Shingo; Jin, Wei-Li; Okano, Hiroshi; Teraoka, Yasutake; Hirose, Tsutomu

    Desiccant rotors with different water vapor adsorption properties were fabricated by the synthesis of silica gels inside the honeycomb matrices. Dynamic dehumidification performances of the rotors were measured under different conditions and they were discussed in relation to water vapor adsorption isotherms. At the reactivation air temperatures of 80 and 140 oC, the best dynamic performance was observed with the rotor on which the adsorbed amount of water vapor at lower relative humidity was highest. When the reactivation air temperature was 50 oC, on the other hand, the rotor of which the isotherm exhibited monotonic and nearly linear increase up to higher relative humidity was the most suitable. The normalized changes of absolute humidity and adsorbed amount were defined, and these phenomena were analyzed. When the dependences of both parameters against the relative humidity were similar, the rotor showed the best dehumidification performance.

  19. Adsorption on heterogeneous surfaces: site energy distribution functions from Fritz-Schlüender isotherms.

    PubMed

    Kumar, Kannuchamy Vasanth; Monteiro de Castro, Mateus Carvalho; Martinez-Escandell, Manuel; Molina-Sabio, Miguel; Rodriguez-Reinoso, Francisco

    2010-08-23

    Different site energy distribution functions based on the condensation approximation method are proposed for the liquid-phase or gas-phase adsorption equilibrium data following the Fritz-Schlüender isotherm. Energy distribution functions for the four limiting cases of the Fritz-Schlüender isotherm are also discussed. The proposed models are successfully applied to the experimental equilibrium data of nitrogen molecules at 77 K on a pitch-based activated carbon (PA) and a pitch-based activated carbon containing boron (PBA). An energy distribution function based on FS isotherm containing five parameters suggest a unimodal distribution of binding sites for carbon PA, the binding site energies being distributed as exponential or unimodal, depending on the pressure, in the case of carbon PBA. The advantages of the proposed models are discussed.

  20. Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: kinetic, isotherm and thermodynamic studies.

    PubMed

    Kara, Ali; Demirbel, Emel; Tekin, Nalan; Osman, Bilgen; Beşirli, Necati

    2015-04-01

    Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate(EG)-vinylphenyl boronic acid(VPBA)) [m-poly(EG-VPBA)], produced by suspension polymerization and characterized, was found to be an efficient solid polymer for Cr(VI) adsorption. The m-poly(EG-VPBA) microparticles were prepared by copolymerizing of ethylene glycol dimethylacrylate (EG) with 4-vinyl phenyl boronic acid (VPBA). The m-poly(EG-VPBA) microparticles were characterized by N2 adsorption/desorption isotherms, electron spin resonance (ESR), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), elemental analysis, scanning electron microscope (SEM) and swelling studies. The m-poly(EG-VPBA) microparticles were used at adsorbent/Cr(VI) ion ratios. The influence of pH, Cr(VI) initial concentration, temperature of the removal process was investigated. The maximum removal of Cr(VI) was observed at pH 2. Langmuir isotherm and Dubinin-Radushkvich isotherm were found to better fit the experiment data rather than Fruendlich isotherm. The kinetics of the adsorption process of Cr(VI) on the m-poly(EG-VPBA) microparticles were investigated using the pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models, results showed that the pseudo-second order equation model provided the best correlation with the experimental results. The thermodynamic parameters (free energy change, ΔG(0) enthalpy change, ΔH(0); and entropy change, ΔS(0)) for the adsorption have been evaluated. PMID:25666882

  1. Chromatography Models with Langmuir and Steric Mass Action Adsorption Isotherms are of Differential Index One

    NASA Astrophysics Data System (ADS)

    von Lieres, Eric

    2010-09-01

    Chromatography is commonly applied for the separation of bio-molecules in pharmaceutical industry, and chromatography models are increasingly applied for rational process analysis and optimization. A rapid equilibrium assumption is often applied for the adsorption equation, which results in a non-linear system of partial differential-algebraic equations (PDAEs). In this contribution a proof is given, that these PDAEs are of differential index one for the two most prominent isotherm models, Langmuir and steric mass action (SMA).

  2. Oxygen chemisorption on V/sub 2/O/sub 5/: isotherms and isobars of adsorption

    SciTech Connect

    Rey, L.; Gambaro, L.A.; Thomas, H.J.

    1984-06-01

    Experimental results of oxygen adsorption on V/sub 2/O/sub 5/ (isotherms and isobars) are reported. In its normal state V/sub 2/O/sub 5/ is a nonstoichiometric oxide that shows oxygen vacancies with the subsequent formation of V/sup 4 +/ ions. A model is developed for the interaction between oxygen (gaseous, adsorbed, and bulk) and the solid phase (V/sub 2/O/sub 5/). 12 references, 4 figures, 1 table.

  3. The Republic of the Philippines coalbed methane assessment: based on seventeen high pressure methane adsorption isotherms

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Papasin, Ramon F.; Pendon, Ronaldo R.; del Rosario, Rogelio A.; Malapitan, Ruel T.; Pastor, Michael S.; Altomea, Elmer A.; Cuaresma, Federico; Malapitan, Armando S.; Mortos, Benjamin R.; Tilos, Elizabeth N.

    2006-01-01

    Semirara coal led to the present study of determining the adsorption isotherms, or gas (CBM) holding or storage capacity, of coal beds of various ages from selected coal districts in the Philippines. Samples for the study were collected from the Batan Island, Catanduanes, Cagayan-Isabella, Cebu, Negros, Samar, Semirara, Cotabato, Surigao, and Malangas coalfield of the Zamboanga Sibuguey coal districts by five field geology teams from the GCRDD.

  4. Adsorption isotherms for hydrogen chloride (HCl) on ice surfaces between 190 and 220 K.

    PubMed

    Zimmermann, S; Kippenberger, M; Schuster, G; Crowley, J N

    2016-05-18

    The interaction of hydrogen chloride (HCl) with ice surfaces at temperatures between 190 and 220 K was investigated using a coated-wall flow-tube connected to a chemical ionization mass spectrometer. Equilibrium surface coverages of HCl were determined at gas phase concentrations as low as 2 × 10(9) molecules cm(-3) (∼4 × 10(-8) Torr at 200 K) to derive Langmuir adsorption isotherms. The data are described by a temperature independent partition coefficient: KLang = (3.7 ± 0.2) × 10(-11) cm(3) molecule(-1) with a saturation surface coverage Nmax = (2.0 ± 0.2) × 10(14) molecules cm(-2). The lack of a systematic dependence of KLang on temperature contrasts the behaviour of numerous trace gases which adsorb onto ice via hydrogen bonding and is most likely related to the ionization of HCl at the surface. The results are compared to previous laboratory studies, and the equilibrium partitioning of HCl to ice surfaces under conditions relevant to the atmosphere is evaluated. PMID:27142478

  5. Adsorption isotherms for hydrogen chloride (HCl) on ice surfaces between 190 and 220 K.

    PubMed

    Zimmermann, S; Kippenberger, M; Schuster, G; Crowley, J N

    2016-05-18

    The interaction of hydrogen chloride (HCl) with ice surfaces at temperatures between 190 and 220 K was investigated using a coated-wall flow-tube connected to a chemical ionization mass spectrometer. Equilibrium surface coverages of HCl were determined at gas phase concentrations as low as 2 × 10(9) molecules cm(-3) (∼4 × 10(-8) Torr at 200 K) to derive Langmuir adsorption isotherms. The data are described by a temperature independent partition coefficient: KLang = (3.7 ± 0.2) × 10(-11) cm(3) molecule(-1) with a saturation surface coverage Nmax = (2.0 ± 0.2) × 10(14) molecules cm(-2). The lack of a systematic dependence of KLang on temperature contrasts the behaviour of numerous trace gases which adsorb onto ice via hydrogen bonding and is most likely related to the ionization of HCl at the surface. The results are compared to previous laboratory studies, and the equilibrium partitioning of HCl to ice surfaces under conditions relevant to the atmosphere is evaluated.

  6. Ni (II) adsorption onto Chrysanthemum indicum: Influencing factors, isotherms, kinetics, and thermodynamics.

    PubMed

    Vilvanathan, Sowmya; Shanthakumar, S

    2016-10-01

    The study explores the adsorption potential of Chrysanthemum indicum biomass for nickel ion removal from aqueous solution. C. indicum flowers in raw (CIF-I) and biochar (CIF-II) forms were used as adsorbents in this study. Batch experiments were conducted to ascertain the optimum conditions of solution pH, adsorbent dosage, contact time, and temperature for varying initial Ni(II) ion concentrations. Surface area, surface morphology, and functionality of the adsorbents were characterized by Brunauer, Emmett, and Teller (BET) surface analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Adsorption kinetics were modeled using pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Bangham's, and Boyd's plot. The equilibrium data were modeled using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) isotherm models. Experimental data provided the best fit to pseudo-second-order kinetic model and Langmuir isotherm model for the adsorption of Ni(II) ion on both CIF-I and CIF-II with maximum adsorption capacities of 23.97 and 44.02 mg g(-1), respectively. Thermodynamic analysis of the data proved the process to be spontaneous and endothermic in nature. Desorption studies were conducted to evaluate the possibility of reusing the adsorbents. Findings of the present study provide substantial evidence for the use of C. indicum flower as an eco-friendly and potential adsorbent for the removal of Ni(II) ions from aqueous solution. PMID:27185382

  7. Effect of cation type, alkyl chain length, adsorbate size on adsorption kinetics and isotherms of bromide ionic liquids from aqueous solutions onto microporous fabric and granulated activated carbons.

    PubMed

    Hassan, Safia; Duclaux, Laurent; Lévêque, Jean-Marc; Reinert, Laurence; Farooq, Amjad; Yasin, Tariq

    2014-11-01

    The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures.

  8. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.

    PubMed

    Zhu, Xuan; Tsang, Daniel C W; Chen, Feng; Li, Shiyu; Yang, Xin

    2015-01-01

    Ciprofloxacin (CIP) is a commonly used antibiotic and widely detected in wastewaters and farmlands nowadays. This study evaluated the efficacy of next-generation adsorbent (graphene) and conventional adsorbent (granular activated carbon, GAC) for CIP removal. Batch experiments and characterization tests were conducted to investigate the adsorption kinetics, equilibrium isotherms, thermodynamic properties, and the influences of solution chemistry (pH, ionic strength, natural organic matter (NOM), and water sources). Compared to GAC, graphene showed significantly faster adsorption and reached equilibrium within 3 min, confirming the rapid access of CIP into the macroporous network of high surface area of graphene as revealed by the Brunner-Emmet-Teller measurements analysis. The kinetics was better described by a pseudo-second-order model, suggesting the importance of the initial CIP concentration related to surface site availability of graphene. The adsorption isotherm on graphene followed Langmuir model with a maximum adsorption capacity of 323 mg/g, which was higher than other reported carbonaceous adsorbents. The CIP adsorption was thermodynamically favourable on graphene and primarily occurred through π - π interaction, according to the FTIR spectroscopy. While the adsorption capacity of graphene decreased with increasing solution pH due to the speciation change of CIP, the adverse effects of ionic strength (0.01-0.5 mol L(-1)), presence of NOM (5 mg L⁻¹), and different water sources (river water or drinking water) were less significant on graphene than GAC. These results indicated that graphene can serve as an alternative adsorbent for CIP removal in commonly encountered field conditions, if proper separation and recovery is available in place. PMID:26050736

  9. Removal of water and iodine by solid sorbents: adsorption isotherms and kinetics

    SciTech Connect

    Lin, R.; Tavlarides, L.L.

    2013-07-01

    Tritium and iodine-129 are two major radioactive elements that are present in off-gases from spent fuel reprocessing plants. Adsorption by solid sorbents is the state-of-the-art technique for removal of these species from off-gases. Modeling and simulating adsorption processes require accurate adsorption equilibrium and kinetic data to permit reasonable estimates of process parameters. We have developed a continuous flow single-pellet adsorption system to gather accurate adsorption equilibrium and kinetic data for adsorption of water by molecular sieve 3A and for adsorption of iodine by silver exchanged mordenite. In this paper, the design of the water and iodine adsorption experimental systems are briefly described and results of water adsorption experiments are presented and discussed. Water uptake curves are fitted with the linear-driving force (LDF) model and the shrinking-core model to determine kinetic parameters. It is shown that the kinetics of water adsorption on zeolite 3A under current experimental conditions is controlled by both the external film resistance and the macro-pore diffusion and can be predicted by both the LDF model and the shrinking-core model with the former one performing slightly better. Preliminary results from iodine adsorption experiments will be presented in the conference.

  10. A comparative examination of the adsorption mechanism of an anionic textile dye (RBY 3GL) onto the powdered activated carbon (PAC) using various the isotherm models and kinetics equations with linear and non-linear methods

    NASA Astrophysics Data System (ADS)

    Açıkyıldız, Metin; Gürses, Ahmet; Güneş, Kübra; Yalvaç, Duygu

    2015-11-01

    The present study was designed to compare the linear and non-linear methods used to check the compliance of the experimental data corresponding to the isotherm models (Langmuir, Freundlich, and Redlich-Peterson) and kinetics equations (pseudo-first order and pseudo-second order). In this context, adsorption experiments were carried out to remove an anionic dye, Remazol Brillant Yellow 3GL (RBY), from its aqueous solutions using a commercial activated carbon as a sorbent. The effects of contact time, initial RBY concentration, and temperature onto adsorbed amount were investigated. The amount of dye adsorbed increased with increased adsorption time and the adsorption equilibrium was attained after 240 min. The amount of dye adsorbed enhanced with increased temperature, suggesting that the adsorption process is endothermic. The experimental data was analyzed using the Langmuir, Freundlich, and Redlich-Peterson isotherm equations in order to predict adsorption isotherm. It was determined that the isotherm data were fitted to the Langmuir and Redlich-Peterson isotherms. The adsorption process was also found to follow a pseudo second-order kinetic model. According to the kinetic and isotherm data, it was found that the determination coefficients obtained from linear method were higher than those obtained from non-linear method.

  11. Modeling Nonlinear Adsorption to Carbon with a Single Chemical Parameter: A Lognormal Langmuir Isotherm.

    PubMed

    Davis, Craig Warren; Di Toro, Dominic M

    2015-07-01

    Predictive models for linear sorption of solutes onto various media, e.g., soil organic carbon, are well-established; however, methods for predicting parameters for nonlinear isotherm models, e.g., Freundlich and Langmuir models, are not. Predicting nonlinear partition coefficients is complicated by the number of model parameters to fit n isotherms (e.g., Freundlich (2n) or Polanyi-Manes (3n)). The purpose of this paper is to present a nonlinear adsorption model with only one chemically specific parameter. To accomplish this, several simplifications to a log-normal Langmuir (LNL) isotherm model with 3n parameters were explored. A single sorbate-specific binding constant, the median Langmuir binding constant, and two global sorbent parameters; the total site density and the standard deviation of the Langmuir binding constant were employed. This single-solute specific (ss-LNL) model (2 + n parameters) was demonstrated to fit adsorption data as well as the 2n parameter Freundlich model. The LNL isotherm model is fit to four data sets composed of various chemicals sorbed to graphite, charcoal, and activated carbon. The RMS errors for the 3-, 2-, and 1-chemical specific parameter models were 0.066, 0.068, 0.069, and 0.113, respectively. The median logarithmic parameter standard errors for the four models were 1.070, 0.4537, 0.382, and 0.201 respectively. Further, the single-parameter model was the only model for which there were no standard errors of estimated parameters greater than a factor of 3 (0.50 log units). The surprising result is that very little decrease in RMSE occurs when two of the three parameters, σκ and qmax, are sorbate independent. However, the large standard errors present in the other models are significantly reduced. This remarkable simplification yields the single sorbate-specific parameter (ss-LNL) model. PMID:26035092

  12. Modeling Nonlinear Adsorption to Carbon with a Single Chemical Parameter: A Lognormal Langmuir Isotherm.

    PubMed

    Davis, Craig Warren; Di Toro, Dominic M

    2015-07-01

    Predictive models for linear sorption of solutes onto various media, e.g., soil organic carbon, are well-established; however, methods for predicting parameters for nonlinear isotherm models, e.g., Freundlich and Langmuir models, are not. Predicting nonlinear partition coefficients is complicated by the number of model parameters to fit n isotherms (e.g., Freundlich (2n) or Polanyi-Manes (3n)). The purpose of this paper is to present a nonlinear adsorption model with only one chemically specific parameter. To accomplish this, several simplifications to a log-normal Langmuir (LNL) isotherm model with 3n parameters were explored. A single sorbate-specific binding constant, the median Langmuir binding constant, and two global sorbent parameters; the total site density and the standard deviation of the Langmuir binding constant were employed. This single-solute specific (ss-LNL) model (2 + n parameters) was demonstrated to fit adsorption data as well as the 2n parameter Freundlich model. The LNL isotherm model is fit to four data sets composed of various chemicals sorbed to graphite, charcoal, and activated carbon. The RMS errors for the 3-, 2-, and 1-chemical specific parameter models were 0.066, 0.068, 0.069, and 0.113, respectively. The median logarithmic parameter standard errors for the four models were 1.070, 0.4537, 0.382, and 0.201 respectively. Further, the single-parameter model was the only model for which there were no standard errors of estimated parameters greater than a factor of 3 (0.50 log units). The surprising result is that very little decrease in RMSE occurs when two of the three parameters, σκ and qmax, are sorbate independent. However, the large standard errors present in the other models are significantly reduced. This remarkable simplification yields the single sorbate-specific parameter (ss-LNL) model.

  13. Investigation of simultaneous biosorption of copper(II) and chromium(VI) on dried Chlorella vulgaris from binary metal mixtures: Application of multicomponent adsorption isotherms

    SciTech Connect

    Aksu, Z.; Acikel, U.; Kutsal, T.

    1999-02-01

    Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studies the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.

  14. Hemoglobin adsorption isotherm at the silica-water interface with evanescent wave cavity ring-down spectroscopy.

    PubMed

    Martin, W Blake; Mirov, Sergey; Martyshkin, Dmitri; Venugopalan, Ramakrishna; Shaw, Andrew M

    2005-01-01

    Evanescent wave cavity ring-down spectroscopy (EW-CRDS) is used to observe the adsorption isotherm for hemoglobin (Hb) from controlled urine samples to assess the potential for rapid diagnosis in hemoglobinuria. The absorbance of Hb at 425 nm is monitored using an alexandrite laser-pumped, room temperature, LiF:F2+** color-center pulsed laser. A minimum absorbance detection level of 2.57 x 10(-4) is achieved, corresponding to a minimum detectable concentration of Hb in urea of 5.8 nM. A multilayered Hb biofilm is formed, and a minimum of eight layers are required to model the adsorption isotherm, allowing for cooperative binding within the layers and extending 56 nm into the interface. A binding constant for Hb to silica 18.23+/-7.58 x 10(6) M is derived, and a binding constant for Hb to Hb in subsequent layers is determined to be 5.631+/-0.432 x 10(5) M. Stoichiometric binding coefficients of 1.530+/-0.981 for layer one and 1.792+/-0.162 for subsequent layers suggest that cooperative binding both to the silica surface and between the layers of the biofilm is important.

  15. The study of non-linear kinetics and adsorption isotherm models for Acid Red 18 from aqueous solutions by magnetite nanoparticles and magnetite nanoparticles modified by sodium alginate.

    PubMed

    Berizi, Zohre; Hashemi, Seyed Yaser; Hadi, Mahdi; Azari, Ali; Mahvi, Amir Hosein

    2016-01-01

    Azo dyes are widely used in various industries. These substances produce toxic byproducts in aquatic environments in addition to their mutagenic and carcinogenic potential effects. In this study, the effect of magnetite nanoparticles and magnetite nanoparticles modified by sodium alginate in batch systems and nonlinear kinetic and adsorption isotherm models were investigated. Magnetite nanoparticles were synthesized by chemical co-precipitation method and then modified and used as adsorbent to adsorb Acid Red 18. After determining the optimum pH and adsorbent dose, non-equilibrium models for kinetic adsorption were tested with concentrations (25-100 mg/L) and at eight different periods of time (1-15 min) and the pseudo-first-order and pseudo-second-order non-linear models were used to describe the results. For adsorption isotherm, a contact time of 120 min was studied in different concentrations (25-100 mg/L) and the residual concentration of Acid Red 18 was obtained. The results are described by non-linear Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The optimum amounts of pH for magnetite nanoparticles and for modified ones were 3 and 5, respectively, the efficiencies were 0.75 and 0.2 g/L, respectively. According to the results sodium alginate has a high performance in adsorption of Acid Red 18. Adjusted correlation coefficients and chi-square test showed that Freundlich isotherm and then Langmuir isotherm can well describe the experimental results. In Freundlich, the value of (Kf) was 3.231 (L/g) for magnetite nanoparticles and 21.615 (L/g) for modified adsorbent. In Langmuir, the value of (qm) was 16.259 (mg/g) for magnetite nanoparticles and 73.464 (mg/g) for modified adsorbent. Comparing the Langmuir maximum calculated adsorption capacity indicated that modified adsorbent can adsorb the pollutants 6.5 times more than the other one.

  16. The study of non-linear kinetics and adsorption isotherm models for Acid Red 18 from aqueous solutions by magnetite nanoparticles and magnetite nanoparticles modified by sodium alginate.

    PubMed

    Berizi, Zohre; Hashemi, Seyed Yaser; Hadi, Mahdi; Azari, Ali; Mahvi, Amir Hosein

    2016-01-01

    Azo dyes are widely used in various industries. These substances produce toxic byproducts in aquatic environments in addition to their mutagenic and carcinogenic potential effects. In this study, the effect of magnetite nanoparticles and magnetite nanoparticles modified by sodium alginate in batch systems and nonlinear kinetic and adsorption isotherm models were investigated. Magnetite nanoparticles were synthesized by chemical co-precipitation method and then modified and used as adsorbent to adsorb Acid Red 18. After determining the optimum pH and adsorbent dose, non-equilibrium models for kinetic adsorption were tested with concentrations (25-100 mg/L) and at eight different periods of time (1-15 min) and the pseudo-first-order and pseudo-second-order non-linear models were used to describe the results. For adsorption isotherm, a contact time of 120 min was studied in different concentrations (25-100 mg/L) and the residual concentration of Acid Red 18 was obtained. The results are described by non-linear Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The optimum amounts of pH for magnetite nanoparticles and for modified ones were 3 and 5, respectively, the efficiencies were 0.75 and 0.2 g/L, respectively. According to the results sodium alginate has a high performance in adsorption of Acid Red 18. Adjusted correlation coefficients and chi-square test showed that Freundlich isotherm and then Langmuir isotherm can well describe the experimental results. In Freundlich, the value of (Kf) was 3.231 (L/g) for magnetite nanoparticles and 21.615 (L/g) for modified adsorbent. In Langmuir, the value of (qm) was 16.259 (mg/g) for magnetite nanoparticles and 73.464 (mg/g) for modified adsorbent. Comparing the Langmuir maximum calculated adsorption capacity indicated that modified adsorbent can adsorb the pollutants 6.5 times more than the other one. PMID:27642843

  17. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies.

    PubMed

    Hameed, B H; El-Khaiary, M I

    2008-06-15

    Oil palm trunk fibre (OPTF)--an agricultural solid waste--was used as low-cost adsorbent to remove malachite green (MG) from aqueous solutions. The operating variables studied were contact time, initial dye concentration, and solution pH. Equilibrium adsorption data were analyzed by three isotherms, namely the Freundlich isotherm, the Langmuir isotherm, and the multilayer adsorption isotherm. The best fit to the data was obtained with the multilayer adsorption. The monolayer adsorption capacity of OPTF was found to be 149.35 mg/g at 30 degrees C. Adsorption kinetic data were modeled using the Lagergren pseudo-first-order, Ho's pseudo-second-order and Elovich models. It was found that the Lagergren's model could be used for the prediction of the system's kinetics. The overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, then for initial MG concentrations of 25, 50, 100, 150, and 300 mg/L the rate-control changed to intraparticle diffusion at a later stage, but for initial MG concentrations 200 and 250 mg/L no evidence was found of intraparticle diffusion at any period of adsorption. It was found that with increasing the initial concentration of MG, the pore-diffusion coefficient increased while the film-diffusion coefficient decreased. PMID:18022316

  18. A site energy distribution function from Toth isotherm for adsorption of gases on heterogeneous surfaces.

    PubMed

    Kumar, K Vasanth; de Castro, M Monteiro; Martinez-Escandell, M; Molina-Sabio, M; Rodriguez-Reinoso, F

    2011-04-01

    A site energy distribution function based on a condensation approximation method is proposed for gas-phase adsorption systems following the Toth isotherm. The proposed model is successfully applied to estimate the site energy distribution of three pitch-based activated carbons (PA, PFeA and PBA) developed in our laboratory and also for other common adsorbent materials for different gas molecules. According to the proposed model the site energy distribution curves of the activated carbons are found to be exponential for hydrogen at 77 K. The site energy distribution of some of the activated carbon fibers, ambersorb, Dowex optipore, 13X Zeolite for different adsorbate molecules represents a quasi-Gaussian curve with a widened left hand side, indicating that most sites have adsorption energies lower than a statistical mean value.

  19. Adsorption on molecularly imprinted polymers of structural analogues of a template. Single-component adsorption isotherm data

    SciTech Connect

    Kim, Hyunjung; Guiochon, Georges A

    2005-10-01

    The equilibrium adsorption isotherms on two otherwise identical polymers, one imprinted with Fmoc-L-tryptophan (Fmoc-L-Trp) (MIP), the other nonimprinted (NIP), of compounds that are structural analogues of the template were acquired by frontal analysis (FA) in an acetonitrile/acetic acid (99/1 v/v) mobile phase, over a wide concentration range (from 0.005 to 50 mM). These analogues were Fmoc-L-tyrosine, Fmoc-L-serine, Fmoc-L-phenyalanine, Fmoc-glycine (Fmoc-Gly), Fmoc-L-tryptophan pentafluorophenyl ester (Fmoc-L-Trp(OPfp)), and their antipodes. These substrates have different numbers of functional groups able to interact with the 4-vinylpyridine groups of the polymer. For a given number of the functional groups, these substrates have different hydrophobicities of their side groups (as indicated by their partition coefficients (log P{sub ow}) in the octanol-water system (e.g., from 4.74 for Fmoc-Trp to 2.53 for Fmoc-Gly)). Statistical results from the fitting of the FA data to Langmuirian isotherm models, the calculation of the affinity energy distribution, and the comparison of calculated and experimental band profiles show that all these sets of FA data are best accounted for by a tri-Langmuir isotherm model, except for the data of Fmoc-L-Trp(OPfp) that are best modeled by a simple Langmuir isotherm. So, all compounds but Fmoc-L-Trp(OPfp) find three different types of adsorption sites on both the MIP and the NIP. The properties of these different types of sites were studied systematically. The results show that the affinity of the structural analogues for the NIP is controlled mostly by the number of the functional groups on the substrates and somewhat by the hydrophobicity of their side groups. These two factors control also the MIP affinity toward the enantiomers of the structural analogues that have a stereochemistry different from that of the template. In contrast, the affinity of the highest affinity sites of the MIP toward the enantiomers of these

  20. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    PubMed

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process. PMID:26711813

  1. Adsorption of malachite green by polyaniline-nickel ferrite magnetic nanocomposite: an isotherm and kinetic study

    NASA Astrophysics Data System (ADS)

    Patil, Manohar R.; Shrivastava, V. S.

    2014-11-01

    This work deals with the development of an efficient method for the removal of a MG (malachite green) dye from aqueous solution using polyaniline (PANI)-Nickel ferrite (NiFe2O4) magnetic nanocomposite. It is successfully synthesised in situ through self polymerisation of monomer aniline. Adsorptive removal studies are carried out for water soluble MG dye using PANI-Nickel ferrite magnetic nanocomposite in aqueous solution. Different parameters like dose of adsorbent, contact time, different initial conc., and pH have been studied to optimise reaction condition. It is concluded that adsorptive removal by PANI-Nickel ferrite magnetic nanocomposite is an efficient method for removing a MG dye from aqueous solution than work done before. The optimum conditions for the removal of the dye are initial concentration 30 mg l-1, adsorbent dose 5gm l-1 and pH 7. The adsorption capacity is found 4.09 mg g-1 at optimum condition 30 mg l-1. The adsorption followed pseudo-second-order kinetics. The experimental isotherm is found to fit with Langmuir equation. The prepared adsorbent is characterised by techniques SEM, EDS, XRD and VSM.

  2. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    PubMed

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process.

  3. How soil organic matter composition controls hexachlorobenzene-soil-interactions: adsorption isotherms and quantum chemical modeling.

    PubMed

    Ahmed, Ashour A; Kühn, Oliver; Aziz, Saadullah G; Hilal, Rifaat H; Leinweber, Peter

    2014-04-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soiladsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HCB adsorption. To obtain a molecular level understanding, a test set has been developed on the basis of elemental analysis which comprises 32 representative soil constituents. The calculated binding energy for HCB with each representative system shows that HCB binds to SOM stronger than to soil minerals. For SOM, HCB binds to alkylated aromatic, phenols, lignin monomers, and hydrophobic aliphatic compounds stronger than to polar aliphatic compounds confirming the above adsorption isotherms. Moreover, quantitative structure-activity relationship (QSAR) of the binding energy with independent physical properties of the test set systems for the first time indicated that the polarizability, the partial charge on the carbon atoms, and the molar volume are the most important properties controlling HCB-SOM interactions.

  4. Multiscale analysis of nitrogen adsorption and desorption isotherms in soils developed over sandstone and basic parent materials with contrasting texture

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Marinho, Mara de A.; de Abreu, Cleide A.

    2014-05-01

    Mono- and multifractal analysis of soil nitrogen adsorption isotherms (NAI) have been proven to be useful, allowing a better characterization of soil surface properties and soil porous system. Multiscale analysis of nitrogen desorption isotherms (NDI), which was less frequently performed, can also provide very valuable information. The multifractal theory was used to analyse both soil adsorption and desorption isotherms from soils developed over contrasting parent material and with different texture. We sampled 32 soil horizons from 6 soil profiles in neighbouring sites from São Paulo State, Brazil. Three of the profiles, developed over sandstone, were sandy loam or loamy, whereas the other three profiles, developed over weathered sediments or basic parent material, were clayey textured. Soil specific surface area (SSA) varied, from about 3.0 to 46 m2 g-1. Surface parameters showed a strong correlation with clay content, but they were not correlated with cation exchange capacity (CEC). The scaling properties of both nitrogen adsorption and desorption isotherms from all the studied soil horizons could be fitted reasonably well with multifractal models. Multifractal parameters from NAIs and NDIs showed great differences. The singularity spectra, f(α) of the desorption isotherms had an asymmetrically long left part and its asymmetry was in general higher compared with adsorption isotherms. Moreover, adsorption isotherms behaved like more clustered measures, showing lower entropy dimension, D1, smaller correlation dimension, D2, and higher heterogeneity than desorption isotherms. Differences in multifractal behaviour of NAIs and NDIs had been proven to be mainly related to the characteristics of the hysteretic loop measured at high relative pressures. Several multifractal parameters extracted from NAIs and NDIs also distinguished between sandy-loam and loam soils and clayey soils. Multifractal parameters calculated from NAIs and NDIs provide new insight to assess

  5. Modeling and CFD prediction for diffusion and adsorption within room with various adsorption isotherms.

    PubMed

    Murakami, S; Kato, S; Ito, K; Zhu, Q

    2003-01-01

    This paper presents physical models that are used for analyzing numerically the transportation of volatile organic compounds (VOCs) from building materials in a room. The models are based on fundamental physicochemical principles of their diffusion and adsorption/desorption (hereafter simply sorption) both in building materials and in room air. The performance of the proposed physical models is examined numerically in a test room with a technique supported by computational fluid dynamics (CFD). Two building materials are used in this study. One is a VOC emitting material for which the emission rate is mainly controlled by the internal diffusion of the material. The other is an adsorptive material that has no VOC source. It affects the room air concentration of VOCs with its sorption process. The floor is covered with an emission material made of polypropylene styrene-butadiene rubber (SBR). An adsorbent material made of coal-based activated carbon is spread over the sidewalls. The results of numerical prediction show that the physical models and their numerical simulations explain well the mechanism of the transportation of VOCs in a room.

  6. Effect of 300 and 500 MPa pressure treatments on starch-water adsorption/desorption isotherms and hysteresis

    NASA Astrophysics Data System (ADS)

    Santos, Mauro D.; Cunha, Pedro; Queirós, Rui P.; Fidalgo, Liliana G.; Delgadillo, Ivonne; Saraiva, Jorge A.

    2014-10-01

    Pressure treatments of 300 and 500 MPa during 15 min were found to change starch-water sorption (adsorption and desorption) isotherms and the hysteresis effect, particularly the 500 MPa. This last treatment shifted the adsorption/desorption isotherms downward, compared with non-treated starch and starch treated at 300 MPa. The observed hysteresis effect decreased with the increase in pressure level in the whole aw range, indicating that adsorption and desorption isotherms became closer. Guggenheim-Anderson-De Boer and Brunauer-Emmett-Teller model parameters Cb, Cg, K and Mm also showed changes caused by pressure, the latter being lower in the pressure-processed samples, thus indicating possible changes on microbial and (bio)chemical stabilities of pressure-processed food products containing starch.

  7. Evaluation of gaseous fluorocarbon adsorption isotherms on porous adsorbents under high pressure

    SciTech Connect

    Kaliappan, S.; Furuya, E.G.; Noll, K.E.; Chang, H.T.; Wang, H.C.

    1996-11-01

    In this study data have been collected to aid in the design of a control system that will remove fluorocarbons by adsorbing onto porous adsorbents. A bench scale experimental adsorption system had been designed using high accuracy MKS pressure transducers of 10,000 torr (two nos.) and a 100 torr connected to digital readout units. Tetrafluoromethane (CF{sub 4}) one of the fluorinated carbon family has been selected to evaluate the adsorption characteristics on porous adsorbents. The CF{sub 4} was charged to a sample reservoir in the test system at 200 psig pressure and at 22 C was allowed into an adsorption chamber at small increment of pressure rise. The pressure drop, using a Valydine PS 309 differential pressure gauge from the sample reservoir and the pressure buildup in the adsorption chamber were measured and the amount of CF{sub 4} adsorbed onto the adsorbents was calculated using ideal gas law. Various adsorbents, molecular sieve 13X, Silicagel (14 x 20), Beads Activated Carbon, Granular Activated Carbons PCB 6 x 16, BPL 4 x 10, F300, and F400 had been studied. It has been found that GAC-PCB 6 x 16 has the highest adsorbing capacity of 0.51 gm/gm at the conditions established. GAC-F300 had the second highest adsorbing capacity of 0.413 gm/gm, among all the adsorbents tested. The isotherms were analyzed using several equations employing both two parameters and three parameters. The relationship between the constants and physical properties of adsorbent solids and adsorbate molecules is discussed. The result of this study will be utilized to design a pressure swing fluorocarbon adsorption system that can be economically (using recycle of the collected fluorocarbons) applied to fluorocarbon removal in the electronic industry.

  8. Bayesian and Frequentist Methods for Estimating Joint Uncertainty of Freundlich Adsorption Isotherm Fitting Parameters

    EPA Science Inventory

    In this paper, we present methods for estimating Freundlich isotherm fitting parameters (K and N) and their joint uncertainty, which have been implemented into the freeware software platforms R and WinBUGS. These estimates were determined by both Frequentist and Bayesian analyse...

  9. Study of the kinetics and the adsorption isotherm of cadmium(II) from aqueous solution using green algae (Ulva lactuca) biomass.

    PubMed

    Asnaoui, H; Laaziri, A; Khalis, M

    2015-01-01

    Batch experiments were conducted to study the adsorption of hazardous cadmium onto low-cost algae biomass in aqueous solution with respect to concentration of adsorbate, adsorbent dosage, contact time, solution pH and temperature. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of cadmium onto Ulva lactuca biomass. Experimental data were tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of Cd(II) followed well pseudo-second-order kinetics. Langmuir and Freundlich models were applied to describe the biosorption isotherm of the metal ions by Ulva lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of Ulva lactuca biomass for cadmium was found to be 3.02 mg/g at pH 5.60 min equilibrium time and 20 °C. The mean free energy which was calculated was 6.24 kJ/mol for Cd(II) biosorption, which shows that the adsorption is physical. The calculated thermodynamic parameters (ΔG0, ΔH0 and ΔS0) showed that the biosorption of Cd(II) onto Ulva lactuca biomass was feasible, spontaneous and exothermic under examined conditions. The results indicate that algae Ulva lactuca could be employed as a low-cost material for the removal of metal ions from aqueous solution. PMID:26524441

  10. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies.

    PubMed

    Lin, Kun-Yi Andrew; Liu, Yu-Ting; Chen, Shen-Yi

    2016-01-01

    To provide safe drinking water, fluoride in water must be removed and adsorption processes appear to be the most widely used method. Metal organic frameworks (MOFs) represent a new class of adsorbents that have been used in various adsorption applications. To study the adsorption mechanism of fluoride to MOFs in water and obtain related adsorption parameters, we synthesized a zirconium-based MOF with a primary amine group on its ligand, named UiO-66-NH2. The kinetics, adsorption isotherm and thermodynamics of fluoride adsorption to UiO-66-NH2 were investigated. The crystalline structure of UiO-66-NH2 remained intact and the local structure of zirconium in UiO-66-NH2 did not change significantly after being exposed to fluoride. The kinetics of the fluoride adsorption in UiO-66-NH2 could be well represented by the pseudo second order rate law. The enthalpy of the adsorption indicates that the F(-) adsorption to UiO-66-NH2 was classified as a physical adsorption. However, the comparison between the adsorption capacities of UiO-66-NH2 and UiO-66 suggests that the fluoride adsorption to UiO-66-NH2 might primarily involve a strong interaction between F(-) and the metal site. The fluoride adsorption capacity of UiO-66-NH2 was found to decrease when pH>7. While the presence of chloride/bromide ions did not noticeably change the adsorption capacity of UiO-66-NH2, the ionic surfactants slightly affected the adsorption capacity of UiO-66-NH2. These findings provide insights to further optimize the adsorption process for removal of fluoride using zirconium-based MOFs. PMID:26397913

  11. Adsorption of methylene blue onto poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes: kinetics, isotherm and thermodynamics analysis.

    PubMed

    Chen, Zhonghui; Zhang, Jianan; Fu, Jianwei; Wang, Minghuan; Wang, Xuzhe; Han, Runping; Xu, Qun

    2014-05-30

    Poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) nanotubes, an excellent adsorbent, were successfully synthesized by an in situ template method and used for the removal of methylene blue (MB) from aqueous solution. The morphology and structures of as-synthesized PZS nanotubes were characterized by scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopy and N2 adsorption/desorption isotherms. The effects of temperature, concentration, pH and contact time on MB adsorption were studied. It was favorable for adsorption under the condition of basic and high temperature. The pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to fit adsorption data in the kinetic studies. And results showed that the adsorption kinetics were more accurately described by the pseudo-second-order model. The equilibrium isotherms were conducted using Freundlich and Langmuir models. It has been demonstrated that the better agreement was Langmuir isotherm with correlation coefficient of 0.9933, equilibrium absorption capacity of 69.16mg/g and the corresponding contact time of 15min. Thermodynamic analyses showed that MB adsorption onto the PZS nanotubes was endothermic and spontaneous and it was also a physisorption process.

  12. Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study

    PubMed Central

    2013-01-01

    The phenolic compounds are known by their carcinogenicity and high toxicity as well as creating unpleasant taste and odor in water resources. The present study develops a cost-effective technology for the treatment of water contaminated with phenolic compounds, including Phenol (Ph), 2-chlorophenol (2-CP), and 4-chlorophenol (4-CP). So, two sorbents, rice bran ash (RBA) and biomass of brown algae, Cystoseiraindica, were used and results were compared with the commercially granular activated carbon (GAC). The phenolic compounds were determined using a high performance liquid chromatography (HPLC) under batch equilibrium conditions. The effects of contact time, pH, initial adsorbate concentration, and adsorbent dosages on the removal efficiency were studied. The adsorption data were simulated by isotherm and kinetic models. Results indicated that RBA and GAC had the lowest efficiency for the removal of 2-CP, while the order of removal efficiency for C. indica biomass was as follows: 2-CP > 4-CP > phenol. The efficiency of GAC was higher than those of other adsorbents for all of the phenolic compounds. Furthermore, the adsorption capacity of RBA was found to be higher than that of C. indica biomass. The optimal initial pH for the removal of phenol, 2-CP and 4-CP was determined to be 5, 7, and 7 for RBA, GAC, and algal biomass, respectively. Kinetic studies suggested that the pseudo-second order best fitted the kinetic data. PMID:24355013

  13. Evaluation of lead(II) immobilization by a vermicompost using adsorption isotherms and IR spectroscopy.

    PubMed

    Carrasquero-Durán, Armando; Flores, Iraima

    2009-02-01

    The immobilization of lead ions by a vermicompost with calcite added was evaluated by adsorption isotherms and the results were explained on basis of the pH dependent surface charge and by IR spectroscopy. The results showed maximum adsorption values between 113.6 mg g(-1) (33 degrees C) and 123.5mg g(-1) (50 degrees C). The point of zero net charge (PZC) was 7.5+/-0.1, indicating the presence of a positive surface charge at the pH of batch experiments. The differences in the IR spectra at pH 3.8 and 7.0 in the region from 1800 to 1300 cm(-1), were interpreted on the basis of the carboxyl acid ionization, that reduced the band intensity around 1725 cm(-1), producing signals at 1550 cm(-1) and 1390 cm(-1) of carboxylate groups. Similar changes were detected at pH 3.8 when Pb2+ was present suggesting that the ion complexation takes place by a cationic exchange equilibrium, between the protons and Pb2+ ions.

  14. Adsorption isotherms and kinetics of activated carbons produced from coals of different ranks.

    PubMed

    Purevsuren, B; Lin, Chin-Jung; Davaajav, Y; Ariunaa, A; Batbileg, S; Avid, B; Jargalmaa, S; Huang, Yu; Liou, Sofia Ya-Hsuan

    2015-01-01

    Activated carbons (ACs) from six coals, ranging from low-rank lignite brown coal to high-rank stone coal, were utilized as adsorbents to remove basic methylene blue (MB) from an aqueous solution. The surface properties of the obtained ACs were characterized via thermal analysis, N2 isothermal sorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. As coal rank decreased, an increase in the heterogeneity of the pore structures and abundance of oxygen-containing functional groups increased MB coverage on its surface. The equilibrium data fitted well with the Langmuir model, and adsorption capacity of MB ranged from 51.8 to 344.8 mg g⁻¹. Good correlation coefficients were obtained using the intra-particle diffusion model, indicating that the adsorption of MB onto ACs is diffusion controlled. The values of the effective diffusion coefficient ranged from 0.61 × 10⁻¹⁰ to 7.1 × 10⁻¹⁰ m² s⁻¹, indicating that ACs from lower-rank coals have higher effective diffusivities. Among all the ACs obtained from selected coals, the AC from low-rank lignite brown coal was the most effective in removing MB from an aqueous solution. PMID:25909729

  15. Predicting CH4 adsorption capacity of microporous carbon using N2 isotherm and a new analytical model

    USGS Publications Warehouse

    Sun, Jielun; Chen, S.; Rostam-Abadi, M.; Rood, M.J.

    1998-01-01

    A new analytical pore size distribution (PSD) model was developed to predict CH4 adsorption (storage) capacity of microporous adsorbent carbon. The model is based on a 3-D adsorption isotherm equation, derived from statistical mechanical principles. Least squares error minimization is used to solve the PSD without any pre-assumed distribution function. In comparison with several well-accepted analytical methods from the literature, this 3-D model offers relatively realistic PSD description for select reference materials, including activated carbon fibers. N2 and CH4 adsorption data were correlated using the 3-D model for commercial carbons BPL and AX-21. Predicted CH4 adsorption isotherms, based on N2 adsorption at 77 K, were in reasonable agreement with the experimental CH4 isotherms. Modeling results indicate that not all the pores contribute the same percentage Vm/Vs for CH4 storage due to different adsorbed CH4 densities. Pores near 8-9 A?? shows higher Vm/Vs on the equivalent volume basis than does larger pores.

  16. Isothermal compressibility determination across Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Poveda-Cuevas, F. J.; Castilho, P. C. M.; Mercado-Gutierrez, E. D.; Fritsch, A. R.; Muniz, S. R.; Lucioni, E.; Roati, G.; Bagnato, V. S.

    2015-07-01

    We apply the global thermodynamic variables approach to experimentally determine the isothermal compressibility parameter κT of a trapped Bose gas across the phase transition. We demonstrate the behavior of κT around the critical pressure, revealing the second-order nature of the phase transition. Compressibility is the most important susceptibility to characterize the system. The use of global variables shows advantages with respect to the usual local density approximation method and can be applied to a broad range of situations.

  17. Adsorption of arsenite and arsenate onto ferrihydrite under competitive conditions : kinetics, isotherm, and pH effect

    NASA Astrophysics Data System (ADS)

    Qi, P.; Pichler, T.

    2014-12-01

    Competitive adsorption of As(III) and As(V) onto ferrihydrite was investigated in both single and bi-component systems using batch experiments. The adsorption of As(III) was inhibited by the presence of As(V) over the whole pH range when compared to As(III) only conditions. As(V) was adsorbed to a similar extent with As(III) at low pH under competitive conditions. Isotherm studies also showed that As(V) significantly decreased the adsorption of As(III) at pH 5, while the presence of As(III) had a small effect on As(V) adsorption. The Freundlich isotherm equation was successfully fitted to both single and bi-component adsorption scenarios of As(III) and As(V). At the same time intervals in the first 2 h under competitive conditions, kinetics studies suggested that the amount of As(III) adsorbed in the presence of As(V) was reduced compared to the single component system at low pH. The effect of As(III) on the adsorption rate of As(V) was negligible. A pseudo-second-order model could be fitted perfectly to each species under both single and competitive conditions. The spectra of ferrihydrite with adsorbed As(III), As(V) or both As species have a similar shape by ATR-FTIR, indicating that competition may be at play.

  18. Optimizing available phosphorus in calcareous soils fertilized with diammonium phosphate and phosphoric acid using Freundlich adsorption isotherm.

    PubMed

    Naeem, Asif; Akhtar, Muhammad; Ahmad, Waqar

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC(b/a)) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L(-1)) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L(-1), compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878

  19. Determination of the Moisture-Sorption Isotherms and Isosteric Heat of Henna Leaves

    NASA Astrophysics Data System (ADS)

    Bennaceur, S.; Draoui, B.; Touati, B.; Benseddik, A.; Saad, A.; Bennamoun, L.

    2015-01-01

    Equilibrium moisture desorption and adsorption isotherms of Lawsonia inermis L. (commonly known as henna) leaves at temperatures of 30, 40 and 50°C with a water activity ranging from 0.057 to 0.898 were obtained by the gravimetric-static method. It was established that when the temperature of these leaves increases, their moisture content increases too with a hysteresis effect. The experimental data on the sorption of the indicated leaves were compared with the corresponding calculation data obtained with the use of the GAB, modified BET, Henderson-Thompson, modified Halsey, modified Oswin, and Peleg models. Evaluation of these models on the basis of statistical processing of the data obtained with them, including the calculus of the standard error and the correlation coefficient, has shown that the GAB and Peleg models represent sorption curves more adequately. The net isosteric heats of desorption and adsorption of henna leaves were determined by the sorption isotherms constructed using the Clausius-Clapeyron equation. An expression for predicting these thermodynamic properties of plants is proposed.

  20. Methods for determining the CO2 sorption capacity of coal: Experimental and theoretical high pressure isotherms

    NASA Astrophysics Data System (ADS)

    Weishauptová, Zuzana; Přibyl, Oldřich

    2016-04-01

    One way to reduce CO2 emissions discharged into the atmosphere is by trapping it and storing it in suitable repositories, including coal-bearing strata. The history of coal mining in the Czech Republic is very rich but most of the mines have been closed down in recent years. However, the unmined coal seams are interesting for the purposes of CO2 storage, especially due the opportunities they offer for recovering coal-bed methane. Mine structures of this kind can be found in large parts of the Upper Silesian Basin, where the total storage capacity has been estimated at about 380 Mt CO2. This is an interesting storage potential. In order to identify a suitable high-capacity locality for CO2 storage within a coal seam, it is necessary to study not only the geological conditions within the seam, but also the textural properties of the coal, which control the mechanism and the extent of the storage. The major storage mechanism is by sorption processes that take place in the coal porous system (adsorption in micropores and on the surface of meso/macropores, and absorption in the macromolecular structure). The CO2 sorption capacity is generally indirectly determined in a laboratory by measuring the amount of carbon dioxide captured in a coal sample at a pressure and temperature corresponding to the in situ conditions, using high pressure sorption techniques. The low pressure sorption technique can be used, by setting the partial volumes of CO2 according to its binding and storage mode. The sorption capacity is determined by extrapolation to the saturation pressure as the sum of the individual partially sorbed volumes. The aim of the study was to determine the partial volumes of CO2 bound by different mechanisms in the individual parts of the porous system of the coal, and to compare the sum with the results obtained by the high pressure isotherm. The study was carried out with 3 samples from a borehole survey in the Czech part of the Upper Silesian Basin. A high pressure

  1. Rapid Adsorption of Copper(II) and Lead(II) by Rice Straw/Fe3O4 Nanocomposite: Optimization, Equilibrium Isotherms, and Adsorption Kinetics Study

    PubMed Central

    Khandanlou, Roshanak; Ahmad, Mansor B.; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles. PMID:25815470

  2. Rapid adsorption of copper(II) and lead(II) by rice straw/Fe₃O₄ nanocomposite: optimization, equilibrium isotherms, and adsorption kinetics study.

    PubMed

    Khandanlou, Roshanak; Ahmad, Mansor B; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles.

  3. Effect of the endcapping of reversed-phase high-performance liquid chromatography adsorbents on the adsorption isotherm

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2005-09-01

    The retention mechanisms of n-propylbenzoate, 4-t ert-butylphenol, and caffeine on the endcapped Symmetry-C{sub 18} and the non-endcapped Resolve-C{sub 18} are compared. The adsorption isotherms were measured by frontal analysis (FA), using as the mobile phase mixtures of methanol or acetonitrile and water of various compositions. The isotherm data were modeled and the adsorption energy distributions calculated. The surface heterogeneity increases faster with decreasing methanol concentration on the non-endcapped than on the endcapped adsorbent. For instance, for methanol concentrations exceeding 30% (v/v), the adsorption of caffeine is accounted for by assuming three and two different types of adsorption sites on Resolve-C{sub 18} and Symmetry-C{sub 18}, respectively. This is explained by the effect of the mobile phase composition on the structure of the C{sub 18}-bonded layer. The bare surface of bonded silica appears more accessible to solute molecules at high water contents in the mobile phase. On the other hand, replacing methanol by a stronger organic modifier like acetonitrile dampens the differences between non-endcapped and endcapped stationary phase and decreases the degree of surface heterogeneity of the adsorbent. For instance, at acetonitrile concentrations exceeding 20%, the surface appears nearly homogeneous for the adsorption of caffeine.

  4. Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies.

    PubMed

    Shan, Ran-ran; Yan, Liang-guo; Yang, Kun; Hao, Yuan-feng; Du, Bin

    2015-12-15

    Understanding the adsorption mechanisms of metal cations on the surfaces of solids is important for determining the fate of these metals in water and wastewater treatment. The adsorption kinetic, isothermal, thermodynamic and mechanistic properties of cadmium (Cd(II)) in an aqueous solution containing Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxide (LDH) were studied. The results demonstrated that the adsorption kinetic and isotherm data followed the pseudo-second-order model and the Langmuir equation, respectively. The adsorption process of Cd(II) was feasible, spontaneous and endothermic in nature. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to explain the adsorption mechanisms. The characteristic XRD peaks and FTIR bands of CdCO3 emerged in the LDH spectra after Cd(II) adsorption, which indicated that the adsorption of Cd(II) by LDHs occurred mainly via CdCO3 precipitation, surface adsorption and surface complexation. Furthermore, the magnetic Fe3O4/Mg-Al-CO3-LDH can be quickly and easily separated using a magnet before and after the adsorption process.

  5. Adsorption Isotherms for Xenon and Krypton using INL HZ-PAN and AgZ-PAN Sorbents

    SciTech Connect

    Troy G. Garn; Mitchell Greenhalgh; Veronica J. Rutledge; Jack D. Law

    2014-08-01

    The generation of adsorption isotherms compliments the scale-up of off-gas processes used to control the emission of encapsulated radioactive volatile fission and activation products released during Used Nuclear Fuel (UNF) reprocessing activities. A series of experiments were conducted to obtain capacity results for varying Kr and Xe gas concentrations using HZ-PAN and AgZ-PAN engineered form sorbents. Gas compositions for Kr ranged from 150-40,000 ppmv and 250-5020 ppmv for Xe in a helium balance. The experiments were all performed at 220 K at a flowrate of 50 sccm. Acquired capacities were then respectively fit to the Langmuir equation using the Langmuir linear regression method to obtain the equilibrium parameters Qmax and Keq. Generated experimental adsorption isotherms were then plotted with the Langmuir predicted isotherms to illustrate agreement between the two. The Langmuir parameters were provided for input into the OSPREY model to predict breakthrough of single component adsorption of Kr and Xe on HZ-PAN and AgZ-PAN sorbents at the experimental conditions tested. Kr and Xe capacities resulting from model breakthrough predictions were then compared to experimental capacities for model validation.

  6. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics.

  7. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics. PMID:26512858

  8. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent.

    PubMed

    Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz

    2015-11-01

    In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.

  9. Generalized adsorption isotherms for molecular and dissociative adsorption of a polar molecular species on two polar surface geometries: Perovskite (100) (Pm-3m) and fluorite (111) (Fm-3m)

    DOE PAGES

    Danielson, Thomas; Hin, Celine; Savara, Aditya

    2016-08-10

    Lattice based kinetic Monte Carlo (KMC) simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and for estimating the coverage at a certain pressure. The generalized form has been calculatedmore » by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. Finally, the equations have been shown to be general for any value of the adsorption equilibrium constant.« less

  10. Generalized adsorption isotherms for molecular and dissociative adsorption of a polar molecular species on two polar surface geometries: Perovskite (100) (Pm-3m) and fluorite (111) (Fm-3m)

    NASA Astrophysics Data System (ADS)

    Danielson, Thomas; Hin, Celine; Savara, Aditya

    2016-08-01

    Lattice based kinetic Monte Carlo simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and, conversely, for estimating the coverage at a certain pressure. The generalized form has been calculated by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. The equations have been shown to be general for any value of the adsorption equilibrium constant.

  11. Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N2 and CO2 adsorption isotherms? Simulation results for a realistic carbon model

    NASA Astrophysics Data System (ADS)

    Furmaniak, Sylwester; Terzyk, Artur P.; Gauden, Piotr A.; Harris, Peter J. F.; Kowalczyk, Piotr

    2009-08-01

    Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N2 and CO2 isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO2, and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions.

  12. Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N(2) and CO(2) adsorption isotherms? Simulation results for a realistic carbon model.

    PubMed

    Furmaniak, Sylwester; Terzyk, Artur P; Gauden, Piotr A; Harris, Peter J F; Kowalczyk, Piotr

    2009-08-01

    Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N(2) and CO(2) isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO(2), and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions. PMID:21828590

  13. Investigation of adsorption kinetics and isotherm of cellulase and B-Glucosidase on lignocellulosic substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clear understanding of enzyme adsorption during enzymatic hydrolysis of lignocellulosic biomass is essential to enhance the cost-efficiency of hydrolysis. However, conclusions from literatures often contradicted each other because enzyme adsorption is enzyme, biomass/pretreatment and experimental co...

  14. Liquid phase adsorptions of Rhodamine B dye onto raw and chitosan supported mesoporous adsorbents: isotherms and kinetics studies

    NASA Astrophysics Data System (ADS)

    Inyinbor, A. A.; Adekola, F. A.; Olatunji, G. A.

    2016-04-01

    Irvingia gabonensis endocarp waste was charred (DNc) and subsequently coated with chitosan (CCDNc). Physicochemical characteristics of the two adsorbents were established, while Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area methods were further employed for characterization. Efficiencies of the prepared adsorbents in the uptake of Rhodamine B (RhB) from aqueous effluent were investigated and adsorption data were tested using four isotherms and four kinetics models. The BET surface areas of the prepared adsorbent were 0.0092 and 4.99 m2/g for DNc and CCDNc, respectively, and maximum adsorption was recorded at pH between 3 and 4, respectively. While monolayer adsorption dominates the uptake of RhB onto DNc, uptake of RhB onto CCDNc was onto heterogeneous surface. The maximum monolayer adsorption capacities (q max) obtained from the Langmuir equation are 52.90 and 217.39 mg/g for DNc and CCDNc, respectively. Pseudo second order and Elovich kinetic models well described the kinetics of the two adsorption processes. The mean sorption energy (E) calculated from the D-R model and desorption efficiencies suggests that while the uptake of RhB onto DNc was physical in nature, for RhB-CCDNc system chemisorption dominates.

  15. How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments?

    PubMed

    Terzyk, Artur P; Furmaniak, Sylwester; Harris, Peter J F; Gauden, Piotr A; Włoch, Jerzy; Kowalczyk, Piotr; Rychlicki, Gerhard

    2007-11-28

    A plausible model for the structure of non-graphitizing carbon is one which consists of curved, fullerene-like fragments grouped together in a random arrangement. Although this model was proposed several years ago, there have been no attempts to calculate the properties of such a structure. Here, we determine the density, pore size distribution and adsorption properties of a model porous carbon constructed from fullerene-like elements. Using the method proposed recently by Bhattacharya and Gubbins (BG), which was tested in this study for ideal and defective carbon slits, the pore size distributions (PSDs) of the initial model and two related carbon models are calculated. The obtained PSD curves show that two structures are micro-mesoporous (with different ratio of micro/mesopores) and the third is strictly microporous. Using the grand canonical Monte Carlo (GCMC) method, adsorption isotherms of Ar (87 K) are simulated for all the structures. Finally PSD curves are calculated using the Horvath-Kawazoe, non-local density functional theory (NLDFT), Nguyen and Do, and Barrett-Joyner-Halenda (BJH) approaches, and compared with those predicted by the BG method. This is the first study in which different methods of calculation of PSDs for carbons from adsorption data can be really verified, since absolute (i.e. true) PSDs are obtained using the BG method. This is also the first study reporting the results of computer simulations of adsorption on fullerene-like carbon models.

  16. Enzyme kinetics determined by single-injection isothermal titration calorimetry.

    PubMed

    Transtrum, Mark K; Hansen, Lee D; Quinn, Colette

    2015-04-01

    The purposes of this paper are (a) to examine the effect of calorimeter time constant (τ) on heat rate data from a single enzyme injection into substrate in an isothermal titration calorimeter (ITC), (b) to provide information that can be used to predict the optimum experimental conditions for determining the rate constant (k2), Michaelis constant (KM), and enthalpy change of the reaction (ΔRH), and (c) to describe methods for evaluating these parameters. We find that KM, k2 and ΔRH can be accurately estimated without correcting for the calorimeter time constant, τ, if (k2E/KM), where E is the total active enzyme concentration, is between 0.1/τ and 1/τ and the reaction goes to at least 99% completion. If experimental conditions are outside this domain and no correction is made for τ, errors in the inferred parameters quickly become unreasonable. A method for fitting single-injection data to the Michaelis-Menten or Briggs-Haldane model to simultaneously evaluate KM, k2, ΔRH, and τ is described and validated with experimental data. All four of these parameters can be accurately inferred provided the reaction time constant (k2E/KM) is larger than 1/τ and the data include enzyme saturated conditions.

  17. Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models.

    PubMed

    Tosun, Ismail

    2012-03-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  18. Ammonium Removal from Aqueous Solutions by Clinoptilolite: Determination of Isotherm and Thermodynamic Parameters and Comparison of Kinetics by the Double Exponential Model and Conventional Kinetic Models

    PubMed Central

    Tosun, İsmail

    2012-01-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients. PMID:22690177

  19. Crystallisation kinetics of some archetypal ionic liquids: isothermal and non-isothermal determination of the Avrami exponent.

    PubMed

    Pas, Steven J; Dargusch, Matthew S; MacFarlane, Douglas R

    2011-07-01

    The properties of ionic liquids give rise to applications in diverse technology areas including mechanical engineering, mining, aerospace and defence. The arbitrary physical property that defines an ionic liquid is a melting point below 100 °C, and as such, an understanding of crystallisation phenomena is extremely important. This is the first report dealing with the mechanism of crystallisation in ionic liquids. Assuming crystallisation of the ionic liquids is a thermal or mass diffusion-controlled process, the values of the isothermal Avrami exponent obtained from three different ionic liquids with three different anions and cations all indicate that growth occurs with a decreasing nucleation rate (n=1.8-2.2). For one of the ionic liquids it was possible to avoid crystallisation by fast cooling and then observe a devitrification upon heating through the glass transition. The isothermal Avrami exponent of devitrification suggested growth with an increasing nucleating rate (n=4.1), compared to a decreasing nucleation rate when crystallisation occurs on cooling from the melt (n=2.0). Two non-isothermal methods were employed to determine the Avrami exponent of devitrification. Both non-isothermal Avrami exponents were in agreement with the isothermal case (n=4.0-4.15). The applicability of JMAK theory suggests that the nucleation event in the ionic liquids selected is a random stochastic process in the volume of the material. Agreement between the isothermal and non-isothermal techniques for determining the Avrami exponent of devitrification suggests that the pre-exponential factor and the activation energy are independent of thermal history. The heating rate dependence of the glass transition enabled the calculation of the fragility index, which suggests that the ionic liquid is a "strong" glass former. This suggests that the temperature dependence of the rate constant could be close to Arrhenius, as assumed by JMAK theory. More generally, therefore, it can be

  20. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies.

    PubMed

    Subbaiah, Munagapati Venkata; Kim, Dong-Su

    2016-06-01

    Present research discussed the utilization of aminated pumpkin seed powder (APSP) as an adsorbent for methyl orange (MO) removal from aqueous solution. Batch sorption experiments were carried to evaluate the influence of pH, initial dye concentration, contact time, and temperature. The APSP was characterized by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The experimental equilibrium adsorption data were fitted using two two-parameter models (Langmuir and Freundlich) and two three-parameter models (Sips and Toth). Langmuir and Sips isotherms provided the best model for MO adsorption data. The maximum monolayer sorption capacity was found to be 200.3mg/g based on the Langmuir isotherm model. The pseudo-first-order and pseudo-second-order model equations were used to analyze the kinetic data of the adsorption process and the data was fitted well with the pseudo-second-order kinetic model (R(2)>0.97). The calculated thermodynamic parameters such as ΔG(0), ΔH(0) and ΔS(0) from experimental data showed that the sorption of MO onto APSP was feasible, spontaneous and endothermic in the temperature range 298-318 K. The FTIR results revealed that amine and carboxyl functional groups present on the surface of APSP. The SEM results show that APSP has an irregular and porous surface which is adequate morphology for dye adsorption. Desorption experiments were carried to explore the feasibility of adsorbent regeneration and the adsorbed MO from APSP was desorbed using 0.1M NaOH with an efficiency of 93.5%. Findings of the present study indicated that APSP can be successfully used for removal of MO from aqueous solution. PMID:26921544

  1. Description of Chemically and Thermally Treated Multi-Walled Carbon Nanotubes Using Sequential Decomposition of Adsorption Isotherms

    NASA Astrophysics Data System (ADS)

    Albesa, Alberto G.; Rafti, Matías; Vicente, José Luis

    2016-03-01

    The effect of wet acid oxidation by means of sulfuric/nitric acid mixtures, and high-temperature treatment of commercial arc-discharge synthesized multi-walled carbon nanotubes (MWCNTs) was studied. In order to analyze the adsorption capacities of differently treated MWCNTs, we employed a multistep method that considers separately different pressure ranges (zones) on the experimentally obtained isotherms. The method is based on simple gas isotherm measurements (N2, CO2, CH4, etc.). Low pressure ranges can be described using Dubinin’s model, while high pressure regimes can be fitted using different models such as BET multilayer and Freundlich equations. This analysis allows to elucidate how different substrate treatments (chemical and thermal) can affect the adsorbate-adsorbent interactions; moreover, theoretical description of adsorbate-adsorbate interactions can be improved if a combination of adsorption mechanisms are used instead of a unique model. The results hereby presented also show that, while MWCNTs are a promising material for storage applications, gas separation applications should carefully consider the effect of wide nanotube size distribution present on samples after activation procedures.

  2. Dextran-grafted cation exchanger based on superporous agarose gel: adsorption isotherms, uptake kinetics and dynamic protein adsorption performance.

    PubMed

    Shi, Qing-Hong; Jia, Guo-Dong; Sun, Yan

    2010-07-30

    A novel chromatographic medium for high-capacity protein adsorption was fabricated by grafting dextran (40kDa) onto the pore surfaces of superporous agarose (SA) beads. The bead was denoted as D-SA. D-SA, SA and homogeneous agarose (HA) beads were modified with sulfopropyl (SP) group to prepare cation exchangers, and the adsorption and uptake of lysozyme on all three cation-exchange chromatographic beads (SP-HA, SP-SA and SP-D-SA) were investigated at salt concentrations of 6-50mmol/L. Static adsorption experiments showed that the adsorption capacity of SP-D-SA (2.24mmol/g) was 78% higher than that of SP-SA (1.26mmol/g) and 54% higher than that of SP-HA (1.45mmol/g) at a salt concentration of 6mmol/L. Moreover, salt concentration had less influence on the adsorption capacity and dissociation constant of SP-D-SA than it did on SP-HA, suggesting that dextran-grafted superporous bead is a more potent architecture for chromatographic beads. In the dynamic uptake of lysozyme to the three cation-exchange beads, the D(e)/D(0) (the ratio of effective pore diffusivity to free solution diffusivity) values of 1.6-2.0 were obtained in SA-D-SA, indicating that effective pore diffusivities of SP-D-SA were about two times higher than free solution diffusivity for lysozyme. At 6mmol/L NaCl, the D(e) value in SA-D-SA (22.0x10(-11)m(2)/s) was 14.4-fold greater than that in SP-HA. Due to the superior uptake kinetics in SA-D-SA, the highest dynamic binding capacity (DBC) and adsorption efficiency (the ratio of DBC to static adsorption capacity) was likewise found in SP-D-SA. It is thus confirmed that SP-D-SA has combined the advantages of superporous matrix structure and drafted ligand chemistry in mass transport and offers a new opportunity for the development of high-performance protein chromatography.

  3. Adsorptive behavior and electrochemical determination of the anti-fungal agent ketoconazole.

    PubMed

    Peng, T Z; Cheng, Q; Yang, C F

    2001-08-01

    The adsorptive properties and electrochemical behavior of ketoconazole, an oral anti-fungal agent, are demonstrated at a glassy carbon electrode. The adsorption of the compound obeys the Frumkin isotherm with an interaction factor (alpha) of 0.985 and adsorptive coefficient (beta) of 1.98 x 10(6) L mol(-1). The Gibbs energy of adsorption (deltaG) is -3.59 x 10(4) J mol(-1) at 25 degrees C. A very sensitive electroanalytical method has been developed for determination of the drug with a detection limit of 4.0 x 10(-11) mol L(-1). Relationships between stripping current and concentration of ketoconazole were linear in the range 10(-6)-10(-10) mol L(-1) with different preconcentration periods. The method has been used to measure the ketoconazole content of tablets.

  4. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO₂ nanoparticles from aqueous media.

    PubMed

    Shaker, Medhat A; Yakout, Amr A

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51±3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, (1)H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r(2)) and non-linear Chi-square (χ(2)) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters.

  5. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO2 nanoparticles from aqueous media

    NASA Astrophysics Data System (ADS)

    Shaker, Medhat A.; Yakout, Amr A.

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51 ± 3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, 1H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r2) and non-linear Chi-square (χ2) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters.

  6. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO₂ nanoparticles from aqueous media.

    PubMed

    Shaker, Medhat A; Yakout, Amr A

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51±3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, (1)H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r(2)) and non-linear Chi-square (χ(2)) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters. PMID:26520475

  7. Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Albumin is the most abundant protein found in healing wounds. Traditional and chromatogrpahic protein isotherms of albumin binding on modified cotton fibers are useful in understanding albumin binding to cellulose wound dressings. An important consideration in the design of cellulosic wound dressin...

  8. Determination of coalbed methane potential and gas adsorption capacity in Western Kentucky coals

    USGS Publications Warehouse

    Mardon, S.M.; Takacs, K.G.; Hower, J.C.; Eble, C.F.; Mastalerz, Maria

    2006-01-01

    The Illinois Basin has not been developed for Coalbed Methane (CBM) production. It is imperative to determine both gas content and other parameters for the Kentucky portion of the Illinois Basin if exploration is to progress and production is to occur in this area. This research is part of a larger project being conducted by the Kentucky Geological Survey to evaluate the CBM production of Pennsylvanian-age western Kentucky coals in Ohio, Webster, and Union counties using methane adsorption isotherms, direct gas desorption measurements, and chemical analyses of coal and gas. This research will investigate relationships between CBM potential and petrographic, surface area, pore size, and gas adsorption isotherm analyses of the coals. Maceral and reflectance analyses are being conducted at the Center for Applied Energy Research. At the Indiana Geological Survey, the surface area and pore size of the coals will be analyzed using a Micrometrics ASAP 2020, and the CO2 isotherm analyses will be conducted using a volumetric adsorption apparatus in a water temperature bath. The aforementioned analyses will be used to determine site specific correlations for the Kentucky part of the Illinois Basin. The data collected will be compared with previous work in the Illinois Basin and will be correlated with data and structural features in the basin. Gas composition and carbon and hydrogen isotopic data suggest mostly thermogenic origin of coalbed gas in coals from Webster and Union Counties, Kentucky, in contrast to the dominantly biogenic character of coalbed gas in Ohio County, Kentucky.

  9. Dye adsorption of cotton fabric grafted with PPI dendrimers: Isotherm and kinetic studies.

    PubMed

    Salimpour Abkenar, Samera; Malek, Reza Mohammad Ali; Mazaheri, Firouzmehr

    2015-11-01

    In this research, the cotton fabrics grafted with two generations of the poly(propylene imine) dendrimers were applied to adsorb textile dyes from aqueous solutions. Direct Red 80 (anionic dye), Disperse Yellow 42 (nonionic dye) and Basic Blue 9 (cationic dye) were selected as model dyes. The effect of various experimental parameters such as initial concentration of dyes, charge of dyes molecule, salt and pH was investigated on the adsorption process. Furthermore, kinetics and equilibrium of the adsorption process on the grafted samples were studied. It was found that maximum adsorption of anionic and disperse dyes took place at around pH 3, while cationic dye could be adsorbed at around pH 11. The Langmuir equation was able to describe the mechanism of dyes adsorption. In addition, the second-order equation was found to be fit with the kinetics data. Interestingly, it seems that the dye adsorption of the grafted fabrics is strongly pH dependent. PMID:26292774

  10. Dye adsorption of cotton fabric grafted with PPI dendrimers: Isotherm and kinetic studies.

    PubMed

    Salimpour Abkenar, Samera; Malek, Reza Mohammad Ali; Mazaheri, Firouzmehr

    2015-11-01

    In this research, the cotton fabrics grafted with two generations of the poly(propylene imine) dendrimers were applied to adsorb textile dyes from aqueous solutions. Direct Red 80 (anionic dye), Disperse Yellow 42 (nonionic dye) and Basic Blue 9 (cationic dye) were selected as model dyes. The effect of various experimental parameters such as initial concentration of dyes, charge of dyes molecule, salt and pH was investigated on the adsorption process. Furthermore, kinetics and equilibrium of the adsorption process on the grafted samples were studied. It was found that maximum adsorption of anionic and disperse dyes took place at around pH 3, while cationic dye could be adsorbed at around pH 11. The Langmuir equation was able to describe the mechanism of dyes adsorption. In addition, the second-order equation was found to be fit with the kinetics data. Interestingly, it seems that the dye adsorption of the grafted fabrics is strongly pH dependent.

  11. Predicting Phase Diagram of the CaCl2-H2O Binary System from the BET Adsorption Isotherm

    SciTech Connect

    Ally, Moonis Raza

    2008-01-01

    A recent publication in Fluid Phase Equilibria by Zeng (Zeng, Zhou et al. 2007) claimed remarkable accuracy in predicting the solubility of CaCl2-H2O solutions with the Brunaruer-Emett-Teller (BET) model parameters. Their approach necessarily requires prior knowledge of equilibrium water vapor pressures above saturated solutions as a function of temperature for the hydrates of CaCl2 that exist under those conditions. However, the intrinsic BET model does not require prior knowledge of such solubility data that the approach of (Zeng, Zhou et al. 2007) is dependent upon. This paper highlights the differences between the two approaches and covers a much wider range of compositions and temperatures than is done by (Zeng, Zhou et al. 2007). The statistical mechanical description of multilayer adsorption culminating in the BET adsorption isotherm for aqueous electrolytes as developed by Ally and Braunstein (Ally and Braunstein 1993) is used to predict the liquidus behavior of CaCl2-H2O across the entire composition range (from the melting point of pure water to the melting point of anhydrous calcium chloride), including possible metastable crystalline phases. The method requires as input the two BET parameters r, the statistically averaged number of adsorption sites and ε, the energy of adsorption of water in excess of the energy of condensation of pure water. Usually it suffices to keep r and ε constant, typically evaluated at 298.15 K, but in the case of CaCl2-H2O, it is found that both r and ε must be considered temperature dependent in order to predict the liquidus curve, eutectic and peritectic points with reasonable accuracy over the large temperature and compositional range for this binary system.

  12. Interactions between lignosulphonates and the components of the lead-acid battery. Part 1. Adsorption isotherms

    NASA Astrophysics Data System (ADS)

    Myrvold, Bernt O.

    The expander performs at least five different tasks in the battery. It is a fluidiser for the negative paste. It controls the formation stage of the battery. It controls the shape and size of the lead sulphate crystals formed upon discharge, and thus prevents the sintering of the active mass. It controls the rate of the lead to lead sulphate oxidation during discharge. Finally, it affects the charge acceptance. To gain more understanding of these different effects the interaction between lead, lead(II) oxide, lead(IV) oxide, lead sulphate, barium sulphate and carbon black and the experimental lignosulphonate (LS) expander UP-414 has been investigated. We also compared with Vanisperse A and several other lignosulphonates, to elucidate the mechanisms operating. In most cases, we have studied concentration ranges that are both higher and lower than those normally encountered in batteries. There is no adsorption of lignosulphonates to pure lead surfaces. Adsorption to lead sulphate is a slow process. In the presence of lead ions lignosulphonates will also adsorb to lead. The adsorption to lead(II) oxide is a fast process, and a strong adsorption occurs. In all these cases, it is preferably the high molecular weight fraction that interacts with the solid surfaces. Lead ions leaching from the surface complexes with lignosulphonates to give a more hydrophobic species. This allows the normally negatively charged lignosulphonate to adsorb to the negatively charged substrates. The lignosulphonates have an ability to complex lead ions and keep them solvated. This confirms previous observations of the lignosulphonates ability to promote the dissolution-precipitation mechanism for lead sulphate formation on the expense of the solid-state reaction.

  13. Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica- multiwall carbon nanotubes.

    PubMed

    Saleh, Tawfik A

    2015-11-01

    Silica combined with 2% multiwall carbon nanotubes (SiO2-CNT) was synthesized and characterized. Its sorption efficacy was investigated for the Hg(II) removal from an aqueous solution. The effect of pH on the percentage removal by the prepared material was examined in the range from 3 to 7. The adsorption kinetics were well fitted by using a pseudo-second-order model at various initial Hg(II) concentrations with R (2) of >0.99. The experimental data were plotted using the interparticle diffusion model, which indicated that the interparticle diffusion is not the only rate-limiting step. The data is well described by the Freundlich isotherm equation. The activation energy (Ea) for adsorption was 12.7 kJ mol(-1), indicating the process is to be physisorption. Consistent with an endothermic process, an increase in the temperature resulted in increasing mercury removal with a ∆H(o) of 13.3 kJ/mol and a ∆S(o) 67.5 J/mol K. The experimental results demonstrate that the combining of silica and nanotubes is a promising alternative material, which can be used to remove the mercury from wastewaters. PMID:26087931

  14. Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica- multiwall carbon nanotubes.

    PubMed

    Saleh, Tawfik A

    2015-11-01

    Silica combined with 2% multiwall carbon nanotubes (SiO2-CNT) was synthesized and characterized. Its sorption efficacy was investigated for the Hg(II) removal from an aqueous solution. The effect of pH on the percentage removal by the prepared material was examined in the range from 3 to 7. The adsorption kinetics were well fitted by using a pseudo-second-order model at various initial Hg(II) concentrations with R (2) of >0.99. The experimental data were plotted using the interparticle diffusion model, which indicated that the interparticle diffusion is not the only rate-limiting step. The data is well described by the Freundlich isotherm equation. The activation energy (Ea) for adsorption was 12.7 kJ mol(-1), indicating the process is to be physisorption. Consistent with an endothermic process, an increase in the temperature resulted in increasing mercury removal with a ∆H(o) of 13.3 kJ/mol and a ∆S(o) 67.5 J/mol K. The experimental results demonstrate that the combining of silica and nanotubes is a promising alternative material, which can be used to remove the mercury from wastewaters.

  15. Multicomponent adsorption of alcohols onto silicalite-1 from aqueous solution: isotherms, structural analysis, and assessment of ideal adsorbed solution theory.

    PubMed

    Bai, Peng; Tsapatsis, Michael; Siepmann, J Ilja

    2012-11-01

    Configurational-bias Monte Carlo (CBMC) simulations in the isobaric-isothermal version of the Gibbs ensemble (GE) were carried out to probe the adsorption from aqueous solutions of methanol and/or ethanol onto silicalite-1. This methodology does require neither specification of the chemical potential nor any reference to activity models based on experimental data. The CBMC-GE methodology can be applied to the complete range of mixture compositions from pure water to pure alcohols and can also be used when multiple solute types are present at high concentration. The simulations demonstrate high selectivities for the alcohols (α(ethanol) > α(methanol)) almost over the entire composition range. The ideal adsorbed solution theory is found to substantially underpredict the amount of sorbed water and leads to very large errors for low alcohol solution concentrations. The simulations indicate that, at lower loadings, the adsorbed alcohol molecules can serve as seeds for water adsorption but, at higher loadings, alcohols displace water molecules from their preferred region.

  16. Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: Adsorption capacity, kinetic and isotherm studies

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Li, Shunxing; Chen, Jianhua; Zhang, Xueliang; Chen, Yiping

    2014-02-01

    Activated carbons with high mesoporosity and abundant oxygen-containing functional groups were prepared from water hyacinth using H3PO4 activation (WHAC) to eliminate Pb(II) in water. Characterizations of the WHAC were performed using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The BET analysis showed that WHAC possesses a high mesoporosity (93.9%) with a BET surface area of 423.6 m2/g. The presence of oxygen-containing functional groups including hydroxyl, carbonyl, carboxyl and phosphate groups renders the WHAC a favorable adsorbent for Pb(II) with the maximum monolayer capacity (qm) 118.8 mg/g. The adsorption behavior follows pseudo-first order kinetic and Langmuir isotherm. The desorption study demonstrated that the WHAC could be readily regenerated using 0.1 M HCl (pH = 1.0). The desorbed WHAC could be reused at least six times without significant adsorption capacity reduction. The adsorption process was spontaneous and endothermic with ΔG (-0.27, -1.13, -3.02, -3.62, -5.54, and -9.31 kJ/mol) and ΔH (38.72 kJ/mol). Under the optimized conditions, a small amount of the adsorbent (1.0 g/L) could remove as much as 90.1% of Pb(II) (50 mg/L) in 20 min at pH 6.0 and temperature of 298 K. Therefore, the WHAC has a great potential to be an economical and efficient adsorbent in the treatment of lead-contaminated water.

  17. New method for the simultaneous determination of diffusion and adsorption of dyes in silica hydrogels.

    PubMed

    Perullini, Mercedes; Jobbágy, Matías; Japas, María Laura; Bilmes, Sara A

    2014-07-01

    The fine tuning of porosity in sol gel based devices makes possible the design of novel applications in which the transport of molecules through the oxide gel plays a crucial role. In this work we develop a new method for the simultaneous analysis of diffusion and adsorption of small diffusing probes, as anionic and cationic dyes, through silica mesoporous hydrogels synthesized by sol-gel. The novelty of the work resides in the simplicity of acquisition of the experimental data (by means of a desk scanner) and further mathematical modeling, which is in line with high throughput screening procedures, enabling rapid and simultaneous determination of relevant diffusion and adsorption parameters. Net mass transport and adsorption properties of the silica based hydrogels were contrasted to dye adsorption isotherms and textural characterization of the wet gels by SAXS, as well as that of the corresponding aerogels determined by Field Emission Scanning Electron Microscopy (FESEM) and N2 adsorption. Thus, the validation of the results with well-established characterization methods demonstrates that our approach is robust enough to give reliable physicochemical information on these systems.

  18. Adsorption isotherms and structure of cationic surfactants adsorbed on mineral oxide surfaces prepared by atomic layer deposition.

    PubMed

    Wangchareansak, Thipvaree; Craig, Vincent S J; Notley, Shannon M

    2013-12-01

    The adsorption isotherms and aggregate structures of adsorbed surfactants on smooth thin-film surfaces of mineral oxides have been studied by optical reflectometry and atomic force microscopy (AFM). Films of the mineral oxides of titania, alumina, hafnia, and zirconia were produced by atomic layer deposition (ALD) with low roughness. We find that the surface strongly influences the admicelle organization on the surface. At high concentrations (2 × cmc) of cetyltrimethylammonium bromide (CTAB), the surfactant aggregates on a titania surface exhibit a flattened admicelle structure with an average repeat distance of 8.0 ± 1.0 nm whereas aggregates on alumina substrates exhibit a larger admicelle with an average separation distance of 10.5 ± 1.0 nm. A wormlike admicelle structure with an average separation distance of 7.0 ± 1.0 nm can be observed on zirconia substrates whereas a bilayered aggregate structure on hafnia substrates was observed. The change in the surface aggregate structure can be related to an increase in the critical packing parameter through a reduction in the effective headgroup area of the surfactant. The templating strength of the surfaces are found to be hafnia > alumina > zirconia > titania. Weakly templating surfaces are expected to have superior biocompatibility.

  19. A Simple Adsorption Experiment

    ERIC Educational Resources Information Center

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  20. Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: Adsorption isotherms and kinetics studies.

    PubMed

    Tadjarodi, Azadeh; Moazen Ferdowsi, Somayeh; Zare-Dorabei, Rouholah; Barzin, Ahmad

    2016-11-01

    A novel adsorbent, based on modifying graphene oxide (GO) chemically with 2-pyridinecarboxaldehyde thiosemicarbazone (2-PTSC) as ligand, was designed by facile process for removal of Hg(II) from aqueous solution. Characterization of the adsorbent was performed using various techniques, such as FT-IR, XRD, XPS, SEM and AFM analysis. The adsorption capacity was affected by variables such as adsorbent dosage, pH solution, Hg(2+) initial concentration and sonicating time. These variables were optimized by rotatable central composite design (CCD) under response surface methodology (RSM). The predictive model for Hg(II) adsorption was constructed and applied to find the best conditions at which the responses were maximized. In this conditions, the adsorption capacity of this adsorbent for Hg(2+) ions was calculated to be 309mgg(-1) that was higher than that of GO. Appling the ultrasound power combined with adsorption method was very efficient in shortening the removal time of Hg(2+) ions by enhancing the dispersion of adsorbent and metal ions in solution and effective interactions among them. The adsorption process was well described by second-order kinetic and Langmuir isotherm model in which the maximum adsorption capacity (Qm) was found to be 555mgg(-1) for adsorption of Hg(2+) ions over the obtained adsorbent. The performance of adsorbent was examined on the real wastewaters and confirmed the applicability of adsorbent for practical applications. PMID:27245963

  1. Determination of low levels of amorphous content in inhalation grade lactose by moisture sorption isotherms.

    PubMed

    Vollenbroek, Jasper; Hebbink, Gerald A; Ziffels, Susanne; Steckel, Hartwig

    2010-08-16

    Alpha-lactose monohydrate is widely used as an excipient in dry powder inhalers, and plays a very important role in the efficiency of the drug delivery. Due to the processing, low levels of amorphous lactose could be present in the blends. Varying amounts could have a strong effect on the efficiency of drug delivery of the powder blends. Therefore, the accurate measurement of low levels of amorphous lactose content is very important. A new method was developed to measure the amorphous content, based on dynamic vapour sorption (DVS). In contrast to the traditional re-crystallization approach of amorphous lactose, the new method is based on moisture sorption isotherms. Moisture sorption isotherms of blends of crystalline alpha-lactose and freeze-dried or spray-dried amorphous lactose were measured. By fitting the data with a Brunauer, Emmett, and Teller (BET) isotherm, a linear correlation was found between measured and actual amorphous content for the whole range of 0.1-100%. Differences between freeze-dried and spray-dried lactose, due to different molecular arrangements, could be removed by a preconditioning the samples at 35% RH prior to the isotherm measurement. It was shown that accurate determination of very low concentrations of amorphous lactose content is possible using moisture sorption isotherm analyses. PMID:20493937

  2. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.

    PubMed

    Ghaedi, M; Shojaeipour, E; Ghaedi, A M; Sahraei, Reza

    2015-05-01

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1g), contact time (1-40min) and initial MG concentration (5, 10, 20, 70 and 100mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R(2)) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8mg/g at 25°C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model. PMID:25699703

  3. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.

    PubMed

    Ghaedi, M; Shojaeipour, E; Ghaedi, A M; Sahraei, Reza

    2015-05-01

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1g), contact time (1-40min) and initial MG concentration (5, 10, 20, 70 and 100mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R(2)) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8mg/g at 25°C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model.

  4. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: Artificial neural network modeling and genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Shojaeipour, E.; Ghaedi, A. M.; Sahraei, Reza

    2015-05-01

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1 g), contact time (1-40 min) and initial MG concentration (5, 10, 20, 70 and 100 mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R2) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8 mg/g at 25 °C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20 min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model.

  5. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models

    PubMed Central

    Rahman, Md. Sayedur; Sathasivam, Kathiresan V.

    2015-01-01

    Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb2+, Cu2+, Fe2+, and Zn2+ onto dried biomass of red seaweed Kappaphycus sp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models). The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweed Kappaphycus sp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment. PMID:26295032

  6. Determination of surface area and porosity of small, nanometer-thick films by quartz crystal microbalance measurement of gas adsorption.

    PubMed

    Aoki, Yoshitaka; Hashizume, Mineo; Onoue, Shinya; Kunitake, Toyoki

    2008-11-20

    The Brunauer-Emmett-Teller (BET) surface area of 15 nm-thick films made of TiO2/polyelectrolyte bilayer was determined by quartz crystal microbalance (QCM) measurement of N2 and Ar adsorption isotherms at 77 K. The measurements were carried out using a home-built vacuum chamber that includes built-in 9 MHz QCM and cryostat units. As little as 1 ng of the adsorbed gas could be detected, and the BET surface area of a flat Au film (ca. 0.5 cm2) on an oscillator was determined within an experimental error of +/-5%. The titania/polymer composite film gives N2 and Ar adsorption isotherms consisting of a less-pronounced type-I curve and a break at around p/p0 = 0.7. This behavior is ascribed to the presence of irregular micropores and 6 nm phi-mesopores in the composite film. An analysis of the isotherms shows that the porosity of the composite film is about 12%, which is much smaller than that of bulk titania gel powder. The greater density appears to be related to the reported superior properties (robustness and resistance to electrical breakdown) of the organic/inorganic multilayer film. We conclude that the QCM-based, high-precision measurement of gas adsorption is a powerful tool for investigation of the detailed morphology of nanometer-thick films.

  7. Adsorption of nicotine from aqueous solution onto hydrophobic zeolite type USY

    NASA Astrophysics Data System (ADS)

    Lazarevic, Natasa; Adnadjevic, Borivoj; Jovanovic, Jelena

    2011-07-01

    The isothermal adsorption of nicotine from an aqueous solution onto zeolite type USY was investigated. The adsorption isotherms of nicotine onto the zeolite at different temperatures ranging from 298 to 322 K were determined. It was found that the adsorption isotherms can be described by the model of Freundlich adsorption isotherm. Based on the adsorption isotherms the changes of adsorption heat, free energy and entropy with adsorption degree were determined. The determined decrease of adsorption heat with adsorption degree can be explained by the presence of the adsorption centers of different energy and concentration on interface of zeolite-nicotine solution. It was found that the probability function of density distribution of the heat of adsorption (DDF) has exponential form. It was concluded that the possibility of fitting the adsorption isotherms of nicotine onto the zeolite by Freundlich adsorption isotherm was a direct consequence of that. The determined increase in entropy with the increase in adsorption degree can be explained with the change of phase state of adsorbed nicotine.

  8. Interpretation of the excess adsorption isotherms of organic eluent components on the surface of reversed-phase adsorbents. Effect on the analyte retention.

    PubMed

    Kazakevich, Y V; LoBrutto, R; Chan, F; Patel, T

    2001-04-13

    The excess adsorption isotherms of acetonitrile, methanol and tetrahydrofuran from water on reversed-phase packings were studied, using 10 different columns packed with C1-C6, C8, C10, C12, and C18 monomeric phases, bonded on the same type of silica. The interpretation of isotherms on the basis of the theory of excess adsorption shows significant accumulation of the organic eluent component on the adsorbent surface on the top of "collapsed" bonded layer. The accumulated amount was shown to be practically independent of the length of alkyl chains bonded to the silica surface. A model that describes analyte retention on a reversed-phase column from a binary mobile phase is developed. The retention mechanism involves a combination of analyte distribution between the eluent and organic adsorbed layer, followed by analyte adsorption on the surface of the bonded phase. A general retention equation for the model is derived and methods for independent measurements of the involved parameters are suggested. The theory was tested by direct measurement of analyte retention from the eluents of varied composition and comparison of the values obtained with those theoretically calculated values. Experimental and theoretically calculated values are in good agreement.

  9. Use of solid waste for chemical stabilization: Adsorption isotherms and {sup 13}C solid-state NMR study of hazardous organic compounds sorbed on coal fly ash

    SciTech Connect

    Netzel, D.A.; Lane, D.C.; Rovani, J.F.; Cox, J.D.; Clark, J.A.; Miknis, F.P.

    1993-09-01

    Adsorption of hazardous organic compounds on the Dave Johnston plant fly ash is described. Fly ash from Dave Johnston and Laramie River power plants were characterized using elemental, x-ray, and {sup 29}Si NMR; the Dave Johnston (DJ) fly ash had higher quartz contents, while the Laramie River fly ash had more monomeric silicate anions. Adsorption data for hydroaromatics and chlorobenzenes indicate that the adsorption capacity of DJ coal fly ash is much less than that of activated carbon by a factor of >3000; but it is needed to confirm that solid-gas and solid-liquid equilibrium isotherms can indeed be compared. However, for pyridine, pentachlorophenol, naphthalene, and 1,1,2,2-tetrachloroethane, the DJ fly ash appears to adsorb these compounds nearly as well as activated carbon. {sup 13}C NMR was used to study the adsorption of hazardous org. cpds on coal fly ash; the nuclear spin relaxation times often were very long, resulting in long experimental times to obtain a spectrum. Using a jumbo probe, low concentrations of some hazardous org. cpds could be detected; for pentachlorophenol adsorbed onto fly ash, the chemical shift of the phenolic carbon was changed. Use of NMR to study the adsorption needs further study.

  10. Using Isothermal Microcalorimetry to Determine Compatibility of Structural Materials with High Test Hydrogen Peroxide (HTP) Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy; Villegas, Yvonne; Nwosisi, Genne

    2003-01-01

    High-Test Hydrogen Peroxide (HTP) propellant (greater than or equal to 70%) offers many advantages in space launch applications; however, materials used in construction of propulsion systems must be shown to be compatible with HTP. Isothermal Microcalorimetry (IMC) was used to determine the compatibility of several metallic and non-metallic materials with 90% HTP. The results of these experiments agreed with those from immersion bath tests when the values were converted to %Active Oxygen Loss per week (%AOL/wk).

  11. Adsorption energies and prefactor determination for CH3OH adsorption on graphite.

    PubMed

    Doronin, M; Bertin, M; Michaut, X; Philippe, L; Fillion, J-H

    2015-08-28

    In this paper, we have studied adsorption and thermal desorption of methanol CH3OH on graphite surface, with the specific aim to derive from experimental data quantitative parameters that govern the desorption, namely, adsorption energy Eads and prefactor ν of the Polanyi-Wigner law. In low coverage regime, these two values are interconnected and usually the experiments can be reproduced with any couple (Eads, ν), which makes intercomparison between studies difficult since the results depend on the extraction method. Here, we use a method for determining independently the average adsorption energy and a prefactor value that works over a large range of incident methanol coverage, from a limited set of desorption curves performed at different heating rates. In the low coverage regime the procedure is based on a first order kinetic law, and considers an adsorption energy distribution which is not expected to vary with the applied heating rate. In the case of CH3OH multilayers, Eads is determined as 430 meV with a prefactor of 5 × 10(14) s(-1). For CH3OH submonolayers on graphite, adsorption energy of 470 ± 30 meV and a prefactor of (8 ± 3) × 10(16) s(-1) have been found. These last values, which do not change between 0.09 ML and 1 ML initial coverage, suggest that the methanol molecules form island-like structure on the graphite even at low coverage.

  12. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core-shell Fe₃O₄@LDHs composites with easy magnetic separation assistance.

    PubMed

    Yan, Liang-guo; Yang, Kun; Shan, Ran-ran; Yan, Tao; Wei, Jing; Yu, Shu-jun; Yu, Hai-qin; Du, Bin

    2015-06-15

    In this study, three different magnetic core-shell Fe3O4@LDHs composites, Fe3O4@Zn-Al-, Fe3O4@Mg-Al-, and Fe3O4@Ni-Al-LDH were prepared via a rapid coprecipitation method for phosphate adsorptive removal. The composites were characterized by XRD, FTIR, TEM, VSM and BET analyses. Characterization results proved the successful synthesis of core-shell Fe3O4@LDHs composites with good superparamagnetisms. Batch experiments were conducted to study the adsorption efficiency of phosphate. Optimal conditions for the phosphate adsorption were obtained: 0.05 g of adsorbent, solution pH of 3, and contact time of 60 min. Proposed mechanisms for the removal of phosphate species onto Fe3O4@LDHs composites at different initial solution pH were showed. The kinetic data were described better by the pseudo-second-order kinetic equation and KASRA model. The adsorption isotherm curves showed a three-region behavior in the ARIAN model. It had a good fit with Langmuir model and the maximum adsorption capacity followed the order of Fe3O4@Zn-Al-LDH>Fe3O4@Mg-Al-LDH>Fe3O4@Ni-Al-LDH. Thermodynamic analyses indicated that the phosphate adsorption process was endothermic and spontaneous in nature. The three Fe3O4@LDHs composites could be easily separated from aqueous solution by the external magnetic field in 10s. These novel magnetic core-shell Fe3O4@LDHs adsorbents may offer a simple single step adsorption treatment option to remove phosphate from water without the requirement of pre-/post-treatment for current industrial practice.

  13. Adsorption of lead on multi-walled carbon nanotubes with different outer diameters and oxygen contents: kinetics, isotherms and thermodynamics.

    PubMed

    Yu, Fei; Wu, Yanqing; Ma, Jie; Zhang, Chi

    2013-01-01

    The effects of different outer diameters and surface oxygen contents on the adsorption of heavy metals onto six types of multi-walled carbon nanotubes (MWCNTs) were investigated in an aqueous solution and lead was chosen as a model metal ion. The results indicated that the percentage removal and adsorption capacity of lead remarkably increased with decreasing outer diameter due to larger specific surface area (SSA). The SSA-normalized maximum adsorption capacity (qmSSA) and SSA-normalized adsorption coefficient (Kd/SSA) were strongly positively correlated with surface oxygen content, implying that lead adsorption onto MWCNTs significantly increases with the rise of oxygen content and decreases with decreasing SSA. The calculated thermodynamic parameters indicated that adsorption of lead on MWCNTs was endothermic and spontaneous. When the oxygen content of MWCNTs increased from 2.0% to 5.9%, the standard free energy (deltaG0) became more negative, which implied that the oxygenated functional groups increased the adsorption affinity of MWCNTs for lead. Through calculation of enthalpy (deltaH0), deltaG0 and free energy of adsorption (Ea), lead adsorption onto MWCNTs was recognized as a chemisorption process. The chemical interaction between lead and the phenolic groups of MWCNTs could be one of the main adsorption mechanisms due to highly positive correlations between the phenolic groups and Kd/SSA or qm/SSA.

  14. Determination of the catalytic activity of binuclear metallohydrolases using isothermal titration calorimetry.

    PubMed

    Pedroso, Marcelo M; Ely, Fernanda; Lonhienne, Thierry; Gahan, Lawrence R; Ollis, David L; Guddat, Luke W; Schenk, Gerhard

    2014-03-01

    Binuclear metallohydrolases are a large and diverse family of enzymes that are involved in numerous metabolic functions. An increasing number of members find applications as drug targets or in processes such as bioremediation. It is thus essential to have an assay available that allows the rapid and reliable determination of relevant catalytic parameters (k cat, K m, and k cat/K m). Continuous spectroscopic assays are frequently only possible by using synthetic (i.e., nonbiological) substrates that possess a suitable chromophoric marker (e.g., nitrophenol). Isothermal titration calorimetry, in contrast, affords a rapid assay independent of the chromophoric properties of the substrate-the heat associated with the hydrolytic reaction can be directly related to catalytic properties. Here, we demonstrate the efficiency of the method on several selected examples of this family of enzymes and show that, in general, the catalytic parameters obtained by isothermal titration calorimetry are in good agreement with those obtained from spectroscopic assays.

  15. Temperature dependence of adsorption of PEGylated lysozyme and pure polyethylene glycol on a hydrophobic resin: comparison of isothermal titration calorimetry and van't Hoff data.

    PubMed

    Werner, Albert; Hackemann, Eva; Hasse, Hans

    2014-08-22

    The influence of temperature on the adsorption of PEGylated lysozyme and pure PEG on Toyopearl PPG-600M, a hydrophobic resin, is studied by batch equilibrium measurements and pulse response experiments. Differently PEGylated lysozymes are used for the studies, enabling a systematic variation of the solute properties. Either ammonium sulfate or sodium chloride are added. The enthalpy of adsorption is calculated from a van't Hoff analysis based on these data. It is also directly measured by Isothermal Titration Calorimetry. In the investigated temperature range from 5 °C to 35 °C adsorption is favored by higher temperatures and hence endothermic. The results of the van't Hoff analysis of the equilibrium and the pulse response data agree well. Discrepancies between enthalpies of adsorption obtained by calorimetry and van't Hoff analysis are found and discussed. We conclude that the most likely explanation is that thermodynamic equilibrium is not reached in the experiments even though they were carried out carefully and in the generally accepted way.

  16. Structural Determinants for Protein adsorption/non-adsorption to Silica Surface

    PubMed Central

    Mathé, Christelle; Devineau, Stéphanie; Aude, Jean-Christophe; Lagniel, Gilles; Chédin, Stéphane; Legros, Véronique; Mathon, Marie-Hélène; Renault, Jean-Philippe; Pin, Serge; Boulard, Yves; Labarre, Jean

    2013-01-01

    The understanding of the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest in both fundamental research and applications such as nanotechnology. However, despite intense research, the mechanisms and the structural determinants of protein/surface interactions are still unclear. We developed a strategy consisting in identifying, in a mixture of hundreds of soluble proteins, those proteins that are adsorbed on the surface and those that are not. If the two protein subsets are large enough, their statistical comparative analysis must reveal the physicochemical determinants relevant for adsorption versus non-adsorption. This methodology was tested with silica nanoparticles. We found that the adsorbed proteins contain a higher number of charged amino acids, particularly arginine, which is consistent with involvement of this basic amino acid in electrostatic interactions with silica. The analysis also identified a marked bias toward low aromatic amino acid content (phenylalanine, tryptophan, tyrosine and histidine) in adsorbed proteins. Structural analyses and molecular dynamics simulations of proteins from the two groups indicate that non-adsorbed proteins have twice as many π-π interactions and higher structural rigidity. The data are consistent with the notion that adsorption is correlated with the flexibility of the protein and with its ability to spread on the surface. Our findings led us to propose a refined model of protein adsorption. PMID:24282583

  17. Bioremoval of Basic Violet 3 and Acid Blue 93 by Pseudomonas putida and its adsorption isotherms and kinetics.

    PubMed

    Arunarani, A; Chandran, Preethy; Ranganathan, B V; Vasanthi, N S; Sudheer Khan, S

    2013-02-01

    Basic Violet 3 and Acid Blue 93 are the most important group of synthetic colourants extensively used in textile industries for dyeing cotton, wool, silk and nylon. Release of these dye pollutants in to the environment adversely affects the human health and aquatic organisms. The present study we used Pseudomonas putida MTCC 4910 for the adsorptive removal of Basic Violet 3 and Acid Blue 93 from the aqueous solutions. The pH (4-9) and NaCl concentrations (1mM-1M) did not influence the adsorption process. The equilibrium adsorption process fitted well to Freundlich model than Langmuir model. The kinetics of adsorption fitted well by pseudo-second-order. Thus in the present study an attempt has been made to exploit the dye removal capability of P. putida MTCC 4910, and it was found to be an efficient microbe that could be used for bio removal of dyes from textile effluents.

  18. [Impact of regional water chemistry on the phosphorus isothermal adsorption of the sediments in three subsidence waters of the Huainan Mine areas].

    PubMed

    Yi, Qi-Tao; Sun, Peng-Fei; Xie, Kai; Qu, Xi-Jie; Wang, Ting-Ting

    2013-10-01

    Three research sites of subsidence waters, including Panji (PJ), Guqiao (GQ) and Xieqiao (XQ) located in the Huainan "Panxie" Mine Area have been selected to address their phosphorus (P) adsorption behavior in the sediments considering the site-specific regional water chemistry. The P isothermal adsorption was measured in pure water and four different types of ion solutions, prepared through additions of sodium chloride (NaCl), calcium chloride (CaCl2), sodium bicarbonate (NaHCO3), and a mixture of sodium bicarbonate and calcium chloride (NaHCO3 + CaCI2). The first four settings were studied to analyze the individual impact of each solution on P adsorption while the last one was to study their combined effect. In general, Ca2 + could enhance P adsorption on sediment surfaces while weakly alkaline conditions caused by bicarbonates were unfavorable for its adsorption. As a comprehensive effect, the positive effect of the former was greater than the negative effect of the latter. The zero equilibrium phosphorus concentrations (EPC) in the three sites were 0. 059, 0. 032 and 0. 040 mg.L-1, respectively, showing trends of P releasing to the overlying water column. The site of PJ showed greater P releasing potential than those at the GQ and XQ sites, probably due to its higher nutrient level. Overall, P releasing risks in the researched sediments are weaker than those in eutrophic lakes, while they are very similar to lakes with lower trophic levels, because of their unique sedimentary environments from inundated agricultural soils.

  19. Determination of secnidazole in urine by adsorptive stripping voltammetry.

    PubMed

    Radi, A E; Hassanein, A

    2000-05-01

    Cyclic voltammetry was used to explore the adsorption behavior of secnidazole on a hanging mercury drop electrode (HMDE). The effects of various operational parameters on the accumulation behavior of the adsorbed species were tested. Thus, a sensitive stripping voltammetry procedure for the determination of secnidazole with an adsorptive accumulation on the surface of HMDE has been developed. Measurements were taken by differential-pulse voltammetry after determination of the optimum conditions. The linear concentration range was 1 x 10(-8)-1 x 10(-7) s when using a 120 s preconcentration at -0.1 V vs. Ag/AgCl in acetate buffer of pH 4.0. The detection limit of secnidazole was 5 x 10(-9) M. The precision, expressed by the coefficient of variation, was 2.5% (n = 10) at a concentration of 1 x 10(-7) m. The method was successfully applied to the analysis of secnidazole in urine. PMID:10823692

  20. Kinetics of trypsin-catalyzed hydrolysis determined by isothermal titration calorimetry.

    PubMed

    Maximova, Ksenia; Trylska, Joanna

    2015-10-01

    Isothermal titration calorimetry (ITC) was applied to determine enzymatic activity and inhibition. We measured the Michaelis-Menten kinetics for trypsin-catalyzed hydrolysis of two substrates, casein (an insoluble macromolecule substrate) and Nα-benzoyl-dl-arginine β-naphthylamide (a small substrate), and estimated the thermodynamic parameters in the temperature range from 20 to 37°C. The inhibitory activities of reversible (small molecule benzamidine) and irreversible (small molecule phenylmethanesulfonyl fluoride and macromolecule α1-antitrypsin) inhibitors of trypsin were also determined. We showed the usefulness of ITC for fast and direct measurement of inhibition constants and half-maximal inhibitory concentrations and for predictions of the mechanism of inhibition. ITC kinetic assays could be an easy and straightforward way to estimate Michaelis-Menten constants and the effectiveness of inhibitors as well as to predict the inhibition mechanism. ITC efficiency was found to be similar to that of classical spectrophotometric enzymatic assays.

  1. Water adsorption isotherms on CH3-, OH-, and COOH-terminated organic surfaces at ambient conditions measured with PM-RAIRS.

    PubMed

    Tu, Aimee; Kwag, Hye Rin; Barnette, Anna L; Kim, Seong H

    2012-10-30

    The water adsorption isotherms on methyl (CH(3))-, hydroxyl (OH)-, and carboxylic acid (COOH)-terminated alkylthiol self-assembled monolayers (SAMs) on Au were studied at room temperature and ambient pressure with polarization modulation reflection-absorption infrared spectroscopy (PM-RAIRS). PM-RAIRS analysis showed that water does not adsorb at all on the CH(3)-SAM/Au at subsaturation humidity conditions. In a dry Ar environment, the OH-SAM/Au holds at least 2 layer thick strongly bound water molecules which exhibit a broad O-H stretch vibration peak centered at ∼3360 cm(-1). The peak position implies that the strongly bound water layer on the OH SAM is more like a liquid than an ice. The additional uptake of water in humid environments is relatively weak, and the peak position changes very little. Unlike the OH-SAM/Au, the COOH-SAM/Au does not have strongly bound water layer. This seems to be due to the strong hydrogen bonding between terminal COOH groups in dry conditions. The weak interactions between water and carboxyl groups at low relative humidity (RH) and the solvation of dissociated carboxylic groups in high RH lead to a type III isotherm behavior, based on the BET categories, for water adsorption on the COOH-SAM/Au. The water spectra on the COOH-SAM at RH > 45% are centered at ∼3430 cm(-1) and very broad, indicating that the hydrogen-bonding network of water on the COOH-SAM is much different from that on the OH-SAM.

  2. Dynamic technique for measuring adsorption in a gas chromatograph

    NASA Technical Reports Server (NTRS)

    Deuel, C. L.; Hultgren, N. W.; Mobert, M. L.

    1973-01-01

    Gas-chromatographic procedure, together with mathematical analysis of adsorption isotherm, allows relative surface areas and adsorptive powers for trace concentrations to be determined in a few minutes. Technique may be used to evaluate relative surface areas of different adsorbates, expressed as volume of adsorbent/gram of adsorbate, and to evaluate their relative adsorptive power.

  3. A study of the adsorption of the amphiphilic penicillins cloxacillin and dicloxacillin onto human serum albumin using surface tension isotherms

    NASA Astrophysics Data System (ADS)

    Barbosa, Silvia; Leis, David; Taboada, Pablo; Attwood, David; Mosquera, Victor

    The interaction of human serum albumin (HSA) with two structurally similar anionic amphiphilic penicillins, cloxacillin and dicloxacillin, at 25°C has been examined by surface tension measurements under conditions at which the HSA molecule was positively (pH 4.5) or negatively charged (pH 7.4). Measurements were at fixed HSA concentrations (0.0125 and 0.125% w/v) and at drug concentrations over a range including, where possible, the critical micelle concentration (cmc). Interaction between anionic drugs and positively charged HSA at pH 7.4 resulted in an increase of the cmc of each drug as a consequence of its removal from solution by adsorption. Limited data for cloxacillin at pH 4.5 indicated an apparent decrease of the cmc in the presence of HSA suggesting a facilitation of the aggregation by association with the protein. Changes in the surface tension-log (drug concentration) plots in the presence of HSA have been discussed in terms of the adsorption of drug at the air-solution and protein-solution interfaces. Standard free energy changes associated with the micellization of both drugs and their adsorption at the air-solution interface have been calculated and compared.

  4. Idealized Shale Sorption Isotherm Measurements to Determine Pore Volume, Pore Size Distribution, and Surface Area

    NASA Astrophysics Data System (ADS)

    Holmes, R.; Wang, B.; Aljama, H.; Rupp, E.; Wilcox, J.

    2014-12-01

    One method for mitigating the impacts of anthropogenic CO2-related climate change is the sequestration of CO2 in depleted gas and oil reservoirs, including shale. The accurate characterization of the heterogeneous material properties of shale, including pore volume, surface area, pore size distributions (PSDs) and composition is needed to understand the interaction of CO2 with shale. Idealized powdered shale sorption isotherms were created by varying incremental amounts of four essential components by weight. The first two components, organic carbon and clay, have been shown to be the most important components for CO2 uptake in shales. Organic carbon was represented by kerogen isolated from a Silurian shale, and clay groups were represented by illite from the Green River shale formation. The rest of the idealized shale was composed of equal parts by weight of SiO2 to represent quartz and CaCO3 to represent carbonate components. Baltic, Eagle Ford, and Barnett shale sorption measurements were used to validate the idealized samples. The idealized and validation shale sorption isotherms were measured volumetrically using low pressure N2 (77K) and CO2 (273K) adsorbates on a Quantachrome Autosorb IQ2. Gravimetric isotherms were also produced for a subset of these samples using CO2 and CH4adsorbates under subsurface temperature and pressure conditions using a Rubotherm magnetic suspension balance. Preliminary analyses were inconclusive in validating the idealized samples. This could be a result of conflicting reports of total organic carbon (TOC) content in each sample, a problem stemming from the heterogeneity of the samples and different techniques used for measuring TOC content. The TOC content of the validation samples (Eagle Ford and Barnett) was measured by Rock-Eval pyrolysis at Weatherford Laboratories, while the TOC content in the Baltic validation samples was determined by LECO TOC. Development of a uniform process for measuring TOC in the validation samples is

  5. Phycoremediation and adsorption isotherms of cadmium and copper ions by Merismopedia tenuissima and their effect on growth and metabolism.

    PubMed

    Fawzy, Mustafa A

    2016-09-01

    The current study tends to investigate the removal of cadmium and copper ions by Merismopedia tenuissima, grown in different concentrations of cadmium and copper ions, as well to investigate their effects on growth and metabolism. Sorption isotherms of Langmuir and Freundlich were obtained for the quantitative description of cadmium and copper uptake by M. tenuissima. Langmuir model adequately to describe the data of biosorption for these metals. However, the Freundlich model could work well in case of Cu(2+) only. M. tenuissima appears to be more efficient for removing Cd(2+) ions than Cu(2+). However, the affinity constant of Cu(2+) on the biomass of M. tenuissima was higher than Cd(2+) indicating that M. tenuissima is more tolerant to Cd(2+) phytotoxicity than Cu(2+). FTIR analysis of algae with and without biosorption revealed the presence of carboxyl, amino, amide and hydroxyl groups, which were responsible for biosorption of Cd(+2) and Cu(+2) ions. PMID:27458699

  6. Determination of the quasi-saturated vapor pressure of supercritical gases in the adsorption potential theory application.

    PubMed

    Li, M; Gu, A Z

    2004-05-15

    Equilibrium data on supercritical N(2) and CH(4) adsorption on K02 activated carbon are presented in the temperature range 273-333 K and the pressure range 0-12 MPa. The adsorption potential theory was adopted to predict the adsorption equilibria of N(2) and CH(4) in the whole range utilizing a single experimental isotherm. The methods in literatures for calculating the quasi-saturated vapor pressure and the adsorbate density of supercritical gases have been investigated in detail. It is demonstrated that the predicting accuracy is considerably more sensitive to the quasi-saturated vapor pressure than to the adsorbate density. Moreover, for different adsorbates, the appropriate approach to the important quasi-saturated vapor pressure is various in the same experimental range. A new viewpoint, based on the relationship between the research temperature ranges and the critical temperatures of adsorbates, was proposed to determine the exact method for the quasi-saturated vapor pressure in the application of the adsorption potential theory.

  7. How to determine the adsorption energy of the surfactant's hydrophilic head? How to estimate easily the surface activity of every simple surfactant?

    PubMed

    Karakashev, Stoyan I

    2014-10-15

    A definite way to determine the adsorption energy of the surfactant's hydrophilic head on the air water interface is presented. For this purpose, the Davies adsorption theory and the most advanced version of Helfand-Frish-Lebowitz adsorption theory were applied to the surface tension isotherms of homologous series of sodium alkyl sulfate (CnH2n+1SO4Na, n=7-12), thus deriving the equilibrium adsorption constant, the cross-sectional area of the surfactant molecule, the interaction coefficient and the cohesion constant versus the number of the carbon atoms into the alkyl sulfate molecule. Thus, the total adsorption energy of each particular homolog was calculated in line with the latest development of the adsorption theory, thus calculating the dimensionless adsorption energy of the hydrophilic head Ehead/kBT. In our particular case (SO4(-)) we calculated Ehead/kBT=-2.79, which indicates the strong propensity of the SO4(-) to be surrounded by water molecules. The procedure for calculation Ehead/kBT does not depend on the charge of the hydrophilic head. Similarly, we calculated Ehead/kBT of another six well known in the literature hydrophilic heads (COOH, OH, DMPO, DEPO, N(CH3)3(+), and NH3(+)), indicating that the adsorption energy of the CH2 group depends slightly on the type of the hydrophilic head, but it affects substantially the adsorption energy of the whole surfactant molecule. Finally, we defined and validated a parameter called adsorption capacity of surfactants with simple molecular structure, for easy estimation of their surface activity. Linear dependence between the CMC of ionic surfactants and their adsorption capacity was established.

  8. The Freundlich adsorption isotherm constants and prediction of phosphorus bioavailability as affected by different phosphorus sources in two Kansas soils.

    PubMed

    Shafqat, Mustafa N; Pierzynski, Gary M

    2014-03-01

    Phosphorus (P) adsorption onto soil constituents influences P bioavailability from both agronomic and environmental perspectives. In this study, the P availability from different P sources along with utility of Freundlich adsorption coefficients on the predictability of various crop growth parameters were assessed. Two soils were amended with 150mgPkg(-1) each from six different P sources comprised of manures from two types of ruminants animals, three types of monogastric animals, and inorganic P fertilizer. Corn (Zea mays) was grown and harvested seven times under greenhouse conditions to remove P from the P amended treatments. The application of all P sources reduced the value of Freundlich K and increased the value of Freundlich 1/n and equilibrium P concentration (EPC0) in both soils compared to the un-amended control before cropping. The swine (Sus scrofa) manure (HM) resulted in significant smaller values of Freundlich K and larger values of 1/n in the P deficient Eram-Lebo soil compared to other P sources while, the opposite was true for the turkey (Meleagris gallopava) litter (TL) in the Ulysses soil. The corn biomass, tissue P concentration and P uptake were significantly influenced by all P sources during the first harvest and the total P uptake during seven harvests in both soils compared to the control treatment. Both Freundlich coefficients had strong relationships with the aforementioned corn parameters in the P deficient Eram-Lebo soil while, strength of the association was weak or missing in the Ulysses soil which had optimum levels of antecedent P. PMID:24238913

  9. The Freundlich adsorption isotherm constants and prediction of phosphorus bioavailability as affected by different phosphorus sources in two Kansas soils.

    PubMed

    Shafqat, Mustafa N; Pierzynski, Gary M

    2014-03-01

    Phosphorus (P) adsorption onto soil constituents influences P bioavailability from both agronomic and environmental perspectives. In this study, the P availability from different P sources along with utility of Freundlich adsorption coefficients on the predictability of various crop growth parameters were assessed. Two soils were amended with 150mgPkg(-1) each from six different P sources comprised of manures from two types of ruminants animals, three types of monogastric animals, and inorganic P fertilizer. Corn (Zea mays) was grown and harvested seven times under greenhouse conditions to remove P from the P amended treatments. The application of all P sources reduced the value of Freundlich K and increased the value of Freundlich 1/n and equilibrium P concentration (EPC0) in both soils compared to the un-amended control before cropping. The swine (Sus scrofa) manure (HM) resulted in significant smaller values of Freundlich K and larger values of 1/n in the P deficient Eram-Lebo soil compared to other P sources while, the opposite was true for the turkey (Meleagris gallopava) litter (TL) in the Ulysses soil. The corn biomass, tissue P concentration and P uptake were significantly influenced by all P sources during the first harvest and the total P uptake during seven harvests in both soils compared to the control treatment. Both Freundlich coefficients had strong relationships with the aforementioned corn parameters in the P deficient Eram-Lebo soil while, strength of the association was weak or missing in the Ulysses soil which had optimum levels of antecedent P.

  10. Isothermal titration calorimetry as a tool to determine the thermodynamics of demicellization processes.

    PubMed

    Kessler, Anne; Zeeb, Benjamin; Kranz, Bertolt; Menéndez-Aguirre, Orquídea; Fischer, Lutz; Hinrichs, Jörg; Weiss, Jochen

    2012-10-01

    Demicellization of a 90 mM sodium dodecyl sulfate (SDS) solution in water at 10, 22, and 30 °C was studied by isothermal titration calorimetry (ITC). ΔH of the demicellization process was strongly temperature dependent, having an exothermic progression (-20.4 ± 0.9 kJ∕mol, max) at 10 °C and an endothermic one (3.7 ± 1.2 kJ∕mol, max) at 30 °C. ΔH for micelle dilution followed a slightly endothermic progression (0.9 ± 0.5 kJ∕mol at 30 °C, 0.7 ± 1.3 kJ∕mol at 22 °C, and 0.0 ± 0.5 kJ∕mol at 10 °C) at all studied temperatures. No differences in ΔH for micelle dilution and demicellization was observed at 22 °C. The temperature dependence of ΔH measured by ITC could be related to hydrophobic interactions. Therefore, ITC was shown to be a useful tool to describe the thermodynamics of demicellization processes and in addition to determine alterations in ΔH caused by changes in hydrophobic and steric∕electrostatic interactions.

  11. Isothermal titration calorimetry determination of individual rate constants of trypsin catalytic activity.

    PubMed

    Aguirre, César; Condado-Morales, Itzel; Olguin, Luis F; Costas, Miguel

    2015-06-15

    Determination of individual rate constants for enzyme-catalyzed reactions is central to the understanding of their mechanism of action and is commonly obtained by stopped-flow kinetic experiments. However, most natural substrates either do not fluoresce/absorb or lack a significant change in their spectra while reacting and, therefore, are frequently chemically modified to render adequate molecules for their spectroscopic detection. Here, isothermal titration calorimetry (ITC) was used to obtain Michaelis-Menten plots for the trypsin-catalyzed hydrolysis of several substrates at different temperatures (278-318K): four spectrophotometrically blind lysine and arginine N-free esters, one N-substituted arginine ester, and one amide. A global fitting of these data provided the individual rate constants and activation energies for the acylation and deacylation reactions, and the ratio of the formation and dissociation rates of the enzyme-substrate complex, leading also to the corresponding free energies of activation. The results indicate that for lysine and arginine N-free esters deacylation is the rate-limiting step, but for the N-substituted ester and the amide acylation is the slowest step. It is shown that ITC is able to produce quality kinetic data and is particularly well suited for those enzymatic reactions that cannot be measured by absorption or fluorescence spectroscopy.

  12. Determination of the kinetic parameters of BeO using isothermal decay method.

    PubMed

    Azorin Nieto, Juan; Vega, Claudia Azorin; Montalvo, Teodoro Rivera; Cabrera, Eugenio Torijano

    2016-02-01

    Most of the existing methods for obtaining the frequency factors make use of the trap depth (activation energy) making some assumptions about the order of the kinetics. This causes inconsistencies in the reported values of trapping parameters due that the values of the activation energy obtained by different methods differ appreciably among them. Then, it is necessary to use a method independent of the trap depth making use of the isothermal luminescence decay (ILD) method. The trapping parameters associated with the prominent glow peak of BeO (280°C) are reported using ILD method. As a check, the trap parameters are also calculated by glow curve shape (Chen's) method after isolating the prominent glow peak by thermal cleaning technique. Our results show a very good agreement between the trapping parameters calculated by the two methods. ILD method was used for determining the trapping parameters of BeO. Results obtained applying this method are in good agreement with those obtained using other methods, except in the value of the frequency factor.

  13. Proton Adsorption onto Alumina: Extension of Multisite Complexation (MUSIC) Theory.

    PubMed

    Nagashima; Blum

    1999-09-01

    The adsorption isotherm of protons onto a commercial gamma-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species. Copyright 1999 Academic Press. PMID:10441408

  14. Proton adsorption onto alumina: extension of multisite complexation (MUSIC) theory

    SciTech Connect

    Nagashima, K.; Blum, F.D.

    1999-09-01

    The adsorption isotherm of protons onto a commercial {gamma}-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species.

  15. Proton Adsorption onto Alumina: Extension of Multisite Complexation (MUSIC) Theory.

    PubMed

    Nagashima; Blum

    1999-09-01

    The adsorption isotherm of protons onto a commercial gamma-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species. Copyright 1999 Academic Press.

  16. Isotherms and kinetic study of dihydrogen and hydrogen phosphate ions (H{2}PO{4}- and HPO{4}2-) adsorption onto crushed plant matter of the semi-arid zones of Morocco: Asphodelus microcarpus, Asparagus albus and Senecio anthophorbium

    NASA Astrophysics Data System (ADS)

    Chiban, M.; Benhima, H.; Saadi, B.; Nounah, A.; Sinan, F.

    2005-03-01

    In the present work H{2}PO4- and HPO42- ions adsorption onto organic matter (OM) obtained from ground dried three plants growing in arid zones of Morocco has been studied. The adsorption process is affected by various parameters such as contact time, particle size and initial concentration of phosphate solution (Ci ≤ 30 mg/l). The uptake of both ions is increased by increasing the concentration of them selves. The retention of phosphate ions by Asphodelus microcarpus, Asparagus albus are well defined by several isotherms such as the Langmuir, Temkin and Freundlich.

  17. Bovine embryo sex determination by multiplex loop-mediated isothermal amplification.

    PubMed

    Khamlor, Trisadee; Pongpiachan, Petai; Parnpai, Rangsun; Punyawai, Kanchana; Sangsritavong, Siwat; Chokesajjawatee, Nipa

    2015-03-15

    In cattle, the ability to determine the sex of embryos before embryo transfer is beneficial for increasing the number of animals with the desired sex. This study therefore developed a new modification of loop-mediated isothermal amplification in a multiplex format (multiplex LAMP) for highly efficient bovine embryo sexing. Two chromosomal regions, one specific for males (Y chromosome, S4 region) and the other common to both males and females (1.715 satellite DNA), were amplified in the same reaction tube. Each target was amplified by specifically designed inner primers, outer primers, and loop primers, where one of the S4 loop primers was labeled with the fluorescent dye 6-carboxyl-X-rhodamine (emitting a red color), whereas both satellite loop primers were labeled with the fluorescent dye fluorescein isothiocyanate (emitting a green color). After amplification at 63 °C for 1 hour, the amplified products were precipitated by a small volume of cationic polymer predispensed inside the reaction tube cap. Green precipitate indicated the presence of only control DNA without the Y chromosome, whereas orange precipitate indicated the presence of both target DNAs, enabling interpretation as female and male, respectively. Accuracy of the multiplex LAMP assay was evaluated using 46 bovine embryos with known sex (25 male and 21 female) generated by somatic cell nuclear transfer and confirmed by multiplex polymerase chain reaction. The multiplex LAMP showed 100% accuracy in identifying the actual sex of the embryos and provides a fast, simple, and cost-effective tool for bovine embryo sexing. PMID:25542460

  18. Determination of platinum in blood by adsorptive voltammetry.

    PubMed

    Nygren, O; Vaughan, G T; Florence, T M; Morrison, G M; Warner, I M; Dale, L S

    1990-08-01

    This work describes a sensitive method for the determination of platinum in blood, which can be used for determining the natural levels of platinum in human blood, for monitoring patients treated with platinum cytotoxic drugs, and for monitoring occupational exposure to these drugs and other platinum compounds. The method involves dry ashing of blood samples in a muffle furnace and determination of platinum by adsorptive voltammetric (AV) measurement of the catalytic reduction of protons by the platinum-formazone complex. The detection limit for a 100-microL sample of blood is 0.017 micrograms/L, with a recovery of 94% and a relative standard deviation of 7% at a platinum level of 1 microgram/L. By using this method, the natural levels of platinum in human blood were found to be in the range 0.1-2.8 micrograms/L (median = 0.6 micrograms/L). These results were verified by inductively coupled plasma mass spectrometry (ICP-MS) with blood prepared by wet ashing and using gold as an internal standard. PMID:2400106

  19. Determination of Kinetic and Thermodynamic Parameters that Describe Isothermal Seed Germination: A Student Research Project.

    ERIC Educational Resources Information Center

    Hageseth, Gaylord T.

    1982-01-01

    Describes a project for students to collect and fit data to a theoretical mathematical model that describes the rate of isothermal seed germination, including activation energy for substrate and produce and the autocatalytic reaction, and changes in enthalpy, entropy, and the Gibb's free energy. (Author/SK)

  20. Adsorption of thorium from aqueous solutions by perlite.

    PubMed

    Talip, Z; Eral, M; Hiçsönmez, U

    2009-02-01

    The use of expanded perlite for the adsorption of thorium from aqueous solution by batch technique is presented. The effects of particle size, pH of the solution, initial thorium concentration, shaking time, V/m ratio and temperature were determined. It was found that the adsorption capacity increases by the increase in the pH of the suspensions. The rate of thorium adsorption on expanded perlite was observed to be fast in the first hour of the reaction time. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models and the adsorption experiments conducted at 30 +/- 1 degrees C showed that the adsorption isotherms correlated well with the Langmuir model. From the adsorption data, thermodynamic parameters such as DeltaG(o), DeltaH(o) and DeltaS(o) were calculated as a function of temperature.

  1. Label-Free Determination of the Dissociation Constant of Small Molecule-Aptamer Interaction by Isothermal Titration Calorimetry.

    PubMed

    Vogel, Marc; Suess, Beatrix

    2016-01-01

    Isothermal titration calorimetry (ITC) is a powerful label-free technique to determine the binding constant as well as thermodynamic parameters of a binding reaction and is therefore well suited for the analysis of small molecule-RNA aptamer interaction. We will introduce you to the method and present a protocol for sample preparation and the calorimetric measurement. A detailed note section will point out useful tips and pitfalls.

  2. Using Isothermal Microcalorimetry to Determine Compatibility of Structural Materials with High-Test Hydrogen Peroxide (HTP) Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy; Villegas, Yvonne; Nwosisi, Genne; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    High-Test Hydrogen Peroxide (HTP) propellant (equal to or greater than 70%) offers many advantages in space launch applications. However, materials used in construction of propulsion systems must be shown to be compatible with HTP. Isothermal Microcalorimetry (IMC) was used to determine the compatibility of several metallic and non-metallic materials with 90% HTP. The results of these experiments agreed with those from immersion bath tests when the values were converted to % Active Oxygen Loss per week (%AOL/wk).

  3. Magnetic solid phase adsorption, preconcentration and determination of methyl orange in water samples using silica coated magnetic nanoparticles and central composite design

    NASA Astrophysics Data System (ADS)

    Shariati-Rad, Masoud; Irandoust, Mohsen; Amri, Somayyeh; Feyzi, Mostafa; Ja'fari, Fattaneh

    2014-10-01

    This work evaluates the efficiency of SiO2-coated Fe3O4 magnetic nanoparticles (SMNPs) for adsorption of methyl orange (MO). Adsorption of MO on the studied nanoparticle was developed for removal, preconcentration and spectrophotometric determination of trace amounts of it. To find the optimum adsorption conditions, the influence of pH, dosage of the adsorbent and contact time was explored by central composite design. In pH 2.66, with 10.0 mg of the SMNPs and time of 30.0 min, the maximum adsorption of MO was obtained. The experimental adsorption data were analyzed by the Langmuir and Freundlich adsorption isotherms. Both models were fitted to the equilibrium data and the maximum monolayer capacity q max of 53.19 mg g-1 was obtained for MO. Moreover, the sorption kinetics was fitted well to the pseudo-second-order rate equation model. The results showed that desorption efficiencies higher than 99 % can be achieved in a short contact time and in one step elution by 2.0 mL of 0.1 mol L-1 NaOH. The SMNPs were washed with deionized water and reused for two successive removal processes with removal efficiencies more than 90 %. The calibration curve was linear in the range of 10.0-120.0 ng mL-1 for MO. A preconcentration factor of about 45 % was achieved by the method.

  4. Theoretical consideration of the use of a Langmuir adsorption isotherm to describe the effect of light intensity on electron transfer in photosystem II.

    PubMed

    Fragata, Mário; Viruvuru, Venkataramanaiah; Dudekula, Subhan

    2007-03-29

    Electron transport through photosystem II (PSII), measured as oxygen evolution, was investigated in isolated PSII particles and thylakoid membranes irradiated with white light of intensities (I) of 20 to about 4000 micromol of photons/(m2.s). In steady-state conditions, the evolution of oxygen varies with I according to the hyperbolic expression OEth = OEth(max)I/(L1/2 + I) (eq i) where OEth is the theoretical oxygen evolution, OEth(max) is the maximum oxygen evolution, and L1/2 is the light intensity giving OEth(max)/2. In this work, the mathematical derivation of this relationship was performed by using the Langmuir adsorption isotherm and assuming that the photon interaction with the chlorophyll (Chl) in the PSII reaction center is a heterogeneous reaction in which the light is represented as a stream of particles instead of an electromagnetic wave (see discussion in Turro, N. J. Modern Molecular Photochemistry; University Science Books: Mill Valley, CA, 1991). In accordance with this approximation, the Chl molecules (P680) were taken as the adsorption surfaces (or heterogeneous catalysts), and the incident (or exciting) photons as the substrate, or the reagent. Using these notions, we demonstrated that eq i (Langmuir equation) is a reliable interpretation of the photon-P680 interaction and the subsequent electron transfer from the excited state P680, i.e., P680*, to the oxidized pheophytin (Phe), then from Phe- to the primary quinone QA. First, eq i contains specific functional and structural information that is apparent in the definition of OEth(max) as a measure of the maximal number of PSII reaction centers open for photochemistry, and L1/2 as the equilibrium between the electron transfer from Phe- to QA and the formation of reduced Phe in the PSII reaction center by electrons in provenance from P680*. Second, a physiological control mechanism in eq i is proved by the observation that the magnitudes of OEth(max) and L1/2 are affected differently by exogenous

  5. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes.

    PubMed

    Björklund, Sebastian; Kocherbitov, Vitaly

    2015-05-01

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration. PMID:26026556

  6. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes

    SciTech Connect

    Björklund, Sebastian Kocherbitov, Vitaly

    2015-05-15

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.

  7. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes

    NASA Astrophysics Data System (ADS)

    Björklund, Sebastian; Kocherbitov, Vitaly

    2015-05-01

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.

  8. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes.

    PubMed

    Björklund, Sebastian; Kocherbitov, Vitaly

    2015-05-01

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.

  9. Determination of Equilibrium and Kinetic Parameters of the Adsorption of Cr(III) and Cr(VI) from Aqueous Solutions to Agave Lechuguilla Biomass

    PubMed Central

    Romero-González, Jaime; Peralta-Videa, José R.; Rodríguez, Elena

    2005-01-01

    This investigation reveals the capability of Agave lechuguilla for trivalent and hexavalent chromium removal from aqueous solutions. Experimentation included pH profile, time dependence, adsorption capacity (KF and QL), adsorption intensity (n and RL) and saturation capacity (q s) studies. Batch experiments were conducted at 22∘C to characterize and model the adsorption equilibrium as well as biomass adsorption rates. pH 4 was the optimum for Cr(III) binding, while Cr(VI) optimum binding was at pH 2. Time profile experiments indicated that the adsorption of Cr(VI) by lechuguilla biomass was time-dependent and that of Cr(III) was not. Kinetic models demonstrated that a pseudo-second order reaction model best described the kinetic data for Cr(VI). The adsorption isotherms showed that the binding pattern for Cr(VI) followed the Freundlich isotherm model, while that for Cr(III) followed the Langmuir isotherm. PMID:18365089

  10. Determination of kinetic and thermodynamic parameters that describe isothermal seed germination: A student research project

    NASA Astrophysics Data System (ADS)

    Hageseth, Gaylord T.

    1982-02-01

    Students under the supervision of a faculty member can collect data and fit the data to the theoretical mathematical model that describes the rate of isothermal seed germination. The best-fit parameters are interpreted as an initial substrate concentration, product concentration, and the autocatalytic reaction rate. The thermodynamic model enables one to calculate the activation energy for the substrate and product, the activation energy for the autocatalytic reaction, and changes in enthalpy, entropy, and the Gibb's free energy. Turnip, lettuce, soybean, and radish seeds have been investigated. All data fit the proposed model.

  11. Using isothermal titration calorimetry to determine thermodynamic parameters of protein-glycosaminoglycan interactions.

    PubMed

    Dutta, Amit K; Rösgen, Jörg; Rajarathnam, Krishna

    2015-01-01

    It has now become increasingly clear that a complete atomic description of how biomacromolecules recognize each other requires knowledge not only of the structures of the complexes but also of how kinetics and thermodynamics drive the binding process. In particular, such knowledge is lacking for protein-glycosaminoglycan (GAG) complexes. Isothermal titration calorimetry (ITC) is the only technique that can provide various thermodynamic parameters-enthalpy, entropy, free energy (binding constant), and stoichiometry-from a single experiment. Here we describe different factors that must be taken into consideration in carrying out ITC titrations to obtain meaningful thermodynamic data of protein-GAG interactions.

  12. Determination of ABO blood group genotypes using the real-time loop-mediated isothermal amplification method

    PubMed Central

    ZHANG, CHAO; ZHU, JUANLI; YANG, JIANGCUN; WAN, YINSHENG; MA, TING; CUI, YALI

    2015-01-01

    ABO genotyping is commonly used in several situations, including blood transfusion, personal identification and disease detection. The present study developed a novel method for ABO genotyping, using loop-mediated isothermal amplification (LAMP). This method allows the simultaneous determination of six ABO genotypes under 40 min at a constant temperature of 62°C. The genotypes of 101 blood samples were determined to be AA (n=6), AO (n=38), BB (n=12), BO (n =29), AB (n=8) and OO (n=8) by the LAMP assay. The results were compared with the phenotypes determined by serological assay and the genotypes determined by direct sequencing, and no discrepancies were observed. This novel and rapid method, with good accuracy and reasonably cost effective, provides a supplement to routine serological ABO typing and may also be useful in other point-of-care testing. PMID:26238310

  13. Substrate binding properties of potato tuber ADP-glucose pyrophosphorylase as determined by isothermal titration calorimetry.

    PubMed

    Cakir, Bilal; Tuncel, Aytug; Green, Abigail R; Koper, Kaan; Hwang, Seon-Kap; Okita, Thomas W; Kang, ChulHee

    2015-06-01

    Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism.

  14. Substrate binding properties of potato tuber ADP-glucose pyrophosphorylase as determined by isothermal titration calorimetry.

    PubMed

    Cakir, Bilal; Tuncel, Aytug; Green, Abigail R; Koper, Kaan; Hwang, Seon-Kap; Okita, Thomas W; Kang, ChulHee

    2015-06-01

    Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism. PMID:25953126

  15. Determining the association constant and adsorption properties of ion pairs in water by fitting surface tension data.

    PubMed

    Pradines, Vincent; Lavabre, Dominique; Micheau, Jean-Claude; Pimienta, Véronique

    2005-11-22

    Association constants and adsorption parameters of tetraalkylammoniumdodecyl sulfate (TAADS) ion pairs in water were determined. We have analyzed water/air surface tension measurements obtained for mixtures of sodium dodecyl sulfate (SDS) and tetraalkylammonium bromide of increasing chain lengths (TMAB, TEAB, TPAB, and TBAB). To reproduce the experimental isotherms, we coupled the association equilibrium of the ion pairs to the equations proposed by Fainerman and co-workers to model the adsorption of binary mixtures of surfactants (SDS and TAADS) with different molar areas at a nonideal surface layer. The parameters found showed that the model is not convenient to describe the effect of the addition of TMAB but a clear coherency was obtained for the three longer compounds. Ranging from TEADS to TBADS increasing hydrophobic interactions give rise to a higher associability but to a lower surface activity. Self-interactions coefficients extracted by the fitting procedure confirmed the importance of attractive interactions between the ion pairs. The calculated surface coverage showed that in every case the compound mainly adsorbed at the interface was the ion pair. For TBADS strong attractive interactions result in a phase transition at very low concentration.

  16. Adsorption of phenol on wood surfaces

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Lunin, V. V.

    2016-03-01

    Adsorption of phenol on aspen and pine wood is investigated. It is shown that adsorption isotherms are described by the Langmuir model. The woods' specific surface areas and adsorption interaction constants are determined. It is found that the sorption of phenol on surfaces of aspen and pine is due to Van der Waals interactions ( S sp = 45 m2/godw for aspen and 85 m2/godw for pine). The difference between the adsorption characteristics is explained by properties of the wood samples' microstructures.

  17. Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition.

    PubMed

    Chen, Dengyu; Zheng, Yan; Zhu, Xifeng

    2012-03-01

    The current study presents a thermogravimetric method to determine the effective moisture diffusivity and drying kinetics of biomass. Drying experiments on poplar sawdust were performed at four temperatures (60, 70, 80, and 90°C) by a thermogravimetric analyzer (TGA). The major assumption in experimentally determining effective diffusivity by Fick's diffusion equation is that drying is mass transfer limited and temperature remains isothermal during drying. The results indicated that TGA could well achieve these determining conditions. The drying process of sawdust mostly took place in the falling rate period. Midilli-Kucuk model showed the best fit for all experimental data. The effective diffusivity values changed from 9.38 × 10(-10)m(2)/s to 1.38 × 10(-9)m(2)/s within the given temperature range, and the activation energy was calculated to be 12.3 kJ/mol. PMID:22237174

  18. Soft computing modelling of moisture sorption isotherms of milk-foxtail millet powder and determination of thermodynamic properties.

    PubMed

    Simha, H V Vikram; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Kumar, P Arun; Manimala, K

    2016-06-01

    Moisture sorption isotherms of spray-dried milk-foxtail millet powder were determined at 10, 25 and 40 °C. Sorption data was fitted using classical and soft-computing approaches. The isotherms were of type II, and equilibrium moisture content (EMC) was temperature dependent. The BET monolayer moisture content decreased from 3.30 to 2.67 % as temperature increased from 10 to 40 °C. Amongst the classical models, Ferro-Fontan gave the best fit of EMC-aw data. However, the Sugeno-type adaptive neuro-fuzzy inference system (ANFIS) with generalized bell-shaped membership function performed better than artificial neural network and classical models with RMSE as low as 0.0099. The isosteric heat of sorption decreased from 150.32 kJ mol(-1) at 1 % moisture content to 44.11 kJ mol(-1) at 15 % moisture. The enthalpy-entropy compensation theory was validated, and the isokinetic and harmonic mean temperatures were determined as 333.1 and 297.5 K, respectively. PMID:27478226

  19. Artificial neural network (ANN) method for modeling of sunset yellow dye adsorption using zinc oxide nanorods loaded on activated carbon: Kinetic and isotherm study

    NASA Astrophysics Data System (ADS)

    Maghsoudi, M.; Ghaedi, M.; Zinali, A.; Ghaedi, A. M.; Habibi, M. H.

    2015-01-01

    In this research, ZnO nanoparticle loaded on activated carbon (ZnO-NPs-AC) was synthesized simply by a low cost and nontoxic procedure. The characterization and identification have been completed by different techniques such as SEM and XRD analysis. A three layer artificial neural network (ANN) model is applicable for accurate prediction of dye removal percentage from aqueous solution by ZnO-NRs-AC following conduction of 270 experimental data. The network was trained using the obtained experimental data at optimum pH with different ZnO-NRs-AC amount (0.005-0.015 g) and 5-40 mg/L of sunset yellow dye over contact time of 0.5-30 min. The ANN model was applied for prediction of the removal percentage of present systems with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) in the hidden layer with 6 neurons. The minimum mean squared error (MSE) of 0.0008 and coefficient of determination (R2) of 0.998 were found for prediction and modeling of SY removal. The influence of parameters including adsorbent amount, initial dye concentration, pH and contact time on sunset yellow (SY) removal percentage were investigated and optimal experimental conditions were ascertained. Optimal conditions were set as follows: pH, 2.0; 10 min contact time; an adsorbent dose of 0.015 g. Equilibrium data fitted truly with the Langmuir model with maximum adsorption capacity of 142.85 mg/g for 0.005 g adsorbent. The adsorption of sunset yellow followed the pseudo-second-order rate equation.

  20. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity

    SciTech Connect

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M.

    2011-07-27

    Laboratory experiments were performed to investigate the contribution of variable grain sizes to uranium adsorption/desorption in a sediment collected from the US DOE Hanford site. The sediment was wet-sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.05-0.2 mm), and clay/silt fraction (< 0.05mm). For each size fraction and their composite (sediment), batch experiments were performed to determine uranium adsorption isotherms, and stirred flow-cell experiments were conducted to derive kinetic data of uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size-specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment, but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. Our analysis also showed that uranium adsorption site concentration estimated from the adsorption isotherms was 3 orders of magnitude less than a site concentration estimated from sediment surface area and generic site density. One important implication of this study is that grain size distribution may be used to estimate uranium adsorption site, and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  1. Adsorption of phenolic compound by aged-refuse.

    PubMed

    Xiaoli, Chai; Youcai, Zhao

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  2. Adsorption modeling for off-gas treatment

    SciTech Connect

    Ladshaw, A.; Sharma, K.; Yiacoumi, S.; Tsouris, C.; De Paoli, D.W.

    2013-07-01

    Off-gas generated from the reprocessing of used nuclear fuel contains a mixture of several radioactive gases including {sup 129}I{sub 2}, {sup 85}Kr, HTO, and {sup 14}CO{sub 2}. Over the past few decades, various separation and recovery processes have been studied for capturing these gases. Adsorption data for gaseous mixtures of species can be difficult to determine experimentally. Therefore, procedures capable of predicting the adsorption behavior of mixtures need to be developed from the individual isotherms of each of the pure species. A particular isotherm model of interest for the pure species is the Generalized Statistical Thermodynamic Adsorption isotherm. This model contains an adjustable number of parameters and will therefore describe a wide range of adsorption isotherms for a variety of components. A code has been developed in C++ to perform the non-linear regression analysis necessary for the determination of the isotherm parameters, as well as the least number of parameters needed to describe an entire set of data. (authors)

  3. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy

    PubMed Central

    Tan, Yih Horng; Davis, Jason A.; Fujikawa, Kohki; Ganesh, N. Vijaya; Demchenko, Alexei V.

    2012-01-01

    Nitrogen adsorption/desorption isotherms are used to investigate the Brunauer, Emmett, and Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size distribution of physically modified, thermally annealed, and octadecanethiol functionalized np-Au monoliths. We present the full adsorption-desorption isotherms for N2 gas on np-Au, and observe type IV isotherms and type H1 hysteresis loops. The evolution of the np-Au under various thermal annealing treatments was examined using scanning electron microscopy (SEM). The images of both the exterior and interior of the thermally annealed np-Au show that the porosity of all free standing np-Au structures decreases as the heat treatment temperature increases. The modification of the np-Au surface with a self-assembled monolayer (SAM) of C18-SH (coverage of 2.94 × 1014 molecules cm−2 based from the decomposition of the C18-SH using thermogravimetric analysis (TGA)), was found to reduce the strength of the interaction of nitrogen gas with the np-Au surface, as reflected by a decrease in the ‘C’ parameter of the BET equation. From cyclic voltammetry studies, we found that the surface area of the np-Au monoliths annealed at elevated temperatures followed the same trend with annealing temperature as found in the BET surface area study and SEM morphology characterization. The study highlights the ability to control free-standing nanoporous gold monoliths with high surface area, and well-defined, tunable pore morphology. PMID:22822294

  4. Calcium lignosulfonate adsorption and desorption on Berea sandstone.

    PubMed

    Grigg, Reid B; Bai, Baojun

    2004-11-01

    This paper describes adsorption and desorption studies carried out with calcium lignosulfonate (CLS) on Berea sandstone. Circulation experiments were performed to determine CLS adsorption isotherms and the effects of CLS concentration, temperature, salinity, brine hardness, and injection rate on adsorption density. Flow-through experiments were performed to assess the reversibility of CLS adsorption and the influence of postflush rate, brine concentration, brine hardness, brine pH, and temperature on the desorption process. Results indicate that CLS adsorption isotherms on Berea sandstone follow the Freundlich isotherm law. The results presented in this paper on the effects of CLS adsorption and desorption on Berea sandstone show that: (1) increasing CLS concentration and salinity increases CLS adsorption density; (2) increasing temperature will decrease adsorption density; (3) increasing injection rate of CLS solution will slightly decrease CLS adsorption density; (4) postflush rate and salinity of brine have a large impact on the CLS desorption process; (5) the adsorption and desorption process are not completely reversible; and (5) temperature and pH of the postflush brine have little effect on desorption.

  5. Isothermal Calorimeter

    NASA Technical Reports Server (NTRS)

    Rowlette, John J.

    1990-01-01

    Pressure-feedback signal indicates rate of heating. Improved isothermal calorimeter measures rate of heating in object under test. Called "isothermal" because chamber holding object and its environment maintained at or near constant temperature to minimize spurious tranfers of heat introducing errors into measurements. When item under test generates heat, rate of boiling and pressure in inner chamber increase. Servo-valve opens wider to maintain preset differential pressure. Valve-control voltage used as measure of rate of heating.

  6. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum.

    PubMed

    Ozcan, Adnan; Ozcan, A Safa; Tunali, Sibel; Akar, Tamer; Kiran, Ismail

    2005-09-30

    Adsorption of copper ions onto Capsicum annuum (red pepper) seeds was investigated with the variation in the parameters of pH, contact time, adsorbent and copper(II) concentrations and temperature. The nature of the possible adsorbent and metal ion interactions was examined by the FTIR technique. The copper(II) adsorption equilibrium was attained within 60 min. Adsorption of copper(II) ions onto C. annuum seeds followed by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Maximum adsorption capacity (q(max)) of copper(II) ions onto red pepper seeds was 4.47x10(-4) molg(-1) at 50 degrees C. Three kinetic models including the pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were selected to follow the adsorption process. Kinetic parameters such as rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was indicated that the adsorption of copper(II) ions onto C. annuum seeds could be described by the pseudo-second-order kinetic model and also followed the intraparticle diffusion model up to 60 min, but diffusion is not only the rate controlling step. Thermodynamics parameters such as the change of free energy, enthalpy and entropy were also evaluated for the adsorption of copper(II) ions onto C. annuum seeds.

  7. Inhibition of beta-amylase activity by calcium, magnesium and zinc ions determined by spectrophotometry and isothermal titration calorimetry.

    PubMed

    Dahot, M Umar; Saboury, A A; Moosavi-Movahedi, A A

    2004-04-01

    The inhibition effect of metal ions on beta amylase activity was studied. The inhibitor-binding constant (Ki) was determined by spectrophotometric and isothermal titration calorimetric (ITC) methods. The binding of calcium, magnesium and zinc ion as inhibitors at the active site of barley beta amylase was studied at pH = 4.8 (sodium acetate 16 mM) and T = 300K. The Ki and enthalpy of binding for calcium (13.4, 13.1 mM and -14.3 kJ/mol), magnesium (18.6, 17.8mM and -17.7 kJ/mol) and zinc (17.5, 17.7 mM and -20.0 kJ/mol) were found by spectrophotometric and ITC methods respectively.

  8. Mechanistic understanding and performance of biosorption of metal ions by grapefruit peel using FTIR spectroscopy, kinetics and adsorption isotherms modeling, alkali and alkaline metal displacement and EDX analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance and mechanism of the sorptive removal of Ni2+ and Zn2+ from aqueous solution using grapefruit peel (GFP) as a new sorbent was investigated. The sorption process was fast, equilibrium was established in 60 min. The equilibrium process was described well by the Langmuir isotherm model,...

  9. Adsorption of CTAB onto perlite samples from aqueous solutions.

    PubMed

    Alkan, Mahir; Karadaş, Mecit; Doğan, Mehmet; Demirbaş, Ozkan

    2005-11-15

    In this study, the adsorption properties of unexpanded and expanded perlite samples in aqueous cetyltrimethylammonium bromide (CTAB) solutions were investigated as a function of ionic strength, pH, and temperature. It was found that the amount of cetyltrimethylammonium bromide adsorbed onto unexpanded perlite was greater than that onto expanded perlite. For both perlite samples, the sorption capacity increased with increasing ionic strength and pH and decreasing temperature. Experimental data were analyzed by Langmuir and Freundlich isotherms and it was found that the experimental data were correlated reasonably well by the Freundlich adsorption isotherm. Furthermore, the isotherm parameters (KF and n) were also calculated. The adsorption enthalpy was determined from experimental data at different temperatures. Results have shown that the interaction between the perlite surface and CTAB is a physical interaction, and the adsorption process is an exothermic one.

  10. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means.

    PubMed

    Subramanyam, Busetty; Das, Ashutosh

    2014-01-01

    In adsorption study, to describe sorption process and evaluation of best-fitting isotherm model is a key analysis to investigate the theoretical hypothesis. Hence, numerous statistically analysis have been extensively used to estimate validity of the experimental equilibrium adsorption values with the predicted equilibrium values. Several statistical error analysis were carried out. In the present study, the following statistical analysis were carried out to evaluate the adsorption isotherm model fitness, like the Pearson correlation, the coefficient of determination and the Chi-square test, have been used. The ANOVA test was carried out for evaluating significance of various error functions and also coefficient of dispersion were evaluated for linearised and non-linearised models. The adsorption of phenol onto natural soil (Local name Kalathur soil) was carried out, in batch mode at 30 ± 20 C. For estimating the isotherm parameters, to get a holistic view of the analysis the models were compared between linear and non-linear isotherm models. The result reveled that, among above mentioned error functions and statistical functions were designed to determine the best fitting isotherm. PMID:25018878

  11. Protein Adsorption on Surfaces with Grafted Polymers

    PubMed Central

    Szleifer, I.

    1997-01-01

    A general theoretical framework for studying the adsorption of protein molecules on surfaces with grafted polymers is presented. The approach is a generalization of the single-chain mean-field theory, in which the grafted polymer-protein-solvent layer is assumed to be inhomogeneous in the direction perpendicular to the grafting surface. The theory enables the calculation of the adsorption isotherms of the protein as a function of the surface coverage of grafted polymers, concentration of protein in bulk, and type of solvent molecules. The potentials of mean force of the protein with the surface are calculated as a function of polymer surface coverage and amount of protein adsorbed. The theory is applied to model lysozyme on surfaces with grafted polyethylene oxide. The protein is modeled as spherical in solution, and it is assumed that the protein-polymer, protein-solvent, and polymer-solvent attractive interactions are all equal. Therefore, the interactions determining the structure of the layer (beyond the bare polymer-surface and protein-surface interactions) are purely repulsive. The bare surface-protein interaction is taken from atomistic calculations by Lee and Park. For surfaces that do not have preferential attractions with the grafted polymer segments, the adsorption isotherms of lysozyme are independent of the polymer length for chains with more than 50 ethylene oxide units. However, the potentials of mean force show strong variations with grafted polymer molecular weight. The competition between different conformations of the adsorbed protein is studied in detail. The adsorption isotherms change qualitatively for surfaces with attractive interactions with ethylene oxide monomers. The protein adsorption is a function of chain length—the longer the polymer the more effective it is in preventing protein adsorption. The structure of the layer and its deformation upon protein adsorption are very important in determining the adsorption isotherms and the

  12. Determination of oxcarbazepine by Square Wave Adsorptive Stripping Voltammetry in pharmaceutical preparations.

    PubMed

    Calvo, M Encarnación Burgoa; Renedo, Olga Domínguez; Martínez, M Julia Arcos

    2007-02-19

    A procedure for the determination of oxcarbazepine (OXC) by Square Wave Adsorptive Stripping Voltammetry (SWAdSV) has been optimized. Selection of the experimental parameters was made using experimental design methodology. The detection limit was 1.74 x 10(-7) mol dm(-3). This method was used to determine oxcarbazepine in pharmaceutical preparations.

  13. Adsorptive Stripping Voltammetry of Environmental Indicators: Determination of Zinc in Algae

    ERIC Educational Resources Information Center

    Collado-Sanchez, C.; Hernandez-Brito, J. J.; Perez-Pena, J.; Torres-Padron, M. E.; Gelado-Caballero, M. D.

    2005-01-01

    A method for sample preparation and for the determination of average zinc content in algae using adsorptive stripping voltammetry are described. The students gain important didactic advantages through metal determination in environmental matrices, which include carrying out clean protocols for sampling and handling, and digesting samples using…

  14. Adsorption isotherms, kinetics, thermodynamics and desorption studies for uranium and thorium ions from aqueous solution by novel microporous composite P(HEMA-EP)

    NASA Astrophysics Data System (ADS)

    Akkaya, Recep; Akkaya, Birnur

    2013-03-01

    In this research, a novel composite, poly(2-hydroxyethylmethacrylate-expanded perlite) [P(HEMA-EP)], was synthesized and its adsorptive features were investigated. P(HEMA-EP)'s adsorptive features were evaluated for UO22+ and Th4+ ions in terms of the dependency upon the ion concentration, pH, temperature, and time. P(HEMA-EP) was able to bind UO22+ and Th4+ ions with strong chemical affinity. The adsorption results were fitted to the classical Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) sorption models. P(HEMA-EP) was also used to study the removal of UO22+ and Th4+ ions from aqueous solutions in a batch system. The adsorption capacity (XL) of UO22+ and Th4+ ions was found to be 0.29 and 0.44 mol kg-1, respectively. The kinetic data corresponds well to the pseudo-second-order equation. Changes in the enthalpy and entropy values demonstrated that the overall adsorption process was spontaneous (ΔG < 0), endothermic (ΔH > 0), and had increased entropy (ΔS > 0), as expected. The reusability of the composites was confirmed for five sequential reuses.

  15. Study of adsorption of Neon on open Carbon nanohorns aggregates

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl Andrew

    Adsorption isotherms can be used to determine surface area of a substrate and the heat released when adsorption occurs. Our measurements are done determining the equilibrium pressures corresponding to a given amount of gas adsorbed on a substrate at constant temperature. The adsorption studies were done on aggregates of open dahlia-like carbon nanohorns. The nanohorns were oxidized for 9 hours at 550 °C to open them up and render their interior space accessible for adsorption. Volumetric adsorption measurements of Ne were performed at twelve different temperatures between 19 K and 48 K. The isotherms showed two substeps. The first substep corresponds to adsorption on the high energy binding sites in the interior of the nanohorns, near the tip. The second substep corresponds to low energy binding sites both on the outside of the nanotubes and inside the nanotube away from the tip. The isosteric heat measurements obtained from the isotherm data also shows these two distinct substeps. The effective surface area of the open nanotubes was determined from the isotherms using the point-B method. The isosteric heat and surface area data for neon on open nanohorns were compared to two similar experiments of neon adsorbed on aggregates of closed nanohorns.

  16. Isothermal titration calorimetry method for determination of cyclodextrin complexation thermodynamics between artemisinin and naproxen under varying environmental conditions.

    PubMed

    Illapakurthy, Ashok C; Wyandt, Christy M; Stodghill, Steven P

    2005-02-01

    A novel isothermal titration calorimetry method was used to determine the complexation thermodynamics for hydroxypropyl-beta-cyclodextrin with artemisinin and naproxen at varying temperature and pH. The new method is very useful for studying complexation reactions between cyclodextrin and drugs with poor solubility and all the thermodynamic parameters of the cyclodextrin complexation were determined. The analysis of the thermodynamic data reveals involvement of hydrophobic bonding in the cyclodextrin complexes studied. The data also reveals the presence of enthalpy-entropy compensation in the system and provide information as to the orientation of the drug molecule inside the cyclodextrin cavity. From the thermodynamic parameters for dissociation of HPBCD complexes of artemisinin and naproxen at pH 2 it is concluded that the complexation is primarily driven by enthalpy with entropic assistance at all temperatures studied. From the dissociation studies of HPBCD complexes of naproxen at pH 10 it is concluded that the complexation is predominantly driven by entropy and moderately by enthalpy at lower temperatures and by enthalpy with entropic assistance at higher temperatures. PMID:15661505

  17. Kinetic and isotherm analyses for thorium (IV) adsorptive removal from aqueous solutions by modified magnetite nanoparticle using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Karimi, Mohammad; Milani, Saeid Alamdar; Abolgashemi, Hossein

    2016-10-01

    In this study, the ability and the adsorption capacity of magnetite/aminopropyltriethoxysilane/glutaraldehyde (Fe3O4/APTES/GA) adsorbent were evaluated for the adsorption of thorium (IV) ions from aqueous solutions. The influence of the several variables such as pH (1-5), Th (IV) initial concentration (50-300 mg L-1) and adsorbent concentration (1-5 g L-1) on the Th (IV) adsorption were investigated by response surface methodology (RSM). The results showed that the highest absorption capacity (q) was 107.23 mg g-1 with respect to pH = 4.5, initial concentration of 250 mg L-1 and adsorbent concentration of 1 g L-1 for 90 min. Modeling equilibrium sorption data with the Langmuir, Freundlich and Dubinin-Radushkevich models pointed out that the results were in good agreement with Langmuir model. The experimental kinetic data were well fitted to pseudo-second-order equation with R2 = 0.9739. Also thermodynamic parameters (ΔGo, ΔHo, ΔSo) declared that the Th (IV) adsorption was endothermic and spontaneous.

  18. Experimental determination of ampicillin adsorption to nanometer-size Al2O3 in water.

    PubMed

    Peterson, Jonathan W; Burkhart, Rachel S; Shaw, Drew C; Schuiling, Amanda B; Haserodt, Megan J; Seymour, Michael D

    2010-09-01

    Transport of antibiotics in soil-water systems is controlled in part by adsorption to nanometer-size (10(-9)m) particles. Batch adsorption experiments were performed with ampicillin, a common amphoteric antibiotic, and 50 nm-Al(2)O(3) (alpha-alumina) at different pH conditions. Sorption to Al(2)O(3) can be described by linear isotherms for 2.9 microM-2.9 mM ampicillin concentrations. Distribution coefficients (K(d)) are 11.1 (+/-0.32)L kg(-1) at pH 2, 0.55 (+/-.04) L kg(-1) at pH 4, 21.9 (+/-0.9) L kg(-1) at pH 6, and 39.5 (+/-2.2) L kg(-1) at pH 8. At pH 2, approximately 47% of the initially adsorbed drug was removable by rinsing, at pH 4-56% was removed. Only 7% of the drug could be removed by rinsing at pH 6, and 3% at pH 8. Weak electrostatic forces dominate at pH<4, and stronger attachment mechanisms at higher pH. Low yields in rinsing (desorption) experiments at pH6 indicate strong attachment mechanisms, either electrostatic or possibly surface complexation. PMID:20638098

  19. Cell wall reactivity of acidophilic and alkaliphilic bacteria determined by potentiometric titrations and Cd adsorption experiments.

    PubMed

    Kenney, Janice P L; Fein, Jeremy B

    2011-05-15

    In this study, we used potentiometric titrations and Cd adsorption experiments to determine the binding capacities of two acidophilic (A. cryptum and A. acidophilum) and two alkaliphilic (B. pseudofirmus and B. circulans) bacterial species in order to determine if any consistent trends could be observed relating bacterial growth environment to proton and Cd binding properties and to compare those binding behaviors to those of neutrophilic bacteria. All of the bacterial species studied exhibited significant proton buffering over the pH range in this study, with the alkaliphiles exhibiting significantly higher acidity constants than the acidophiles as well as the neutrophilic bacterial consortia. The calculated average site concentrations for each of the bacteria in this study are within 2σ experimental error of each other, with the exception of A. cryptum, which has a significantly higher Site 2 concentration than the other species. Despite differing acidity constants between the acidophiles and alkaliphiles, all bacteria except A. cryptum exhibited remarkably similar Cd adsorption behavior to each other, and the observed extent of adsorption was also similar to that predicted from a generalized model derived using neutrophilic bacterial consortia. This study demonstrates that bacteria that grow under extreme conditions exhibit similar proton and metal adsorption behavior to that of previously studied neutrophilic species and that a single set of proton and metal binding constants can be used to model the behavior of bacterial adsorption under a wide range of environmental conditions.

  20. Application of adsorptive stripping voltammetry for determination of selected methoxyimino cephalosporins in urine samples.

    PubMed

    Aleksić, Mara M; Kapetanović, Vera

    2010-09-01

    In last two decades different electroanalytical methods are used for sensitive and selective determination of cephalosporins. In this paper the electrochemical behavior of methoxyimino cephalosporins, reduction mechanism and nature of the process at the mercury electrode surface is presented. Special attention is paid to the cephalosporins adsorption at the mercury surface. Based on this phenomenon, the adsorptive stripping methods are established for determination of low concentration of these drugs in urine samples, both in-vitro, and in-vivo conditions. The application of the adsorptive stripping differential pulse voltammetry (AdSDPV) for determination of cefpodoxime proksetile (CP), cefotaxime (CF), desacetylcefotaxime (DCF) and cefetamet (CEF) is summarized. The best sensitivity of determination in-vitro in urine was achieved for CP, in acid solutions (LOD 7.410(-9)M and LOQ 2.410(-8)M), followed by CF, CEF and DCF. This is in accordance with the strength of their adsorption. Determination of CF and DCF by AdSDPV in-vivo is also presented. Compared to other analytical methods, AdSDPV showed advantages in simplicity of the sample preparation, and over the other voltamperometric methods, higher sensitivity and selectivity.

  1. BORONATE AFFINITY ADSORPTION OF RNA: POSSIBLE ROLE OF CONFORMATIONAL CHANGES. (R825354)

    EPA Science Inventory

    Batch equilibrium adsorption isotherm determination is used to characterize the adsorption of mixed yeast RNA on agarose-immobilized m-aminophenylboronic acid. It is shown that the affinity-enhancing influence of divalent cations depends strongly on the precise nature of t...

  2. Specific surface area effect on adsorption of chlorpyrifos and TCP by soils and modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adsorption of chlorpyrifos and TCP (3,5,6, trichloro-2-pyridinol) was determined in four soils (Mollisol, Inceptisol, Entisol, Alfisol) having different specific surface areas (19–84 m2/g) but rather similar organic matter content (2.4–3.5%). Adsorption isotherms were derived from batch equilibr...

  3. Equivalence of ideal, isothermal-adiabatic, and complex cycles of gas turbine power plants and determination of the maximum efficiency of their operation

    NASA Astrophysics Data System (ADS)

    Ivanov, V. A.

    2010-12-01

    The possibility of ensuring equivalence in operation and efficiency of real cycles with intermediate cooling (heating) and isothermal-adiabatic compressions (expansion) in ideal simple cycles formed on the T- S diagrams in the second stage of real cycles. The possibility of using the equivalence of cycles for determining the maximum efficiency of operation of real cycles is demonstrated.

  4. Meningococcal carriage rates in healthy individuals in Japan determined using Loop-Mediated Isothermal Amplification and oral throat wash specimens.

    PubMed

    Takahashi, Hideyuki; Haga, Masae; Sunagawa, Tomimasa; Saitoh, Takehito; Kitahara, Takeru; Matsumoto, Sohkichi; Ohnishi, Makoto

    2016-07-01

    The detailed epidemiology of meningococcal diseases in Japan has yet to be determined and, moreover, the healthy carriage rate is also unknown. In this study, to obtain insight into the carriage rate of Neisseria meningitidis in healthy individuals in Japan, we developed a new method to detect the N. meningitidis-specific ctrB gene, one of the genes encoding enzymes for capsule synthesis, by Loop-Mediated Isothermal Amplification (LAMP) and examined the meningococcal carriage rate by using self-collected oral throat wash specimens from 836 students at a university. Examination by LAMP showed that 7 out of 836 samples were positive for N. meningitidis DNA, and the results were also verified by the nested PCR method for the meningococcus specific ggt gene. The N. meningitidis carriage rate in healthy individuals was estimated to be 0.84%. Moreover, we further confirmed by the nested-PCR-based serogroup typing method that 5 of the positive samples belonged to serogroup Y, 1 belonged to group B and 1 was unidentifiable. Considering the epidemiology for meningococcal diseases in Japan, the carriage rate and the serogroup profile seem to be consistent with low incidence of meningococcal diseases and serogroup distribution of clinical meningococcal isolates in Japan, respectively. PMID:26895673

  5. Adsorptive stripping voltammetric determination of the antidepressant drug sulpiride.

    PubMed

    Farghaly, O A

    2000-10-01

    The electrochemical behaviour of the antidepressant drug sulpiride (SP) at a hanging mercury drop electrode (HMDE) is investigated. Linear sweep cathodic stripping voltammetry (LSCSV) was used to determine sulpiride in the presence of 0.01 M sodium acetate medium pH 10.5 and 25 +/- 1 degrees C. Different parameters such as, supporting electrolyte, pH, accumulation potential, scan rate, accumulation time and ionic strength, were tested to optimize the conditions for the determination of SP. The adsorbed form is reduced irreversibly. The linear concentration range is from 2 x 10(-9) to 5 x 10(-8) M SP. Experimentally, 2 x 10(-9) M (0.68 ppb) with accumulation time 60 s can be determined successfully. Furthermore, a theoretical detection limit of 2 x 10(-10) M (0.068 ppb) Sp was calculated. The interferences of some metal ions, ascorbic acid and some amino acids were studied. The method was applied to the analysis of tablets and spiked urine, with recoveries of 104 +/- 3 and 101 + 3, and the relative standard deviation of 3.3 and 3.4%, respectively.

  6. High-temperature adsorption of n-octane, benzene, and chloroform onto silica gel surface

    SciTech Connect

    Bilinski, B.

    2000-05-01

    The adsorption properties of silica gel surface for compounds differing in types of intermolecular interactions were studied under conditions in which the same silica was investigated by means of a gas phase titration method, i.e., at high temperature and low surface coverage. Adsorption isotherms of n-octane, benzene, and chloroform were determined at 373, 363, and 353 K. Based on these isotherms the isosteric heat of adsorption was calculated. Moreover, the adsorption energy distribution function and the derivative of film pressure with respect to the adsorbed amount were computed from the isotherms determined at 373 K. The obtained results were compared to those determined by gas phase titration. It was stated that on the dependencies of film pressure derivative some linear sections appeared that corresponded to the inflection points on gas phase titration curves. The results are discussed in terms of both the type and the strength of surface-molecule interactions.

  7. Design, construction, and calibration of an isothermal titration calorimeter and its application in the study of the adsorption of phenolic compounds

    NASA Astrophysics Data System (ADS)

    Moreno-Piraján, Juan Carlos; Giraldo, Liliana

    2012-01-01

    An isothermal calorimetric titration was designed and built, and some of the results obtained are presented here. For this purpose, a Calvet heat-conducting microcalorimeter was developed and connected to a titration unit built for this experiment to record titration thermograms. The microcalorimeter was electrically calibrated to establish its sensitivity and reproducibility, obtaining K = 13.56 ± 0.21 W V-1. Additionally, the equipment was tested using the heat of neutralisation for the tris-hydroxymethyl-aminomethane-HCl (THAM-HCl) system, obtaining ΔH = -30.92 ± 0.03 kJ mol-1. The unit was assembled to obtain titration heats and the corresponding thermodynamic variables (ΔH, ΔG, ΔS, and Ke) with a system of phenolic derivatives-activated carbon (synthesised from potato peel).

  8. Design, construction, and calibration of an isothermal titration calorimeter and its application in the study of the adsorption of phenolic compounds.

    PubMed

    Moreno-Piraján, Juan Carlos; Giraldo, Liliana

    2012-01-01

    An isothermal calorimetric titration was designed and built, and some of the results obtained are presented here. For this purpose, a Calvet heat-conducting microcalorimeter was developed and connected to a titration unit built for this experiment to record titration thermograms. The microcalorimeter was electrically calibrated to establish its sensitivity and reproducibility, obtaining K = 13.56 ± 0.21 W V(-1). Additionally, the equipment was tested using the heat of neutralisation for the tris-hydroxymethyl-aminomethane-HCl (THAM-HCl) system, obtaining ΔH = -30.92 ± 0.03 kJ mol(-1). The unit was assembled to obtain titration heats and the corresponding thermodynamic variables (ΔH, ΔG, ΔS, and K(e)) with a system of phenolic derivatives-activated carbon (synthesised from potato peel).

  9. Application of isothermal titration calorimetry for characterizing thermodynamic parameters of biomolecular interactions: peptide self-assembly and protein adsorption case studies.

    PubMed

    Kabiri, Maryam; Unsworth, Larry D

    2014-10-13

    The complex nature of macromolecular interactions usually makes it very hard to identify the molecular-level mechanisms that ultimately dictate the result of these interactions. This is especially evident in the case of biological systems, where the complex interaction of molecules in various situations may be responsible for driving biomolecular interactions themselves but also has a broader effect at the cell and/or tissue level. This review will endeavor to further the understanding of biomolecular interactions utilizing the isothermal titration calorimetry (ITC) technique for thermodynamic characterization of two extremely important biomaterial systems, viz., peptide self-assembly and nonfouling polymer-modified surfaces. The advantages and shortcomings of this technique will be presented along with a thorough review of the recent application of ITC to these two areas. Furthermore, the controversies associated with the enthalpy-entropy compensation effect as well as thermodynamic equilibrium state for such interactions will be discussed.

  10. Adsorptive Cathodic Stripping Voltammetric Determination of Cefoperazone in Bulk Powder, Pharmaceutical Dosage Forms, and Human Urine

    PubMed Central

    Hoang, Vu Dang; Huyen, Dao Thi; Phuc, Phan Hong

    2013-01-01

    The electroreduction behaviour and determination of cefoperazone using a hanging mercury drop electrode were investigated. Cyclic voltammograms of cefoperazone recorded in universal Britton-Robinson buffers pH 3–6 exhibited a single irreversible cathodic peak. The process was adsorption-controlled. Britton-Robinson buffer 0.04 M pH 4.0 was selected as a supporting electrolyte for quantitative purposes by differential pulse and square wave adsorptive cathodic stripping voltammetry. The experimental voltammetric conditions were optimized using Central Composite Face design. A reduction wave was seen in the range from −0.7 to −0.8 V. These voltammetric techniques were successfully validated as per ICH guidelines and applied for the determination of cefoperazone in its single and sulbactam containing powders for injection and statistically comparable to USP-HPLC. They were further extended to determine cefoperazone in spiked human urine with no matrix effect. PMID:24109542

  11. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    PubMed

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  12. Prediction of an organism's inactivation patterns from three single survival ratios determined at the end of three non-isothermal heat treatments.

    PubMed

    Corradini, Maria G; Normand, Mark D; Peleg, Micha

    2008-08-15

    Traditionally, an organism's heat resistance parameters have been determined from a set of experimental isothermal survival data. Sometimes, however, even approximating an isothermal profile, and/or obtaining counts at sufficiently short time intervals, is extremely difficult for technical and logistic reasons. The problem would be avoided if the survival parameters could be calculated from the final survival ratios determined at the end of non-isothermal heat treatments with known temperature profiles. Theoretically, if the heat resistance were characterized by three unknown survival parameters, they could be extracted by solving three simultaneous dynamic survival curves' equations. In practice, because of the three equation's complexity - they are themselves the numerical solutions of three differential rate equations - and because the experimental final survival ratios might have a scatter, realistic estimates of the survival parameters require short cut and averaging methods for their calculation. Such a method has been tried with published dynamic inactivation data on Salmonella enteritidis and Escherichia coli. The concept was validated by the ability of the Weibullian-Log logistic model, whose three survival parameters had been obtained directly from final experimental survival ratios only, to predict entire non-isothermal survival curves that had not been used in the model's formulation. The methodology need not be restricted to Weibullian and simpler survival patterns but its practicality might be lost if there are more than three survival parameters. In principle, the same procedure can be extended to biochemical processes that occur during heat preservation, especially at very high temperatures. Estimating inactivation kinetic parameters without isothermal data could also facilitate the quantification of microbial survival under realistic processing conditions and in the actual food rather than in a surrogate medium.

  13. Methylene blue adsorption from aqueous solution by activated carbon: effect of acidic and alkaline solution treatments.

    PubMed

    Ijagbemi, Christianah O; Chun, Ji I; Han, Da H; Cho, Hye Y; O, Se J; Kim, Dong S

    2010-01-01

    The removal of Methylene Blue (MB) from aqueous solution using activated carbon (AC) has been investigated. Adsorption experiments were conducted and the maximum adsorption capacity was determined. The effect of experimental parameters such as pH, dye concentration and temperature were studied on the adsorption process. Equilibrium data were mathematically modeled using the Langmuir and Freundlich adsorption models to describe the equilibrium isotherms at different dye concentrations and temperature. Parameters of best-fit model were calculated and discussed. To understand the mechanism of adsorption, kinetic models were employed to follow the adsorption processes; the pseudo-first-order best described the adsorption of MB onto AC. It was found that pH plays a major role in the adsorption process; adsorption capacity was influenced by the physical and surface chemical properties of carbon and the pH of the solution. 99.0% MB removal was achieved at equilibrium.

  14. Determination of equilibrium and kinetic parameters of the adsorption of Cr(III) and Cr(VI) from aqueous solutions to Agave Lechuguilla biomass.

    PubMed

    Romero-González, Jaime; Gardea-Torresdey, Jorge L; Peralta-Videa, José R; Rodríguez, Elena

    2005-01-01

    This investigation reveals the capability of Agave lechuguilla for trivalent and hexavalent chromium removal from aqueous solutions. Experimentation included pH profile, time dependence, adsorption capacity (K(F) and Q(L)), adsorption intensity (n and R(L)) and saturation capacity (q(s)) studies. Batch experiments were conducted at 22( composite function)C to characterize and model the adsorption equilibrium as well as biomass adsorption rates. pH 4 was the optimum for Cr(III) binding, while Cr(VI) optimum binding was at pH 2. Time profile experiments indicated that the adsorption of Cr(VI) by lechuguilla biomass was time-dependent and that of Cr(III) was not. Kinetic models demonstrated that a pseudo-second order reaction model best described the kinetic data for Cr(VI). The adsorption isotherms showed that the binding pattern for Cr(VI) followed the Freundlich isotherm model, while that for Cr(III) followed the Langmuir isotherm. PMID:18365089

  15. Determination of allura red in some food samples by adsorptive stripping voltammetry.

    PubMed

    Alghamdi, Ahmad H

    2005-01-01

    Square wave (SW) voltammetry was used to explore the adsorption properties of the food additive dye Allura Red on a hanging mercury drop electrode (HMDE). By using the adsorptive stripping voltammetric approach, we developed a sensitive electroanalytical method for the determination of this azo dye. A well-developed voltammetric peak probably related to the cathodic reduction of the azo moiety was obtained in pH 9 Britton-Robinson (B-R) buffer at 613 mV. Cyclic voltammetric studies indicated that the reduction process was irreversible and primarily controlled by adsorption. The adsorptive voltammetric signal was evaluated with respect to various experimental conditions; the optimized values were supporting electrolyte, B-R buffer; pH 11; accumulation time, 180 s; accumulation potential, 0.0 V; scan rate, 900 mV/s; pulse amplitude, 75 mV; and SW frequency, 90 Hz. Adsorptive voltammetric peak current showed a linear response for Allura Red in the concentration range of 2.5 x 10(-8) to 2.0 x 10(-7) mol/L (r = 0.998). The limit of detection was 8.5 x 10(-9) mol/L (4.2 ng/mL), the precision in terms of relative standard deviation was 1.3%, and the mean recovery was 102%. Possible interferences by several substances usually present in food products such as food additive azo dyes (E110, E102), gelatin, natural and artificial sweeteners, preservatives, and antioxidants were also evaluated. The proposed electrochemical procedure was successfully applied to the determination of this food dye in commercially available candy and a soft drink. The results were compared by statistical evaluation with those obtained by a reference spectrophotometric method.

  16. Adsorption of tannic acid on polyelectrolyte monolayers determined in situ by streaming potential measurements.

    PubMed

    Oćwieja, M; Adamczyk, Z; Morga, M

    2015-01-15

    Physicochemical characteristics of tannic acid (tannin) suspensions comprising its stability for a wide range of ionic strength and pH were thoroughly investigated using UV-vis spectrophotometry, dynamic light scattering and microelectrophoretic measurements. These studies allowed to determine the hydrodynamic diameter of the tannic acid that was 1.63 nm for the pH range 3.5-5.5. For pH above 6.0 the hydrodynamic diameter significantly decreased as a result of the tannin hydrolysis. The electrophoretic mobility measurements confirmed that tannic acid is negatively charged for these values of pH and ionic strength 10(-4)-10(-2) M. Therefore, in order to promote adsorption of tannin molecules on negatively charged mica, the poly(allylamine hydrochloride) (PAH) supporting monolayers were first adsorbed under diffusion transport conditions. The coverage of polyelectrolyte monolayers was regulated by changing bulk concentration of PAH and the adsorption time. The electrokinetic characteristics of bare and PAH-covered mica were determined using the streaming potential measurements. The zeta potential of these PAH monolayers was highly positive, equal to 46 mV for ionic strength of 10(-2) M. The kinetics of tannin adsorption on these PAH supporting monolayers was evaluated by the in situ the streaming potential measurements. The zeta potential of PAH monolayers abruptly decreases with the adsorption of tannin molecules that was quantitatively interpreted in terms of the three-dimensional electrokinetic model. The acid-base characteristics of tannin monolayers were acquired via the streaming potential measurements for a broad range of pH. The obtained results indicate that it is possible to control adsorption of tannin on positively charged surfaces in order to designed new multilayer structures of desirable electrokinetic properties and stability.

  17. Combination of computational methods, adsorption isotherms and selectivity tests for the conception of a mixed non-covalent-semi-covalent molecularly imprinted polymer of vanillin.

    PubMed

    Puzio, Kinga; Delépée, Raphaël; Vidal, Richard; Agrofoglio, Luigi A

    2013-08-01

    A novel molecularly imprinted polymer (MIP) for vanillin was prepared by photo initiated polymerization in dichloromethane using a mixed semi-covalent and non-covalent imprinting strategy. Taking polymerisable syringaldehyde as "dummy" template, acrylamide was chosen as functional monomer on B3LYP/6-31+G(d,p) density functional theory computational method basis with counterpoise. The binding parameters for the recognition of vanillin on imprinted polymers were studied with three different isotherm models (Langmuir, bi-Langmuir and Langmuir-Freundlich) and compared. The results indicate an heterogeneity of binding sites. It was found and proved by DFT calculations that the specific binding of vanillin in the cavities is due to non-covalent interactions of the template with the hydroxyphenyl- and the amide-moieties. The binding geometry of vanillin in the MIP cavity was also modelled. The obtained MIP is highly specific for vanillin (with an imprinting factor of 7.4) and was successfully applied to the extraction of vanillin from vanilla pods, red wine spike with vanillin, natural and artificial vanilla sugar with a recovery of 80%.

  18. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies.

    PubMed

    Hameed, B H; Din, A T M; Ahmad, A L

    2007-03-22

    Bamboo, an abundant and inexpensive natural resource in Malaysia was used to prepare activated carbon by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO(2)) as the activating agents at 850 degrees C for 2h. The adsorption equilibrium and kinetics of methylene blue dye on such carbon were then examined at 30 degrees C. Adsorption isotherm of the methylene blue (MB) on the activated carbon was determined and correlated with common isotherm equations. The equilibrium data for methylene blue adsorption well fitted to the Langmuir equation, with maximum monolayer adsorption capacity of 454.2mg/g. Two simplified kinetic models including pseudo-first-order and pseudo-second-order equation were selected to follow the adsorption processes. The adsorption of methylene blue could be best described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed.

  19. Ethane adsorption on aggregates of dahlia-like nanohorns: experiments and computer simulations.

    PubMed

    Russell, Brice A; Migone, Aldo D; Petucci, Justin; Mercedes Calbi, M; Yudasaka, Masako; Iijima, Sumio

    2016-06-01

    This is a report on a study of the adsorption characteristics of ethane on aggregates of unopened dahlia-like carbon nanohorns. This sorbent presents two main groups of adsorption sites: the outside surface of individual nanohorns and deep, interstitial spaces between neighbouring nanohorns towards the interior of the aggregates. We have explored the equilibrium properties of the adsorbed ethane films by determining the adsorption isotherms and isosteric heat of adsorption. Computer simulations performed on different model structures indicate that the majority of ethane adsorption occurs on the outer region of the aggregates, near the ends of the nanohorns. We have also measured the kinetics of adsorption of ethane on this sorbent. The measurements and simulations were conducted along several isotherms spanning the range between 120 K and 220 K. PMID:27218414

  20. Adsorption studies of Cd(II) onto Al 2O 3/Nb 2O 5 mixed oxide dispersed on silica matrix and its on-line preconcentration and determination by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mendonça Costa, Lucimara; Ribeiro, Emerson Schwingel; Segatelli, Mariana Gava; do Nascimento, Danielle Raphael; de Oliveira, Fernanda Midori; Tarley, César Ricardo Teixeira

    2011-05-01

    The present study describes the adsorption characteristic of Cd(II) onto Nb 2O 5/Al 2O 3 mixed oxide dispersed on silica matrix. The characterization of the adsorbent has been carried out by infrared spectroscopy (IR), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), energy dispersive X-ray fluorescence analysis (EDXRF) and specific surface area ( SBET). From batch experiments, adsorption kinetic of Cd(II) was described by a pseudo-second-order kinetic model. The Langmuir linear isotherm fitted to the experimental adsorption isotherm very well, and the maximum adsorption capacity was found to be 17.88 mg g -1. Using the effective material, a method for Cd(II) preconcentration at trace level was developed. The method was based on on-line adsorption of Cd(II) onto SiO 2/Al 2O 3/Nb 2O 5 at pH 8.64, in which the quantitative desorption occurs with 1.0 mol L -1 hydrochloric acid towards FAAS detector. The experimental parameters related to the system were studied by means of multivariate analysis, using 2 4 full factorial design and Doehlert matrix. The effect of SO 42-, Cu 2+, Zn 2+ and Ni 2+ foreign ions showed no interference at 1:100 analyte:interferent proportion. Under the most favorable experimental conditions, the preconcentration system provided a preconcentration factor of 18.4 times, consumption index of 1.08 mL, sample throughput of 14 h -1, concentration efficiency of 4.35 min -1, linear range from 5.0 up to 35.0 μg L -1 and limits of detection and quantification of 0.19 and 0.65 μg L -1 respectively. The feasibility of the proposed method for Cd(II) determination was assessed by analysis of water samples, cigarette sample and certified reference materials TORT-2 (Lobster hepatopancreas) and DOLT-4 (Dogfish liver).

  1. Isothermal thermoluminescence dating of K-feldspar from sediments to determine fault slip rates: development and assessment

    NASA Astrophysics Data System (ADS)

    Rhodes, E. J.; Roder, B. J.; Lawson, M. J.; Dolan, J. F.; McGill, S. F.; McAuliffe, L.

    2012-04-01

    Faults in California accommodate most of the relative motion between the Pacific and North American tectonic plates, along either one main strike-slip fault, - the San Andreas fault - or a network of sub-parallel faults (e.g., the San Jacinto, Elsinore and San Andreas faults). Slip is also accommodated along many other associated faults and folds, and the region suffers frequent damaging earthquakes. Contemporary movements of different fault-bounded blocks are relatively well established on decadal timescales using remote sensing and GPS, and on timescales of 106 to 107 years, by dating offset geologic features with radiometric methods. However, on timescales of decades to several hundred thousand years, determining total fault offset and mean slip rate is harder. Critical questions for understanding fault dynamics and improving earthquake risk assessment include the degree to which slip is clustered into episodes of more rapid movement, and how slip is accommodated by different sub-parallel faults. In many cases, streams with offset courses can be recognised, and in some cases offset terrace surfaces can be located, especially when using LiDAR data to complement field mapping. Radiocarbon and terrestrial cosmogenic nuclides have been used to date these features, but both have limitations of age range, sample suitability and availability. OSL (optically stimulated luminescence) and IRSL (infra-red stimulated luminescence) have great potential to complement these techniques, though the characteristics of quartz in some parts of southern California are suboptimal, displaying low sensitivity and other limitations. In order to overcome these limitations encountered using quartz OSL, we are developing a new geochronometer based on the isothermal thermoluminescence (ITL) signal of K feldspar measured at 250°C. Preliminary ITL age estimates from the paleoseismic site of El Paso Peaks on the Central Garlock fault in the Mojave Desert, California, agree well with a well

  2. Quantification of the effects of organic and carbonate buffers on arsenate and phosphate adsorption on a goethite-based granular porous adsorbent.

    PubMed

    Kanematsu, Masakazu; Young, Thomas M; Fukushi, Keisuke; Sverjensky, Dimitri A; Green, Peter G; Darby, Jeannie L

    2011-01-15

    Interest in the development of oxide-based materials for arsenate removal has led to a variety of experimental methods and conditions for determining arsenate adsorption isotherms, which hinders comparative evaluation of their adsorptive capacities. Here, we systematically investigate the effects of buffer (HEPES or carbonate), adsorbent dose, and solution pH on arsenate and phosphate adsorption isotherms for a previously well characterized goethite-based adsorbent (Bayoxide E33 (E33)). All adsorption isotherms obtained at different adsorbate/adsorbent concentrations were identical when 1 mM of HEPES (96 mg C/L) was used as a buffer. At low aqueous arsenate and phosphate concentration (∼1.3 μM), however, adsorption isotherms obtained using 10 mM of NaHCO(3) buffer, which is a reasonable carbonate concentration in groundwater, are significantly different from those obtained without buffer or with HEPES. The carbonate competitive effects were analyzed using the extended triple layer model (ETLM) with the adsorption equilibrium constant of carbonate calibrated using independent published carbonate adsorption data for pure goethite taking into consideration the different surface properties. The successful ETLM calculations of arsenate adsorption isotherms for E33 under various conditions allowed quantitative comparison of the arsenate adsorption capacity between E33 and other major adsorbents initially tested under varied experimental conditions in the literature.

  3. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    PubMed

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption. PMID:15797395

  4. Adsorption of proteins at the aqueous solution/alkane interface: Co-adsorption of protein and alkane.

    PubMed

    Miller, R; Aksenenko, E V; Zinkovych, I I; Fainerman, V B

    2015-08-01

    The equations of state, adsorption isotherms and functions of the distribution of protein molecules in liquid interfacial layers with respect to molar area and the equations for their viscoelastic behavior are presented. This theory was used to determine the adsorption characteristics of β-casein and β-lactoglobulin at water/oil interfaces. The experimental results are shown to be describable quite adequately by the proposed theory with consistent model parameters. The data analysis demonstrated that the β-casein molecule adsorbed at equilibrium conditions is more unfolded as compared with dynamic conditions, and this fact causes the significant increase of the adsorption equilibrium constant. The theory assumes the adsorption of protein molecules from the aqueous solution and a competitive adsorption of alkane molecules from the alkane phase. The comparison of the experimental equilibrium interfacial tension isotherms for β-lactoglobulin at the solution/hexane interface with data calculated using the proposed theoretical model demonstrates that the assumption of a competitive adsorption is essential, and the influence of the hexane molecules on the shape of the adsorption isotherm does in fact exist.

  5. Measurements of water vapor adsorption on The Geysers rocks

    SciTech Connect

    Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

    1996-04-01

    One of the goals of this project is to determine the dependence of the water retention capacity of the rocks as a function of temperature. The results show a significant dependence of the adsorption and desorption isotherms on the grain size of the sample. The increase in the amount of water retained with temperature observed previously between 90 and 30{degrees}C for various reservoir rocks from The Geysers may be due to the contribution of slow chemical adsorption and may be dependent on the time allowed for equilibration. In contrast with the results of Shang, some closed and nearly closed hysteresis loops on the water adsorption/desorption isotherms were obtained in this study. In these cases the effects of activated processes were not present, and no increase in water adsorption with temperature was observed.

  6. Determination of binding capacity and adsorption enthalpy between Human Glutamate Receptor (GluR1) peptide fragments and kynurenic acid by surface plasmon resonance experiments.

    PubMed

    Csapó, E; Majláth, Z; Juhász, Á; Roósz, B; Hetényi, A; Tóth, G K; Tajti, J; Vécsei, L; Dékány, I

    2014-11-01

    The interaction between kynurenic acid (KYNA) and two peptide fragments (ca. 30 residues) of Human Glutamate Receptor 201-300 (GluR1) using surface plasmon resonance (SPR) spectroscopy was investigated. Because of the medical interest in the neuroscience, GluR1 is one of the important subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). AMPARs are ionotoropic glutamate receptors, which are mediating fast synaptic transmission and are crucial for plasticity in the brain. On the other hand, KYNA has been suggested to have neuroprotective activity and it has been considered for apply in therapy in certain neurobiological disorders. In this article the adsorption of the GluR1201-230 and GluR1231-259 peptides were studied on gold biosensor chip. The peptides were chemically bonded onto the gold surface via thiol group of L-cysteine resulted in the formation of peptide monolayer on the SPR chip surface. Because the GluR1231-259 peptide does not contain L-cysteine the Val256 was replaced by Cys256. The cross sectional area and the surface orientation of the studied peptides were determined by SPR and theoretical calculations (LOMETS) as well. The binding capability of KYNA on the peptide monolayer was studied in the concentration range of 0.1-5.0 mM using 150 mM NaCl ionic strength at pH 7.4 (±0.02) in phosphate buffer solutions. In order to determine the binding enthalpy the experiments were carried out between +10°C and +40°C. The heat of adsorption was calculated by using adsorption isotherms at different surface loading of KYNA on the SPR chip.

  7. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rood, M.J.; Rostam-Abadi, M.

    2005-01-01

    Gravimetric techniques were employed to determine the adsorption capacities of commercially available purified electric arc and HiPco single-walled carbon nanotubes (SWNTs) for organic compounds (toluene, methyl ethyl ketone (MEK), hexane and cyclohexane) at relative pressures, p/p0, ranging from 1 ?? 10-4 to 0.95 and at isothermal conditions of 25, 37 and 50 ??C. The isotherms displayed both type I and type II characteristics. Adsorption isotherm modeling showed that SWNTs are heterogeneous adsorbents, and the Freundlich equation best describes the interaction between organic molecules and SWNTs. The heats of adsorption were 1-4 times the heats of vaporization, which is typical for physical adsorption of organic vapors on porous carbons. ?? 2005 Elsevier Ltd. All rights reserved.

  8. Studies of gas adsorption in flexible Metal-Organic frameworks

    NASA Astrophysics Data System (ADS)

    Sircar, Sarmishtha

    Flexible Metal-Organic frameworks that exhibit a gate-opening (GO) adsorption mechanism have potential for gas separations and gas storage. The GO phenomenon occurs when molecular gates in the structure expand/contract in response to the activation/de-activation of a system variable e.g. temperature, pressure or gas. Sharp discontinuities in the isotherm leading to S-shapes and large adsorption-desorption hysteresis are typical of this phenomenon. This study investigates the kinetics and thermodynamics of the GO behavior by combining adsorption measurements and analytical modeling of adsorption kinetics and capacity as a function of adsorbate, GO pressure, and temperature. Basic understanding of GO mechanism will help harness GO-MOF's as adsorbents for gas separations and storage. Experiments were performed on two precharacterized MOFs with verified GO behavior. These are (1) Zn2(bpdc)2(bpee), which expands from a relative amorphous to crystalline structure and (2) Cu[(dhbc) 2(4,4f-bpy)]H2O, a mutually interdigitated 2-D structure (bpdc = biphenyldicarboxylate, bpee = 1,2]bipyridylethene; DMF = N,N-dimethyl formamide, dhbc= 2,5-dihydroxybenzoic acid, bpy=bipyridine). Both sub- and super-critical adsorption data were collected using three adsorption units: a standard low-pressure volumetric adsorption unit, a commercial high-pressure gravimetric analyzer and a custom-built high-pressure differential volumetric unit. Collected laboratory data were combined with published adsorption rate and isotherm data for analysis to broaden the range of data collection. The accuracy of the high-pressure differential unit was improved by over 300-fold by changing analytical methods of processing data to establish a reliable null correction. A pronounced effect of the allowed experimental time was found at cryogenic temperatures on (1). Tightening the stability criteria used by the adsorption equipment to determine equilibration increased the experimental time from the order of

  9. Adsorption behaviors of some phenolic compounds onto high specific area activated carbon cloth.

    PubMed

    Ayranci, Erol; Duman, Osman

    2005-09-30

    Adsorption of phenol, hydroquinone, m-cresol, p-cresol and p-nitrophenol from aqueous solutions onto high specific area activated carbon cloth has been studied. The effect of ionization on adsorption of these ionizable phenolic compounds was examined by studying the adsorption from acidic, basic and natural pH solutions. Kinetics of adsorption was followed by in situ UV spectroscopy over a period of 90 min. First-order rate law was found to be valid for the kinetics of adsorption processes and the rate constants were determined. The highest rate constants were obtained for the adsorption from solutions at the natural pH. The lowest rate constants were observed in basic solutions. The rate constants decreased in the order p-nitrophenol approximately m-cresol>p-cresol>hydroquinone approximately phenol. Adsorption isotherms were derived at 30 degrees C and the isotherm data were treated according to Langmuir, Freundlich and Tempkin isotherm equations. The goodness of fit of experimental data to these isotherm equations was tested and the parameters of equations were determined. The possible interactions of compounds with the carbon surface were discussed considering the charge of the surface and the possible ionization of compounds at acidic, basic and natural pH conditions. PMID:15941619

  10. Isothermal titration calorimetric procedure to determine protein-metal ion binding parameters in the presence of excess metal ion or chelator.

    PubMed

    Nielsen, Anders D; Fuglsang, Claus C; Westh, Peter

    2003-03-15

    Determination of binding parameters for metal ion binding to proteins usually requires preceding steps to remove protein-bound metal ions. Removal of bound metal ions from protein is often associated with decreased stability and inactivation. We present two simple isothermal titration calorimetric procedures that eliminate separate metal ion removal steps and directly monitor the exchange of metal ions between buffer, protein, and chelator. The concept is to add either excess chelator or metal ion to the protein under investigation and subsequently titrate with metal ion or chelator, respectively. It is thereby possible in the same experimental trial to obtain both chelator-metal ion and protein-metal ion binding parameters due to the different thermodynamic "fingerprints" of chelator and protein. The binding models and regression routines necessary to analyze the corresponding binding isotherms have been constructed. Verifications of the models have been done by titrations of mixtures of calcium chelators (BAPTA, HEDTA, and EGTA) and calcium ions and they were both able to account satisfactorily for the observed binding isotherms. Therefore, it was possible to determine stoichiometric and thermodynamic binding parameters. In addition, the concept has been tested on a recombinant alpha-amylase from Bacillus halmapalus where it proved to be a consistent procedure to obtain calcium binding parameters.

  11. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy.

    PubMed

    Tsai, De-Hao; Davila-Morris, Melissa; DelRio, Frank W; Guha, Suvajyoti; Zachariah, Michael R; Hackley, Vincent A

    2011-08-01

    Surface-sensitive quantitative studies of competitive molecular adsorption on nanoparticles were conducted using a modified attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy method. Adsorption isotherms for thiolated poly(ethylene glycol) (SH-PEG) on gold nanoparticles (AuNPs) as a function of molecular mass (1, 5, and 20 kDa) were characterized. We find that surface density of SH-PEG on AuNPs is inversely proportional to the molecular mass (M(m)). Equilibrium binding constants for SH-PEG, obtained using the Langmuir adsorption model, show the binding affinity for SH-PEG is proportional to M(m). Simultaneous competitive adsorption between mercaptopropionic acid (MPA) and 5 kDa SH-PEG (SH-PEG5K) was investigated, and we find that MPA concentration is the dominant factor influencing the surface density of both SH-PEG5K and MPA, whereas the concentration of SH-PEG5K affects only SH-PEG5K surface density. Electrospray differential mobility analysis (ES-DMA) was employed as an orthogonal characterization technique. ES-DMA results are consistent with the results obtained by ATR-FTIR, confirming our conclusions about the adsorption process in this system. Ligand displacement competitive adsorption, where the displacing molecular species is added after completion of the ligand surface binding, was also interrogated by ATR-FTIR. Results indicate that for SH-PEG increasing M(m) yields greater stability on AuNPs when measured against displacement by bovine serum albumin (BSA) as a model serum protein. In addition, the binding affinity of BSA to AuNPs is inhibited for SH-PEG conjugated AuNPs, an effect that is enhanced at higher SH-PEG M(m) values.

  12. Adsorption thermodynamics of Methylene Blue onto bentonite.

    PubMed

    Hong, Song; Wen, Cheng; He, Jing; Gan, Fuxing; Ho, Yuh-Shan

    2009-08-15

    The effect of temperature on the equilibrium adsorption of Methylene Blue dye from aqueous solution using bentonite was investigated. The equilibrium adsorption data were analyzed using three widely applied isotherms: Langmuir, Freundlich, and Redlich-Peterson. A non-linear method was used for comparing the best fit of the isotherms. Best fit was found to be Redlich-Peterson isotherm. Thermodynamic parameters, such as DeltaG degrees, DeltaH degrees, and DeltaS degrees were calculated using adsorption equilibrium constant obtained from the Langmuir isotherm. Results suggested that the Methylene Blue adsorption on bentonite was a spontaneous and endothermic process.

  13. Determination of Sudan I in drinks containing Sunset yellow by adsorptive stripping voltammetry.

    PubMed

    Gómez, Marisol; Arancibia, Verónica; Aliaga, Margarita; Núñez, Claudia; Rojas-Romo, Carlos

    2016-12-01

    An efficient, fast and sensitive method for the determination of Sudan I (SI) in drinks containing Sunset yellow (Sy) is developed and validated using an adsorptive stripping voltammetric procedure. Sy is currently added to a large number of foods; however during their synthesis SI may be produced. The determination is based on adsorption of Sy and SI onto HMDE and later reduction of the azo group at -0.71 and -0.82V, respectively. Using the best set of the experimental conditions (pH 12.3; Eads: -0.40V) for the determination of SI in Sy, a linear response for SI in the concentration range 0.5-27.2μgL(-1) was found, with a detection limit of 1.5μgL(-1) in a tads of only 30s. The method was applied to the determination of SI in commercial drinks with satisfactory results. The presence of SI was confirmed by mass spectrometry. PMID:27374598

  14. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study.

    PubMed

    Liu, Na; Charrua, Alberto Bento; Weng, Chih-Huang; Yuan, Xiaoling; Ding, Feng

    2015-12-01

    The physicochemical properties of biochars produced from soybeans (SBB), corn stalks (CSB), rice stalks (RSB), poultry manure (PMB), cattle manure (CMB), and pig manure (PgMB) and their adsorption characteristics of atrazine were investigated. The adsorption capacity increased with the increase of temperature and initial atrazine concentration. More atrazine was removed from basic solutions than acidic solutions, due to the effects of adsorption and hydrolysis. The Freundlich isotherm adsorption parameters indicated that the adsorption capacity decreased in the order SBB>RSB>CMB>CSB>PMB>PgMB, which is associated to the pore volume of biochars. The total pore volume and biochar pH were concluded to play important roles in determining the adsorption capacity, and they may have contributed to physical adsorption mechanisms dominating the overall adsorption process (the low activation energy for all of the biochars). Modified Freundlich and intraparticle diffusion models were used to describe the kinetics of the adsorption process.

  15. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry.

    PubMed

    Merli, Daniele; Zamboni, Daniele; Protti, Stefano; Pesavento, Maria; Profumo, Antonella

    2014-12-01

    Lysergic acid diethylamide (LSD) is hardly detectable and quantifiable in biological samples because of its low active dose. Although several analytical tests are available, routine analysis of this drug is rarely performed. In this article, we report a simple and accurate method for the determination of LSD, based on adsorptive stripping voltammetry in DMF/tetrabutylammonium perchlorate, with a linear range of 1-90 ng L(-1) for deposition times of 50s. LOD of 1.4 ng L(-1) and LOQ of 4.3 ng L(-1) were found. The method can be also applied to biological samples after a simple extraction with 1-chlorobutane. PMID:25159435

  16. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry.

    PubMed

    Merli, Daniele; Zamboni, Daniele; Protti, Stefano; Pesavento, Maria; Profumo, Antonella

    2014-12-01

    Lysergic acid diethylamide (LSD) is hardly detectable and quantifiable in biological samples because of its low active dose. Although several analytical tests are available, routine analysis of this drug is rarely performed. In this article, we report a simple and accurate method for the determination of LSD, based on adsorptive stripping voltammetry in DMF/tetrabutylammonium perchlorate, with a linear range of 1-90 ng L(-1) for deposition times of 50s. LOD of 1.4 ng L(-1) and LOQ of 4.3 ng L(-1) were found. The method can be also applied to biological samples after a simple extraction with 1-chlorobutane.

  17. Determination of ligand-MurB interactions by isothermal denaturation: application as a secondary assay to complement high throughput screening.

    PubMed

    Sarver, Ronald W; Rogers, Joseph M; Epps, Dennis E

    2002-02-01

    We used a temperature-jump isothermal denaturation procedure with various methods of detection to evaluate the quality of putative inhibitors of MurB discovered by high-throughput screening. Three optical methods of detection-ultraviolet hyperchromicity of absorbance, fluorescence of bound dyes, and circular dichroism-as well as differential scanning calorimetry were used to dissect the effects of two chemical compounds and a natural substrate on the enzyme. The kinetics of the denaturation process and binding of the compounds detected by quenching of flavin fluorescence were used to quantitate the dose dependencies of the ligand effects. We found that the first step in the denaturation of MurB is the rapid loss of flavin from the active site and that the two chemical inhibitors appeared to destabilize the interaction of the cofactor with the enzyme but stabilize the global unfolding. The kinetics of the denaturation process as well as the loss of flavin fluorescence on binding established that both compounds had nanomolar affinities for the enzyme. We showed that coupling of the various detection methods with isothermal denaturation yields a powerful regimen to provide analytical data for assessing inhibitor specificity for a protein target. PMID:11897052

  18. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    PubMed

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials.

  19. Functionalization of delaminated zeolite ITQ-6 for the adsorption of carbon dioxide

    SciTech Connect

    Zukal, A.; Dominguez, I.; Mayerova, J.; Cejka, J.

    2009-09-15

    Novel functionalized adsorbents for CO{sub 2} separation were synthesized by grafting 3-aminopropyl, 3-(methylamino) propyl, or 3-(phenylamino)propyl ligands in the delaminated zeolite ITQ-6. On the basis of the texture parameters determined from nitrogen adsorption isotherms recorded at 77 K and the results of chemical analysis, physicochemical properties of functionalized ITQ-6 were evaluated and compared with those of mesoporous SBA-15 silica functionalized with the same ligands. To examine carbon dioxide adsorption on functionalized materials, adsorption isotherms at 293 K were measured. To obtain information on the surface energetics of CO{sub 2} adsorption on selected samples, isotherms were taken in the temperature range front 273 to 333 K and adsorption isosteres were calculated. Isosteric adsorption heats determined from the slope of adsorption isosteres proved that all of the 3-aminopropyl ligands in ITQ-6 take part in CO{sub 2} adsorption. It was found that in the whole region of CO{sub 2} pressures the efficiency of the amine ligand, defined as the number of adsorbed CO{sub 2} molecules per one airline ligand, is higher for functionalized ITQ-6 than for functionalized SBA-15 silica.

  20. Cathodic adsorptive stripping voltammetric determination of uranium with potassium hydrogen phthalate.

    PubMed

    Farghaly, O A; Ghandour, M A

    1999-06-01

    The adsorption properties of dioxouranium (II)-Phathalate complexes onto hanging mercury drop electrode are exploited in developing a highly sensitive and selective stripping voltammetric procedure for the determination of uranium (VI). The reduction current of adsorbed complex ions of U(VI) was measured by both linear sweep (LSCSV) and differential pulse cathodic stripping voltammetry (DPCSV), preceded by a period of preconcentration onto the electrode surface. As low as 2x10(-9) mol dm(-3) (0.5 mug/l) and 2x10(-8) mol dm(-3) (4.8 mug/l) with accumulation time 240 and 120 s using DPCSV and LSCSV, respectively, have been determined successfully. The relative standard deviation of 2.2% at the 5 ppm level was obtained. The interferences of some metal ions and anions were studied. The application of this method was tested in the determination of uranium in superphosphate fertilizer. PMID:18967571

  1. Anodic adsorptive stripping voltammetric determination of the anesthetic drug: methohexital sodium.

    PubMed

    Farghaly, O A; El-Wadood, H M; Ghandour, M A

    1999-11-01

    Methohexital (MS) determination is based on the formation of insoluble mercury salt on a hanging mercury drop electrode after preaccumulation by adsorption. This property was exploited in developing a highly sensitive stripping voltammetric procedure for the determination of the drug. The anodic current of adsorbed compound is measured by linear sweep anodic stripping voltammetry (LSASV), preceded by a period of preconcentration. The effect of various parameters such as supporting electrolyte composition, pH, initial potential, scan rate, accumulation time and ionic strength are discussed to characterize the interfacial and redox behavior. The detection limit was found to be 2x10(-7) M (56.8 ppb) with 180-s accumulation time. The interference of some amino acids, ascorbic acid and some metal ions was investigated. The application of this method was tested in the determination of methohexital in spiked urine samples. The precision of the method is satisfactory with a relative standard deviation of 2.5%.

  2. Cathodic adsorptive stripping voltammetric determination of uranium with potassium hydrogen phthalate.

    PubMed

    Farghaly, O A; Ghandour, M A

    1999-06-01

    The adsorption properties of dioxouranium (II)-Phathalate complexes onto hanging mercury drop electrode are exploited in developing a highly sensitive and selective stripping voltammetric procedure for the determination of uranium (VI). The reduction current of adsorbed complex ions of U(VI) was measured by both linear sweep (LSCSV) and differential pulse cathodic stripping voltammetry (DPCSV), preceded by a period of preconcentration onto the electrode surface. As low as 2x10(-9) mol dm(-3) (0.5 mug/l) and 2x10(-8) mol dm(-3) (4.8 mug/l) with accumulation time 240 and 120 s using DPCSV and LSCSV, respectively, have been determined successfully. The relative standard deviation of 2.2% at the 5 ppm level was obtained. The interferences of some metal ions and anions were studied. The application of this method was tested in the determination of uranium in superphosphate fertilizer.

  3. Adsorption of humic acids and trace metals in natural waters

    NASA Technical Reports Server (NTRS)

    Leung, W. H.

    1982-01-01

    Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.

  4. Adsorption characteristics of methylene blue onto agricultural wastes lotus leaf in bath and column modes.

    PubMed

    Han, Xiuli; Wang, Wei; Ma, Xiaojian

    2011-01-01

    The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble-Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g(-1) at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.

  5. Pore size distribution analysis of activated carbons prepared from coconut shell using methane adsorption data

    NASA Astrophysics Data System (ADS)

    Ahmadpour, A.; Okhovat, A.; Darabi Mahboub, M. J.

    2013-06-01

    The application of Stoeckli theory to determine pore size distribution (PSD) of activated carbons using high pressure methane adsorption data is explored. Coconut shell was used as a raw material for the preparation of 16 different activated carbon samples. Four samples with higher methane adsorption were selected and nitrogen adsorption on these adsorbents was also investigated. Some differences are found between the PSD obtained from the analysis of nitrogen adsorption isotherms and their PSD resulting from the same analysis using methane adsorption data. It is suggested that these differences may arise from the specific interactions between nitrogen molecules and activated carbon surfaces; therefore caution is required in the interpretation of PSD obtained from the nitrogen isotherm data.

  6. Square-wave adsorptive stripping voltammetric determination of danazol in capsules.

    PubMed

    Alghamdi, Ahmed H; Belal, Fatallah F; Al-Omar, Mohamed A

    2006-06-01

    Based on the interfacial adsorptive character of danazol onto the hanging mercury drop electrode (HMDE), a simple and sensitive square-wave adsorptive stripping voltammetric (SW-AdSV) procedure for the electrochemical analysis of this drug in pharmaceutical formulations has been developed and validated. Cyclic and SW-AdSV voltammograms showed a single well-defined irreversible cathodic peak. Various chemical and instrumental parameters affecting the monitored electroanalytical response were investigated and optimized for the danazol determination. Under these optimized conditions the SW-AdSV peak current showed a linear dependence on drug concentration over the range 7.5x10(-8)-3.75x10(-7) mol l-1 (r=0.999) with estimated detection limit (at a S/N ratio of 3) of 5.7x10(-9) mol l-1 (1.78 ng ml-1). A mean recovery of 100.9+/-1.2% and relative standard deviation of 1.07% were achieved. Possible interferences by substances usually present in the pharmaceutical tablets and formulations were also evaluated. The proposed electrochemical procedure was successfully applied for the determination of danazol in pharmaceutical capsules (Danol 100 mg) with mean recoveries of 100.48+/-0.87%. Results of the developed SW-AdSV method were comparable with those obtained by reported analytical procedures.

  7. Reliability of Ancient Planetary Magnetic Field Intensity Determination Using the Ratio of Thermoremanence to Saturation Isothermal Remanence

    NASA Astrophysics Data System (ADS)

    Kim, H.; Yu, Y.; Park, C.; Lee, S. R.

    2015-12-01

    Silicate rocks and metal alloys in meteorites preserve the record of ancient planetary magnetic field in the Solar System. In particular, unraveling stable vector information of ancient magnetic field would constraint thermal evolution of meteorites. Despite its importance, extracting reliable ancient planetary magnetic field information is notoriously difficult because meteorites alter irreversibly during heating. We tested the reliability of the ratio of thermoremanent magnetization (TRM) to saturation isothermal remanent magnetization (SIRM). Although the uncertainty of TRM/SIRM was an order of magnitude larger than that of the high-fidelity Thellier-type estimation, the TRM/SIRM was especially useful when dealing with meteorites which are highly susceptible to alteration on exposure to external heat. The ratio of TRM/SIRM is grain-size dependent, as it is larger for finer grains. We also found that metal-poor silicates from highly differentiated planetary bodies tend to show higher ratio of TRM/SIRM.

  8. Moisture sorption isotherms and thermodynamic properties of mexican mennonite-style cheese.

    PubMed

    Martinez-Monteagudo, Sergio I; Salais-Fierro, Fabiola

    2014-10-01

    Moisture adsorption isotherms of fresh and ripened Mexican Mennonite-style cheese were investigated using the static gravimetric method at 4, 8, and 12 °C in a water activity range (aw) of 0.08-0.96. These isotherms were modeled using GAB, BET, Oswin and Halsey equations through weighed non-linear regression. All isotherms were sigmoid in shape, showing a type II BET isotherm, and the data were best described by GAB model. GAB model coefficients revealed that water adsorption by cheese matrix is a multilayer process characterized by molecules that are strongly bound in the monolayer and molecules that are slightly structured in a multilayer. Using the GAB model, it was possible to estimate thermodynamic functions (net isosteric heat, differential entropy, integral enthalpy and entropy, and enthalpy-entropy compensation) as function of moisture content. For both samples, the isosteric heat and differential entropy decreased with moisture content in exponential fashion. The integral enthalpy gradually decreased with increasing moisture content after reached a maximum value, while the integral entropy decreased with increasing moisture content after reached a minimum value. A linear compensation was found between integral enthalpy and entropy suggesting enthalpy controlled adsorption. Determination of moisture content and aw relationship yields to important information of controlling the ripening, drying and storage operations as well as understanding of the water state within a cheese matrix. PMID:25328178

  9. Moisture sorption isotherms and thermodynamic properties of mexican mennonite-style cheese.

    PubMed

    Martinez-Monteagudo, Sergio I; Salais-Fierro, Fabiola

    2014-10-01

    Moisture adsorption isotherms of fresh and ripened Mexican Mennonite-style cheese were investigated using the static gravimetric method at 4, 8, and 12 °C in a water activity range (aw) of 0.08-0.96. These isotherms were modeled using GAB, BET, Oswin and Halsey equations through weighed non-linear regression. All isotherms were sigmoid in shape, showing a type II BET isotherm, and the data were best described by GAB model. GAB model coefficients revealed that water adsorption by cheese matrix is a multilayer process characterized by molecules that are strongly bound in the monolayer and molecules that are slightly structured in a multilayer. Using the GAB model, it was possible to estimate thermodynamic functions (net isosteric heat, differential entropy, integral enthalpy and entropy, and enthalpy-entropy compensation) as function of moisture content. For both samples, the isosteric heat and differential entropy decreased with moisture content in exponential fashion. The integral enthalpy gradually decreased with increasing moisture content after reached a maximum value, while the integral entropy decreased with increasing moisture content after reached a minimum value. A linear compensation was found between integral enthalpy and entropy suggesting enthalpy controlled adsorption. Determination of moisture content and aw relationship yields to important information of controlling the ripening, drying and storage operations as well as understanding of the water state within a cheese matrix.

  10. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    PubMed

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent.

  11. Adsorption of hydrogen chloride on microcrystalline silica. [solid rocket propellant exhaust

    NASA Technical Reports Server (NTRS)

    Kang, Y.; Wightman, J. P.

    1979-01-01

    The interaction of hydrogen chloride with quartz was studied to determine the extent to which silica can irreversibly remove hydrogen chloride from the atmosphere. Adsorption isotherms were measured at 30 C for hydrogen chloride on silica outgassed between 100 C and 400 C. Readsorption isotherms were also measured. The silica surface was characterized further by infrared spectroscopy, electron spectroscopy for chemical analysis, scanning electron microscopy, and immersional calorimetry. Ground debris samples obtained from the Kennedy Space Center, were likewise examined.

  12. Isosteric heats of adsorption for activated carbons made from corn cob

    NASA Astrophysics Data System (ADS)

    Beckner, M.; Olsen, R.; Romanos, J.; Burress, J.; Dohnke, E.; Carter, S.; Casteel, G.; Wexler, C.; Pfeifer, P.

    2010-03-01

    Activated carbons made from corn cob show promise as materials for high-capacity hydrogen storage. As part of our characterization of these materials, we are interested in learning how different production methods affect the adsorption energies. In this talk, we will present experimentally measured isosteric heats of adsorption for various activated carbons calculated using the Clausius-Clayperon equation and hydrogen isotherms at temperatures of 80 and 90K and pressures up to 100 bar measured on a volumetric instrument. We discuss differences observed between isosteric heats determined from Gibbs excess adsorption vs. absolute adsorption curves.

  13. Determination of Lamotrigine in Pharmaceutical Preparations by Adsorptive Stripping Voltammetry Using Screen Printed Electrodes

    PubMed Central

    Domínguez-Renedo, Olga; Calvo, M. Encarnación Burgoa; Arcos-Martínez, M. Julia

    2008-01-01

    This paper describes a procedure that has been optimized for the determination of lamotrigine by Differential Pulse Adsorptive Stripping Voltammetry (DPAdSV) using carbon screen-printed electrodes (CSPE) and mercury coated carbon screen-printed electrodes. Selection of the experimental parameters was made using experimental design methodology. The detection limit found was 5.0 × 10-6 M and 2.0 × 10-6 M for the non modified and Hg modified CSPE, respectively. In terms of reproducibility, the precision of the above mentioned methods was calculated in %RSD values at 9.83% for CSPE and 2.73% for Hg-CSPE. The Hg-coated CSPEs developed in this work were successfully applied in the determination of lamotrigine in pharmaceutical preparations.

  14. Determination of aluminium in tree samples by cathodic adsorptive stripping voltammetry.

    PubMed

    Opydo, J

    1997-06-01

    This paper presents a method of determination of aluminium in tree samples (wood, leaves, roots) based on the cathodic adsorptive stripping voltammetry. Al(III) complexed with alizarin S was determined by ASV method using a hanging mercury drop electrode. Optimal conditions were found to be: accumulation time 30-90 s, accumulation potential - 0.70 V versus SCE, supporting electrolyte 0.1 M ammonia-ammonium chloride buffer at pH 8.2 and concentration of alizarin 1 x 10(-5) M. The response of the system, a linear current-concentration relationship was observed up to 8 x 10(-6) M. The developed method has been tested by analysing international reference materials (BCR 62 Olive leaves and BCR 101 spruce needles). PMID:18966839

  15. Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment.

    PubMed

    Aroguz, Ayse Z; Gulen, J; Evers, R H

    2008-04-01

    The adsorption kinetics of methylene blue on pyrolyzed petrified sediment (PPS) has been performed using a batch-adsorption technique. The effects of various experimental parameters, such as initial dye concentration, contact time, and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The best correlation coefficient was obtained using the pseudo first-order kinetic model, which shows that the adsorption of methylene blue followed the pseudo-first-order rate expression and the rate constants were evaluated. The Langmuir and Freundlich adsorption isotherm models were applied to describe the equilibrium isotherms and the isotherm constants were determined. It was found that the data fitted well to Langmuir and Freundlich models. The activation energy of adsorption was also evaluated for the adsorption of methylene blue onto pyrolyzed sediment. It was found about 8.5 kJ mol(-1). Thermodynamics parameters DeltaG(o), DeltaH(o), DeltaS(o) were calculated, indicating that this process can be spontaneous and endothermic. The adsorption enthalpy and entropy were found as 14-18.5 kJ mol(-1) and 52.8-67 J mol(-1) K(-1), respectively. The results obtained from the adsorption process using PPS as adsorbent was subjected to student's t-test.

  16. A square-wave adsorptive stripping voltammetric method for determination of fast green dye.

    PubMed

    Al-Ghamdi, Ali F

    2009-01-01

    Square-wave adsorptive stripping voltammetric (SW-AdSV) determinations of trace concentrations of the coloring agent fast green were described. The analytical methodology used was based on the adsorptive preconcentration of the dye on the hanging mercury drop electrode, and then a negative sweep was initiated. In pH 10 carbonate supporting electrolyte, fast green gave a well-defined and sensitive SW-AdSV peak at -1220 mV. The electroanalytical determination of this dye was found to be optimized in carbonate buffer (pH 10) with the following experimental conditions: accumulation time (120 s); accumulation potential (-0.8 V); scan rate (800 mV/s); pulse amplitude (90 mV); frequency (90 Hz); surface area of the working electrode (0.6 mm2); and the convection rate (2000 rpm). Under these optimized conditions, the AdSV peak current was proportional over the concentration range 2 x 10(-8) -6 x 10(-7) M (r = 0.999), with an LOD of 1.63 x 10(-10) M (0.132 ppb). This analytical approach possessed more enhanced sensitivity than conventional chromatography or spectrophotometry, and was simple and quick. The precision of the method in terms of RSD was 0.17%, whereas the accuracy was evaluated via the mean recovery of 99.6%. Possible interferences by several substances usually present as food additive azo dyes (E110, E102, E123, and E129), natural and artificial sweeteners, and antioxidants were also investigated. Applicability of the developed electroanalysis method was illustrated via the determination of fast green in ice cream and soft drink samples.

  17. Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns.

    PubMed

    Mohammed, Nishil; Grishkewich, Nathan; Waeijen, Herman Ambrose; Berry, Richard M; Tam, Kam Chiu

    2016-01-20

    The adsorption behavior of methylene blue by cellulose nanocrystal-alginate (CNC-ALG) hydrogel beads in a fixed bed column was studied by varying the initial dye concentrations, bed depths and flow rates. An unusual phenomenon was observed in the early phase of the adsorption, and the phenomenon was elucidated by varying other critical design parameters, such as the flow direction, diameter of column and composition of adsorbent. The swelling and shrinkage of hydrogel beads during the adsorption was responsible for the anomalous concentration versus time profile of the adsorption process. The maximum adsorption capacity of the column was 255.5mg/g, which is in agreement with the batch study determined from the Langmuir adsorption isotherm. A comprehensive understanding on the adsorption mechanism of CNC-ALG hydrogel beads during the early stages of adsorption was derived from this study.

  18. Square wave adsorptive stripping voltammetric determination of diazinon in its insecticidal formulations.

    PubMed

    Guziejewski, Dariusz; Skrzypek, Sławomira; Ciesielski, Witold

    2012-11-01

    The pesticide diazinon was determined in its insecticidal formulations by square wave adsorptive stripping voltammetry. The method of its determination is based on the irreversible reduction reaction at the hanging mercury drop electrode. The optimal signal was detected at -1.05 V vs. Ag/AgCl in Britton-Robinson buffer at pH 4.4. Various parameters such as pH, buffer concentration, frequency, amplitude, step potential, accumulation time, and potential were investigated to enhance the sensitivity of the determination. The highest response was recorded at an accumulation potential -0.4 V, accumulation time 60 s, amplitude 75 mV, frequency 100 Hz, and step potential 5 mV. The pesticide electrochemical behavior was considered under experimental conditions. The electroanalytical procedure enabled diazinon determination in the concentration range 4.0 × 10(-8)-3.9 × 10(-7) mol L(-1) in supporting electrolyte. The detection and quantification limit were found to be 1.1 × 10(-8) and 3.7 × 10(-8) mol L(-1), respectively. The method was applied successfully in the determination of the active ingredients in the insecticidal formulations Diazinon 10GR and Beaphar 275.

  19. Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-γ-alumina

    NASA Astrophysics Data System (ADS)

    Zolgharnein, Javad; Bagtash, Maryam; Shariatmanesh, Tahere

    2015-02-01

    The present study deals with the simultaneous removal of Brilliant Green (BG) and Crystal Violet (CV) by surfactant-modified alumina. The utilization of alumina nanoparticles with an anionic surfactant (sodium dodecyl sulfate (SDS)) as a novel and efficient adsorbent is successfully carried out to remove two cationic dyes from aqueous solutions in binary batch systems. A first-order derivative spectrophotometric method is developed for the simultaneous determination of BG and CV in binary solutions. The linear concentration range and limits of detection for the simultaneous determination of BG and CV were found to be: 1-20, 1-15 mg/L, 0.3 and 0.5 mg/L, respectively. The influence of various parameters, such as contact time, initial concentration of dyes and sorbent mass on the dye adsorption is investigated. A response surface methodology achieved through performing the Box-Behnken design is utilized to optimize the removal of dyes by surfactant-modified nanoparticle alumina through a batch adsorption process. The proposed quadratic model resulting from the Box-Behnken design approach fitted very well with the experimental data. The optimal conditions for dye removal were contact time t = 50 min, sorbent dose = 0.036 g, CBG (Initial BG concentration) = 215 mg/L and CCV (Initial CV concentration) = 170 mg/L. Furthermore, FT-IR analysis, the isotherms and kinetics of adsorption were also explored.

  20. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  1. Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent--silkworm pupa.

    PubMed

    Noroozi, B; Sorial, G A; Bahrami, H; Arami, M

    2007-01-01

    In this work the use of silkworm pupa, which is the waste of silk spinning industries has been investigated as an adsorbent for the removal of C.I. Basic Blue 41. The amino acid nature of the pupa provided a reasonable capability for dye removal. Equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of the dye could be described reasonably well by either Langmuir or Freundlich models. The characteristic parameters for each isotherm have been determined. The monolayer adsorption capacity was determined to be 555 mg/g. Kinetic studies indicated that the adsorption follows pseudo-second-order kinetics with a rate constant of 0.0434 and 0.0572 g/min mg for initial dye concentration of 200 mg/l at 20 and 40 degrees C, respectively. Kinetic studies showed that film diffusion and intra-particle diffusion were simultaneously operating during the adsorption process. The rate constant for intra-particle diffusion was estimated to be 1.985 mg/g min(0.5).

  2. Kinetics of salicylic acid adsorption on activated carbon.

    PubMed

    Polakovic, Milan; Gorner, Tatiana; Villiéras, Frédéric; de Donato, Philippe; Bersillon, Jean Luc

    2005-03-29

    The adsorption and desorption of salicylic acid from water solutions was investigated in HPLC microcolumns packed with activated carbon. The adsorption isotherm was obtained by the step-up frontal analysis method in a concentration range of 0-400 mg/L and was well fitted with the Langmuir equation. The investigation of rate aspects of salicylic acid adsorption was based on adsorption/desorption column experiments where different inlet concentrations of salicylic acid were applied in the adsorption phase and desorption was conducted with pure water. The concentration profiles of individual adsorption/desorption cycles data were fitted using several single-parameter models of the fixed-bed adsorption to assess the influence of different phenomena on the column behavior. It was found that the effects of axial dispersion and extraparticle mass transfer were negligible. A rate-determining factor of fixed-bed column dynamics was the kinetics of pore surface adsorption. A bimodal kinetic model reflecting the heterogeneous character of adsorbent pores was verified by a simultaneous fit of the column outlet concentration in four adsorption/desorption cycles. The fitted parameters were the fraction of mesopores and the adsorption rate constants in micropores and mesopores, respectively. It was shown that the former rate constant was an intrinsic one whereas the latter one was an apparent value due to the effects of pore blocking and diffusional hindrances in the micropores. PMID:15779975

  3. A comparative study of capillary electrophoresis and isothermal titration calorimetry for the determination of binding constant of human serum albumin to monoclonal antibody.

    PubMed

    Andrási, Melinda; Lehoczki, Gábor; Nagy, Zoltán; Gyémánt, Gyöngyi; Pungor, András; Gáspár, Attila

    2015-06-01

    This paper focuses on the investigation of the interactions between the anti-HSA-mAb and its protein antigen using CZE, ACE, and isothermal titration calorimetry. The CZE revealed the formation of the anti-HSA-mAb·HSA and anti-HSA-mAb·(HSA)2 complexes and the binding constants determined by plotting the amount of the bound anti-HSA-mAb as a function of the concentration of HSA. The ACE provided information on the binding strength from the change in effective electrophoretic mobility of the anti-HSA-mAb. These two separation techniques estimated the presence of two binding sites. The equilibrium dissociation constant values obtained by CZE and ACE were found to be 2.26 × 10(-6) M for anti-HSA-mAb·HSA, 1.22 × 10(-6) M for anti-HSA-mAb·(HSA)2 and 4.45 × 10(-8) M for anti-HSA-mAb·HSA, 1.08 × 10(-7) M for anti-HSA-mAb·(HSA)2 , respectively. The dissociation constant data obtained by ACE were in congruence with the values obtained by isothermal titration calorimetry (2.74 × 10(-8) M, 1.04 × 10(-7) M).

  4. Mechanisms of fibrinogen adsorption at the silica substrate determined by QCM-D measurements.

    PubMed

    Kubiak, Katarzyna; Adamczyk, Zbigniew; Wasilewska, Monika

    2015-11-01

    Adsorption kinetics of fibrinogen at a silica substrate was thoroughly studied in situ using the QCM-D method. Because of low dissipation, the Sauerbrey's equation was used for calculating the wet mass per unit area (wet coverage of the protein). Measurements were done for various bulk suspension concentrations, flow rates and pHs. These experimental data were compared with the theoretical dry coverage data derived from the solution of the mass transfer equation. In this way, the hydration functions and water factors of fibrinogen monolayers were quantitatively evaluated for various pHs. In the case of pH 7.4 and ionic strength of 0.15 M, the hydration function changed from 0.75 to 0.6 for the dry coverage Γ(d) equal to 0 and 4 mg m(-2), respectively. Interestingly, for pH 7.4 and 4.5 (ionic strength of 10(-2) M) a minimum of the hydration function appeared at Γ(d) ca. 2 mg m(-2). Analytical polynomial expressions were formulated for the interpolation of the experimental results. By using the hydration functions, the fibrinogen adsorption/desorption runs derived from QCM-D measurements were converted to the Γ(d) vs. the time relationships. This allowed to precisely determine the maximum coverage that varied between 1.2 mg m(-2) at pH 3.5 and 4.2 mg m(-2) at pH 7.4 for ionic strength of 0.15 M. These results agree with theoretical modeling and previous experimental data derived by using ellipsometry, OWLS and TIRF. Various fibrinogen adsorption mechanisms were revealed by exploiting the maximum coverage data whose validity was also confirmed by the dissipation vs. the dry mass relationships. Beside significance to basic science, these results enable to develop a robust technique, based on the QCM-D measurements, suitable for precisely determining the dry mass of protein monolayers adsorbed under various physicochemical conditions.

  5. Boronate affinity adsorption of RNA: possible role of conformational changes

    NASA Technical Reports Server (NTRS)

    Singh, N.; Willson, R. C.; Fox, G. E. (Principal Investigator)

    1999-01-01

    Batch equilibrium adsorption isotherm determination is used to characterize the adsorption of mixed yeast RNA on agarose-immobilized m-aminophenylboronic acid. It is shown that the affinity-enhancing influence of divalent cations depends strongly on the precise nature of the cation used, with barium being far more effective than the conventionally-used magnesium. This adsorption-promoting influence of barium is suggested to arise primarily from ionic influences on the structure and rigidity of the RNA molecule, as the adsorption of ribose-based small molecules is not similarly affected. The substitution of barium for the standard magnesium counterion does not greatly promote the adsorption of DNA, implying that the effect is specific to RNA and may be useful in boronate-based RNA separations. RNA adsorption isotherms exhibit sharp transitions as functions of temperature, and these transitions occur at different temperatures with Mg2+ and with Ba2+. Adsorption affinity and capacity were found to increase markedly at lower temperatures, suggestive of an enthalpically favored interaction process. The stoichiometric displacement parameter, Z, in Ba2+ buffer is three times the value in Mg2+ buffer, and is close to unity.

  6. Continuous water treatment by adsorption and electrochemical regeneration.

    PubMed

    Mohammed, F M; Roberts, E P L; Hill, A; Campen, A K; Brown, N W

    2011-05-01

    This study describes a process for water treatment by continuous adsorption and electrochemical regeneration using an air-lift reactor. The process is based on the adsorption of dissolved organic pollutants onto an adsorbent material (a graphite intercalation compound, Nyex(®)1000) and subsequent electrochemical regeneration of the adsorbent leading to oxidation of the adsorbed pollutant. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for adsorption of a sample contaminant, the organic dye Acid Violet 17. The adsorbent circulation rate, the residence time distribution (RTD) of the reactor, and treatment by continuous adsorption and electrochemical regeneration were studied to investigate the process performance. The RTD behaviour could be approximated as a continuously stirred tank. It was found that greater than 98% removal could be achieved for continuous treatment by adsorption and electrochemical regeneration for feed concentrations of up to 300 mg L(-1). A steady state model has been developed for the process performance, assuming full regeneration of the adsorbent in the electrochemical cell. Experimental data and modelled predictions (using parameters for the adsorbent circulation rate, adsorption kinetics and isotherm obtained experimentally) of the dye removal achieved were found to be in good agreement.

  7. Laboratory investigation of steam adsorption in geothermal reservoir rocks

    SciTech Connect

    Luetkehans, J.

    1988-02-01

    Some vapor-dominated geothermal reservoirs and low-permeability gas reservoirs exhibit anomalous behavior that may be caused by surface adsorption. For example, geothermal reservoirs in the Larderello are of Italy and reservoirs in the Geysers Geothermal Field, California produce little, if any, liquid. Yet to satisfy material balance constraints, another phase besides steam must be present. If steam adsorption occurring in significant amounts is not accounted for, the reserves will be grossly under-estimated. In addition, well tests may be misinterpreted because the pressure response is delayed owing to be adsorbed material leaving or entering the gaseous phase. In the present research the role of adsorption in geothermal reservoirs in investigated. Two sets of laboratory equipment were constructed to measure adsorption isotherms of cores from Berea sandstone, Larderello, and The Geysers. Seven experimental runs were completed using nitrogen on the low temperature apparatus at -196/sup 0/C. Eight runs were conducted using steam on the high temperature apparatus at temperatures ranging from 150 C to 207/sup 0/C. The largest specific surface area and the greatest nitrogen adsorption isotherm were measured on the Berea sandstone, followed by a core from Larderello and then The Geysers. Difficulties in determining whether a system had reached equilibrium at the end of each step lead to questions regarding the magnitude of adsorption measured by the steam runs. Nevertheless, adsorption was observed and the difficulties themselves were useful indicators of needed future research.

  8. Determination of bismuth and copper using adsorptive stripping voltammetry couple with continuous wavelet transform.

    PubMed

    Khaloo, Shokooh S; Ensafi, Ali A; Khayamian, T

    2007-01-15

    A new method is proposed for the determination of bismuth and copper in the presence of each other based on adsorptive stripping voltammetry of complexes of Bi(III)-chromazorul-S and Cu(II)-chromazorul-S at a hanging mercury drop electrode (HMDE). Copper is an interfering element for the determination of Bi(III) because, the voltammograms of Bi(III) and Cu(II) overlapped with each other. Continuous wavelet transform (CWT) was applied to separate the voltammograms. In this regards, wavelet filter, resolution of the peaks and the fitness were optimized to obtain minimum detection limit for the elements. Through continuous wavelet transform Symlet4 (Sym4) wavelet filter at dilation 6, quantitative and qualitative analysis the mixture solutions of bismuth and copper was performed. It was also realized that copper imposes a matrix effect on the determination of Bi(III) and the standard addition method was able to cope with this effect. Bismuth does not have matrix effect on copper determination, therefore, the calibration curve using wavelet coefficients of CWT was used for determination of Cu(II) in the presence of Bi(III). The detection limits were 0.10 and 0.05ngml(-1) for bismuth and copper, respectively. The linear dynamic range of 0.1-30.0 and 0.1-32.0ngml(-1) were obtained for determination of bismuth in the presence of 24.0ngml(-1) of copper and copper in the presence of 24.0ngml(-1) of bismuth, respectively. The method was used for determination of these two cations in water and human hair samples. The results indicate the ability of method for the determination of these two elements in real samples. PMID:19071307

  9. Determination of glyphosate and aminomethylphosphonic acid in aqueous soil matrices: a critical analysis of the 9-fluorenylmethyl chloroformate derivatization reaction and application to adsorption studies.

    PubMed

    Báez, María E; Fuentes, Edwar; Espina, María José; Espinoza, Jeannette

    2014-11-01

    The assessment of the environmental fate of glyphosate and its degradation product (aminomethylphosphonic acid) is of great interest given the widespread use of the herbicide. Studies of adsorption-desorption and transport processes in soils require analytical methods with sensitivity, accuracy, and precision suitable for determining the analytes in aqueous equilibrium solutions of varied complexity. In this work, the effect of factors on the yield of the derivatization of both compounds with 9-fluorenylmethyl chloroformate for applying in aqueous solutions derived from soils was evaluated through factorial experimental designs. Interference effects coming from background electrolytes and soil matrices were established. The whole method had a linear response up to 640 ng/mL (R(2) > 0.999) under optimized conditions for high-performance liquid chromatography with fluorescence detection. Limits of detection were 0.6 and 0.4 ng/mL for glyphosate and aminomethylphosphonic acid, respectively. The relative standard deviation was 4.4% for glyphosate (20 ng/mL) and 5.9% for aminomethylphosphonic acid (10 ng/mL). Adsorption of compounds on four different soils was assessed. Isotherm data fitted well the Freundlich model (R(2) > 0.97). Kf constants varied between 93 ± 3.1 and 2045 ± 157 for glyphosate and between 99 ± 4.1 and 1517 ± 56 (μg(1-1/) (n)  mL(1/) (n) ( ) g(-1) ) for aminomethylphosphonic acid, showing the broad range of applicability of the proposed method. PMID:25137606

  10. Determination of glyphosate and aminomethylphosphonic acid in aqueous soil matrices: a critical analysis of the 9-fluorenylmethyl chloroformate derivatization reaction and application to adsorption studies.

    PubMed

    Báez, María E; Fuentes, Edwar; Espina, María José; Espinoza, Jeannette

    2014-11-01

    The assessment of the environmental fate of glyphosate and its degradation product (aminomethylphosphonic acid) is of great interest given the widespread use of the herbicide. Studies of adsorption-desorption and transport processes in soils require analytical methods with sensitivity, accuracy, and precision suitable for determining the analytes in aqueous equilibrium solutions of varied complexity. In this work, the effect of factors on the yield of the derivatization of both compounds with 9-fluorenylmethyl chloroformate for applying in aqueous solutions derived from soils was evaluated through factorial experimental designs. Interference effects coming from background electrolytes and soil matrices were established. The whole method had a linear response up to 640 ng/mL (R(2) > 0.999) under optimized conditions for high-performance liquid chromatography with fluorescence detection. Limits of detection were 0.6 and 0.4 ng/mL for glyphosate and aminomethylphosphonic acid, respectively. The relative standard deviation was 4.4% for glyphosate (20 ng/mL) and 5.9% for aminomethylphosphonic acid (10 ng/mL). Adsorption of compounds on four different soils was assessed. Isotherm data fitted well the Freundlich model (R(2) > 0.97). Kf constants varied between 93 ± 3.1 and 2045 ± 157 for glyphosate and between 99 ± 4.1 and 1517 ± 56 (μg(1-1/) (n)  mL(1/) (n) ( ) g(-1) ) for aminomethylphosphonic acid, showing the broad range of applicability of the proposed method.

  11. Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals: Silica and alumina

    USGS Publications Warehouse

    Su, Y.-H.; Zhu, Y.-G.; Sheng, G.; Chiou, C.T.

    2006-01-01

    To characterize the linear adsorption phenomena in aqueous nonionic organic solute-mineral systems, the adsorption isotherms of some low-molecular- weightnonpolar nonionic solutes (1,2,3-trichlorobenzene, lindane, phenanthrene, and pyrene) and polar nonionic solutes (1,3-dinitrobenzene and 2,4-dinitrotoluene) from single-and binary-solute solutions on hydrophilic silica and alumina were established. Toward this objective, the influences of temperature, ionic strength, and pH on adsorption were also determined. It is found that linear adsorption exhibits low exothermic heats and practically no adsorptive competition. The solute-solid configuration and the adsorptive force consistent with these effects were hypothesized. For nonpolar solutes, the adsorption occurs presumably by London (dispersion) forces onto a water film above the mineral surface. For polar solutes, the adsorption is also assisted by polar-group interactions. The reduced adsorptive forces of solutes with hydrophilic minerals due to physical separation by the water film and the low fractions of the water-film surface covered by solutes offer a theoretical basis for linear solute adsorption, low exothermic heats, and no adsorptive competition. The postulated adsorptive forces are supported by observations that ionic strength or pH poses no effect on the adsorption of nonpolar solutes while it exhibits a significant effect on the uptake of polar solutes. ?? 2006 American Chemical Society.

  12. Determination of mitragynine in urine matrices by bar adsorptive microextraction and HPLC analysis.

    PubMed

    Neng, N R; Ahmad, S M; Gaspar, H; Nogueira, J M F

    2015-11-01

    Bar adsorptive microextraction combined with liquid desorption followed by high performance liquid chromatography with diode array detection (BAµE-LD/HPLC-DAD) is proposed for the determination of the psychoactive alkaloid mitragynine (MG) in human urine matrices. By using a modified N-vinylpyrrolidone polymer (P2) sorbent phase, high selectivity and efficiency is achieved. Assays performed by BAµE(P2)-LD/HPLC-DAD on 25 mL water samples spiked at the 8.0 µg L(-1) level yielded average recoveries around 100% of MG, under optimized experimental conditions. The analytical performance showed good precision (RSD<15%), appropriated detection limits of 0.10 µg L(-1) and linear dynamic ranges (0.6-24.0 μg L(-1)) with convenient determination coefficients of 0.9924. By using the standard addition method, the application of the present methodology for the determination of MG in human urine matrices after Kratom consumer, allowed very good performances. The proposed methodology proved to be a suitable alternative to monitor MG in biological fluid matrices, showing to be easy to implement, reliable, sensitive and requiring low sample volumes, when compared with other sorbent-based methods. PMID:26452798

  13. In situ matrix evaporation by isothermal distillation of high-purity reagents for the determination of trace impurities by ion chromatography.

    PubMed

    Dhavile, S M; Thangavel, S; Chandrasekaran, K; Dash, K; Rao, S V; Chaurasia, S C

    2004-10-01

    In situ matrix evaporation of high-purity acids based on isothermal distillation was achieved in a high-density polyethylene (HDPE) container on a water bath, to avoid contamination from the laboratory environment. The solubility of water and acid vapours in glycerol due to co-association was utilized to achieve complete evaporation. All major sources which contribute to the process blank were taken care of in a simple and effective way. A 50-fold preconcentration with >99.9% matrix removal was achieved for the analysis of low-boiling acids, HCl, HF, HNO3 and H2O2. The non-volatile ions NH4+, Li+, Na+, K+, Mg2+, Ca2+, SO4(2-) and PO4(3-) were determined by ion chromatograph with conductivity detection. The detection limits were 6-130 ng/l with recoveries of 85-110% for all ions studied.

  14. Adsorption characteristics of As(III) from aqueous solution on iron oxide coated cement (IOCC).

    PubMed

    Kundu, Sanghamitra; Gupta, A K

    2007-04-01

    Contamination of potable groundwater with arsenic is a serious health hazard, which calls for proper treatment before its use as drinking water. The objective of the present study is to assess the effectiveness of iron oxide coated cement (IOCC) for As(III) adsorption from aqueous solution. Batch studies were conducted to study As(III) adsorption onto IOCC at ambient temperature as a function of adsorbent dose, pH, contact time, initial arsenic concentration and temperature. Kinetics reveal that the uptake of As(III) ion is very rapid and most of fixation occurs within the first 20 min of contact. The pseudo-second order rate equation successfully described the adsorption kinetics. Langmuir, Freundlich, Redlich-Peterson (R-P), and Dubinin-Radushkevich (D-R) models were used to describe the adsorption isotherms at different initial As(III) concentrations and at 30 g l(-1) fixed adsorbent dose. The maximum adsorption capacity of IOCC for As(III) determined from the Langmuir isotherm was 0.69 mg g(-1). The mean free energy of adsorption (E) calculated from the D-R isotherm was found to be 2.86 kJ mol(-1) which suggests physisorption. Thermodynamic parameters indicate an exothermic nature of adsorption and a spontaneous and favourable process. The results suggest that IOCC can be suitably used for As(III) removal from aqueous solutions.

  15. Study of water adsorption on activated carbons with different degrees of surface oxidation

    SciTech Connect

    Salame, I.I.; Bandosz, T.J. |

    1999-02-15

    A carbon of wood origin was oxidized with different oxidizing agents (nitric acid, hydrogen peroxide, and ammonium persulfate). The microstructural properties of the starting material and the oxidized samples were characterized using sorption of nitrogen. The surface acidity was determined using Boehm titration and potentiometric titration. The changes in the surface chemistry were also studied by diffuse reflectance FTIR. Water adsorption isotherms were measured at three different temperatures close to ambient (relative pressure from 0.001 to 0.3). From the isotherms the heats of adsorption were calculated using a virial equation. The results indicated that the isosteric heats of water adsorption are affected by the surface heterogeneity only at low surface coverage. In all cases the limiting heat of adsorption was equal to the heat of water condensation (45 kJ/mol).

  16. Nonhomogeneity effects in adsorption from gas and liquid phases on activated carbons

    SciTech Connect

    Derylo-Marczewska, A.; Marczewski, A.W.

    1999-05-25

    The process of adsorption of dissociating organic substances from dilute aqueous solutions on various activated carbons is studied. The investigated adsorbents have different pore structure and chemical properties of the surface. The characteristics of activated carbons are determined from nitrogen and benzene isotherms and potentiometric titration data. The properties of pore structure--BET specific surface area, the total pore volume, the external surface area, the micropore volume, and the density of surface charge--are evaluated. The isotherms of benzoic acid adsorption from the aqueous phase are measured for a wide range of solution pH and constant ionic strength by using the static method. The liquid adsorption data are analyzed in terms of the theory of adsorption on heterogeneous solids.

  17. Label-free determination of protein-ligand binding constants using mass spectrometry and validation using surface plasmon resonance and isothermal titration calorimetry.

    PubMed

    Jecklin, Matthias C; Schauer, Stefan; Dumelin, Christoph E; Zenobi, Renato

    2009-01-01

    We performed a systematic comparison of three label-free methods for quantitative assessment of binding strengths of proteins interacting with small molecule ligands. The performance of (1) nanoelectrospray ionization mass spectrometry (nESI-MS), (2) surface plasmon resonance (SPR), and (3) isothermal titration calorimetry (ITC) was compared for the determination of dissociation constants (K(D)). The model system studied for this purpose was the human carbonic anhydrase I (hCAI) with eight known and well characterized sulfonamide inhibitors (Krishnamurthy et al., Chem. Rev. 2008, 108: 946-1051). The binding affinities of the inhibitors chosen vary by more than four orders of magnitude e.g., the K(D) value determined for ethoxzolamide by nESI-MS was 5 +/- 1 nM and the K(D) value for sulfanilamide was 145.7 +/- 10.0 microM. The agreement of the determined K(D) values by the three methods investigated was excellent for ethoxzolamide and benzenesulfonamide (variation with experimental error), good for acetazolamide and 4-carboxybenzenesulfonamide (variation by approximately one order of magnitude), but poor for others e.g., sulpiride. The accuracies of the K(D) values are determined, and advantages and drawbacks of the individual methods are discussed. Moreover, we critically evaluate the three examined methods in terms of ease of the measurement, sample consumption, time requirement, and discuss their limitations. PMID:19373858

  18. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles.

    PubMed

    Su, Yu; Cui, Hang; Li, Qi; Gao, Shian; Shang, Jian Ku

    2013-09-15

    Phosphate removal is important in the control of eutrophication of water bodies. Adsorption is one of the promising approaches for the removal of phosphate, which could serve as a supplement for the biological phosphate removal process commonly used in the wastewater treatment industry to meet the discharge requirement when the biological performance is deteriorated from changes of operation conditions. Amorphous zirconium oxide nanoparticles were synthesized by a simple and low-cost hydrothermal process, and their phosphate removal performance was explored in aqueous environment under various conditions. A fast adsorption of phosphate was observed in the kinetics study, and their adsorption capacity was determined at about 99.01 mg/g at pH 6.2 in the equilibrium adsorption isotherm study. Commonly coexisting anions showed no or minimum effect on their phosphate adsorption performance. The phosphate adsorption showed little pH dependence in the range from pH 2 to 6, while it decreased sharply with the pH increase above pH 7. After adsorption, phosphate on these am-ZrO2 nanoparticles could be easily desorbed by NaOH solution washing. Both the macroscopic and microscopic techniques demonstrated that the phosphate adsorption mechanism of am-ZrO2 nanoparticles followed the inner-sphere complexing mechanism, and the surface hydroxyl groups played a key role in the phosphate adsorption.

  19. Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite.

    PubMed

    Wang, Fei; Liu, Chengshuai; Shih, Kaimin

    2012-11-01

    Understanding the interaction of perfluorochemicals, persistent pollutants with known human health effects, with mineral compounds in surface water and groundwater environments is essential to determining their fate and transport. Kinetic experiments showed that adsorption equilibrium can be achieved within 48 h and the boehmite (AlOOH) surface is receptive to perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorption. The adsorption isotherms estimated the maximum adsorption capacities of PFOS and PFOA on boehmite as 0.877 μg m(-2) and 0.633 μg m(-2), respectively. Compared to the adsorption capacity on γ-alumina, the abundant hydroxyl groups on boehmite surfaces resulted in the 2-3 times higher adsorption of PFOS and PFOA. Increasing solution pH led to a moderate decrease in PFOS and PFOA adsorption, owing to an increase in ligand exchange reactions and the decrease of electrostatic interactions. The presence of NaCl and CaCl(2) in solution demonstrated negative effects for PFOS and PFOA adsorption on boehmite surfaces, with potential mechanisms being electrical double layer compression, competitive adsorption of chloride, and the Ca(2+) bridging effect between perfluorochemicals. PMID:22897837

  20. Applications and limits of theoretical adsorption models for predicting the adsorption properties of adsorbents.

    PubMed

    Park, Hyun Ju; Nguyen, Duc Canh; Na, Choon-Ki; Kim, Chung-il

    2015-01-01

    The objective of this study is to evaluate the applicability of adsorption models for predicting the properties of adsorbents. The kinetics of the adsorption of NO3- ions on a PP-g-AA-Am non-woven fabric have been investigated under equilibrium conditions in both batch and fixed bed column processes. The adsorption equilibrium experiments in the batch process were carried out under different adsorbate concentration and adsorbent dosage conditions and the results were analyzed using adsorption isotherm models, energy models, and kinetic models. The results of the analysis indicate that the adsorption occurring at a fixed adsorbate concentration with a varying adsorbent dosage occur more easily compared to those under a fixed adsorbent dosage with a varying adsorbate concentration. In the second part of the study, the experimental data obtained using fixed bed columns were fit to Bed Depth Service Time, Bohart-Adams, Clark, and Wolborska models, to predict the breakthrough curves and determine the column kinetic parameters. The adsorption properties of the NO3- ions on the PP-g-AA-Am non-woven fabric were differently described by different models for both the batch and fixed bed column process. Therefore, it appears reasonable to assume that the adsorption properties were dominated by multiple mechanisms, depending on the experimental conditions.

  1. Interpretation of dynamic frontal analysis data in solid/supercritical fluid adsorption systems. I: theory.

    PubMed

    Gritti, Fabrice; Tarafder, Abhijit; Guiochon, Georges

    2013-05-17

    A theory is proposed to relate the elution times of the adsorption front shocks of breakthrough curves recorded during classical dynamic frontal analysis (FA) experiments with selected compounds and their adsorption isotherms in solid/supercritical fluid adsorption systems. The actual density and viscosity of binary mixtures of CO2 and methanol were obtained from the NIST REPPROP software. Diluted solutions of S-naproxen were considered (<2% in mass) but the possible effects of the analyte concentration on the viscosity and the density of the eluent percolating through the column were neglected. This allows the determination of the excess adsorption isotherm (or Gibbs excess isotherm) of the adsorbed analyte in the whole column at constant mass and volumetric flow rate of pure CO2 and of the modifier solution. A local Langmuir adsorption isotherm and a constant saturation capacity were assumed in the calculations. The variation of the adsorption-desorption constant with the eluent density was taken from the experimental variation of the retention factor of S-naproxen on a chiral column packed with Whelk-O1 particles. The results show that the isotherm parameters obtained from the best adjustment of the Langmuir model to the SFC excess adsorption data deviates by less than 7% from the assumed saturation capacity and from the average of the equilibrium constant along the chromatographic column. In practice, this conclusion holds true provided that the precision of the measurement of elution times of front shocks of breakthrough curves is better than 1% and that the maximum surface coverage qexp,max/qS is at least equal to 20%.

  2. Adsorption of ferrous ions onto montmorillonites

    NASA Astrophysics Data System (ADS)

    Qin, Dawei; Niu, Xia; Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao

    2015-04-01

    The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe2+/Fetotal ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG0 and ΔH0 were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  3. Kinetic model of water vapour adsorption by gluten-free starch

    NASA Astrophysics Data System (ADS)

    Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena

    2015-01-01

    This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.

  4. Determination of Micro-Quantities of Chrysotile Asbestos by Dye Adsorption

    ERIC Educational Resources Information Center

    Markham, M. Clare; Wosczyna, Karen

    1976-01-01

    Airborne asbestos is analyzed by differential dye adsorption. Quantities can be estimated down to 100 mg. For industrial use, asbestos samples must be separated from interfering minerals by density flotation. (Author/BT)

  5. Adsorption Device Based on a Langatate Crystal Microbalance for High Temperature High Pressure Gas Adsorption in Zeolite H-ZSM-5.

    PubMed

    Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland

    2016-01-01

    We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example. PMID:27585356

  6. An electroanalytical approach for evaluation of biochar adsorption characteristics and its application for lead and cadmium determination.

    PubMed

    Suguihiro, Talita Mayumi; de Oliveira, Paulo Roberto; de Rezende, Edivaltrys Inayve Pissinati; Mangrich, Antonio Sálvio; Marcolino, Luiz Humberto; Bergamini, Márcio F

    2013-09-01

    This work describes for first time the use of electroanalytical techniques for evaluation of adsorptive proprieties of biochar using it as electrode modifier and its application for preconcentration and determination of Lead(II) and Cadmium(II) under differential pulse adsorptive voltammetric conditions (DPAdSV). Samples of biochars were obtained from castor oil cake using a predefined set of experimental conditions varying the heating rate (V), final temperature (T) and warm-up period (P) and subsequently used for carbon paste modified electrode (CPME) preparation. The proposed method was applied for Lead(II) and Cadmium(II) determination in spiked simulated industrial effluents and the limit of detection obtained for both metals were adequated for determination of these evaluated ions taking into account the limits established by Brazilian legislation. For all samples analyzed, recoveries ranged from 95% to 104% were obtained and no significative interferences were observed for common cations in water samples. PMID:23777844

  7. An electroanalytical approach for evaluation of biochar adsorption characteristics and its application for lead and cadmium determination.

    PubMed

    Suguihiro, Talita Mayumi; de Oliveira, Paulo Roberto; de Rezende, Edivaltrys Inayve Pissinati; Mangrich, Antonio Sálvio; Marcolino, Luiz Humberto; Bergamini, Márcio F

    2013-09-01

    This work describes for first time the use of electroanalytical techniques for evaluation of adsorptive proprieties of biochar using it as electrode modifier and its application for preconcentration and determination of Lead(II) and Cadmium(II) under differential pulse adsorptive voltammetric conditions (DPAdSV). Samples of biochars were obtained from castor oil cake using a predefined set of experimental conditions varying the heating rate (V), final temperature (T) and warm-up period (P) and subsequently used for carbon paste modified electrode (CPME) preparation. The proposed method was applied for Lead(II) and Cadmium(II) determination in spiked simulated industrial effluents and the limit of detection obtained for both metals were adequated for determination of these evaluated ions taking into account the limits established by Brazilian legislation. For all samples analyzed, recoveries ranged from 95% to 104% were obtained and no significative interferences were observed for common cations in water samples.

  8. Adsorptive separation in bioprocess engineering

    SciTech Connect

    Huang, E.W.Y.

    1987-01-01

    The invention and development of an energy-efficient separation technique for recovery of desired chemicals from biomass conversion would greatly enhance the economic viability of this bioprocess. Adsorptive separation of several chemicals from aqueous solution was studied in this thesis. The desired species were recovered from the dilute aqueous solution by using crosslinked polyvinylpyridine resin to effect selective sorption. The sorbed chemicals were then removed from the resin by either thermal regeneration or elution with some appropriate desorbents. The effects of temperature, pH value, and solute concentration on resin swelling were investigated. The adsorption equilibrium isotherms, resin capacities and resin selectivities of methanol, ethanol, 1-propanol, isopropanol, glycerol, acetone, 1-butanol, tert-butanol, and 2,3-butanediol were determined to study the homologies. Furthermore, acetic acid, butyric acid, hydrochloric acid, lactic acid, and sulfuric acid were recovered from very dilute aqueous solutions. The concentration of the sorbed chemical in the stationary phase can be many times higher than in the mobile phase for some acids. Finally, different types of equilibrium isotherms were used to fit the experimental data. A mathematical model was developed by using the theory of interference to predict the breakthrough curves and the process efficiency to provide information for large-scale process design and development.

  9. Determination of tryptamine in foods using square wave adsorptive stripping voltammetry.

    PubMed

    Costa, Daniel J E; Martínez, Ana M; Ribeiro, Williame F; Bichinho, Kátia M; Di Nezio, María Susana; Pistonesi, Marcelo F; Araujo, Mario C U

    2016-07-01

    Tryptamine, a biogenic amine, is an indole derivative with an electrophilic substituent at the C3 position of the pyrrole ring of the indole moiety. The electrochemical oxidation of tryptamine was investigated using glassy carbon electrode (GCE), and focusing on trace level determination in food products by square wave adsorptive stripping voltammetry (SWAdSV). The electrochemical responses of tryptamine were evaluated using differing voltammetric techniques over a wide pH range, a quasi-reversible electron-transfer to redox system represented by coupled peaks P1-P3, and an irreversible reaction for peak P2 were demonstrated. The proton and electron counts associated with the oxidation reactions were estimated. The nature of the mass transfer process was predominantly diffusion-limited for the oxidation process of P1, the most selective and sensitive analytical response (acetate buffer solution pH 5.3), being used for the development of SWAdSV method, under optimum conditions. The excellent response allowed the development of an electroanalytical method with a linear response range of from 4.7-54.5)×10(-)(8)molL(-1), low detection limit (0.8×10(-)(9)molL(-)(1)), and quantification limit (2.7×10(-9)molL(-1)), and acceptable levels of repeatability (3.6%), and reproducibility (3.8%). Tryptamine content was determined in bananas, tomatoes, cheese (mozzarella and gorgonzola), and cold meats (chicken sausage and pepperoni sausage), yielding recoveries above 90%, with excellent analytical performance using simple and low cost instrumentation.

  10. Unified water isotherms for clayey porous materials

    NASA Astrophysics Data System (ADS)

    Revil, A.; Lu, N.

    2013-09-01

    We provide a unified model for the soil-water retention function, including the effect of bound and capillary waters for all types of soils, including clayey media. The model combines a CEC-normalized isotherm describing the sorption of the bound water (and the filling of the trapped porosity) and the van Genuchten model to describe the capillary water sorption retention but ignore capillary condensation. For the CEC-normalized isotherm, we tested both the BET and Freundlich isotherms, and we found that the Freundlich is more suitable than the BET isotherm in fitting the data. It is also easier to combine the Freundlich isotherm with the van Genuchten model. The new model accounts for (1) the different types of clay minerals, (2) the different types of ions sorbed in the Stern layer and on the basal planes of 2:1 clays, and (3) the pore size distribution. The model is validated with different data sets, including mixtures of kaolinite and bentonite. The model parameters include two exponents (the pore size exponent of the van Genuchten model and the exponent of the Freundlich isotherm), the capillary entry pressure, and two critical water contents. The first critical water content is the water content at saturation (porosity), and the second is the maximum water content associated with adsorption forces, including the trapped nonbound water.

  11. Determination of thermodynamic potentials and the aggregation number for micelles with the mass-action model by isothermal titration calorimetry: A case study on bile salts.

    PubMed

    Olesen, Niels Erik; Westh, Peter; Holm, René

    2015-09-01

    The aggregation number (n), thermodynamic potentials (ΔG, ΔH, ΔS) and critical micelle concentration (CMC) for 6 natural bile salts were determined on the basis of both original and previously published isothermal titration calorimetry (ITC) data. Different procedures to estimate parameters of micelles with ITC were compared to a mass-action model (MAM) of reaction type: n⋅S⇌Mn. This analysis can provide guidelines for future ITC studies of systems behaving in accordance with this model such as micelles and proteins that undergo self-association to oligomers. Micelles with small aggregation numbers, as those of bile salts, are interesting because such small aggregates cannot be characterized as a separate macroscopic phase and the widely applied pseudo-phase model (PPM) is inaccurate. In the present work it was demonstrated that the aggregation number of micelles was constant at low concentrations enabling determination of the thermodynamic potentials by the MAM. A correlation between the aggregation number and the heat capacity was found, which implies that the dehydrated surface area of bile salts increases with the aggregation number. This is in accordance with Tanford's principles of opposing forces where neighbouring molecules in the aggregate are better able to shield from the surrounding hydrophilic environment when the aggregation number increases.

  12. Adsorption of lead onto smectite from aqueous solution.

    PubMed

    Mhamdi, M; Galai, H; Mnasri, N; Elaloui, E; Trabelsi-Ayadi, M

    2013-03-01

    The purpose of this research is to study the effect of a new method of adsorption using membrane filtration to determine the maximum amount of lead adsorbed by clay and investigate the behavior of the clay after adsorption of the said metal. Treatment of wastewater contaminated with heavy metals depends on the characteristics of the effluent, the amount of final discharge, the cost of treatment, and the compatibility of the treatment process. The process of adsorption of heavy metals by clays may be a simple, selective, and economically viable alternative to the conventional physical-chemical treatment. This is justified by the importance of the surface developed by this material, the presence of negative charges on the said surface, the possibility of ion exchange taking place, and its wide availability in nature. The removal of lead from wastewater was studied by using the adsorption technique and using clay as the adsorbent. A method was optimized for adsorption through a membrane approaching natural adsorption. This new method is simple, selective, and the lead adsorption time is about 3 days. The various properties of clay were determined. It was observed that the cation exchange capacity of the clay was 56 meq/100 g of hydrated clay for the raw sample and 82 meq/100 g for the purified sample. The total surface area determined by the methylene blue method was equal to 556 and 783 m(2)/g for the raw and purified samples, respectively. The adsorption kinetics depends on several parameters. The Pb(II) clay, obeys the Langmuir, Freundlich, and the Elovich adsorption isotherms with high regression coefficients. The use of this adsorbent notably decreases the cost of treatment. It was concluded that clay shows a strong adsorption capacity on Pb(II), the maximum interaction occurring with purified clay treated at high concentration of lead. It is proposed that this adsorption through a membrane be extended for the treatment of effluents containing other metals. PMID

  13. USING ISOTHERMS TO PREDICT GAC'S CAPACITY FOR SYNTHETIC ORGANICS

    EPA Science Inventory

    This investigation involved operating a pilot granular activated carbon (GAC) plant to obtain capacity data under typical field conditions, determining isotherms for selected synthetic organic chemicals, and comparing the capacity predicted by the isotherm data with the pilot-pla...

  14. Adsorption of Water Vapor on a Graphitized Carbon Black.

    PubMed

    Easton; Machin

    2000-11-01

    Absorption isotherms for water vapor on a highly graphitized carbon black, Sterling FT-G (2700), have been determined at 280.15 and 295.15 K. Interparticle capillary condensation with extensive hysteresis is observed but capillary condensation (adsorption) occurs under metastable, supersaturation conditions. Contact angles for water adsorbed on this carbon black are calculated and two models for capillary condensation are discussed. Copyright 2000 Academic Press.

  15. Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles

    USGS Publications Warehouse

    Agnihotri, S.; Mota, J.P.B.; Rostam-Abadi, M.; Rood, M.J.

    2006-01-01

    Bundle morphology and adsorptive contributions from nanotubes and impurities are studied both experimentally and by simulation using a computer-aided methodology, which employs a small physisorbed probe molecule to explore the porosity of nanotube samples. Grand canonical Monte Carlo simulation of nitrogen adsorption on localized sites of a bundle is carried out to predict adsorption in its accessible internal pore volume and on its external surface as a function of tube diameter. External adsorption is split into the contributions from the clean surface of the outermost nanotubes of the bundle and from the surface of the impurities. The site-specific isotherms are then combined into a global isotherm for a given sample using knowledge of its tube-diameter distribution obtained by Raman spectroscopy. The structural parameters of the sample, such as the fraction of open-ended nanotubes and the contributions from impurities and nanotube bundles to total external surface area, are determined by fitting the experimental nitrogen adsorption data to the simulated isotherm. The degree of closure between experimental and calculated adsorption isotherms for samples manufactured by two different methods, to provide different nanotube morphology and contamination level, further strengthens the validity and resulting interpretations based on the proposed approach. The average number of nanotubes per bundle and average bundle size, within a sample, are also quantified. The proposed method allows for extrapolation of adsorption properties to conditions where the purification process is 100% effective at removing all impurities and opening access to all intrabundle adsorption sites. ?? 2006 Elsevier Ltd. All rights reserved.

  16. Adsorption and desorption characteristics of arsenic onto ceria nanoparticles

    PubMed Central

    2012-01-01

    The rapid increase in the use of engineered nanoparticles [ENPs] has resulted in an increasing concern over the potential impacts of ENPs on the environmental and human health. ENPs tend to adsorb a large variety of toxic chemicals when they are emitted into the environment, which may enhance the toxicity of ENPs and/or adsorbed chemicals. The study was aimed to investigate the adsorption and desorption behaviors of arsenic on ceria NPs in aqueous solution using batch technique. Results show that the adsorption behavior of arsenic on ceria NPs was strongly dependent on pH and independent of ionic strength, indicating that the electrostatic effect on the adsorption of these elements was relatively not important compared to surface chemical reactions. The adsorption isotherms fitted very well to both the Langmuir and Freundlich models. The thermodynamic parameters (ΔH0, ΔS0, and ΔG0) for the adsorption of arsenic were determined at three different temperatures of 283, 303, and 323 K. The adsorption reaction was endothermic, and the process of adsorption was favored at high temperature. The desorption data showed that desorption hysteresis occurred at the initial concentration studied. High adsorption capacity of arsenic on ceria NPs suggests that the synergistic effects of ceria NPs and arsenic on the environmental systems may exist when they are released into the environment. PMID:22269298

  17. Adsorption of soluble oil from water to graphene.

    PubMed

    Wang, Na; Zhang, Yuchang; Zhu, Fuzhen; Li, Jingyi; Liu, Shuaishuai; Na, Ping

    2014-05-01

    The toxicity of soluble oil to the aquatic environment has started to attract wide attention in recent years. In the present work, we prepare graphene according to oxidation and thermal reduction methods for the removal of soluble oil from the solution. Characterization of the as-prepared graphene are performed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, and contact angle analysis. The adsorption behavior of soluble oil on graphene is examined, and the obtained adsorption data are modeled using conventional theoretical models. Adsorption experiments reveal that the adsorption rate of soluble oil on graphene is notably fast, especially for the soluble diesel oil, which could reach equilibrium within 30 min, and the kinetics of adsorption is perfectly consistent with a pseudo-second-order model. Furthermore, it is determined that the adsorption isotherm of soluble diesel oil with graphene fit the Freundlich model best, and graphene has a very strong adsorption capacity for soluble diesel oil in the solution. These results demonstrate that graphene is the material that provided both good adsorptive capacity and good kinetics, implying that it could be used as a promising sorbent for soluble oil removal from wastewater.

  18. [Adsorption Characteristics of Norfloxacin by Biochars Derived from Reed Straw and Municipal Sludge].

    PubMed

    Zhang, Han-yu; Wang, Zhao-wei; Gao, Jun-hong; Zhu, Jun-min; Xie, Chao-ran; Xie, Xiao-yun

    2016-02-15

    Two types of biochars were prepared by pyrolyzing reed straw and municipal sludge at the temperature of 500 degrees C. The structure and properties of biochars were characterized by BET, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and fourier transform infrared spectroscopy ( FTIR ). The effects of pH value, adsorption time, temperature and initial concentration of norfloxacin (NOR) on the adsorption behaviors were determined by single factor experiments, which were used to preliminarily discuss adsorption mechanism. The results showed that the adsorption of NOR onto biochars derived from reed straw and municipal sludge could reach 70% and 60% of the total adsorption within 12 h, respectively; the maximum adsorption capacities of the two biochars were 2.13 mg x g(-1) (biochar derived from reed straw) and 2.09 mg x g(-1) (biochar derived from municipal sludge). The quantities of both absorptions increased with the decreasing solution pH. The two adsorption kinetics of NOR onto biochars followed the pseudo second order kinetic equations, and adsorption isotherms fitted well with the Langmuir equations. Adsorption thermodynamics parameters such as Gibbs free energy (AG), enthalpy (AH) and entropy (AS) indicated that the two adsorptions were endothermic reactions. Infrared spectroscopy analysis indicated that oxygen-containing functional groups on biochars provided NOR molecules with adsorptive sites, which facilitated the formation of hydrogen bonds between NOR and the biochars.

  19. [Adsorption Characteristics of Norfloxacin by Biochars Derived from Reed Straw and Municipal Sludge].

    PubMed

    Zhang, Han-yu; Wang, Zhao-wei; Gao, Jun-hong; Zhu, Jun-min; Xie, Chao-ran; Xie, Xiao-yun

    2016-02-15

    Two types of biochars were prepared by pyrolyzing reed straw and municipal sludge at the temperature of 500 degrees C. The structure and properties of biochars were characterized by BET, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and fourier transform infrared spectroscopy ( FTIR ). The effects of pH value, adsorption time, temperature and initial concentration of norfloxacin (NOR) on the adsorption behaviors were determined by single factor experiments, which were used to preliminarily discuss adsorption mechanism. The results showed that the adsorption of NOR onto biochars derived from reed straw and municipal sludge could reach 70% and 60% of the total adsorption within 12 h, respectively; the maximum adsorption capacities of the two biochars were 2.13 mg x g(-1) (biochar derived from reed straw) and 2.09 mg x g(-1) (biochar derived from municipal sludge). The quantities of both absorptions increased with the decreasing solution pH. The two adsorption kinetics of NOR onto biochars followed the pseudo second order kinetic equations, and adsorption isotherms fitted well with the Langmuir equations. Adsorption thermodynamics parameters such as Gibbs free energy (AG), enthalpy (AH) and entropy (AS) indicated that the two adsorptions were endothermic reactions. Infrared spectroscopy analysis indicated that oxygen-containing functional groups on biochars provided NOR molecules with adsorptive sites, which facilitated the formation of hydrogen bonds between NOR and the biochars. PMID:27363161

  20. Determining putative vectors of the Bogia Coconut Syndrome phytoplasma using loop-mediated isothermal amplification of single-insect feeding media

    PubMed Central

    Lu, Hengyu; Wilson, Bree A. L.; Ash, Gavin J.; Woruba, Sharon B.; Fletcher, Murray J.; You, Minsheng; Yang, Guang; Gurr, Geoff M.

    2016-01-01

    Phytoplasmas are insect vectored mollicutes responsible for disease in many economically important crops. Determining which insect species are vectors of a given phytoplasma is important for managing disease but is methodologically challenging because disease-free plants need to be exposed to large numbers of insects, often over many months. A relatively new method to detect likely transmission involves molecular testing for phytoplasma DNA in sucrose solution that insects have fed upon. In this study we combined this feeding medium method with a loop-mediated isothermal amplification (LAMP) assay to study 627 insect specimens of 11 Hemiptera taxa sampled from sites in Papua New Guinea affected by Bogia coconut syndrome (BCS). The LAMP assay detected phytoplasma DNA from the feeding solution and head tissue of insects from six taxa belonging to four families: Derbidae, Lophopidae, Flatidae and Ricaniidae. Two other taxa yielded positives only from the heads and the remainder tested negative. These results demonstrate the utility of combining single-insect feeding medium tests with LAMP assays to identify putative vectors that can be the subject of transmission tests and to better understand phytoplasma pathosystems. PMID:27786249

  1. Adsorption in single-walled carbon nanotubes by experiments and molecular simulation II: Effect of morphology and temperature on organic adsorption

    USGS Publications Warehouse

    Agnihotri, S.; Rostam-Abadi, M.; Mota, J.P.B.; Rood, M.J.

    2005-01-01

    Hexane adsorption on single-walled carbon nanotube (SWNT) bundles was studied. Hexane adsorption capacities of two purified SWNT samples was gravimetrically determined at isothermal conditions of 25??, 37??, and 50??C for 10-4 < p/po < 0.9, where p/po is hexane vapor pressure relative to its saturation pressure. Simulation of hexane adsorption under similar temperature and pressure conditions were performed on the external and internal sites of nanotube bundles of diameters same as those in experimental samples. The simulations could predict isotherms for a hypothetical scenario where all nanotubes in a sample would be open. This is an abstract of a paper presented at the AIChE Annual Meeting and Fall Showcase (Cincinnati, OH 10/30/2005-11/4/2005).

  2. Isothermal and Adiabatic Measurements.

    ERIC Educational Resources Information Center

    McNairy, William W.

    1996-01-01

    Describes the working of the Adiabatic Gas Law Apparatus, a useful tool for measuring the pressure, temperature, and volume of a variety of gases undergoing compressions and expansions. Describes the adaptation of this apparatus to perform isothermal measurements and discusses the theory behind the adiabatic and isothermal processes. (JRH)

  3. Thermodynamic analysis of Bacillus subtilis endospore protonation using isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Harrold, Zoë R.; Gorman-Lewis, Drew

    2013-05-01

    Bacterial proton and metal adsorption reactions have the capacity to affect metal speciation and transport in aqueous environments. We coupled potentiometric titration and isothermal titration calorimetry (ITC) analyses to study Bacillus subtilis spore-proton adsorption. We modeled the potentiometric data using a four and five-site non-electrostatic surface complexation model (NE-SCM). Heats of spore surface protonation from coupled ITC analyses were used to determine site specific enthalpies of protonation based on NE-SCMs. The five-site model resulted in a substantially better model fit for the heats of protonation but did not significantly improve the potentiometric titration model fit. The improvement observed in the five-site protonation heat model suggests the presence of a highly exothermic protonation reaction circa pH 7 that cannot be resolved in the less sensitive potentiometric data. From the log Ks and enthalpies we calculated corresponding site specific entropies. Log Ks and site concentrations describing spore surface protonation are statistically equivalent to B. subtilis cell surface protonation constants. Spore surface protonation enthalpies, however, are more exothermic relative to cell based adsorption suggesting a different bonding environment. The thermodynamic parameters defined in this study provide insight on molecular scale spore-surface protonation reactions. Coupled ITC and potentiometric titrations can reveal highly exothermic, and possibly endothermic, adsorption reactions that are overshadowed in potentiometric models alone. Spore-proton adsorption NE-SCMs derived in this study provide a framework for future metal adsorption studies.

  4. Deformation of Microporous Carbons during N2, Ar, and CO2 Adsorption: Insight from the Density Functional Theory.

    PubMed

    Balzer, Christian; Cimino, Richard T; Gor, Gennady Y; Neimark, Alexander V; Reichenauer, Gudrun

    2016-08-16

    Using the nonlocal density functional theory, we investigate adsorption of N2 (77 K), Ar (77 K), and CO2 (273 K) and respective adsorption-induced deformation of microporous carbons. We show that the smallest micropores comparable in size and even smaller than the nominal molecular diameter of the adsorbate contribute significantly to the development of the adsorption stress. While pores of approximately the nominal adsorbate diameter exhibit no adsorption stress regardless of their filling level, the smaller pores cause expansive adsorption stresses up to almost 4 GPa. Accounting for this effect, we determined the pore-size distribution of a synthetic microporous carbon by simultaneously fitting its experimental CO2 adsorption isotherm (273 K) and corresponding adsorption-induced strain measured by in situ dilatometry. Based on the pore-size distribution and the elastic modulus fitted from CO2 data, we predicted the sample's strain isotherms during N2 and Ar adsorption (77 K), which were found to be in reasonable agreement with respective experimental data. The comparison of calculations and experimental results suggests that adsorption-induced deformation caused by micropores is not limited to the low relative pressures typically associated with the micropore filling, but is effective over the whole relative pressure range up to saturation pressure. PMID:27420036

  5. The Adsorption of Reactive Blue 19 Dye onto Cucurbit[8]uril and Cucurbit[6]uril: An Experimental and Theoretical Study.

    PubMed

    Xie, Xiaomei; Li, Xiaolei; Luo, Hanhan; Lu, Huijuan; Chen, Feifei; Li, Wei

    2016-05-01

    The adsorption behavior and mechanism of Reactive Blue 19 (RB19) on cucurbit[6]uril (CB[6]) and cucurbit[8]uril (CB[8]) were investigated. The adsorption isotherm data obtained at different temperatures were fitted well to the Langmuir isotherm, and according to this model, CB[8] and CB[6] exhibited maximum monolayer adsorption capacities of 714.29 and 100.5 mg/g, respectively, at 298.15 K. The adsorption thermodynamic functions ΔG, ΔH, and ΔS were evaluated and revealed that RB19 adsorption onto CB[8] and CB[6] is a spontaneous and enthalpy-driven process. The adsorption process was determined to follow pseudo-second-order kinetics, indicating that chemisorption dominates the adsorption process. Fourier tranform IR spectroscopy, thermogravimetric analysis, and density functional theory (DFT) calculations revealed that the formation of an inclusion complex is the main driving force of adsorption. The phenyl and sulfone moieties of RB19 reside inside the cavity of CB[8], but because of the small cavity, only the sulfone of RB19 resides inside the cavity of CB[6]. Time-dependent DFT calculations revealed that all of the absorption bands of RB19 derive from π → π* transitions, while for the adsorption product of CB[8], the bands located at 590 and 287 nm derive from π → π* transitions and the bands located at 254 and 202 nm mainly derive from intermolecular charge transfer (ICT). PMID:27064317

  6. Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon

    NASA Astrophysics Data System (ADS)

    Ojedokun, Adedamola Titi; Bello, Olugbenga Solomon

    2016-02-01

    Guava leaf, a waste material, was treated and activated to prepare adsorbent. The adsorbent was characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR) and Energy-Dispersive X-ray (EDX) techniques. The carbonaceous adsorbent prepared from guava leaf had appreciable carbon content (86.84 %). The adsorption of Congo red dye onto guava leaf-based activated carbon (GLAC) was studied in this research. Experimental data were analyzed by four different model equations: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms and it was found to fit Freundlich equation most. Adsorption rate constants were determined using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion model equations. The results clearly showed that the adsorption of CR dye onto GLAC followed pseudo-second-order kinetic model. Intraparticle diffusion was involved in the adsorption process. The mean energy of adsorption calculated from D-R isotherm confirmed the involvement of physical adsorption. Thermodynamic parameters were obtained and it was found that the adsorption of CR dye onto GLAC was an exothermic and spontaneous process at the temperatures under investigation. The maximum adsorption of CR dye by GLAC was found to be 47.62 mg/g. The study shows that GLAC is an effective adsorbent for the adsorption of CR dye from aqueous solution.

  7. Determination of the mass transfer limiting step of dye adsorption onto commercial adsorbent by using mathematical models.

    PubMed

    Marin, Pricila; Borba, Carlos Eduardo; Módenes, Aparecido Nivaldo; Espinoza-Quiñones, Fernando R; de Oliveira, Silvia Priscila Dias; Kroumov, Alexander Dimitrov

    2014-01-01

    Reactive blue 5G dye removal in a fixed-bed column packed with Dowex Optipore SD-2 adsorbent was modelled. Three mathematical models were tested in order to determine the limiting step of the mass transfer of the dye adsorption process onto the adsorbent. The mass transfer resistance was considered to be a criterion for the determination of the difference between models. The models contained information about the external, internal, or surface adsorption limiting step. In the model development procedure, two hypotheses were applied to describe the internal mass transfer resistance. First, the mass transfer coefficient constant was considered. Second, the mass transfer coefficient was considered as a function of the dye concentration in the adsorbent. The experimental breakthrough curves were obtained for different particle diameters of the adsorbent, flow rates, and feed dye concentrations in order to evaluate the predictive power of the models. The values of the mass transfer parameters of the mathematical models were estimated by using the downhill simplex optimization method. The results showed that the model that considered internal resistance with a variable mass transfer coefficient was more flexible than the other ones and this model described the dynamics of the adsorption process of the dye in the fixed-bed column better. Hence, this model can be used for optimization and column design purposes for the investigated systems and similar ones.

  8. Selective adsorption of bovine hemoglobin on functional TiO2 nano-adsorbents: surface physic-chemical properties determined adsorption activity

    NASA Astrophysics Data System (ADS)

    Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide

    2015-04-01

    Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.

  9. The hybridization-stabilization assay: a solution-based isothermal method for rapid screening and determination of sequence preference of ligands that bind to duplexed nucleic acids.

    PubMed

    Gonzalez, C; Moore, M; Ribeiro, S; Schmitz, U; Schroth, G P; Turin, L; Bruice, T W

    2001-08-15

    The gene-to-drug quest will be most directly served by the discovery and development of small molecules that bind to nucleic acids and modulate gene expression at the level of transcription and/or inhibit replication of infectious agents. Full realization of this potential will require implementation of a complete suite of modern drug discovery technologies. Towards this end, here we describe our initial results with a new assay for identification and characterization of novel nucleic acid binding ligands. It is based on the well recognized property of stabilization of hybridization of complementary oligonucleotides by groove and/or intercalation binding ligands. Unlike traditional thermal melt methodologies, this assay is isothermal and, unlike gel-based footprinting techniques, the assay also is performed in solution and detection can be by any number of highly sensitive, non-radioisotopic modalities, such as fluorescence resonance energy transfer, described herein. Thus, the assay is simple to perform, versatile in design and amenable to miniaturization and high throughput automation. Assay validation was performed using various permutations of direct and competitive binding formats and previously well studied ligands, including pyrrole polyamide and intercalator natural products, designed hairpin pyrrole-imidazole polyamides and furan-based non-polyamide dications. DNA specific ligands were identified and their DNA binding site size and sequence preference profiles were determined. A systematic approach to studying the relationship of binding sequence specificity with variation in ligand structure was demonstrated, and preferred binding sites in longer DNA sequences were found by pseudo-footprinting, with results that are in accord with established findings. This assay methodology should promote a more rapid discovery of novel nucleic acid ligands and potential drug candidates.

  10. Mathematical techniques to characterize nitrogen isotherms from eroded sediments under conventional tillage and no tillage

    NASA Astrophysics Data System (ADS)

    Marinho, M. D.; Paz-Ferreiro, J.

    2011-12-01

    Soil specific surface area (SSA) is one of the most important soil properties as it affects chemical reactivity, cation exchange capacity and, in general, nutrient holding capacity. The SSA of a soil mainly depends on texture, clay type and organic matter content, which in turn are factors affecting the erosion potential. An important consideration in the link between soil erosion and nutrient transfer to waters is the well-documented relation between SSA (or particle size distribution) and nutrient losses. Because, sediment erosion and transport processes are particle size dependent, they influence also SSA. Characterization of both, soil nitrogen adsorption and desorption isotherms by monofractal and multifractal analysis has been demonstrated to be an useful tool, which allows a better understanding of the organization of the soil colloidal complex. Here, we report measures of nitrogen isotherm in sediments produced under three different management histories and we characterize them by various mathematical techniques including fractal and multifractal analysis. Soil and water losses from an Oxisol were evaluated under natural rain, at the experimental station of UNICAMP/ FEAGRI, Campinas, SP, Brazil. Experimental plots were 20 m x 30 m (i.e. 600 m2) and the management systems compared were no-tillage and two different conventional tillage techniques. Specific surface area determined by the classical BET method was significantly lower in sediments eroded from the no-tilled than from the tilled plots. The scaling properties of both nitrogen adsorption and desorption isotherms from all the studied sediment samples could be fitted reasonably well with multifractal models. Various fractal and multifractal parameters obtained from the adsorption and desorption characteristics also were useful to differentiate the impact of tillage treatment on the adsorption and desorption characteristics of the eroded sediments. Reasons for such differences have been already explored.

  11. Photocatalytic degradation of phenol and phenolic compounds Part I. Adsorption and FTIR study.

    PubMed

    Araña, J; Pulido Melián, E; Rodríguez López, V M; Peña Alonso, A; Doña Rodríguez, J M; González Díaz, O; Pérez Peña, J

    2007-07-31

    With the goal of predicting the photocatalytic behaviour of different phenolic compounds (catechol, resorcinol, phenol, m-cresol and o-cresol), their adsorption and interaction types with the TiO(2) Degussa P-25 surface were studied. Langmuir and Freundlich isotherms were applied in the adsorption studies. The obtained results indicated that catechol adsorption is much higher than those of the other phenolics and its interaction occurs preferentially through the formation of a catecholate monodentate. Resorcinol and the cresols interact by means of hydrogen bonds through the hydroxyl group, and their adsorption is much lower than that of catechol. Finally, phenol showed an intermediate behaviour, with a Langmuir adsorption constant, K(L), much lower than that of catechol, but a similar interaction. The interaction of the selected molecules with the catalyst surface was evaluated by means of FTIR experiments, which allowed us to determine the probability of OH radical attack to the aromatic ring.

  12. Adsorptive removal of heavy metals by magnetic nanoadsorbent: an equilibrium and thermodynamic study

    NASA Astrophysics Data System (ADS)

    Shirsath, D. S.; Shirivastava, V. S.

    2015-11-01

    An efficient and new magnetic nanoadsorbent photocatalyst was fabricated by co-precipitation technique. This research focuses on understanding metal removal process and developing a cost-effective technology for treatment of heavy metal-contaminated industrial wastewater. In this investigation, magnetic nanoadsorbent has been employed for the removal of Zn(II) ions from aqueous solutions by a batch adsorption technique. The adsorption equilibrium data fitted very well to Langmuir and Freundlich adsorption isotherm models. The thermodynamics of Zn(II) ions adsorption onto the magnetic nanoadsorbents indicated that the adsorption was spontaneous, endothermic and physical in nature. Surface morphology of magnetic nanoadsorbent by scanning electron microscopy (SEM) and elemental analysis by EDX technique. The structural and photocatalytic properties of magnetic nanoadsorbent were characterized using X-ray diffraction (XRD) and FTIR techniques. Also, the magnetic properties of synthesized magnetic nanoadsorbent were determined by vibrating spinning magnetometer (VSM).

  13. Collagen fiber immobilized Myrica rubra tannin and its adsorption to UO2(2+).

    PubMed

    Liao, Xuepin; Lu, Zhongbi; Du, Xiao; Liu, Xin; Shi, Bi

    2004-01-01

    Tannins, which are rich in ortho-hydroxyl groups, have a high affinity for UO2(2+). In this paper, Myrica rubra tannin was immobilized on collagen fiber by an aldehydic cross-linking reaction to prepare a novel adsorbent for uranium (UO2(2+)) recovery from wastewater. The adsorption equilibrium, the adsorption kinetics, and the effects of temperature and pH on the adsorption equilibrium were investigated in detail. It was found that the Myrica rubra tannin immobilized on collagen fiber exhibits an excellent adsorption capacity for UO2(2+). The adsorption capacity at 293 K and pH 5.0 was as high as 1.19 mmol UO2(2+)/g (283.3 mgU/g) when the initial concentration of UO2(2+) in solution was 7.5 mmol/L. The adsorption isotherms could be described by the Freundlich equation, and the increase of temperature promoted the adsorption to UO2(2+) . The adsorption kinetics data were fitted very well by the pseudosecond-order rate model, and the equilibrium adsorption capacity calculated by the pseudo-second-order rate model was almost the same as that determined by the actual measurement with the error < or = 4%. The pH has a significant effect on the adsorption process. According to our experiments, the suitable pH scope should be 5-8.

  14. Adsorption characteristics of haloacetonitriles on functionalized silica-based porous materials in aqueous solution.

    PubMed

    Prarat, Panida; Ngamcharussrivichai, Chawalit; Khaodhiar, Sutha; Punyapalakul, Patiparn

    2011-09-15

    The effect of the surface functional group on the removal and mechanism of dichloroacetonitrile (DCAN) adsorption over silica-based porous materials was evaluated in comparison with powdered activated carbon (PAC). Hexagonal mesoporous silicate (HMS) was synthesized and functionalized by three different types of organosilanes (3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane and n-octyldimethysilane). Adsorption kinetics and isotherm models were used to determine the adsorption mechanism. The selective adsorption of five haloacetonitriles (HANs) in the single and mixed solute systems was also studied. The experiments revealed that the surface functional groups of the adsorbents largely affected the DCAN adsorption capacities. 3-Mercaptopropyl-grafted HMS had a high DCAN adsorption capacity compared to PAC. The adsorption mechanism is believed to occur via an ion-dipole electrostatic interaction in which water interference is inevitable at low concentrations of DCAN. In addition, the adsorption of DCAN strongly depended on the pH of the solution as this related to the charge density of the adsorbents. The selective adsorption of the five HANs over PAC was not observed, while the molecular structure of different HANs obviously influenced the adsorption capacity and selectivity over 3-mercaptopropyl-grafted HMS. PMID:21752539

  15. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon.

    PubMed

    Rivera-Utrilla, J; Prados-Joya, G; Sánchez-Polo, M; Ferro-García, M A; Bautista-Toledo, I

    2009-10-15

    The objective of the present study was to analyse the behaviour of activated carbon with different chemical and textural properties in nitroimidazole adsorption, also assessing the combined use of microorganisms and activated carbon in the removal of these compounds from waters and the influence of the chemical nature of the solution (pH and ionic strength) on the adsorption process. Results indicate that the adsorption of nitroimidazoles is largely determined by activated carbon chemical properties. Application of the Langmuir equation to the adsorption isotherms showed an elevated adsorption capacity (X(m)=1.04-2.04 mmol/g) for all contaminants studied. Solution pH and electrolyte concentration did not have a major effect on the adsorption of these compounds on activated carbon, confirming that the principal interactions involved in the adsorption of these compounds are non-electrostatic. Nitroimidazoles are not degraded by microorganisms used in the biological stage of a wastewater treatment plant. However, the presence of microorganisms during nitroimidazole adsorption increased their adsorption on the activated carbon, although it weakened interactions between the adsorbate and carbon surface. In dynamic regime, the adsorptive capacity of activated carbon was markedly higher in surface water and groundwater than in urban wastewaters.

  16. Adsorption characteristics of cellulase and β-glucosidase on Avicel, pretreated sugarcane bagasse, and lignin.

    PubMed

    Machado, Daniele Longo; Moreira Neto, João; da Cruz Pradella, José Geraldo; Bonomi, Antonio; Rabelo, Sarita Cândida; da Costa, Aline Carvalho

    2015-01-01

    Although adsorption is an essential step in the enzymatic hydrolysis of lignocellulosic materials, literature reports controversial results in relation to the adsorption of the cellulolitic enzymes on different biomasses/pretreatments, which makes difficult the description of this phenomenon in hydrolysis mathematical models. In this work, the adsorption of these enzymes on Avicel and sugarcane bagasse pretreated by the hydrothermal bagasse (HB) and organosolv bagasse (OB) methods was evaluated. The results have shown no significant adsorption of β-glucosidase on Avicel or HB. Increasing solids concentration from 5% (w/v) to 10% (w/v) had no impact on the adsorption of cellulase on the different biomasses if stirring rates were high enough (>100 rpm for Avicel and >150 rpm for HB and OB). Adsorption equilibrium time was low for Avicel (10 Min) when compared with the lignocellulosic materials (120 Min). Adsorption isotherms determined at 4 and 50 °C have shown that for Avicel there was a decrease in the maximum adsorption capacity (Emax) with the temperature increase, whereas for HB increasing temperature increased Emax . Also, Emax increased with the content of lignin in the material. Adsorption studies of cellulase on lignin left after enzymatic digestion of HB show lower but significant adsorption capacity (Emax = 11.92 ± 0.76 mg/g).

  17. Fractional Statistical Theory of Adsorption of Polyatomics

    NASA Astrophysics Data System (ADS)

    Riccardo, J. L.; Ramirez-Pastor, A. J.; Romá, F.

    2004-10-01

    A new theoretical description of fractional statistical theory of adsorption (FSTA) phenomena is presented based on Haldane’s statistics. Thermodynamic functions for adsorption of polyatomics are analytically developed. The entropy is characterized by an exclusion parameter g, which relates to the configuration of the admolecules and surface geometry. FSTA provides a simple framework to address a large class of complex adsorption systems. Comparisons of theoretical adsorption isotherms with experiments and simulations indicate that adsorption configuration and adsorption energy can accurately be assessed from this theory.

  18. Fractional statistical theory of adsorption of polyatomics.

    PubMed

    Riccardo, J L; Ramirez-Pastor, A J; Romá, F

    2004-10-29

    A new theoretical description of fractional statistical theory of adsorption (FSTA) phenomena is presented based on Haldane's statistics. Thermodynamic functions for adsorption of polyatomics are analytically developed. The entropy is characterized by an exclusion parameter g, which relates to the configuration of the admolecules and surface geometry. FSTA provides a simple framework to address a large class of complex adsorption systems. Comparisons of theoretical adsorption isotherms with experiments and simulations indicate that adsorption configuration and adsorption energy can accurately be assessed from this theory. PMID:15525184

  19. Adsorption of Acid Red 57 from aqueous solutions onto polyacrylonitrile/activated carbon composite.

    PubMed

    El-Bindary, Ashraf A; Diab, Mostafa A; Hussien, Mostafa A; El-Sonbati, Adel Z; Eessa, Ahmed M

    2014-04-24

    The adsorption of Acid Red 57 (AR57) onto Polyacrylonitrile/activated carbon (PAN/AC) composite was investigated in aqueous solution in a batch system with respect to contact time, pH and temperature. Physical characteristics of (PAN/AC) composite such as fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were obtained. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The dynamic data fitted the pseudo-second-order kinetic model well. The activation energy, change of free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The thermodynamics of the adsorption indicated spontaneous and exothermic nature of the process. The results indicate that (PAN/AC) composite could be employed as low-cost material for the removal of acid dyes from textile effluents. PMID:24463242

  20. Synthesis of thiazole silica hybrid from waste glass for adsorption of cadmium(II)

    NASA Astrophysics Data System (ADS)

    Azmiyawati, C.; TaslimahVirkyanov

    2016-02-01

    Synthesis of thiazole silica hybrid from waste glass to adsorption of cadmium (II) metal ion has been performed. The synthesis was done by attaching thiazole group through liaison compound γ- glycidoxy propyl tri-methoxy silane with silica gel obtained from waste glass. In this study, the effect of adsorption contact time and the concentration of cadmium (II) was studied to determine the reaction rate and the amount of adsorption thermodynamics. The existence of the cluster thiazole on silica gel indicated by IR spectra at wavelengths around 2576 cm-1 of mercaptan groups that previously did not appear on silica gel without modification. The synthesized TSH showed a high adsorption capacity of 9.363 mmol/g of Cd(II). The adsorption isotherm obtained with Langmuir isotherm model gives the negative values of ΔG°, i.e. -15.488 kJ/mol for Cd(II), indicating the spontaneous process of adsorption. Kinetic studies showed that the adsorption of Cd(II) ion into TSH follows the pseudo-second-order kinetics.

  1. Adsorption of Atmospheric Gases on Pu Surfaces

    SciTech Connect

    Nelson, A J; Holliday, K S; Stanford, J A; Grant, W K; Erler, R G; Allen, P G; McLean, W; Roussel, P

    2012-03-29

    Surface adsorption represents a competition between collision and scattering processes that depend on surface energy, surface structure and temperature. The surface reactivity of the actinides can add additional complexity due to radiological dissociation of the gas and electronic structure. Here we elucidate the chemical bonding of gas molecules adsorbed on Pu metal and oxide surfaces. Atmospheric gas reactions were studied at 190 and 300 K using x-ray photoelectron spectroscopy. Evolution of the Pu 4f and O 1s core-level states were studied as a function of gas dose rates to generate a set of Langmuir isotherms. Results show that the initial gas dose forms Pu{sub 2}O{sub 3} on the Pu metal surface followed by the formation of PuO{sub 2} resulting in a layered oxide structure. This work represents the first steps in determining the activation energy for adsorption of various atmospheric gases on Pu.

  2. Growth Kinetics of Listeria monocytogenes in Broth and Beef Frankfurters– Determination of Lag Phase Duration and Exponential Growth Rate under Isothermal Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to develop a new kinetic model to describe the isothermal growth of microorganisms. The new model was tested with Listeria monocytogenes in broth and frankfurters, and compared with two commonly used models - Baranyi and modified Gompertz models. Bias factor (BF)...

  3. Adsorption of Ar on individual carbon nanotubes, graphene, and graphite

    NASA Astrophysics Data System (ADS)

    Dzyubenko, Boris; Kahn, Joshua; Vilches, Oscar; Cobden, David

    2015-03-01

    We compare and contrast results of adsorption measurements of Ar on single-walled carbon nanotubes, graphene, and graphite. Adsorption isotherms on individual suspended nanotubes were obtained using both the mechanical resonance frequency shift (sensitive to mass adsorption) and the electrical conductance. Isotherms on graphene mounted on hexagonal boron nitride were obtained using only the conductance. New volumetric adsorption isotherms on bulk exfoliated graphite were also obtained, paying special attention to the very low coverage region (less than 2% of a monolayer). This allowed us to compare the degree of heterogeneity on the three substrate types, the binding energies, and the van der Waals 2D parameters. Research supported by NSF DMR 1206208.

  4. Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures

    NASA Astrophysics Data System (ADS)

    van Zuilen, Kirsten; Müller, Thomas; Nägler, Thomas F.; Dietzel, Martin; Küsters, Tim

    2016-08-01

    Variations in barium (Ba) stable isotope abundances measured in low and high temperature environments have recently received increasing attention. The actual processes controlling Ba isotope fractionation, however, remain mostly elusive. In this study, we present the first experimental approach to quantify the contribution of diffusion and adsorption on mass-dependent Ba isotope fractionation during transport of aqueous Ba2+ ions through a porous medium. Experiments have been carried out in which a BaCl2 solution of known isotopic composition diffused through u-shaped glass tubes filled with silica hydrogel at 10 °C and 25 °C for up to 201 days. The diffused Ba was highly fractionated by up to -2.15‰ in δ137/134Ba, despite the low relative difference in atomic mass. The time-dependent isotope fractionation can be successfully reproduced by a diffusive transport model accounting for mass-dependent differences in the effective diffusivities of the Ba isotope species (D137Ba /D134Ba =(m134 /m137) β). Values of β extracted from the transport model were in the range of 0.010-0.011. Independently conducted batch experiments revealed that adsorption of Ba onto the surface of silica hydrogel favoured the heavier Ba isotopes (α = 1.00015 ± 0.00008). The contribution of adsorption on the overall isotope fractionation in the diffusion experiments, however, was found to be small. Our results contribute to the understanding of Ba isotope fractionation processes, which is crucial for interpreting natural isotope variations and the assessment of Ba isotope ratios as geochemical proxies.

  5. Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg2+ from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Javadian, Hamedreza; Taghavi, Mehdi

    2014-01-01

    Hierarchical zeolite consists of both microporous and unordered mesoporous structures. A composite of Polypyrrole/thiol-functionalized Beta/MCM-41 (PPy/SH-Beta/MCM-41) was prepared, characterized by FE-SEM, FT-IR, XRD, TGA and BET analysis and applied in the investigation of its adsorption characteristics for the removal of Hg2+ ions from aqueous solutions. Thiol-functionalized Beta/MCM-41 (SH-Beta/MCM-41) was prepared by 3-mercaptopropyltrimethoxysilane (MPTMS) in the presence of aerosil-200 as a silica source by two-step hydrothermal crystallization procedure. Batch mode experiments were conducted and three kinetic models were used to describe the adsorption process. The experimental data fitted very well with the Pseudo-second-order kinetic model. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) revealed that the adsorption of Hg2+ onto PPy/SH-Beta/MCM-41 is an endothermic and spontaneous process. It was found that temperature has a positive effect on the removal efficiency and that PPy/SH-Beta/MCM-41 is potentially able to remove Hg2+ ions from aqueous solutions at even high concentrations (400 mg L-1). The recovery of Hg2+ from the PPy/SH-Beta/MCM-41 adsorbent was found to be more than 90% using 0.5 M H2SO4, and the ability of the absorbent to be reused for removal of Hg2+ was investigated.

  6. Aflatoxin B(1) adsorption by natural and copper modified montmorillonite.

    PubMed

    Daković, Aleksandra; Matijasević, Srdan; Rottinghaus, George E; Ledoux, David R; Butkeraitis, Paula; Sekulić, Zivko

    2008-10-01

    Adsorption of aflatoxin B(1) (AFB1) by natural montmorillonite (MONT) and montmorillonite modified with copper ions (Cu-MONT) was investigated. Both MONTs were characterized using the X-ray powder diffraction (XRPD) analysis, thermal analysis (DTA/TGA) and scanning electron miscroscopy/electron dispersive spectroscopy (SEM/EDS). The results of XRPD and SEM/EDS analyses of Cu-MONT suggested partial ion exchange of native inorganic cations in MONT with copper occurred. Investigation of AFB1 adsorption by MONT and Cu-MONT, at pH 3, 7 or 9, showed that adsorption of this toxin by both MONTs was high (over 93%). Since AFB1 is nonionizable, no differences in AFB1 adsorption by both MONTs, at different pHs, were observed, as expected. Futhermore, it was determined that adsorption of AFB1 by both MONTs followed a non-linear (Langmuir) type of isotherm, at pH 3. The calculated maximum adsorbed amounts of AFB1 by MONT (40.982mg/g) and Cu-MONT (66.225mg/g), derived from Langmuir plots of isotherms, indicate that Cu-MONT was much effective in adsorbing AFB1. Since, the main cation in an exchangeable position in MONT is calcium, and in Cu-MONT both calcium and copper, the fact that ion exchange of inorganic cations in MONT with copper increases adsorption of AFB1 suggests that additional interactions between AFB1 and copper ions in Cu-MONT caused greater adsorption. PMID:18585010

  7. Determination of the activation energies of and aggregate rates for exothermic physico-chemical changes in UHMWPE by isothermal heat-conduction microcalorimetry (IHCMC).

    PubMed

    Hardison, Andy; Lewis, Gladius; Daniels, A U Dan; Smith, Richard A

    2003-12-01

    Exothermic heat flow rates (Q=microW=microJ/s), as a function of elapsed time, were measured by isothermal heat-conduction microcalorimetry (IHCMC) in order to study the aggregate rate of physico-chemical change in specimens of unsterilized and sterilized ultra-high-molecular-weight polyethylene (UHMWPE). Standard protocols for performing the IHCMC tests were developed and are described. Use of the standard protocols yielded the desired results-data that were not significantly different among either replicate sets of unsterilized specimens or as a function of which calorimeter test well was used. Heat flow rates measured in air at 20 degrees C, 25 degrees C, 35 degrees C, and 45 degrees C yielded estimates of activation energies of 47, 11, and 41 kJ/mol for unsterilized, gamma-radiation sterilized, and ethylene oxide gas (EtO) sterilized polymer, respectively. These results support the ideas that (a). initial exothermic degradation takes place much more easily in the radiation-sterilized material, due to direct oxidation of readily available free radicals, and (b). the much slower degradation process in EtO-sterilized UHMWPE is not appreciably different than in unsterilized polymer. Comparison with other activation energy data suggests that the rate-limiting process in EtO- or un-sterilized polymer is oxygen diffusion into the polymer. For shelf storage in air, for periods up to 8 months, the mean exothermic heat flow in air, at 25 degrees C (Q(m)) [determined from the Q values averaged over the time period between 15 and 20 h after test start], from UHMWPE gamma-radiation sterilized in air was significantly higher than for unsterilized material (2.91+/-0.11 vs. 0.73+/-0.11 microW). The higher rate can be attributed to oxidation of radiation-induced free radicals in the polymer near its surface. For the gamma-irradiated polymer, the decline in Q(m) with shelf storage time suggests that, eventually, degradation might become oxygen diffusion limited in this case also

  8. Adsorption / Desorption Behavior of Water Vapor in an Adsorbent Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Tsujiguchi, Takuya; Kodama, Akio

    Adsorption / desorption behavior of water vapor onto desiccant rotor has been investigated to improve the desiccant cooling system by means of computer simulation. In this paper, we paid attention to the relationship between the equilibrium amount of water adsorbed onto the desiccant material and the relative humidity, that is adsorption isotherm as a principal characteristic feature of adsorbent. Considering actual adsorbents, five types of adsorption isotherms were assumed to clarify the influence of adsorption isotherm on the dehumidifying performance. After the investigation on the influences of some operating conditions on the dehumidifying performance at each selected adsorption isotherm, it was found that higher dehumidifying performance and reduction of length of desiccant rotor could be achieved by selecting appropriate adsorption isotherm. It was also predicted that S-shaped adsorption isotherm which is raised sharply at relative humidity around 15 % could produce the lowest air humidity at regeneration air temperature 80 °C. Moreover influence of the intraparticle diffusion coefficient which significantly influence on the adsorption / desorption rate was discussed choosing two adsorption isotherm from the above five isotherms. It seems that effective range of the intraparticle diffusion coefficient for the significant improvement of the dehumidifying performance was strongly influenced by the shape of adsorption isotherm.

  9. Determination of the amount of physical adsorption of water vapour on platinum-iridium surfaces

    NASA Astrophysics Data System (ADS)

    Mizushima, S.; Ueda, K.; Ooiwa, A.; Fujii, K.

    2015-08-01

    This paper presents the measurement of the physical adsorption of water vapour on platinum-iridium surfaces using a vacuum mass comparator. This value is of importance for redefining the kilogram, which will be realized under vacuum in the near future. Mirror-polished artefacts, consisting of a reference artefact and a test artefact, were manufactured for this experiment. The surface area difference between the reference and test artefacts was 226.2 cm2. This surface area difference was approximately 3.2 times the geometric surface area of the prototype of the kilogram made of platinum-iridium (71.7 cm2). The measurement results indicate that the amount of physical adsorption at a relative humidity of 50% is 0.0129 μg cm{{-}2} , with a standard uncertainty of 0.0016 μg cm{{-}2} . This value is 0.03 to 0.16 times that observed in other studies.

  10. Adsorption of phthalic acid and its esters onto high-area activated carbon-cloth studied by in situ UV-spectroscopy.

    PubMed

    Ayranci, Erol; Bayram, Edip

    2005-06-30

    The adsorption behavior of phthalic acid and its three esters dimethyl phthalate, diethyl phthalate and diallyl phthalate onto high-area activated carbon-cloth was studied by in situ UV-spectroscopic technique. The effect of ionization of phthalic acid on its adsorption was examined by carrying out the adsorption process in three media; water, 1 M H(2)SO(4) and 0.005 M NaOH. Maximum adsorption was observed in 1 M H(2)SO(4) and almost no adsorption in 0.005 M NaOH. These results were discussed in terms of electrostatic and dispersion interactions between the adsorbate species and the carbon-cloth surface taking the point of zero charge (pH(pzc)) of the carbon-cloth into account. The adsorption process for the phthalate species studied was found to follow the first-order rate law, and the rate constants were determined. The isotherm data for the adsorption of phthalic acid and its esters were derived experimentally and fitted to Langmuir and Freundlich isotherm equations. Both equations were found to represent the experimental isotherm data almost equally well. PMID:15943937

  11. Studies of gas adsorption in flexible Metal-Organic frameworks

    NASA Astrophysics Data System (ADS)

    Sircar, Sarmishtha

    Flexible Metal-Organic frameworks that exhibit a gate-opening (GO) adsorption mechanism have potential for gas separations and gas storage. The GO phenomenon occurs when molecular gates in the structure expand/contract in response to the activation/de-activation of a system variable e.g. temperature, pressure or gas. Sharp discontinuities in the isotherm leading to S-shapes and large adsorption-desorption hysteresis are typical of this phenomenon. This study investigates the kinetics and thermodynamics of the GO behavior by combining adsorption measurements and analytical modeling of adsorption kinetics and capacity as a function of adsorbate, GO pressure, and temperature. Basic understanding of GO mechanism will help harness GO-MOF's as adsorbents for gas separations and storage. Experiments were performed on two precharacterized MOFs with verified GO behavior. These are (1) Zn2(bpdc)2(bpee), which expands from a relative amorphous to crystalline structure and (2) Cu[(dhbc) 2(4,4f-bpy)]H2O, a mutually interdigitated 2-D structure (bpdc = biphenyldicarboxylate, bpee = 1,2]bipyridylethene; DMF = N,N-dimethyl formamide, dhbc= 2,5-dihydroxybenzoic acid, bpy=bipyridine). Both sub- and super-critical adsorption data were collected using three adsorption units: a standard low-pressure volumetric adsorption unit, a commercial high-pressure gravimetric analyzer and a custom-built high-pressure differential volumetric unit. Collected laboratory data were combined with published adsorption rate and isotherm data for analysis to broaden the range of data collection. The accuracy of the high-pressure differential unit was improved by over 300-fold by changing analytical methods of processing data to establish a reliable null correction. A pronounced effect of the allowed experimental time was found at cryogenic temperatures on (1). Tightening the stability criteria used by the adsorption equipment to determine equilibration increased the experimental time from the order of

  12. Characterization of the adsorption of water vapor and chlorine on microcrystalline silica

    NASA Technical Reports Server (NTRS)

    Skiles, J. A.; Wightman, J. P.

    1979-01-01

    The characterization of water adsorption on silica is necessary to an understanding of how hydrogen chloride interacts with silica. The adsorption as a function of outgas temperatures of silica and as a function of the isotherm temperature was studied. Characterization of the silica structure by infrared analysis, X-ray diffraction and differential scanning calorimetry, surface area determinations, characterization of the sample surface by electron spectroscopy for chemical analysis (ESCA), and determinations of the heat of immersion in water of silica were investigated. The silica with a scanning electron microscope was examined.

  13. A generalized procedure for the prediction of multicomponent adsorption equilibria

    SciTech Connect

    Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas

    2015-01-01

    Prediction of multicomponent adsorption equilibria has been investigated for several decades. While there are theories available to predict the adsorption behavior of ideal mixtures, there are few purely predictive theories to account for nonidealities in real systems. Most models available for dealing with nonidealities contain interaction parameters that must be obtained through correlation with binary-mixture data. However, as the number of components in a system grows, the number of parameters needed to be obtained increases exponentially. Here, a generalized procedure is proposed, as an extension of the predictive real adsorbed solution theory, for determining the parameters of any activity model, for any number of components, without correlation. This procedure is then combined with the adsorbed solution theory to predict the adsorption behavior of mixtures. As this method can be applied to any isotherm model and any activity model, it is referred to as the generalized predictive adsorbed solution theory.

  14. A generalized procedure for the prediction of multicomponent adsorption equilibria

    DOE PAGES

    Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas

    2015-01-01

    Prediction of multicomponent adsorption equilibria has been investigated for several decades. While there are theories available to predict the adsorption behavior of ideal mixtures, there are few purely predictive theories to account for nonidealities in real systems. Most models available for dealing with nonidealities contain interaction parameters that must be obtained through correlation with binary-mixture data. However, as the number of components in a system grows, the number of parameters needed to be obtained increases exponentially. Here, a generalized procedure is proposed, as an extension of the predictive real adsorbed solution theory, for determining the parameters of any activity model,more » for any number of components, without correlation. This procedure is then combined with the adsorbed solution theory to predict the adsorption behavior of mixtures. As this method can be applied to any isotherm model and any activity model, it is referred to as the generalized predictive adsorbed solution theory.« less

  15. Electrochemical evaluation and adsorptive stripping voltammetric determination of capsaicin or dihydrocapsaicin on a disposable pencil graphite electrode.

    PubMed

    Yardım, Yavuz; Sentürk, Zühre

    2013-08-15

    Capsaicin and dihydrocapsaicin are the two most abundant capsaicinoids in peppers, which are responsible for about 90% of the spiciness. A detailed study of the electrochemical properties of these compounds at pencil graphite (PG) electrode was carried out in the pH range 1.0-12.0 in aqueous solutions. The compounds underwent irreversible oxidation at PG electrode, which was an adsorption-controlled process with two protons and two electrons. The voltammetric data indicated that their oxidation proceeded via an ECE mechanism. Using the square-wave adsorptive stripping voltammetry with accumulation at a fixed potential of -0.1V for 120s, both of them yielded a well-defined voltammetric response at +0.31V (vs. Ag/AgCl) in Britton-Robinson buffer, pH 9.0. Capsaicin and dihydrocapsaicin could be determined with detection limits of 1.12 ng mL(-1) (3.7×10(-9)M) and 0.28 ng mL(-1) (9.1×10(-10)M), respectively. The practical applicability of this methodology was tested in commercial Turkish pepper products. The concentration of total capsaicinoids was determined using capsaicin as standard.

  16. Determining the Absolute Concentration of Nanoparticles without Calibration Factor by Visualizing the Dynamic Processes of Interfacial Adsorption.

    PubMed

    Wo, Xiang; Li, Zhimin; Jiang, Yingyan; Li, Minghe; Su, Yu-Wen; Wang, Wei; Tao, Nongjian

    2016-02-16

    Previous approaches of determining the molar concentration of nanoparticles often relied on the calibration factors extracted from standard samples or required prior knowledge regarding the geometry, optical, or chemical properties. In the present work, we proposed an absolute quantification method that determined the molar concentration of nano-objects without any calibration factor or prior knowledge. It was realized by monitoring the dynamic adsorption processes of individual nanoparticles with a high-speed surface plasmon resonance microscopy. In this case, diffusing nano-objects stochastically collided onto an adsorption interface and stayed there ("hit-n-stay" scenario), resulting in a semi-infinite diffusion system. The dynamic processes were analyzed with a theoretical model consisting of Fick's laws of diffusion and random-walk assumption. The quantification of molar concentration was achieved on the basis of an analytical expression, which involved only physical constants and experimental parameters. By using spherical polystyrene nanoparticles as a model, the present approach provided a molar concentration with excellent accuracy. PMID:26781326

  17. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin

    NASA Astrophysics Data System (ADS)

    Wang, Dongxue; Liu, Liangliang; Jiang, Xinyu; Yu, Jingang; Chen, Xiaohong; Chen, Xiaoqing

    2015-02-01

    Recently, graphene oxide (GO) based magnetic nanocomposites have been widely used in an adsorption-based process for the removal of organic pollutants from the water system. In this study, magnetic β-cyclodextrin-graphene oxide nanocomposites (MCG) were synthesized according to covalent binding of magnetic β-cyclodextrin nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as adsorbents for the adsorption and removal of p-phenylenediamines (PPD). The composition and morphology of prepared materials were characterized by Fourier infrared spectrometry (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Effects of pH, temperature, time and reusability on the adsorption of PPD were investigated, as well as the kinetics and isotherms parameters of the adsorbents were determined. The results indicated that the maximum adsorption capacity of MCG was 1102.58 mg/g at 45 °C and pH 8. The adsorption capacity remained at 81% after five cycles. Removal rate could reach 98% after three times of adsorption. The adsorption process with PPD was found that fitted pseudo-second-order kinetics equations and the Langmuir adsorption model. The results showed the MCG had a good adsorption ability to remove organic pollutants in wastewater.

  18. Adsorption studies of azotetrazolate and 3,6-dihydrazinotetrazine on peat.

    PubMed

    Borkowski, Andrzej; Rydelek, Paweł; Szala, Mateusz

    2013-01-01

    The objective of our studies was the evaluation of the adsorption process of two high-nitrogen compounds-dihydrazinotetrazine (DHTz) and azotetrazolate ion (AZ)-on a chosen peat. The experiments were performed using a static method at three different temperatures (283, 298, and 333 K). The adsorption process of DHTz and AZ on peat was characterized by isotherms according to the Freundlich and Langmuir models. The obtained correlations between adsorption and equilibrium concentration were in good accordance with the Freundlich and Langmuir models, as confirmed by high values of the correlation coefficients (0.97-0.99). Adsorption of AZ on peat was less efficient than that of DHTz, and this inference was experimentally proven. The maximum surface coverages of peat particles with adsorbate according to the Langmuir model were calculated as 0.02 and 0.17 mol kg(-1) (at 298 K) for AZ and DHTz, respectively. The determined adsorption equilibrium constants confirmed greater adsorption of DHTz on the investigated peat. It can be concluded that adsorption of AZ occurred to a much lesser extent compared to that of DHTz, pointing to a potentially greater threat of migration of soluble azotetrazolates in soil. Standard enthalpies of adsorption estimated for AZ and DHTz were -11.1 and -23.7 kJ mol(-1), respectively. Based on these adsorption enthalpy values, it can be stated that both investigated compounds are adsorbed on peat by a physisorption process.

  19. Adsorption of zearalenone to Japanese acid clay and influencing factors.

    PubMed

    Sasaki, Risa; Takahashi, Noriyuki; Sakao, Kazunori; Goto, Tetsuhisa

    2014-02-01

    Zearalenone (ZEA) mainly contaminates grains such as corn and wheat, causing damage to livestock through ingestion of contaminated feed. Recently, various clays have been added to the feed to adsorb mycotoxins and to prevent mycotoxicosis of animals fed contaminated feeds. However the adsorption mechanism of the mycotoxin to clay is not well understood. In this study, a method to analyze the level of adsorption of ZEA to clay was developed using Japanese acid clay. Changes to the amount of the clay, concentration of ZEA, shaking time, and other parameters were evaluated to determine their influence on adsorption. The adsorption isotherms were also developed. Under conditions that mimic the gastrointestinal tract of swine, 100 % of ZEA was adsorbed to clay at a pH equivalent to the stomach, while the level of desorption under intestinal basic conditions was 1.8 %. Thus Japanese acid clay has a high ability to absorb ZEA with very little desorption under gastrointestinal conditions of the swine. Isothermal analysis suggests that the Japanese acid clay is potentially highly efficacious as a ZEA adsorbent.

  20. Kinetic Batch Soil Adsorption Studies of 2, 4-dinitroanisole (DNAN)

    NASA Astrophysics Data System (ADS)

    Arthur, J.; Mark, N. W.; Taylor, S.; Brusseau, M. L.; Dontsova, K.

    2014-12-01

    Currently the explosive 2, 4, 6- trinitrotoluene (TNT) is used as a main ingredient in munitions; however the compound has failed to meet sensitivity requirements. The replacement compound being tested is 2, 4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bioavailability and exposure potential. DNAN has been shown to have some human and environmental toxicity. The objective of this study was to investigate the environmental fate of DNAN in soil, with a specific focus on sorption processes. Batch experiments were conducted using 11 soils collected from military installations located across the United States. The soils were characterized for pH, specific surface area, electrical conductivity, cation exchange capacity, and organic carbon content. Adsorption kinetic data determined at room temperature were fitted using the first order kinetic equation. Adsorption isotherms were fitted with linear and Freundlich isotherm equations. The magnitudes of the linear adsorption coefficients ranged from 0.6 to 6 cm3/g. Results indicated that the adsorption of DNAN is strongly dependent on the amount of organic carbon present in the soil.

  1. Adsorption equilibria of chlorinated organic solvents onto activated carbon

    SciTech Connect

    Yun, J.H.; Choi, D.K.; Kim, S.H.

    1998-04-01

    Adsorption equilibria of dichloromethane, 1,1,1-trichloroethane, and trichloroethylene on activated carbon were obtained by a static volumetric technique. Isotherms were measured for the pure vapors in the temperature range from 283 to 363 K and pressures up to 60 kPa for dichloromethane, 16 kPa for 1,1,1-trichloroethane, and 7 kPa for trichloroethylene, respectively. The Toth and Dubinin-Radushkevich equations were used to correlate experimental isotherms. Thermodynamic properties such as the isosteric heat of adsorption and the henry`s constant were calculated. It was found that the values of isosteric heat of adsorption were varied with surface loading. Also, the Henry`s constant showed that the order of adsorption affinity is 1,1,1-trichloroethane, trichloroethylene, and dichloromethane. By employing the Dubinin-Radushkevich equation, the limiting volume of the adsorbed space, which equals micropore volume, was determined, and its value was found to be approximately independent of adsorbates.

  2. Cationic surfactant adsorption states determined by the dependence of the electrophoretic mobility on dilution

    SciTech Connect

    Chang, C.H.

    1987-01-01

    A dilution method was devised in order to examine the dependence of the mobility of dilute aqueous coal dispersions on concentration. Mobility trends observed on dilution with water and the parent surfactant solution were interpreted in terms of desorption and adsorption of surfactant on coal. The dispersions were also studied by comparing the surface tension of surfactant solutions with the filtrates from a range of coal dispersions. The surfactants used were DTAB (Dodecyltrimethylammonium Bromide), CTAB (Cetyltrimethylammonium Bromide), ATLAS G-271 (N-Soya-N-ethyl morpholinium ethosulfate) and MERPOL-SE, (CH/sub 3/-(CH/sub 2/)/sub 24/-(OCH/sub 2/CH/sub 2/)/sub 8/-OH). The mobility of coal in the presence of cationic surfactant decreased as the dilution ratio increased and reach a constant value. It was also shown that the mobility remained near zero and constant if a non-ionic surfactant was used. On dilution with cationic surfactant solution, the mobility rose to a constant value at high dilution which was more than twice the aqueous asymptote suggesting the separate contribution of reversibility adsorbed surfactant. The structure of surfactant was another effect which controlled the adsorption mechanism. The two major properties of surfactant structure were the hydrophobicity and steric hindrance. The results also implied that hydrophobic tail-adsorbed was the dominant mechanism in contrast to the model which was proposed in earlier studies. Comparison of surface tension between pure surfactant solution and the filtrate from coal/surfactant solution indicated that the surfactants did not all act alike in some cases. Natural surfactant had been desorbed or eluted and in some cases surfactant had been adsorbed.

  3. Adsorption structure of dimethyl ether on silicalite-1 zeolite determined using single-crystal X-ray diffraction

    PubMed Central

    Fujiyama, Shinjiro; Seino, Shintaro; Kamiya, Natsumi; Nishi, Koji; Yokomori, Yoshinobu

    2014-01-01

    The adsorption structures of dimethyl ether (DME) on silicalite-1 zeolite (MFI-type) are determined using single-crystal X-ray diffraction. The structure of low-loaded DME-silicalite-1 indicates that all DME molecules are located in the sinusoidal channel, which is the most stable sorption site based on the van der Waals interaction between DME and the framework. The configuration of guest molecules (linear or bent) plays an important role in determining where the stable sorption site is in the pore system of MFI-type zeolites. Bent molecules favor the sinusoidal channel, while linear molecules favor the straight channel. The contribution of DME–DME interactions is considerable in the high-loaded DME-silicalite-1 structure. PMID:25274519

  4. Adsorption of aqueous copper on peanut hulls

    NASA Astrophysics Data System (ADS)

    Davis, Kanika Octavia

    A method was established for measuring the adsorption of Cu(II) from aqueous solution to unmodified and modified peanut hulls at constant temperature and pH. Modification of the hulls was performed by oxidation with alkaline hydrogen peroxide. During the modification process, the hydrogen peroxide solubilizes the lignin component, making the surface more porous which increases the availability of binding sites, while simultaneously oxidizing the cellulose. The oxidation of alcohol groups creates more binding sites by creating functional groups such as COO-, which increases chelation to metal ions. Fourier transform infrared spectroscopy confirms delignification of the peanut hulls by the disappearance of carboxyl peaks of the modified hulls, which were originally produced from the lignin content. Although, oxidation is not fully confirmed, it is not ruled out because the expected carboxylate peak (1680 cm-1) maybe overshadowed by a broad peak due to OH bending of water adsorbed to the hulls. Hulls adsorbed copper from solutions in the concentration range of 50-1000 ppm of CuCl2. Concentrations of pre- and post-adsorption solutions were determined using inductively coupled plasma optical emission spectroscopy. The adsorption isotherms were fit to known two and three-parameter models, evaluated and the binding mechanism was inferred. Maximum surface coverage was 3.5 +/- 0.6 mg Cu2+ /g hull for unmodified hulls and 11 +/- 1 mg Cu2+/g hull for modified hulls. The adsorption for the hulls is best described by the Langmuir model, suggesting monolayer, homogeneous adsorption. With a free energy of adsorption of 10.5 +/- 0.9 kJ/mol for unmodified hulls and 14.5 +/-0.4 kJ/mol for modified hulls, the process is categorized as chemisorption for both types of hulls. The adsorption for both hulls is also described by the Redlich-Peterson model, giving beta nearer to 1 than 0, which further suggests homogeneous adsorption described by the Langmuir model. After rinsing the hulls

  5. Revisiting Isotherm Analyses Using R: Comparison of Linear, Non-linear, and Bayesian Techniques

    EPA Science Inventory

    Extensive adsorption isotherm data exist for an array of chemicals of concern on a variety of engineered and natural sorbents. Several isotherm models exist that can accurately describe these data from which the resultant fitting parameters may subsequently be used in numerical ...

  6. Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon.

    PubMed

    El-Naas, Muftah H; Al-Zuhair, Sulaiman; Abu Alhaija, Manal

    2010-01-15

    Experiments were carried out to evaluate the batch adsorption of COD from petroleum refinery wastewater on a locally prepared date-pit activated carbon (DP-AC), and its adsorption effectiveness was compared to that of commercially available BDH activated carbon (BDH-AC). Adsorption equilibrium and kinetic data were determined for both adsorbents and fitted to several adsorption isotherm and kinetics models, respectively. The Langmuir monolayer isotherm fitted well the equilibrium data of COD on both adsorbents; whereas, the kinetics data were best fitted by the pseudo-second order model. Modeling of the controlling mechanisms indicated that both intrinsic kinetics and mass transfer contributed to controlling the adsorption process. Mass transfer seemed to be the dominant mechanism at low COD content, while intrinsic kinetics dominates at high concentrations. In general, the adsorption effectiveness of locally prepared DP-AC was proven to be comparable to that of BDH-AC. Therefore, DP-AC can be utilized as an effective and less expensive adsorbent for the reduction of COD in refinery wastewater.

  7. Surface properties of coal fines in water. 1. Electrokinetics and surfactant adsorption

    SciTech Connect

    Ayub, A.L.; Al Taweel, A.M.; Kwak, J.C.T.

    1985-01-01

    The adsorption of phenol, p-nitrophenol, the nonionic surfactant Triton X-100 (a commercial mixture of octylphenol poly ethoxylates) and the cationic surfactant dodecyltrimethyl ammonium bromide (DTAB) from aqueous solution on coal fines from a coal washing plant has been studied. Adsorbate solution concentrations range from 0-8 x 10/sup -4/ m. For the cationic and nonionic surfactants both adsorption isotherms and electrokinetic isotherms were determined. The adsorption of phenol, but not of Triton X-100 and DTAB, is found to increase with time for periods up to three hundred h. For short contract times (less than thirty h.), the amount of Triton X-100 adsorbed is about three times higher than the amount of phenol adsorbed at the same solution concentration. The electrokinetic data show that the zeta potential of the coal is not affected by the adsorption of Triton X-100. On the other hand, adsorption of the cationic surfactant strongly influences the zeta potential. For negatively charged coal, i.e., at higher solution pH (iep of the coal used is 5.3), the adsorption of cationic surfactant leads to charge reversal at a typical free surfactant concentration often well below 10/sup -4/ molal. 20 references.

  8. Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode

    PubMed Central

    Yaman, Yesim Tugce; Abaci, Serdar

    2016-01-01

    A novel electrochemical sensor gold nanoparticle (AuNP)/polyvinylpyrrolidone (PVP) modified pencil graphite electrode (PGE) was developed for the ultrasensitive determination of Bisphenol A (BPA). The gold nanoparticles were electrodeposited by constant potential electrolysis and PVP was attached by passive adsorption onto the electrode surface. The electrode surfaces were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The parameters that affected the experimental conditions were researched and optimized. The AuNP/PVP/PGE sensor provided high sensitivity and selectivity for BPA recognition by using square wave adsorptive stripping voltammetry (SWAdSV). Under optimized conditions, the detection limit was found to be 1.0 nM. This new sensor system offered the advantages of simple fabrication which aided the expeditious replication, low cost, fast response, high sensitivity and low background current for BPA. This new sensor system was successfully tested for the detection of the amount of BPA in bottled drinking water with high reliability. PMID:27231912

  9. Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode.

    PubMed

    Yaman, Yesim Tugce; Abaci, Serdar

    2016-01-01

    A novel electrochemical sensor gold nanoparticle (AuNP)/polyvinylpyrrolidone (PVP) modified pencil graphite electrode (PGE) was developed for the ultrasensitive determination of Bisphenol A (BPA). The gold nanoparticles were electrodeposited by constant potential electrolysis and PVP was attached by passive adsorption onto the electrode surface. The electrode surfaces were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The parameters that affected the experimental conditions were researched and optimized. The AuNP/PVP/PGE sensor provided high sensitivity and selectivity for BPA recognition by using square wave adsorptive stripping voltammetry (SWAdSV). Under optimized conditions, the detection limit was found to be 1.0 nM. This new sensor system offered the advantages of simple fabrication which aided the expeditious replication, low cost, fast response, high sensitivity and low background current for BPA. This new sensor system was successfully tested for the detection of the amount of BPA in bottled drinking water with high reliability. PMID:27231912

  10. Thermodynamics of binary gas adsorption in nanopores.

    PubMed

    Dutta, Sujeet; Lefort, Ronan; Morineau, Denis; Mhanna, Ramona; Merdrignac-Conanec, Odile; Saint-Jalmes, Arnaud; Leclercq, Théo

    2016-09-21

    MCM-41 nanoporous silicas show a very high selectivity for monoalcohols over aprotic molecules during adsorption of a binary mixture in the gas phase. We present here an original use of gravimetric vapour sorption isotherms to characterize the role played by the alcohol hydrogen-bonding network in the adsorption process. Beyond simple selectivity, vapour sorption isotherms measured for various compositions help to completely unravel at the molecular level the step by step adsorption mechanism of the binary system in the nanoporous solid, from the first monolayers to the complete liquid condensation. PMID:27532892

  11. Adsorption in sparse networks. 2: Silica aerogels

    SciTech Connect

    Scherer, G.W.; Calas, S.; Sempere, R.

    1998-06-15

    The model developed in Part 1 is applied to nitrogen adsorption isotherms obtained for a series of silica aerogels whose densities are varied by partial sintering. The isotherms are adequately described by a cubic network model, with all of the pores falling in the mesopore range; the adsorption and desorption branches are fit by the same pore size distribution. For the least dense gels, a substantial portion of the pore volume is not detected by condensation. The model attributes this effect to the shape of the adsorbate/adsorptive interface, which can adopt zero curvature even in mesopores, because of the shape of the network.

  12. The adsorption mechanism of nortryptiline on C18-bonded discovery

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2005-08-01

    The adsorption isotherms of an ionizable compound, nortriptyline, were accurately measured by frontal analysis (FA) on a C{sub 18}-Discovery column, first without buffer (in an aqueous solution of acetonitrile at 15%, v/v of ACN), then with a buffer (in 28%, v/v ACN solution). The buffers were aqueous solutions containing 20 mM of formic acid or a phosphate buffer at pH 2.70. The linear range of the isotherm could not be reached with the non-buffered mobile phase using a dynamic range larger than 40,000 (from 1.2 x 10{sup -3} g/L to 50 g/L). With a 20 mM buffer in the liquid phase, the isotherm is linear for concentrations of nortriptyline inferior to 10{sup -3} g/L (or 3 {micro} mol/L). The adsorption energy distribution (AED) was calculated to determine the heterogeneity of the adsorption process. AED and FA were consistent and lead to a trimodal distribution. A tri-Moreau and a tri-Langmuir isotherm models accounted the best for the adsorption of nortriptyline without and with buffer, respectively. The nature of the buffer affects significantly the middle-energy sites while the properties of the lowest and highest of the three types of energy sites are almost unchanged. The desorption profiles of nortriptyline show some anomalies in relation with the formation of a complex multilayer adsorbed phase of acetonitrile whose excess isotherm was measured by the minor disturbance method. The C{sub 18}-Discovery column has about the same total saturation capacity, around 200 g of nortriptyline per liter of adsorbent (or 116 mg/g), with or without buffer. About 98-99% of the available surface consists in low energy sites. The coexistence of these different types of sites on the surface solves the McCalley's enigma, that the column efficiency begins to drop rapidly when the analyte concentration reaches values that are almost one hundred times lower than those that could be predicted from the isotherm data acquired under the same experimental conditions. Due to the

  13. Protein adsorption on nanoparticles: model development using computer simulation.

    PubMed

    Shao, Qing; Hall, Carol K

    2016-10-19

    The adsorption of proteins on nanoparticles results in the formation of the protein corona, the composition of which determines how nanoparticles influence their biological surroundings. We seek to better understand corona formation by developing models that describe protein adsorption on nanoparticles using computer simulation results as data. Using a coarse-grained protein model, discontinuous molecular dynamics simulations are conducted to investigate the adsorption of two small proteins (Trp-cage and WW domain) on a model nanoparticle of diameter 10.0 nm at protein concentrations ranging from 0.5 to 5 mM. The resulting adsorption isotherms are well described by the Langmuir, Freundlich, Temkin and Kiselev models, but not by the Elovich, Fowler-Guggenheim and Hill-de Boer models. We also try to develop a generalized model that can describe protein adsorption equilibrium on nanoparticles of different diameters in terms of dimensionless size parameters. The simulation results for three proteins (Trp-cage, WW domain, and GB3) on four nanoparticles (diameter  =  5.0, 10.0, 15.0, and 20.0 nm) illustrate both the promise and the challenge associated with developing generalized models of protein adsorption on nanoparticles. PMID:27546610

  14. Protein adsorption on nanoparticles: model development using computer simulation

    NASA Astrophysics Data System (ADS)

    Shao, Qing; Hall, Carol K.

    2016-10-01

    The adsorption of proteins on nanoparticles results in the formation of the protein corona, the composition of which determines how nanoparticles influence their biological surroundings. We seek to better understand corona formation by developing models that describe protein adsorption on nanoparticles using computer simulation results as data. Using a coarse-grained protein model, discontinuous molecular dynamics simulations are conducted to investigate the adsorption of two small proteins (Trp-cage and WW domain) on a model nanoparticle of diameter 10.0 nm at protein concentrations ranging from 0.5 to 5 mM. The resulting adsorption isotherms are well described by the Langmuir, Freundlich, Temkin and Kiselev models, but not by the Elovich, Fowler-Guggenheim and Hill-de Boer models. We also try to develop a generalized model that can describe protein adsorption equilibrium on nanoparticles of different diameters in terms of dimensionless size parameters. The simulation results for three proteins (Trp-cage, WW domain, and GB3) on four nanoparticles (diameter  =  5.0, 10.0, 15.0, and 20.0 nm) illustrate both the promise and the challenge associated with developing generalized models of protein adsorption on nanoparticles.

  15. Equilibrium and kinetics of phosphorous adsorption onto bone charcoal from aqueous solution.

    PubMed

    Ghaneian, Mohammad Taghi; Ghanizadeh, Ghader; Alizadeh, Mohammad Tahghighi Haji; Ehrampoush, Mohammad Hasan; Said, Farhan Mohd

    2014-01-01

    Pyrolysis of fresh sheep bone led to the formation of bone charcoal (BC). The structural characteristics of BC and surface area were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). N2 gas adsorption-desorption was analysed by Brunauer-Emmett-Teller isotherm model. The prepared BC was used as an effective sorbent for the removal of phosphate from aqueous solutions. The effect of major parameters, including initial phosphorous concentration, sorbent dosage, pH and temperature, was investigated in this study. Furthermore, adsorption isotherms and kinetics were evaluated. BC was an effective sorbent in phosphate removal from aqueous solution especially in phosphate concentration between 2 and 100 mg/L. The maximum amount of sorption capacity was 30.21 mg/g, which was obtained with 100 mg/L as the initial phosphate concentration and 0.2 g as the sorbent dosage. Best reported pH in this study is 4; in higher pH, adsorption rate decreased dramatically. By increasing the temperature from 20 to 40 degrees C sorption capacity increased; this phenomenon described that adsorption is endothermic. Equilibrium data were analysed by Langmuir, Freundlich and Temkin isotherms. Pseudo first- and second-order and Elovich models were used to determine the kinetics of adsorption in this study. Collected data highly fitted with Freundlich isotherms and pseudo second-order kinetics. Achieved results have shown well the potentiality for the BC to be utilized as a natural sorbent to remove phosphorous from water and wastewater.

  16. Visualizing Gas Adsorption on Porous Solids: Four Simple, Effective Demonstrations

    ERIC Educational Resources Information Center

    Cheung, Ocean

    2014-01-01

    Gas adsorption on porous solids is a topic that is often discussed in an undergraduate chemistry or chemical engineering course. The idea of porosity and gas adsorption on a porous solid is usually discussed with adsorption isotherms recorded using commercially available equipment. This discussion can be rather abstract and can be difficult for…

  17. A square-wave adsorptive stripping voltammetric method for the determination of Amaranth, a food additive dye.

    PubMed

    Alghamdi, Ahmad H

    2005-01-01

    Square-wave adsorptive stripping voltammetric (AdSV) determinations of trace concentrations of the azo coloring agent Amaranth are described. The analytical methodology used was based on the adsorptive preconcentration of the dye on the hanging mercury drop electrode, followed by initiation of a negative sweep. In a pH 10 carbonate supporting electrolyte, Amaranth gave a well-defined and sensitive AdSV peak at -518 mV. The electroanalytical determination of this azo dye was found to be optimal in carbonate buffer (pH 10) under the following experimental conditions: accumulation time, 120 s; accumulation potential, 0.0 V; scan rate, 600 mV/s; pulse amplitude, 90 mV; and frequency, 50 Hz. Under these optimized conditions the AdSV peak current was proportional over the concentration range 1 x 10(-8)-1.1 x 10(-7) mol/L (r = 0.999) with a detection limit of 1.7 x 10(-9) mol/L (1.03 ppb). This analytical approach possessed enhanced sensitivity, compared with conventional liquid chromatography or spectrophotometry and it was simple and fast. The precision of the method, expressed as the relative standard deviation, was 0.23%, whereas the accuracy, expressed as the mean recovery, was 104%. Possible interferences by several substances usually present as food additive azo dyes (E110, E102), gelatin, natural and artificial sweeteners, preservatives, and antioxidants were also investigated. The developed electroanalyticals method was applied to the determination of Amaranth in soft drink samples, and the results were compared with those obtained by a reference spectrophotometric method. Statistical analysis (paired t-test) of these data showed that the results of the 2 methods compared favorably.

  18. Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: Isotherms, kinetic and thermodynamic studies.

    PubMed

    Kaynar, Ümit H; Ayvacıklı, Mehmet; Hiçsönmez, Ümran; Kaynar, Sermin Çam

    2015-12-01

    The adsorption of thorium (IV) from aqueous solutions onto a novel nanoporous ZnO particles prepared by microwave assisted combustion was studied using batch methods under different experimental conditions. The effect of contact time, solution pH, initial concentration and temperature on adsorption process was studied. The ability of this material to remove Th (IV) from aqueous solution was characterises by Langmuir, Freunlinch and Temkin adsorption isotherms. The adsorption percent and distribution coefficient for nanoporous ZnO powders in optimum conditions were 97% ± 1.02; 8080 L kg(-1)for Th (IV), respectively. Based on the Langmuir model, the maximum adsorption capacity of nanoporous ZnO for Th (IV) was found to be 1500 g kg(-1). Thermodynamic parameters were determined and discussed. The results indicated that nanoporous ZnO was suitable as sorbent material for recovery and adsorption of Th (IV) ions from aqueous solutions. The radioactive Th (VI) in surface water, sea water and waste waters from technologies producing nuclear fuels, mining (uranium and thorium) and laboratories working with radioactive materials (uranium and thorium) can be removed with this nanoporous ZnO.

  19. Modeling the Adsorption of Hydrophobic Ethoxylated Urethane (HEUR) Thickeners onto Latex Surfaces using Self-Consistent Field Theory

    NASA Astrophysics Data System (ADS)

    Ginzburg, Valeriy; van Dyk, Antony; Chatterjee, Tirtha; Wang, Shihu; Larson, Ronald

    2015-03-01

    Hydrophobic Ethoxylated Urethane (HEUR) polymers are widely used as rheology modifiers (thickeners) in waterborne latex paints. Recently, it has been shown that the thickening effect of HEURs in paints is largely determined by their adsorption onto latex surfaces, this adsorption being a function of polymer structure, latex surface chemistry, and total available latex surface. Here, we describe the application of Self-Consistent Field Theory (SCFT) to calculate adsorption isotherms of several model HEURs onto ideal hydrophobic latex surfaces. Unlike earlier SCFT studies of adsorption, we explicitly take into account the role of HEUR micelles and competition between adsorption and micellization. The results are compared with experimental data and coarse-grained molecular dynamic (CG-MD) simulations, and good qualitative and semi-quantitative agreement is found. This work was supported by The Dow Chemical Company.

  20. Gravimetric analysis of CO2 adsorption on activated carbon at various pressures and temperatures using piezoelectric microcantilevers.

    PubMed

    Jin, Yusung; Lee, Dongkyu; Lee, Sangkyu; Moon, Wonkyu; Jeon, Sangmin

    2011-09-15

    We investigated the adsorption and desorption of CO(2) on activated carbon using piezoelectric microcantilevers. After coating the free end of a cantilever with activated carbon, variations in the resonance frequency of the cantilever were measured as a function of CO(2) pressure, which is related to mass changes due to the adsorption or desorption of CO(2). The pressure-dependent viscous damping effects were compensated in the calculation of the CO(2) adsorption capacity of the activated carbon by comparing the frequency differences between the coated and uncoated cantilevers. The mass sensitivity of the piezoelectric cantilever was found to be better than 1 pg. The fractional coverage of CO(2) agreed with a Langmuir adsorption isotherm, indicating that a submonolayer of adsorbed CO(2) occurred on the surface of the activated carbon under the experimental conditions. The heat of adsorption was determined using the Clausius-Clapeyron relation and the fractional coverage of CO(2) at various temperatures and pressures.

  1. Adsorptive removal of patulin from apple juice using Ca-alginate-activated carbon beads.

    PubMed

    Yue, Tianli; Guo, Caixia; Yuan, Yahong; Wang, Zhouli; Luo, Ying; Wang, Ling

    2013-10-01

    This study aimed to investigate the adsorption of patulin from apple juice by Ca-alginate-activated carbon (Ca-alginate-AC) beads. The capacity of patulin was determined by high-performance liquid chromatography. The results showed that Ca-alginate-AC beads have significant ability to reduce patulin from contaminated apple juice. Furthermore, the adsorption process did not affect the quality of apple juice. The effects of contact time, initial patulin concentration, adsorbent dose, and temperature were assessed. The removal percentage of patulin increased with contact time, adsorbent dose, and temperature. A reduction was also noted to bind patulin at increased levels of contamination. The equilibrium data were fitted to Langmuir, Freundlich, and Temkin isotherm models and the isotherm constants were calculated at different temperatures. The adsorption equilibrium was best described by the Freundlich isotherm (R(2) > 0.990). The pseudo 1st-order model was found to describe the kinetic data satisfactorily. Thermodynamic parameters such as standard Gibbs free energy (ΔG◦◦), standard enthalpy (ΔH◦), and standard entropy (ΔS◦) were evaluated. The results showed that the adsorption was spontaneous and endothermic nature.

  2. [Preparation of surface molecularly imprinted polymers for penicilloic acid, and its adsorption properties].

    PubMed

    Zheng, Penglei; Luo, Zhimin; Chang, Ruimiao; Ge, Yanhui; Du, Wei; Chang, Chun; Fu, Qiang

    2015-09-01

    On account of the specificity and reproducibility for the determination of penicilloic acid in penicillin, this study aims to prepare penicilloic acid imprinted polymers (PEOA-MIPs) by surface polymerization method at the surface of modified silica particles by using penicilloic acid (PEOA) as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate ( EGDMA) as the cross linker, and methanol/acetonitrile as the solvents. The synthesis conditions were optimized, and PEOA-MIPs had the best adsorption capacity when the molar ratio of template molecule/functional monomer was 1 :4, cross linking degree was 85% and the solvent ratio of methanol/acetonitrile was 1 :1 (v/v). The adsorption properties were evaluated by adsorption experiments, including the adsorption isotherms, kinetics and selectivity. The adsorption process between PEOA-MIPs and PEOA fitted the Langmuir adsorption isotherm with the maximum adsorption capacity of 122. 78 mg/g and the pseudo-second-order reaction kinetics with fast adsorption kinetics (the equilibrium time of 45 min). The as-synthesized PEOA-MIPs were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). The results indicated that the MIPs layer has been successfully grafted on the surface of SiO2 microparticles and the PEOA-MIPs had the excellent thermal stability. The PEOA-MIPs showed the highest selective recognition for PEOA. The PEOA-MIPs possess a high adsorption capacity, rapid mass-transfer rate and high selectivity to PEOA when compared with non-imprinted polymers (PEOA-NIPs). The PEOA-MIPs was expected to be used as the solid phase extraction medium and this study provides the potential applications for fast recognition and analysis of the penicilloic acid in penicillin. PMID:26753284

  3. High-performance liquid chromatography as a technique to determine protein adsorption onto hydrophilic/hydrophobic surfaces.

    PubMed

    Huang, Tongtong; Anselme, Karine; Sarrailh, Segolene; Ponche, Arnaud

    2016-01-30

    The purpose of this study is to evaluate the potential of simple high performance liquid chromatography (HPLC) setup for quantification of adsorbed proteins on various type of plane substrates with limited area (<3 cm(2)). Protein quantification was investigated with a liquid chromatography chain equipped with a size exclusion column or a reversed-phase column. By evaluating the validation of the method according to guidelines of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), all the results obtained by HPLC were reliable. By simple adsorption test at the contact of hydrophilic (glass) and hydrophobic (polydimethylsiloxane: PDMS) surfaces, kinetics of adsorption were determined and amounts of adsorbed bovine serum albumin, myoglobin and lysozyme were obtained: as expected for each protein, the amount adsorbed at the plateau on glass (between 0.15 μg/cm(2) and 0.4 μg/cm(2)) is lower than for hydrophobic PDMS surfaces (between 0.45 μg/cm(2) and 0.8 μg/cm(2)). These results were consistent with bicinchoninic acid protein determination. According to ICH guidelines, both Reversed Phase and Size Exclusion HPLC can be validated for quantification of adsorbed protein. However, we consider the size exclusion approach more interesting in this field because additional informations can be obtained for aggregative proteins. Indeed, monomer, dimer and oligomer of bovine serum albumin (BSA) were observed in the chromatogram. On increasing the temperature, we found a decrease of peak intensity of bovine serum albumin as well as the fraction of dimer and oligomer after contact with PDMS and glass surface. As the surface can act as a denaturation parameter, these informations can have a huge impact on the elucidation of the interfacial behavior of protein and in particular for aggregation processes in pharmaceutical applications.

  4. Adsorption kinetic and equilibrium study for removal of mercuric chloride by CuCl2-impregnated activated carbon sorbent.

    PubMed

    Li, Xin; Liu, Zhouyang; Lee, Joo-Youp

    2013-05-15

    The intrinsic adsorption kinetics of mercuric chloride (HgCl2) was studied for raw, 4% and 10% CuCl2-impregnated activated carbon (CuCl2-AC) sorbents in a fixed-bed system. An HgCl2 adsorption kinetic model was developed for the AC sorbents by taking into account the adsorption kinetics, equilibrium, and internal and external mass transfer. The adsorption kinetic constants determined from the comparisons between the simulation and experimental results were 0.2, 0.3, and 0.5m(3)/(gs) for DARCO-HG, 4%(wt), and 10%(wt) CuCl2-AC sorbents, respectively, at 140 °C. CuCl2 loading was found to slightly increase the adsorption kinetic constant or at least not to decrease it. The HgCl2 equilibrium adsorption data based on the Langmuir isotherm show that high CuCl2 loading can result in high binding energy of the HgCl2 adsorption onto the carbon surface. The adsorption equilibrium constant was found to increase by ~10 times when CuCl2 loading varied from 0 to 10%(wt), which led to a decrease in the desorption kinetic constant (k2) by ~10 times and subsequently the desorption rate by ~50 times. Intraparticle pore diffusion considered in the model showed good accuracy, allowing for the determination of intrinsic HgCl2 adsorption kinetics.

  5. Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.

    PubMed

    Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G

    2015-01-01

    Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices. PMID:26301850

  6. Adsorption of organic chemicals in soils.

    PubMed Central

    Calvet, R

    1989-01-01

    This paper presents a review on adsorption of organic chemicals on soils sediments and their constituents. The first part of this review deals with adsorption from gas and liquid phases and gives a discussion on the physical meaning of the shape of adsorption isotherms. Results show that no general rules can be proposed to describe univocally the relation between the shape of isotherms and the nature of adsorbate-adsorbent system. Kinetics of adsorption is discussed through the description of various models. Theoretical developments exist both for the thermodynamics and the kinetics of adsorption, but there is a strong need for experimental results. Possible adsorption mechanisms are ion exchange, interaction with metallic cations, hydrogen bonds, charge transfers, and London-van der Waals dispersion forces/hydrophobic effect. However, direct proofs of a given mechanism are rare. Several factors influence adsorption behavior. Electronic structure of adsorbed molecules, properties of adsorbents, and characteristics of the liquid phase are discussed in relation to adsorption. Such properties as water solubility, organic carbon content of adsorbing materials, and the composition of the liquid phase are particularly important. Evaluation of adsorption can be obtained through either laboratory measurements or use of several correlations. Adsorption measurements must be interpreted, taking into account treatment of adsorbent materials, experimental conditions, and secondary phenomena such as degradations. Correlations between adsorption coefficients and water-octanol partition coefficient or water solubility are numerous. They may be useful tools for prediction purposes. Relations with transport, bioavailability, and degradation are described. PMID:2695323

  7. Phosphate adsorption on lanthanum loaded biochar.

    PubMed

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu

    2016-05-01

    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC. PMID:26871732

  8. Adsorption of organic chemicals in soils.

    PubMed

    Calvet, R

    1989-11-01

    This paper presents a review on adsorption of organic chemicals on soils sediments and their constituents. The first part of this review deals with adsorption from gas and liquid phases and gives a discussion on the physical meaning of the shape of adsorption isotherms. Results show that no general rules can be proposed to describe univocally the relation between the shape of isotherms and the nature of adsorbate-adsorbent system. Kinetics of adsorption is discussed through the description of various models. Theoretical developments exist both for the thermodynamics and the kinetics of adsorption, but there is a strong need for experimental results. Possible adsorption mechanisms are ion exchange, interaction with metallic cations, hydrogen bonds, charge transfers, and London-van der Waals dispersion forces/hydrophobic effect. However, direct proofs of a given mechanism are rare. Several factors influence adsorption behavior. Electronic structure of adsorbed molecules, properties of adsorbents, and characteristics of the liquid phase are discussed in relation to adsorption. Such properties as water solubility, organic carbon content of adsorbing materials, and the composition of the liquid phase are particularly important. Evaluation of adsorption can be obtained through either laboratory measurements or use of several correlations. Adsorption measurements must be interpreted, taking into account treatment of adsorbent materials, experimental conditions, and secondary phenomena such as degradations. Correlations between adsorption coefficients and water-octanol partition coefficient or water solubility are numerous. They may be useful tools for prediction purposes. Relations with transport, bioavailability, and degradation are described.

  9. Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric, optimization, kinetic and isotherm study.

    PubMed

    Jamshidi, M; Ghaedi, M; Dashtian, K; Hajati, S; Bazrafshan, A A

    2016-09-01

    Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019g ZnO: Cr-NPs-AC, 3.9min sonication at 4.5, 4.8 and 4.7mgL(-1) of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R(2), adjusted and predicted R(2) for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6mgg(-1) for MG, EY and AO, respectively. PMID:27150752

  10. Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric, optimization, kinetic and isotherm study.

    PubMed

    Jamshidi, M; Ghaedi, M; Dashtian, K; Hajati, S; Bazrafshan, A A

    2016-09-01

    Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019g ZnO: Cr-NPs-AC, 3.9min sonication at 4.5, 4.8 and 4.7mgL(-1) of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R(2), adjusted and predicted R(2) for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6mgg(-1) for MG, EY and AO, respectively.

  11. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    PubMed

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation.

  12. A transverse isotropic model for microporous solids: Application to coal matrix adsorption and swelling

    NASA Astrophysics Data System (ADS)

    Espinoza, D. N.; Vandamme, M.; Dangla, P.; Pereira, J.-M.; Vidal-Gilbert, S.

    2013-12-01

    Understanding the adsorption-induced swelling in coal is critical for predictable and enhanced coal bed methane production. The coal matrix is a natural anisotropic disordered microporous solid. We develop an elastic transverse isotropic poromechanical model for microporous solids which couples adsorption and strain through adsorption stress functions and expresses the adsorption isotherm as a multivariate function depending on fluid pressure and solid strains. Experimental data from the literature help invert the anisotropic adsorptive-mechanical properties of Brzeszcze coal samples exposed to CO2. The main findings include the following: (1) adsorption-induced swelling can be modeled by including fluid-specific and pressure-dependent adsorption stress functions into equilibrium equations, (2) modeling results suggest that swelling anisotropy is mostly caused by anisotropy of the solid mechanical properties, and (3) the total amount of adsorbed gas measured by immersing coal in the adsorbate overestimates adsorption amount compared to in situ conditions up to ˜20%. The developed fully coupled model can be upscaled to determine the coal seam permeability through permeability-stress relationships.

  13. Effect of the surface oxygen groups on methane adsorption on coals

    NASA Astrophysics Data System (ADS)

    Hao, Shixiong; Wen, Jie; Yu, Xiaopeng; Chu, Wei

    2013-01-01

    To investigate the influence of surface oxygen groups on methane adsorption on coals, one bituminous coal was modified with H2O2, (NH4)2S2O8 and HNO3 respectively, to prepare coal samples with different surface properties. The oxygen groups on coal surface were characterized by X-ray photoelectron spectroscopy (XPS). The textures of the coal samples were investigated by N2 adsorption at 77 K. Their surface morphologies were analyzed by scanning electron microscopy (SEM). The methane adsorption behaviors of these coal samples were measured at 303 K in pressure range of 0-5.3 MPa by volumetric method. The adsorption data of methane were fitted to the Langmuir model and Dubinin-Astakhov (D-A) model. The fitting results showed that the D-A model fitted the isotherm data better than the Langmuir model. It was observed that there was, in general, a positive correlation between the methane saturated adsorption capacity and the micropore volume of coals while a negative correlation between methane saturated adsorption capacity and the Ototal/Ctotal. The methane adsorption capacity was determined by the coal surface chemistry when the microporosity parameters of two samples were similar. Coal with a higher amount of oxygen surface groups, and consequently with a less hydrophobic character, had lower methane adsorption capacity.

  14. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    PubMed

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation. PMID:26683820

  15. Statistical Design in Isothermal Aging of Polyimide Resins

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Jobe, Marcus; Crane, Elizabeth A.

    1995-01-01

    Recent developments in research on polyimides for high temperature applications have led to the synthesis of many new polymers. Among the criteria that determines their thermal oxidative stability, isothermal aging is one of the most important. Isothermal aging studies require that many experimental factors are controlled to provide accurate results. In this article we describe a statistical plan that compares the isothermal stability of several polyimide resins, while minimizing the variations inherent in high-temperature aging studies.

  16. Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping square wave voltammetry.

    PubMed

    Cittan, Mustafa; Koçak, Süleyman; Çelik, Ali; Dost, Kenan

    2016-10-01

    A multi-walled carbon nanotube modified glassy carbon electrode was used to prepare an electrochemical sensing platform for the determination of oleuropein. Results showed that, the accumulation of oleuropein on the prepared electrode takes place with the adsorption process. Electrochemical behavior of oleuropein was studied by using cyclic voltammetry. Compared to the bare GCE, the oxidation peak current of oleuropein increased about 340 times at MWCNT/GCE. Voltammetric determination of oleuropein on the surface of prepared electrode was studied using square wave voltammetry where the oxidation peak current of oleuropein was measured as an analytical signal. A calibration curve of oleuropein was performed between 0.01 and 0.70µM and a good linearity was obtained with a correlation coefficient of 0.9984. Detection and quantification limits of the method were obtained as 2.73 and 9.09nM, respectively. In addition, intra-day and inter-day precision studies indicated that the voltammetric method was sufficiently repeatable. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract. Microwave-assisted extraction of oleuropein had good recovery values between 92% and 98%. The results obtained with the proposed electrochemical sensor were compared with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

  17. Determination of adsorptive and catalytic properties of copper, silver and iron contain titanium-pillared bentonite for the removal bisphenol A from aqueous solution

    NASA Astrophysics Data System (ADS)

    Tomul, Fatma; Turgut Basoglu, Funda; Canbay, Hale

    2016-01-01

    Ti-pillared bentonite, Cu, Ag and Fe modified Ti-pillared bentonite and Cu/Ti- and Fe/Ti-mixed pillared bentonite were synthesized using different titanium sources by direct synthesis or by modification after synthesis. The effects of synthesis conditions on the surface characteristics, pore structure and acidity of the pillared bentonites were investigated by SEM-EDS, XPS, XRD, N2-adsorption/desorption and FTIR analyses before and after ammonia adsorption. The results of EDS, XPS and XRD analysis confirmed that titanium, copper, silver and iron were incorporated into the bentonite structure. In the XRD patterns, the formation of delaminated structure reflecting the non-parallel distribution of the bentonite layers by pillaring with Ti, Cu/Ti and Fe/Ti-pillars was observed. XPS spectra indicated the presence of TiO2, CuO, Ag and Ag2O and Fe2O3 species depending on the source of active metals in the synthesized samples. In the FTIR spectra, an increase in the Bronsted/Lewis peak intensity was observed with the loading of copper and iron, whereas a decrease in Lewis and Bronsted acidities was observed with incorporation of silver. Adsorption studies indicated that the adsorption capacity of the sample synthesized using titanium (IV) propoxide and incorporating iron to the structure by ion exchange (Fe-PTi-PILC) were higher than those in other samples. The adsorption of BPA (bisphenol A) by all tested samples was found to fit the Langmuir isotherm. In the catalytic wet peroxide oxidation (CWPO) over PTi-PILC (prepared by titanium (IV) propoxide), Fe-PTi-PILC and Cu-PTi-PILC (prepared by copper impregnated Ti-pillared bentonite) samples, BPA values close to complete conversion were achieved within 30 min at 25 °C, pH 4 and 5 g/L mcat. CWPO results showed that increasement of pH causes a decrease the rate of oxidation. On the other hand, by the time catalyst and BPA concentration is increased, the rate of oxidation is increased as well.

  18. Hexadecylamine Adsorption at the Iron Oxide–Oil Interface

    PubMed Central

    2013-01-01

    The adsorption behavior of a model additive, hexadecylamine, onto an iron surface from hexadecane oil has been characterized using polarized neutron reflectometry, sum-frequency generation spectroscopy, solution depletion isotherm, and X-ray photoelectron spectroscopy (XPS). The amine showed a strong affinity for the metal surface, forming a dense monolayer at relatively low concentrations; a layer thickness of 16 (±3) Å at low concentrations, increasing to 20 (±3) Å at greater amine concentrations, was determined from the neutron data. These thicknesses suggest that the molecules in the layer are tilted. Adsorption was also indicated by sum-frequency generation spectroscopy and XPS, the latter indicating that the most dominant amine–surface interaction was via electron donation from the nitrogen lone pair to the positively charged iron ions. Sum-frequency generation spectroscopy was used to determine the alkyl chain conformation order and orientation on the surface. PMID:24106786

  19. Hexadecylamine adsorption at the iron oxide-oil interface.

    PubMed

    Wood, Mary H; Welbourn, Rebecca J L; Charlton, Timothy; Zarbakhsh, Ali; Casford, M T; Clarke, Stuart M

    2013-11-12

    The adsorption behavior of a model additive, hexadecylamine, onto an iron surface from hexadecane oil has been characterized using polarized neutron reflectometry, sum-frequency generation spectroscopy, solution depletion isotherm, and X-ray photoelectron spectroscopy (XPS). The amine showed a strong affinity for the metal surface, forming a dense monolayer at relatively low concentrations; a layer thickness of 16 (±3) Å at low concentrations, increasing to 20 (±3) Å at greater amine concentrations, was determined from the neutron data. These thicknesses suggest that the molecules in the layer are tilted. Adsorption was also indicated by sum-frequency generation spectroscopy and XPS, the latter indicating that the most dominant amine-surface interaction was via electron donation from the nitrogen lone pair to the positively charged iron ions. Sum-frequency generation spectroscopy was used to determine the alkyl chain conformation order and orientation on the surface. PMID:24106786

  20. Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on San Juan Basin Coal

    SciTech Connect

    K. A. M. Gasem; R. L. Robinson; S. R. Reeves

    2002-03-01

    The major objectives of this project were to (a) measure the adsorption behavior of pure methane, nitrogen, CO{sub 2} and their binary and ternary mixtures on wet Tiffany coal at 130 F and pressures to 2000 psia; (b) correlate the equilibrium adsorption isotherm data using the extended Langmuir model, the Langmuir model, the loading ratio correlation and the Zhou-Gasem-Robinson equation of state; and (c) establish sorption-time estimates for the pure components. Specific accomplishments are summarized below regarding the complementary tasks involving experimental work and data correlation. Representative coal samples from BP Amoco Tiffany Injection Wells No.1 and No.10 were prepared, as requested. The equilibrium moisture content and particle size distribution of each coal sample were determined. Compositional coal analyses for both samples were performed by Huffman Laboratories, Inc. Pure gas adsorption for methane on wet Tiffany coal samples from Injection Wells No.1 and No.10 was measured separately at 130 F (327.6 K) and pressures to 2000 psia (13.7 MPa). The average expected uncertainty in these data is about 3% (9 SCF/ton). Our measurements indicate that the adsorption isotherms of the two coal samples exhibit similar Langmuir-type behavior. For the samples from the two wells, a maximum variation of about 5% in the amount adsorbed is observed at 2000 psia. Gas adsorption isotherms were measured for pure methane, nitrogen and CO{sub 2} on a wet, mixed Tiffany coal sample. The coal sample was an equal-mass mixture of coals from Well No.1 and Well No.10. The adsorption measurements were conducted at 130 F at pressures to 2000 psia. The adsorption isotherms have average expected experimental uncertainties of 3% (9 SCF/ton), 6% (8 SCF/ton), and 7% (62 SCF/ton) for methane, nitrogen, and CO{sub 2}, respectively. Adsorption isotherms were measured for methane/nitrogen, methane/CO{sub 2} and nitrogen/CO{sub 2} binary mixtures on wet, mixed Tiffany coal at 130 F and

  1. The effect of solids residence time on phosphorus adsorption to hydrous ferric oxide floc.

    PubMed

    Conidi, Daniela; Parker, Wayne J

    2015-11-01

    The impact of solids residence time (SRT) on phosphate adsorption to hydrous ferric oxide (HFO) floc when striving for ultra-low P concentrations was characterized and an equilibrium model that describes the adsorption of P onto HFO floc of different ages was developed. The results showed that fresh HFO had a higher adsorption capacity in comparison to aged (2.8, 7.4, 10.8 and 22.8 days) HFO and contributed substantially to P removal at steady state. P adsorption onto HFO solids was determined to be best described by the Freundlich isotherm. P desorption from HFO solids was negligible supporting the hypothesis that chemisorption is the mechanism of P adsorption on HFO solids. A model that included the contribution of different classes of HFO solids (i.e. High, Low or Old, containing high concentration, low concentration or no active surface sites, respectively) to adsorption onto HFO from a sequencing batch reactor (SBR) system was found to adequately describe P adsorption onto HFO solids of different ages. From the model it was determined that the fractions of High and Low HFO decreased with SRT while the fraction of Old HFO increased with SRT. The transformation of High HFO to Low HFO did not limit the overall production of Old HFO and the fresh HFO solids contributed more to P removal at steady state than the aged solids.

  2. Investigation of mono/competitive adsorption of environmentally relevant ionized weak acids on graphite: impact of molecular properties and thermodynamics.

    PubMed

    Moustafa, Ahmed M A; McPhedran, Kerry N; Moreira, Jesús; Gamal El-Din, Mohamed

    2014-12-16

    The thermodynamics of adsorption and competitive interactions of five weak acids on a graphite surface was assessed in alkaline solutions. Adsorption of the acids in mono- and multicompound solutions followed their Freundlich isotherms which suggest a diversity of graphite adsorption sites as confirmed by the presence of carboxylic and phenolic groups observed on graphite surfaces. Thermodynamic calculations assigned the formation of the negatively charged assisted hydrogen bond (-CAHB) between ionized solutes and adsorbent surface groups as the possible adsorption mechanism. However, the similar pKa values of current acids resulted in comparable free energies for -CAHB formation (ΔG(-CAHB)) being less than solvation free energies (ΔGSolv). Thus, additional ΔG is supplemented by increased hydrophobicity due to proton exchange of ionized acids with water (ΔΔG Hydrophobicity). Adsorption capacities and competition coefficients indicated that ΔΔG Hydrophobicity values depend on the neutral and ionized acid Kow. Competitive adsorption implies that multilayer adsorption may occur via hydrophobic bonding with the CH3 ends of the self-assembled layer which affects the acid adsorption capacities in mixtures as compared to monocompound solutions. The determination of adsorption mechanisms will assist in understanding of the fate and bioavailability of emerging and classical weak acids released into natural waters.

  3. Wide-range and accurate modeling of linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil.

    PubMed

    Oliver-Rodríguez, B; Zafra-Gómez, A; Reis, M S; Duarte, B P M; Verge, C; de Ferrer, J A; Pérez-Pascual, M; Vílchez, J L

    2015-11-01

    In this paper, rigorous data and adequate models about linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil are presented, contributing with a substantial improvement over available adsorption works. The kinetics of the adsorption/desorption phenomenon and the adsorption/desorption equilibrium isotherms were determined through batch studies for total LAS amount and also for each homologue series: C10, C11, C12 and C13. The proposed multiple pseudo-first order kinetic model provides the best fit to the kinetic data, indicating the presence of two adsorption/desorption processes in the general phenomenon. Equilibrium adsorption and desorption data have been properly fitted by a model consisting of a Langmuir plus quadratic term, which provides a good integrated description of the experimental data over a wide range of concentrations. At low concentrations, the Langmuir term explains the adsorption of LAS on soil sites which are highly selective of the n-alkyl groups and cover a very small fraction of the soil surface area, whereas the quadratic term describes adsorption on the much larger part of the soil surface and on LAS retained at moderate to high concentrations. Since adsorption/desorption phenomenon plays a major role in the LAS behavior in soils, relevant conclusions can be drawn from the obtained results. PMID:26070080

  4. Wide-range and accurate modeling of linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil.

    PubMed

    Oliver-Rodríguez, B; Zafra-Gómez, A; Reis, M S; Duarte, B P M; Verge, C; de Ferrer, J A; Pérez-Pascual, M; Vílchez, J L

    2015-11-01

    In this paper, rigorous data and adequate models about linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil are presented, contributing with a substantial improvement over available adsorption works. The kinetics of the adsorption/desorption phenomenon and the adsorption/desorption equilibrium isotherms were determined through batch studies for total LAS amount and also for each homologue series: C10, C11, C12 and C13. The proposed multiple pseudo-first order kinetic model provides the best fit to the kinetic data, indicating the presence of two adsorption/desorption processes in the general phenomenon. Equilibrium adsorption and desorption data have been properly fitted by a model consisting of a Langmuir plus quadratic term, which provides a good integrated description of the experimental data over a wide range of concentrations. At low concentrations, the Langmuir term explains the adsorption of LAS on soil sites which are highly selective of the n-alkyl groups and cover a very small fraction of the soil surface area, whereas the quadratic term describes adsorption on the much larger part of the soil surface and on LAS retained at moderate to high concentrations. Since adsorption/desorption phenomenon plays a major role in the LAS behavior in soils, relevant conclusions can be drawn from the obtained results.

  5. Adsorption of Cd, Cu and Zn from aqueous solutions onto ferronickel slag under different potentially toxic metal combination.

    PubMed

    Park, Jong-Hwan; Kim, Seong-Heon; Kang, Se-Won; Kang, Byung-Hwa; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Ok, Yong Sik; Seo, Dong-Cheol

    2016-01-01

    Adsorption characteristics of potentially toxic metals in single- and multi-metal forms onto ferronickel slag were evaluated. Competitive sorption of metals by ferronickel slag has never been reported previously. The maximum adsorption capacities of toxic metals on ferronickel were in the order of Cd (10.2 mg g(-1)) > Cu (8.4 mg g(-1)) > Zn (4.4 mg g(-1)) in the single-metal adsorption isotherm and Cu (6.1 mg g(-1)) > Cd (2.3 mg g(-1)) > Zn (0.3 mg g(-1)) in the multi-metal adsorption isotherm. In comparison with single-metal adsorption isotherm, the reduction rates of maximum toxic metal adsorption capacity in the multi-metal adsorption isotherm were in the following order of Zn (93%) > Cd (78%) > Cu (27%). The Freundlich isotherm provides a slightly better fit than the Langmuir isotherm equation using ferronickel slag for potentially toxic metal adsorption. Multi-metal adsorption behaviors differed from single-metal adsorption due to competition, based on data obtained from Freundlich and Langmuir adsorption models and three-dimensional simulation. Especially, Cd and Zn were easily exchanged and substituted by Cu during multi-metal adsorption. Further competitive adsorption studies are necessary in order to accurately estimate adsorption capacity of ferronickel slag for potentially toxic metals in natural environments. PMID:26942519

  6. Adsorption of Cd, Cu and Zn from aqueous solutions onto ferronickel slag under different potentially toxic metal combination.

    PubMed

    Park, Jong-Hwan; Kim, Seong-Heon; Kang, Se-Won; Kang, Byung-Hwa; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Ok, Yong Sik; Seo, Dong-Cheol

    2016-01-01

    Adsorption characteristics of potentially toxic metals in single- and multi-metal forms onto ferronickel slag were evaluated. Competitive sorption of metals by ferronickel slag has never been reported previously. The maximum adsorption capacities of toxic metals on ferronickel were in the order of Cd (10.2 mg g(-1)) > Cu (8.4 mg g(-1)) > Zn (4.4 mg g(-1)) in the single-metal adsorption isotherm and Cu (6.1 mg g(-1)) > Cd (2.3 mg g(-1)) > Zn (0.3 mg g(-1)) in the multi-metal adsorption isotherm. In comparison with single-metal adsorption isotherm, the reduction rates of maximum toxic metal adsorption capacity in the multi-metal adsorption isotherm were in the following order of Zn (93%) > Cd (78%) > Cu (27%). The Freundlich isotherm provides a slightly better fit than the Langmuir isotherm equation using ferronickel slag for potentially toxic metal adsorption. Multi-metal adsorption behaviors differed from single-metal adsorption due to competition, based on data obtained from Freundlich and Langmuir adsorption models and three-dimensional simulation. Especially, Cd and Zn were easily exchanged and substituted by Cu during multi-metal adsorption. Further competitive adsorption studies are necessary in order to accurately estimate adsorption capacity of ferronickel slag for potentially toxic metals in natural environments.

  7. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite.

    PubMed

    Sahin, Rubina; Tapadia, Kavita

    2015-01-01

    The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG < 0) and endothermic (ΔH > 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area.

  8. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite.

    PubMed

    Sahin, Rubina; Tapadia, Kavita

    2015-01-01

    The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG < 0) and endothermic (ΔH > 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area. PMID:26676015

  9. Isothermic hemodialysis and ultrafiltration.

    PubMed

    Rosales, L M; Schneditz, D; Morris, A T; Rahmati, S; Levin, N W

    2000-08-01

    The increase in patient temperature during hemodialysis is explained by hemodynamic compensation during ultrafiltration and hypovolemia that leads to peripheral vasoconstriction and reduced heat losses. We analyzed 51 stable high-efficiency hemodialysis treatments in 27 patients during isothermic dialysis in which body temperature was maintained at a constant level (+/-0.1 degrees C) using the temperature-control option of the Blood Temperature Monitor (BTM; Fresenius Medical Care, Bad Homburg, Germany). Hemodialysis was delivered using ultrapure water (limulus amebocyte lysate test < 0. 06 endotoxin units/mL) at mean blood flows of 410 +/- 40 mL/min. During treatments lasting 178 +/- 23 minutes, 4.8% +/- 1.4% of postdialysis body weight (W%) and 9.5% +/- 2.5% of postdialysis body water were removed using mean ultrafiltration rates of 1.1 +/- 0.3 L/h. Dialysate temperatures significantly decreased from 35.9 degrees C +/- 0.3 degrees C to 35.6 degrees C +/- 0.6 degrees C during hemodialysis. During these treatments, 187 +/- 69 kJ of thermal energy were removed from the patients through the extracorporeal circulation using cool dialysate. Extracorporeal heat flow was 17 +/- 6 W. Energy expenditure (H) estimated from anthropometric data was 65 +/- 12 W. Thus, 28% +/- 10% of estimated energy expenditure (H%) was removed during isothermic dialysis. A highly significant correlation was observed between H% and W% (H% = -5.6 * W%; r(2) = 0.91; P < 0.0001). This result is in support of the volume hypothesis of intradialytic heat accumulation and provides a rule of thumb to estimate extracorporeal cooling requirements for isothermic dialysis. Approximately 6% of H must be removed through the extracorporeal circulation for each percent of ultrafiltration-induced body-weight change. The importance of body temperature control during hemodialysis increases with increased ultrafiltration requirements.

  10. Adsorption of Ba2+ by Ca-exchange clinoptilolite tuff and montmorillonite clay.

    PubMed

    Chávez, M L; de Pablo, L; García, T A

    2010-03-15

    The adsorption of barium by Ca-exchanged clinoptilolite and montmorillonite is presented. The kinetics of adsorption of Ba(2+) were evaluated contacting 1g portion of each adsorber with 100mL 0.1N BaCl(2) for 200 h. Adsorption by Ca-clinoptilolite is defined by second-order kinetics of rate constant K(v) 8.232 x 10(-2) g mg(-1)h(-1) and maximum removal of 71.885 mg g(-1). It is a two-stage process initiated by a rapid uptake of Ba(2+) followed by more moderate kinetics. The adsorption isotherms were determined contacting 0.2g of each adsorber with 10 mL 0.1-0.005N BaCl(2)+CaCl(2) solution, Ba(2+)/Ca(2+) ratio 1, for periods of 7 days for the tuff and 2 days for the clay. The equilibrium adsorption is described by the Langmuir model, of equilibrium constant K 0.0151 L mg(-1) and maximum adsorption of 15.29 mg g(-1). The adsorption of Ba(2+) by Ca-exchanged montmorillonite also follows a second-order reaction of rate constant K(v) 3.179 x 10(-2) g mg(-1)h(-1), and calculated separation of 36.74 mg g(-1); the Langmuir isotherm is defined by the constant K 0.034 L mg(-1) and maximum adsorption of 15.29 mg g(-1). X-ray diffraction shows that the exchange of Ba(2+) modifies the d(001) of Ca-montmorillonite from 15.4 to 12.4A. PMID:19926210

  11. [Ammonium Adsorption Characteristics in Aqueous Solution by Dairy Manure Biochar].

    PubMed

    Ma, Feng-feng; Zhao, Bao-wei; Diao, Jing-ru; Zhong, Jin-kui; Li, An-bang

    2015-05-01

    The adsorption characteristics of ammonium from aqueous solution onto biochar derived from dairy manure were investigated as a function of parameters such as solution pH, particle size, adsorbent dosage, temperature and competitive cations. The results indicated that the effects of other cations on the adsorption of ammonium followed the order of preference Na > Ca2+ at identical mass concentrations. It was observed that pH played an important role in the ammonium adsorption and the optimal pH values ranged between 5 and 8. The kinetic data fitted the pseudo-second-order model (R2 = 0.967 3) but showed very poor fits for the pseudo-first-order model (R2 = 0.765 9) and the Elovich model (R2 = 0.724 9). The results from the Intra-particle model also showed that there were two separate stages in sorption process, which were external diffusion and the diffusion of inter-particle. Adsorption isotherms for dairy manure biochar were fitted the Freundlich model (R2 = 0.976 2) more effectively than other models. Thermodynamics parameters such as free energy (ΔGθ), enthalpy (ΔHθ), and entropy (ΔSθ) were also determined, which indicated that the adsorption was a spontaneous and endothermic process. PMID:26314116

  12. Adsorption of zinc on magnetite pellets

    SciTech Connect

    Cargnel, D.A.; Cole, C.A.

    1995-12-31

    Zinc is a common contaminant in wastewater electroplating, metal finishing, and many other industrial processes. This paper presents the results of work which is intended to be the first step in an evaluation of the use of concentrated and pelletized magnetite for the adsorption of metals from industrial wastewater. The magnetite used is a cold carbon bonded material which is formulated for the steel industry as a complete product ready for feed to the furnaces. The specific objective of this work was to determine the zinc adsorption capacity of the prepared magnetite pellets through batch tests that were designed to allow the development of an adsorption isotherm. Future work would explore the potential for use of the spent adsorbent in the steel making process, thereby allowing the recovered metals to be recycled into steel products, while avoiding spent adsorbent disposal costs. Although not evaluated in this study, an additional advantage of the use of magnetite as an adsorbent is that it can be magnetically separated from the wastewater.

  13. Studies on human insulin adsorption kinetics at an organic-aqueous interface determined using a label-free electroanalytical approach.

    PubMed

    Thomsen, Anne Engelbrecht; Jensen, Henrik; Jorgensen, Lene; van de Weert, Marco; Ostergaard, Jesper

    2008-06-01

    Protein adsorption represents a considerable challenge in the development and production of macromolecular drugs. From an analytical point of view the adsorption process is difficult to study in an efficient way using currently available techniques. In this work potential and time dependent adsorption and adsorption kinetics of human insulin at an 1,2-dichloroethane-aqueous interface were studied using a novel electroanalytical approach based on measurements of interfacial capacitance. Two different types of measurements were performed; potential scans and time scans. In the potential scans, the capacitance was measured over a range of applied potential differences across the interface. The interfacial potential difference is linked to the charge at the interface. Adsorption of human insulin was detectable at a bulk phase insulin concentration as low as 0.1 microM as a negative shift in the potential of zero charge (pzc). Adsorption kinetics were further studied using time scans in which the interfacial capacitance was measured at a fixed applied interfacial potential difference. Using this approach it was possible to study how the adsorption kinetics and the shape of the time scan curves were related to the bulk concentration of insulin and the interfacial potential difference. The changes in capacitance could be described phenomenologically by pseudo-first-order kinetics at low concentrations of insulin except at positive interfacial potential differences and high insulin concentrations (> or =0.25 microM) where a more complex shape of the time scans curves was observed.

  14. Adsorption of cesium from aqueous solution using agricultural residue--walnut shell: equilibrium, kinetic and thermodynamic modeling studies.

    PubMed

    Ding, Dahu; Zhao, Yingxin; Yang, Shengjiong; Shi, Wansheng; Zhang, Zhenya; Lei, Zhongfang; Yang, Yingnan

    2013-05-01

    A novel biosorbent derived from agricultural residue - walnut shell (WS) is reported to remove cesium from aqueous solution. Nickel hexacyanoferrate (NiHCF) was incorporated into this biosorbent, serving as a high selectivity trap agent for cesium. Field emission scanning electron microscope (FE-SEM) and thermogravimetric and differential thermal analysis (TG-DTA) were utilized for the evaluation of the developed biosorbent. Determination of kinetic parameters for adsorption was carried out using pseudo first-order, pseudo second-order kinetic models and intra-particle diffusion models. Adsorption equilibrium was examined using Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherms. A satisfactory correlation coefficient and relatively low chi-square analysis parameter χ(2) between the experimental and predicted values of the Freundlich isotherm demonstrate that cesium adsorption by NiHCF-WS is a multilayer chemical adsorption. Thermodynamic studies were conducted under different reaction temperatures and results indicate that cesium adsorption by NiHCF-WS is an endothermic (ΔH° > 0) and spontaneous (ΔG° < 0) process.

  15. A sum-frequency generation spectroscopic study of the Gibbs analysis paradox: monolayer or sub-monolayer adsorption?

    PubMed

    Shahir, Afshin Asadzadeh; Nguyen, Khoi Tan; Nguyen, Anh V

    2016-04-01

    The Gibbs adsorption isotherm (GAI) has been considered as the foundation of surfactant adsorption studies for over a century; however, its application in determining the limiting surface excess has recently been intensively discussed, with contradictory experimental evidence either supporting or refuting the theory. The available arguments are based on monolayer adsorption models. In this paper, we experimentally and intellectually propose and validate the contribution of sub-monolayer adsorption to the GAI paradox. We utilize a powerful intrinsically surface-sensitive technique, vibrational sum-frequency generation spectroscopy (SFG), complementing with conventional tensiometric measurements to address these controversies both quantitatively and qualitatively. Our SFG results revealed that the precipitous decrease in surface tension directly corresponds to surface occupancy by adsorbates. In addition, the Gibbs analysis was successfully applied to the soluble monolayer of a surface-active alcohol to full saturation. However, the full saturation of the topmost monolayer does not necessarily mean that the surface adsorption was completed because the adsorption was observed to continuously occur in the sub-monolayer region soon after the topmost monolayer became saturated. Nonetheless, the Gibbs isotherm failed to account for the excess of alcohol adsorbed in this sub-monolayer region. This new concept of surface excess must therefore be treated thermodynamically.

  16. Modeling Cryotherapy Ice Ball Dimensions and Isotherms in a Novel Gel-based Model to Determine Optimal Cryo-needle Configurations and Settings for Potential Use in Clinical Practice

    PubMed Central

    Shah, Taimur T.; Arbel, Uri; Foss, Sonja; Zachman, Andrew; Rodney, Simon; Ahmed, Hashim U.; Arya, Manit

    2016-01-01

    Objective To gain a better understanding of ice ball dimensions and temperature isotherms relevant for cell kill when using combinations of cryo-needles we set out to answer 4 questions: (1) what type of cryo-needle? (2) how many needles? (3) best spatial configuration? and (4) correct duty cycle percentage? Methods We conducted laboratory experiments to monitor ice ball dimensions and create multi-needle planar isotherm maps for 17G and 10G cryo-needles using a novel multi-needle thermocouple fixture within gel at body temperature. We tested configurations of 1-4 cryo-needles at duty cycles of 20%-100% with 1-2.5 cm spacing. Results Analysis of various combinations shows that a central core of ≤−40°C develops at a distance of ~1 cm around the cryo-needles. Temperature increases linearly from this point to the ice ball leading edge (0°C), which is a further ≈1 cm away. Thus, the −40°C isotherm is approximately 1 cm inside the leading edge of the ice ball. The optimum distance between cryo-needles was 1.5-2 cm, at duty cycle settings of 70%-100%. At distances further apart or with lower duty cycle settings, ice balls either had a central core >−40°C or had an hourglass shape. Conclusion In answer to questions 1-3, tumor length, diameter, and shape will ultimately determine the number of needles and their configuration. However, we propose a conservative distance for cryo-needle placement between 1 and 1.5 cm should be adopted for clinical practice. In answer to question 4, using low duty cycle settings runs the risk of incomplete −40°C isotherm coverage of the tumor, and thus in routine practice we suggest that settings of 70%-100% are most appropriate. PMID:26902833

  17. ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AGED HARBOR SEDIMENTS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic contaminants which have low aqueous solubilities and are common pollutants in harbor sediments. Adsorption and desorption isotherms for PAHs are conducted to study the abiotic sorption of PAHs in uncontami...

  18. Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption.

    PubMed

    Bünermann, Oliver; Jiang, Hongyan; Dorenkamp, Yvonne; Kandratsenka, Alexander; Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M

    2015-12-11

    How much translational energy atoms and molecules lose in collisions at surfaces determines whether they adsorb or scatter. The fact that hydrogen (H) atoms stick to metal surfaces poses a basic question. Momentum and energy conservation demands that the light H atom cannot efficiently transfer its energy to the heavier atoms of the solid in a binary collision. How then do H atoms efficiently stick to metal surfaces? We show through experiments that H-atom collisions at an insulating surface (an adsorbed xenon layer on a gold single-crystal surface) are indeed nearly elastic, following the predictions of energy and momentum conservation. In contrast, H-atom collisions with the bare gold surface exhibit a large loss of translational energy that can be reproduced by an atomic-level simulation describing electron-hole pair excitation. PMID:26612832

  19. Determination of the Antiretroviral Drug Acyclovir in Diluted Alkaline Electrolyte by Adsorptive Stripping Voltammetry at the Mercury Film Electrode

    PubMed Central

    Castro, Arnaldo Aguiar; Cordoves, Ana Isa Perez; Farias, Percio Augusto Mardini

    2013-01-01

    This paper describes a stripping method for the determination of acyclovir at the submicromolar concentration level. This method is based on controlled adsorptive accumulation of acyclovir at thin-film mercury electrode, followed by a linear cyclic scan voltammetry measurement of the surface species. Optimal experimental conditions include a NaOH solution of 2.0 × 10−3 mol L−1 (supporting electrolyte), an accumulation potential of −0.40 V, and a scan rate of 100 mV s−1. The response of acyclovir is linear over the concentration range 0.02 to 0.12 ppm. For an accumulation time of 4 minutes, the detection limit was found to be 0.42 ppb (1.0 × 10−9 mol L−1). More convenient methods to measure the acyclovir in presence of the didanosine, efavirenz, nevirapine, nelfinavir, lamivudine, and zidovudine were also investigated. The utility of this method is demonstrated by the presence of acyclovir together with Adenosine triphosphate (ATP) or DNA. PMID:23761958

  20. Square-wave adsorptive voltammetry of dexamethasone: redox mechanism, kinetic properties, and electroanalytical determinations in multicomponent formulations.

    PubMed

    Oliveira, Thiago Mielle B F; Ribeiro, Francisco Wirley P; Soares, Janete E S; de Lima-Neto, Pedro; Correia, Adriana N

    2011-06-15

    The electrochemical reduction behavior of dexamethasone at a hanging mercury drop electrode was investigated by cyclic and square-wave adsorptive voltammetries in a Britton-Robinson buffer at pH 2.0. The optimized experimental conditions consisted of a pulse potential frequency of 100 s(-1), a pulse amplitude of 15 mV, and a potential step height of 2 mV, with E(acc)=-0.60V and t(acc)=15s. From these parameters, it was also possible to develop a detailed study about the kinetic and mechanistic events involved in the reduction process. Two well-defined peaks were observed in the cathodic scan, and peak 2 was used to obtain analytical curves. A linear range between 4.98×10(-8) and 6.10×10(-7)mol L(-1), with a detection limit of 2.54×10(-9)mol L(-1) and a quantification limit of 8.47×10(-9)mol L(-1), was observed. Moreover, it was possible to achieve a simple, selective, and versatile methodology adaptable to the quantification of dexamethasone because common excipients used in multicomponent commercial formulations caused no interference. The satisfactory recoveries and the low relative standard deviation data reflected the high accuracy and precision of the proposed method for the determination of dexamethasone in injectable eye drops and elixir samples.

  1. Determination of Xanthine in the Presence of Hypoxanthine by Adsorptive Stripping Voltammetry at the Mercury Film Electrode

    PubMed Central

    Farias, Percio Augusto Mardini; Castro, Arnaldo Aguiar

    2014-01-01

    A stripping method for the determination of xanthine in the presence of hypoxanthine at the submicromolar concentration levels is described. The method is based on controlled adsorptive accumulation at the thin-film mercury electrode followed by a fast linear scan voltammetric measurement of the surface species. Optimum experimental conditions were found to be the use of 1.0 × 10−3 mol L−1 NaOH solution as supporting electrolyte, an accumulation potential of 0.00 V for xanthine and −0.50 V for hypoxanthine–copper, and a linear scan rate of 200 mV second−1. The response of xanthine is linear over the concentration ranges of 20–140 ppb. For an accumulation time of 30 minutes, the detection limit was found to be 36 ppt (2.3 × 10−10 mol L−1). Adequate conditions for measuring the xanthine in the presence of hypoxanthine, copper and other metals, uric acid, and other nitrogenated bases were also investigated. The utility of the method is demonstrated by the presence of xanthine associated with hypoxanthine, uric acid, nitrogenated bases, ATP, and ssDNA. PMID:24940040

  2. [Determination of butene-fipronil residue in dry samples by multiple adsorption synchronous purification-gas chromatography-mass spectrometry].

    PubMed

    Ding, Liping; Guo, Jing; Zheng, Ling; Chen, Chuntian; Chen, Zhitao

    2013-08-01

    A method was developed for the determination of butene-fipronil residue in dry samples by multiple adsorption synchronous purification (MASP) -gas chromatography (GC) -mass spectrometry (MS). After extracted with 1% acetic acid-acetonitrile, the samples were pretreated with MASP method including extraction, salting-out and purification procedures, and analyzed with GC-MS under the selected ion monitoring (SIM) mode, and then quantified by matrix-match standard solution with external standard method. The results showed good linearity in the range of 2 - 100 microg/L with the correlation coefficients (r(2)) not less than 0.999. The average fortified recovery of butene-fipronil in samples was found in the range of 92.2% - 97.5% at three fortified levels from 2 to 10 microg/kg, with the relative standard deviations of 2.69% - 5.21% (n = 6). The limit of detection (S/N = 3) for butane-fipronil was 2 microg/kg and the limit of quantification (S/N = 10) was 6 microg/kg. The method is simple, rapid and accurate, and could be used for the routine analysis of butane-fipronil in dry samples. Meanwhile, the pyrolysis mechanism of butane-fipronil, as a new substance, is discussed. PMID:24369607

  3. Deuterium on the Ni(111) surface: An adsorption-position determination by transmission channeling

    NASA Astrophysics Data System (ADS)

    Mortensen, K.; Besenbacher, F.; Stensgaard, I.; Wampler, W. R.

    1988-11-01

    The results of a thorough transmission-channeling study of deuterium (D) on the Ni(111) surface are presented. For exposure to D 2 at 140 K, a (2 × 2) ordered phase is formed at a coverage of θ ≈ 0.5 ML, and a maximum coverage of ˜ 0.8 ML is obtained. Exposure to atomic D, however, gives a saturation coverage determined to be θ sat =1.0 ± 0.1 ML at Tads ⩾ 150 K. This is explained by the existence of an activation barrier for dissociative chemisorption. From an analysis of the angular scans presented, it is concluded that for the (2 × 2) phase, the D adsorbs in both types of threefold hollow sites with equal probability and at equal height above the surface, Δ z = 0.80±0.10 Å, whereas for the saturated phase, almost all D ( ˜ 90%) occupies the fcc type with the same height as for the (2 × 2) phase. Possible positions for the remaining D are discussed. From the narrowing of the [111] axial angular D scan, the two-dimensional D rms displacement parallel to the surface is extracted to be ρ D ≈ 0.25 Å. This is consistent with theoretical predictions that chemisorbed hydrogen is delocalized on metal surfaces.

  4. DETERMINATION OF PERRHENATE ADSORPTION KINETICS FROM HANFORD WASTE SIMULANTS USING SUPERLING 639 RESIN

    SciTech Connect

    Duffey, C.; King, W.; Hamm, L.

    2002-04-02

    This report describes the results of SuperLig{reg_sign} 639 sorption kinetics tests conducted at the Savannah River Technology Center (SRTC) in support of the Hanford River Protection Project - Waste Treatment Plant (RPP-WTP). The RPP-WTP contract was awarded to Bechtel for the design, construction, and initial operation of a plant for the treatment and vitrification of millions of gallons of radioactive waste currently stored in tanks at Hanford, WA. Part of the current treatment process involves the removal of technetium from tank supernate solutions using columns containing SuperLig{reg_sign} 639 resin. This report is part of a body of work intended to quantify and optimize the operation of the technetium removal columns with regard to various parameters (such as liquid flow rate, column aspect ratio, resin particle size, loading and elution temperature, etc.). The tests were conducted using nonradioactive simulants of the actual tank waste samples containing rhenium as a chemical surrogate for the technetium in the actual waste. Previous column tests evaluated the impacts of liquid flow rate, bed aspect ratio, solution temperature and composition upon SuperLig{reg_sign} 639 column performance (King et al., 2000, King et al., 2003). This report describes the results of kinetics tests to determine the impacts of resin particle size, solution composition, and temperature on the rate of uptake of perrhenate ions.

  5. Isothermal titration calorimetry of RNA.

    PubMed

    Salim, Nilshad N; Feig, Andrew L

    2009-03-01

    Isothermal titration calorimetry (ITC) is a fast and robust method to study the physical basis of molecular interactions. A single well-designed experiment can provide complete thermodynamic characterization of a binding reaction, including K(a), DeltaG, DeltaH, DeltaS and reaction stoichiometry (n). Repeating the experiment at different temperatures allows determination of the heat capacity change (DeltaC(P)) of the interaction. Modern calorimeters are sensitive enough to probe even weak biological interactions making ITC a very popular method among biochemists. Although ITC has been applied to protein studies for many years, it is becoming widely applicable in RNA biochemistry as well, especially in studies which involve RNA folding and RNA interactions with small molecules, proteins and with other RNAs. This review focuses on best practices for planning, designing and executing effective ITC experiments when one or more of the reactants is an RNA. PMID:18835447

  6. Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile

    NASA Astrophysics Data System (ADS)

    Öztürk, A.; Malkoc, E.

    2014-04-01

    In this work, natural untreated clay (NUC) was studied for the removal of Basic Yellow 2 (BY2) from aqueous solution in batch system. The effects of initial BY2 concentration, contact time, solution temperature and solution pH on BY2 adsorption were investigated. Nitrogen sorption measurements were employed to investigate the variation in surface and pore properties after dye adsorption. The adsorbent was characterized by means of FTIR, PSD, TEM, XRD and BET analysis. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Scatchard isotherm models. The maximum monolayer adsorption capacity was found to be 833.33 mg/g at 25 °C (at room temperature). The pseudo-second-order kinetic model provided the best fit to the experimental datas compared with pseudo-first-order kinetic adsorption models. To explain mass transfer mechanism of BY2 adsorption, obtained experimental datas were applied Weber and Morris model, Body and Frusawa and Smith models. The results show that the adsorption process is controlled by film diffusion. The thermodynamic parameters such as, Gibbs free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°) were determined. Adsorption of BY2 on NUC is exothermic and spontaneous in nature. The calculated activation energy of adsorption was found to be 5.24 kJ/mol for BY2. This value indicates that the adsorption process is a physisorption.

  7. Adsorption of DNA on biomimetic apatites: Toward the understanding of the role of bone and tooth mineral on the preservation of ancient DNA

    NASA Astrophysics Data System (ADS)

    Grunenwald, A.; Keyser, C.; Sautereau, A. M.; Crubézy, E.; Ludes, B.; Drouet, C.

    2014-02-01

    In order to shed some light on DNA preservation over time in skeletal remains from a physicochemical viewpoint, adsorption and desorption of DNA on a well characterized synthetic apatite mimicking bone and dentin biominerals were studied. Batch adsorption experiments have been carried out to determine the effect of contact time (kinetics), DNA concentration (isotherms) and environmentally relevant factors such as temperature, ionic strength and pH on the adsorption behavior. The analogy of the nanocrystalline carbonated apatite used in this work with biological apatite was first demonstrated by XRD, FTIR, and chemical analyses. Then, DNA adsorption kinetics was fitted with the pseudo-first order, pseudo-second order, Elovich, Ritchie and double exponential models. The best results were achieved with the Elovich kinetic model. The adsorption isotherms of partially sheared calf thymus DNA conformed satisfactorily to Temkin's equation which is often used to describe heterogeneous adsorption behavior involving polyelectrolytes. For the first time, the irreversibility of DNA adsorption toward dilution and significant phosphate-promoted DNA desorption were evidenced, suggesting that a concomitant ion exchange process between phosphate anionic groups of DNA backbone and labile non-apatitic hydrogenphosphate ions potentially released from the hydrated layer of apatite crystals. This work should prove helpful for a better understanding of diagenetic processes related to DNA preservation in calcified tissues.

  8. An EDTA-β-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater.

    PubMed

    Zhao, Feiping; Repo, Eveliina; Meng, Yong; Wang, Xueting; Yin, Dulin; Sillanpää, Mika

    2016-03-01

    The separation and recovery of Rare earth elements (REEs) from diluted aqueous streams has attracted great attention in recent years because of ever-increasing REEs demand. In this study, a green synthesized EDTA-cross-linked β-cyclodextrin (EDTA-β-CD) biopolymer was prepared and employed in adsorption of aqueous REEs, such as La(III), Ce(III), and Eu(III). EDTA acts not only as cross-linker but also as coordination site for binding of REEs. The adsorption properties for the adsorption of REEs by varying experimental conditions were carried out by batch tests. The kinetics results revealed that the surface chemical sorption and the external film diffusion were the rate-determining steps of the adsorption process. The obtained maximum adsorption capacities of EDTA-β-CD were 0.343, 0.353, and 0.365mmolg(-1) for La(III), Ce(III) and Eu(III), respectively. Importantly, the isotherms fitted better to Langmuir than Freundlich and Sips models, suggesting a homogenous adsorption surface for REEs on the adsorbent. Moreover, the multi-component adsorption, which was modeled by extended Sips isotherms, revealed adsorbent's selectivity to Eu(III). More significantly, the successful recoveries of the studied ions from tap water and seawater samples makes EDTA-β-CD a promising sorbent for the preconcentration of REEs from diluted aqueous streams.

  9. Adsorption of organic substances with different physicochemical properties 2. The heats of adsorption of freon 13B1 on active carbons

    SciTech Connect

    Baikova, T.V.; Gubkina, M.L.; Larin, A.V.; Polyakov, N.S.

    1995-03-01

    Toxic organic compounds which cause danger to the ozone layer must be removed from air. Adsorption processes are finding increasingly wide use. The linear regions of the adsorption isotherms of freon 13B1 (CF{sub 3}Br) on active carbons with different porous structures were studied by gas chromatography at 343-573 K. The Henry`s constants were determined, and the isosteric heats of adsorption (Q) were calculated in the region of zero filling. It was established that the Q values for active carbons with different pore size distributions are almost the same and vary within 38-41 kJ mol{sup -1}. This coincidence can be explained assuming that the interaction between the adsorbed molecules and the active carbons occurs in the pores whose sizes are comparable with those of the adsorbed molecules.

  10. Liquid-Phase Adsorption of Phenol onto Activated Carbons Prepared with Different Activation Levels.

    PubMed

    Hsieh; Teng

    2000-10-01

    The influence of the pore size distribution of activated carbon on the adsorption of phenol from aqueous solutions was explored. Activated carbons with different porous structures were prepared by gasifying a bituminous coal char to different extents of burn-off. The results of adsorption experiments show that the phenol capacity of these carbons does not proportionally increase with their BET surface area. This reflects the heterogeneity of the carbon surface for adsorption. The pore size distributions of these carbons, determined according to the Dubinin-Stoeckli equation, were found to vary with the burn-off level. By incorporating the distribution with the Dubinin-Radushkevich equation using an inverse proportionality between the micropore size and the adsorption energy, the isotherms for the adsorption of phenol onto these carbons can be well predicted. The present study has demonstrated that the heterogeneity of carbon surface for the phenol adsorption can be attributed to the different energies required for adsorption in different-size micropores. Copyright 2000 Academic Press. PMID:10998301

  11. Biosynthesis of bifunctional iron oxyhydrosulfate by Acidithiobacillus ferroxidans and their application to coagulation and adsorption.

    PubMed

    Gan, Min; Song, Zibo; Jie, Shiqi; Zhu, Jianyu; Zhu, Yaowu; Liu, Xinxing

    2016-02-01

    Coagulation and adsorption are important environmental technologies, which were widely applied in water treatment. In this study, a type of villous iron oxyhydrosulfate with low crystallinity, high content iron, sulfate and hydroxyl was synthesized by Acidithiobacillus ferrooxidans, which possessed coagulation and heavy metal adsorption ability simultaneously. The results showed that the Cu(II) adsorption capacity increased within a small range over the pH range of 3.0-5.0 but increased evidently over the range of 6.0-8.0. The maximal Cu(II) adsorption capacity of sample Af and Gf reached 50.97 and 46.08mg/g respectively. The optimum pH for Cr(VI) adsorption was 6.0, and the maximal adsorption capacity reached 51.32 and 59.57mg/g. The Langmuir isotherm can better describe the adsorption behavior of Cr(VI). Coagulation performance of the iron oxyhydrosulfate (Sh) has been significantly enhanced by polysilicic acid (PSA), which was mainly determined by PSA/Sh ratio, pH and coagulant dosage. Coagulation efficiency maintained approximately at 98% when the PSA/Sh ratio ranged from 0.4/0.1 to 1.0/0.1. Polysilicic acid worked efficiently in wide pH range extending, from 2 to 3.5. Coagulation performance improved significantly with the increasing of the coagulant dosage at lower dosage range, while, at higher dosage range, the improvement was not evident even with more coagulant addition.

  12. Adsorption of sunset yellow FCF from aqueous solution by chitosan-modified diatomite.

    PubMed

    Zhang, Y Z; Li, J; Li, W J; Li, Y

    2015-01-01

    Sunset yellow (SY) FCF is a hazardous azo dye pollutant found in food processing effluent. This study investigates the use of diatomaceous earth with chitosan (DE@C) as a modified adsorbent for the removal of SY from wastewater. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of SY. The obtained N2 adsorption-desorption isotherm values accord well with IUPAC type II. Our calculations determined a surface area of 69.68 m2 g(-1) for DE@C and an average pore diameter of 4.85 nm. Using response surface methodology, optimized conditions of process variables for dye adsorption were achieved. For the adsorption of SY onto DE@C, this study establishes mathematical models for the optimization of pH, contact time and initial dye concentration. Contact time plays a greater role in the adsorption process than either pH or initial dye concentration. According to the adjusted correlation coefficient (adj-R2>0.97), the models used here are suitable for illustration of the adsorption process. Theoretical experimental conditions included a pH of 2.40, initial dye concentration of 113 mg L(-1) and 30.37 minutes of contact time. Experimental values for the adsorption rate (92.54%) were close to the values predicted by the models (95.29%). PMID:26540549

  13. Competitive protein adsorption to soft polymeric layers: binary mixtures and comparison to theory.

    PubMed

    Oberle, Michael; Yigit, Cemil; Angioletti-Uberti, Stefano; Dzubiella, Joachim; Ballauff, Matthias

    2015-02-19

    Nanoparticles immersed in biological fluids readily adsorb proteins. The protein corona thus generated on the surface of the particles largely determines their biological fate. Since biological fluids, e.g., blood plasma, contain a large number of proteins, competitive adsorption must be considered. We study the competitive adsorption of lysozyme, cytochrome c, papain, and RNase A onto a soft charged polymeric layer. The experimental data of binary protein mixtures are compared to a theoretical model taking into account electrostatic and hydrophobic interactions between the proteins and the network. The interactions between bound proteins are modeled within a second virial approximation. The model possesses full generality and can be applied to the adsorption of an arbitrary number of protein types. The parameters describing the adsorption of a single protein type are obtained by isothermal titration calorimetry (ITC), while the competitive adsorption of a binary mixture is studied by fluorescence spectroscopy. The competitive adsorption can be predicted from the data related to the adsorption of the single types without adjustable parameters.

  14. Evaluation of vermicompost as a raw natural adsorbent for adsorption of pesticide methylparathion.

    PubMed

    Mendes, Camila Bitencourt; Lima, Giovana de Fátima; Alves, Vanessa Nunes; Coelho, Nívia Maria Melo; Dragunski, Douglas Cardoso; Tarley, César Ricardo Teixeira

    2012-01-01

    The assessment of vermicompost (VC) as a low-cost and alternative adsorbent for the removal of the pesticide methylparathion (MP) from an aqueous medium has been investigated by batch and column experiments. Parameters related to MP adsorption, i.e. equilibrium time (61.5 min) and adsorption pH (6.8) were optimized by using Doehlert design. The initial and final MP concentrations after adsorption assays were determined by square-wave adsorptive cathodic stripping voltammetry using an electrode composed of a multiwalled carbon nanotube dispersed in mineral oil. Batch adsorption experimental data were fitted to the Langmuir and Freundlich isotherm adsorptions, and a very good fit to the Langmuir linear model, giving a maximum adsorption capacity (MAC) of 0.17 mg g(-1). This result was very similar to that obtained with the column experiments. In order to evaluate the MP desorption from column packed VC, 100.0 ml of nitric acid solution (pH 3.0) has been percolated through material. No leaching of MP was observed, thus confirming the strong interaction between MP and VC. The satisfactory MAC obtained and low cost makes the VC a reliable natural material for the removal of MP from aqueous effluents.

  15. Adsorption of sunset yellow FCF from aqueous solution by chitosan-modified diatomite.

    PubMed

    Zhang, Y Z; Li, J; Li, W J; Li, Y

    2015-01-01

    Sunset yellow (SY) FCF is a hazardous azo dye pollutant found in food processing effluent. This study investigates the use of diatomaceous earth with chitosan (DE@C) as a modified adsorbent for the removal of SY from wastewater. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of SY. The obtained N2 adsorption-desorption isotherm values accord well with IUPAC type II. Our calculations determined a surface area of 69.68 m2 g(-1) for DE@C and an average pore diameter of 4.85 nm. Using response surface methodology, optimized conditions of process variables for dye adsorption were achieved. For the adsorption of SY onto DE@C, this study establishes mathematical models for the optimization of pH, contact time and initial dye concentration. Contact time plays a greater role in the adsorption process than either pH or initial dye concentration. According to the adjusted correlation coefficient (adj-R2>0.97), the models used here are suitable for illustration of the adsorption process. Theoretical experimental conditions included a pH of 2.40, initial dye concentration of 113 mg L(-1) and 30.37 minutes of contact time. Experimental values for the adsorption rate (92.54%) were close to the values predicted by the models (95.29%).

  16. Evaluation of theoretical and empirical water vapor sorption isotherm models for soils

    NASA Astrophysics Data System (ADS)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per; de Jonge, Lis W.

    2016-01-01

    The mathematical characterization of water vapor sorption isotherms of soils is crucial for modeling processes such as volatilization of pesticides and diffusive and convective water vapor transport. Although numerous physically based and empirical models were previously proposed to describe sorption isotherms of building materials, food, and other industrial products, knowledge about the applicability of these functions for soils is noticeably lacking. We present an evaluation of nine models for characterizing adsorption/desorption isotherms for a water activity range from 0.03 to 0.93 based on measured data of 207 soils with widely varying textures, organic carbon contents, and clay mineralogy. In addition, the potential applicability of the models for prediction of sorption isotherms from known clay content was investigated. While in general, all investigated models described measured adsorption and desorption isotherms reasonably well, distinct differences were observed between physical and empirical models and due to the different degrees of freedom of the model equations. There were also considerable differences in model performance for adsorption and desorption data. While regression analysis relating model parameters and clay content and subsequent model application for prediction of measured isotherms showed promise for the majority of investigated soils, for soils with distinct kaolinitic and smectitic clay mineralogy predicted isotherms did not closely match the measurements.

  17. Irreversible adsorption of phenolic compounds by activated carbons

    SciTech Connect

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  18. Isothermal separation processes

    NASA Technical Reports Server (NTRS)

    England, C.

    1982-01-01

    The isothermal processes of membrane separation, supercritical extraction and chromatography were examined using availability analysis. The general approach was to derive equations that identified where energy is consumed in these processes and how they compare with conventional separation methods. These separation methods are characterized by pure work inputs, chiefly in the form of a pressure drop which supplies the required energy. Equations were derived for the energy requirement in terms of regular solution theory. This approach is believed to accurately predict the work of separation in terms of the heat of solution and the entropy of mixing. It can form the basis of a convenient calculation method for optimizing membrane and solvent properties for particular applications. Calculations were made on the energy requirements for a membrane process separating air into its components.

  19. Measurements of water vapor adsorption on the Geysers rocks

    SciTech Connect

    Gruszkiewicz, Miroslaw S.; Horita, Juske; Simonson, John M.; Mesmer, Robert E.

    1996-01-24

    The ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quantity of water retained by rock samples taken from three different wells of The Geysers was measured at 150 °C and at 200 °C as a function of pressure in the range 0.00 ≤ p/p0 ≤ 0.98, where p0 is the saturated water vapor pressure. The rocks were crushed and sieved into three fractions of different grain sizes (with different specific surface areas). Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and extent of the hysteresis. Additionally, BET surface area analyses were performed by Porous Materials Inc. on the same rock samples using nitrogen or krypton adsorption measurements at 77 K. Specific surface areas and pore volumes were determined. These parameters are important in estimating water retention capability of a porous material. The same laboratory also determined the densities of the samples by helium pycnometry. Their results were then compared with our own density values obtained by measuring the effect of buoyancy in compressed argon. One of the goals of this project is to determine the dependence of the water retention capacity of the rocks as a function of temperature. The results show a significant dependence of the adsorption and desorption isotherms on the grain size of the sample. The increase in the amount of water retained with temperature observed previously (Shang et al., 1994a, 1994b, 1995) between 90 and 130°C for various reservoir rocks from The Geysers may be due to the contribution of slow chemical adsorption and may be dependent on the time allowed for equilibration. In contrast with the results of Shang et al. (1994a, 1994b, 1995), some closed and nearly closed hysteresis loops on the water adsorption/desorption isotherms (with closing points at p/p0 ≈ 0.6) were obtained in this study. In these cases the effects of activated

  20. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.

    PubMed

    Altenor, Sandro; Carene, Betty; Emmanuel, Evens; Lambert, Jacques; Ehrhardt, Jean-Jacques; Gaspard, Sarra

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X(P) (gH(3)PO(4)/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m(2)/g) and high pore volume (up to 1.19 cm(3)/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R(2)) and the normalized standard deviation Deltaq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB

  1. Physical adsorption and charge transfer of molecular Br2 on graphene.

    PubMed

    Chen, Zheyuan; Darancet, Pierre; Wang, Lei; Crowther, Andrew C; Gao, Yuanda; Dean, Cory R; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Marianetti, Chris A; Brus, Louis E

    2014-03-25

    We present a detailed study of gaseous Br2 adsorption and charge transfer on graphene, combining in situ Raman spectroscopy and density functional theory (DFT). When graphene is encapsulated by hexagonal boron nitride (h-BN) layers on both sides, in a h-BN/graphene/h-BN sandwich structure, it is protected from doping by strongly oxidizing Br2. Graphene supported on only one side by h-BN shows strong hole doping by adsorbed Br2. Using Raman spectroscopy, we determine the graphene charge density as a function of pressure. DFT calculations reveal the variation in charge transfer per adsorbed molecule as a function of coverage. The molecular adsorption isotherm (coverage versus pressure) is obtained by combining Raman spectra with DFT calculations. The Fowler-Guggenheim isotherm fits better than the Langmuir isotherm. The fitting yields the adsorption equilibrium constant (∼0.31 Torr(-1)) and repulsive lateral interaction (∼20 meV) between adsorbed Br2 molecules. The Br2 molecule binding energy is ∼0.35 eV. We estimate that at monolayer coverage each Br2 molecule accepts 0.09 e- from single-layer graphene. If graphene is supported on SiO2 instead of h-BN, a threshold pressure is observed for diffusion of Br2 along the (somewhat rough) SiO2/graphene interface. At high pressure, graphene supported on SiO2 is doped by adsorbed Br2 on both sides. PMID:24528378

  2. Adsorption of H2, Ne, and N2 on Activated Charcoal

    NASA Technical Reports Server (NTRS)

    Chang, C. K.; Tward, E.; Boudaie, K. I.

    1986-01-01

    9-page report presents measured adsorption isotherms of hydrogen, neon, and nitrogen on activated charcoal for temperatures from 77 to 400 K and pressures from 1 to 80 atmospheres (0.1 to 8.1 MPa). Heats of adsorption calculated from isotherms also presented. Report gives expressions, based on ideal-gas law, which show relationship between different definitions of volume of gas adsorbed and used in describing low-pressure isotherms.

  3. Adsorption of methylene blue from aqueous solution by graphene.

    PubMed

    Liu, Tonghao; Li, Yanhui; Du, Qiuju; Sun, Jiankun; Jiao, Yuqin; Yang, Guangming; Wang, Zonghua; Xia, Yanzhi; Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-02-01

    Graphene was prepared using a modified Hummers' method. The physico-chemical properties of graphene were characterized by TEM, BET specific surface area, FTIR, Raman and XRD measurements. The effect factors including pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto graphene were investigated. The experimental data of isotherm followed the Langmuir isotherm model better than the Freundlich model. The maximum adsorption capacity obtained from Langmuir isotherm equation at 293 K was 153.85 mg/g, indicating graphene is a good adsorbent for the adsorption of MB. The kinetic study illustrated that the adsorption of methylene blue onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of methylene blue onto graphene was an endothermic and spontaneous process.

  4. Adsorption of alkenyl succinic anhydride from solutions in carbon tetrachloride on a fine magnetite surface

    NASA Astrophysics Data System (ADS)

    Balmasova, O. V.; Ramazanova, A. G.; Korolev, V. V.

    2016-06-01

    The adsorption of alkenyl succinic anhydride from a solution in carbon tetrachloride on a fine magnetite surface at a temperature of 298.15 K is studied using fine magnetite, which forms the basis of magnetic fluids, as the adsorbent. An adsorption isotherm is recorded and interpreted in terms of the theory of the volume filling of micropores (TVFM). Adsorption process parameters are calculated on the basis of the isotherm. It is shown that at low equilibrium concentrations, the experimental adsorption isotherm is linear in the TVFM equation coordinates.

  5. Sulfate adsorption on goethite

    SciTech Connect

    Rietra, R.P.J.J.; Hiemstra, T.; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  6. Effects of temperature on trichloroethylene desorption from silica gel and natural sediments. 1. Isotherms

    SciTech Connect

    Werth, C.J.; Reinhard, M.

    1997-03-01

    Aqueous phase isotherms were calculated from vapor phase desorption isotherms measured at 15, 30, and 60{degree}C for trichloroethylene on a silica gel, an aquifer sediment, a soil, a sand fraction, and a clay and silt fraction, all at 100% relative humidity. Isosteric heats of adsorption (Q{sub st}(q)) were calculated as a function of the sorbed concentration, q, and examined with respect to the following mechanisms: adsorption on water wet mineral surfaces, sorption in amorphous organic matter (AOM), and adsorption in hydrophobic micropores. Silica gel, sand fraction, and clay and silt fraction 60{degree}C isotherms are characterized by a Freundlich region and a region at very low concentrations where isotherm points deviate from log-log linear behavior. The latter is designated the non-Freundlich region. For the silica gel, values of Q{sub st}(q) (9.5-45 kJ/mol) in both regions are consistent with adsorption in hydrophobic micropores. For the natural solids, values of Q{sub st}(q) in the Freundlich regions are less than or equal to zero and are consistent with sorption on water wet mineral surfaces and in AOM. In the non-Freundlich regions, diverging different temperature isotherms with decreasing q and Q{sub st}(q) value of 34 kJ/mol for the clay and silt fraction suggest that adsorption is occurring in hydrophobic micropores. The General Adsorption Isotherm is used to capture this adsorption heterogeneity. 57 refs., 5 figs., 2 tabs.

  7. Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization.

    PubMed

    Sokker, H H; El-Sawy, Naeem M; Hassan, M A; El-Anadouli, Bahgat E

    2011-06-15

    The adsorption of crude oil (initial concentration 0.5-30 g/L) from aqueous solution using hydrogel of chitosan based polyacrylamide (PAM) prepared by radiation induced graft polymerization has been investigated. The prepared hydrogel was characterized by FTIR and SEM micrographs. The experiments were carried out as a function of different initial concentrations of oil residue, acrylamide concentration, contact time and pH to determine the optimum condition for the adsorption of residue oil from aqueous solution and sea water. The results obtained showed that the hydrogel prepared at concentration of 40% acrylamide (AAm) and at a radiation dose of 5 kGy has high removal efficiency of crude oil 2.3g/g at pH 3. Equilibrium studies have been carried out to determine the capacity of the hydrogel for adsorption of crude oil, Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherms constants. Equilibrium data were found to fit very well with both Freundlich and Langmuir models. Also the adsorption of oil onto the hydrogel behaves as a pseudo-second-order kinetic models rather than the pseudo-first-order kinetic model.

  8. Partition and water/oil adsorption of some surfactants.

    PubMed

    Tadmouri, Rawad; Zedde, Chantal; Routaboul, Corinne; Micheau, Jean-Claude; Pimienta, Véronique

    2008-10-01

    Adsorption isotherms have been determined at the water/oil interface for five biphasic systems involving surfactants (non-ionic and ionic) present in both phases at partition equilibrium. The systems studied were polyoxyethylene(23)lauryl ether (Brij35) in water/hexane and four ionic surfactants, hexadecyltrimethylammonium bromide (CTAB), and a series of three tetraalkylammonium dodecylsulfate (TEADS, TPADS, and TBADS) in water/CH 2Cl 2. Interfacial tension measurements performed at the water/air and water/oil interfaces provided all the necessary information for the determination of the adsorption parameters by taking partition into account. These measurements also allowed the comparison of the adsorption properties at both interfaces which showed an increase of the adsorption equilibrium constant and a decrease of the maximum surface concentration at the water/oil interface compared to water/air. The values of the critical aggregation concentration showed, in all cases, that only the surfactant dissolved in the aqueous phase contribute to the decrease of the water/oil interfacial tension. In the case of the four ionic surfactants, the critical aggregation concentration obtained in biphasic conditions were lowered because of the formation of mixed surfactant-CH 2Cl 2 aggregates.

  9. Carbonaceous materials for adsorptive refrigerators

    NASA Astrophysics Data System (ADS)

    Buczek, B.; Wolak, E.

    2012-06-01

    Carbon monoliths prepared from hard coal precursors were obtained. The porous structure of the monoliths was evaluated on the basis of nitrogen adsorption — desorption equilibrium data. The investigated monoliths have a well-developed microporous structure with significant specific surface area (S BET ). Equilibrium studies of methanol vapour adsorption were used to characterize the methanol adsorptive capacity that was determined using a volumetric method. The heat of wetting by methanol was determined in order to estimate the energetic effects of the adsorption process. The results of the investigations show that all monoliths exhibit high adsorption capacity and high heat of wetting with methanol.

  10. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r).

    PubMed

    Lu, Yehu; Wang, Faming; Peng, Hui; Shi, Wen; Song, Guowen

    2016-04-01

    The ASTM F2370 (2010) is the only standard with regard to measurement of clothing real evaporative resistance by means of a sweating manikin. However, the sweating set-point is not recommended in the standard. In this study, the effect of sweating rate on clothing real evaporative resistance was investigated on a 34-zone "Newton" sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r). Four different sweating set rates (i.e., all segments had a sweating rate of 400, 800, 1200 ml/hr ∙ m(2), respectively, and different sweating rates were assigned to different segments) were applied to determine the clothing real evaporative resistance of five clothing ensembles and the boundary air layer. The results indicated that the sweating rate did not affect the real evaporative resistance of clothing ensembles with the absence of strong moisture absorbent layers. For the clothing ensemble with tight cotton underwear, a sweating rate of lower than 400 ml/hr ∙ m(2) is not recommended. This is mainly because the wet fabric "skin" might not be fully saturated and thus led to a lower evaporative heat loss and thereby a higher real evaporative resistance. For vapor permeable clothing, the real evaporative resistance determined in the so-called isothermal condition should be corrected before being used in thermal comfort or heat strain models. However, the reduction of wet thermal insulation due to moisture absorption in different test scenarios had a limited contribution to the effect of sweating rate on the real evaporative resistance. PMID:26150329

  11. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r).

    PubMed

    Lu, Yehu; Wang, Faming; Peng, Hui; Shi, Wen; Song, Guowen

    2016-04-01

    The ASTM F2370 (2010) is the only standard with regard to measurement of clothing real evaporative resistance by means of a sweating manikin. However, the sweating set-point is not recommended in the standard. In this study, the effect of sweating rate on clothing real evaporative resistance was investigated on a 34-zone "Newton" sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r). Four different sweating set rates (i.e., all segments had a sweating rate of 400, 800, 1200 ml/hr ∙ m(2), respectively, and different sweating rates were assigned to different segments) were applied to determine the clothing real evaporative resistance of five clothing ensembles and the boundary air layer. The results indicated that the sweating rate did not affect the real evaporative resistance of clothing ensembles with the absence of strong moisture absorbent layers. For the clothing ensemble with tight cotton underwear, a sweating rate of lower than 400 ml/hr ∙ m(2) is not recommended. This is mainly because the wet fabric "skin" might not be fully saturated and thus led to a lower evaporative heat loss and thereby a higher real evaporative resistance. For vapor permeable clothing, the real evaporative resistance determined in the so-called isothermal condition should be corrected before being used in thermal comfort or heat strain models. However, the reduction of wet thermal insulation due to moisture absorption in different test scenarios had a limited contribution to the effect of sweating rate on the real evaporative resistance.

  12. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition ( T manikin = T a = T r)

    NASA Astrophysics Data System (ADS)

    Lu, Yehu; Wang, Faming; Peng, Hui; Shi, Wen; Song, Guowen

    2016-04-01

    The ASTM F2370 (2010) is the only standard with regard to measurement of clothing real evaporative resistance by means of a sweating manikin. However, the sweating set-point is not recommended in the standard. In this study, the effect of sweating rate on clothing real evaporative resistance was investigated on a 34-zone "Newton" sweating thermal manikin in a so-called isothermal condition ( T manikin = T a = T r). Four different sweating set rates (i.e., all segments had a sweating rate of 400, 800, 1200 ml/hr•m2, respectively, and different sweating rates were assigned to different segments) were applied to determine the clothing real evaporative resistance of five clothing ensembles and the boundary air layer. The results indicated that the sweating rate did not affect the real evaporative resistance of clothing ensembles with the absence of strong moisture absorbent layers. For the clothing ensemble with tight cotton underwear, a sweating rate of lower than 400 ml/hr•m2 is not recommended. This is mainly because the wet fabric "skin" might not be fully saturated and thus led to a lower evaporative heat loss and thereby a higher real evaporative resistance. For vapor permeable clothing, the real evaporative resistance determined in the so-called isothermal condition should be corrected before being used in thermal comfort or heat strain models. However, the reduction of wet thermal insulation due to moisture absorption in different test scenarios had a limited contribution to the effect of sweating rate on the real evaporative resistance.

  13. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    PubMed

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments.

  14. Beta-thujaplicin: new quantitative CZE method and adsorption to goethite.

    PubMed

    Dyrskov, Lone; Strobel, Bjarne W; Svensmark, Bo; Hansen, Hans Christian Bruun

    2004-03-24

    Beta-thujaplicin (beta-TH) is a toxic tropolone derivative present in the heartwood of western red cedar (Thuja plicata) and is used as a preservative and antimicrobial additive in a number of commercial goods. beta-TH released from western red cedar timber used outdoor and from other products containing beta-TH may transfer to soil and leach to groundwater and surface waters. The objective of this study was to quantify the adsorption of beta-TH to goethite as a typical model for geosorbents. Adsorption was studied using pH-adjusted goethite suspensions with solid:solution ratios of 1:500, 0.01 M NaNO(3) electrolyte, and 20 degrees C. beta-TH was determined using a new capillary zone electrophoresis (CZE) method providing a detection limit of 0.21 microM. Near-sorption equilibrium was attained within 48 h. beta-TH showed maximum adsorption at low pH (3.8) and a 70% drop in adsorption from pH 6.2 to 8.8. The Langmuir type adsorption isotherm at pH 5.5 approached a maximum adsorption of 220 micromol/g (= 6.2 micromol/m(2)), which is more than twice the amount of phosphate adsorbed under similar conditions. The affinity of beta-TH for goethite is low as compared with organic ligands such as citrate, oxalate, and 2,4-dihydroxybenzoate. The adsorption data and FTIR analyses indicate that beta-TH is most likely adsorbed as monodentate mononuclear surface complexes at the surface of goethite. Hydrophobic adsorption is thought to contribute to the adsorption, in particular at low pH. The strong adsorption of beta-TH to goethite suggests low mobility in most soil environments, the risk of contamination increasing in soils with high pH (calcareous material), low contents of iron and aluminum oxides, phyllosilicates, and organic matter.

  15. Isothermal Amplification of Nucleic Acids.

    PubMed

    Zhao, Yongxi; Chen, Feng; Li, Qian; Wang, Lihua; Fan, Chunhai

    2015-11-25

    Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed. PMID:26551336

  16. Isothermal Amplification of Nucleic Acids.

    PubMed

    Zhao, Yongxi; Chen, Feng; Li, Qian; Wang, Lihua; Fan, Chunhai

    2015-11-25

    Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.

  17. Determination of Sb(III) using an ex-situ bismuth screen-printed carbon electrode by adsorptive stripping voltammetry.

    PubMed

    Rojas-Romo, Carlos; Serrano, Núria; Ariño, Cristina; Arancibia, Verónica; Díaz-Cruz, José Manuel; Esteban, Miquel

    2016-08-01

    The determination of Sb(III) on an ex-situ bismuth screen-printed carbon electrode (ex-situ BiSPCE) by means of adsorptive stripping voltammetry (AdSV) using quercetin-5'-sulfonic acid as chelating agent was optimized. The effect of different experimental parameters such pH, ligand concentration (CQSA), accumulation potential (Eacc) and accumulation time (tacc) were studied to obtain a wide linear range, the highest sensitivity and the lowest detection limit. Ex-situ BiSPCE was analytically compared with a sputtered bismuth screen-printed electrode (BispSPE) under optimal conditions. The obtained analytical parameters suggest that ex-situ BiSPCE behaves much better than BispSPE and the first was selected for this study. Optimal parameters were pH=4.6; CQSA=10.0 to 20.0×10(-6)molL(-1); Eacc=-0.5V and tacc=60s. Peak area is proportional to Sb(III) concentration up to 100.0μgL(-1) (tacc 60s) and 45.0μgL(-1) (tacc 120s) range, with detection limits of 1.2μgL(-)(1) (tacc 60s) and 0.8μgL(-1) (tacc 120s). The relative standard deviation for a Sb(III) solution (20.0μgL(-1)) was 3.9% for ten successive assays. Thus, the effect of various interfering metal ions was studied and the methodology was validated using a spiked groundwater reference material with very satisfactory results. PMID:27216652

  18. Multilayer adsorption of Cu(II) and Cd(II) over Brazilian Orchid Tree (Pata-de-vaca) and its adsorptive properties

    NASA Astrophysics Data System (ADS)

    Jorgetto, Alexandre de O.; da Silva, Adrielli C. P.; Wondracek, Marcos H. P.; Silva, Rafael I. V.; Velini, Edivaldo D.; Saeki, Margarida J.; Pedrosa, Valber A.; Castro, Gustavo R.

    2015-08-01

    Through very simple and inexpensive processes, pata-de-vaca leaves were turned into a powder and applied as an adsorbent for the uptake of Cu(II) and Cd(II) from water. The material was characterized through SEM, EDX, FTIR and surface area measurement. The material had its point of zero charge determined (5.24), and its adsorption capacity was evaluated as a function of time, pH and metal concentration. The material presented fast adsorption kinetics, reaching adsorption equilibrium in less than 5 min and it had a good correlation with the pseudo-second order kinetic model. Optimum pH for the adsorption of Cu(II) and Cd(II) were found to be in the range from 4 to 5, approximately. In the experiment as a function of the analyte concentration, analogously to gas adsorption, the material presented a type II isotherm, indicating the formation of multilayers for both species. Such behavior was explained with basis in the alternation between cations and anions over the material's surface, and the maximum adsorption capacity, considering the formation of the multilayers were found to be 0.238 mmol L-1 for Cu(II) and 0.113 mmol L-1 for Cd(II).

  19. Adsorption in gas mass spectrometry. I. Effects on the measurement of individual isotopic species

    NASA Astrophysics Data System (ADS)

    Gonfiantini, Roberto; Valkiers, Staf; Taylor, Philip D. P.; de Bièvre, Paul

    1997-05-01

    The adsorption-desorption process of gas molecules on the walls of the mass spectrometer inlet system was studied in order to assess quantitatively its influence on measurement results. The effects on individual isotopic species in SiF4 measurements required for the re-determination of the Avogadro constant are discussed in this paper, while the effects on isotope amount ratio determinations will be discussed in a companion paper. A model based on the Langmuir adsorption isotherm is developed, which fits well the experimental observations and provides the means to investigate adsorption and desorption kinetics in the inlet system. A parameter called the [`]apparent leak-rate coefficient' is introduced; this represents the relative variation with time of any isotopic species in the inlet system. All the adsorption parameters appearing in the balance equations are derived from the apparent leak-rate coefficient. Application of the model to long mass-spectrometric measurements of SiF4 yields a rate constant of 6.5 × 10-5 s-1 for SiF4 effusion through the molecular leak of the inlet system. Adsorption and desorption rate-constants are equal to 20-25% of the leak rate-constant, and the adsorption sites are about two orders of magnitude lower than the number of Ni and Cu atoms present on the inlet system walls.

  20. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    NASA Astrophysics Data System (ADS)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  1. [Fluoride adsorption form drinking water by granular lanthanum alginate].

    PubMed

    Huo, Ya-Kun; Ding, Wen-Ming; Huang, Xia

    2010-11-01

    Granular lanthanum alginate was prepared by dripping solved sodium alginate into lanthanum chloride solution. After washed and dried, sorbent with 1-1.5 mm diameter, 25% (mass fraction) La content was made and applied for fluoride removal from drinking test. Adsorption performance such as adsorption rate, adsorption isotherm, pH and disturbing ions effects were tested in batch adsorption. The changes of adsorbent surface and the solution composition before and after adsorption were also studied. Results showed that the adsorption rate was fast, fluoride concentration trend to stable after 2h reaction, and the adsorption rate fit for pseudo second order equation. The adsorption was significantly affected by pH and some disturbing ions, optimum pH = 4, phosphate and carbonate reduced adsorption. Adsorption isotherm fitted Langmuir equation well; the max adsorption capacity was 197.2 mg x g(-1). SEM photographs of sorbent before and after adsorption showed significantly different surface morphology; EDX composition analysis of sorbent surface and solution concentration changes before and after adsorption showed that ion exchange take placed between solution F- and sorbent surface Cl- and OH-.

  2. Ab initio molecular dynamics determination of competitive O₂ vs. N₂ adsorption at open metal sites of M₂(dobdc).

    PubMed

    Parkes, Marie V; Greathouse, Jeffery A; Hart, David B; Gallis, Dorina F Sava; Nenoff, Tina M

    2016-04-28

    The separation of oxygen from nitrogen using metal-organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. This unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF. PMID:27063148

  3. Studies of adsorption equilibria and kinetics in the systems: Aqueous solution of dyes-mesoporous carbons

    NASA Astrophysics Data System (ADS)

    Derylo-Marczewska, A.; Marczewski, A. W.; Winter, Sz.; Sternik, D.

    2010-06-01

    Two carbonaceous materials were synthesized by using the method of impregnation of mesoporous silicas obtained by applying the Pluronic copolymers as pore-creating agents. The isotherms of adsorption of methylene blue and methyl orange from aqueous solutions were measured by the static method. The profiles of adsorbate concentration change in time were obtained from the UV-vis spectra. The adsorption isotherms and kinetic dependence were discussed in the terms of theory of adsorption on heterogeneous surfaces.

  4. Multiple-acid equilibria in adsorption of carboxylic acids from dilute aqueous solution

    SciTech Connect

    Husson, S.M.; King, C.J.

    1999-02-01

    Equilibria were measured for adsorption of carboxylic acids from aqueous, binary-acid mixtures of lactic and succinic acids and acetic and formic acids onto basic polymeric sorbents. The experimentally determined adsorption isotherms compared well with model predictions, confirming that simple extensions from adsorption of individual acids apply. Fixed-bed studies were carried out that establish the efficacy of chromatographic fractionation of lactic and succinic acids using basic polymeric sorbents. Finally, sequential thermal and solvent regeneration of lactic and acetic acid-laden sorbents was investigated as a method to fractionate among coadsorbed volatile and nonvolatile acids. Essentially complete removal of the acetic acid from the acid-laden sorbent was achieved by vaporization under the conditions used; a small amount of loss of lactic acid (about 11%) was observed.

  5. Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution.

    PubMed

    Kabbashi, Nassereldeen A; Atieh, Muataz A; Al-Mamun, Abdullah; Mirghami, Mohamed E S; Alam, M D Z; Yahya, Noorahayu

    2009-01-01

    The capability of carbon nanotubes (CNTs) to adsorb lead (Pb) in aqueous solution was investigated. Batch mode adsorption experiment was conducted to determine the effects of pH, agitation speed, CNTs dosage and contact time. The removal of Pb(II) reached maximum value 85% or 83% at pH 5 or 40 mg/L of CNTs, respectively. Higher correlation coefficients from Langmuir isotherm model indicates the strong adsorptions of Pb(II) on the surface of CNTs (adsorption capacity Xm = 102.04 mg/g). The results indicates that the highest percentage removal of Pb (96.03%) can be achieved at pH 5, 40 mg/L of CNTs, contact time 80 min, and agitation speed 50 r/min.

  6. {sup 4}He adsorption and superfluid transition on C{sub 60}

    SciTech Connect

    Teizer, W.; Hallock, R.B.; Hebard, A.F.

    1997-10-01

    The authors present adsorption isotherm data of {sup 4}He on C{sub 60} for 1.50 K < T < 1.68 K determined by measurements of the frequency of quartz crystal microbalances (QCM`s) coated with C{sub 60} films. They find a Kosterlitz-Thouless transition with a jump in the areal superfluid density close to predictions. By comparing the adsorbed {sup 4}He on two QCM`s they derive an upper limit for the amount of {sup 4}He intercalated into C{sup 60} at low temperature of 0.05 {sup 4}He atoms per C{sub 60} molecule. The low coverage portion of the adsorption data shows an apparent excess adsorption of {sup 4}He onto the C{sub 60}.

  7. Determination of trace levels of parabens in real matrices by bar adsorptive microextraction using selective sorbent phases.

    PubMed

    Almeida, C; Nogueira, J M F

    2014-06-27

    In the present work, the development of an analytical methodology which combines bar adsorptive microextraction with microliquid desorption followed by high performance liquid chromatography-diode array detection (BAμE-μLD/HPLC-DAD) is proposed for the determination of trace levels of four parabens (methyl, ethyl, propyl and buthyl paraben) in real matrices. By comparing six polymer (P1, P2, P3, P4, P5 and P6) and five activated carbon (AC1, AC2, AC3, AC4 and AC5) coatings through BAμE, AC2 exhibited much higher selectivity and efficiency from all the sorbent phases tested, even when compared with the commercial stir bar sorptive extraction with polydimethylsiloxane. Assays performed through BAμE(AC2, 1.7mg) on 25mL of ultrapure water samples spiked at the 8.0μg/L level, yielded recoveries ranging from 85.6±6.3% to 100.6±11.8%, under optimized experimental conditions. The analytical performance showed also convenient limits of detection (0.1μg/L) and quantification (0.3μg/L), as well as good linear dynamic ranges (0.5-28.0μg/L) with remarkable determination coefficients (r(2)>0.9982). Excellent repeatability was also achieved through intraday (RSD<10.2%) and interday (RSD<10.0%) assays. By downsizing the analytical device to half-length (BAμE(AC2, 0.9mg)), similar analytical data was also achieved for the four parabens, under optimized experimental conditions, showing that this analytical technology can be design to operate with lower volumes of sample and desorption solvent, thus increasing the sensitivity and effectiveness. The application of the proposed analytical approach using the standard addition methodology on tap, underground, estuarine, swimming pool and waste water samples, as well as on commercial cosmetic products and urine samples, revealed good sensitivity, absence of matrix effects and the occurrence of levels of some parabens. Moreover, the present methodology is easy to implement, reliable, sensitive, requiring low sample and minimized

  8. Predicting Arsenate Adsorption by Soils Using Soil Chemical Parameters in the Constant Capacitance Model

    NASA Astrophysics Data System (ADS)

    Goldberg, S. R.; Lesch, S. M.; Suarez, D. L.

    2004-12-01

    Prediction of arsenate, As(V), adsorption and transport in soils requires detailed studies of As(V) adsorption and subsequent determination of model parameters. Arsenate adsorption on 49 soil samples belonging to six different soil orders was investigated as a function of solution pH (3-10). The set of soils consisted of two subgroups: one from the Midwestern U.S. and one primarily from the southwestern U.S. For most soils, As(V) adsorption increased with increasing solution pH, reached a maximum around pH 6-7, and decreased with further increases in solution pH. The constant capacitance model, a chemical surface complexation model, was well able to describe As(V) adsorption on the soil samples as a function of solution pH by simultaneously optimizing three As(V) surface complexation constants. The ability to describe As(V) adsorption as a function of pH represents an advancement over the Langmuir and Freundlich adsorption isotherm approaches. A general regression model was developed for predicting soil As(V) surface complexation constants from easily measured soil chemical characteristics using the As(V) adsorption data for 44 of the soils. These chemical properties were: cation exchange capacity (CEC), surface area (SA), inorganic carbon content (IOC), organic carbon content (OC), and iron oxide content (Fe). A preliminary analysis determined that the mean surface complexation constant values for the two soil subgroups were statistically different. For this reason, while the regression model equations for each soil subgroup contained common intercepts and ln(CEC) terms, the ln(IOC), ln(OC), ln(Fe), and ln(SA) terms were different. The constant capacitance model was able to predict As(V) adsorption on most of the 44 soils using the As(V) surface complexation constants predicted from the regression equations. The prediction equations were used to obtain values for As(V) surface complexation constants for the remaining five soils that had not been used to obtain the

  9. Adsorptive removal of PPCPs by biomorphic HAP templated from cotton.

    PubMed

    Huang, Bin; Xiong, Dan; Zhao, Tingting; He, Huan; Pan, Xuejun

    2016-01-01

    Biomorphic nano-hydroxyapatite (HAP) was fabricated by a co-precipitation method using cotton as bio-templates and employed in adsorptive removal of ofloxacin (OFL) and triclosan (TCS) that are two representative pharmaceuticals and personal care products (PPCPs). The surface area and porosity, crystal phase, functional group, morphology and micro-structure of the synthesized HAP were characterized by Brunauer-Emmett-Teller isotherm, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron macroscopic and transmission electron microscopy. The effects of initial pH, ionic strength, initial concentration, contact time and temperature on the removal of PPCPs were studied in a batch experiment. The adsorption of OFL and TCS was rapid and almost accomplished within 50 min. Kinetic studies indicated that the adsorption process of OFL and TCS followed the pseudo-first-order and pseudo-second-order models, respectively. The Freundlich isotherm described the OFL adsorption process well but the adsorption of TCS fitted the Langmuir isotherm better. Thermodynamics and isotherm parameters suggested that both OFL and TCS adsorption were feasible and spontaneous. Hydrogen bond and Lewis acid-base reaction may be the dominating adsorption mechanism of OFL and TCS, respectively. Compared to other adsorbents, biomorphic HAP is environmentally friendly and has the advantages of high adsorption capacity, exhibiting potential application for PPCPs removal. PMID:27387006

  10. EFFECT OF GAC CHARACTERISTICS ON ADSORPTION OF ORGANIC POLLUTANTS

    EPA Science Inventory

    The impact of the characteristics of granular activated carbon (GAC) on adsorption capacity and on the potential for polymerization of phenolic compounds on the surface of GAC in the presence of molecular oxygen is evaluated in this study. Adsorption isotherm data were collected...

  11. Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite.

    PubMed

    Ozcan, Adnan; Ozcan, A Safa

    2005-10-17

    The adsorption of Acid Red 57 (AR57) onto surfactant-modified sepiolite was investigated in aqueous solution in a batch system with respect to contact time, pH and temperature. The surface modification of surfactant-modified sepiolite was controlled using the FTIR technique. The pseudo-first-order, pseudo-second-order kinetic models and the intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted very well the pseudo-second-order kinetic model and also followed the intraparticle diffusion model up to 90 min, whereas diffusion is not only the rate controlling step. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The Freundlich model agrees with experimental data well. The activation energy, change of free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of AR57 onto surfactant-modified sepiolite. The results indicate that surfactant-modified sepiolite could be employed as low-cost material for the removal of textile dyes from effluents. PMID:16019142

  12. Evaluating the long-term performance of low-cost adsorbents using small-scale adsorption column experiments.

    PubMed

    Callery, O; Healy, M G; Rognard, F; Barthelemy, L; Brennan, R B

    2016-09-15

    This study investigated a novel method of predicting the long-term phosphorus removal performance of large-scale adsorption filters, using data derived from short-term, small-scale column experiments. The filter media investigated were low-cost adsorbents such as aluminum sulfate drinking water treatment residual, ferric sulfate drinking water treatment residual, and fine and coarse crushed concretes. Small-bore adsorption columns were loaded with synthetic wastewater, and treated column effluent volume was plotted against the mass of phosphorus adsorbed per unit mass of filter media. It was observed that the curve described by the data strongly resembled that of a standard adsorption isotherm created from batch adsorption data. Consequently, it was hypothesized that an equation following the form of the Freundlich isotherm would describe the relationship between filter loading and media saturation. Moreover, the relationship between filter loading and effluent concentration could also be derived from this equation. The proposed model was demonstrated to accurately predict the performance of large-scale adsorption filters over a period of up to three months with a very high degree of accuracy. Furthermore, the coefficients necessary to produce said model could be determined from just 24 h of small-scale experimental data. PMID:27295617

  13. Effect of charge regulation on steric mass-action equilibrium for the ion-exchange adsorption of proteins.

    PubMed

    Shen, Hong; Frey, Douglas D

    2005-06-24

    A thermodynamic formalism is developed for incorporating the effects of charge regulation on the ion-exchange adsorption of proteins under mass-overloaded conditions as described by the steric mass-action (SMA) isotherm. To accomplish this, the pH titration behavior of a protein and the associated adsorption equilibrium of the various charged forms of a protein are incorporate