Science.gov

Sample records for adsorption isotherms obtained

  1. A thermodynamic model for gas adsorption isotherms

    SciTech Connect

    Riazi, M.R.; Khan, A.R.

    1999-02-15

    In this paper based on the principle of solution thermodynamics for gas-solid equilibrium, a relation is developed to express gas adsorption isotherms. An activity coefficient model based on weight fraction of sorbate in the solid phase has been derived that well describes the behavior of various gases on different types of adsorbents. The proposed model has been evaluated and compared with four other models commonly used for gas adsorption isotherms in the literature. For 12 different systems at various isotherms for the temperature range {minus}128 to 100 C and the pressure range 0.02 to 1219 kPa for 689 data points, the proposed model predicts equilibrium pressure with an average deviation of 5.3%, which is about half of the error obtained from other methods. The proposed model clearly outperforms other available methods such as the vacancy solution theory, the ideal adsorption solution model, and other various modified forms of the Langmuir isotherm. Unique features of the proposed model are its simplicity, generality, and accuracy over the entire pressure and temperature ranges.

  2. Adsorption Isotherms and Surface Reaction Kinetics

    ERIC Educational Resources Information Center

    Lobo, L. S.; Bernardo, C. A.

    1974-01-01

    Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)

  3. CARBON ADSORPTION ISOTHERMS FOR TOXIC ORGANICS

    EPA Science Inventory

    An experimental protocol for measuring the activated carbon adsorption isotherm was developed and applied to a wide range of organic compounds. Methods for treatment of the isotherm data and a standard format for presentation of results are shown. In the early phase of the study ...

  4. Simulated Water Adsorption Isotherms in Hydrophilic and Hydrophobic Cylinderical Nanopores

    SciTech Connect

    StrioloDr., A; Naicker, P. K.; Chialvo, Ariel A; Cummings, Peter T; Gubbins, Dr. K. E.

    2005-01-01

    Grand canonical Monte Carlo simulations are performed to study the adsorption of water in single-walled carbon nanotubes (SWCNs). At room temperature the resulting adsorption isotherms in (10:10) and wider SWCNs are characterized by negligible amount of water uptake at low pressures, sudden and complete pore filling once a threshold pressure is reached, and wide adsorption/desorption hysteresis loops. The width of these loops decreases as pore diameter narrows. Adsorption/desorption hysteresis loops are not observed for water adsorption in (6:6) SWCNs. When the nanotubes are doped with small amounts of oxygenated sites it is possible to obtain adsorption isotherms in which the water uptake increases gradually as the pressure increases. Simulated X-ray diffraction patterns for confined water are also reported.

  5. Adsorption isotherm of non-azeotropic solution onto porous adsorbents

    NASA Astrophysics Data System (ADS)

    Bono, A.; Ramlan, N. A.; Anisuzzaman, S. M.; Chu, C. M.; Farm, Y. Y.

    2016-06-01

    Adsorption isotherm is essential component in the understanding of the adsorption process. Several methods of the measurements, analysis and interpretation of adsorption from solution have been reported in the literature. Most of the measurements of adsorption isotherm from solution were involved the measurement of excess isotherm conducted at low region of sorbates concentration. Direct interpretation of excess adsorption isotherm as adsorption isotherm is always been practice. Therefore, in this work a study on the measurement of the adsorption isotherm from solution of non-azeotropic organic solvent mixture onto porous adsorbents for whole range of liquid concentration was conducted. The study included the measurement of excess adsorption isotherm using conventional technique. Theoretical analysis and interpretation of adsorption isotherm from the excess isotherm were conducted using Pseudo Ideal Adsorption, Gibbs Dividing Plane Model and Langmuir-Fruendlich binary isotherm model. For organic solvents, acetone and propanol were chosen as the adsorbates due to the non-azeotropic properties in the mixture. Activated carbon and silicalite were chosen as adsorbents due to the different in their porosity such as macro porous and micro porous structure. The result of the study has revealed that the adsorption isotherm of non-azeotropic mixture onto activated carbon and silicalite can be interpreted as monolayer type of adsorption.

  6. The Calculation of Adsorption Isotherms from Chromatographic Peak Shapes

    ERIC Educational Resources Information Center

    Neumann, M. G.

    1976-01-01

    Discusses the relationship between adsorption isotherms and elution peak shapes in gas chromatography, and describes a laboratory experiment which involves the adsorption of hexane, cyclohexane, and benzene on alumina at different temperatures. (MLH)

  7. Adsorption isotherm special study. Final report

    SciTech Connect

    1993-05-01

    The study was designed to identify methods to determine adsorption applicable to Uranium Mill Tailings Remedial Action (UMTRA) Project sites, and to determine how changes in aquifer conditions affect metal adsorption, resulting retardation factors, and estimated contaminant migration rates. EPA and ASTM procedures were used to estimate sediment sorption of U, As, and Mo under varying groundwater geochemical conditions. Aquifer matrix materials from three distinct locations at the DOE UMTRA Project site in Rifle, CO, were used as the adsorbents under different pH conditions; these conditions stimulated geochemical environments under the tailings, near the tailings, and downgradient from the tailings. Grain size, total surface area, bulk and clay mineralogy, and petrography of the sediments were characterized. U and Mo yielded linear isotherms, while As had nonlinear ones. U and Mo were adsorbed strongly on sediments acidified to levels similar to tailings leachate. Changes in pH had much less effect on As adsorption. Mo was adsorbed very little at pH 7-7.3, U was weakly sorbed, and As was moderately sorbed. Velocities were estimated for metal transport at different pHs. Results show that the aquifer materials must be characterized to estimate metal transport velocities in aquifers and to develop groundwater restoration strategies for the UMTRA project.

  8. Multifractal characteristics of Nitrogen adsorption isotherms from tropical soils

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, Eva; Paz Ferreiro, Jorge

    2010-05-01

    One of the primary methods used to characterize a wide range of porous materials, including soils, are gas adsorption isotherms. An adsorption isotherm is a function relating the amount of adsorbed gas or vapour to the respective equilibrium pressure, during pressure increase at constant temperature. Adsorption data allow easily estimates of specific surface area and also can provide a characterization of pore surface heterogeneity. Most of the properties and the reactivity of soil colloids are influenced by their specific surface area and by parameters describing the surface heterogeneity. For a restricted scale range, linearity between applied pressure and volume of adsorbate holds, which is the basis for current estimations of specific surface area. However, adsorption isotherms contain also non-linear segments of pressure versus volume so that evidence of multifractal scale has been demonstrated. The aim of this study was to analyze the multifractal behaviour of nitrogen adsorption isotherms from a set of tropical soils. Samples were collected form 54 horizons belonging to 19 soil profiles in the state of Minas Gerais, Brazil. The most frequent soil type was Oxisol, according to the Soil Survey Staff, equivalent to Latossolo in the Brazilian soil classification system. Nitrogen adsorption isotherms at standard 77 K were measured using a Thermo Finnigan Sorptomatic 1990 gas sorption analyzer (Thermo Scientific, Waltham, MA). From the raw data a distributions of mass along a support was obtained to perform multifractal analysis. The probability distribution was constructed by dividing the values of the measure in a given segment by the sum of the measure in the whole scale range. The box-counting method was employed to perform multifractal analysis. All the analyzed N2 adsorption isotherms behave like a multifractal system. The singularity spectra, f(α), showed asymmetric concave down parabolic shapes, with a greater tendency toward the left side, where moments

  9. 40 CFR 796.2750 - Sediment and soil adsorption isotherm.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Sediment and soil adsorption isotherm. 796.2750 Section 796.2750 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Transport Processes § 796.2750 Sediment and soil adsorption isotherm....

  10. The Effect of Pore Connectivity on Water Adsorption Isotherms in Non-activated Graphitic Nanopores

    SciTech Connect

    StrioloDr., A; Gubbins, Dr. K. E.; Chialvo, Ariel A; Cummings, Peter T

    2005-01-01

    The adsorption of water in graphitic carbons is usually simulated via a weighted average of the adsorption isotherms simulated in carbon-slit pore of different widths. By following this procedure, details about pore morphology and pore connectivity may be overlooked. Towards a better match between virtual and real experiments, we present simulated adsorption isotherms for SPC/E model water in porous carbons composed by interconnected carbon-slit pores. The pores are separated from each other by one graphene layer. Imperfections (lack of carbon atoms) in the graphene layers result in interconnections between pores. The grand canonical Monte Carlo algorithm is used here to simulate water adsorption. Our results show that while the qualitative features obtained in the simulation of independent slit-shaped pores are reproduced when interconnected pores are considered, the adsorption isotherms rise more gradually and the adsorption/desorption hysteresis loops are narrower in the latter case.

  11. Characterizing Nitrogen adsorption and desorption isotherms in soils using multifractal analysis

    NASA Astrophysics Data System (ADS)

    Paz Ferreiro, Jorge; Miranda, José G. V.; Vidal Vázquez, Eva

    2010-05-01

    The specific surface area is an attribute known to characterize the soil ability to retain and transport nutrients and water. A number of studies have shown that specific surface area correlates cation exchange capacity, organic matter content, water retention, aggregate stability and clay swelling. In the past fractal theory has been widely used to study different gas adsorption isotherms like water vapour and nitrogen adsorption isotherms. More recently we have shown that nitrogen adsorption isotherms showed multifractal nature. In this work, both N2 adsorption and desorption isotherms measured in a Mollisol were examined as a probability measure using the multifractal formalism in order to determinate its possible multifractal behaviour. Soil samples were collected in two different series of an Argiudoll located in the north of Buenos Aires and in the south of Santa Fe provinces, Argentina. Two treatments of each soil series were sampled at three depths, without replication, resulting in six samples per soil series and a total of twelve samples analyzed. Multifractal analysis was performed using the box counting method. Both, the N2 adsorption and desorption isotherms exhibited a well defined scaling behaviour indicating a fully developed multifractal structure of each isotherm branch. The singularity spectra and Rényi dimension spectra obtained for adsorption and also for desorption isotherms had shapes similar to the spectra of multifractal measures and several parameters were extracted from these spectra. The capacity dimension, D0, for both N2 adsorption and desorption data sets were not significantly different from 1.00. However, nitrogen adsorption and desorption data showed significantly different values of entropy dimension, D1, and correlation dimension, D2. For instance, entropy dimension values extracted from multifractal spectra of adsorption isotherms were on average 0.578 and varied from 0.501 to 0.666. In contrast, the corresponding figures for

  12. Derivation of the Freundlich Adsorption Isotherm from Kinetics

    ERIC Educational Resources Information Center

    Skopp, Joseph

    2009-01-01

    The Freundlich adsorption isotherm is a useful description of adsorption phenomena. It is frequently presented as an empirical equation with little theoretical basis. In fact, a variety of derivations exist. Here a new derivation is presented using the concepts of fractal reaction kinetics. This derivation provides an alternative basis for…

  13. Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures.

    PubMed

    Sadeek, Sadeek A; Negm, Nabel A; Hefni, Hassan H H; Wahab, Mostafa M Abdel

    2015-11-01

    Biosorption of Cu(II), Co(II) and Fe(III) ions from aqueous solutions by rice husk, palm leaf and water hyacinth was investigated as a function of initial pH, initial heavy metal ions concentration and treatment time. The adsorption process was examined by two adsorption isotherms: Langmuir and Freundlich isotherms. The experimental data of biosorption process were analyzed using pseudo-first order, pseudo-second order kinetic models. The equilibrium biosorption isotherms showed that the three studied biosorbents possess high affinity and sorption capacity for Cu(II), Co(II) and Fe(III) ions. Rice husk showed more efficiency than palm leaf and water hyacinth. Adsorption of Cu(II) and Co(II) was more efficient in alkaline medium (pH 9) than neutral medium due to the high solubility of metal ion complexes. The metal removal efficiency of each biosorbent was correlated to its chemical structure. DTA studies showed formation of metal complex between the biosorbents and the metal ions. The obtained results showed that the tested biosorbents are efficient and alternate low-cost biosorbent for removal of heavy metal ions from aqueous media. PMID:26282929

  14. Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies.

    PubMed

    Kumar, Prashant; Lau, Pei Wen; Kale, Sandeep; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet; Lali, Arvind

    2014-08-22

    Kafirin is a natural, hydrophobic and celiac safe prolamin protein obtained from sorghum seeds. Today kafirin is found to be useful in designing delayed delivery systems and coatings of pharmaceuticals and nutraceuticals where its purity is important and this can be obtained by adsorptive chromatography. This study is the first scientific insight into the isotherm and kinetic studies of kafirin adsorption on anion- and cation-exchange resins for practical applications in preparative scale chromatography. Adsorption isotherms of kafirin were determined for five anion- and two cation-exchange resins in batch systems. Isotherm parameters such as maximum binding capacity and dissociation constant were determined from Langmuir isotherm, and adsorptive capacity and affinity constant from Freundlich isotherm. Langmuir isotherm was found to fit the adsorption equilibrium data well. Batch uptake kinetics for kafirin adsorption on these resins was also carried out and critical parameters including the diffusion coefficient, film mass transfer coefficient, and Biot number for film-pore diffusion model were calculated. Both the isotherm and the kinetic parameters were considered for selection of appropriate resin for kafirin purification. UNOsphere Q (78.26 mg/ml) and Toyopearl SP-650M (57.4 mg/ml) were found to offer better kafirin binding capacities and interaction strength with excellent uptake kinetics under moderate operating conditions. With these adsorbents, film diffusion resistance was found to be major governing factor for adsorption (Bi<10 and δ<1). Based on designer objective function, UNOsphere Q was found be best adsorbent for binding of kafirin. The data presented is valuable for designing large scale preparative adsorptive chromatographic kafirin purification systems. PMID:25022481

  15. Moisture adsorption isotherms and glass transition temperature of pectin.

    PubMed

    Basu, Santanu; Shivhare, U S; Muley, S

    2013-06-01

    The moisture adsorption isotherms of low methoxyl pectin were determined at 30-70°C and water activity ranging from 0.11 to 0.94. The moisture adsorption isotherms revealed that the equilibrium moisture content increased with water activity. Increase in temperature, in general, resulted in decreased equilibrium moisture content. However in some cases, equilibrium moisture content values increased with temperature at higher water activities. Selected sorption models (GAB, Halsey, Henderson, Oswin, modified Oswin) were tested for describing the adsorption isotherms. Parameters of each sorption models were determined by nonlinear regression analysis. Oswin model gave the best fit for pectin sorption behaviour. Isosteric heat of sorption decreased with increase in moisture content and varied between 14.607 and 0.552 kJ/mol. Glass transition temperature decreased with increase in moisture content of pectin. PMID:24425957

  16. Optimal smoothing of site-energy distributions from adsorption isotherms

    SciTech Connect

    Brown, L.F.; Travis, B.J.

    1983-01-01

    The equation for the adsorption isotherm on a heterogeneous surface is a Fredholm integral equation. In solving it for the site-energy distribution (SED), some sort of smoothing must be carried out. The optimal amount of smoothing will give the most information that is possible without introducing nonexistent structure into the SED. Recently, Butler, Reeds, and Dawson proposed a criterion (the BRD criterion) for choosing the optimal smoothing parameter when using regularization to solve Fredholm equations. The BRD criterion is tested for its suitability in obtaining optimal SED's. This criterion is found to be too conservative. While using it never introduces nonexistent structure into the SED, significant information is often lost. At present, no simple criterion for choosing the optimal smoothing parameter exists, and a modeling approach is recommended.

  17. Microscopic Perspective on the Adsorption Isotherm of a Heterogeneous Surface

    PubMed Central

    Carr, Rogan; Comer, Jeffrey; Ginsberg, Mark D.; Aksimentiev, Aleksei

    2012-01-01

    Adsorption of dissolved molecules onto solid surfaces can be extremely sensitive to the atomic-scale properties of the solute and surface, causing difficulties for the design of fluidic systems in industrial, medical and technological applications. In this communication, we show that the Langmuir isotherm for adsorption of a small molecule to a realistic, heterogeneous surface can be predicted from atomic structures of the molecule and surface through molecular dynamics (MD) simulations. We highlight the method by studying the adsorption of dimethyl-methylphosphonate (DMMP) to amorphous silica substrates and show that subtle differences in the atomic-scale surface properties can have drastic effects on the Langmuir isotherm. The sensitivity of the method presented is sufficient to permit the optimization of fluidic devices and to determine fundamental design rules for controlling adsorption at the nanoscale. PMID:22611479

  18. Enthalpy of adsorption and isotherms for adsorption of naphthenic acid onto clays

    SciTech Connect

    Zou, L.; Han, B.; Yan, H.; Kasperski, K.L.; Xu, Y.; Hepler, L.G.

    1997-06-15

    The enthalpies of adsorption and the isotherms for adsorption of naphthenic acid onto Na-montmorillonite, Na-kaolinite, and Na-illite were studied by means of calorimetry and the static method at 298.15 K. The results show that the enthalpies of adsorption and saturated adsorption amounts of naphthenic acid on different clays change in the order Na-montmorillonite > Na-illite > Na-kaolinite. The interaction between naphthenic acid and clays is discussed.

  19. Adsorption and disjoining pressure isotherms of confined polymers using dissipative particle dynamics.

    PubMed

    Goicochea, A Gama

    2007-11-01

    The adsorption and disjoining pressure isotherms of polymers confined by planar walls are obtained using Monte Carlo (MC) simulations in the Grand Canonical (GC) ensemble in combination with the mesoscopic technique known as dissipative particle dynamics (DPD). Two models of effective potentials for the confining surfaces are used: one with both an attractive and a repulsive term and one with a purely repulsive term. As for the polymer, seven-bead linear model of polyethylene glycol (PEG) dissolved in water is used. The results indicate remarkably good agreement between the trends shown by our adsorption isotherms and those obtained from experiments of PEG on oxide surfaces. Additionally, the disjoining pressure isotherm of water shows oscillations, while those of PEG display the same trend for both wall models. Moreover, it is found that the disjoining pressure isotherms are in qualitative agreement with those from experiments on confined linear polymers. PMID:17914849

  20. Kinetics and isotherms of Neutral Red adsorption on peanut husk.

    PubMed

    Han, Runping; Han, Pan; Cai, Zhaohui; Zhao, Zhenhui; Tang, Mingsheng

    2008-01-01

    Adsorption of Neutral Red (NR) onto peanut husk in aqueous solutions was investigated at 295 K. Experiments were carried out as function of pH, adsorbent dosage, contact time, and initial concentration. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Toth isotherm models. The results indicated that the Toth and Langmuir models provided the best correlation of the experimental data. The adsorption capacity of peanut husk for the removal of NR was determined with the Langmuir and found to be 37.5 mg/g at 295 K. The adsorption kinetic data were modeled using the pseudo-first order, pseudo-second order, and intra-particle diffusion kinetic equations. It was seen that the pseudo-first order and pseudo-second order kinetic equations could describe the adsorption kinetics. The intraparticle diffusion model was also used to express the adsorption process at the two-step stage. It was implied that peanut husk may be suitable as adsorbent material for adsorption of NR from aqueous solutions. PMID:19143308

  1. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    SciTech Connect

    Hull, Laurence Charles; Grossman, Christopher; Fjeld, R. A.; Coates, C.J.; Elzerman, A.

    2002-08-01

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth.

  2. Estimating Uranium Partition Coefficients from Laboratory Adsorption Isotherms

    SciTech Connect

    Hull, L.C.; Grossman, C.; Fjeld, R.A.; Coates, J.T.; Elzerman, A.W.

    2002-05-10

    An estimated 330 metric tons of uranium have been buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of uranium transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of uranium fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms have been measured in the laboratory and fit with a Freundlich isotherm. The Freundlich n parameter was statistically identical for 14 sediment samples. The Freundlich Kf for seven samples, where material properties have been measured, is correlated to sediment surface area. Based on these empirical observations, a model has been derived for adsorption of uranium on INEEL sedimentary materials using surface complexation theory. The model was then used to predict the range of adsorption conditions to be expected at the SDA. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth.

  3. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    PubMed

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-01

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation. PMID:27379799

  4. Immobilization of Acetobacter aceti on cellulose ion exchangers: adsorption isotherms

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1986-08-01

    The adsorptive behavior of cells of Acetobacter aceti, ATCC 23746, on DEAE-, TEAE-, and DEHPAE-cellulose ion exchangers in a modified Hoyer's medium at 30 degrees Centigrade was investigated. The maximum observed adsorption capacities varied from 46 to 64 mg dry wt/g resin. The Langmuir isotherm form was used to fit the data, since the cells formed a monolayer on the resin and exhibited saturation. The equilibrium constant in the Langmuir expression was qualitatively correlated with the surface charge density of the resin. The adsorption was also ''normalized'' by considering the ionic capacities of the resins. The exceptionally high normalized adsorption capacity of ECTEOLA-cellulose, 261 mg dry/meq, may be explained by an interaction between the cell wall and the polyglyceryl chains of the exchanging groups in addition to the electrostatic effects. The effect of pH on the bacterial adsorption capacity of ECTEOLA-, TEAE-, and phosphate-cellulose resins was studied and the pH of the bacteria was estimated to be 3.0. 17 references.

  5. Isotherm study of reactive Blue 19 adsorption by an alum sludge

    NASA Astrophysics Data System (ADS)

    Khim, Ong Keat; Nor, Mohd Asri Md; Mohamad, Syuriya; Nasaruddin, Nas Aulia Ahmad; Jamari, Nor Laili-Azua; Yunus, Wan Md Zin Wan

    2015-05-01

    This study investigates the adsorption of Reactive Blue 19 using dewatered alum sludge. The dewatered alum sludge was a sludge produced from drinking water treatment plant. Batch adsorption experiments were performed to investigate the mechanism of the dye adsorption. The adsorption was rapid at its initial stage but the rate decreased as it approached equilibrium. The adsorption data were evaluated by Langmuir and Freundlich isotherm models but was best described by the Langmuir isotherm model as it gave the highest correlation.

  6. Effect of pore blockage on adsorption isotherms and dynamics: Anomalous adsorption of iodine on activated carbon

    SciTech Connect

    Bhatia, S.K.; Liu, F.; Arvind, G.

    2000-04-18

    Isotherm hysteresis and pore-clocking effects of trapped molecules on adsorption dynamics is studied here, using the iodine-carbon system in the 300--343 K temperature range. It is found that a portion of the iodine is strongly adsorbed, and does not desorb, even over very long time scales, while the remainder adsorbs reversibly as a homogeneous monolayer with a Langmuirian isotherm in mesopores. The strongly adsorbed iodine appears to adsorb in micropores and at the mesopore mouths, hindering uptake of the reversible iodine. The uptake data for the adsorption and desorption dynamics of the reversible part is found to be best explained by means of a pore mouth resistance control mechanism. it is concluded that the dynamics of the adsorption and desorption at the pore mouth is important at early stages of the process.

  7. Effect of moisture on adsorption isotherms and adsorption capacities of CO{sub 2} on coals

    SciTech Connect

    Ekrem Ozdemir; Karl Schroeder

    2009-05-15

    The effect of moisture on the adsorption isotherms and adsorption capacities of CO{sub 2} on Argonne Premium coals has been investigated. In some experiments a small hysteresis was observed between the adsorption and desorption isotherms. The hysteresis was absent or negligible for high-rank and as-received coals but was discernible for lower rank and dried coals. An equation that accounted for the volumetric changes when an adsorbate alters the structure of an adsorbent was employed to interpret the data. The best-fit solutions indicate that the coal volume decreases upon drying. The microscopic shrinkage estimated using helium expansion was greater than the shrinkage reported using the bed-height technique. The microscopic shrinkage was 5-10% for low-moisture medium and high-rank coals and up to 40% for low-rank coals having higher moisture contents. The CO{sub 2} swelling of coals during adsorption isotherm measurements was estimated to be about the same as the shrinkage that occurred during the moisture loss. The adsorption capacity, isosteric heat of adsorption, average pore size, and surface area of the as-received (moist) and dried Argonne coals were estimated after accounting for the volume changes. The isosteric heat of adsorption of CO{sub 2} was found to be between 23 and 25 kJ/mol for as-received coals and between 25 and 27 kJ/mol for dried coals, regardless of the rank. The degree of drying was shown to affect the adsorption capacity and the calculated surface area. For dried coals, the adsorption capacity showed the typical 'U-shape' dependence on rank whereas the as-received coals displayed a more linear dependence. A relationship is proposed to quantify the effect of moisture on the adsorption capacity. The mechanism of CO{sub 2} adsorption on moist coals and the implications of the lower adsorption capacity of wet coals to coal seam sequestration of CO{sub 2} are presented. 70 refs., 12 figs., 2 tabs.

  8. Determination of the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon using thermogravimetric analysis

    SciTech Connect

    Hsun-Yu Lin; Chung-Shin Yuan; Wei-Ching Chen; Chung-Hsuang Hung

    2006-11-15

    This study investigated the use of thermogravimetric analysis (TGA) to determine the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon (PAC). The technique is commonly applied to remove mercury-containing air pollutants from gas streams emitted from municipal solid waste incinerators. An alternative form of powdered activated carbon derived from a pyrolyzed tire char was prepared for use herein. The capacity of waste tire-derived PAC to adsorb vapor-phase HgCl{sub 2} was successfully measured using a self-designed TGA adsorption system. Experimental results showed that the maximum adsorptive capacities of HgCl{sub 2} were 1.75, 0.688, and 0.230 mg of HgCl{sub 2} per gram of powdered activated carbon derived from carbon black at 30, 70, and 150{sup o} for 500 {mu}g/m{sup 3} of HgCl{sub 2}, respectively. Four adsorption isotherms obtained using the Langmuir, Freundlich, Redlich-Peterson, and Brunauer-Emmett-eller (BET) models were used to simulate the adsorption of HgCl{sub 2}. The comparison of experimental data associated with the four adsorption isotherms indicated that BET fit the experimental results better than did the other isotherms at 30{sup o}, whereas the Freundlich isotherm fit the experimental results better at 70 and 150{sup o}. Furthermore, the calculations of the parameters associated with Langmuir and Freundlich isotherms revealed that the adsorption of HgCl{sub 2} by PAC-derived carbon black favored adsorption at various HgCl{sub 2} concentrations and temperatures. 35 refs., 7 figs., 3 tabs.

  9. Water adsorption isotherms on porous onionlike carbonaceous particles. Simulations with the grand canonical Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Hantal, György; Picaud, Sylvain; Hoang, Paul N. M.; Voloshin, Vladimir P.; Medvedev, Nikolai N.; Jedlovszky, Pál

    2010-10-01

    The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. These soot models are constructed by first removing atoms from onion-fullerene structures in order to create randomly distributed pores inside the soot, and then performing molecular dynamics simulations, based on the reactive adaptive intermolecular reactive empirical bond order (AIREBO) description of the interaction between carbon atoms, to optimize the resulting structures. The obtained results clearly show that the main driving force of water adsorption on soot is the possibility of the formation of new water-water hydrogen bonds with the already adsorbed water molecules. The shape of the calculated water adsorption isotherms at 298 K strongly depends on the possible confinement of the water molecules in pores of the carbonaceous structure. We found that there are two important factors influencing the adsorption ability of soot. The first of these factors, dominating at low pressures, is the ability of the soot of accommodating the first adsorbed water molecules at strongly hydrophilic sites. The second factor concerns the size and shape of the pores, which should be such that the hydrogen bonding network of the water molecules filling them should be optimal. This second factor determines the adsorption properties at higher pressures.

  10. Water adsorption isotherms on porous onionlike carbonaceous particles. Simulations with the grand canonical Monte Carlo method.

    PubMed

    Hantal, György; Picaud, Sylvain; Hoang, Paul N M; Voloshin, Vladimir P; Medvedev, Nikolai N; Jedlovszky, Pál

    2010-10-14

    The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. These soot models are constructed by first removing atoms from onion-fullerene structures in order to create randomly distributed pores inside the soot, and then performing molecular dynamics simulations, based on the reactive adaptive intermolecular reactive empirical bond order (AIREBO) description of the interaction between carbon atoms, to optimize the resulting structures. The obtained results clearly show that the main driving force of water adsorption on soot is the possibility of the formation of new water-water hydrogen bonds with the already adsorbed water molecules. The shape of the calculated water adsorption isotherms at 298 K strongly depends on the possible confinement of the water molecules in pores of the carbonaceous structure. We found that there are two important factors influencing the adsorption ability of soot. The first of these factors, dominating at low pressures, is the ability of the soot of accommodating the first adsorbed water molecules at strongly hydrophilic sites. The second factor concerns the size and shape of the pores, which should be such that the hydrogen bonding network of the water molecules filling them should be optimal. This second factor determines the adsorption properties at higher pressures. PMID:20950025

  11. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies.

    PubMed

    Hameed, B H; El-Khaiary, M I

    2008-06-15

    Oil palm trunk fibre (OPTF)--an agricultural solid waste--was used as low-cost adsorbent to remove malachite green (MG) from aqueous solutions. The operating variables studied were contact time, initial dye concentration, and solution pH. Equilibrium adsorption data were analyzed by three isotherms, namely the Freundlich isotherm, the Langmuir isotherm, and the multilayer adsorption isotherm. The best fit to the data was obtained with the multilayer adsorption. The monolayer adsorption capacity of OPTF was found to be 149.35 mg/g at 30 degrees C. Adsorption kinetic data were modeled using the Lagergren pseudo-first-order, Ho's pseudo-second-order and Elovich models. It was found that the Lagergren's model could be used for the prediction of the system's kinetics. The overall rate of dye uptake was found to be controlled by external mass transfer at the beginning of adsorption, then for initial MG concentrations of 25, 50, 100, 150, and 300 mg/L the rate-control changed to intraparticle diffusion at a later stage, but for initial MG concentrations 200 and 250 mg/L no evidence was found of intraparticle diffusion at any period of adsorption. It was found that with increasing the initial concentration of MG, the pore-diffusion coefficient increased while the film-diffusion coefficient decreased. PMID:18022316

  12. Comparison of multifractal parameters form adsorption isotherms, desorption isotherms and mercury intrusion curves

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Mon, Rodolfo; Vidal Vázquez, Eva

    2013-04-01

    The soil pore space is composed of a continuum of pores extremely variable in size, which range from equivalent diameter sizes smaller than nanometers to an upper limit of the order of centimeters. So, it is quite typical for soil pore space to display a size range of more than a factor of 106 in scale. Nitrogen sorption and mercury injection provide pores size distributions in the range from about 0.1 to 0.001 μm and 150 to 0.005 μm, respectively. The aims of this study were to evaluate the scaling properties of nitrogen adsorption isotherms (NAI), nitrogen desorption isotherms (NDI) and mercury intrusion porosimetry (MIP) curves of agricultural soils from "La Pampa húmeda", in the north of Buenos Aires and south of Santa Fé provinces, Argentina. Both NAIs, NDIs and MIPs exhibited multifractal behavior but its scaling properties were different so that the multifractality index, assessed by the width of the generalized dimension and the singularity spectra ranked as follows: NAI > NDI > MIP. Also, parameterization by the Hurst exponent indicates NAIs were less persistent than NDIs and in turn, these were less persistent than MIPs. The multfractal approach was useful to characterize the heterogeneity of various domains of the soil nano- micro- and mesopore system at the scale of small aggregates.

  13. Obtaining a TRIP microstructure by thermomechanical treatment without isothermal holding

    NASA Astrophysics Data System (ADS)

    Masek, B.; Jirkova, H.; Kucerova, L.; F-X Wagner, M.

    2016-03-01

    The contemporary development of technological processes for the production of modern multiphase steels can be characterized by the need for precise control of their technological parameters. The design of modern technological processes that allow sophisticated microstructures to be obtained usually cannot be carried out on real production equipment for technical as well as economical reasons. Therefore, new processes and test devices are continuously being developed to make it possible to simulate and model thermomechanical treatments on small specimens with precise control and monitoring of process parameters. A simulator for experimental modelling of thermomechanical processes has been developed at the University of West Bohemia. In this paper, to demonstrate the feasibility of simulating thermomechanical treatments with this setup on a lab scale, we discuss the thermomechanical treatment of TRIP steels without isothermal holding - a processing route that is difficult to handle and thus poses several technological as well as economic problems. The realistic processing of wire rolling with different cooling strategies is tested on the TRIP CMnSiNb steel. Our results show that the processing route without isothermal holding allows to obtain multiphase microstructures with a tensile strength of up to 835 MPa and a ductility A5mm = 25%.

  14. Correlation of adsorption isotherms of hydrogen isotopes on mordenite adsorbents using reactive vacancy solution theory

    SciTech Connect

    Munakata, K.; Nakamura, A.; Kawamura, Y.

    2015-03-15

    The authors have applied the isotherm equations derived from the reactive vacancy solution theory (RVST) to correlation of experimental and highly non-ideal adsorption isotherms of hydrogen and deuterium on a mordenite adsorbent, and have examined the ability of the isotherm equations to match this correlation. Several isotherm equations such as Langmuir, Freundlich, Toth, Vacancy Solution Theory and so forth were also tested, but they did not work. For the Langmuir-Freundlich equation tests have indicated that its 'ability to correlate' of the adsorption isotherms is not satisfactory. For the multi-site Langmuir-Freundlich (MSLF) equation the correlation of the isotherms appears to be somewhat improved but remains unsatisfactory. The results show that the isotherm equations derived from RVST can better correlate the experimental isotherms.

  15. [Application of classical isothermal adsorption models in heavy metal ions/ diatomite system and related problems].

    PubMed

    Zhu, Jian; Wu, Qing-Ding; Wang, Ping; Li, Ke-Lin; Lei, Ming-Jing; Zhang, Wei-Li

    2013-11-01

    In order to fully understand adsorption nature of Cu2+, Zn2+, Pb2+, Cd2+, Mn2+, Fe3+ onto natural diatomite, and to find problems of classical isothermal adsorption models' application in liquid/solid system, a series of isothermal adsorption tests were conducted. As results indicate, the most suitable isotherm models for describing adsorption of Pb2+, Cd2+, Cu2+, Zn2+, Mn2+, Fe3+ onto natural diatomite are Tenkin, Tenkin, Langmuir, Tenkin, Freundlich and Freundlich, respectively, the adsorption of each ion onto natural diatomite is mainly a physical process, and the adsorption reaction is favorable. It also can be found that, when using classical isothermal adsorption models to fit the experimental data in liquid/solid system, the equilibrium adsorption amount q(e) is not a single function of ion equilibrium concentration c(e), while is a function of two variables, namely c(e) and the adsorbent concentration W0, q(e) only depends on c(e)/W(0). Results also show that the classical isothermal adsorption models have a significant adsorbent effect, and their parameter values are unstable, the simulation values of parameter differ greatly from the measured values, which is unhelpful for practical use. The tests prove that four-adsorption-components model can be used for describing adsorption behavior of single ion in nature diatomite-liquid system, its parameters k and q(m) have constant values, which is favorable for practical quantitative calculation in a given system. PMID:24455943

  16. Colloidal stability dependence on polymer adsorption through disjoining pressure isotherms.

    PubMed

    Goicochea, A Gama; Nahmad-Achar, E; Pérez, E

    2009-04-01

    The disjoining pressure of polymers confined by colloidal walls was computed using dissipative particle dynamics simulations at constant chemical potential, volume, and temperature. The polymers are able to adsorb on the surfaces according to two models. In the so-called surface-modifying polymers, all monomers composing the chains have the same affinity for the substrate, whereas for the end-grafted polymer only the monomer at one of the ends of the polymer molecule adsorbs on the colloidal surface, resembling the behavior of dispersing agents. We find that these adsorption models yield markedly different disjoining pressure isotherms, which in turn predict different stability conditions for the colloidal dispersion. Our results show that for end-grafted polymers, a larger degree of polymerization at the same monomer concentration leads to better stability than for the surface-modifying ones. But also the unbound monomers of the surface-modifying type dominate over both kinds of polymers at large surface distances. The origin of these differences when the chemical nature of monomers is the same, and molecular weight and polymer concentration are used to characterize colloidal stability, is found to be mainly entropic. PMID:19228014

  17. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    DOE PAGESBeta

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that themore » GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.« less

  18. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    SciTech Connect

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that the GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.

  19. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles

    NASA Astrophysics Data System (ADS)

    Moulin, F.; Picaud, S.; Hoang, P. N. M.; Jedlovszky, P.

    2007-10-01

    The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. The soot particles are modeled by graphite-type layers arranged in an onionlike structure that contains randomly distributed hydrophilic sites, such as OH and COOH groups. The calculated water adsorption isotherm at 298K exhibits different characteristic shapes depending both on the type and the location of the hydrophilic sites and also on the size of the pores inside the soot particle. The different shapes of the adsorption isotherms result from different ways of water aggregation in or/and around the soot particle. The present results show the very weak influence of the OH sites on the water adsorption process when compared to the COOH sites. The results of these simulations can help in interpreting the experimental isotherms of water adsorbed on aircraft soot.

  20. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies.

    PubMed

    Lin, Kun-Yi Andrew; Liu, Yu-Ting; Chen, Shen-Yi

    2016-01-01

    To provide safe drinking water, fluoride in water must be removed and adsorption processes appear to be the most widely used method. Metal organic frameworks (MOFs) represent a new class of adsorbents that have been used in various adsorption applications. To study the adsorption mechanism of fluoride to MOFs in water and obtain related adsorption parameters, we synthesized a zirconium-based MOF with a primary amine group on its ligand, named UiO-66-NH2. The kinetics, adsorption isotherm and thermodynamics of fluoride adsorption to UiO-66-NH2 were investigated. The crystalline structure of UiO-66-NH2 remained intact and the local structure of zirconium in UiO-66-NH2 did not change significantly after being exposed to fluoride. The kinetics of the fluoride adsorption in UiO-66-NH2 could be well represented by the pseudo second order rate law. The enthalpy of the adsorption indicates that the F(-) adsorption to UiO-66-NH2 was classified as a physical adsorption. However, the comparison between the adsorption capacities of UiO-66-NH2 and UiO-66 suggests that the fluoride adsorption to UiO-66-NH2 might primarily involve a strong interaction between F(-) and the metal site. The fluoride adsorption capacity of UiO-66-NH2 was found to decrease when pH>7. While the presence of chloride/bromide ions did not noticeably change the adsorption capacity of UiO-66-NH2, the ionic surfactants slightly affected the adsorption capacity of UiO-66-NH2. These findings provide insights to further optimize the adsorption process for removal of fluoride using zirconium-based MOFs. PMID:26397913

  1. A Sixth-Form Teaching Unit on the Langmuir Adsorption Isotherm

    ERIC Educational Resources Information Center

    Walkley, G. H.

    1973-01-01

    Presents a teaching unit on the Langmuir absorption isotherm suitable for advanced secondary school chemistry classes. Describes the experimental investigation of the isothermal adsorption of sulfur dioxide on charcoal, and discusses the derivation of the Langmuir equation and some applications. (JR)

  2. Low-cost magnetic adsorbent for As(III) removal from water: adsorption kinetics and isotherms.

    PubMed

    Kango, Sarita; Kumar, Rajesh

    2016-01-01

    Magnetite nanoparticles as adsorbent for arsenic (As) were coated on sand particles. The coated sand was used for the removal of highly toxic element 'As(III)' from drinking water. Here, batch experiments were performed with the variation of solution pH, adsorbent dose, contact time and initial arsenic concentration. The adsorbent showed significant removal efficiency around 99.6 % for As(III). Analysis of adsorption kinetics revealed that the adsorbent follows pseudo-second-order kinetics model showing R (2) = 0.999, whereas for pseudo-first-order kinetics model, the value of R (2) was 0.978. In the case of adsorption equilibrium, the data is well fitted with Langmuir adsorption isotherm model (R (2) > 0.99), indicating monolayer adsorption of As(III) on the surface of adsorbent. The existence of commonly present ions in water influences the removal efficiency of As(III) minutely in the following order PO4 (3-) > HCO3 (-) > Cl(-) > SO4 (2-). The obtained adsorbent can be used to overcome the problem of water filtration in rural areas. Moreover, as the nano-magnetite is coated on the sand, it avoids the problem of extraction of nanoparticles from treated water and can easily be removed by a simple filtration process. PMID:26711813

  3. Enhanced fluoride adsorption by nano crystalline γ-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Chinnakoti, Prathibha; Chunduri, Avinash L. A.; Vankayala, Ranganayakulu K.; Patnaik, Sandeep; Kamisetti, Venkataramaniah

    2016-06-01

    Nano materials in particular nano oxides with enhanced surface area and an excellent catalytic surface serve as potential adsorbents for defluoridation of water. In the present study nano γ-alumina was synthesized through a simple and low cost, surfactant assisted solution combustion method. As synthesized material was characterized by XRD and FESEM for its phase, size and morphological characteristics. Surface properties have been investigated by BET method. Nano γ-alumina was further used for a detailed adsorption study to remove fluoride from water. Batches of experiments were performed at various experimental conditions such as solution pH, adsorbent dose, initial fluoride concentration and contact time to test the defluoridation ability of γ-alumina. Fluoride Adsorption by nano sized γ-alumina was rapid and reached equilibrium within two hours. The adsorption worked well at pH 4.0, where ˜96 % of fluoride was found to be adsorbed on adsorbent. It was possible to reduce fluoride levels to as low as 0.3 mg/L (within the safe limit of WHO: ≤1.5 mg/L) from an initial fluoride levels of 10 mg/L. This could be achieved using a very small quantity, 1 g/L of γ-alumina at pH 4 within 1 h of contact time. Defluoridation capacity of nano γ-alumina was further investigated by fitting the equilibrium data to various isotherm as well as kinetic models. The present study revealed that γ-alumina could be an efficient adsorbent for treating fluoride contaminated water.

  4. 40 CFR 796.2750 - Sediment and soil adsorption isotherm.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to sediments and soils is an important process that affects a chemical's distribution in the.... “Adsorption, desorption of parathion as affected by soil organic matter,” Journal of Agricultural and Food... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Sediment and soil adsorption...

  5. 40 CFR 796.2750 - Sediment and soil adsorption isotherm.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to sediments and soils is an important process that affects a chemical's distribution in the.... “Adsorption, desorption of parathion as affected by soil organic matter,” Journal of Agricultural and Food... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Sediment and soil adsorption...

  6. 40 CFR 796.2750 - Sediment and soil adsorption isotherm.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to sediments and soils is an important process that affects a chemical's distribution in the.... “Adsorption, desorption of parathion as affected by soil organic matter,” Journal of Agricultural and Food... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Sediment and soil adsorption...

  7. Kinetic Interpretation of Water Vapor Adsorption-Desorption Behavior of a Desiccant Rotor Showing S-shaped Adsorption Isotherm

    NASA Astrophysics Data System (ADS)

    Okamoto, Kumiko; Oshima, Kazunori; Takewaki, Takahiko; Kodama, Akio

    Adsorption / desorption behavior of water vapor in a desiccant rotor containing an iron aluminophosphate type zeolite FAM-Z01 (Functional Adsorbent Material Zeolite 01) was experimentally investigated for humidity swing. This rotor exhibited an S-shaped adsorption isotherm with its temperature dependence. Humidity swing, using a small piece of the rotor, could be usefully applied to interpret adsorption / desorption mechanisms by observing their rates. The most significant finding was that the adsorption / desorption rates in humidity swing could be described by the amount of adsorption, temperature and amplitude of the humidity swing, not by cycle time. Also, using the liner driving force (LDF) model, the overall mass transfer coefficient changed with the elapse of time or with the amount of adsorbed water. This implied that the LDF model, considering constant value of the overall mass transfer coefficient, was probably unable to explain the water adsorption / desorption behavior of FAM-Z01 desiccant rotor.

  8. The effects of Concentration and Salinity on Polymer Adsorption Isotherm at Sandstone Rock Surface

    NASA Astrophysics Data System (ADS)

    Ali, M.; Ben Mahmud, H.

    2015-04-01

    Adsorption of hydrolyzed polyacrylamide (HPAM) polymers on sandstone rock surface was studied by static adsorption experiments. Total of 10 Runs of static experiments were conducted in test tubes by mixing the desired solution with crushed rock sample, at temperature of 25 °C, and salinity range from 0-4 wt%. The results are in conformity with Langmuir's isotherm. Ten different isotherms were generated at each Run. The initial polymer concentration was varied from 0.3-2.1 g/l. The effects of salinity have been studied by observation on Langmuir adsorption coefficients (Y and K). The results show that the adsorption coefficient (Y) was found to have linear relationship with salinity. The adsorption coefficient (K) was found to be related to salinity by a quadratic relationship.

  9. Adsorption of di-2-pyridyl ketone salicyloylhydrazone on silica gel: characteristics and isotherms.

    PubMed

    Antonio, P; Iha, K; Suárez-Iha, M E V

    2004-10-01

    The adsorption of DPKSH onto silica gel was investigated, at 25+/-1 degrees C and pH 1, 4.7 and 12. For the same DPKSH concentration interval, the minimum required time of contact for adsorption maximum at pH 4.7 was smaller than at pH 1 and the maximum amount of DPKSH adsorbed per gram of silica at pH 1 is smaller than at pH 4.7. At pH 12 the DPKSH adsorption onto silica gel was not significant. The adsorption data followed Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The maximum amount of solute adsorbed (m(ads)(max)) and the adsorption constant, K(L), were derived from Langmuir isotherm. The Freundlich constants 1/n and K(F) related, respectively, to the energetic heterogeneity of adsorption sites and an empirical constant were evaluated. The mean sorption free energy (E) of DPKSH adsorption onto silica gel was calculated from D-R isotherm indicating a physical adsorption mode. Finally, conductimetric titrations showed the silica particle basicity and acidity as 0.002 and 0.3mmolg(-1), respectively. PMID:18969629

  10. Rapid Adsorption of Copper(II) and Lead(II) by Rice Straw/Fe3O4 Nanocomposite: Optimization, Equilibrium Isotherms, and Adsorption Kinetics Study

    PubMed Central

    Khandanlou, Roshanak; Ahmad, Mansor B.; Fard Masoumi, Hamid Reza; Shameli, Kamyar; Basri, Mahiran; Kalantari, Katayoon

    2015-01-01

    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles. PMID:25815470

  11. Modeling of adsorption isotherms of water vapor on Tunisian olive leaves using statistical mechanical formulation

    NASA Astrophysics Data System (ADS)

    Knani, S.; Aouaini, F.; Bahloul, N.; Khalfaoui, M.; Hachicha, M. A.; Ben Lamine, A.; Kechaou, N.

    2014-04-01

    Analytical expression for modeling water adsorption isotherms of food or agricultural products is developed using the statistical mechanics formalism. The model developed in this paper is further used to fit and interpret the isotherms of four varieties of Tunisian olive leaves called “Chemlali, Chemchali, Chetoui and Zarrazi”. The parameters involved in the model such as the number of adsorbed water molecules per site, n, the receptor sites density, NM, and the energetic parameters, a1 and a2, were determined by fitting the experimental adsorption isotherms at temperatures ranging from 303 to 323 K. We interpret the results of fitting. After that, the model is further applied to calculate thermodynamic functions which govern the adsorption mechanism such as entropy, the free enthalpy of Gibbs and the internal energy.

  12. Adsorption isotherms and kinetics of activated carbons produced from coals of different ranks.

    PubMed

    Purevsuren, B; Lin, Chin-Jung; Davaajav, Y; Ariunaa, A; Batbileg, S; Avid, B; Jargalmaa, S; Huang, Yu; Liou, Sofia Ya-Hsuan

    2015-01-01

    Activated carbons (ACs) from six coals, ranging from low-rank lignite brown coal to high-rank stone coal, were utilized as adsorbents to remove basic methylene blue (MB) from an aqueous solution. The surface properties of the obtained ACs were characterized via thermal analysis, N2 isothermal sorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. As coal rank decreased, an increase in the heterogeneity of the pore structures and abundance of oxygen-containing functional groups increased MB coverage on its surface. The equilibrium data fitted well with the Langmuir model, and adsorption capacity of MB ranged from 51.8 to 344.8 mg g⁻¹. Good correlation coefficients were obtained using the intra-particle diffusion model, indicating that the adsorption of MB onto ACs is diffusion controlled. The values of the effective diffusion coefficient ranged from 0.61 × 10⁻¹⁰ to 7.1 × 10⁻¹⁰ m² s⁻¹, indicating that ACs from lower-rank coals have higher effective diffusivities. Among all the ACs obtained from selected coals, the AC from low-rank lignite brown coal was the most effective in removing MB from an aqueous solution. PMID:25909729

  13. Eriobotrya japonica seed biocomposite efficiency for copper adsorption: Isotherms, kinetics, thermodynamic and desorption studies.

    PubMed

    Mushtaq, Mehwish; Bhatti, Haq Nawaz; Iqbal, Munawar; Noreen, Saima

    2016-07-01

    Adsorption techniques are widely used to remove pollutants from wastewater; however, composites are gaining more importance due to their excellent adsorption properties. Bentonite composite with Eriobotrya japonica seed was prepared and used for the adsorption of copper (Cu) metal from aqueous media. The process variables such as pH, Cu(II) ions initial concentration, adsorbent dose, contact time and temperature were optimized for maximum Cu(II) adsorption. At pH 5, adsorbent dose 0.1 g, contact time 45 min, Cu(II) ions initial concentration 75 mg/L and temperature 45 °C, maximum Cu(II) adsorption was achieved. Desorption studies revealed that biocomposite is recyclable. Langmuir, Freundlich and Harkins-Jura isotherms as well as pseudo-first and pseudo-second-order kinetics models were applied to understand the adsorption mechanism. Thermodynamic parameters (ΔG(0), ΔH(0) and ΔS(0)) suggest that the adsorption process was spontaneous and endothermic in nature. The pseudo-second-order kinetic model and Langmuir isotherm fitted well to the adsorption data. Results showed that biocomposite was more efficient for Cu(II) adsorption in comparison to individuals native Eriobotrya japonica seed biomass and Na-bentonite. PMID:27039361

  14. Novel silica-based hybrid adsorbents: lead(II) adsorption isotherms.

    PubMed

    Liu, Junsheng; Wang, Xin

    2013-01-01

    Water pollution caused by the lead(II) from the spent liquor has caught much attention. The research from the theoretical model to application fundaments is of vital importance. In this study, lead(II) adsorption isotherms are investigated using a series of hybrid membranes containing mercapto groups (-SH groups) as the hybrid adsorbents. To determine the best fitting equation, the experimental data were analyzed using six two-parameter isotherm equations (i.e., Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Temkin, Harkins-Jura, and Halsey isotherm models). It was found that the lead(II) adsorption on these samples followed the Freundlich, Dubinin-Radushkevich (D-R), and Halsey isotherm models. Moreover, the mean free energy of adsorption was calculated using Dubinin-Radushkevich (D-R) isotherm model and it was confirmed that the adsorption process was physical in nature. These findings are very meaningful in the removal of lead(II) ions from water using the hybrid membranes as adsorbents. PMID:24302877

  15. Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems.

    PubMed

    Shen, Dazhong; Fan, Jianxin; Zhou, Weizhi; Gao, Baoyu; Yue, Qinyan; Kang, Qi

    2009-12-15

    The performances of polydiallydimethylammonium modified bentonite (PDADMA-bentonite) as an adsorbent to remove anionic dyes, namely Acid Scarlet GR (AS-GR), Acid Turquoise Blue 2G (ATB-2G) and Indigo Carmine (IC), were investigated in single, binary and ternary dye systems. In adsorption from single dye solutions with initial concentration of 100 micromol/L, the dosage of PDADMA-bentonite needed to remove 95% dye was 0.42, 0.68 and 0.75 g/L for AS-GR, ATB-2G and IC, respectively. The adsorption isotherms of the three dyes obeyed the Langmuir isotherm model with the equilibrium constants of 0.372, 0.629 and 4.31 L/micromol, the saturation adsorption amount of 176.3, 149.2 and 228.7 micromol/g for ATB-2G, IC and AS-GR, respectively. In adsorption from mixed dye solutions, the isotherm of each individual dye followed an expanded Langmuir isotherm model and the relationship between the total amount of dyes adsorbed and the total equilibrium dye concentration was interpreted well by Langmuir isotherm model. In the region of insufficient dosage of PDADMA-bentonite, the dye with a larger affinity was preferentially removed by adsorption. Desorption was observed in the kinetic curve of the dye with lower affinity on PDADMA-bentonite surface by the competitive adsorption. The kinetics in single dye solution and the total adsorption of dyes in binary and ternary dye systems nicely followed pseudo-second-order kinetic model. PMID:19631461

  16. Adsorption Isotherms for Xenon and Krypton using INL HZ-PAN and AgZ-PAN Sorbents

    SciTech Connect

    Troy G. Garn; Mitchell Greenhalgh; Veronica J. Rutledge; Jack D. Law

    2014-08-01

    The generation of adsorption isotherms compliments the scale-up of off-gas processes used to control the emission of encapsulated radioactive volatile fission and activation products released during Used Nuclear Fuel (UNF) reprocessing activities. A series of experiments were conducted to obtain capacity results for varying Kr and Xe gas concentrations using HZ-PAN and AgZ-PAN engineered form sorbents. Gas compositions for Kr ranged from 150-40,000 ppmv and 250-5020 ppmv for Xe in a helium balance. The experiments were all performed at 220 K at a flowrate of 50 sccm. Acquired capacities were then respectively fit to the Langmuir equation using the Langmuir linear regression method to obtain the equilibrium parameters Qmax and Keq. Generated experimental adsorption isotherms were then plotted with the Langmuir predicted isotherms to illustrate agreement between the two. The Langmuir parameters were provided for input into the OSPREY model to predict breakthrough of single component adsorption of Kr and Xe on HZ-PAN and AgZ-PAN sorbents at the experimental conditions tested. Kr and Xe capacities resulting from model breakthrough predictions were then compared to experimental capacities for model validation.

  17. Adsorption of pharmaceuticals onto activated carbon fiber cloths - Modeling and extrapolation of adsorption isotherms at very low concentrations.

    PubMed

    Fallou, Hélène; Cimetière, Nicolas; Giraudet, Sylvain; Wolbert, Dominique; Le Cloirec, Pierre

    2016-01-15

    Activated carbon fiber cloths (ACFC) have shown promising results when applied to water treatment, especially for removing organic micropollutants such as pharmaceutical compounds. Nevertheless, further investigations are required, especially considering trace concentrations, which are found in current water treatment. Until now, most studies have been carried out at relatively high concentrations (mg L(-1)), since the experimental and analytical methodologies are more difficult and more expensive when dealing with lower concentrations (ng L(-1)). Therefore, the objective of this study was to validate an extrapolation procedure from high to low concentrations, for four compounds (Carbamazepine, Diclofenac, Caffeine and Acetaminophen). For this purpose, the reliability of the usual adsorption isotherm models, when extrapolated from high (mg L(-1)) to low concentrations (ng L(-1)), was assessed as well as the influence of numerous error functions. Some isotherm models (Freundlich, Toth) and error functions (RSS, ARE) show weaknesses to be used as an adsorption isotherms at low concentrations. However, from these results, the pairing of the Langmuir-Freundlich isotherm model with Marquardt's percent standard of deviation was evidenced as the best combination model, enabling the extrapolation of adsorption capacities by orders of magnitude. PMID:26606322

  18. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics. PMID:26512858

  19. Experimental studies of hydrogen on boron nitride: I. Adsorption isotherms of HD

    SciTech Connect

    Evans, M.D.; Sullivan, N.S.

    1995-09-01

    The authors report the results of measurements of adsorption isotherms of deuterium hydride (HD) adsorbed onto boron nitride. From this data they derive both the two-dimensional critical point temperatures (using Larher`s method) and the heat of adsorption for the first few layers of this system. These results are compared with similar measurements of HD adsorbed onto graphite and MgO. While substantial substeps within some adlayer steps are evident in the adsorption isotherms of HD on graphite and MgO and have been shown to indicate a two-dimensional liquid-solid transition within the layer, no substep is evident at the level of one percent of a step level for HD adsorbed onto BN.

  20. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    PubMed

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water. PMID:26803100

  1. Kinetics and isotherm analysis of Tropaeoline 000 adsorption onto unsaturated polyester resin (UPR): a non-carbon adsorbent.

    PubMed

    Jain, Rajeev; Sharma, Pooja; Sikarwar, Shalini

    2013-03-01

    The presence of dyes in water is undesirable due to the toxicological impact of their entrance into the food chain. Owing to the recalcitrant nature of dyes to biological oxidation, a tertiary treatment like adsorption is required. In the present study, unsaturated polyester resin (UPR) has been used as a sorbent in the treatment of dye-contaminated water. Different concentrations of Tropaeoline 000 containing water were treated with UPR. The preliminary investigations were carried out by batch adsorption to examine the effects of pH, adsorbate concentration, adsorbent dosage, contact time, and temperature. A plausible mechanism for the ongoing adsorption process and thermodynamic parameters have also been obtained from Langmuir and Freundlich adsorption isotherm models. Thermodynamic parameter showed that the sorption process of Tropaeoline 000 onto activated carbon (AC) and UPR were feasible, spontaneous, and endothermic under studied conditions. The estimated values for (ΔG) are -10.48 × 10(3) and -6.098 × 10(3) kJ mol(-1) over AC and UPR at 303 K (30 °C), indicating towards a spontaneous process. The adsorption process followed pseudo-first-order model. The mass transfer property of the sorption process was studied using Lagergren pseudo-first-order kinetic models. The values of % removal and k (ad) for dye systems were calculated at different temperatures (303-323 K). The mechanism of the adsorption process was determined from the intraparticle diffusion model. PMID:22689095

  2. Adsorption equilibrium of binary methane/ethane mixtures in BPL activated carbon: isotherms and calorimetric heats of adsorption.

    PubMed

    He, Yufeng; Yun, Jeong-Ho; Seaton, Nigel A

    2004-08-01

    The adsorption of pure methane and ethane in BPL activated carbon has been measured at temperatures between 264 and 373 K and at pressures up to 3.3 MPa with a bench-scale high-pressure open-flow apparatus. The same apparatus was used to measure the adsorption of binary methane/ethane mixtures in BPL at 301.4 K and at pressures up to 2.6 MPa. Thermodynamic consistency tests demonstrate that the data are thermodynamically consistent. In contrast to two sets of data previously published, we found that the adsorption of binary methane/ethane in BPL behaves ideally (in the sense of obeying ideal adsorbed solution theory, IAST) throughout the pressure and gas-phase composition range studied. A Tian-Calvet type microcalorimeter was used to measure low-pressure isotherms, the isosteric heats of adsorption of pure methane and ethane in BPL activated carbon, and the individual heats of adsorption in binary mixtures, at 297 K and at pressures up to 100 kPa. The mixture heats of adsorption were consistent with IAST. PMID:15274571

  3. Adsorption isotherms of phenolic compounds from aqueous solutions onto activated carbon fibers

    SciTech Connect

    Juang, R.S.; Wu, F.C.; Tseng, R.L.

    1996-05-01

    Phenolic compounds exist widely in the industrial effluents such as those from oil refineries and the coal tar, plastics, leather, paint, pharmaceutical, and steel industries. Since they are highly toxic and are, in general, not amenable to biological degradation, methods of treatment are continuously being modified and developed. Liquid-phase adsorption equilibria of eight phenolic compounds onto activated carbon fibers were measured in the concentration range 40--500 g/m{sup 3} at 303 K. High adsorption capacities were observed for the chlorinated phenols compared to the methyl-substituted phenols. Several two- and three-parameter isotherm equations were tested. Among the equations tried, the three-parameter equation of Jossens et al. based on a heterogeneous surface adsorption theory was found to be the most satisfactory over the entire range of concentration. The widely used two-parameter equations of Langmuir and Freundlich were not applicable to the present adsorption systems.

  4. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Bera, Achinta; Kumar, T.; Ojha, Keka; Mandal, Ajay

    2013-11-01

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  5. Relation between Water Vapor Adsorption Isotherms and Dynamic Dehumidification Performances of Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Inoue, Koji; Matsuguma, Shingo; Jin, Wei-Li; Okano, Hiroshi; Teraoka, Yasutake; Hirose, Tsutomu

    Desiccant rotors with different water vapor adsorption properties were fabricated by the synthesis of silica gels inside the honeycomb matrices. Dynamic dehumidification performances of the rotors were measured under different conditions and they were discussed in relation to water vapor adsorption isotherms. At the reactivation air temperatures of 80 and 140 oC, the best dynamic performance was observed with the rotor on which the adsorbed amount of water vapor at lower relative humidity was highest. When the reactivation air temperature was 50 oC, on the other hand, the rotor of which the isotherm exhibited monotonic and nearly linear increase up to higher relative humidity was the most suitable. The normalized changes of absolute humidity and adsorbed amount were defined, and these phenomena were analyzed. When the dependences of both parameters against the relative humidity were similar, the rotor showed the best dehumidification performance.

  6. Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: kinetic, isotherm and thermodynamic studies.

    PubMed

    Kara, Ali; Demirbel, Emel; Tekin, Nalan; Osman, Bilgen; Beşirli, Necati

    2015-04-01

    Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate(EG)-vinylphenyl boronic acid(VPBA)) [m-poly(EG-VPBA)], produced by suspension polymerization and characterized, was found to be an efficient solid polymer for Cr(VI) adsorption. The m-poly(EG-VPBA) microparticles were prepared by copolymerizing of ethylene glycol dimethylacrylate (EG) with 4-vinyl phenyl boronic acid (VPBA). The m-poly(EG-VPBA) microparticles were characterized by N2 adsorption/desorption isotherms, electron spin resonance (ESR), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), elemental analysis, scanning electron microscope (SEM) and swelling studies. The m-poly(EG-VPBA) microparticles were used at adsorbent/Cr(VI) ion ratios. The influence of pH, Cr(VI) initial concentration, temperature of the removal process was investigated. The maximum removal of Cr(VI) was observed at pH 2. Langmuir isotherm and Dubinin-Radushkvich isotherm were found to better fit the experiment data rather than Fruendlich isotherm. The kinetics of the adsorption process of Cr(VI) on the m-poly(EG-VPBA) microparticles were investigated using the pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models, results showed that the pseudo-second order equation model provided the best correlation with the experimental results. The thermodynamic parameters (free energy change, ΔG(0) enthalpy change, ΔH(0); and entropy change, ΔS(0)) for the adsorption have been evaluated. PMID:25666882

  7. Oxygen chemisorption on V/sub 2/O/sub 5/: isotherms and isobars of adsorption

    SciTech Connect

    Rey, L.; Gambaro, L.A.; Thomas, H.J.

    1984-06-01

    Experimental results of oxygen adsorption on V/sub 2/O/sub 5/ (isotherms and isobars) are reported. In its normal state V/sub 2/O/sub 5/ is a nonstoichiometric oxide that shows oxygen vacancies with the subsequent formation of V/sup 4 +/ ions. A model is developed for the interaction between oxygen (gaseous, adsorbed, and bulk) and the solid phase (V/sub 2/O/sub 5/). 12 references, 4 figures, 1 table.

  8. Liquid phase adsorptions of Rhodamine B dye onto raw and chitosan supported mesoporous adsorbents: isotherms and kinetics studies

    NASA Astrophysics Data System (ADS)

    Inyinbor, A. A.; Adekola, F. A.; Olatunji, G. A.

    2016-04-01

    Irvingia gabonensis endocarp waste was charred (DNc) and subsequently coated with chitosan (CCDNc). Physicochemical characteristics of the two adsorbents were established, while Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area methods were further employed for characterization. Efficiencies of the prepared adsorbents in the uptake of Rhodamine B (RhB) from aqueous effluent were investigated and adsorption data were tested using four isotherms and four kinetics models. The BET surface areas of the prepared adsorbent were 0.0092 and 4.99 m2/g for DNc and CCDNc, respectively, and maximum adsorption was recorded at pH between 3 and 4, respectively. While monolayer adsorption dominates the uptake of RhB onto DNc, uptake of RhB onto CCDNc was onto heterogeneous surface. The maximum monolayer adsorption capacities (q max) obtained from the Langmuir equation are 52.90 and 217.39 mg/g for DNc and CCDNc, respectively. Pseudo second order and Elovich kinetic models well described the kinetics of the two adsorption processes. The mean sorption energy (E) calculated from the D-R model and desorption efficiencies suggests that while the uptake of RhB onto DNc was physical in nature, for RhB-CCDNc system chemisorption dominates.

  9. Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies.

    PubMed

    Benhammou, A; Yaacoubi, A; Nibou, L; Tanouti, B

    2005-02-15

    The aim of this paper is to study the adsorption of the heavy metals (Cd(II), Cu(II), Mn(II), Pb(II), and Zn(II)) from aqueous solutions by a natural Moroccan stevensite called locally rhassoul. We carried out, first, a mineralogical and physicochemical characterization of stevensite. The surface area is 134 m2/g and the cation exchange capacity (CEC) is 76.5 meq/100 g. The chemical formula of stevensite is Si3.78Al0.22Mg2.92Fe0.09Na0.08K0.08O10(OH)2.4H2O. Adsorption tests of Cd(II), Cu(II), Mn(II), Pb(II), and Zn(II) in batch reactors were carried out at ambient temperature and at constant pH. Two simplified models including pseudo-first-order and pseudo-second- order were used to test the adsorption kinetics. The equilibrium time and adsorption rate of adsorption were determined. The increasing order of the adsorption rates follows the sequence Mn(II) > Pb(II) > Zn(II) > Cu(II) > Cd(II). The Dubinin-Radushkevich (D-R), Langmuir, and Redlich-Peterson (R-P) models were adopted to describe the adsorption isotherms. The maximal adsorption capacities at pH 4.0 determined from the D-R and Langmuir models vary in the following order: Cu(II) > Mn(II) > Cd(II) > Zn(II) > Pb(II). The equilibrium data fitted well with the three-parameter Redlich-Peterson model. The values of mean energy of adsorption show mainly an ion-exchange mechanism. Also, the influence of solution pH on the adsorption onto stevensite was studied in the pH range 1.5-7.0. PMID:15589536

  10. The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone.

    PubMed

    Asgari, Ghorban; Roshani, Babak; Ghanizadeh, Ghader

    2012-05-30

    In this research work, pumice that is functionalized by the cationic surfactant, hexadecyltrimethyl ammonium (HDTMA), is used as an adsorbent for the removal of fluoride from drinking water. This work was carried out in two parts. The effects of HDTMA loading, pH (3-10), reaction time (5-60 min) and the adsorbent dosage (0.15-2.5 g L(-1)) were investigated on the removal of fluoride as a target contaminate from water through the design of different experimental sets in the first part. The results from this first part revealed that surfactant-modified pumice (SMP) exhibited the best performance at dose 0.5 g L(-1), pH 6, and it adsorbs over 96% of fluoride from a solution containing 10 mg L(-1) fluoride after 30 min of mixing time. The four linear forms of the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms model were applied to determine the best fit of equilibrium expressions. Apart from the regression coefficient (R(2)), four error functions were used to validate the isotherm and kinetics data. The experimental adsorption isotherm complies with Langmuir equation model type 1. The maximum amount of adsorption (Q(max)) was 41 mg g(-1). The kinetic studies indicated that the adsorption of fluoride best fitted with the pseudo-second-order kinetic type 1. Thermodynamic parameters evaluation of fluoride adsorption on SMP showed that the adsorption process under the selected conditions was spontaneous and endothermic. The suitability of SMP in defluoridation at field condition was investigated with natural groundwater samples collected from a nearby fluoride endemic area in the second part of this study. Based on this study's results, SMP was shown to be an affordable and a promising option for the removal of fluoride in drinking water. PMID:22476092

  11. Ni (II) adsorption onto Chrysanthemum indicum: Influencing factors, isotherms, kinetics, and thermodynamics.

    PubMed

    Vilvanathan, Sowmya; Shanthakumar, S

    2016-10-01

    The study explores the adsorption potential of Chrysanthemum indicum biomass for nickel ion removal from aqueous solution. C. indicum flowers in raw (CIF-I) and biochar (CIF-II) forms were used as adsorbents in this study. Batch experiments were conducted to ascertain the optimum conditions of solution pH, adsorbent dosage, contact time, and temperature for varying initial Ni(II) ion concentrations. Surface area, surface morphology, and functionality of the adsorbents were characterized by Brunauer, Emmett, and Teller (BET) surface analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Adsorption kinetics were modeled using pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Bangham's, and Boyd's plot. The equilibrium data were modeled using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) isotherm models. Experimental data provided the best fit to pseudo-second-order kinetic model and Langmuir isotherm model for the adsorption of Ni(II) ion on both CIF-I and CIF-II with maximum adsorption capacities of 23.97 and 44.02 mg g(-1), respectively. Thermodynamic analysis of the data proved the process to be spontaneous and endothermic in nature. Desorption studies were conducted to evaluate the possibility of reusing the adsorbents. Findings of the present study provide substantial evidence for the use of C. indicum flower as an eco-friendly and potential adsorbent for the removal of Ni(II) ions from aqueous solution. PMID:27185382

  12. Isotherm for Adsorption of Agrobacterium tumefaciens to Susceptible Potato (Solanum tuberosum L.) Tissues.

    PubMed

    Kluepfel, D A; Pueppke, S G

    1985-06-01

    Potato tuber disks were submerged in suspensions containing 10 to 10 cells of Agrobacterium tumefaciens B6 per ml. After 60 min, the disks were rinsed and homogenized, and portions of the homogenates were plated to measure the number of adsorbed bacteria. At low initial bacterial concentrations (10/ml), 5 to 23% of the bacteria adsorbed. At higher bacterial concentrations, the corresponding value was approximately 1.2%. Adsorption was a reversible equilibrium process. Binding saturation was not achieved, and adsorbed bacteria were confined to monolayers on the surfaces of tissue prepared for scanning electron microscopy. Adsorption of strain B6 to potato tuber tissues is described accurately by the Freundlich adsorption isotherm and may be a nonspecific phenomenon. PMID:16346800

  13. Adsorption of Phenol from Aqueous Solution Using Lantana camara, Forest Waste: Kinetics, Isotherm, and Thermodynamic Studies

    PubMed Central

    Girish, C. R.; Ramachandra Murty, V.

    2014-01-01

    The present work investigates the potential of Lantana camara, a forest waste, as an adsorbent for the phenol reduction in wastewater. Batch studies were conducted with adsorbent treated with HCl and KOH to determine the influence of various experimental parameters such as pH, contact time, adsorbent dosage, and phenol concentration. The experimental conditions were optimized for the removal of phenol from wastewater. Equilibrium isotherms for the adsorption of phenol were analyzed by Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich isotherm models. Thermodynamic parameters like the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were also determined and they showed that the adsorption process was feasible, spontaneous, and exothermic in the temperature range of 298–328 K. The kinetic data were fitted with pseudo-second-order model. The equilibrium data that followed Langmuir model with the monolayer adsorption capacity was found to be 112.5 mg/g and 91.07 mg/g for adsorbent treated with HCl and KOH, respectively, for the concentration of phenol ranging from 25 to 250 mg/L. This indicates that the Lantana camara was a promising adsorbent for the removal of phenol from aqueous solutions. PMID:27350997

  14. A comparative examination of the adsorption mechanism of an anionic textile dye (RBY 3GL) onto the powdered activated carbon (PAC) using various the isotherm models and kinetics equations with linear and non-linear methods

    NASA Astrophysics Data System (ADS)

    Açıkyıldız, Metin; Gürses, Ahmet; Güneş, Kübra; Yalvaç, Duygu

    2015-11-01

    The present study was designed to compare the linear and non-linear methods used to check the compliance of the experimental data corresponding to the isotherm models (Langmuir, Freundlich, and Redlich-Peterson) and kinetics equations (pseudo-first order and pseudo-second order). In this context, adsorption experiments were carried out to remove an anionic dye, Remazol Brillant Yellow 3GL (RBY), from its aqueous solutions using a commercial activated carbon as a sorbent. The effects of contact time, initial RBY concentration, and temperature onto adsorbed amount were investigated. The amount of dye adsorbed increased with increased adsorption time and the adsorption equilibrium was attained after 240 min. The amount of dye adsorbed enhanced with increased temperature, suggesting that the adsorption process is endothermic. The experimental data was analyzed using the Langmuir, Freundlich, and Redlich-Peterson isotherm equations in order to predict adsorption isotherm. It was determined that the isotherm data were fitted to the Langmuir and Redlich-Peterson isotherms. The adsorption process was also found to follow a pseudo second-order kinetic model. According to the kinetic and isotherm data, it was found that the determination coefficients obtained from linear method were higher than those obtained from non-linear method.

  15. Description of Chemically and Thermally Treated Multi-Walled Carbon Nanotubes Using Sequential Decomposition of Adsorption Isotherms

    NASA Astrophysics Data System (ADS)

    Albesa, Alberto G.; Rafti, Matías; Vicente, José Luis

    2016-03-01

    The effect of wet acid oxidation by means of sulfuric/nitric acid mixtures, and high-temperature treatment of commercial arc-discharge synthesized multi-walled carbon nanotubes (MWCNTs) was studied. In order to analyze the adsorption capacities of differently treated MWCNTs, we employed a multistep method that considers separately different pressure ranges (zones) on the experimentally obtained isotherms. The method is based on simple gas isotherm measurements (N2, CO2, CH4, etc.). Low pressure ranges can be described using Dubinin’s model, while high pressure regimes can be fitted using different models such as BET multilayer and Freundlich equations. This analysis allows to elucidate how different substrate treatments (chemical and thermal) can affect the adsorbate-adsorbent interactions; moreover, theoretical description of adsorbate-adsorbate interactions can be improved if a combination of adsorption mechanisms are used instead of a unique model. The results hereby presented also show that, while MWCNTs are a promising material for storage applications, gas separation applications should carefully consider the effect of wide nanotube size distribution present on samples after activation procedures.

  16. Adsorption isotherm predicted from a lattice gas with general lateral interactions in a single-phase regime

    NASA Astrophysics Data System (ADS)

    Medved', I.; Trník, A.; Černý, Robert

    2014-12-01

    We investigate which isotherm equation arises when a lattice gas with rather general lateral interactions is used to model an adsorption of particles on a solid surface at subcritical temperatures. For simplicity, an energetically homogeneous surface is considered, and only a single phase is assumed to be stable in the system. We show that, up to a constant, the result is a sum of terms that have the same form as the Hill isotherm or, less accurately, as the Freundlich isotherm. Each of these terms contains three types of microscopic parameters whose relation to the details of the considered lattice gas, such as its lateral interactions, is provided. We also provide a formula for the heat of adsorption and discuss the phenomenon of adsorption compression. We illustrate the results for a simple lattice gas on a triangular lattice with pair and triple interactions. Possible extensions to inhomogeneous surfaces, multi-component adsorption, and phase coexistence regions are pointed out.

  17. Adsorption on molecularly imprinted polymers of structural analogues of a template. Single-component adsorption isotherm data

    SciTech Connect

    Kim, Hyunjung; Guiochon, Georges A

    2005-10-01

    The equilibrium adsorption isotherms on two otherwise identical polymers, one imprinted with Fmoc-L-tryptophan (Fmoc-L-Trp) (MIP), the other nonimprinted (NIP), of compounds that are structural analogues of the template were acquired by frontal analysis (FA) in an acetonitrile/acetic acid (99/1 v/v) mobile phase, over a wide concentration range (from 0.005 to 50 mM). These analogues were Fmoc-L-tyrosine, Fmoc-L-serine, Fmoc-L-phenyalanine, Fmoc-glycine (Fmoc-Gly), Fmoc-L-tryptophan pentafluorophenyl ester (Fmoc-L-Trp(OPfp)), and their antipodes. These substrates have different numbers of functional groups able to interact with the 4-vinylpyridine groups of the polymer. For a given number of the functional groups, these substrates have different hydrophobicities of their side groups (as indicated by their partition coefficients (log P{sub ow}) in the octanol-water system (e.g., from 4.74 for Fmoc-Trp to 2.53 for Fmoc-Gly)). Statistical results from the fitting of the FA data to Langmuirian isotherm models, the calculation of the affinity energy distribution, and the comparison of calculated and experimental band profiles show that all these sets of FA data are best accounted for by a tri-Langmuir isotherm model, except for the data of Fmoc-L-Trp(OPfp) that are best modeled by a simple Langmuir isotherm. So, all compounds but Fmoc-L-Trp(OPfp) find three different types of adsorption sites on both the MIP and the NIP. The properties of these different types of sites were studied systematically. The results show that the affinity of the structural analogues for the NIP is controlled mostly by the number of the functional groups on the substrates and somewhat by the hydrophobicity of their side groups. These two factors control also the MIP affinity toward the enantiomers of the structural analogues that have a stereochemistry different from that of the template. In contrast, the affinity of the highest affinity sites of the MIP toward the enantiomers of these

  18. Adsorption of malachite green by polyaniline-nickel ferrite magnetic nanocomposite: an isotherm and kinetic study

    NASA Astrophysics Data System (ADS)

    Patil, Manohar R.; Shrivastava, V. S.

    2014-11-01

    This work deals with the development of an efficient method for the removal of a MG (malachite green) dye from aqueous solution using polyaniline (PANI)-Nickel ferrite (NiFe2O4) magnetic nanocomposite. It is successfully synthesised in situ through self polymerisation of monomer aniline. Adsorptive removal studies are carried out for water soluble MG dye using PANI-Nickel ferrite magnetic nanocomposite in aqueous solution. Different parameters like dose of adsorbent, contact time, different initial conc., and pH have been studied to optimise reaction condition. It is concluded that adsorptive removal by PANI-Nickel ferrite magnetic nanocomposite is an efficient method for removing a MG dye from aqueous solution than work done before. The optimum conditions for the removal of the dye are initial concentration 30 mg l-1, adsorbent dose 5gm l-1 and pH 7. The adsorption capacity is found 4.09 mg g-1 at optimum condition 30 mg l-1. The adsorption followed pseudo-second-order kinetics. The experimental isotherm is found to fit with Langmuir equation. The prepared adsorbent is characterised by techniques SEM, EDS, XRD and VSM.

  19. Kinetic and isotherms studies of phosphorus adsorption onto natural riparian wetland sediments: linear and non-linear methods.

    PubMed

    Zhang, Liang; Du, Chao; Du, Yun; Xu, Meng; Chen, Shijian; Liu, Hongbin

    2015-06-01

    Riparian wetlands provide critical functions for the improvement of surface water quality and storage of nutrients. Correspondingly, investigation of the adsorption characteristic and capacity of nutrients onto its sediments is benefit for utilizing and protecting the ecosystem services provided by riparian areas. The Langmuir and Freundlich isotherms and pseudo-second-order kinetic model were applied by using both linear least-squares and trial-and-error non-linear regression methods based on the batch experiments data. The results indicated that the transformations of non-linear isotherms to linear forms would affect the determination process significantly, but the non-linear regression method could prevent such errors. Non-linear Langmuir and Freundlich isotherms both fitted well with the phosphorus adsorption process (r (2) > 0.94). Moreover, the influences of temperature and ionic strength on the adsorption of phosphorus onto natural riparian wetland sediments were also studied. Higher temperatures were suitable for phosphorus uptake from aqueous solution using the present riparian wetland sediments. The adsorption capacity increased with the enhancement of ionic strength in agreement with the formation of inner-sphere complexes. The quick adsorption of phosphorus by the sediments mainly occurred within 10 min. The adsorption kinetic was well-fitted by pseudo-second-order kinetic model (r (2) > 0.99). The scanning electron microscopy (SEM) and Fourier transformation infrared (FT-IR) spectra analyses before and after phosphorus adsorption revealed the main adsorption mechanisms in the present system. PMID:26017810

  20. Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution

    NASA Astrophysics Data System (ADS)

    Aouaini, F.; Knani, S.; Ben Yahia, M.; Ben Lamine, A.

    2015-08-01

    Water sorption isotherms of foodstuffs are very important in different areas of food science engineering such as for design, modeling and optimization of many processes. The equilibrium moisture content is an important parameter in models used to predict changes in the moisture content of a product during storage. A formulation of multilayer model with two energy levels was based on statistical physics and theoretical considerations. Thanks to the grand canonical ensemble in statistical physics. Some physicochemical parameters related to the adsorption process were introduced in the analytical model expression. The data tabulated in literature of water adsorption at different temperatures on: chickpea seeds, lentil seeds, potato and on green peppers were described applying the most popular models applied in food science. We also extend the study to the newest proposed model. It is concluded that among studied models the proposed model seems to be the best for description of data in the whole range of relative humidity. By using our model, we were able to determine the thermodynamic functions. The measurement of desorption isotherms, in particular a gas over a solid porous, allows access to the distribution of pore size PSD.

  1. Adsorption of Rh(III) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion-exchange resin Diaion WA21J.

    PubMed

    Shen, Shaobo; Pan, Tonglin; Liu, Xinqiang; Yuan, Lei; Wang, Jinchao; Zhang, Yongjian; Guo, Zhanchen

    2010-07-15

    It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K(d)) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q(max) based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 degrees C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process. PMID:20346581

  2. Simultaneous removal of potent cyanotoxins from water using magnetophoretic nanoparticle of polypyrrole: adsorption kinetic and isotherm study.

    PubMed

    Hena, S; Rozi, R; Tabassum, S; Huda, A

    2016-08-01

    Cyanotoxins, microcystins and cylindrospermopsin, are potent toxins produced by cyanobacteria in potable water supplies. This study investigated the removal of cyanotoxins from aqueous media by magnetophoretic nanoparticle of polypyrrole adsorbent. The adsorption process was pH dependent with maximum adsorption occurring at pH 7 for microcystin-LA, LR, and YR and at pH 9 for microcystin-RR and cylindrospermopsin (CYN). Kinetic studies and adsorption isotherms reflected better fit for pseudo-second-order rate and Langmuir isotherm model, respectively. Thermodynamic calculations showed that the cyanotoxin adsorption process is endothermic and spontaneous in nature. The regenerated adsorbent can be successfully reused without appreciable loss of its original capacity. PMID:27072032

  3. Numerical determination of non-Langmuirian adsorption isotherms of ibuprofen enantiomers on Chiralcel OD column using ultraviolet-circular dichroism dual detector.

    PubMed

    Li, Hui; Jiang, Xiaoxiao; Xu, Wei; Chen, Yongtao; Yu, Weifang; Xu, Jin

    2016-02-26

    Competitive adsorption isotherm of ibuprofen enantiomers on Chiralcel OD stationary phase at 298K was determined by the application of inverse method. Transport dispersive (TD) chromatography model was used to describe mass balances of the enatiomers. Axial dispersion and mass transfer coefficients were estimated from a series of linear pulse experiments. It was found that the overloaded elution profile of total concentration of racemic ibuprofen cannot be satisfactorily fitted by substituting bi-Langmuir model, the most widely used isotherm model for enantiomers, into TD model and tuning the isotherm parameters. UV-CD dual detector setup was then applied to obtain the individual overloaded elution profiles of both enantiomers. The more informative experimental data revealed non-Langmuirian adsorption behavior of ibuprofen enantiomers on chiralcel OD stationary phase. Two analytical binary isotherm models, both accounting for adsorbate-adsorbate interactions and having the feature of inflection points, were then evaluated. A comparison between quadratic model and Moreau model showed that the former gives better fitting results. The six parameters involved in quadratic model were determined stepwisely. Three of them were first obtained by fitting overloaded elution profiles of S-ibuprofen. The other three were then acquired by fitting overloaded elution profiles of both enantiomers recorded by UV-CD dual detector for racemic ibuprofen. A further attempt was also made at reducing the number of quadratic model parameters. PMID:26846132

  4. Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith.

    PubMed

    Krishnan, K Anoop; Sreejalekshmi, K G; Baiju, R S

    2011-11-01

    Bioavailability of Nickel in the form of hydrated Nickel(II) attributes to its toxicological effects and hence its removal from aqueous solution is of great concern. Adsorption is used as an efficient technique for the removal of Nickel(II), hereafter Ni(II), from water and wastewaters. Activated carbon obtained from sugarcane bagasse pith (SBP-AC), a waste biomass collected from juice shops in Sarkara Devi Temple, Chirayinkeezhu, Trivandrum, India during annual festival, is used as adsorbent in the study. The process of adsorption is highly dependent on solution pH, and maximum removal occurs in the pH range of 4.0-8.0. Moreover, the amount of Ni(II) adsorbed onto SBP-AC increased with the time increase and reached equilibrium at 4h. Adsorption kinetic and equilibrium data were analyzed for determining the best fit kinetic and isotherm models. The overall study reveals the potential value of steam pyrolysed SBP-AC as a possible commercial adsorbent in wastewater treatment strategies. PMID:21924900

  5. Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies.

    PubMed

    Lim, Chi Kim; Bay, Hui Han; Neoh, Chin Hong; Aris, Azmi; Abdul Majid, Zaiton; Ibrahim, Zaharah

    2013-10-01

    In this study, the adsorption behavior of azo dye Acid Orange 7 (AO7) from aqueous solution onto macrocomposite (MC) was investigated under various experimental conditions. The adsorbent, MC, which consists of a mixture of zeolite and activated carbon, was found to be effective in removing AO7. The MC were characterized by scanning electron microscopy (SEM), energy dispersive X-ray, point of zero charge, and Brunauer-Emmett-Teller surface area analysis. A series of experiments were performed via batch adsorption technique to examine the effect of the process variables, namely, contact time, initial dye concentration, and solution pH. The dye equilibrium adsorption was investigated, and the equilibrium data were fitted to Langmuir, Freundlich, and Tempkin isotherm models. The Langmuir isotherm model fits the equilibrium data better than the Freundlich isotherm model. For the kinetic study, pseudo-first-order, pseudo-second-order, and intraparticle diffusion model were used to fit the experimental data. The adsorption kinetic was found to be well described by the pseudo-second-order model. Thermodynamic analysis indicated that the adsorption process is a spontaneous and endothermic process. The SEM, Fourier transform infrared spectroscopy, ultraviolet-visible spectral and high performance liquid chromatography analysis were carried out before and after the adsorption process. For the phytotoxicity test, treated AO7 was found to be less toxic. Thus, the study indicated that MC has good potential use as an adsorbent for the removal of azo dye from aqueous solution. PMID:23653315

  6. Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: Adsorption isotherms and kinetics studies.

    PubMed

    Tadjarodi, Azadeh; Moazen Ferdowsi, Somayeh; Zare-Dorabei, Rouholah; Barzin, Ahmad

    2016-11-01

    A novel adsorbent, based on modifying graphene oxide (GO) chemically with 2-pyridinecarboxaldehyde thiosemicarbazone (2-PTSC) as ligand, was designed by facile process for removal of Hg(II) from aqueous solution. Characterization of the adsorbent was performed using various techniques, such as FT-IR, XRD, XPS, SEM and AFM analysis. The adsorption capacity was affected by variables such as adsorbent dosage, pH solution, Hg(2+) initial concentration and sonicating time. These variables were optimized by rotatable central composite design (CCD) under response surface methodology (RSM). The predictive model for Hg(II) adsorption was constructed and applied to find the best conditions at which the responses were maximized. In this conditions, the adsorption capacity of this adsorbent for Hg(2+) ions was calculated to be 309mgg(-1) that was higher than that of GO. Appling the ultrasound power combined with adsorption method was very efficient in shortening the removal time of Hg(2+) ions by enhancing the dispersion of adsorbent and metal ions in solution and effective interactions among them. The adsorption process was well described by second-order kinetic and Langmuir isotherm model in which the maximum adsorption capacity (Qm) was found to be 555mgg(-1) for adsorption of Hg(2+) ions over the obtained adsorbent. The performance of adsorbent was examined on the real wastewaters and confirmed the applicability of adsorbent for practical applications. PMID:27245963

  7. Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect.

    PubMed

    Han, Runping; Zou, Weihua; Wang, Yi; Zhu, Lu

    2007-01-01

    This paper discusses the adsorption properties for uranium(VI) by manganese oxide coated zeolite (MOCZ). The removal of uranium(VI) from aqueous solution by adsorption onto MOCZ in a single-component system with various contact times, pH, competitive ions, temperatures and initial concentrations of uranium(VI) was investigated. The experimental results were fitted to the Langmuir, Freundlich and the three-parameter Redlich-Peterson model isotherms to obtain the characteristic parameters of each model. Both the Langmuir and Redlich-Peterson isotherms were found to best represent the measured adsorption data. According to the evaluation using the Langmuir equation, the maximum adsorption capacity of uranium(VI) ions onto MOCZ was 15.1 mg g(-1) at 293K and pH 4.0. Using the thermodynamic equilibrium constants obtained at different temperatures, various thermodynamic parameters, such as DeltaG(0), DeltaH(0) and DeltaS(0), have been calculated. The thermodynamics of uranium(VI) ion/MOCZ system indicates the spontaneous and endothermic nature of the process. It was noted that an increase in temperature resulted in a higher uranium loading per unit weight of the adsorbent. PMID:17258360

  8. Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite-like compounds.

    PubMed

    Ramos-Ramírez, Esthela; Ortega, Norma L Gutiérrez; Soto, Cesar A Contreras; Gutiérrez, Maria T Olguín

    2009-12-30

    In under-developed countries, industries such as paint and pigment manufacturing, leather tanning, chrome plating and textile processing, usually discharge effluents containing Cr(VI) and Cr(III) into municipal sanitary sewers. It has been reported that Cr(VI) acts as a powerful epithelial irritant and as a human carcinogen. In the present work, hydrotalcite-like compounds with a Mg/Al ratio=2 were synthesized by the sol-gel method. The hydrotalcite-like compounds and their corresponding thermally treated products were characterized by powder X-ray diffraction, infrared spectroscopy and N(2) adsorption. The hydrotalcite-like compounds and the heated solids were used as adsorbents for Cr(VI) in aqueous solutions. Adsorption isotherm studies of Cr(VI) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models. The Cr(VI) adsorption isotherm data fit best to the Langmuir isotherm model. The maximum Cr(VI) uptake by hydrotalcite and the heated solids was determined using the Langmuir equation and was found to range between 26 and 29 mg Cr(VI)/g adsorbent. PMID:19744787

  9. Monte Carlo simulations of phase transitions and adsorption isotherm discontinuities on surface compression.

    PubMed

    Charniak, C L; Wetzel, T E; Aranovich, G L; Donohue, M D

    2008-08-01

    Low temperature, Grand Canonical Monte Carlo simulations were used to study the adsorption of fluid layers on cubic, hexagonal, and atomically smooth substrates to determine the effects of registry and surface compression on the system. The size of the fluid molecules was fixed to be 20% larger than the substrate molecules in order to observe the transition from an expanded to commensurate and finally to an incommensurate monolayer. For relatively weak fluid-substrate interactions, the cubic system underwent a first-order phase transition. As the strength of the fluid-substrate interactions increased, the molecules became fixed at commensurate locations and the transition from low density to commensurate packing became continuous. The strong fluid-substrate interactions lead to the development of a kink in the adsorption isotherm that showed the increased stability of the commensurate phase. This kink became more pronounced as the system temperature was decreased. The hexagonal system showed less dramatic results due to a decrease in the substrate well depth of the relative to the cubic system. The system did experience a first-order phase transition for a weak fluid-substrate interactions and the transition became much more gradual as the fluid-substrate interaction increased. The molecules became fixed to commensurate substrate locations, but the surface was not corrugated sufficiently to have a stable commensurate phase. The atomically smooth substrate showed the first-order phase transition expected of a low temperature system with no effects of registry. PMID:18513735

  10. Predicting CH4 adsorption capacity of microporous carbon using N2 isotherm and a new analytical model

    USGS Publications Warehouse

    Sun, Jielun; Chen, S.; Rostam-Abadi, M.; Rood, M.J.

    1998-01-01

    A new analytical pore size distribution (PSD) model was developed to predict CH4 adsorption (storage) capacity of microporous adsorbent carbon. The model is based on a 3-D adsorption isotherm equation, derived from statistical mechanical principles. Least squares error minimization is used to solve the PSD without any pre-assumed distribution function. In comparison with several well-accepted analytical methods from the literature, this 3-D model offers relatively realistic PSD description for select reference materials, including activated carbon fibers. N2 and CH4 adsorption data were correlated using the 3-D model for commercial carbons BPL and AX-21. Predicted CH4 adsorption isotherms, based on N2 adsorption at 77 K, were in reasonable agreement with the experimental CH4 isotherms. Modeling results indicate that not all the pores contribute the same percentage Vm/Vs for CH4 storage due to different adsorbed CH4 densities. Pores near 8-9 A?? shows higher Vm/Vs on the equivalent volume basis than does larger pores.

  11. Adsorption of emulsified oil from metalworking fluid on activated bleaching earth-chitosan-SDS composites: Optimization, kinetics, isotherms.

    PubMed

    Naowanat, Nitiya; Thouchprasitchai, Nutthavich; Pongstabodee, Sangobtip

    2016-03-15

    The adsorption of emulsified oil from metalworking fluid (MWF) on activated bleaching earth (BE)-chitosan-sodium dodecyl sulfate (SDS) composites (BE/MCS) was investigated under a statistical design of experiments at a 95% confidence interval to identify the critical factors and to optimize the adsorption capacity. The BE/MCS adsorbents were characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller adsorption/desorption isotherms, contact angle analysis (sessile drop technique) and their zeta potential. From the results of a full 2(5) factorial design with three center points, the adsorbent weight and initial pH of the MWF had a significant antagonistic effect on the adsorption capacity while the initial MWF concentration and BE:chitosan:SDS weight ratio had a synergistic influence. Temperature factor has no discernible effect on the capacity. From the FCCC-RSM design, the optimal capacity range of 2840-2922.5 mg g(-1) was achieved at sorbent weight of 1.6-1.9 g, pH of 5.5-6.5, initial MWF concentration of 52-55 g l(-1) and BE:chitosan:SDS (w/w/w) ratio of 4.7:1:1-6.2:1:1. To test the validation and sensitivity of RSM model, the results showed that the estimated adsorption capacity was close to the experimental capacity within an error range of ±3%, suggesting that the RSM model was acceptable and satisfied. From three kinetics models (pseudo-first-order, pseudo-second-order model and Avrami's equation) and two adsorption isotherms (Langmuir model and Freundlich model), assessed using an error function (Err) and the coefficient of determination (R(2)), Avrami's equation and Freundlich isotherm model provided a good fitting for the data, suggesting the presence of more than one reaction pathway in the MWF adsorption process and the heterogeneous surface adsorption of the BC/ABE-5.5 composite. PMID:26731309

  12. Adsorption of Co(II), Ni(II), Cu(II), and Zn(II) on hexagonal templated zirconia obtained thorough a sol-gel process: the effects of nanostructure on adsorption features.

    PubMed

    de Farias, Robson F; do Nascimento, Ana A S; Bezerra, Cícero W B

    2004-09-01

    Using zirconium tetrabutoxide, diaminedecane, and diamineoctane as precursors, a templated hexagonal zirconia matrix is synthesized and characterized by X-ray diffractometry and scanning electron microscopy. The adsorption capacity of such a matrix toward Co(II), Ni(II), Cu(II), and Zn(II) from aqueous solutions is studied. The adsorption affinity of the synthesized hexagonal templated zirconia toward the cations is Cu(II)>Zn(II) >Ni(II)>Co(II). It is also verified that the adsorption of the cations follows a Langmuir and not a Freundlich isotherm. All obtained isotherms are of type I, according to the IUPAC classification. The observed adsorption affinity sequence can be explained by taking into account the velocity constant for the substitution of water molecules into the cation coordination spheres, as well as the Irving-Williams series. PMID:15276032

  13. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    PubMed Central

    Akhtar, Muhammad

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aCb/a) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878

  14. The Republic of the Philippines coalbed methane assessment: based on seventeen high pressure methane adsorption isotherms

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Papasin, Ramon F.; Pendon, Ronaldo R.; del Rosario, Rogelio A.; Malapitan, Ruel T.; Pastor, Michael S.; Altomea, Elmer A.; Cuaresma, Federico; Malapitan, Armando S.; Mortos, Benjamin R.; Tilos, Elizabeth N.

    2006-01-01

    Introduction: The Republic of the Philippines has some 19 coal districts that contain coal deposits ranging from Eocene to Pleistocene in age. These coal districts include: (1) Catanduanes (Eocene); (2) Cebu, Zamboanga Sibuguey, Bukidnon, Maguindanao, Sarangani, and Surigao (Oligocene to Miocene); (3) Batan Island, Masbate, Semirara (including Mindoro), and Quezon-Polilio (lower-upper Miocene); (4) Davao, Negros, and Sorsogon (middle-upper Miocene); (5) Cotabato (lower Miocene-lower Pliocene), Cagayan-Isabella, and Quirino (upper Miocene-Pliocene); (6) Sultan Kudarat (upper Miocene-Pleistocene); and (7) Samar-Leyte (lower Pliocene-Pleistocene). In general, coal rank is directly related to the age of the deposits - for example, the Eocene coal is semi-anthracite and the Pliocene-Pleistocene coal is lignite. Total coal resources in these 19 coal districts, which are compiled by the Geothermal and Coal Resources Development Division (GCRDD) of the Department of Energy of the Philippines, are estimated at a minimum of 2,268.4 million metric tonnes (MMT) (approximately 2.3 billion metric tones). The largest resource (550 MMT) is the subbituminous coal in the Semirara (including Mindoro) coal district, and the smallest (0.7 MMT) is the lignite-subbituminous coal in the Quirino coal district. The combined lignite and subbituminous coal resources, using the classification by GCRDD and including Semirara and Surigao coal districts, are about 1,899.2 MMT, which make up about 84 percent of the total coal resources of the Philippines. The remaining resources are composed of bituminous and semi-anthracite coal. The subbituminous coal of Semirara Island in the Mindoro- Semirara coal district (fig. 2) is known to contain coalbed methane (CBM), with the coal being comparable in gas content and adsorption isotherms to the coal of the Paleocene Fort Union Formation in the Powder River Basin in Wyoming, USA (Flores and others, 2005). As a consequence, the presence of CBM in the

  15. On the fractality of the Freundlich adsorption isotherm in equilibrium and non-equilibrium cases.

    PubMed

    Borys, Przemysław; Grzywna, Zbigniew J

    2016-07-27

    We investigate the relationship between the Freundlich adsorption exponent and the fractal dimension of the adsorption sites for quasi-monolayer adsorption, and of the adsorbed aggregate for a simple case of multilayer adsorption. We further check whether the Freundlich adsorption mechanism may contribute to anomalous diffusion in the transport through porous materials. PMID:27414951

  16. Adsorption isotherms for hydrogen chloride (HCl) on ice surfaces between 190 and 220 K.

    PubMed

    Zimmermann, S; Kippenberger, M; Schuster, G; Crowley, J N

    2016-05-18

    The interaction of hydrogen chloride (HCl) with ice surfaces at temperatures between 190 and 220 K was investigated using a coated-wall flow-tube connected to a chemical ionization mass spectrometer. Equilibrium surface coverages of HCl were determined at gas phase concentrations as low as 2 × 10(9) molecules cm(-3) (∼4 × 10(-8) Torr at 200 K) to derive Langmuir adsorption isotherms. The data are described by a temperature independent partition coefficient: KLang = (3.7 ± 0.2) × 10(-11) cm(3) molecule(-1) with a saturation surface coverage Nmax = (2.0 ± 0.2) × 10(14) molecules cm(-2). The lack of a systematic dependence of KLang on temperature contrasts the behaviour of numerous trace gases which adsorb onto ice via hydrogen bonding and is most likely related to the ionization of HCl at the surface. The results are compared to previous laboratory studies, and the equilibrium partitioning of HCl to ice surfaces under conditions relevant to the atmosphere is evaluated. PMID:27142478

  17. Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N2 and CO2 adsorption isotherms? Simulation results for a realistic carbon model

    NASA Astrophysics Data System (ADS)

    Furmaniak, Sylwester; Terzyk, Artur P.; Gauden, Piotr A.; Harris, Peter J. F.; Kowalczyk, Piotr

    2009-08-01

    Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N2 and CO2 isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO2, and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions.

  18. Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N(2) and CO(2) adsorption isotherms? Simulation results for a realistic carbon model.

    PubMed

    Furmaniak, Sylwester; Terzyk, Artur P; Gauden, Piotr A; Harris, Peter J F; Kowalczyk, Piotr

    2009-08-01

    Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N(2) and CO(2) isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO(2), and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions. PMID:21828590

  19. Effect of the endcapping of reversed-phase high-performance liquid chromatography adsorbents on the adsorption isotherm

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2005-09-01

    The retention mechanisms of n-propylbenzoate, 4-t ert-butylphenol, and caffeine on the endcapped Symmetry-C{sub 18} and the non-endcapped Resolve-C{sub 18} are compared. The adsorption isotherms were measured by frontal analysis (FA), using as the mobile phase mixtures of methanol or acetonitrile and water of various compositions. The isotherm data were modeled and the adsorption energy distributions calculated. The surface heterogeneity increases faster with decreasing methanol concentration on the non-endcapped than on the endcapped adsorbent. For instance, for methanol concentrations exceeding 30% (v/v), the adsorption of caffeine is accounted for by assuming three and two different types of adsorption sites on Resolve-C{sub 18} and Symmetry-C{sub 18}, respectively. This is explained by the effect of the mobile phase composition on the structure of the C{sub 18}-bonded layer. The bare surface of bonded silica appears more accessible to solute molecules at high water contents in the mobile phase. On the other hand, replacing methanol by a stronger organic modifier like acetonitrile dampens the differences between non-endcapped and endcapped stationary phase and decreases the degree of surface heterogeneity of the adsorbent. For instance, at acetonitrile concentrations exceeding 20%, the surface appears nearly homogeneous for the adsorption of caffeine.

  20. Effect of humic acid on the adsorption/desorption behavior of glyphosate on goethite. Isotherms and kinetics.

    PubMed

    Arroyave, Jeison Manuel; Waiman, Carolina C; Zanini, Graciela P; Avena, Marcelo J

    2016-02-01

    The effects of humic acid (HA) on the adsorption/desorption of glyphosate (Gly) on goethite were investigated under pseudo equilibrium conditions by adsorption isotherms and under kinetic conditions by ATR-FTIR spectroscopy. Isotherms reveal that the attachment of Gly is almost completely inhibited by HA molecules. The opposite effect is not observed: HA adsorption is not affected by the presence of Gly. ATR-FTIR allowed the simultaneous detection of adsorbed HA and Gly during kinetic runs, revealing that HA at the surface decreases markedly the adsorption rate of Gly likely as a result of a decreased availability of sites for Gly adsorption and because of electrostatic repulsion. In addition, HA in solution increases the desorption rate of Gly. The rate law for Gly desorption could be determined giving important insights on the desorption mechanism. The herbicide is desorbed by two parallel processes: i) a direct detachment from the surface, which is first order in adsorbed Gly; and ii) a ligand exchange with HA molecules, which is first order in adsorbed Gly and first order in dissolved HA. Rate constants for both processes were quantified, leading to half-lives of 3.7 h for the first process, and 1.4 h for the second process in a 400 mg L(-1) HA solution. These data are important for modeling the dynamics of glyphosate in environmentally relevant systems, such as soils and surface waters. PMID:26657085

  1. Equilibrium adsorption isotherm studies of Cu (II) and Co (II) in high concentration aqueous solutions on Ag-TiO2-modified kaolinite ceramic adsorbents

    NASA Astrophysics Data System (ADS)

    Ajenifuja, E.; Ajao, J. A.; Ajayi, E. O. B.

    2016-03-01

    Photocatalytic ceramic adsorbents were prepared from locally sourced kaolinite clay minerals for the removal of copper and cobalt ions from high concentration aqueous solutions. The minerals were treated with mild acid before modification using silver nanoparticles sources and titanium-oxide nanoparticles. Batch adsorption experiment was carried out on the targeted ions and the results were analyzed by Langmuir and Freundlich equation at different concentrations (100-1000 mg/l). As-received raw materials do not exhibit any adsorption capacity. However, the adsorption isotherms for modified kaolinite clay ceramic adsorbents could be fitted well by the Langmuir model for Cu2+ and Co2+ with correlation coefficient (R) of up to 0.99705. The highest and lowest monolayer coverage (q max) were 93.023 and 30.497 mg/g for Cu2+ and Co2+, respectively. The separation factor (R L ) was less than one (<1), indicating that the adsorption of metal ions on modified ceramic adsorbent is favorable. The highest adsorbent adsorption capacity (K f ) and intensity (n) constants obtained from Freundlich model are 14.401 (Cu2+ on KLN-T) and 6.057 (Co2+ on KLN-T).

  2. Use of solid waste for chemical stabilization: Adsorption isotherms and {sup 13}C solid-state NMR study of hazardous organic compounds sorbed on coal fly ash

    SciTech Connect

    Netzel, D.A.; Lane, D.C.; Rovani, J.F.; Cox, J.D.; Clark, J.A.; Miknis, F.P.

    1993-09-01

    Adsorption of hazardous organic compounds on the Dave Johnston plant fly ash is described. Fly ash from Dave Johnston and Laramie River power plants were characterized using elemental, x-ray, and {sup 29}Si NMR; the Dave Johnston (DJ) fly ash had higher quartz contents, while the Laramie River fly ash had more monomeric silicate anions. Adsorption data for hydroaromatics and chlorobenzenes indicate that the adsorption capacity of DJ coal fly ash is much less than that of activated carbon by a factor of >3000; but it is needed to confirm that solid-gas and solid-liquid equilibrium isotherms can indeed be compared. However, for pyridine, pentachlorophenol, naphthalene, and 1,1,2,2-tetrachloroethane, the DJ fly ash appears to adsorb these compounds nearly as well as activated carbon. {sup 13}C NMR was used to study the adsorption of hazardous org. cpds on coal fly ash; the nuclear spin relaxation times often were very long, resulting in long experimental times to obtain a spectrum. Using a jumbo probe, low concentrations of some hazardous org. cpds could be detected; for pentachlorophenol adsorbed onto fly ash, the chemical shift of the phenolic carbon was changed. Use of NMR to study the adsorption needs further study.

  3. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core-shell Fe₃O₄@LDHs composites with easy magnetic separation assistance.

    PubMed

    Yan, Liang-guo; Yang, Kun; Shan, Ran-ran; Yan, Tao; Wei, Jing; Yu, Shu-jun; Yu, Hai-qin; Du, Bin

    2015-06-15

    In this study, three different magnetic core-shell Fe3O4@LDHs composites, Fe3O4@Zn-Al-, Fe3O4@Mg-Al-, and Fe3O4@Ni-Al-LDH were prepared via a rapid coprecipitation method for phosphate adsorptive removal. The composites were characterized by XRD, FTIR, TEM, VSM and BET analyses. Characterization results proved the successful synthesis of core-shell Fe3O4@LDHs composites with good superparamagnetisms. Batch experiments were conducted to study the adsorption efficiency of phosphate. Optimal conditions for the phosphate adsorption were obtained: 0.05 g of adsorbent, solution pH of 3, and contact time of 60 min. Proposed mechanisms for the removal of phosphate species onto Fe3O4@LDHs composites at different initial solution pH were showed. The kinetic data were described better by the pseudo-second-order kinetic equation and KASRA model. The adsorption isotherm curves showed a three-region behavior in the ARIAN model. It had a good fit with Langmuir model and the maximum adsorption capacity followed the order of Fe3O4@Zn-Al-LDH>Fe3O4@Mg-Al-LDH>Fe3O4@Ni-Al-LDH. Thermodynamic analyses indicated that the phosphate adsorption process was endothermic and spontaneous in nature. The three Fe3O4@LDHs composites could be easily separated from aqueous solution by the external magnetic field in 10s. These novel magnetic core-shell Fe3O4@LDHs adsorbents may offer a simple single step adsorption treatment option to remove phosphate from water without the requirement of pre-/post-treatment for current industrial practice. PMID:25778739

  4. Investigation of adsorption kinetics and isotherm of cellulase and B-Glucosidase on lignocellulosic substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clear understanding of enzyme adsorption during enzymatic hydrolysis of lignocellulosic biomass is essential to enhance the cost-efficiency of hydrolysis. However, conclusions from literatures often contradicted each other because enzyme adsorption is enzyme, biomass/pretreatment and experimental co...

  5. Comparative studies on adsorptive removal of heavy metal ions by biosorbent, bio-char and activated carbon obtained from low cost agro-residue.

    PubMed

    Kırbıyık, Çisem; Pütün, Ayşe Eren; Pütün, Ersan

    2016-01-01

    In this study, Fe(III) and Cr(III) metal ion adsorption processes were carried out with three adsorbents in batch experiments and their adsorption performance was compared. These adsorbents were sesame stalk without pretreatment, bio-char derived from thermal decomposition of biomass, and activated carbon which was obtained from chemical activation of biomass. Scanning electron microscopy and Fourier transform-infrared techniques were used for characterization of adsorbents. The optimum conditions for the adsorption process were obtained by observing the influences of solution pH, adsorbent dosage, initial solution concentration, contact time and temperature. The optimum adsorption efficiencies were determined at pH 2.8 and pH 4.0 for Fe(III) and Cr(III) metal ion solutions, respectively. The experimental data were modelled by different isotherm models and the equilibriums were well described by the Langmuir adsorption isotherm model. The pseudo-first-order, pseudo-second-order kinetic, intra-particle diffusion and Elovich models were applied to analyze the kinetic data and to evaluate rate constants. The pseudo-second-order kinetic model gave a better fit than the others. The thermodynamic parameters, such as Gibbs free energy change ΔG°, standard enthalpy change ΔH° and standard entropy change ΔS° were evaluated. The thermodynamic study showed the adsorption was a spontaneous endothermic process. PMID:26819399

  6. Removal of water and iodine by solid sorbents: adsorption isotherms and kinetics

    SciTech Connect

    Lin, R.; Tavlarides, L.L.

    2013-07-01

    Tritium and iodine-129 are two major radioactive elements that are present in off-gases from spent fuel reprocessing plants. Adsorption by solid sorbents is the state-of-the-art technique for removal of these species from off-gases. Modeling and simulating adsorption processes require accurate adsorption equilibrium and kinetic data to permit reasonable estimates of process parameters. We have developed a continuous flow single-pellet adsorption system to gather accurate adsorption equilibrium and kinetic data for adsorption of water by molecular sieve 3A and for adsorption of iodine by silver exchanged mordenite. In this paper, the design of the water and iodine adsorption experimental systems are briefly described and results of water adsorption experiments are presented and discussed. Water uptake curves are fitted with the linear-driving force (LDF) model and the shrinking-core model to determine kinetic parameters. It is shown that the kinetics of water adsorption on zeolite 3A under current experimental conditions is controlled by both the external film resistance and the macro-pore diffusion and can be predicted by both the LDF model and the shrinking-core model with the former one performing slightly better. Preliminary results from iodine adsorption experiments will be presented in the conference.

  7. Adsorption and isothermal models of atrazine by zeolite prepared from Egyptian kaolin

    NASA Astrophysics Data System (ADS)

    Jamil, Tarek S.; Gad-Allah, Tarek A.; Ibrahim, Hanan S.; Saleh, Tamer S.

    2011-01-01

    The adsorption behavior of Atrazine on zeolites, prepared from Egyptian kaolin, has been studied in order to consider the application of these types of zeolites in water purification. The batch mode has been employed, using atrazine solution of concentration ranging from 2 to 10 mg /l. The adsorption capacity and distribution coefficients ( Kd) were determined for the adsorption system as a function of sorbate concentration. It was found that, under the studies concentrations, the percent of adsorbed atrazine on both zeolites match to Langmuir and Freundlich adsorption models. The constants of each model were calculated to assess the adsorption behavior of atrazine on each type of zeolite. According to the equilibrium studies, adsorption of atrazine on zeolite X at lower concentrations is much better than that on zeolite A. The application of Dublin-Kaganer-Radushkevich model revealed physisorption endothermic adsorption process for both zeolites. These results show that natural zeolites hold great potential to remove hazardous materials such as atrazine from water.

  8. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies.

    PubMed

    Subbaiah, Munagapati Venkata; Kim, Dong-Su

    2016-06-01

    Present research discussed the utilization of aminated pumpkin seed powder (APSP) as an adsorbent for methyl orange (MO) removal from aqueous solution. Batch sorption experiments were carried to evaluate the influence of pH, initial dye concentration, contact time, and temperature. The APSP was characterized by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The experimental equilibrium adsorption data were fitted using two two-parameter models (Langmuir and Freundlich) and two three-parameter models (Sips and Toth). Langmuir and Sips isotherms provided the best model for MO adsorption data. The maximum monolayer sorption capacity was found to be 200.3mg/g based on the Langmuir isotherm model. The pseudo-first-order and pseudo-second-order model equations were used to analyze the kinetic data of the adsorption process and the data was fitted well with the pseudo-second-order kinetic model (R(2)>0.97). The calculated thermodynamic parameters such as ΔG(0), ΔH(0) and ΔS(0) from experimental data showed that the sorption of MO onto APSP was feasible, spontaneous and endothermic in the temperature range 298-318 K. The FTIR results revealed that amine and carboxyl functional groups present on the surface of APSP. The SEM results show that APSP has an irregular and porous surface which is adequate morphology for dye adsorption. Desorption experiments were carried to explore the feasibility of adsorbent regeneration and the adsorbed MO from APSP was desorbed using 0.1M NaOH with an efficiency of 93.5%. Findings of the present study indicated that APSP can be successfully used for removal of MO from aqueous solution. PMID:26921544

  9. Adsorption isotherms, kinetics and thermodynamic studies towards understanding the interaction between cross-linked alginate-guar gum matrix and chymotrypsin.

    PubMed

    Woitovich Valetti, Nadia; Picó, Guillermo

    2016-02-15

    The adsorption kinetics of chymotrypsin, a pancreatic serine protease, onto an alginate-gum guar matrix cross-linked with epichlorohydrin has been performed using a batch-adsorption technique. The effect of various experimental parameters such as pH, salt presence, contact time and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data which shows that the adsorption of the enzyme followed the pseudo-second-order rate expression. The Langmuir, Freundlich and Hill adsorption isotherm models were applied to describe the equilibrium isotherms, and the isotherm constants were determined. It was found that Hill model was more suitable for our data because the isotherm data showed a sigmoidal behavior with the free enzyme concentration increasing in equilibrium. At 8°C and at pH 5.0, 1g hydrate matrix adsorbed about 7mg of chymotrypsin. In the desorption process 80% of the biological activity of chymotrypsin was recovered under the condition of 50mM phosphate buffer, pH 7.00-500mM NaCl. When successive cycles of adsorption/washing/desorption were performed, it was observed that the matrix remained functional until the fourth cycle of repeated batch enzyme adsorption. These results are important in terms of diminishing of cost and waste generation. PMID:26849187

  10. Isotherms and kinetic study of dihydrogen and hydrogen phosphate ions (H{2}PO{4}- and HPO{4}2-) adsorption onto crushed plant matter of the semi-arid zones of Morocco: Asphodelus microcarpus, Asparagus albus and Senecio anthophorbium

    NASA Astrophysics Data System (ADS)

    Chiban, M.; Benhima, H.; Saadi, B.; Nounah, A.; Sinan, F.

    2005-03-01

    In the present work H{2}PO4- and HPO42- ions adsorption onto organic matter (OM) obtained from ground dried three plants growing in arid zones of Morocco has been studied. The adsorption process is affected by various parameters such as contact time, particle size and initial concentration of phosphate solution (Ci ≤ 30 mg/l). The uptake of both ions is increased by increasing the concentration of them selves. The retention of phosphate ions by Asphodelus microcarpus, Asparagus albus are well defined by several isotherms such as the Langmuir, Temkin and Freundlich.

  11. Adsorption of heavy metal ions using hierarchical CaCO3-maltose meso/macroporous hybrid materials: adsorption isotherms and kinetic studies.

    PubMed

    Ma, Xiaoming; Li, Liping; Yang, Lin; Su, Caiyun; Wang, Kui; Yuan, Shibao; Zhou, Jianguo

    2012-03-30

    Highly ordered hierarchical calcium carbonate is an important phase and has technological interest in the development of functional materials. The work describes hierarchical CaCO(3)-maltose meso/macroporous hybrid materials were synthesized using a simple gas-diffusion method. The uniform hexagonal-shaped CaCO(3)-maltose hybrid materials are formed by the hierarchical assembly of nanoparticles. The pore structure analysis indicates that the sample possesses the macroporous structure of mesoporous framework. The distinguishing features of the hierarchical CaCO(3)-maltose materials in water treatment involve not only high removal capacities, but also decontamination of trace metal ions. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The maximum removal capacity of the CaCO(3)-maltose hybrid materials for Pb(2+), Cd(2+), Cu(2+), Co(2+), Mn(2+) and Ni(2+) ions was 3242.48, 487.80, 628.93, 393.70, 558.66 and 769.23 mg/g, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. The adsorption and precipitation transformation mechanism can be considered due to hierarchical meso/macroporous structure, rich organic ligands of the CaCO(3)-maltose hybrid materials and the larger solubility product of CaCO(3). PMID:22326246

  12. Bayesian and Frequentist Methods for Estimating Joint Uncertainty of Freundlich Adsorption Isotherm Fitting Parameters

    EPA Science Inventory

    In this paper, we present methods for estimating Freundlich isotherm fitting parameters (K and N) and their joint uncertainty, which have been implemented into the freeware software platforms R and WinBUGS. These estimates were determined by both Frequentist and Bayesian analyse...

  13. Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Albumin is the most abundant protein found in healing wounds. Traditional and chromatogrpahic protein isotherms of albumin binding on modified cotton fibers are useful in understanding albumin binding to cellulose wound dressings. An important consideration in the design of cellulosic wound dressin...

  14. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.

    PubMed

    Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R

    2016-07-01

    Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry. PMID:26198014

  15. Dye adsorption of cotton fabric grafted with PPI dendrimers: Isotherm and kinetic studies.

    PubMed

    Salimpour Abkenar, Samera; Malek, Reza Mohammad Ali; Mazaheri, Firouzmehr

    2015-11-01

    In this research, the cotton fabrics grafted with two generations of the poly(propylene imine) dendrimers were applied to adsorb textile dyes from aqueous solutions. Direct Red 80 (anionic dye), Disperse Yellow 42 (nonionic dye) and Basic Blue 9 (cationic dye) were selected as model dyes. The effect of various experimental parameters such as initial concentration of dyes, charge of dyes molecule, salt and pH was investigated on the adsorption process. Furthermore, kinetics and equilibrium of the adsorption process on the grafted samples were studied. It was found that maximum adsorption of anionic and disperse dyes took place at around pH 3, while cationic dye could be adsorbed at around pH 11. The Langmuir equation was able to describe the mechanism of dyes adsorption. In addition, the second-order equation was found to be fit with the kinetics data. Interestingly, it seems that the dye adsorption of the grafted fabrics is strongly pH dependent. PMID:26292774

  16. Adsorption kinetics, isotherms and thermodynamics of atrazine removal using a banana peel based sorbent.

    PubMed

    Chaparadza, Allen; Hossenlopp, Jeanne M

    2012-01-01

    Atrazine removal from water by treated banana peels was studied. The effect of pH, contact time, initial atrazine concentration, and temperature were investigated. Batch experiments demonstrated that 15 g L(-1) adsorbent dosage removed 90-99% of atrazine from 1-150 ppm aqueous solutions. The removal was both pH and temperature dependent with the most atrazine removed between pH 7 and 8.2 and increased with increasing temperature. Equilibrium data fitted well to the Langmuir and Redlich-Peterson models in the concentration and temperature ranges investigated, with a maximum adsorption capacity of 14 mg g(-1). Simple mass transfer models were applied to the experimental data to examine the adsorption mechanism and it was found that both external mass transfer and intraparticle diffusion played important roles in the adsorption mechanisms. The enthalpy of atrazine adsorption was evaluated to be 67.8 ± 6.3 kJ mol(-l) with a Gibbs free energy of -5.7 ± 1.2 kJ mol(-1). PMID:22339031

  17. Effect of cation type, alkyl chain length, adsorbate size on adsorption kinetics and isotherms of bromide ionic liquids from aqueous solutions onto microporous fabric and granulated activated carbons.

    PubMed

    Hassan, Safia; Duclaux, Laurent; Lévêque, Jean-Marc; Reinert, Laurence; Farooq, Amjad; Yasin, Tariq

    2014-11-01

    The adsorption from aqueous solution of imidazolium, pyrrolidinium and pyridinium based bromide ionic liquids (ILs) having different alkyl chain lengths was investigated on two types of microporous activated carbons: a fabric and a granulated one, well characterized in terms of surface chemistry by "Boehm" titrations and pH of point of zero charge measurements and of porosity by N2 adsorption at 77 K and CO2 adsorption at 273 K. The influence of cation type, alkyl chain length and adsorbate size on the adsorption properties was analyzed by studying kinetics and isotherms of eight different ILs using conductivity measurements. Equilibrium studies were carried out at different temperatures in the range [25-55 °C]. The incorporation of ILs on the AC porosity was studied by N2 adsorption-desorption measurements at 77 K. The experimental adsorption isotherms data showed a good correlation with the Langmuir model. Thermodynamic studies indicated that the adsorption of ILs onto activated carbons was an exothermic process, and that the removal efficiency increased with increase in alkyl chain length, due to the increase in hydrophobicity of long chain ILs cations determined with the evolution of the calculated octanol-water constant (Kow). The negative values of free energies indicated that adsorption of ILs with long chain lengths having hydrophobic cations was more spontaneous at the investigated temperatures. PMID:24929502

  18. Interactions between lignosulphonates and the components of the lead-acid battery. Part 1. Adsorption isotherms

    NASA Astrophysics Data System (ADS)

    Myrvold, Bernt O.

    The expander performs at least five different tasks in the battery. It is a fluidiser for the negative paste. It controls the formation stage of the battery. It controls the shape and size of the lead sulphate crystals formed upon discharge, and thus prevents the sintering of the active mass. It controls the rate of the lead to lead sulphate oxidation during discharge. Finally, it affects the charge acceptance. To gain more understanding of these different effects the interaction between lead, lead(II) oxide, lead(IV) oxide, lead sulphate, barium sulphate and carbon black and the experimental lignosulphonate (LS) expander UP-414 has been investigated. We also compared with Vanisperse A and several other lignosulphonates, to elucidate the mechanisms operating. In most cases, we have studied concentration ranges that are both higher and lower than those normally encountered in batteries. There is no adsorption of lignosulphonates to pure lead surfaces. Adsorption to lead sulphate is a slow process. In the presence of lead ions lignosulphonates will also adsorb to lead. The adsorption to lead(II) oxide is a fast process, and a strong adsorption occurs. In all these cases, it is preferably the high molecular weight fraction that interacts with the solid surfaces. Lead ions leaching from the surface complexes with lignosulphonates to give a more hydrophobic species. This allows the normally negatively charged lignosulphonate to adsorb to the negatively charged substrates. The lignosulphonates have an ability to complex lead ions and keep them solvated. This confirms previous observations of the lignosulphonates ability to promote the dissolution-precipitation mechanism for lead sulphate formation on the expense of the solid-state reaction.

  19. Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: comparative study

    PubMed Central

    2013-01-01

    The phenolic compounds are known by their carcinogenicity and high toxicity as well as creating unpleasant taste and odor in water resources. The present study develops a cost-effective technology for the treatment of water contaminated with phenolic compounds, including Phenol (Ph), 2-chlorophenol (2-CP), and 4-chlorophenol (4-CP). So, two sorbents, rice bran ash (RBA) and biomass of brown algae, Cystoseiraindica, were used and results were compared with the commercially granular activated carbon (GAC). The phenolic compounds were determined using a high performance liquid chromatography (HPLC) under batch equilibrium conditions. The effects of contact time, pH, initial adsorbate concentration, and adsorbent dosages on the removal efficiency were studied. The adsorption data were simulated by isotherm and kinetic models. Results indicated that RBA and GAC had the lowest efficiency for the removal of 2-CP, while the order of removal efficiency for C. indica biomass was as follows: 2-CP > 4-CP > phenol. The efficiency of GAC was higher than those of other adsorbents for all of the phenolic compounds. Furthermore, the adsorption capacity of RBA was found to be higher than that of C. indica biomass. The optimal initial pH for the removal of phenol, 2-CP and 4-CP was determined to be 5, 7, and 7 for RBA, GAC, and algal biomass, respectively. Kinetic studies suggested that the pseudo-second order best fitted the kinetic data. PMID:24355013

  20. Adsorption isotherms and kinetics of methylene blue on a low-cost adsorbent recovered from a spent catalyst of vinyl acetate synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyong; Zhang, Zebiao; Fernández, Y.; Menéndez, J. A.; Niu, Hao; Peng, Jinhui; Zhang, Libo; Guo, Shenghui

    2010-02-01

    A regenerated activated carbon used as catalyst support in the synthesis of vinyl acetate has been tested as a low-cost adsorbent for the removal of dyes. After a thorough textural characterization of the regenerated activated carbon, its adsorption isotherms and kinetics were determined using methylene blue as model compound at different initial concentrations. Both Langmuir and Freundlich isotherm models were developed and then compared. It was found that the equilibrium data were best represented by the Langmuir isotherm model. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and it was found that the best fitting corresponded to the pseudo-second-order kinetic model. The results showed that this novel adsorbent had a high adsorption capacity, making it suitable for use in the treatment of methylene blue enriched wastewater.

  1. Solvothermal synthesis of different phase N-TiO2 and their kinetics, isotherm and thermodynamic studies on the adsorption of methyl orange.

    PubMed

    Fan, Jimin; Zhao, Zhihuan; Liu, Wenhui; Xue, Yongqiang; Yin, Shu

    2016-05-15

    The different crystal forms of nitrogen doped-titanium oxide (N-TiO2) with different particle sizes were produced by precipitation-solvothermal method and their adsorption mechanism were also investigated. The adsorption kinetics showed that rutile N-TiO2 displayed higher adsorption capacity than anatase for methyl orange (MO) and its adsorption behavior followed the pseudo-second-order kinetics. The equilibrium adsorption rate of N-TiO2 for MO was well fitted by the Langmuir isotherm model and the adsorption process was monolayer adsorption. The adsorption capacity decreased with increasing temperature. The average correlation coefficient was beyond 97%. The thermodynamic parameters (ΔaGm(ө), ΔaHm(ө), and ΔaSm(ө)) were calculated. It was found that anatase and rutile N-TiO2 had different adsorption enthalpy and entropy. The smaller the particle size, the greater the surface area and surface energy was, then ΔaGm(ө) decreased and the standard equilibrium constant increased at the same time. The adsorption process onto different crystalline phase N-TiO2 was exothermic and non-spontaneous. PMID:26945716

  2. Investigation of simultaneous biosorption of copper(II) and chromium(VI) on dried Chlorella vulgaris from binary metal mixtures: Application of multicomponent adsorption isotherms

    SciTech Connect

    Aksu, Z.; Acikel, U.; Kutsal, T.

    1999-02-01

    Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studies the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.

  3. Study of the kinetics and the adsorption isotherm of cadmium(II) from aqueous solution using green algae (Ulva lactuca) biomass.

    PubMed

    Asnaoui, H; Laaziri, A; Khalis, M

    2015-01-01

    Batch experiments were conducted to study the adsorption of hazardous cadmium onto low-cost algae biomass in aqueous solution with respect to concentration of adsorbate, adsorbent dosage, contact time, solution pH and temperature. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of cadmium onto Ulva lactuca biomass. Experimental data were tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of Cd(II) followed well pseudo-second-order kinetics. Langmuir and Freundlich models were applied to describe the biosorption isotherm of the metal ions by Ulva lactuca biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of Ulva lactuca biomass for cadmium was found to be 3.02 mg/g at pH 5.60 min equilibrium time and 20 °C. The mean free energy which was calculated was 6.24 kJ/mol for Cd(II) biosorption, which shows that the adsorption is physical. The calculated thermodynamic parameters (ΔG0, ΔH0 and ΔS0) showed that the biosorption of Cd(II) onto Ulva lactuca biomass was feasible, spontaneous and exothermic under examined conditions. The results indicate that algae Ulva lactuca could be employed as a low-cost material for the removal of metal ions from aqueous solution. PMID:26524441

  4. Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism.

    PubMed

    Wang, Pan; Du, Mingliang; Zhu, Han; Bao, Shiyong; Yang, Tingting; Zou, Meiling

    2015-04-01

    Silica nanotubes (SNTs) with controlled nanotubular structure were synthesized via an electrospinning and calcination process. In this regard, SNTs were found to be ideal adsorbents for Pb(II) removal with a higher adsorption capacity, and surface modification of the SNTs by sym-diphenylcarbazide (SD-SNTs) markedly enhanced the adsorption ability due to the chelating interaction between imino groups and Pb(II). The pH effect, kinetics, isotherms and adsorption mechanism of SNTs and SD-SNTs on Pb(II) adsorption were investigated and discussed detailedly. The adsorption capacity for Pb(II) removal was found to be significantly improved with the decrease of pH value. The Langmuir adsorption model agreed well with the experimental data. As for kinetic study, the adsorption onto SNTs and SD-SNTs could be fitted to pseudo-first-order and pseudo-second-order model, respectively. In addition, the as-prepared SNTs and SD-SNTs also exhibit high adsorption ability for Cd(II) and Co(II). The experimental results demonstrate that the SNTs and SD-SNTs are potential adsorbents and can be used effectively for the treatment of heavy-metal-ions-containing wastewater. PMID:25615696

  5. Adsorption isotherms and structure of cationic surfactants adsorbed on mineral oxide surfaces prepared by atomic layer deposition.

    PubMed

    Wangchareansak, Thipvaree; Craig, Vincent S J; Notley, Shannon M

    2013-12-01

    The adsorption isotherms and aggregate structures of adsorbed surfactants on smooth thin-film surfaces of mineral oxides have been studied by optical reflectometry and atomic force microscopy (AFM). Films of the mineral oxides of titania, alumina, hafnia, and zirconia were produced by atomic layer deposition (ALD) with low roughness. We find that the surface strongly influences the admicelle organization on the surface. At high concentrations (2 × cmc) of cetyltrimethylammonium bromide (CTAB), the surfactant aggregates on a titania surface exhibit a flattened admicelle structure with an average repeat distance of 8.0 ± 1.0 nm whereas aggregates on alumina substrates exhibit a larger admicelle with an average separation distance of 10.5 ± 1.0 nm. A wormlike admicelle structure with an average separation distance of 7.0 ± 1.0 nm can be observed on zirconia substrates whereas a bilayered aggregate structure on hafnia substrates was observed. The change in the surface aggregate structure can be related to an increase in the critical packing parameter through a reduction in the effective headgroup area of the surfactant. The templating strength of the surfaces are found to be hafnia > alumina > zirconia > titania. Weakly templating surfaces are expected to have superior biocompatibility. PMID:24224944

  6. Adsorption of fluoride on synthetic iron (III), zirconium(IV) and binary iron(III)-zirconium (IV) oxides: comparative assessment on pH effect and isotherm.

    PubMed

    Biswas, Krishna; Bandhopadhyay, Durjoy; Ghosh, Uday Chand

    2008-04-01

    Fluoride is an accumulative poison at high dose of intake for humans and animals. In the present study, the sorption of fluoride from aqueous solution has been investigated on synthetic hydrous ferric oxide (HFO), hydrous zirconium oxide (HZO) and hydrous zirconium(IV)-iron(III) oxide (HZFO) by batch mode experiments. Both HFO and HZFO were crystalline and HZO was amorphous in nature. The parametes studied were the effect of pH and sorption equilibriums. The results showed increase in fluoride-sorption with increasing pH from nearly 2.0 to 5.0, 4.6 and 6.8 for HFO, HZO and HZFO, respectively. Analysis of temperature dependent sorption data obtained at equilibrium solution pH 6.8 (+/- 0.2) has been described by the Langmuir, Freundlich, Temkin and Redlich-Peterson isotherm model equations. The present sorption data fit, in general, found very well with the Langmuir and Redlich-Peterson models; and the data fit for HZFO and HFO found to increase, but for HZO the data found to decrease with increasing temperature. The computed thermodynamic parameters such as deltaG0, delltaH0 and deltaS0 from the Langmuir equilibrium constant (b, L/Umg) values show that the fluoride-sorption on HZFO was more spontaneous and endothermic process compared to HFO. The deltaH0 value obtained for fluoride adsorption on HZO indicates exothermic nature. PMID:19295101

  7. Using iron-loaded sepiolite obtained by adsorption as a catalyst in the electro-Fenton oxidation of Reactive Black 5.

    PubMed

    Iglesias, O; Fernández de Dios, M A; Pazos, M; Sanromán, M A

    2013-09-01

    This study explores the possibility of using iron-loaded sepiolite, obtained by recovering iron from polluted water, as a catalyst in the electro-Fenton oxidation of organic pollutants in textile effluents. The removal of iron ions from aqueous solution by adsorption on sepiolite was studied in batch tests at iron concentrations between 100 and 1,000 ppm. Electro-Fenton experiments were carried out in an electrochemical cell with a working volume of 0.15 L, an air flow of 1 L/min, and 3 g of iron-loaded sepiolite. An electric field was applied using a boron-doped diamond anode and a graphite sheet cathode connected to a direct current power supply with a constant potential drop. Reactive Black 5 (100 mg/L) was selected as the model dye. The adsorption isotherms proved the ability of the used adsorbent. The removal of the iron ion by adsorption on sepiolite was in the range of 80-100 % for the studied concentration range. The Langmuir and Freundlich isotherms were found to be applicable in terms of the relatively high regression values. Iron-loaded sepiolite could be used as an effective heterogeneous catalyst for the degradation of organic dyes in the electro-Fenton process. Successive batch processes were performed at optimal working conditions (5 V and pH 2). The results indicate the suitability of the proposed combined process, adsorption to iron remediation followed by the application of the obtained iron-loaded sepiolite to the electro-Fenton technique, to oxidize polluted effluents. PMID:23516035

  8. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.

    PubMed

    Ghaedi, M; Shojaeipour, E; Ghaedi, A M; Sahraei, Reza

    2015-05-01

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1g), contact time (1-40min) and initial MG concentration (5, 10, 20, 70 and 100mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R(2)) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8mg/g at 25°C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model. PMID:25699703

  9. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: Artificial neural network modeling and genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Shojaeipour, E.; Ghaedi, A. M.; Sahraei, Reza

    2015-05-01

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1 g), contact time (1-40 min) and initial MG concentration (5, 10, 20, 70 and 100 mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R2) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8 mg/g at 25 °C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20 min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model.

  10. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models.

    PubMed

    Rahman, Md Sayedur; Sathasivam, Kathiresan V

    2015-01-01

    Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb(2+), Cu(2+), Fe(2+), and Zn(2+) onto dried biomass of red seaweed Kappaphycus sp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models). The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweed Kappaphycus sp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment. PMID:26295032

  11. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models

    PubMed Central

    Rahman, Md. Sayedur; Sathasivam, Kathiresan V.

    2015-01-01

    Biosorption process is a promising technology for the removal of heavy metals from industrial wastes and effluents using low-cost and effective biosorbents. In the present study, adsorption of Pb2+, Cu2+, Fe2+, and Zn2+ onto dried biomass of red seaweed Kappaphycus sp. was investigated as a function of pH, contact time, initial metal ion concentration, and temperature. The experimental data were evaluated by four isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and four kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models). The adsorption process was feasible, spontaneous, and endothermic in nature. Functional groups in the biomass involved in metal adsorption process were revealed as carboxylic and sulfonic acids and sulfonate by Fourier transform infrared analysis. A total of nine error functions were applied to validate the models. We strongly suggest the analysis of error functions for validating adsorption isotherm and kinetic models using linear methods. The present work shows that the red seaweed Kappaphycus sp. can be used as a potentially low-cost biosorbent for the removal of heavy metal ions from aqueous solutions. Further study is warranted to evaluate its feasibility for the removal of heavy metals from the real environment. PMID:26295032

  12. CO2 adsorption isotherm on clay minerals and the CO2 accessibility into the clay interlayer

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Bertier, Pieter; Busch, Andreas; Rother, Gernot; Krooß, Bernhard

    2013-04-01

    Large-scale CO2 storage in porous rock formations at 1-3 km depth is seen as a global warming mitigation strategy. In this process, CO2 is separated from the flue gas of coal or gas power plants, compressed, and pumped into porous subsurface reservoirs with overlying caprocks (seals). Good seals are mechanically and chemically stable caprocks with low porosity and permeability. They prevent leakage of buoyant CO2 from the reservoir. Caprocks are generally comprised of thick layers of shale, and thus mainly consist of clay minerals. These clays can be affected by CO2-induced processes, such as swelling or dissolution. The interactions of CO2 with clay minerals in shales are at present poorly understood. Sorption measurements in combination scattering techniques could provide fundamental insight into the mechanisms governing CO2-clay interaction. Volumetric sorption techniques have assessed the sorption of supercritical CO2 onto coal (Gensterblum et al., 2010; Gensterblum et al., 2009), porous silica (Rother et al., 2012a) and clays as a means of exploring the potential of large-scale storage of anthropogenic CO2 in geological reservoirs (Busch et al., 2008). On different clay minerals and shales, positive values of excess sorption were measured at gas pressures up to 6 MPa, where the interfacial fluid is assumed to be denser than the bulk fluid. However, zero and negative values were obtained at higher densities, which suggests the adsorbed fluid becomes equal to and eventually less dense than the corresponding bulk fluid, or that the clay minerals expand on CO2 charging. Using a combination of neutron diffraction and excess sorption measurements, we recently deduced the interlayer density of scCO2 in Na-montmorillonite clay in its single-layer hydration state (Rother et al., 2012b), and confirmed its low density, as well as the expansion of the basal spacings. We performed neutron diffraction experiments at the FRMII diffractometer on smectite, kaolinite and illite

  13. Phycoremediation and adsorption isotherms of cadmium and copper ions by Merismopedia tenuissima and their effect on growth and metabolism.

    PubMed

    Fawzy, Mustafa A

    2016-09-01

    The current study tends to investigate the removal of cadmium and copper ions by Merismopedia tenuissima, grown in different concentrations of cadmium and copper ions, as well to investigate their effects on growth and metabolism. Sorption isotherms of Langmuir and Freundlich were obtained for the quantitative description of cadmium and copper uptake by M. tenuissima. Langmuir model adequately to describe the data of biosorption for these metals. However, the Freundlich model could work well in case of Cu(2+) only. M. tenuissima appears to be more efficient for removing Cd(2+) ions than Cu(2+). However, the affinity constant of Cu(2+) on the biomass of M. tenuissima was higher than Cd(2+) indicating that M. tenuissima is more tolerant to Cd(2+) phytotoxicity than Cu(2+). FTIR analysis of algae with and without biosorption revealed the presence of carboxyl, amino, amide and hydroxyl groups, which were responsible for biosorption of Cd(+2) and Cu(+2) ions. PMID:27458699

  14. A comparison of results obtained with two subsurface non-isothermal multiphase reactive transport simulators, FADES-CORE and TOUGHREACT

    SciTech Connect

    Juncosa Rivera, Ricardo; Xu, Tianfu; Pruess, Karsten

    2001-01-01

    FADES-CORE and TOUGHREACT are codes used to model the non-isothermal multiphase flow with multicomponent reactive transport in porous media. Different flow and reactive transport problems were used to compare the FADES-CORE and TOUGHREACT codes. These problems take into account the different cases of multiphase flow with and without heat transport, conservative transport, and reactive transport. Consistent results were obtained from both codes, which use different numerical methods to solve the differential equations resulting from the various physicochemical processes. Here we present the results obtained from both codes for various cases. Some results are slightly different with minor discrepancies, which have been remedied, so that both codes would be able to reproduce the same processes using the same parameters. One of the discrepancies found is related to the different calculation for thermal conductivity in heat transport, which affects the calculation of the temperatures, as well as the pH of the reaction of calcite dissolution problem modeled. Therefore it is possible to affirm that the pH is highly sensitive to temperature. Generally speaking, the comparison was concluded to be highly satisfactory, leading to the complete verification of the FADES-CORE code. However, we must keep in mind that, as there are no analytical solutions available with which to verify the codes, the TOUGHREACT code has been thoroughly corroborated, given that the only possible way to prove that the code simulation is correct, is by comparing the results obtained with both codes for the identical problems, or to validate the simulation results with actual measured data.

  15. Diverse 2D structures obtained by adsorption of charged ABA triblock copolymer on different surfaces

    NASA Astrophysics Data System (ADS)

    Kontturi, Katri S.; Vesterinen, Arja-Helena; Seppälä, Jukka; Laine, Janne

    2012-11-01

    In the larger context of 2D polymeric structures, the morphologies obtained by adsorption and subsequent drying of charged, ABA type amphiphilic triblock copolymer of poly[2-(dimethylamino)ethyl metacrylate] (PDMAEMA) and poly(propylene oxide) (PPO) were investigated with atomic force microscopy and X-ray photoelectron spectroscopy as well as in situ adsorption analysis with quartz crystal microbalance with dissipation monitoring. Hydrophilic silica and hydrophobic polystyrene (PS) were used as substrates for adsorption. The structures emerging from the self-assembly of adsorbing polymer were profoundly influenced by composition of the aqueous solution and the choice of substrate. When adsorbed from dilute polymer solution where the concentration is so low that the polymer does not yet show surface-active behavior, the triblock copolymer unimers associated on hydrophilic silica surface forming large, irregular clustered aggregates, with sizes increasing with electrolyte concentration of the solution. On a hydrophobic PS substrate, on the other hand, unimers spread much more evenly, forming clear surface patterns. The roughness of these patterned structures was tuned with the electrolyte concentration of the solution. Adsorption from a more concentrated polymer solution, where the surface-activity of the polymer is perceptible, resulted in the formation of a smooth film with complete coverage over the hydrophilic silica substrate when the electrolyte concentration was high. On PS, on the other hand, nucleation of evenly scattered globular, disk-like micelles was induced. Besides the dry film morphology, the even distribution of the irreversibly adsorbed polymer over the PS surface was likely to serve as an optimal platform for the build-up of reversible hydrophobically bound multilayers at high electrolyte concentration. The multilayer formation was reversible because a decrease in the electrolyte concentration of the solution re-introduces strong electrostatic

  16. Adsorption of Ar on individual carbon nanotubes, graphene, and graphite

    NASA Astrophysics Data System (ADS)

    Dzyubenko, Boris; Kahn, Joshua; Vilches, Oscar; Cobden, David

    2015-03-01

    We compare and contrast results of adsorption measurements of Ar on single-walled carbon nanotubes, graphene, and graphite. Adsorption isotherms on individual suspended nanotubes were obtained using both the mechanical resonance frequency shift (sensitive to mass adsorption) and the electrical conductance. Isotherms on graphene mounted on hexagonal boron nitride were obtained using only the conductance. New volumetric adsorption isotherms on bulk exfoliated graphite were also obtained, paying special attention to the very low coverage region (less than 2% of a monolayer). This allowed us to compare the degree of heterogeneity on the three substrate types, the binding energies, and the van der Waals 2D parameters. Research supported by NSF DMR 1206208.

  17. Protein adsorption on low temperature isotropic carbon. III. Isotherms, competitivity, desorption and exchange of human albumin and fibrinogen.

    PubMed

    Feng, L; Andrade, J D

    1994-04-01

    In this paper we consider the adsorption of albumin and fibrinogen on low temperature isotropic carbon (LTIC). A subsequent paper considers the adsorption of other plasma proteins [Feng L, Andrade JD, Colloids and Surfaces (in press)]. Carbon fragments and silica plates were used as adsorbents. Adsorption was carried out by incubating the adsorbents in solutions of 125I-labelled and unlabelled proteins (single component system), or with buffer-diluted human plasma (multicomponent system). Adsorbed proteins then underwent displacement by buffer, by single protein solutions or by dilute plasma. Results show that the LTIC substrate adsorbs a large amount of proteins before saturation, which may be due to multilayer adsorption. LTIC also irreversibly holds adsorbed proteins against the exchange agents used; little adsorbed proteins can be displaced, even after a very short adsorption time. There is no preferential adsorption for either albumin or fibrinogen on LTIC from their binary solutions, suggesting that both proteins have high affinities for the surface. Such strong interactions between LTIC and proteins are not attributed to electrostatic interactions. On the other hand, protein adsorption on the silica surface is selective and reversible, with a much higher affinity for fibrinogen than albumin and an even higher affinity for some other plasma proteins. The paper also discusses the effect of sequential protein addition to a solution on the surface concentration and suppression of adsorption of both proteins in the presence of other plasma proteins. A very important conclusion is that the LTIC surface is very active towards proteins adsorption. PMID:8061122

  18. Recombinant protein purification using gradient-assisted simulated moving bed hydrophobic interaction chromatography. Part I: selection of chromatographic system and estimation of adsorption isotherms.

    PubMed

    Palani, Sivakumar; Gueorguieva, Ludmila; Rinas, Ursula; Seidel-Morgenstern, Andreas; Jayaraman, Guhan

    2011-09-16

    The design of gradient simulated moving bed (SMB) chromatographic processes requires an appropriate selection of the chromatographic system followed by the determination of adsorption isotherm parameters in the relevant range of mobile phase conditions. The determination of these parameters can be quite difficult for recombinant target proteins present in complex protein mixtures. The first part of this work includes the estimation of adsorption isotherm parameters for streptokinase and a lumped impurity fraction present in an Escherichia coli cell lysate for a hydrophobic interaction chromatography (HIC) matrix. Perturbation experiments were carried out using a Butyl Sepharose matrix with purified recombinant protein on buffer equilibrated columns as well as with crude cell lysate saturated columns. The Henry constants estimated for streptokinase were found to exhibit in a wide range a linear dependence on the salt concentration in the mobile phase. These parameters were applied in subsequent investigations to design a simulated moving bed (SMB) process capable to purify in a continuous manner recombinant streptokinase from the E. coli cell lysate. PMID:21816402

  19. Generalized adsorption isotherms for molecular and dissociative adsorption of a polar molecular species on two polar surface geometries: Perovskite (100) (Pm-3m) and fluorite (111) (Fm-3m)

    DOE PAGESBeta

    Danielson, Thomas; Hin, Celine; Savara, Aditya

    2016-08-10

    Lattice based kinetic Monte Carlo (KMC) simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and for estimating the coverage at a certain pressure. The generalized form has been calculatedmore » by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. Finally, the equations have been shown to be general for any value of the adsorption equilibrium constant.« less

  20. Generalized adsorption isotherms for molecular and dissociative adsorption of a polar molecular species on two polar surface geometries: Perovskite (100) (Pm-3m) and fluorite (111) (Fm-3m)

    NASA Astrophysics Data System (ADS)

    Danielson, Thomas; Hin, Celine; Savara, Aditya

    2016-08-01

    Lattice based kinetic Monte Carlo simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and, conversely, for estimating the coverage at a certain pressure. The generalized form has been calculated by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. The equations have been shown to be general for any value of the adsorption equilibrium constant.

  1. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO₂ nanoparticles from aqueous media.

    PubMed

    Shaker, Medhat A; Yakout, Amr A

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51±3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, (1)H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r(2)) and non-linear Chi-square (χ(2)) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters. PMID:26520475

  2. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO2 nanoparticles from aqueous media

    NASA Astrophysics Data System (ADS)

    Shaker, Medhat A.; Yakout, Amr A.

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51 ± 3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, 1H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r2) and non-linear Chi-square (χ2) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters.

  3. Adsorption of Cd(II) by Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies.

    PubMed

    Shan, Ran-ran; Yan, Liang-guo; Yang, Kun; Hao, Yuan-feng; Du, Bin

    2015-12-15

    Understanding the adsorption mechanisms of metal cations on the surfaces of solids is important for determining the fate of these metals in water and wastewater treatment. The adsorption kinetic, isothermal, thermodynamic and mechanistic properties of cadmium (Cd(II)) in an aqueous solution containing Mg-Al-CO3- and magnetic Fe3O4/Mg-Al-CO3-layered double hydroxide (LDH) were studied. The results demonstrated that the adsorption kinetic and isotherm data followed the pseudo-second-order model and the Langmuir equation, respectively. The adsorption process of Cd(II) was feasible, spontaneous and endothermic in nature. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to explain the adsorption mechanisms. The characteristic XRD peaks and FTIR bands of CdCO3 emerged in the LDH spectra after Cd(II) adsorption, which indicated that the adsorption of Cd(II) by LDHs occurred mainly via CdCO3 precipitation, surface adsorption and surface complexation. Furthermore, the magnetic Fe3O4/Mg-Al-CO3-LDH can be quickly and easily separated using a magnet before and after the adsorption process. PMID:26073520

  4. Adsorption behaviors of thiophene, benzene, and cyclohexene on FAU zeolites: Comparison of CeY obtained by liquid-, and solid-state ion exchange

    NASA Astrophysics Data System (ADS)

    Qin, Yucai; Mo, Zhousheng; Yu, Wenguang; Dong, Shiwei; Duan, Linhai; Gao, Xionghou; Song, Lijuan

    2014-02-01

    Cerium containing Y zeolites were prepared by liquid- (L-CeY) and solid- (S-CeY) state ion exchange from NaY and HY, respectively. The structural and textural properties were characterized by XRD and N2 adsorption, and acidity properties were characterized by NH3 temperature-programmed desorption (NH3-TPD) and in situ FTIR spectrum of chemisorbed pyridine (in situ Py-FTIR). Furthermore, the single component adsorption and multi-component competitive adsorption behavior of thiophene, benzene and cyclohexene on those zeolites have also been studied by using vapor adsorption isotherms, solution adsorption breakthrough curves, thermogravimetry and derivative thermogravimetry (TG/DTG), frequency response (FR) and in situ FTIR techniques. The results indicate that the primary adsorption mode of benzene is simply micropore filling process, but the nature of effect of aromatics on selective adsorption of thiophene is competitive adsorption. The strong chemical adsorptions and protonization reactions of thiophene and cyclohexene occur upon the Brönsted acid sites of the HY and L-CeY zeolites, and the preferable acid catalytic protonization reactions of olefins hinder the further adsorption of sulfur compounds.

  5. Precipitation and surface adsorption of metal complexes during electropolishing. Theory and characterization with X-ray nanotomography and surface tension isotherms.

    PubMed

    Nave, Maryana I; Chen-Wiegart, Yu-chen Karen; Wang, Jun; Kornev, Konstantin G

    2015-09-21

    Electropolishing of metals often leads to supersaturation conditions resulting in precipitation of complex compounds. The solubility diagrams and Gibbs adsorption isotherms of the electropolishing products are thus very important to understand the thermodynamic mechanism of precipitation of reaction products. Electropolishing of tungsten wires in aqueous solutions of potassium hydroxide is used as an example illustrating the different thermodynamic scenarios of electropolishing. Electropolishing products are able to form highly viscous films immiscible with the surrounding electrolyte or porous shells adhered to the wire surface. Using X-ray nanotomography, we discovered a gel-like phase formed at the tungsten surface during electropolishing. The results of these studies suggest that the electropolishing products can form a rich library of compounds. The surface tension of the electrolyte depends on the metal oxide ions and alkali-metal complexes. PMID:26279498

  6. A study of the adsorption of the amphiphilic penicillins cloxacillin and dicloxacillin onto human serum albumin using surface tension isotherms

    NASA Astrophysics Data System (ADS)

    Barbosa, Silvia; Leis, David; Taboada, Pablo; Attwood, David; Mosquera, Victor

    The interaction of human serum albumin (HSA) with two structurally similar anionic amphiphilic penicillins, cloxacillin and dicloxacillin, at 25°C has been examined by surface tension measurements under conditions at which the HSA molecule was positively (pH 4.5) or negatively charged (pH 7.4). Measurements were at fixed HSA concentrations (0.0125 and 0.125% w/v) and at drug concentrations over a range including, where possible, the critical micelle concentration (cmc). Interaction between anionic drugs and positively charged HSA at pH 7.4 resulted in an increase of the cmc of each drug as a consequence of its removal from solution by adsorption. Limited data for cloxacillin at pH 4.5 indicated an apparent decrease of the cmc in the presence of HSA suggesting a facilitation of the aggregation by association with the protein. Changes in the surface tension-log (drug concentration) plots in the presence of HSA have been discussed in terms of the adsorption of drug at the air-solution and protein-solution interfaces. Standard free energy changes associated with the micellization of both drugs and their adsorption at the air-solution interface have been calculated and compared.

  7. Studies of adsorption equilibria and kinetics in the systems: Aqueous solution of dyes-mesoporous carbons

    NASA Astrophysics Data System (ADS)

    Derylo-Marczewska, A.; Marczewski, A. W.; Winter, Sz.; Sternik, D.

    2010-06-01

    Two carbonaceous materials were synthesized by using the method of impregnation of mesoporous silicas obtained by applying the Pluronic copolymers as pore-creating agents. The isotherms of adsorption of methylene blue and methyl orange from aqueous solutions were measured by the static method. The profiles of adsorbate concentration change in time were obtained from the UV-vis spectra. The adsorption isotherms and kinetic dependence were discussed in the terms of theory of adsorption on heterogeneous surfaces.

  8. The Freundlich adsorption isotherm constants and prediction of phosphorus bioavailability as affected by different phosphorus sources in two Kansas soils.

    PubMed

    Shafqat, Mustafa N; Pierzynski, Gary M

    2014-03-01

    Phosphorus (P) adsorption onto soil constituents influences P bioavailability from both agronomic and environmental perspectives. In this study, the P availability from different P sources along with utility of Freundlich adsorption coefficients on the predictability of various crop growth parameters were assessed. Two soils were amended with 150mgPkg(-1) each from six different P sources comprised of manures from two types of ruminants animals, three types of monogastric animals, and inorganic P fertilizer. Corn (Zea mays) was grown and harvested seven times under greenhouse conditions to remove P from the P amended treatments. The application of all P sources reduced the value of Freundlich K and increased the value of Freundlich 1/n and equilibrium P concentration (EPC0) in both soils compared to the un-amended control before cropping. The swine (Sus scrofa) manure (HM) resulted in significant smaller values of Freundlich K and larger values of 1/n in the P deficient Eram-Lebo soil compared to other P sources while, the opposite was true for the turkey (Meleagris gallopava) litter (TL) in the Ulysses soil. The corn biomass, tissue P concentration and P uptake were significantly influenced by all P sources during the first harvest and the total P uptake during seven harvests in both soils compared to the control treatment. Both Freundlich coefficients had strong relationships with the aforementioned corn parameters in the P deficient Eram-Lebo soil while, strength of the association was weak or missing in the Ulysses soil which had optimum levels of antecedent P. PMID:24238913

  9. Design, construction, and calibration of an isothermal titration calorimeter and its application in the study of the adsorption of phenolic compounds

    NASA Astrophysics Data System (ADS)

    Moreno-Piraján, Juan Carlos; Giraldo, Liliana

    2012-01-01

    An isothermal calorimetric titration was designed and built, and some of the results obtained are presented here. For this purpose, a Calvet heat-conducting microcalorimeter was developed and connected to a titration unit built for this experiment to record titration thermograms. The microcalorimeter was electrically calibrated to establish its sensitivity and reproducibility, obtaining K = 13.56 ± 0.21 W V-1. Additionally, the equipment was tested using the heat of neutralisation for the tris-hydroxymethyl-aminomethane-HCl (THAM-HCl) system, obtaining ΔH = -30.92 ± 0.03 kJ mol-1. The unit was assembled to obtain titration heats and the corresponding thermodynamic variables (ΔH, ΔG, ΔS, and Ke) with a system of phenolic derivatives-activated carbon (synthesised from potato peel).

  10. Design, construction, and calibration of an isothermal titration calorimeter and its application in the study of the adsorption of phenolic compounds.

    PubMed

    Moreno-Piraján, Juan Carlos; Giraldo, Liliana

    2012-01-01

    An isothermal calorimetric titration was designed and built, and some of the results obtained are presented here. For this purpose, a Calvet heat-conducting microcalorimeter was developed and connected to a titration unit built for this experiment to record titration thermograms. The microcalorimeter was electrically calibrated to establish its sensitivity and reproducibility, obtaining K = 13.56 ± 0.21 W V(-1). Additionally, the equipment was tested using the heat of neutralisation for the tris-hydroxymethyl-aminomethane-HCl (THAM-HCl) system, obtaining ΔH = -30.92 ± 0.03 kJ mol(-1). The unit was assembled to obtain titration heats and the corresponding thermodynamic variables (ΔH, ΔG, ΔS, and K(e)) with a system of phenolic derivatives-activated carbon (synthesised from potato peel). PMID:22299996

  11. Adsorption in sparse networks. 2: Silica aerogels

    SciTech Connect

    Scherer, G.W.; Calas, S.; Sempere, R.

    1998-06-15

    The model developed in Part 1 is applied to nitrogen adsorption isotherms obtained for a series of silica aerogels whose densities are varied by partial sintering. The isotherms are adequately described by a cubic network model, with all of the pores falling in the mesopore range; the adsorption and desorption branches are fit by the same pore size distribution. For the least dense gels, a substantial portion of the pore volume is not detected by condensation. The model attributes this effect to the shape of the adsorbate/adsorptive interface, which can adopt zero curvature even in mesopores, because of the shape of the network.

  12. Sulfate adsorption and surface precipitation on a volcanic ash soil (allophanic andisol).

    PubMed

    Ishiguro, Munehide; Makino, Tomoyuki; Hattori, Yasunobu

    2006-08-15

    Sulfate strongly adsorbs on metal oxides and soils with variable charges. However, its surface precipitation has not been clearly evaluated and its adsorption mechanism has been in dispute. In the present study, an allophanic andisol, a typical volcanic ash soil having both negative and positive variable charges, was used to identify the adsorption mechanism of sulfate. Sulfate adsorption isotherms were obtained by a batch method at pH values of 4, 5, 6, and 7 in a wide range of concentrations in an Na-H-SO(4)-OH system. Theoretical isotherms were applied to the measured values for the evaluation. The surface precipitation was detected by the measured adsorption isotherms, and the BET isotherm confirmed the presence of multilayer adsorption. Stronger and weaker adsorption sites were suggested by using the Langmuir isotherm for the monolayer adsorption. The adsorption energies obtained from the Langmuir equation and recent spectroscopic analysis suggested that the stronger adsorption corresponded to an inner-sphere surface complex and that the weaker adsorption corresponded to outer-sphere surface complexation. The BET and Langmuir equations showed three types of adsorption mechanisms for the sulfate adsorption on the soil. PMID:16750540

  13. Combined Yamamoto approach for simultaneous estimation of adsorption isotherm and kinetic parameters in ion-exchange chromatography.

    PubMed

    Rüdt, Matthias; Gillet, Florian; Heege, Stefanie; Hitzler, Julian; Kalbfuss, Bernd; Guélat, Bertrand

    2015-09-25

    Application of model-based design is appealing to support the development of protein chromatography in the biopharmaceutical industry. However, the required efforts for parameter estimation are frequently perceived as time-consuming and expensive. In order to speed-up this work, a new parameter estimation approach for modelling ion-exchange chromatography in linear conditions was developed. It aims at reducing the time and protein demand for the model calibration. The method combines the estimation of kinetic and thermodynamic parameters based on the simultaneous variation of the gradient slope and the residence time in a set of five linear gradient elutions. The parameters are estimated from a Yamamoto plot and a gradient-adjusted Van Deemter plot. The combined approach increases the information extracted per experiment compared to the individual methods. As a proof of concept, the combined approach was successfully applied for a monoclonal antibody on a cation-exchanger and for a Fc-fusion protein on an anion-exchange resin. The individual parameter estimations for the mAb confirmed that the new approach maintained the accuracy of the usual Yamamoto and Van Deemter plots. In the second case, offline size-exclusion chromatography was performed in order to estimate the thermodynamic parameters of an impurity (high molecular weight species) simultaneously with the main product. Finally, the parameters obtained from the combined approach were used in a lumped kinetic model to simulate the chromatography runs. The simulated chromatograms obtained for a wide range of gradient lengths and residence times showed only small deviations compared to the experimental data. PMID:26306913

  14. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    PubMed

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments. PMID:26082184

  15. Underpotential Deposition of Cu on Pt(100): Effects of Anions onAdsorption Isotherms and Interface Structures

    SciTech Connect

    Markovic, N.M.; Grgur, B.N.; Lucas, C.A.; Ross Jr., P.N.

    1997-10-15

    The results presented in this study show definitely thatcopper deposition in perchloric acid is a very slow, kineticallycontrolled process. In nearly halide free supporting electrolytes duappeared to be deposited at underpotential in metallic islands (or'patches') having the platinum lattice constant. The presence of Br-anions significantly enhances the kinetics of the Cu UPD on the Pt(100)electrode. The total amount of Cu deposited at underpotential is ca. 1 ML(1 ML = 1 Cu adatom per Pt atom). The results obtained from the surfaceX-ray diffraction measurements showed the formation of an orderedstructure of Pr into a c(2 x 2) unit cell on the top of a p(1 x 1)pseudomorphic layer of Cu. In a solution free of Cu no ordered structureof Pr has been found on Pt(100). RRDE and SXS results indicate beyond anydoubt that the surface coverage by Br undergoes only negligible changesupon the deposition of Cu even up to a nominal monolayer. We propose,therefore, that the mechanism of Cu UPD occurs by displacement of bromineadatoms from the Pt surface by Cu adatoms through a 'turn-over' processin which Cu is sandwiched between the Pt surface and the Brad overlayer,i.e., a Pt(100)-Cu-Br bi-layer structure.

  16. Adsorption of organic chemicals in soils.

    PubMed Central

    Calvet, R

    1989-01-01

    This paper presents a review on adsorption of organic chemicals on soils sediments and their constituents. The first part of this review deals with adsorption from gas and liquid phases and gives a discussion on the physical meaning of the shape of adsorption isotherms. Results show that no general rules can be proposed to describe univocally the relation between the shape of isotherms and the nature of adsorbate-adsorbent system. Kinetics of adsorption is discussed through the description of various models. Theoretical developments exist both for the thermodynamics and the kinetics of adsorption, but there is a strong need for experimental results. Possible adsorption mechanisms are ion exchange, interaction with metallic cations, hydrogen bonds, charge transfers, and London-van der Waals dispersion forces/hydrophobic effect. However, direct proofs of a given mechanism are rare. Several factors influence adsorption behavior. Electronic structure of adsorbed molecules, properties of adsorbents, and characteristics of the liquid phase are discussed in relation to adsorption. Such properties as water solubility, organic carbon content of adsorbing materials, and the composition of the liquid phase are particularly important. Evaluation of adsorption can be obtained through either laboratory measurements or use of several correlations. Adsorption measurements must be interpreted, taking into account treatment of adsorbent materials, experimental conditions, and secondary phenomena such as degradations. Correlations between adsorption coefficients and water-octanol partition coefficient or water solubility are numerous. They may be useful tools for prediction purposes. Relations with transport, bioavailability, and degradation are described. PMID:2695323

  17. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.

    PubMed

    Cutillas-Barreiro, Laura; Paradelo, Remigio; Igrexas-Soto, Alba; Núñez-Delgado, Avelino; Fernández-Sanjurjo, María José; Álvarez-Rodriguez, Esperanza; Garrote, Gil; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2016-09-01

    Bark from Pinus pinaster is one of the most abundant forestry wastes in Europe, and among the proposed technologies for its reutilization, the removal of heavy metals from wastewater has been gaining increasing attention. In this work, we have studied the performance of pine bark for heavy metal biosorption on competitive systems. Pb, Cu, Ni, Zn and Cd sorption and desorption at equilibrium were studied in batch experiments, whereas transport was studied in column experiments. Batch experiments were performed adding simultaneously different concentrations (0.08-3.15mM) of two or more metals in solution to pine bark samples. Column experiments were performed with 10mM solutions of two metals or a 5mM solution of the five metals. In general, the results under competitive conditions were different to those obtained in monoelemental experiments. The multi-metal batch experiments showed the adsorption sequence Pb≈Cu>Cd>Zn>Ni for lower metal doses, Pb>Cu>Cd>Zn>Ni for intermediate doses, and Pb>Cu>Cd≈Zn≈Ni for high metal doses. Desorption followed the sequence Pbadsorption sites on pine bark. The transport experiments produced comparable results to those obtained in the batch experiments, with pine bark retention capacity following the sequence Pb>Cu>Zn>Cd>Ni. The presence of a second metal affected the transport of all the elements studied except Pb, and confirmed the strong influence of Pb and Cu on the retention of the other metals. These results can help to appropriately design decontamination systems using this forestry waste. PMID:27232204

  18. Physical Adsorption of Gases on Heterogeneous Solids and Equilibrium Studies of the Pressure Swing Adsorption Process.

    NASA Astrophysics Data System (ADS)

    Lu, Xiaochun

    1990-01-01

    Adsorption isotherms of ethane, propane, and n -butane on two polystyrene adsorbents and two activated carbons were measured at 0, 25, and 40^ circC. A dynamic chromatographic experimental system was used to measure the transmission curves of gases through a packed bed. The transmission is defined as the ratio of the adsorbate concentration at the bed outlet to that at the bed inlet. A mass-balance equation was used to calculate the solid-phase concentration and the dimensionless adsorption capacity. The structural and energetic heterogeneities of microporous adsorbents were explored by means of Dubinin's Theory of Volume Filling of Micropores (TVFM) and by a modified TVFM. The structural heterogeneity of a microporous adsorbent refers to the non-uniformity of the pore sizes and pore shapes. In polystyrene adsorbents, these non -uniform pores were formed by different copolymerization of monomers; while in activated carbons, these non-uniform pores were formed in the processes of carbonization and activation. The energetic heterogeneities of a microporous adsorbent comes from the structural heterogeneity as well as from the various atoms and functional groups exposed at the pore surface, the impurities strongly bound to the surface, and the irregularities in the crystallographical structure of the surface. Dubinin's original TVFM applies well in structurally homogeneous or weakly-heterogeneous microporous activated carbons; however, fits of experimental isotherms to the Dubinin-Radushkevich equation reveal deviations for structurally -heterogeneous adsorbents. We extended Dubinin's TVFM to the case of structurally-heterogeneous adsorbents by using an overall integral isotherm equation. A gamma-function type micropore-size distribution was used and a three-parameter isotherm equation was obtained. The experimental isotherms on activated carbons were fitted well by this isotherm equation. We characterized eight different activated carbons with the three

  19. Adsorption of isopropanol and cyclohexane on zinc oxide

    NASA Astrophysics Data System (ADS)

    Bratchikova, I. G.; Pylinina, A. I.; Platonov, E. A.; Danilova, M. N.; Isaeva, N. Yu.; Yagodovskii, V. D.

    2015-01-01

    Adsorption isotherms of isopropanol and cyclohexane are obtained in the range of 234-303 K on an initial surface of zinc oxide and after its treatment with glow-discharge plasma in O2 and high-frequency plasma in Ar. The values of isosteric heat and adsorption entropy are shown to be only slightly affected by these treatments. It is found that the acidity of the surface increases by 38 and 97%, respectively, and the acidic sites are not adsorption sites for either adsorbate. At low degrees of occupation, the adsorption isotherms of (CH3)2CHOH are described by an equation of induced adsorption whose parameters are dependent on the plasma-chemical treatments. It is concluded that adsorbed isopropanol particles exist in positively and negatively charged forms. The adsorption of cyclohexane is described by the Hill-de Boer equation for the initial ZnO surface, and by the Langmuir equation after plasma-chemical treatments.

  20. Studies on Thorium Adsorption Characteristics upon Activated Titanium Hydroxide Prepared from Rosetta Ilmenite Concentrate

    SciTech Connect

    Gado, M Zaki, S

    2016-01-01

    The titanium hydroxide prepared from Rosetta ilmenite concentrate has been applied for Th (IV) adsorption from its acid aqueous solutions. The prepared hydroxide is first characterized by both Fourier transform infrared (FT-IR) spectrum and thermogravimetric analysis. The relevant factors affecting the adsorption process have been studied. The obtained equilibrium data fits well with the Langmuir isotherm rather than Freundlich isotherm, while the adsorption kinetic data follow the pseudo-second order model. The different thermodynamic parameters have also been calculated and indicate that the adsorption process is spontaneous.

  1. Experimental study of water adsorption on activated carbons

    SciTech Connect

    Salame, I.I.; Bandosz, T.J. |

    1999-01-19

    Two carbons of different origins (wood and coal) were oxidized with nitric acid. The materials were characterized using sorption of nitrogen. Boehm titration, and potentiometric titration. The water adsorption isotherms were measured at various temperatures close to ambient (relative pressure from 0.001 to 0.3). From these isotherms heats of adsorption were calculated using virial equation. The results showed that the isosteric heats of water adsorption are affected by surface chemical heterogeneity only at low surface coverage. The shapes of heats obtained indicate strong water-water interactions as a result of adsorption on secondary sites and cluster formation. In all cases the limiting heat of adsorption equal to the heat of water condensation (45 kJ/mol) was obtained.

  2. Mechanistic understanding and performance of biosorption of metal ions by grapefruit peel using FTIR spectroscopy, kinetics and adsorption isotherms modeling, alkali and alkaline metal displacement and EDX analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance and mechanism of the sorptive removal of Ni2+ and Zn2+ from aqueous solution using grapefruit peel (GFP) as a new sorbent was investigated. The sorption process was fast, equilibrium was established in 60 min. The equilibrium process was described well by the Langmuir isotherm model,...

  3. VOCs isotherms on day zeolite by static and dynamic methods: experiments and modelling.

    PubMed

    El Brihi, T; Jaubert, J N; Barth, D; Perrin, L

    2003-10-01

    A dynamic method and a static gravimetric method are respectively used to measure the adsorption equilibria of m-xylene and n-butyl acetate on Wessalith DAY zeolite F20. The equilibrium experiments are performed at different temperatures for both volatile organic compounds (VOCs). The m-xylene isotherms obtained in this study by the dynamic method are compared to our recently published data in which the static gravimetric method was used in order to test the influence of the experimental technique. Because the adsorption isotherms of m-xylene were correlated in our previous paper, in this study only the n-butyl acetate experimental data are correlated with various adsorption isotherm models: Langmuir, Toth and Dubinin equations. PMID:14669800

  4. Isothermal Calorimeter

    NASA Technical Reports Server (NTRS)

    Rowlette, John J.

    1990-01-01

    Pressure-feedback signal indicates rate of heating. Improved isothermal calorimeter measures rate of heating in object under test. Called "isothermal" because chamber holding object and its environment maintained at or near constant temperature to minimize spurious tranfers of heat introducing errors into measurements. When item under test generates heat, rate of boiling and pressure in inner chamber increase. Servo-valve opens wider to maintain preset differential pressure. Valve-control voltage used as measure of rate of heating.

  5. Adsorption of octylamine on titanium dioxide

    NASA Astrophysics Data System (ADS)

    Siwińska, Daria; Kołodziejczak-Radzimska, Agnieszka; Krysztafkiewicz, Andrzej; Jesionowski, Teofil

    2009-05-01

    Processes of adsorption and desorption of a model active substance (octylamine) on the surface of unmodified titanium dioxide (E 171) have been performed. The effects of concentration of octylamine and time of the process on the character of adsorption have been studied and the efficiency of the adsorption/desorption has been determined. The samples obtained have been studied by X-ray diffraction. The nitrogen adsorption/desorption isotherms, particle size distribution and absorption capacities of water, dibutyl phthalate and paraffin oil have been determined. The efficiency of octylamine adsorption on the surface of the titanium dioxide has been found positively correlated with the concentration of octylamine in the initial solution. The desorption of octylamine has decreased with increasing concentration of this compound adsorbed. For octylamine in low concentrations the physical adsorption has been found to dominate, which is desirable when using TiO 2 in the production of pharmaceuticals.

  6. Predicting helium and neon adsorption and separation on carbon nanotubes by Monte Carlo simulation.

    PubMed

    Bolboli Nojini, Zabiollah; Abbas Rafati, Amir; Majid Hashemianzadeh, Seyed; Samiee, Sepideh

    2011-04-01

    The adsorption of helium and neon mixtures on single-walled carbon nanotubes (SWCNTs) was investigated at various temperatures (subcritical and supercritical) and pressures using canonical Monte Carlo (CMC) simulation. Adsorption isotherms were obtained at different temperatures (4, 40, 77 and 130 K) and pressures ranging from 1 to 16 MPa. Separation factors and isosteric enthalpies of adsorption were also calculated. Moreover, the adsorption isotherms were obtained at constant specific temperatures (4 and 40 K) and pressures (0.2 and 1.0 MPa) as a function of the amount adsorbed. All of the adsorption isotherms for an equimolar mixture of helium and neon have a Langmuir shape, indicating that no capillary condensation occurs. Both the helium and the neon adsorption isotherms exhibit similar behavior, and slightly more of the helium and neon mixture is adsorbed on the inner surfaces of the SWCNTs than on their outer surfaces. More neon is adsorbed than helium within the specified pressure range. The data obtained show that the isosteric enthalpies for the adsorption of neon are higher than those for helium under the same conditions, which means that adsorption of neon preferentially occurs by (15, 15) SWCNTs. Furthermore, the isosteric enthalpies of adsorption of both gases decrease with increasing temperature. PMID:20559855

  7. Adsorption isotherms, kinetics, thermodynamics and desorption studies for uranium and thorium ions from aqueous solution by novel microporous composite P(HEMA-EP)

    NASA Astrophysics Data System (ADS)

    Akkaya, Recep; Akkaya, Birnur

    2013-03-01

    In this research, a novel composite, poly(2-hydroxyethylmethacrylate-expanded perlite) [P(HEMA-EP)], was synthesized and its adsorptive features were investigated. P(HEMA-EP)'s adsorptive features were evaluated for UO22+ and Th4+ ions in terms of the dependency upon the ion concentration, pH, temperature, and time. P(HEMA-EP) was able to bind UO22+ and Th4+ ions with strong chemical affinity. The adsorption results were fitted to the classical Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) sorption models. P(HEMA-EP) was also used to study the removal of UO22+ and Th4+ ions from aqueous solutions in a batch system. The adsorption capacity (XL) of UO22+ and Th4+ ions was found to be 0.29 and 0.44 mol kg-1, respectively. The kinetic data corresponds well to the pseudo-second-order equation. Changes in the enthalpy and entropy values demonstrated that the overall adsorption process was spontaneous (ΔG < 0), endothermic (ΔH > 0), and had increased entropy (ΔS > 0), as expected. The reusability of the composites was confirmed for five sequential reuses.

  8. A method for the calculation of the adsorbed phase volume and pseudo-saturation pressure from adsorption isotherm data on activated carbon.

    PubMed

    Srinivasan, Kandadai; Saha, Bidyut Baran; Ng, Kim Choon; Dutta, Pradip; Prasad, Madhu

    2011-07-21

    We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data. We take the Dubinin-Astakhov isotherm as the model for verifying our hypothesis since it is one of the few equations that accounts for adsorbed phase volume changes. In addition, the pseudo-saturation pressure in the supercritical region is calculated by letting the index of the temperature term in Dubinin's equation to be temperature dependent. Based on over 50 combinations of activated carbons and adsorbates (nitrogen, oxygen, argon, carbon dioxide, hydrocarbons and halocarbon refrigerants) it is observed that the proposed changes fit experimental data quite well. PMID:21670804

  9. Adsorption behavior of copper and zinc in soils: Influence of pH on adsorption characteristics

    SciTech Connect

    Msaky, J.J. ); Calvet, R. )

    1990-08-01

    The authors studied adsorption of copper and zinc on three different soils: a brown silty soil, an Oxisol, and a Podzol. They determined the amounts adsorbed and the shapes of adsorption isotherms as a function of the pH of the adsorbing medium at a constant ionic strength. The adsorbed amount-pH relationship depended strongly on the natures of the metallic cation and of the soil. The pH greatly influenced the characteristics of adsorption isotherms. They based interpretation on the variations with the pH of both adsorbent affinity for the metal in relation to the surface electric charge and chemical speciation in solution. The adsorption mechanism in the Oxisol probably involves monohydroxylated cations but is more determined by bivalent cations in the brown silty soil and the Podzol. From a general point of view, adsorption of copper and zinc cannot be represented with a single adsorption constant, but should be described by adsorption isotherms obtained at various pH values.

  10. Hydrogen adsorption on functionalized nanoporous activated carbons.

    PubMed

    Zhao, X B; Xiao, B; Fletcher, A J; Thomas, K M

    2005-05-12

    There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions. PMID:16852056

  11. Adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA

    SciTech Connect

    Satik, Cengiz; Walters, Mark; Horne, Roland N.

    1996-01-24

    This paper reports on a continuing experimental effort to characterize the adsorption behavior of rocks from The Geysers steam field in California. We show adsorption results obtained for 36 rock samples. All of the adsorption isotherms plotted on the same graph exhibit an envelope of isotherms. The minimum and the maximum values of the slope (or rate of adsorption) and of the magnitude within this envelope of isotherms belonged to the UOC-1 (felsite) and NCPA B-5 (serpentine) samples. The values of surface area and porosity, and pore size distribution for 19 of the samples indicated a very weak correlation with adsorption. An interpretation of the pore size distributions and the liquid saturation isotherms suggests that the change in the slope and the magnitude of the adsorption isotherms within the envelope is controlled primarily by the physical adsorption mechanism instead of capillary condensation. Grain-size and framework grain to matrix ratio are found to be insufficient to characterize this adsorption behavior. An accurate identification of the mineralogy of the samples will be essential to complete this analysis.

  12. Adsorption of organic molecules on silica surface.

    PubMed

    Parida, Sudam K; Dash, Sukalyan; Patel, Sabita; Mishra, B K

    2006-09-13

    The adsorption behaviour of various organic adsorbates on silica surface is reviewed. Most of the structural information on silica is obtained from IR spectral data and from the characteristics of water present at the silica surface. Silica surface is generally embedded with hydroxy groups and ethereal linkages, and hence considered to have a negative charged surface prone to adsorption of electron deficient species. Adsorption isotherms of the adsorbates delineate the nature of binding of the adsorbate with silica. Aromatic compounds are found to involve the pi-cloud in hydrogen bonding with silanol OH group during adsorption. Cationic and nonionic surfactants adsorb on silica surface involving hydrogen bonding. Sometimes, a polar part of the surfactants also contributes to the adsorption process. Styryl pyridinium dyes are found to anchor on silica surface in flat-on position. On modification of the silica by treating with alkali, the adsorption behaviour of cationic surfactant or polyethylene glycol changes due to change in the characteristics of silica or modified silica surface. In case of PEG-modified silica, adsolubilization of the adsorbate is observed. By using a modified adsorption equation, hemimicellization is proposed for these dyes. Adsorptions of some natural macromolecules like proteins and nucleic acids are investigated to study the hydrophobic and hydrophilic binding sites of silica. Artificial macromolecules like synthetic polymers are found to be adsorbed on silica surface due to the interaction of the multifunctional groups of the polymers with silanols. Preferential adsorption of polar adsorbates is observed in case of adsorbate mixtures. When surfactant mixtures are considered to study competitive adsorption on silica surface, critical micelle concentration of individual surfactant also contributes to the adsorption isotherm. The structural study of adsorbed surface and the thermodynamics of adsorption are given some importance in this review

  13. Interaction of hydrogen chloride with alumina. [influence of outgas and temperature conditions on adsorption

    NASA Technical Reports Server (NTRS)

    Bailey, R. R.; Wightman, J. P.

    1975-01-01

    The influence of outgas conditions and temperature on the adsorptive properties of two aluminas Alon-c and Al6sG were studied using adsorption isotherm measurements. Alon-C and Al6SG were characterized using X-ray powder diffraction, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and BET nitrogen surface areas. Some of these techniques were applied to two other aluminas but no isotherm data was obtained. Isotherm data and techniques applied to each alumina are summarized in tabular form.

  14. Adsorption of o-cresol and benzoic acid in an adsorber packed with an ion-exchange resin: A comparative study of diffusional models

    SciTech Connect

    Run-Tun Huang; Teh-Liang Chen; Hung-Shan Weng

    1994-10-01

    Both solid- and pore-diffusion models were employed to simulate the adsorption of o-cresol and benzoic acid in a fixed-bed adsorber packed with an anion-exchange resin. The equilibrium adsorption data were modeled by a Langmuir isotherm. When the shape of the adsorption isotherm was approximately linear (as in the case of o-cresol), both models agreed well with the experimental break-through data, and they could be effectively applied to predict the breakthrough curve of longer columns. For a favorable adsorption isotherm (say, benzoic acid), however, better results were obtained by using the solid-diffusion model. In addition to the shape of the adsorption isotherm, several factors, such as the type of adsorbent, modeling of equilibrium data, computation efficiency, and concentration dependence of the intraparticle diffusivity, should also be taken into account for selecting a suitable diffusion model.

  15. Argon Adsorption on Open Carbon Nanohorns

    NASA Astrophysics Data System (ADS)

    Russell, Brice; Calvillo, Angel; Khanal, Pravin; Migone, Aldo; Iijima, Sumio; Yudasaka, Masako

    We have measured adsorption isotherms for argon adsorbed on a 0.1692 g sample of chemically-opened carbon nanohorns. Two clear substeps are visible in the adsorption data, corresponding to groups of stronger binding sites (lower pressure substep) and weaker binding sites (higher pressure substep). We have measured adsorption at eight different temperatures in the range between approximately 70 and 110 K. The space at the interior of the individual nanohorns is accessible to sorbates in these chemically opened nanohorns. Consequently, higher loadings are obtained on these samples when compared to those measured on unopened (as-produced) nanohorns. Results for the kinetics of adsorption, the effective specific surface area, and the isosteric heat of adsorption as a function of sorbent loading will be presented and compared to results from other gases adsorbed on nanohorns. This work was supported by the NSF through Grant DMR-1006428.

  16. Impact of carbon nanotube morphology on phenanthrene adsorption.

    PubMed

    Apul, Onur Guven; Shao, Ting; Zhang, Shujuan; Karanfil, Tanju

    2012-01-01

    The present study examined the roles of the specific surface area (SSA), diameter, and length of carbon nanotubes (CNT) on the adsorption of phenanthrene (PNT) by analyzing the adsorption isotherms obtained with several single-walled carbon nanotubes (SWNT) and multiwalled carbon nanotubes (MWNT). At low equilibrium concentrations (e.g., 1 ppb), MWNTs with larger outer diameters exhibited higher PNT adsorption capacity on an SSA basis than those with smaller diameters. With increasing equilibrium concentration, adsorption on an SSA basis became independent of MWNT diameter, and the total surface area controlled maximum adsorption capacity. A similar analysis for the adsorption of naphthalene, a planar molecule with one less benzene ring but 20 times higher solubility than PNT, showed no correlation with respect to MWNT outer diameter. The results indicated that the surface curvature of MWNT was more important on the adsorption of PNT than on the adsorption of naphthalene. Specific surface area normalized isotherms did not show a correlation between PNT adsorption and lengths of SWNTs and MWNTs. Characterization results indicated that the morphology of CNTs plays an important role on the SSA and pore volume. Data from the manufacturer may not always represent the characteristics of CNTs in a particular batch. Therefore, accurate characterization of CNTs is critical to systematically examine the behavior of CNTs, such as adsorption and transport, in environmental systems. PMID:22002628

  17. Adsorption of radon and water vapor on commercial activated carbons

    SciTech Connect

    Hassan, N.M.; Ghosh, T.K.; Hines, A.L.; Loyalka, S.K.

    1995-02-01

    Equilibrium adsorption isotherms are reported for radon and water vapor on two commercial activated carbons: coconut shell Type PCB and hardwood Type BD. The isotherms of the water vapor were measured gravimetrically at 298 K. The isotherms of radon from dry nitrogen were obtained at 293, 298, and 308 K while the data for the mixture of radon and water vapor were measured at 298 K. The concentrations of radon in the gas and solid phases were measured simultaneously, once the adsorption equilibrium and the radioactive equilibrium between the radon and its daughter products were established. The shape of the isotherms was of Type III for the radon and Type V for the water vapor, according to Brunauer`s classification. The adsorption mechanism was similar for both the radon and the water vapor, being physical adsorption on the macropore surface area in the low pressure region and micropore filling near saturation pressure. The uptake capacity of radon decreased both with increasing temperature and relative humidity. The heat of adsorption data indicated that the PCB- and the BD-activated carbons provided a heterogeneous surface for radon adsorption. The equilibrium data for radon were correlated with a modified Freundlich equation.

  18. Interlamellar adsorption of organic pollutants from water on hydrophobic clay minerals

    SciTech Connect

    Dekany, I.; Farkas, A.; Kiraly, Z.; Klumpp, E.; Narres, H.D.

    1995-12-01

    The adsorption excess isotherms of n-pentanol and nitrobenzene were determined with surfactant-modified (hexadecylanimonium ions) layered silicates. Both liquids intercalate into the silicate layers and increase the basal spacing, determined by X-ray diffraction measurements, depending on the equilibrium concentration in the bulk phase. To control the entropy change due to the intercalation, flow microcalorimetric experiments were made and enthalpy of displacement isotherms (adsorption and desorption) were determined. The information obtained from these three different measurements permitted the assessment of the composition of the interlarnellar space (in volume fraction of the intercalated molecules) and the thermodynamics of adsorption.

  19. Adsorption efficiency of natural materials for low-concentration cesium in solution.

    PubMed

    Miura, A; Kubota, T; Hamada, K; Hitomi, T

    2016-01-01

    In this study, several natural materials were investigated in order to clarify their potential use as cesium (Cs) adsorbents in situ. Four materials--carbonized rice hull, beech sawdust, oak sawdust, and charcoal (Japanese cedar)--which were previously shown to have Cs adsorption capabilities, were examined. Cs adsorption experiments were conducted using different initial Cs and adsorbent concentrations. The physical properties, adsorption isotherms, and adsorption processes were then examined, so as to exploit the Cs adsorption characteristics in the field. Based on these findings, carbonized rice hull and beech sawdust were selected as effective Cs adsorbents. It was found that these materials show continuous and stable Cs adsorption rates for different initial Cs concentrations. The adsorption efficiency of these two adsorption materials in combination was considered, and it was shown that the adsorption isotherms for carbonized rice hull and beech sawdust follow the Freundlich model. Furthermore, the beech sawdust adsorption process exhibited better agreement with the calculated values obtained via the adsorption rate model and the adsorption kinetics model than did the carbonized rice hull adsorption. PMID:27191567

  20. Molecular mechanism of the hydration of Candida antarctica lipase B in the gas phase: Water adsorption isotherms and molecular dynamics simulations.

    PubMed

    Branco, Ricardo J F; Graber, Marianne; Denis, Vinciane; Pleiss, Jürgen

    2009-12-14

    Hydration is a major determinant of activity and selectivity of enzymes in organic solvents or in gas phase. The molecular mechanism of the hydration of Candida antarctica lipase B (CALB) and its dependence on the thermodynamic activity of water (a(w)) was studied by molecular dynamics simulations and compared to experimentally determined water sorption isotherms. Hydration occurred in two phases. At low water activity, single water molecules bound to specific water binding sites at the protein surface. As the water activity increased, water networks gradually developed. The number of protein-bound water molecules increased linearly with a(w), until at a(w)=0.5 a spanning water network was formed consisting of 311 water molecules, which covered the hydrophilic surface of CALB, with the exception of the hydrophobic substrate-binding site. At higher water activity, the thickness of the hydration shell increased up to 10 A close to a(w)=1. Above a limit of 1600 protein-bound water molecules the hydration shell becomes unstable and the formation of pure water droplets occurs in these oversaturated simulation conditions. While the structure and the overall flexibility of CALB was independent of the hydration state, the flexibility of individual loops was sensitive to hydration: some loops, such as those part of the substrate-binding site, became more flexible, while other parts of the protein became more rigid upon hydration. However, the molecular mechanism of how flexibility is related to activity and selectivity is still elusive. PMID:19847841

  1. Comparison of Co(2+) adsorption by chitosan and its triethylene-tetramine derivative: Performance and mechanism.

    PubMed

    Liao, Bing; Sun, Wei-Yi; Guo, Na; Ding, Sang-Lan; Su, Shi-Jun

    2016-10-20

    A cross-linked chitosan derivative (CCTS) was synthesized via cross-linking of epichlorohydrin and grafting of triethylene-tetramine. The adsorption performance and capacity of the raw chitosan (CTS) and its derivative were also investigated for removal of Co(2+) from aqueous solution. A maximum adsorbed amount of 30.45 and 59.51mg/g was obtained for CTS and CCTS, respectively under the optimized conditions. In addition, the adsorption kinetics for the adsorption of Co(2+) by CTS and CCTS were better described by the pseudo second-order equation. The adsorption isotherm of CCTS was well fitted by the Langmuir equation, but the data of the adsorption of Co(2+) onto CTS followed Freundlich and Sips isotherms better. Furthermore, the adsorbent still exhibited good adsorption performance after five regeneration cycles. Finally, Co(2+) removal mechanisms, including physical, chemical, and electrostatic adsorption, were discussed based on microstructure analysis and adsorption kinetics and isotherms. Chemical adsorption was the main adsorption method among these mechanisms. PMID:27474539

  2. Protein Adsorption in Microengraving Immunoassays

    PubMed Central

    Song, Qing

    2015-01-01

    Microengraving is a novel immunoassay forcharacterizing multiple protein secretions from single cells. During the immunoassay, characteristic diffusion and kinetic time scales τD and τK determine the time for molecular diffusion of proteins secreted from the activated single lymphocytes and subsequent binding onto the glass slide surface respectively. Our results demonstrate that molecular diffusion plays important roles in the early stage of protein adsorption dynamics which shifts to a kinetic controlled mechanism in the later stage. Similar dynamic pathways are observed for protein adsorption with significantly fast rates and rapid shifts in transport mechanisms when C0* is increased a hundred times from 0.313 to 31.3. Theoretical adsorption isotherms follow the trend of experimentally obtained data. Adsorption isotherms indicate that amount of proteins secreted from individual cells and subsequently captured on a clean glass slide surface increases monotonically with time. Our study directly validates that protein secretion rates can be quantified by the microengraving immunoassay. This will enable us to apply microengraving immunoassays to quantify secretion rates from 104–105 single cells in parallel, screen antigen-specific cells with the highest secretion rate for clonal expansion and quantitatively reveal cellular heterogeneity within a small cell sample. PMID:26501282

  3. Pore size distribution analysis of activated carbons prepared from coconut shell using methane adsorption data

    NASA Astrophysics Data System (ADS)

    Ahmadpour, A.; Okhovat, A.; Darabi Mahboub, M. J.

    2013-06-01

    The application of Stoeckli theory to determine pore size distribution (PSD) of activated carbons using high pressure methane adsorption data is explored. Coconut shell was used as a raw material for the preparation of 16 different activated carbon samples. Four samples with higher methane adsorption were selected and nitrogen adsorption on these adsorbents was also investigated. Some differences are found between the PSD obtained from the analysis of nitrogen adsorption isotherms and their PSD resulting from the same analysis using methane adsorption data. It is suggested that these differences may arise from the specific interactions between nitrogen molecules and activated carbon surfaces; therefore caution is required in the interpretation of PSD obtained from the nitrogen isotherm data.

  4. A Simple Adsorption Experiment

    ERIC Educational Resources Information Center

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  5. Adsorption and Gas Separation of Molecules by Carbon Nanohorns.

    PubMed

    Gatica, Silvina M; Nekhai, Anton; Scrivener, Adam

    2016-01-01

    In this paper, we report the results of Monte Carlo simulations of the adsorption of neon, argon, methane and carbon dioxide in carbon nanohorns. We model the nanohorns as an array of carbon cones and obtained adsorption isotherms and isosteric heats. The main sites of adsorption are inside the cones and in the interstices between three cones. We also calculated the selectivity of carbon dioxide/methane, finding that nanohorns are a suitable substrate for gas separation. Our simulations are compared to available experimental data. PMID:27213313

  6. Adsorption studies of Cu(II) on Boston fern (Nephrolepis exaltata Schott cv. Bostoniensis) leaves

    NASA Astrophysics Data System (ADS)

    Rao, Rifaqat Ali Khan; Khan, Umra

    2016-02-01

    Adsorption studies were done on Boston fern leaves for the effective removal of Cu(II) ions from aqueous solution. It has been tested for the first time for heavy metal adsorption from aqueous solution. This promising material has shown remarkable adsorption capacity towards Cu(II) ions which confirm its novelty, ease of availability, non-toxic nature, cheapness, etc., and give the main innovation to the present study. The adsorbent was analyzed by FT-IR, SEM and EDS. The effect of pH, contact time, initial metal ion concentration and temperature on the adsorption was investigated using batch process to optimize conditions for maximum adsorption. The adsorption of Cu(II) was maximum (96 %) at pH 4. The experimental data were analyzed by Langmuir, Freundlich and Tempkin isotherms. The kinetic studies of Cu(II)were carried out at room temperature (30 °C) in the concentration range 10-100 mg L-1. The data obtained fitted well with the Langmuir isotherm and pseudo-second-order kinetics model. The maximum adsorption capacity (q m) obtained from Langmuir adsorption isotherm was found to be 27.027 mg g-1 at 30 °C. The process was found to be exothermic and spontaneous in nature. The breakthrough and exhaustive capacities were found to be 12.5 and 37.5 mg g-1, respectively. Desorption studies showed that 93.3 % Cu(II) could be desorbed with 0.1 M HCl by continuous mode.

  7. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    PubMed

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed PMID:22439557

  8. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  9. Arsenic adsorption from aqueous solutions by activated red mud.

    PubMed

    Altundoğan, H Soner; Altundoğan, Sema; Tümen, Fikret; Bildik, Memnune

    2002-01-01

    Heat treatment and acid treatment methods have been tested on red mud to increase its arsenic adsorption capability. The results indicate that the adsorptive capacity of red mud can be increased by acid treatment. This treatment causes sodalite compounds to leach out. As(III) and As(V) adsorption characteristics of activated red mud have similar tendencies with raw red mud. Batch adsorption studies have shown that activated red mud in dosages ranging from 20 to 100 g l(-1) can be used effectively to remove arsenic from aqueous solutions. The process is pH dependent, the optimum range being 5.8-7.5 for As(III) and 1.8-3.5 for As(V). The maximum removals are 96.52% for As(V) and 87.54% for As(III) for solutions with a final pH of 7.25 and 3.50, respectively, for the initial arsenic concentration of 133.5 micromol l(-1) (10 mg l(-1)), activated red mud dosage of 20 g l(-1), contact time of 60 min and temperature of 25 degrees C. The adsorption data obtained follow a first-order rate expression and fit the Langmuir isotherm well. Isotherms have been used to obtain the thermodynamic parameters. It was found that the adsorption of As(III) was exothermic, whereas As(V) adsorption was endothermic. PMID:11952183

  10. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    PubMed

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent. PMID:12628781

  11. Adsorption of hydrogen chloride on microcrystalline silica. [solid rocket propellant exhaust

    NASA Technical Reports Server (NTRS)

    Kang, Y.; Wightman, J. P.

    1979-01-01

    The interaction of hydrogen chloride with quartz was studied to determine the extent to which silica can irreversibly remove hydrogen chloride from the atmosphere. Adsorption isotherms were measured at 30 C for hydrogen chloride on silica outgassed between 100 C and 400 C. Readsorption isotherms were also measured. The silica surface was characterized further by infrared spectroscopy, electron spectroscopy for chemical analysis, scanning electron microscopy, and immersional calorimetry. Ground debris samples obtained from the Kennedy Space Center, were likewise examined.

  12. Response surface methodology approach for optimization of simultaneous dye and metal ion ultrasound-assisted adsorption onto Mn doped Fe3O4-NPs loaded on AC: kinetic and isothermal studies.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Goudarzi, Alireza; Rajabi, Maryam

    2015-09-01

    high performance can be represented by Langmuir isotherms and a pseudo second-order kinetic model. The maximum adsorption capacities for the single component system, 229.4 mg g(-1) for MB, 159.7 mg g(-1) for SO, 139.5 mg g(-1) for Pb(2+) ions and 267.4 mg g(-1) for Cr(3+) ions, support the high efficiency of Mn-Fe3O4-NPs-AC as a new adsorbent. PMID:26215698

  13. Adsorptive behavior of polycyclic aromatic hydrocarbons in coal-conversion wastewaters. Six months progress report

    SciTech Connect

    Walters, R.W.; Luthy, R.G.

    1981-01-01

    A coupled column system was designed and assembled for use in solubility and adsorption testing. This system consists of a saturated solution generation column and an adsorption column. The generation column has been employed successfully to determine the solubility behavior of naphthalene; for nine determinations at 25 /sup 0/C the aqueous solubility is 32.9 +- 1.2 milligrams per liter. However, adsorption isotherm data obtained from the coupled column system involved techniques which are limited by time constraints and accuracy. Batch adsorption shake testing using the generation column to prepare solutions offers an acceptable alternative to this sytem. This procedure has been employed to obtain adsorption isotherm data for naphthalene. Thirty-one data points were obtained for equilibrium concentrations from 0.00689 to 18.8 milligrams per liter. These data can be fitted to the Freundlich equation with constant values of 263 for the coefficient and 0.39 for the exponent. Adsorption and adsorption isotherm models which are more appropriate than the Freundlich equation for purposes of detailed modelling are reviewed.

  14. Equilibrium study of single-solute adsorption of anionic surfactants with polymeric XAD resins

    SciTech Connect

    Garcia-Delgado, R.A.; Cotoruelo-Minguez, L.M.; Rodriguez, J.J. )

    1992-06-01

    Equilibrium data for the adsorption of sodium lauryl sulfate (SLS) and sodium dodecylbenzene sulfonate (SDBS) from aqueous solutions by Amberlite XAD-4 and XAD-7 polymeric resins at temperatures in the 10-40C range have been obtained. The specific surface area of the resins plays a major role in adsorption, and thus the best results have been obtained with XAD-4 resin. A higher adsorption of SDBS over SLS was also observed. Several adsorption isotherm models have been used to fit the experimental data. The best results have been obtained with the Redlich-Peterson and Langmuir-Freundlich equations. Estimations of the isosteric heat of adsorption, free energy, and entropy of adsorption are also reported.

  15. Limited adsorption selectivity of active carbon toward non-saccharide compounds in lignocellulose hydrolysate.

    PubMed

    Wang, Zhaojiang; Zhuang, Jingshun; Wang, Xiaojun; Li, Zongquan; Fu, Yingjuan; Qin, Menghua

    2016-05-01

    Prehydrolysis of lignocellulose produces abundant hemicellulose-derived saccharides (HDS). To obtain pure HDS for application in food or pharmaceutical industries, the prehydrolysis liquor (PHL) must be refined to remove non-saccharide compounds (NSC) derived from lignin depolymerization and carbohydrate degradation. In this work, activated carbon (AC) adsorption was employed to purify HDS from NSC with emphasis on adsorption selectivity. The adsorption isotherms showed the priority of NSC to be absorbed over HDS at low AC level. However, increase of AC over 90% of NSC removal made adsorption non-selective due to competitive adsorption between NSC and HDS. Size exclusion chromatography showed that the adsorption of oligomeric HDS was dominant while monomeric HDS was inappreciable. The limited selectivity suggested that AC adsorption is infeasibility for HDS purification, but applicable as a pretreatment method. PMID:26944457

  16. Adsorption of caffeic acid on titanium dioxide: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Barreto, Wagner José; Ando, Rômulo A.; Estevão, Bianca Martins; Zanoni, Kassio Papi da Silva

    2012-06-01

    Caffeic acid is an ortho-phenol found in vegetable tissues presenting important properties such as carcinogenesis inhibitor, anti-oxidant, anti-viral, anti-inflammatory and anti-rheumatic actions. It was observed that caffeic acid was not degraded in daylight during the adsorption on TiO2 at pH 4.8. The adsorption fit very well to a Brunauer-Emmett-Teller isotherm equation with a monolayer coverage of 68.15 mg gTiO-1 and saturation coverage of 195.4 mg gTiO-1. A strong adsorption of caffeic acid was verified on TiO2 for the dry solid obtained from the mixture. The Raman and IR spectroscopies revealed that the adsorption should occur through the interaction of the diphenol oxygens with contribution of CC double bond of the acrylic group, however, the carboxylic acid group did not have participation in the adsorption.

  17. Mercapto functionalized silica entrapped polyacrylamide hydrogel: Arsenic adsorption behaviour from aqueous solution.

    PubMed

    Kumar, Rajesh; Jain, S K; Verma, S; Malodia, P

    2015-10-15

    In this article, 3-mercaptopropyl functionalized silica entrapped polyacrylamide hydrogel (MPFS-PAA) was prepared and characterized by FT-IR, scanning electron microscopy (SEM) and energy dispersion X-ray spectroscopy (EDS). Synthesized hydrogel was evaluated for removal of arsenic(III) from aqueous solution. Adsorption studies were carried out by batch method as function of contact time, initial concentration of arsenic and pH. As(III) adsorption data fitted well with Langmuir and Freundlich isotherm models. Adsorption capacity of arsenic 92.5 μg/g was obtained at initial concentration of 100 μg/L by Langmuir isotherm. Adsorption kinetics was tested for pseudo-second order reaction at different contact time. The rate constants of pseudo second order reaction were calculated and good correlation coefficient R(2) 99.67 obtained. The results indicates that MPFS-PAA is an effective adsorbent for removal of As(III) from aqueous solution. PMID:26151463

  18. Continuous water treatment by adsorption and electrochemical regeneration.

    PubMed

    Mohammed, F M; Roberts, E P L; Hill, A; Campen, A K; Brown, N W

    2011-05-01

    This study describes a process for water treatment by continuous adsorption and electrochemical regeneration using an air-lift reactor. The process is based on the adsorption of dissolved organic pollutants onto an adsorbent material (a graphite intercalation compound, Nyex(®)1000) and subsequent electrochemical regeneration of the adsorbent leading to oxidation of the adsorbed pollutant. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for adsorption of a sample contaminant, the organic dye Acid Violet 17. The adsorbent circulation rate, the residence time distribution (RTD) of the reactor, and treatment by continuous adsorption and electrochemical regeneration were studied to investigate the process performance. The RTD behaviour could be approximated as a continuously stirred tank. It was found that greater than 98% removal could be achieved for continuous treatment by adsorption and electrochemical regeneration for feed concentrations of up to 300 mg L(-1). A steady state model has been developed for the process performance, assuming full regeneration of the adsorbent in the electrochemical cell. Experimental data and modelled predictions (using parameters for the adsorbent circulation rate, adsorption kinetics and isotherm obtained experimentally) of the dye removal achieved were found to be in good agreement. PMID:21511325

  19. Experimental and simulated propene isotherms on porous solids

    NASA Astrophysics Data System (ADS)

    Navarro, M. V.; Puértolas, B.; García, T.; Murillo, R.; Mastral, A. M.; Varela-Gandía, F. J.; Lozano-Castelló, D.; Cazorla-Amorós, D.; Bueno-López, A.

    2010-06-01

    The lack of treatment capacity of hydrocarbons by three-way catalysts during the "cold start" period creates an important environmental problem. During this period, the temperature of the three-way catalyst is too low for effective operation and cannot convert the hydrocarbons in the exhaust. 50-80% of the total hydrocarbon emissions are produced in this phase that accomplishes the first 60-120 s of the engine operation. In this study, the technology chosen to treat these emissions is the use of HC-traps, and molecular simulations are tested as a tool to reproduce the experimental adsorption behaviour of porous solids. Therefore, experimental and simulated adsorption isotherms of propene (model hydrocarbon) have been obtained for four different crystalline materials with distinctive framework structures (3D and 1D) and a variety of Si/Al ratios and cations (three zeolites: ZSM-5, BETA and Mordenite; and a silicoaluminophosphate molecular sieve: SAPO-5).

  20. [Adsorption characteristics of f2 bacteriophages by four substrates in constructed wetland].

    PubMed

    Chen, Di; Zheng, Xiang; Wei, Yuan-Song; Yang, Yong

    2013-10-01

    Performance of f2 phages adsorption by four substrates including anthracite coal, steel slag, zeolite and forsterite was investigated through batch and dynamic experiments. Results of batch experiments showed that the removal efficiency of f2 phages by these four substrates was in the order of anthracite > steel slag > forsterite approximately zeolite. The adsorption of f2 phages by anthracite experienced fast, medium and slow stages, and the removal efficiency of f2 phages increased gradually with the increase of anthracite dosage, e. g. the optimized dosage of anthracite was 8.0 g at a solid/liquid ratio of 1:12.5 (m/V). The isothermal adsorption of all four substrates was described with Freundlich and Langmuir isothermal adsorption equation very well, and the adsorption of f2 phages by both anthracite and steel slag fitted pseudo-second order adsorption kinetics at their theoretical adsorption capacities of 3. 35 x 10(8) PFU.g-1 and 2.56 x 10(8) PFU.g-1, respectively, nearly the same as the equilibrium adsorption capacities obtained under the experiment conditions. And the liquid diffusion process was a rate-limiting step of the adsorption of f2 phage by both anthracite and steel slag, but not the only one. The results of dynamic adsorption experiments showed that the adsorption process of f2 phages in the three adsorption columns including anthracite, steel slag and zeolite experienced four stages of adaption, adsorption, pulse adsorption and adsorption equilibrium, and the total removal rates of f2 phages were more than 2. 55 Ig. PMID:24364309

  1. The Adsorption of Polyelectrolytes on Hydroxyapatite Crystals.

    PubMed

    Tsortos; Nancollas

    1999-01-01

    The adsorption of two polyelectrolytes, poly-L-Glutamate and poly-L-Aspartate, on hydroxyapatite (HAP) crystals was studied both experimentally and theoretically. Langmuir adsorption isotherms were obtained for both these molecules, with binding constants K = 6 x 10(6) and 3 x 10(6) M-1, respectively, at 37.0 degreesC, pH 7.4, and 0.15 M ionic strength. A theoretical analysis of the data, based on a model proposed by Hesselink, suggested a "train-loop" type of adsorption with non-electrostatic energy terms 3.51 and 4.76 (kT) for poly-L-Glu and poly-L-Asp, respectively. Copyright 1999 Academic Press. PMID:9878142

  2. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders.

    PubMed

    Lin, Kaili; Pan, Jiayong; Chen, Yiwei; Cheng, Rongming; Xu, Xuecheng

    2009-01-15

    In this study, the hydroxyapatite (HAp) nanopowders prepared by chemical precipitation method were used as the adsorbent, and the potential of HAp nanopowders for phenol adsorption from aqueous solution was studied. The effect of contact time, initial phenol concentration, pH, adsorbent dosage, solution temperature and adsorbent calcining temperature on the phenol adsorption, and the adsorption kinetic, equilibrium and thermodynamic parameters were investigated. The results showed that the HAp nanopowders possessed good adsorption ability to phenol. The adsorption process was fast, and it reached equilibrium in 2h of contact. The initial phenol concentration, pH and the adsorbent calcining temperature played obvious effects on the phenol adsorption capacity onto HAp nanopowders. Increase in the initial phenol concentration could effectively increase the phenol adsorption capacity. At the same time, increase in the pH to high-acidity or to high-alkalinity also resulted in the increase in the phenol adsorption capacity. Increase in the HAp dosage could effectively increase the phenol adsorption percent. However, the higher calcining temperature of HAp nanopowders could obviously decrease the adsorption capacity. The maximum phenol adsorption capacity was obtained as 10.33mg/g for 400mg/L initial phenol concentrations at pH 6.4 and 60 degrees C. The adsorption kinetic and the isotherm studies showed that the pseudo-second-order model and the Freundlich isotherm were the best choices to describe the adsorption behaviors. The thermodynamic parameters suggested that the adsorption of phenol onto HAp was physisorption, spontaneous and endothermic in nature. PMID:18573599

  3. Effects of molecular oxygen and pH on the adsorption of aniline to activated carbon

    SciTech Connect

    Fox, P.; Pinisetti, K.

    1994-12-31

    This paper examines the influence of molecular oxygen and pH on the adsorption of aniline to F-300 Calgon Carbon. Molecular oxygen increased the adsorptive capacity of GAC for anilines by 250--400 % at pH 3, 30--83% at pH 5, 17--42% at pH 9, and B-45% at pH 11 (higher than those obtained in the absence of molecular oxygen). At pH 7, some of the products formed are poorly adsorbed as evidenced by an increase in UV absorbance in the oxic isotherms as compared to the other isotherms. Oxygen uptake measurements revealed significant consumption of molecular oxygen during the adsorption of aniline compounds. It is speculated that the increase in the GAC adsorptive capacity under oxic conditions was due to the polymerization of these adsorbates on the carbon surface.

  4. Evaluation of the adsorption capacity of alkali-treated waste materials for the adsorption of sulphamethoxazole.

    PubMed

    Kurup, Lisha

    2012-01-01

    The present work is to develop potential adsorbents from waste material and employ them for the removal of a hazardous antibacterial, sulphamethoxazole, from the wastewater by the Adsorption technique. The Adsorption technique was used to impound the dangerous antibiotics from wastewater using Deoiled Soya (DOS), an agricultural waste, and Water Hyacinth (WH), a prolific colonizer. The adsorption capacity of these adsorbents was further enhanced by treating them with sodium hydroxide solution and it was seen that the adsorption capacity increases by 10 to 25%. Hence a comparative account of the adsorption studies of all the four adsorbents, i.e. DOS, Alkali-treated DOS, WH and Alkali-treated Water Hyacinth has been discussed in this paper. Different isotherms like Freundlich, Langmuir and Dubinin-Radushkevich were also deduced from the adsorption data. Isotherm studies were in turn used in estimating the thermodynamic parameters. DOS showed sorption capacity of 0.0007 mol g(-1) while Alkali-treated Deoiled Soya exhibited 0.0011 mol g(-1) of sorption capacity, which reveals that the adsorption is higher in case of alkali-treated adsorbent. The mean sorption energy (E) was obtained between 9 and 12 kJ mol, which shows that the reaction proceeds by ion exchange reaction. Kinetic study reveals that the reaction follows pseudo-second-order rate equation. Moreover, mass transfer studies performed for the ongoing processes show that the mass transfer coefficient obtained for alkali-treated moieties was higher than the parent moieties. The breakthrough curves plotted from the column studies show percentage saturation of 90-98%. About 87-97% of sulphamethoxazole was recovered from column by desorption. PMID:22508113

  5. Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules.

    PubMed

    Sidoli, Pauline; Baran, Nicole; Angulo-Jaramillo, Rafael

    2016-03-01

    Adsorption of the herbicide glyphosate and its main metabolite AMPA (aminomethylphosphonic acid) was investigated on 17 different agricultural soils. Batch equilibration adsorption data are shown by Freundlich adsorption isotherms. Glyphosate adsorption is clearly affected by equilibration concentrations, but the nonlinear AMPA adsorption isotherms indicate saturation of the adsorption sites with increasing equilibrium concentrations. pHCaCl2 (i.e. experimental pH) is the major parameter governing glyphosate and AMPA adsorption in soils. However, considering pHCaCl2 values, available phosphate amount, and amorphous iron and aluminium oxide contents by using a nonlinear multiple regression equation, obtains the most accurate and powerful pedotransfer rule for predicting the adsorption constants for these two molecules. As amorphous iron and aluminium oxide contents in soil are not systematically determined, we also propose a pedotransfer rule with two variables-pHCaCl2 values and available phosphate amount-that remains acceptable for both molecules. Moreover, the use of the commonly measured pHwater or pHKCl values gives less accurate results compared to pHCaCl2 measurements. To our knowledge, this study is the first AMPA adsorption characterization for a significant number of temperate climate soils. PMID:26581693

  6. Adsorption of the enantiomers of 3-chloro-1-phenyl-propanol on silica-bonded chiral quinidine carbamate

    SciTech Connect

    Asnin, Leonid; Kaczmarski, Krzysztof; Felinger, Attila; Gritti, Fabrice; Guiochon, Georges A

    2005-10-01

    The interactions of 3-chloro-1-phenyl-propanol with a quinidine carbamate-bonded chiral stationary phase under NPLC conditions were studied by measuring the adsorption isotherm data of its enantiomers by frontal analysis, modeling these data with a suitable isotherm model, and comparing the experimental overloaded elution band profiles with those calculated with this isotherm and the equilibrium dispersive model of liquid chromatography. The affinity energy distribution was calculated from the adsorption isotherm data. The results show that the surface of the adsorbent is heterogeneous and exhibits a bimodal adsorption energy distribution. This fact is interpreted in terms of the presence of two different types of adsorption sites on the stationary phase, nonselective and enantioselective sites. Albeit the bi-Langmuir isotherm model successfully accounts for the single-component data corresponding to both enantiomers, the competitive bi-Langmuir isotherm model does not allow an accurate prediction of the overloaded band profiles of the racemic mixture. Thermodynamic data are drawn for explanation. Some aspects of the retention mechanism are discussed in the light of the data obtained.

  7. Experimental and Numerical Simulation of Water Vapor Adsorption and Diffusion in Shale Grains

    NASA Astrophysics Data System (ADS)

    Shen, W.; Tokunaga, T. K.; Cihan, A.; Wan, J.; Zheng, L.; Oldenburg, C. M.

    2015-12-01

    Advances in deep horizontal drilling and hydraulic fracturing have lead to large increases in production from unconventional shale gas reservoirs. Despite the success of this technology, uncertainties associated with basic transport processes require understanding in order to improve efficiency and minimize environmental impacts. The hydraulic fracturing process introduces large volumes of water into shale gas reservoirs. Most of the fracturing water remains in reservoirs to interfere with gas production. The quantification of the amount of water retained in shale gas reservoirs is crucial for predicting gas shale formation productivity and for optimizing extraction conditions. In this study, water vapor adsorption isotherms were gravimetrically measured on granular fractions of Woodford formation shales sieved after crushing. The isotherms were obtained at 30℃ and 50℃, for relative humidities from 11.1% to 97.0%. Water adsorption in these shale grains conformed to the typeⅡisotherm, and were nearly identical for the two experimental temperatures. In order to better understand the isotherms, a computational model based on the Maxwell-Stefan Diffusion equations (MSDM) was constructed to analyze the water adsorption and gas diffusion in shale grains. Based on the experimental results, the Guggenheim-Anderson-de Boer (GAB) isotherm model for gas adsorption was included in the model.

  8. Enhanced interpretation of adsorption data generated by liquid chromatography and by modern biosensors.

    PubMed

    Agmo Hernández, Víctor; Samuelsson, Jörgen; Forssén, Patrik; Fornstedt, Torgny

    2013-11-22

    In this study we demonstrate the importance of proper data processing in adsorption isotherm estimations. This was done by investigating and reprocessing data from five cases on two closely related platforms: liquid chromatography (LC) and biosensors. The previously acquired adsorption data were reevaluated and reprocessed using a three-step numerical procedure: (i) preprocessing of adsorption data, (ii) adsorption data analysis and (iii) final rival model fit. For each case, we will discuss what we really measure and what additional information can be obtained by numerical processing of the data. These cases clearly demonstrate that numerical processing of LC and biosensor data can be used to gain deeper understanding of molecular interactions with adsorption media. This is important because adsorption data, especially from biosensors, is often processed using old and simplified methods. PMID:23928411

  9. Gas adsorption on microporous carbon thin films

    SciTech Connect

    O'Shea, S.; Pailthorpe, B.A.; Collins, R.E.; Furlong, D.N. )

    1992-05-01

    A gas adsorption study was performed on amorphous hydrogenated carbon thin films which are deposited by reactive magnetron sputtering using acetylene gas. It is found that the films are highly microporous. Annealing significantly increases the adsorption capacity of the films and decreases the effects of low-pressure hysteresis in the adsorption isotherms. The general gas adsorption behavior closely resembles that of powdered activated carbons. The Dubinin-Radushkevich equation can be used to model the submonolayer adsorption isotherm for a variety of gases. 38 refs., 9 figs., 3 tabs.

  10. Microwave-assisted modification on montmorillonite with ester-containing Gemini surfactant and its adsorption behavior for triclosan.

    PubMed

    Liu, Bo; Lu, Junxiang; Xie, Yu; Yang, Bin; Wang, Xiaoying; Sun, Runcang

    2014-03-15

    To obtain effective adsorbent that can remove emerging organic pollutant of triclosan (TCS) in aquatic environment, different ester-containing Gemini surfactant-modified MMT (EMMT) were prepared under microwave irradiation. The whole process was rapid, uniform, easy and energy-efficient. The structures and morphology of EMMT were characterized by XRD, TEM, FT-IR, SEM and TGA. The results revealed that the saturated intercalation amount of this surfactant was 0.8 times to cation exchange capacity (CEC) of MMT, and there was electrostatic interaction between ester-containing Gemini surfactant and MMT. In addition, they bound in the ways of intercalation, intercalation-adsorption or adsorption, which relied on the dosage of the surfactant. The surface of EMMT was hydrophobic, rough and fluffy, which contributed to its strong adsorption capacity. The adsorption equilibrium data of EMMT for TCS were fitted to Langmuir and Freundlich isothermal adsorption model. The result showed that Langmuir isothermal adsorption model could describe the adsorption behavior better, the adsorption behavior of TCS on EMMT was confirmed to a surface monolayer adsorption, and notably the theoretical maximum adsorption capacity was up to 133 mg/g. Therefore, this work lays important foundation on developing effective and safe absorbent materials for the treatment of emerging organic pollutants. PMID:24461850

  11. Diethyl phthalate removal from aqueous phase using poly(EGDMA-MATrp) beads: kinetic, isothermal and thermodynamic studies.

    PubMed

    Özer, Elif Tümay; Osman, Bilgen; Kara, Ali; Demirbel, Emel; Beşirli, Necati; Güçer, Şeref

    2015-01-01

    In this study, poly(ethylene glycol dimethacrylate-N-methacryloyl-L-tryptophan methyl ester) [poly(EGDMA-MATrp)] beads (average diameter=106-300 µm), which were synthesized by co-polymerizing of N-methacryloyl-L-tryptophan methyl ester (MATrp) with ethylene glycol dimethacrylate (EGDMA), were used for diethyl phthalate (DEP) adsorption. The various factors affecting the adsorption of DEP from aqueous solutions such as pH, initial concentration, contact time and temperature were analysed. Adsorption behaviour of DEP on the poly(EGDMA-MATrp) beads was investigated by varying pH values of solution, contact time, initial concentration and temperature. An optimum adsorption capacity of 590.7 mg/g for DEP was obtained at 25 °C. The present adsorption process obeyed a pseudo-second-order kinetic model. All the isotherm data can be fitted with the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. Thermodynamic parameters ΔH=7.745 kJ/mol, ΔS=81.92 J/K/mol and ΔG=-16.69 kJ/mol to -18.31 kJ/mol with the rise in temperature from 25 °C to 45 °C indicated that the adsorption process was endothermic and spontaneous. PMID:25629452

  12. Isothermal-Gas-Transfer Program

    NASA Technical Reports Server (NTRS)

    Levine, Don I.

    1989-01-01

    Isothermal Gas Transfer program (GASXFER) solves variety of problems in which gas or gas mixture transferred between two containers. Special features of program include ease of entering data and ease of obtaining output. Program displays, prints, or graphs complete pressure history of each gas as function of time. Written in Lotus Symphony macrolanguage.

  13. Adsorption hysteresis for a slit-like pore model

    NASA Astrophysics Data System (ADS)

    Kutarov, V. V.; Tarasevich, Yu. I.; Aksenenko, E. V.; Ivanova, Z. G.

    2011-07-01

    The Frenkel-Halsey-Hill equation is used to describe the adsorption branch of a hysteresis loop upon polylayer adsorption with an H3 loop according to IUPAC nomenclature. The equation for the desorption branch of a hysteresis loop is derived from a combined solution to the equation for the Gibbs potential change, given the adsorbent swelling and pore connectivity function, and the Laplace equation taken for the conditions of infinitely elongated meniscus. This equation is shown to connect the adsorbate relative pressure in a bulk phase for the desorption branch of a hysteresis loop with the key parameters of the adsorption system. The equation obtained was verified by a water adsorption isotherm on natural mineral schungite.

  14. Carbon Dioxide Adsorption on a 5A Zeolite Designed for CO2 Removal in Spacecraft Cabins

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Finn, John E.

    1998-01-01

    Carbon dioxide adsorption data were obtained for a 5A zeolite manufactured by AlliedSignal Inc. (Des Plaines, Illinois). The material is planned for use in the Carbon Dioxide Removal Assembly (CDRA) for U.S. elements of the International Space Station. The family of adsorption isotherms covers a temperature range of O to 250 C, and a pressure range of 0.001 to 800 torr. Coefficients of the Toth equation are fit to the data. Isosteric heats of adsorption are derived from the equilibrium loading data.

  15. Adsorption of methylene blue dye from aqueous solutions using Eichhornia crassipes.

    PubMed

    Wanyonyi, Wycliffe Chisutia; Onyari, John Mmari; Shiundu, Paul Mwanza

    2013-09-01

    Adsorption of methylene blue (MB) from aqueous solution using dried roots, stems, and leaves of Eichhornia crassipes biomass obtained from Lake Victoria was studied. Batch experimental results revealed that the adsorption process was highly dependent on adsorbent dosage, initial MB concentration, E. crassipes particle size and aqueous solution temperature. The isotherm data fitted Freundlich mathematical models with maximum dye adsorption of 35.37 mg g(-1). Roots adsorbed over 99 % of the MB in <5 min. Sorption kinetics followed a pseudo-second-order model. Results provide evidence that E. crassipes is an effective and inexpensive biomaterial for dye removal from aqueous dye solutions and industrial effluents. PMID:23839152

  16. Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles

    USGS Publications Warehouse

    Agnihotri, S.; Mota, J.P.B.; Rostam-Abadi, M.; Rood, M.J.

    2006-01-01

    Bundle morphology and adsorptive contributions from nanotubes and impurities are studied both experimentally and by simulation using a computer-aided methodology, which employs a small physisorbed probe molecule to explore the porosity of nanotube samples. Grand canonical Monte Carlo simulation of nitrogen adsorption on localized sites of a bundle is carried out to predict adsorption in its accessible internal pore volume and on its external surface as a function of tube diameter. External adsorption is split into the contributions from the clean surface of the outermost nanotubes of the bundle and from the surface of the impurities. The site-specific isotherms are then combined into a global isotherm for a given sample using knowledge of its tube-diameter distribution obtained by Raman spectroscopy. The structural parameters of the sample, such as the fraction of open-ended nanotubes and the contributions from impurities and nanotube bundles to total external surface area, are determined by fitting the experimental nitrogen adsorption data to the simulated isotherm. The degree of closure between experimental and calculated adsorption isotherms for samples manufactured by two different methods, to provide different nanotube morphology and contamination level, further strengthens the validity and resulting interpretations based on the proposed approach. The average number of nanotubes per bundle and average bundle size, within a sample, are also quantified. The proposed method allows for extrapolation of adsorption properties to conditions where the purification process is 100% effective at removing all impurities and opening access to all intrabundle adsorption sites. ?? 2006 Elsevier Ltd. All rights reserved.

  17. USING ISOTHERMS TO PREDICT GAC'S CAPACITY FOR SYNTHETIC ORGANICS

    EPA Science Inventory

    This investigation involved operating a pilot granular activated carbon (GAC) plant to obtain capacity data under typical field conditions, determining isotherms for selected synthetic organic chemicals, and comparing the capacity predicted by the isotherm data with the pilot-pla...

  18. Adsorption of leather dye onto activated carbon prepared from bottle gourd: equilibrium, kinetic and mechanism studies.

    PubMed

    Foletto, Edson Luiz; Weber, Caroline Trevisan; Paz, Diego Silva; Mazutti, Marcio Antonio; Meili, Lucas; Bassaco, Mariana Moro; Collazzo, Gabriela Carvalho

    2013-01-01

    Activated carbon prepared from bottle gourd has been used as adsorbent for removal of leather dye (Direct Black 38) from aqueous solution. The activated carbon obtained showed a mesoporous texture, with surface area of 556.16 m(2) g(-1), and a surface free of organic functional groups. The initial dye concentration, contact time and pH significantly influenced the adsorption capacity. In the acid region (pH 2.5) the adsorption of dye was more favorable. The adsorption equilibrium was attained after 60 min. Equilibrium data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The equilibrium data were best described by the Langmuir isotherm, with maximum adsorption capacity of 94.9 mg g(-1). Adsorption kinetic data were fitted using the pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The adsorption kinetic was best described by the second-order kinetic equation. The adsorption process was controlled by both external mass transfer and intraparticle diffusion. Activated carbon prepared from bottle gourd was shown to be a promising material for adsorption of Direct Black 38 from aqueous solution. PMID:23128640

  19. Synergistic behaviour of ionic liquid impregnated sulphate-crosslinked chitosan towards adsorption of Cr(VI).

    PubMed

    Shekhawat, A; Kahu, S; Saravanan, D; Jugade, R

    2015-09-01

    Aliquat-336 (an ionic liquid) impregnated sulphate-crosslinked chitosan (SCC) was prepared for escalating the adsorption of hexavalent chromium through concurrent interaction. The compound obtained was intensively characterized using Fourier transform infra red (FT-IR), X-ray diffraction (XRD), Scanning electron microscopic (SEM) and Energy dispersive X-ray (EDX) studies. Various isotherm studies have been carried out to understand the adsorption mechanism. Quantitative adsorption of Cr(VI) was observed at pH 3.0 with adsorption capacity of 250.90 mg g(-1) in accordance with Langmuir isotherm. The adsorption of Cr(VI) followed pseudo-second-order kinetics. The adsorption efficiency was found to decrease with increase in temperature due to increased randomness at interaction sites. The adsorption process was found to be exothermic and spontaneous in nature. Column studies were carried out to understand the applicability of the material for higher sample volumes. The adsorbent could be regenerated using sodium hydroxide treatment and the regenerated adsorbent had same efficiency towards adsorption of Cr(VI) as that of the original. PMID:26206740

  20. Dithiocarbamate-modified starch derivatives with high heavy metal adsorption performance.

    PubMed

    Xiang, Bo; Fan, Wen; Yi, Xiaowei; Wang, Zuohua; Gao, Feng; Li, Yijiu; Gu, Hongbo

    2016-01-20

    In this work, three types of dithiocarbamate (DTC)-modified starch derivatives including DTC starch (DTCS), DTC enzymolysis starch (DTCES) and DTC mesoporous starch (DTCMS) were developed, which showed the significant heavy metal adsorption performance. The adsorption ability of these three DTC modified starch derivatives followed the sequences: DTCMS>DTCES>DTCS. In single metal aqueous solutions, the uptake amount of heavy metal ions onto the modified starches obeyed the orders: Cu(II)>Ni(II)>Cr(VI)>Zn(II)>Pb(II). The adsorption mechanism was proved by the chelating between DTC groups and heavy metal ions through the pH effect measurements. A monolayer adsorption of Langmuir isotherm model for the adsorption of Cu(II) onto DTCMS was well fitted rather than the multilayer adsorption of Freundlich isotherm model. The adsorption kinetics of Cu(II) onto starch derivatives was found to be fit well with the pseudo-second-order model. Additionally, in the presence of EDTA, the adsorption ability and uptake amount of heavy metal ions onto these three DTC modified starch derivatives is identical with the results obtained in the absence of EDTA. PMID:26572325

  1. Adsorption of oleic acid at sillimanite/water interface.

    PubMed

    Kumar, T V Vijaya; Prabhakar, S; Raju, G Bhaskar

    2002-03-15

    The interaction of oleic acid at sillimanite-water interface was studied by adsorption, FT-IR, and zeta potential measurements. The isoelectric point (IEP) of sillimanite obtained at pH 8.0 was found to shift in the presence of oleic acid. This shift in IEP was attributed to chemisorption of oleic acid on sillimanite. Adsorption experiments were conducted at pH 8.0, where the sillimanite surface is neutral. The adsorption isotherm exhibited a plateau around 5 micromol/m2 that correspond to a monolayer formation. Adsorption of oleic acid on sillimanite, alumina, and aluminum hydroxide was studied by FT-IR. Chemisorption of oleic acid on the above substrates was confirmed by FT-IR studies. Hydroxylation of mineral surface was found to be essential for the adsorption of oleic acid molecules. These surface hydroxyl sites were observed to facilitate deprotonation of oleic acid and its subsequent adsorption. Thus protons from oleic acid react with surface hydroxyl groups and form water molecules. Based on the experimental results, the mechanism of oleic acid adsorption on mineral substrate was proposed. Free energy of adsorption was estimated using the Stern-Graham equation for a sillimanite-oleate system. PMID:16290466

  2. Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models

    NASA Astrophysics Data System (ADS)

    Kloutse, A. F.; Zacharia, R.; Cossement, D.; Chahine, R.; Balderas-Xicohténcatl, R.; Oh, H.; Streppel, B.; Schlichtenmayer, M.; Hirscher, M.

    2015-12-01

    Isosteric heat of adsorption is an important parameter required to describe the thermal performance of adsorptive storage systems. It is most frequently calculated from adsorption isotherms measured over wide ranges of pressure and temperature, using the so-called adsorption isosteric method. Direct quantitative estimation of isosteric heats on the other hand is possible using the coupled calorimetric-volumetric method, which involves simultaneous measurement of heat and adsorption. In this work, we compare the isosteric heats of hydrogen adsorption on microporous materials measured by both methods. Furthermore, the experimental data are compared with the isosteric heats obtained using the modified Dubinin-Astakhov, Tóth, and Unilan adsorption analytical models to establish the reliability and limitations of simpler methods and assumptions. To this end, we measure the hydrogen isosteric heats on five prototypical metal-organic frameworks: MOF-5, Cu-BTC, Fe-BTC, MIL-53, and MOF-177 using both experimental methods. For all MOFs, we find a very good agreement between the isosteric heats measured using the calorimetric and isosteric methods throughout the range of loading studied. Models' prediction on the other hand deviates from both experiments depending on the MOF studied and the range of loading. Under low-loadings of less than 5 mol kg-1, the isosteric heat of hydrogen adsorption decreases in the order Cu-BTC > MIL-53 > MOF-5 > Fe-BTC > MOF-177. The order of isosteric heats is coherent with the strength of hydrogen interaction revealed from previous thermal desorption spectroscopy measurements.

  3. Synthesis of thiazole silica hybrid from waste glass for adsorption of cadmium(II)

    NASA Astrophysics Data System (ADS)

    Azmiyawati, C.; TaslimahVirkyanov

    2016-02-01

    Synthesis of thiazole silica hybrid from waste glass to adsorption of cadmium (II) metal ion has been performed. The synthesis was done by attaching thiazole group through liaison compound γ- glycidoxy propyl tri-methoxy silane with silica gel obtained from waste glass. In this study, the effect of adsorption contact time and the concentration of cadmium (II) was studied to determine the reaction rate and the amount of adsorption thermodynamics. The existence of the cluster thiazole on silica gel indicated by IR spectra at wavelengths around 2576 cm-1 of mercaptan groups that previously did not appear on silica gel without modification. The synthesized TSH showed a high adsorption capacity of 9.363 mmol/g of Cd(II). The adsorption isotherm obtained with Langmuir isotherm model gives the negative values of ΔG°, i.e. -15.488 kJ/mol for Cd(II), indicating the spontaneous process of adsorption. Kinetic studies showed that the adsorption of Cd(II) ion into TSH follows the pseudo-second-order kinetics.

  4. Adsorption of ammonia on treated stainless steel and polymer surfaces

    NASA Astrophysics Data System (ADS)

    Vaittinen, O.; Metsälä, M.; Persijn, S.; Vainio, M.; Halonen, L.

    2014-05-01

    Adsorption of dynamically diluted ammonia at part-per-billion to low part-per-million concentrations in dry nitrogen was studied with treated and non-treated stainless steel and polymer test tubes. The treatments included electropolishing and two types of coatings based on amorphous silicon. Cavity ring-down spectroscopy with an external cavity diode laser operating in the near-infrared wavelength range was used to monitor the adsorption process in real time in continuous-flow conditions to obtain quantitative assessment of the adsorptive properties of the studied surfaces. The investigated polymers were all less adsorptive than any of the treated or non-treated stainless steel surfaces. Some of the commercial coatings reduced the adsorption loss of stainless steel by a factor of ten or more. Polyvinylidene fluoride was found to be superior (less adsorption) to the four other studied polymer coatings. The number of adsorbed ammonia molecules per surface area obtained at different ammonia gas phase concentrations was modeled with Langmuir and Freundlich isotherms. The time behavior of the adsorption-desorption process occurring in the time scale of seconds and minutes was simulated with a simple kinetic model.

  5. The Adsorption of Reactive Blue 19 Dye onto Cucurbit[8]uril and Cucurbit[6]uril: An Experimental and Theoretical Study.

    PubMed

    Xie, Xiaomei; Li, Xiaolei; Luo, Hanhan; Lu, Huijuan; Chen, Feifei; Li, Wei

    2016-05-01

    The adsorption behavior and mechanism of Reactive Blue 19 (RB19) on cucurbit[6]uril (CB[6]) and cucurbit[8]uril (CB[8]) were investigated. The adsorption isotherm data obtained at different temperatures were fitted well to the Langmuir isotherm, and according to this model, CB[8] and CB[6] exhibited maximum monolayer adsorption capacities of 714.29 and 100.5 mg/g, respectively, at 298.15 K. The adsorption thermodynamic functions ΔG, ΔH, and ΔS were evaluated and revealed that RB19 adsorption onto CB[8] and CB[6] is a spontaneous and enthalpy-driven process. The adsorption process was determined to follow pseudo-second-order kinetics, indicating that chemisorption dominates the adsorption process. Fourier tranform IR spectroscopy, thermogravimetric analysis, and density functional theory (DFT) calculations revealed that the formation of an inclusion complex is the main driving force of adsorption. The phenyl and sulfone moieties of RB19 reside inside the cavity of CB[8], but because of the small cavity, only the sulfone of RB19 resides inside the cavity of CB[6]. Time-dependent DFT calculations revealed that all of the absorption bands of RB19 derive from π → π* transitions, while for the adsorption product of CB[8], the bands located at 590 and 287 nm derive from π → π* transitions and the bands located at 254 and 202 nm mainly derive from intermolecular charge transfer (ICT). PMID:27064317

  6. Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon

    NASA Astrophysics Data System (ADS)

    Ojedokun, Adedamola Titi; Bello, Olugbenga Solomon

    2016-02-01

    Guava leaf, a waste material, was treated and activated to prepare adsorbent. The adsorbent was characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR) and Energy-Dispersive X-ray (EDX) techniques. The carbonaceous adsorbent prepared from guava leaf had appreciable carbon content (86.84 %). The adsorption of Congo red dye onto guava leaf-based activated carbon (GLAC) was studied in this research. Experimental data were analyzed by four different model equations: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms and it was found to fit Freundlich equation most. Adsorption rate constants were determined using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion model equations. The results clearly showed that the adsorption of CR dye onto GLAC followed pseudo-second-order kinetic model. Intraparticle diffusion was involved in the adsorption process. The mean energy of adsorption calculated from D-R isotherm confirmed the involvement of physical adsorption. Thermodynamic parameters were obtained and it was found that the adsorption of CR dye onto GLAC was an exothermic and spontaneous process at the temperatures under investigation. The maximum adsorption of CR dye by GLAC was found to be 47.62 mg/g. The study shows that GLAC is an effective adsorbent for the adsorption of CR dye from aqueous solution.

  7. Heterogeneous adsorption and catalytic oxidation of benzene, toluene and xylene over spent and chemically regenerated platinum catalyst supported on activated carbon

    NASA Astrophysics Data System (ADS)

    Shim, Wang Geun; Kim, Sang Chai

    2010-06-01

    The heterogeneous adsorption and catalytic oxidation of benzene, toluene and o-xylene (BTX) over the spent platinum catalyst supported on activated carbon (Pt/AC) as well as the chemically treated spent catalysts were studied to understand their catalytic and adsorption activities. Sulfuric aqueous acid solution (0.1N, H 2SO 4) was used to regenerate the spent Pt/AC catalyst. The physico-chemical properties of the catalysts in the spent and chemically treated states were analyzed by using nitrogen adsorption-desorption isotherm and elemental analysis (EDX). The gravimetric adsorption and the light-off curve analysis were employed to study the BTX adsorption and oxidation on the spent catalyst and its modified Pt/AC catalysts. The experimental results indicate that the spent Pt/AC catalyst treated with the H 2SO 4 aqueous solution has a higher toluene adsorption and conversion ability than that of the spent Pt/AC catalyst. A further studies of H 2SO 4 treated Pt/AC catalyst on their catalytic and heterogeneous adsorption behaviours for BTX revealed that the activity of the H 2SO 4 treated Pt/AC catalyst follows the sequence of benzene > toluene > o-xylene. The adsorption equilibrium isotherms of BTX on the H 2SO 4 treated Pt/AC were measured at different temperatures ranging from 120 to 180 °C. To correlate the equilibrium data and evaluate their adsorption affinity for BTX, the two sites localized Langmuir (L2m) isotherm model was employed. The heterogeneous surface feature of the H 2SO 4 treated Pt/AC was described in detail with the information obtained from the results of isosteric enthalpy of adsorption and adsorption energy distributions. Furthermore, the activity of H 2SO 4 treated Pt/AC about BTX was found to be directly related to the Henry's constant, isosteric enthalpy of adsorption and adsorption energy distribution functions.

  8. Oxidative coupling and the irreversible adsorption of phenol by graphite.

    PubMed

    de Oliveira Pimenta, Aluisio Cesar; Kilduff, James E

    2006-01-15

    Uptake of phenol by graphite, and regeneration by methanol extraction, was measured to evaluate irreversible adsorption of phenols to carbon surfaces. The emphasis of this work was to identify the role of oxidative coupling, which has been invoked to explain irreversible phenol sorption by activated carbons. Graphite was chosen as a model carbon surface to eliminate potentially confounding effects of microporosity present in other types of carbonaceous sorbents. The isotherm data were well described by the Langmuir-Freundlich isotherm from pH 3 to 9. At pH 12, measured uptakes were higher than expected based on model predictions, suggesting the occurrence of an adsorption mechanism besides physisorption. One oxidative coupling product, 2,2'-dihydroxybiphenyl, was obtained exclusively after adsorption at pH values above 7, and appeared both in aqueous solution and in the methanol regenerant solution. The fraction of total uptake that was not recoverable by methanol extraction decreased with increasing phenol concentration in solution, suggesting preferential sorption by high-energy sites. However, absolute irreversible adsorption increased with phenol concentration in solution. Both fractional irreversible adsorption and 2,2'-dihydroxybiphenyl oxidative coupling product recovery as a function of pH and contact time demonstrated that irreversible sorption of phenol by graphite could not be explained by an oxidative coupling mechanism alone. PMID:16054157

  9. Adsorption in sparse networks. 1: Cylinder model

    SciTech Connect

    Scherer, G.W.

    1998-06-15

    Materials with very low density, such as aerogels, are networks with polymers or chains of particles joined at nodes, where the spacing of the nodes is large compared to the thickness of the chains. In such a material, most of the solid surface has positive curvature, so condensation of an adsorbate is more difficult than condensation in a body containing cavities whose surfaces have negative curvature. A model is presented in which the network is represented by straight cylinders joined at nodes with coordination numbers 4, 6, or 12. The shape of the adsorbate/adsorptive interface is obtained for each network by minimizing its surface area. The adsorption behavior is found to depend on the ratio of the node separation, l, to the radius of the cylinders, a: if l/a exceeds a critical value (which depends on the coordination of the node), then the curvature of the adsorbate/adsorptive interface approaches zero while the adsorbate occupies a small fraction of the pore volume; if l/a is less than the critical value, then condensation occurs. Even in the latter case, interpretation of the adsorption isotherm in terms of cylindrical pores (as in the BJH model) yields apparent pore sizes much greater than the actual spacing of the nodes. In a companion paper, this model is applied to silica aerogels and found to give a good fit to both the adsorption and desorption curves with a single distribution of node spacings.

  10. Activated carbon from vetiver roots: gas and liquid adsorption studies.

    PubMed

    Gaspard, S; Altenor, S; Dawson, E A; Barnes, P A; Ouensanga, A

    2007-06-01

    Large quantities of lignocellulosic residues result from the industrial production of essential oil from vetiver grass (Vetiveria zizanioides) roots. These residues could be used for the production of activated carbon. The yield of char obtained after vetiver roots pyrolysis follows an equation recently developed [A. Ouensanga, L. Largitte, M.A. Arsene, The dependence of char yield on the amounts of components in precursors for pyrolysed tropical fruit stones and seeds, Micropor. Mesopor. Mater. 59 (2003) 85-91]. The N(2) adsorption isotherm follows either the Freundlich law K(F)P(alpha) which is the small alpha equation limit of a Weibull shaped isotherm or the classical BET isotherm. The surface area of the activated carbons are determined using the BET method. The K(F) value is proportional to the BET surface area. The alpha value increases slightly when the burn-off increases and also when there is a clear increase in the micropore distribution width. PMID:17092643

  11. Modeling investigation of membrane biofouling phenomena by considering the adsorption of protein, polysaccharide and humic acid.

    PubMed

    Demneh, Seyedeh Marzieh Ghasemi; Nasernejad, Bahram; Modarres, Hamid

    2011-11-01

    The importance of solute adsorption in the biofouling membrane has been clearly verified for the performance of membrane bioreactor (MBR). In order to quantify the mechanism of static adsorption in biofouling during of MBR process, we characterize membrane biofouling caused by model solutions containing a protein (bovine serum albumin, BSA), a humic substance (humic acid, HA) and a polysaccharide (alginic acid, Alg) on commercial hydrophilic polyethersulfone (PES) membrane. For static adsorption experiments, membranes were immersed in well-defined model solutions in three temperatures (298, 308 and 318 K) to obtain equilibrium data. To determine the characteristic parameters for this process, 7 isotherm models were applied to the experimental data. Three error analysis methods; the coefficient of nonlinear regression (R(2)), the sum of the squared errors (SSE) and standard deviation of residuals (S(yx)), were used to evaluate the data and determine the best fit isotherm for each model solutions. The error values demonstrated that the Sips isotherm model provided the best fit to the experimental data. AFM images were used for determination of changes in membrane surface after adsorption. These images confirmed the results obtained from adsorption isotherm study. Thermodynamic parameters such as standard free energy (Δ(r)G(θ)), enthalpy (Δ(r)H(θ)) and entropy (Δ(r)S(θ)) changes were determined; these adsorption processes were found to be feasible and endothermic but not spontaneous. The distribution of the substances adsorbed on PES surface were more chaotic than that in the aqueous solutions. Parameters obtained in this study can be used to determine the "fouling potential" of a given feed stream and a membrane. PMID:21798726

  12. A generalized procedure for the prediction of multicomponent adsorption equilibria

    DOE PAGESBeta

    Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas

    2015-01-01

    Prediction of multicomponent adsorption equilibria has been investigated for several decades. While there are theories available to predict the adsorption behavior of ideal mixtures, there are few purely predictive theories to account for nonidealities in real systems. Most models available for dealing with nonidealities contain interaction parameters that must be obtained through correlation with binary-mixture data. However, as the number of components in a system grows, the number of parameters needed to be obtained increases exponentially. Here, a generalized procedure is proposed, as an extension of the predictive real adsorbed solution theory, for determining the parameters of any activity model,more » for any number of components, without correlation. This procedure is then combined with the adsorbed solution theory to predict the adsorption behavior of mixtures. As this method can be applied to any isotherm model and any activity model, it is referred to as the generalized predictive adsorbed solution theory.« less

  13. A generalized procedure for the prediction of multicomponent adsorption equilibria

    SciTech Connect

    Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas

    2015-01-01

    Prediction of multicomponent adsorption equilibria has been investigated for several decades. While there are theories available to predict the adsorption behavior of ideal mixtures, there are few purely predictive theories to account for nonidealities in real systems. Most models available for dealing with nonidealities contain interaction parameters that must be obtained through correlation with binary-mixture data. However, as the number of components in a system grows, the number of parameters needed to be obtained increases exponentially. Here, a generalized procedure is proposed, as an extension of the predictive real adsorbed solution theory, for determining the parameters of any activity model, for any number of components, without correlation. This procedure is then combined with the adsorbed solution theory to predict the adsorption behavior of mixtures. As this method can be applied to any isotherm model and any activity model, it is referred to as the generalized predictive adsorbed solution theory.

  14. Anomalous adsorption of biomolecules on a Zn-based metal-organic framework obtained via a facile room-temperature route.

    PubMed

    Vinogradov, Alexandr V; Zaake-Hertling, Haldor; Drozdov, Andrey S; Lönnecke, Peter; Seisenbaeva, Gulaim A; Kessler, Vadim G; Vinogradov, Vladimir V; Hey-Hawkins, Evamarie

    2015-12-28

    Herein, we report a new method for the crystal growth of two Zn-based MOFs at room temperature (known MOF-5 and a new modification of [{Zn2(TBAPy)(H2O)2}·3.5DEF]n (1)) by employing slow diffusion conditions. Employing both Zn-based MOFs with different pore morphology made it possible to discover an anomalous adsorption of L-histidine in of up to 24.3 × 10(15) molecules cm(-2) at 25 °C. This is one of the first reports aimed not only at describing a new method for the targeted formation of crystalline MOFs and coordination polymers, but also at demonstrating the use of Zn-based MOFs as potential drug delivery materials, with highly effective adsorption of l-histidine given herein as an example. PMID:26498200

  15. Fundamentals of high pressure adsorption

    SciTech Connect

    Zhou, Y.P.; Zhou, L.

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  16. Adsorption behavior of hydrothermally treated municipal sludge & pulp and paper industry sludge.

    PubMed

    Alatalo, Sara-Maaria; Repo, Eveliina; Mäkilä, Ermei; Salonen, Jarno; Vakkilainen, Esa; Sillanpää, Mika

    2013-11-01

    Aim of the study was to investigate how hydrothermal carbonization changes adsorption efficiency toward metal ions of typical sludges. Hydrothermal carbonization is a novel and green method of treating biomasses. Reactions take place in an aqueous environment at relatively mild temperature and high pressure resulting a different end biomass structure than obtained from traditional pyrolysis. Anaerobically digested sludge (ADS) and pulp and paper industry sludge (INS) were utilized as a feedstock. Adsorption behavior of ADS and INS was examined towards Pb(II), Cr(III), Cr(VI), As(III) and As(V). Both ADS and INS were found to remove Pb(II) effectively and followed Sips adsorption isotherm. Adsorption kinetics was fast and followed pseudo-second order model. Furthermore, intraparticle diffusion was observed to be partly responsible in the adsorption process. Hydrothermal carbonization indicated high potential for the production of novel carbonaceous materials for metal removal from waters. PMID:23994693

  17. Understand rotating isothermal collapses yet

    SciTech Connect

    Tohline, J.E.

    1985-01-01

    A scalar virial equation is used to describe the dynamic properties of equilibrium gas clouds, taking into account the relative effects of surface pressure, rotation, self gravity and internal isothermal pressure. Details concerning the internal structure of the clouds are ignored in order to obtain a globalized analytical expression. The obtained solution to the equation is found to agree with the surface-pressure-dominated model of Stahler (1983), and the rotation-dominated model of Hayashi, Narita, and Miyama (1982). On the basis of the analytical expression of virial equilibrium in the clouds, some of the limiting properties of isothermal clouds are described, and a realistic starting model for cloud collapse is proposed. 18 references.

  18. Adsorption of atrazine on soils: model study.

    PubMed

    Kovaios, Ilias D; Paraskeva, Christakis A; Koutsoukos, Petros G; Payatakes, Alkiviades Ch

    2006-07-01

    The adsorption of the widely used herbicide atrazine onto three model inorganic soil components (silica gel, gamma-alumina, and calcite (CaCO(3)) was investigated in a series of batch experiments in which the aqueous phase equilibrated with the solid, under different solution conditions. Atrazine did not show discernible adsorption on gamma-alumina (theta=25 degrees C, 3.8adsorption from solutions was found for silica gel suspensions. The adsorption isotherms obtained for atrazine uptake on silica gel particles were best fitted with the Freundlich model. An increase of the ionic strength of the electrolytic solution induced an increase of the surface concentration of atrazine on silica gel, indicating significant electrostatic interactions between atrazine and silica gel particles, possibly through interaction with the surface silanol groups of the solid substrate. Increase of the pH value of the electrolyte solution from 6 to 9 considerably decreased the amount of atrazine adsorbed on the silica gel substrate. Decrease of the solution pH from 6 to 3 had only a slight effect on the surface concentration of the adsorbed atrazine. The adsorption of atrazine on silica gel increased when the temperature was decreased from 40 to 25 degrees C, an indication that the adsorption is exothermic. The calculated enthalpy of adsorption ( approximately 10 kJ/mol) indicates that the uptake at the solid-liquid equilibrium pH (6.1) was largely due to physisorption. PMID:16556447

  19. Modelling and understanding the competitive adsorption of microcystins and tannic acid.

    PubMed

    Campinas, Margarida; Viegas, Rui M C; Rosa, Maria João

    2013-10-01

    A predictive model integrating adsorption kinetics and competitive isotherm models (Homogeneous Surface Diffusion Model, Freundlich-type and Fritz & Schlünder isotherms) was developed to describe and understand the competing mechanism(s) and the ionic strength (IS) role on microcystins (MC) and tannic acid (TA) competitive adsorption. The developed model showed good agreement with the experimental data obtained from batch adsorption tests and isotherms conducted with MC extracts and TA model solutions (single-solute and multicomponent, IS presence and absence) using a mesoporous powdered activated carbon (PAC). Results confirm that similar size molecules such as MC and TA are strong competitors and tannin-rich waters may severely affect MC residuals in the treated water. Unlike usually considered, both direct site and pore blockage mechanisms seem relevant. Competition effects appear to be more dependent on the competitor/contaminant molar ratio than on the initial concentrations. The IS affects the extent and the mechanisms of MC-TA competitive adsorption, reducing PAC dose for safe control of MC residuals. The developed model, including a Ds analysis, is an important tool to understand the competitive adsorption of similar size adsorbates. PMID:23880216

  20. Adsorption of nicotine from aqueous solution onto hydrophobic zeolite type USY

    NASA Astrophysics Data System (ADS)

    Lazarevic, Natasa; Adnadjevic, Borivoj; Jovanovic, Jelena

    2011-07-01

    The isothermal adsorption of nicotine from an aqueous solution onto zeolite type USY was investigated. The adsorption isotherms of nicotine onto the zeolite at different temperatures ranging from 298 to 322 K were determined. It was found that the adsorption isotherms can be described by the model of Freundlich adsorption isotherm. Based on the adsorption isotherms the changes of adsorption heat, free energy and entropy with adsorption degree were determined. The determined decrease of adsorption heat with adsorption degree can be explained by the presence of the adsorption centers of different energy and concentration on interface of zeolite-nicotine solution. It was found that the probability function of density distribution of the heat of adsorption (DDF) has exponential form. It was concluded that the possibility of fitting the adsorption isotherms of nicotine onto the zeolite by Freundlich adsorption isotherm was a direct consequence of that. The determined increase in entropy with the increase in adsorption degree can be explained with the change of phase state of adsorbed nicotine.

  1. Fibrinogen adsorption onto 316L stainless steel, Nitinol and titanium

    NASA Astrophysics Data System (ADS)

    Bai, Zhijun; Filiaggi, M. J.; Dahn, J. R.

    2009-03-01

    Fibrinogen adsorption onto mechanically polished biomedical grade 316L stainless steel (316LSS), nickel titanium alloy (Nitinol) and commercially pure titanium (CpTi) surfaces were studied by measurements of adsorption isotherms and adsorption kinetics using an ex-situ wavelength dispersive spectroscopy technique (WDS). Surface composition, roughness and wettability of these materials were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and water contact angle (WCA) measurements. Adsorption isotherm results showed that surface protein concentration on these materials increased with increasing concentration of fibrinogen in phosphate buffer solution. The fibrinogen adsorption isotherms were modeled by both the monolayer Langmuir isotherm and the multilayer Brunauer-Emmett-Teller (BET) isotherm. The results strongly suggest that fibrinogen forms multilayer structures on these materials when the concentration in solution is high. Complementary measurements on the absorbed fibrinogen films by spectroscopic ellipsometry (SE) support this view.

  2. A new type of isotherm for zinc liquid-solid partitioning on δ-MnO2, γ-MnOOH and manganite in seawater

    NASA Astrophysics Data System (ADS)

    Pan, Gang; Zhang, Zhengbin; Liu, Liansheng

    1987-03-01

    This article deals with the interaction of zinc with δ-MnO2, γ-MnOOH and manganite existing in natural water systems. The mechanism of the reaction has been studied in detail. From the fact that the “ratio of ion exchange(%)-pH” graph is an “S shaped” curve, it is possible to deduce that the chemical reaction is of the nature of cation exchange. And since the pH range of ion exchange=4, it is possible to further deduce that the reaction can be explained by the mechanism of monovalence cation exchange. The main result of this article is the discovery of a new type of isotherm which has not been mentioned in previous literature here and abroad. This isotherm cannot be represented by any presently available adsorption isotherm equations in marine chemistry. The characteristics of this new type of isotherm are as follows: the isotherm has two “knees” and three “plateaus”, the heights of these three “plateaus” are in the ratio 1:2:3. In order to explain theoretically our new isotherm, this article suggests the application of the principle of interfacial stepwise ion exchange for liquid-solid distribution of minor elements on suspended particulate matter. The corresponding isotherm equation was derived from this theory. The results obtained in this article will be of theoretical guiding significance in the study of the marine geochemistry of zinc.

  3. Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol-gel method.

    PubMed

    Copello, Guillermo J; Mebert, Andrea M; Raineri, M; Pesenti, Mariela P; Diaz, Luis E

    2011-02-15

    This work describes the synthesis of chitosan hydrogel/SiO(2) and chitin hydrogel/SiO(2) hybrid mesoporous materials obtained by the sol-gel method for their use as biosorbents. Their adsorption capabilities against four dyes (Remazol Black B, Erythrosine B, Neutral Red and Gentian Violet) were compared in order to evaluate chitin as a plausible replacement for chitosan considering its efficiency and lower cost. Both chitin and chitosan were used in the form of hydrogels. This allowed full compatibility with the ethanol release from tetraethoxysilane. The hybrid materials were characterized by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Nitrogen Adsorption Isotherms and (13)C solid-state Nuclear Magnetic Resonance. Adsorption experimental data were analyzed using Langmuir, Freundlich and Dubinin-Radushkevich isotherm models along with the evaluation of adsorption energy and standard free energy (ΔG(0)). The adsorption was observed to be pH dependent. The main mechanism of dye adsorption was found to be a spontaneous charge associated interaction, except for EB adsorption on chitin/SiO(2) matrix, which showed to involve a lower energy physical adsorption interaction. Aside from highly charged dyes the chitin containing matrix has similar or higher adsorption capacity than the chitosan one. PMID:21163576

  4. Adsorption of ciprofloxacin on surface-modified carbon materials.

    PubMed

    Carabineiro, S A C; Thavorn-Amornsri, T; Pereira, M F R; Figueiredo, J L

    2011-10-01

    The adsorption capacity of ciprofloxacin (CPX) was determined on three types of carbon-based materials: activated carbon (commercial sample), carbon nanotubes (commercial multi-walled carbon nanotubes) and carbon xerogel (prepared by the resorcinol/formaldehyde approach at pH 6.0). These materials were used as received/prepared and functionalised through oxidation with nitric acid. The oxidised materials were then heat treated under inert atmosphere (N2) at different temperatures (between 350 and 900°C). The obtained samples were characterised by adsorption of N2 at -196 °C, determination of the point of zero charge and by temperature programmed desorption. High adsorption capacities ranging from approximately 60 to 300 mgCPxgC(-1) were obtained (for oxidised carbon xerogel, and oxidised thermally treated activated carbon Norit ROX 8.0, respectively). In general, it was found that the nitric acid treatment of samples has a detrimental effect in adsorption capacity, whereas thermal treatments, especially at 900 °C after oxidation, enhance adsorption performance. This is due to the positive effect of the surface basicity. The kinetic curves obtained were fitted using 1st or 2nd order models, and the Langmuir and Freundlich models were used to describe the equilibrium isotherms obtained. The 2nd order and the Langmuir models, respectively, were shown to present the best fittings. PMID:21733541

  5. Transferable force fields for adsorption of small gases in zeolites.

    PubMed

    Martin-Calvo, A; Gutiérrez-Sevillano, J J; Parra, J B; Ania, C O; Calero, S

    2015-10-01

    We provide transferable force fields for oxygen, nitrogen, and carbon monoxide that are able to reproduce experimental adsorption in both pure silica and alumino-substituted zeolites at cryogenic and high temperatures. The force field parameters can be combined with those previously reported for carbon dioxide, methane, and argon, opening the possibility for studying mixtures of interest containing the six components. Using these force field parameters we obtained some adsorption isotherms at cryogenic temperatures that at first sight were in discrepancies with experimental values for certain molecules and structures. We attribute these discrepancies to the sensitiveness of the equipment and to kinetic impedimenta that can lead to erratic results. Additional problems can be found during simulations when extra-framework cations are present in the system as their lack of mobility at low temperatures could lead to kinetic effects that hinder experimental adsorption. PMID:26313242

  6. Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg2+ from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Javadian, Hamedreza; Taghavi, Mehdi

    2014-01-01

    Hierarchical zeolite consists of both microporous and unordered mesoporous structures. A composite of Polypyrrole/thiol-functionalized Beta/MCM-41 (PPy/SH-Beta/MCM-41) was prepared, characterized by FE-SEM, FT-IR, XRD, TGA and BET analysis and applied in the investigation of its adsorption characteristics for the removal of Hg2+ ions from aqueous solutions. Thiol-functionalized Beta/MCM-41 (SH-Beta/MCM-41) was prepared by 3-mercaptopropyltrimethoxysilane (MPTMS) in the presence of aerosil-200 as a silica source by two-step hydrothermal crystallization procedure. Batch mode experiments were conducted and three kinetic models were used to describe the adsorption process. The experimental data fitted very well with the Pseudo-second-order kinetic model. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) revealed that the adsorption of Hg2+ onto PPy/SH-Beta/MCM-41 is an endothermic and spontaneous process. It was found that temperature has a positive effect on the removal efficiency and that PPy/SH-Beta/MCM-41 is potentially able to remove Hg2+ ions from aqueous solutions at even high concentrations (400 mg L-1). The recovery of Hg2+ from the PPy/SH-Beta/MCM-41 adsorbent was found to be more than 90% using 0.5 M H2SO4, and the ability of the absorbent to be reused for removal of Hg2+ was investigated.

  7. Response surface methodology approach for optimization of adsorption of Janus Green B from aqueous solution onto ZnO/Zn(OH)2-NP-AC: Kinetic and isotherm study

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Khafri, H. Zare; Asfaram, A.; Goudarzi, A.

    2016-01-01

    The Janus Green B (JGB) adsorption onto homemade ZnO/Zn(OH)2 nanoparticles loaded on activated carbon (AC) which characterized by FESEM and XRD analysis has been reported. Combination of response surface methodology (RSM) and central composite design (CCD) has been employed to model and optimize variables using STATISTICA 10.0 software. The influence of parameters over pH (2.0-8.0), adsorbent (0.004-0.012 g), sonication time (4-8 min) and JGB concentration (3-21 mg L-1) on JGB removal percentage was investigated and their main and interaction contribution was examined. It was revealed that 21 mg L-1 JGB, 0.012 g ZnO/Zn(OH)2-NP-AC at pH 7.0 and 7 min sonication time permit to achieve removal percentage more than 99%. Finally, a good agreement between experimental and predicted values after 7 min was achieved using pseudo-second-order rate equation. The Langmuir adsorption is appropriate for correlation of equilibrium data. The small amount of adsorbent (0.008-0.015 g) is applicable for successful removal of JGB (RE > 99%) in short time (7 min) with high adsorption capacity (81.3-98.03 mg g-1).

  8. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    PubMed

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents. PMID:24080293

  9. Adsorption of a cationic surfactant by a magsorbent based on magnetic alginate beads.

    PubMed

    Obeid, Layaly; El Kolli, Nadia; Dali, Noëlle; Talbot, Delphine; Abramson, Sébastien; Welschbillig, Mathias; Cabuil, Valérie; Bée, Agnès

    2014-10-15

    Adsorption of cetylpyridinium chloride (CPC), a cationic surfactant, by magnetic alginate beads (MagAlgbeads) was investigated. The magnetic adsorbent (called magsorbent) was prepared by encapsulation of magnetic functionalized nanoparticles in an alginate gel. The influence on CPC adsorption of several parameters such as contact time, pH and initial surfactant concentration was studied. The equilibrium isotherm shows that adsorption occurs through both electrostatic interactions with charge neutralization of the carboxylate groups of the beads and hydrophobic interactions inducing the formation of surfactant aggregates in the beads. The dosage of calcium ions released in the solution turns out to be a useful tool for understanding the adsorption mechanisms. Adsorption is accompanied by a shrinking of the beads that corresponds to a 45% reduction of the volume. Adsorption kinetic experiments show that equilibrium time is strongly dependent on the surfactant concentration, which monitors the nature of the interactions. On the other hand, since the pH affects the ionization state of adsorption sites, adsorption depends on the pH solution, maximum adsorption being obtained in a large pH range (3.2-12) in agreement with the pKa value of alginate (pKa=3.4-4.2). Finally, due to the formation of micelle-like surfactants aggregates in the magnetic alginate beads, they could be used as a new efficient magsorbent for hydrophobic pollutants. PMID:25086393

  10. Simultaneous adsorption of Cd²⁺ and BPA on amphoteric surfactant activated montmorillonite.

    PubMed

    Liu, Chongmin; Wu, Pingxiao; Zhu, Yajie; Tran, Lytuong

    2016-02-01

    The study mainly investigated the simultaneous adsorption of bisphenol A (BPA) and Cd(2+) from aqueous solution on octadecane-betaine modified montmorillonite (BS-Mt). The characteristics of the obtained materials were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Specific surface area (BET) and Scanning electron microscopy/Energy disperse spectroscopy (SEM/EDS), confirming that BS-18 was successfully introduced into Mt. Also, factors including initial solution pH, initial Cd(2+)/BPA concentration, contact time and adsorbent dosage on the adsorption processes were shown to be crucial for Cd(2+) adsorption, whereas had negligible effects on BPA adsorption. In this study, we found that pseudo-second-order model fitted well with the adsorption kinetic studies for both Cd(2+) and BPA with an equilibrium time of 24 h. The Cd(2+) and BPA adsorption isotherm could be well described by Freundlich model and Langmuir model, respectively. On the basis of kinetic models, the maximum adsorption capacity of Cd(2+) in aqueous solution was slightly enhanced after modification, indicating that Cd(2+) adsorption on BS-Mt was mainly attributed to direct electrostatic attraction and the chelate reaction, while the dramatic enhancement of maximum adsorption capacity for BPA was due to the hydrophobic interaction. PMID:26451652

  11. Adsorption / Desorption Behavior of Water Vapor in an Adsorbent Desiccant Rotor

    NASA Astrophysics Data System (ADS)

    Tsujiguchi, Takuya; Kodama, Akio

    Adsorption / desorption behavior of water vapor onto desiccant rotor has been investigated to improve the desiccant cooling system by means of computer simulation. In this paper, we paid attention to the relationship between the equilibrium amount of water adsorbed onto the desiccant material and the relative humidity, that is adsorption isotherm as a principal characteristic feature of adsorbent. Considering actual adsorbents, five types of adsorption isotherms were assumed to clarify the influence of adsorption isotherm on the dehumidifying performance. After the investigation on the influences of some operating conditions on the dehumidifying performance at each selected adsorption isotherm, it was found that higher dehumidifying performance and reduction of length of desiccant rotor could be achieved by selecting appropriate adsorption isotherm. It was also predicted that S-shaped adsorption isotherm which is raised sharply at relative humidity around 15 % could produce the lowest air humidity at regeneration air temperature 80 °C. Moreover influence of the intraparticle diffusion coefficient which significantly influence on the adsorption / desorption rate was discussed choosing two adsorption isotherm from the above five isotherms. It seems that effective range of the intraparticle diffusion coefficient for the significant improvement of the dehumidifying performance was strongly influenced by the shape of adsorption isotherm.

  12. Adsorption equilibria of chlorinated organic solvents onto activated carbon

    SciTech Connect

    Yun, J.H.; Choi, D.K.; Kim, S.H.

    1998-04-01

    Adsorption equilibria of dichloromethane, 1,1,1-trichloroethane, and trichloroethylene on activated carbon were obtained by a static volumetric technique. Isotherms were measured for the pure vapors in the temperature range from 283 to 363 K and pressures up to 60 kPa for dichloromethane, 16 kPa for 1,1,1-trichloroethane, and 7 kPa for trichloroethylene, respectively. The Toth and Dubinin-Radushkevich equations were used to correlate experimental isotherms. Thermodynamic properties such as the isosteric heat of adsorption and the henry`s constant were calculated. It was found that the values of isosteric heat of adsorption were varied with surface loading. Also, the Henry`s constant showed that the order of adsorption affinity is 1,1,1-trichloroethane, trichloroethylene, and dichloromethane. By employing the Dubinin-Radushkevich equation, the limiting volume of the adsorbed space, which equals micropore volume, was determined, and its value was found to be approximately independent of adsorbates.

  13. Gas separation by adsorption in carbon nanohorns

    NASA Astrophysics Data System (ADS)

    Nekhai, Anton; Gatica, Silvina

    Gas separation by adsorption can be accomplished by three basic physical mechanisms: equilibria, kinetics, and steric effects. Equilibrium mechanisms rely on the strength of attraction between gas molecules and their substrate. For example, CO2 possesses the strongest, attractive interactions with its substrate. As a result, the equilibrium mechanism presents the most plausible strategy to separate carbon dioxide from mixtures. The specification of a sound adsorbent is the key for separation by adsorption. In this paper we investigate carbon nanohrons for selectivity of carbon dioxide over methane. Carbon Nanohorns resemble short, wide, highly defected single-wall nanotubes that end in conical tips (``horns''). In contrast to regular nanotubes that assemble into parallel bundles, nanohorns form spherical aggregates with the nanohorns arranged along radial directions. Using the simulation technique Grand Canonical Monte Carlo (GCMC) we obtained the adsorption isotherms of CH4 and CO2 in a 2D array of carbon nanohorns. We estimated the selectivity based on the IAST approximation. We also study the adsorption of argon and neon and compare with experimental results. We acknowledge support from the Partnership for Reduced Dimension Materials (PRDM), NSF Grant No. DMR1205608.

  14. Size dependent adsorption on nanocrystal surfaces

    NASA Astrophysics Data System (ADS)

    Lu, H. M.; Wen, Z.; Jiang, Q.

    2005-03-01

    A quantitative thermodynamic correlation method to describe the size dependent Langmuir adsorption isotherm is developed. According to the model, the equilibrium adsorption constant increases as material size decreases, which is in agreement with the literature data of acetic acid, valeric acid, oxalic acid, and adipic acid on anatase nanoparticles.

  15. Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) particles

    PubMed Central

    Guo, Chunqiang; Gemeinhart, Richard A.

    2008-01-01

    Polyelectrolyte-coated nanoparticles or microparticles interact with bioactive molecules (peptides, proteins or nucleic acids) and have been proposed as delivery systems for these molecules. However, the mechanism of adsorption of polyelectrolyte onto particles remains unsolved. In this study, cationic poly(lactide-co-glycolide) (PLGA) nanoparticles were fabricated by adsorption of various concentrations of a biodegradable polysaccharide, chitosan (0–2.4 g/L), using oil-in-water emulsion and solvent evaporation techniques. The particle diameter, zeta-potential, and chitosan adsorption of chitosan coated PLGA nanoparticles confirmed the increase of polyelectrolyte adsorption. Five adsorption isotherm models (Langmuir, Freundlich, Halsey, Henderson and Smith) were applied to the experimental data in order to better understand the mechanism of adsorption. Both particle diameter and chitosan adsorption increased with chitosan concentration during adsorption. A good correlation was obtained between PLGA-chitosan nanoparticle size and adsorbed chitosan on the surface, suggesting the increased particle size was primarily due to the increased chitosan adsorption. The zeta-potential of chitosan-coated PLGA nanoparticles was positive and increased with chitosan adsorbed until a maximum value (+55 mV) was reached at approximately 0.4–0.6 g/L; PLGA nanoparticles had a negative zeta-potential (−20 mV) prior to chitosan adsorption. Chitosan adsorption on PLGA nanoparticles followed a multilayer adsorption behavior, although the Langmuir monolayer equation held at low concentrations of chitosan. The underlying reasons for adsorption of chitosan on PLGA nanoparticles were thought to be the cationic nature of chitosan, high surface energy and microporous non-uniform surface of PLGA nanoparticles. PMID:18602994

  16. Synthesis, Characterization and Adsorption Properties of Magnetic γ-Fe2O3/C Nanocomposite.

    PubMed

    Mao, Gui-Yun; Bu, Fan-Xing; Jiang, Dong-Mei; Zhao, Zhen-Jie; Zhang, Qing-Hong; Jiang, Ji-Sen

    2015-08-01

    γ-Fe2O3/C nanocomposite was prepared through a convenient method by which one-pot synthesized Fe3O4/Starch was oxidized and carbonized by calcining at 250 °C. The γ-Fe2O3/C displayed strong magnetism and could adsorb organic molecules from aqueous solution effectively, thus it showed promising application in the dislodgement of organic pollutants in sewage. Adsorption isotherms and kinetics of methylene blue (MB) onto γ-Fe2O3/C were studied in a batch system. The adsorption process reached equilibrium in about 15 min, and the maximum adsorption capacity of MB was found to be 64.9 mg g-1 at 303 K. Adsorption isotherms were well fitted to Langmuir model and the adsorption kinetics could be described by the pseudo-second order kinetic equation. The findings of the present work highlight a new facile method to fabricate magnetic carbon-based composites and the obtained γ-Fe2O3/C with excellent magnetic property and adsorption performance hold great promise for practical application in water treatment. PMID:26369173

  17. [Preparation of magnetic quaternary chitosan salt and its adsorption of methyl orange from water].

    PubMed

    Zhang, Cong-lu; Hu, Xiao-min; Ying, Shi-ying; Wang, Fang

    2013-05-01

    First, quaternary chitosan salts with different substitution degrees were prepared in glycine hydrochloride ([Gly]Cl) ionic liquid. Nano-sized Fe3O4 powder was obtained through chemical co-precipitation method. And then, magnetic quaternary chitosan particles were prepared through inverse suspension cross-linking using Fe3O4 was the nucleus and glutaraldehyde as the cross-linking agent. The influence of different reaction conditions on adsorption was discussed. Adsorption of methyl orange (MO) by magnetic quaternary chitosan particles was studied through the static adsorption method. The results showed that at pH 3.0 and 25 degrees C the adsorption capacity varied from 37.45 mg x g(-1) to 277.5 mg x g(-1) with the MO concentration ranging from 20 mg x L(-1) to 150 mg x L(-1). The adsorption isotherm was fitted to the Freundlich model and the adsorption kinetics was fitted to the pseudo-second order kinetic isotherms capacity experiment. It was found that after the adsorbent was used for four times, its removal rate still exceeded 90%. PMID:23914533

  18. Fe(II) adsorption onto natural polymers derived from low-grade lignites

    SciTech Connect

    Tarlan, E.; Ahmetli, G.

    2007-09-15

    In comparison with conventional chemical treatment methods for Fe(II) ions, adsorption and ion exchange are considered more easily applicable and economical, depending on the material used. Polymeric rnaterials are the examples used in these commonly applied removal processes. In this study, the adsorption of Fe(II) ions from aqueous solutions onto two different natural polymers, insoluble humic acids (IHAs) extracted from low-grade lignites from Beysehir and Ermenek (in the central Anatolia region, Konya, Turkey), was investigated. The IHAs were synthesized through a series of acid-base reactions, and the obtained precipitates were chemically stable and had about 40% humic matter together with functional carboxyl and hydroxyl groups. The effects of the time and initial metal concentration on the effectiveness of the IHAs for Fe(II) adsorption were determined through batch experiments; the adsorption isotherms and capacities were calculated. The IHAs were effective, with capacities of 59 mg/g for the Beysehir IHA and 57 mg/g for the Ermenek IHA, for Fe removal under neutral pH conditions. The adsorption followed mainly a Freundlich isotherm for both IHAs, and the calculated adsorption rates were 0.86 for the Beysehir IHA and 0.81 for the Ermenek IHA. This indicated that the effectiveness of the Beysehir IHA was slightly higher than that of the Ermenek IHA. The results confirmed the real possibility of the practical application of IHAs for the separation of Fe(II) in aqueous systems.

  19. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.

    PubMed

    Nam, Seung-Woo; Choi, Dae-Jin; Kim, Seung-Kyu; Her, Namguk; Zoh, Kyung-Duk

    2014-04-15

    In this study, we investigated adsorption characteristics of nine selected micropollutants (six pharmaceuticals, two pesticides, and one endocrine disruptor) in water using an activated carbon. The effects of carbon dosage, contact time, pH, DOM (dissolved organic matter), and temperature on the adsorption removal of micropollutants were examined. Increasing carbon dosage and contact time enhanced the removal of micropollutants. Sorption coefficients of hydrophilic compounds (caffeine, acetaminophen, sulfamethoxazole, and sulfamethazine) fit a linear isotherm and hydrophobic compounds (naproxen, diclofenac, 2, 4-D, triclocarban, and atrazine) fit a Freundlich isotherm. The removal of hydrophobic pollutants and caffeine were independent of pH changes, but acetaminophen, sulfamethazine, and sulfamethoxazole were adsorbed by mainly electrostatic interaction with activated carbon and so were affected by pH. The decrease in adsorption removal in surface water samples was observed and this decrease was more significant for hydrophobic than hydrophilic compounds. The decline in the adsorption capacity in surface water samples is caused by the competitive inhibition of DOM with micropollutants onto activated carbon. Low temperature (5°C) also decreased the adsorption removal of micropollutants, and affected hydrophobic compounds more than hydrophilic compounds. The results obtained in this study can be applied to optimize the adsorption capacities of micropollutants using activated carbon in water treatment process. PMID:24572271

  20. CO2 Adsorption on Activated Carbon Honeycomb-Monoliths: A Comparison of Langmuir and Tóth Models

    PubMed Central

    Vargas, Diana P.; Giraldo, Liliana; Moreno-Piraján, Juan C.

    2012-01-01

    Activated carbon honeycomb-monoliths with different textural properties were prepared by chemical activation of African palm shells with H3PO4, ZnCl2 and CaCl2 aqueous solutions of various concentrations. The adsorbents obtained were characterized by N2 adsorption at 77 K, and their carbon dioxide adsorption capacities were measured at 273 K and 1 Bar in volumetric adsorption equipment. The experimental adsorption isotherms were fitted to Langmuir and Tóth models, and a better fit was observed to Tóth equation with a correlation coefficient of 0.999. The maximum experimental values for adsorption capacity at the highest pressure (2.627–5.756 mmol·g−1) are between the calculated data in the two models. PMID:22942710

  1. Adsorption of phenolic compounds on fly ash

    SciTech Connect

    Akgerman, A.; Zardkoohi, M.

    1996-03-01

    Adsorption isotherms for adsorption of phenol, 3-chlorophenol, and 2,4-dichlorophenol from water onto fly ash were determined. These isotherms were modeled by the Freundlich isotherm. The fly ash adsorbed 67, 20, and 22 mg/g for phenol, chlorophenol, and 2,4-dichlorophenol, respectively, for the highest water phase concentrations used. The affinity of phenolic compounds for fly ash is above the expected amount corresponding to a monolayer coverage considering that the surface area of fly ash is only 1.87 m{sup 2}/g. The isotherms for contaminants studied were unfavorable, indicating that adsorption becomes progressively easier as more solutes are taken up. Phenol displayed a much higher affinity for fly ash than 3-chlorophenol and 2,4-dichlorophenol.

  2. Organic-Modified SiO2 Thin Film Coatings Obtained by the Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Zareba-Grodź, I.; Szeluga, U.; Bukowska, E.; Hermanowicz, K.; Miśta, W.; Maruszewski, K.

    2006-02-01

    Transparent thin films of silica-containing organic copolymers have been obtained by combining organic photopolymerisation and the sol-gel method. The samples have been characterized via IR spectroscopy, N2-adsorption (77 K), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). The viscoelastic nature of the materials have been investigated via the DMTA technique by applying stress to the samples and monitoring their responses. Textural properties such as: specific surface areas (SBET), pore volume (Vp), average pore sizes (Rp) and micropore volumes (VDR) have been obtained. The complete adsorption-desorption isotherms and pore size distributions have been analyzed following the Dollimore-Heal method.

  3. Dye adsorption behavior of Luffa cylindrica fibers.

    PubMed

    Demir, H; Top, A; Balköse, D; Ulkü, S

    2008-05-01

    Using natural Luffa cylindrica fibers as adsorbent removal of methylene blue dye from aqueous solutions at different temperatures and dye concentrations was investigated in this study. Thermodynamics and kinetics of adsorption were also investigated. The adsorption isotherms could be well defined with Langmuir model instead of Freundlich model. The thermodynamic parameters of methylene blue (MB) adsorption indicated that the adsorption is exothermic and spontaneous. The average MB adsorption capacity was found out as 49 mg/g and average BET surface area of fibers was calculated as 123 m(2)/g. PMID:17919814

  4. Moisture adsorption behaviour of biscuit during storage investigated by using a new Dynamic Dewpoint method.

    PubMed

    Romani, Santina; Rocculi, Pietro; Tappi, Silvia; Dalla Rosa, Marco

    2016-03-15

    The changes in moisture adsorption isotherms of commercial biscuits during storage were investigated by means of a rapid Dynamic Dewpoint Isotherms (DDIs) method. Moreover, the relationships between the changes in moisture content and some quality characteristics of biscuits (moisture, aw, peroxide value - PV and texture) were studied during 92 days of storage at 35 °C. GAB model was used to fit the experimental sorption behaviours. During storage, moisture content and aw of biscuits increased and the obtained isotherms showed modifications in behaviour and shape. Significant changes were observed in PV values and texture, particularly during the first 40 days of storage. The monolayer moisture content, obtained by the BET equation, significantly increased during storage from 1.473 to 2.080 g water 100 g db(-1), probably because of the increase in the active sites for water binding due to the chemical and physical changes of the main components, induced by product ageing. PMID:26575718

  5. Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin.

    PubMed

    Monier, M; Ayad, D M; Wei, Y; Sarhan, A A

    2010-05-15

    Cross-linked magnetic chitosan-isatin Schiff's base resin (CSIS) was prepared for adsorption of metal ions. CSIS obtained was investigated by means of FTIR, (1)H NMR, wide-angle X-ray diffraction (WAXRD), magnetic properties and thermogravimetric analysis (TGA). The adsorption properties of cross-linked magnetic CSIS resin toward Cu(2+), Co(2+) and Ni(2+) ions were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated. The kinetic parameters were evaluated utilizing the pseudo-first-order and pseudo-second-order. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 103.16, 53.51, and 40.15mg/g for Cu(2+), Co(2+) and Ni(2+) ions, respectively. Cross-linked magnetic CSIS displayed higher adsorption capacity for Cu(2+) in all pH ranges studied. The adsorption capacity of the metal ions decreased with increasing temperature. The metal ion-loaded cross-linked magnetic CSIS were regenerated with an efficiency of greater than 88% using 0.01-0.1M ethylendiamine tetraacetic acid (EDTA). PMID:20122793

  6. Visualizing Gas Adsorption on Porous Solids: Four Simple, Effective Demonstrations

    ERIC Educational Resources Information Center

    Cheung, Ocean

    2014-01-01

    Gas adsorption on porous solids is a topic that is often discussed in an undergraduate chemistry or chemical engineering course. The idea of porosity and gas adsorption on a porous solid is usually discussed with adsorption isotherms recorded using commercially available equipment. This discussion can be rather abstract and can be difficult for…

  7. Adsorption Studies of Chromium(VI) on Activated Carbon Derived from Mangifera indica (Mango) Seed Shell

    NASA Astrophysics Data System (ADS)

    Mise, Shashikant; Patil, Trupti Nagendra

    2015-09-01

    The removal of chromium(VI) from synthetic sample by adsorption on activated carbon prepared from Mangifera indica (mango) seed shell have been carried out at room temperature 32 ± 1 °C. The removal of chromium(VI) from synthetic sample by adsorption on two types of activated carbon, physical activation and chemical activation (Calcium chloride and Sodium chloride), Impregnation Ratio's (IR) 0.25, 0.50, 0.75 for optimum time, optimum dosages and variation of pH were studied. It is observed that contact time differs for different carbons i.e. for physically and chemically activated carbons. The contact time decreases for chemically activated carbon compared to the physically activated carbon. It was observed that as dosage increases the adsorption increased along with the increase in impregnation ratio. It was also noted that as I.R. increases the surface area of Mangifera indica shell carbon increased. These dosage data were considered in the construction of isotherms and it was found that adsorption obeys Freundlich Isotherm and does not obey Langmuir Isotherm. The maximum removal of chromium (VI) was obtained in highly acidic medium at a pH of 1.50.

  8. Revisiting Isotherm Analyses Using R: Comparison of Linear, Non-linear, and Bayesian Techniques

    EPA Science Inventory

    Extensive adsorption isotherm data exist for an array of chemicals of concern on a variety of engineered and natural sorbents. Several isotherm models exist that can accurately describe these data from which the resultant fitting parameters may subsequently be used in numerical ...

  9. Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano-bio complexation

    NASA Astrophysics Data System (ADS)

    Eren, Necla Mine; Narsimhan, Ganesan; Campanella, Osvaldo H.

    2016-02-01

    Lysozyme-silica interactions and the resulting complexation were investigated through adsorption isotherms, dynamic and electrophoretic light scattering, circular dichroism (CD), and isothermal titration calorimetry (ITC). A thermodynamic analysis of ITC data revealed the existence of two binding modes during protein-nanoparticle complexation. Both binding modes are driven by the cooperation of a favorable enthalpy in the presence of a dominating entropy gain. The first binding mode has a higher binding affinity, a lower equilibrium stoichiometry and is driven by a higher entropic contribution compared to the second type. The observed favorable enthalpy gain in both modes is attributed to non-covalent complexation whereas the entropy gain is associated with the re-organization of the silica surface including not only the solvent and counter ion release, but also the protein's conformational changes. Possible mechanisms are proposed to explain non-covalent complexations for each binding mode by relating the changes in the zeta potential and hydrodynamic radius to the obtained adsorption isotherms and calorimetry profile. Based on all these findings, it is proposed that lysozyme adsorption on nano-silica is the result of protein-nanoparticle and protein-protein interactions that further leads to spontaneous, non-directional and random complexation of silica through bridging flocculation.Lysozyme-silica interactions and the resulting complexation were investigated through adsorption isotherms, dynamic and electrophoretic light scattering, circular dichroism (CD), and isothermal titration calorimetry (ITC). A thermodynamic analysis of ITC data revealed the existence of two binding modes during protein-nanoparticle complexation. Both binding modes are driven by the cooperation of a favorable enthalpy in the presence of a dominating entropy gain. The first binding mode has a higher binding affinity, a lower equilibrium stoichiometry and is driven by a higher entropic

  10. High temperature water adsorption on The Geysers rocks

    SciTech Connect

    Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

    1997-08-01

    In order to measure water retention by geothermal reservoir rocks at the actual reservoir temperature, the ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quality of water retained by rock samples taken from three different wells of The Geysers geothermal reservoir was measured at 150{sup degree}C, 200{sup degree}C, and 250{sup degree}C as a function of pressure in the range 0.00 {<=}p/p{sub degree} {<=} 0.98, where p{sub degree} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A correlation is sought between water adsorption, the surface properties, and the mineralogical and petrological characteristics of the solids.

  11. Adsorption on ordered and disordered duplex layers of porous anodic alumina.

    PubMed

    Bruschi, Lorenzo; Mistura, Giampaolo; Phadungbut, Poomiwat; Do, D D; Nicholson, D; Mayamei, Yashar; Lee, Woo

    2015-05-01

    We have carried out systematic experiments and numerical simulations of the adsorption on porous anodic aluminum oxide (AAO) duplex layers presenting either an ordered or a disordered interconnecting interface between the large (cavity) and small (constriction) sections of the structured pores. Selective blocking of the pore openings resulted in three different pore topologies: open structured pores, funnel pores, and ink-bottle pores. In the case of the structured pores having an ordered interface, the adsorption isotherms present a rich phenomenology characterized by the presence of two steps in the condensation branch and the opening of one (two) hysteresis loops during evaporation for the ink-bottle (open and funnel) pores. The isotherms can be obtained by summing the isotherms measured on uniform pores having the dimensions of the constrictions or of the cavities. The numerical analysis of the three different pore topologies indicates that the shape of the junction between the two pore sections is only important for the adsorption branch. In particular, a conic junction which resembles that of the AAO pores represents the experimental isotherms for the open and funnel pores better, but the shape of the junction in the ink bottle pores does not matter. The isotherms for the duplex layers with a disordered interface display the same general features found for the ordered duplex layers. In both cases, the adsorption branches coincide and have two steps which are shifted to lower relative pressures compared to those for the ordered duplex. Furthermore, the desorption branches comprise hysteresis loops much wider than those of the ordered duplex layers. Overall, this study highlights the important role played by morphologies where there are interconnections between large and small pores. PMID:25871845

  12. [Study on treatment of methylene blue wastewater by fly ash adsorption-Fenton and thermal regeneration].

    PubMed

    Bai, Yu-Jie; Zhang, Ai-Li; Zhou, Ji-Ti

    2012-07-01

    The physicochemical properties of water-washed fly ash (FA) and acid modified fly ash (M-FA) were investigated. The adsorption of methylene blue by FA and M-FA were studied by batch experiments. Two methods, Fenton-drive oxidation regeneration and thermal regeneration, were used for regeneration of the used FA and M-FA. The result showed that the rate of adsorption process followed the second order kinetics and the adsorption followed Langmuir isotherms. The adsorption equilibrium time was 30 min, and the equilibrium adsorption capacity of FA and M-FA were 4.22 mg x g(-1) and 5.98 mg x g(-1) respectively. The adsorption capability of M-FA was higher than that of FA. In the range of pH 2-12, the adsorption capacity of M-FA increased with the increase of pH, whereas the adsorption capacity of FA decreased slowly until the pH 8 and then increased. Electrostatic adsorption was the major factor on the adsorption capacity. Around 61% and 55% percentage regeneration (PR) were obtained for FA and M-FA respectively when 78.4 mmol x L(-1) H2O2 and 0.72 mmol x L(-1) Fe2+ were used. When the condition of thermal regeneration was 400 degrees C and 2 h, a positive correlation can be found between the PRs of FA and regeneration times, the PRs were 102%, 104% and 107% in three cycles of adsorption-thermal regeneration process. However a negative correlation can be found between the PRs of M-FA and regeneration times, the PRs were 82%, 75% and 74% in three cycles of adsorption-thermal regeneration process. The PR of FA was higher than that of M-FA, and thermal regeneration was superior to Fenton-drive regeneration. PMID:23002621

  13. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method.

    PubMed

    Budnyak, Tetyana M; Pylypchuk, Ievgen V; Tertykh, Valentin A; Yanovska, Elina S; Kolodynska, Dorota

    2015-01-01

    A hybrid nanocomposite material has been obtained by in situ formation of an inorganic network in the presence of a preformed organic polymer. Chitosan biopolymer and tetraethoxysilane (TEOS), which is the most common silica precursor, were used for the sol-gel reaction. The obtained composite chitosan-silica material has been characterized by physicochemical methods such as differential thermal analyses (DTA); carbon, hydrogen, and nitrogen (CHN) elemental analysis; nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM); and Fourier transform infrared (FTIR) spectroscopy to determine possible interactions between silica and chitosan macromolecules. Adsorption of microquantities of V(V), Mo(VI), and Cr(VI) oxoanions from the aqueous solutions by the obtained composite has been studied in comparison with the chitosan beads, previously crosslinked with glutaraldehyde. The adsorption capacity and kinetic sorption characteristics of the composite material were estimated. PMID:25852383

  14. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Budnyak, Tetyana M.; Pylypchuk, Ievgen V.; Tertykh, Valentin A.; Yanovska, Elina S.; Kolodynska, Dorota

    2015-02-01

    A hybrid nanocomposite material has been obtained by in situ formation of an inorganic network in the presence of a preformed organic polymer. Chitosan biopolymer and tetraethoxysilane (TEOS), which is the most common silica precursor, were used for the sol-gel reaction. The obtained composite chitosan-silica material has been characterized by physicochemical methods such as differential thermal analyses (DTA); carbon, hydrogen, and nitrogen (CHN) elemental analysis; nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM); and Fourier transform infrared (FTIR) spectroscopy to determine possible interactions between silica and chitosan macromolecules. Adsorption of microquantities of V(V), Mo(VI), and Cr(VI) oxoanions from the aqueous solutions by the obtained composite has been studied in comparison with the chitosan beads, previously crosslinked with glutaraldehyde. The adsorption capacity and kinetic sorption characteristics of the composite material were estimated.

  15. Tl-208, Pb-212, Bi-212, Ra-226 and Ac-228 adsorption onto polyhydroxyethylmethacrylate-bentonite composite

    NASA Astrophysics Data System (ADS)

    Akkaya, Recep; Ulusoy, Ulvi

    2012-02-01

    The adsorption of naturally occurring radionuclides ( 208Tl +, 212Pb 2+, 226Ra 2+, 212Bi 3+ and 228Ac 3+) onto Polyhydroxyethylmethacrylate-bentonite (PHEMA-B) composite was investigated. Experimentally obtained isotherms were evaluated with reference to Langmuir, Freundlich and Dubinin-Radushkevich (DR) models. The adsorption isotherms were L type of Giles classification proving that PHEMA-B had a high affinity adsorbent for the studied radionuclides. The Langmuir adsorption capacities ( XL) were in the order of 226Ra (2.8 MBq kg -1)> 212Bi (0.4 MBq kg -1)> 212Pb (0.3 MBq kg -1)> 228Ac and 208Tl (0.2 MBq kg -1). The adsorption process was physical via complex formation after proton exchanger for which the adsorption energies obtained from DR model was evidence. The enthalpy and entropy changes were positive and the negative free enthalpy change was proof for the spontaneity of adsorption. The reusability tests for PHEMA-B for five uses demonstrated that the adsorbent could be reused after complete recovery of the loaded radionuclide ions by 1 M HCl. The chemical structure of the composite did not change after the reuses and storage foregoing.

  16. Bovine serum albumin adsorption onto functionalized polystyrene lattices: A theoretical modeling approach and error analysis

    NASA Astrophysics Data System (ADS)

    Beragoui, Manel; Aguir, Chadlia; Khalfaoui, Mohamed; Enciso, Eduardo; Torralvo, Maria José; Duclaux, Laurent; Reinert, Laurence; Vayer, Marylène; Ben Lamine, Abdelmottaleb

    2015-03-01

    The present work involves the study of bovine serum albumin adsorption onto five functionalized polystyrene lattices. The adsorption measurements have been carried out using a quartz crystal microbalance. Poly(styrene-co-itaconic acid) was found to be an effective adsorbent for bovine serum albumin molecule adsorption. The experimental isotherm data were analyzed using theoretical models based on a statistical physics approach, namely monolayer, double layer with two successive energy levels, finite multilayer, and modified Brunauer-Emmet-Teller. The equilibrium data were then analyzed using five different non-linear error analysis methods and it was found that the finite multilayer model best describes the protein adsorption data. Surface characteristics, i.e., surface charge density and number density of surface carboxyl groups, were used to investigate their effect on the adsorption capacity. The combination of the results obtained from the number of adsorbed layers, the number of adsorbed molecules per site, and the thickness of the adsorbed bovine serum albumin layer allows us to predict that the adsorption of this protein molecule can also be distinguished by monolayer or multilayer adsorption with end-on, side-on, and overlap conformations. The magnitudes of the calculated adsorption energy indicate that bovine serum albumin molecules are physisorbed onto the adsorbent lattices.

  17. Large scale purification of puerarin from Puerariae Lobatae Radix through resins adsorption and acid hydrolysis.

    PubMed

    Guo, Hai-Dong; Zhang, Qing-Feng; Chen, Ji-Guang; Shangguang, Xin-Cheng; Guo, Yu-Xian

    2015-02-01

    Puerarin is the major isoflavone of Puerariae Lobatae Radix. A method for large scale purification of puerarin was developed through resins adsorption and acid hydrolysis. The adsorption properties of six macroporous resins (D101, S-8, H103, X-5, HPD600, AB-8) were compared through the adsorption kinetics and equilibrium adsorption isotherms. Results showed that H103 resin had the best adsorption rate and capacity. The mass transfer zone motion model was further used for analyzing the fixed bed adsorption of H103 resin. Its length of mass transfer zone with 2mg/ml of puerarin in water and 10% ethanol at flow rate of 10ml/min were 41.6 and 47.5cm, while the equilibrium adsorption capacity was 165.03 and 102.88mg/g, respectively. By using 75% ethanol, puerarin could be well desorbed from the resin with recovery of 97.4%. Subsequently, H103 resin was successfully used for puerarin purification from Puerariae Lobatae Radix. The content of total isoflavones and puerarin in the resin adsorption product were 69.25% and 41.78%, respectively, which were about three times increased compared to the crude extract. Then, the product was hydrolyzed by 2.5M HCl at 90°C for 1h. Puerarin with purity of 90% and a byproduct daidzein with purity of 78% were obtained. PMID:25553536

  18. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    PubMed

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation. PMID:26683820

  19. Adsorption of lipase on polypropylene powder.

    PubMed

    Gitlesen, T; Bauer, M; Adlercreutz, P

    1997-04-01

    Adsorption of different lipases by EP-100 polypropylene powder from crude and pure lipase preparations was studied. Langmuir isotherms described the adsorption equilibria well both for protein and lipase activity adsorption. Adsorption isotherms for five different proteins all gave a similar saturation level of 220 mg protein per g carrier. Twelve commercial lipase preparations were tested for selectivity in the adsorption of lipase. For all preparations the selectivity factor was larger than one. In a crude lipase preparation from Pseudomonas fluorescence, the specific activity in solution decreased by two orders of magnitude after adsorption. The adsorption was not significantly influenced by pH changes in the adsorption buffer, indicating that hydrophobic and not electrostatic interactions are the dominating adsorption forces. Adsorption of a crude lipase from Candida rugosa (Sigma) was fast and equilibrium was reached in 30 and 100 min for protein and lipase activity adsorption respectively. Desorption in aqueous solution was negligible. Investigations with seven different lipases showed no correlation between the specific lipolytic activity of dissolved enzyme in aqueous solution and the specific activity of adsorbed enzyme in an esterification reaction in organic solvent. PMID:9106498

  20. Phosphate adsorption on lanthanum loaded biochar.

    PubMed

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu

    2016-05-01

    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC. PMID:26871732

  1. Sonochemical assisted hydrothermal synthesis of ZnO: Cr nanoparticles loaded activated carbon for simultaneous ultrasound-assisted adsorption of ternary toxic organic dye: Derivative spectrophotometric, optimization, kinetic and isotherm study.

    PubMed

    Jamshidi, M; Ghaedi, M; Dashtian, K; Hajati, S; Bazrafshan, A A

    2016-09-01

    Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019g ZnO: Cr-NPs-AC, 3.9min sonication at 4.5, 4.8 and 4.7mgL(-1) of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R(2), adjusted and predicted R(2) for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6mgg(-1) for MG, EY and AO, respectively. PMID:27150752

  2. Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.

    PubMed

    Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G

    2015-01-01

    Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices. PMID:26301850

  3. 2, 4 dichlorophenol (2, 4-DCP) sorption from aqueous solution using granular activated carbon and polymeric adsorbents and studies on effect of temperature on activated carbon adsorption.

    PubMed

    Ghatbandhe, A S; Yenkie, M K N

    2008-04-01

    Adsorption equilibrium, kinetics and thermodynamics of 2,4-dichlorophenol (2,4-DCP), one of the most commonly used chlorophenol, onto bituminous coal based Filtrasorb-400 grade granular activated carbon, were studied in aqueous solution in a batch system with respect to temperature. Uptake capacity of activated carbon found to increase with temperature. Langmuir isotherm models were applied to experimental equilibrium data of 2, 4-DCP adsorption and competitive studies with respect to XAD resin were carried out. Equilibrium data fitted very well to the Langmuir equilibrium model. Adsorbent monolayer capacity 'Q0, Langmuir constant 'b' and adsorption rate constant 'k(a)' were evaluated at different temperatures for activated carbon adsorption. This data was then used to calculate the energy of activation of adsorption and also the thermodynamic parameters, namely the free energy of adsorption, deltaG0, enthalpy of adsorption, deltaH0 and the entropy of adsorption deltaS0. The obtained results showed that the monolayer capacity increases with the increase in temperatures. The obtained values of thermodynamic parameters showed that adsorption of 2,4 DCP is an endothermic process. Synthetic resin was not found efficient to adsorb 2,4 DCP compared to activated carbon. The order of adsorption efficiencies of three resins used in the study found as XAD7HP > XAD4 > XAD1180. PMID:19295102

  4. [Desorption isotherms in amaranth flours].

    PubMed

    Alvarado, J D; Toaza, E; Coloma, G

    1990-09-01

    In milled seeds amaranth (Amaranthus hybridus) samples locally known as "ataco or sangoracha" and harvested in two consecutive years, the vapor pressure at four temperatures (15 degrees, 20 degrees, 25 degrees, 30 degrees C) was determined in samples obtained for drying in oven at different times, within a range between 60 g water/100 g dry matter for fresh seeds to 10 g water/100 g dry matter or below, as measured in a Brabender equipment. Vapor pressure of distilled water was also determined for water activity calculation. The isotherms for each temperature are presented. Application of the G.A.B. model (Guggenheim-Anderson-De Boer) allowed to establish the water content of greater stability within a range of 9.9 to 7.6 g/100 g. The third degree polynomial equations presented, adjust satisfactorily with the experimental data, and can be used to calculate equilibrium moisture content from 0.15 to 0.95 water activity values. Water desorption isotherms of foods are important to determine the equilibrium relationship between the moisture content of foods and the water activity, information which permits to establish likely physical, chemical or biological changes. It is considered that the results obtained are useful in drying, milling or storing amaranth flour. PMID:2134142

  5. CO2 adsorption on Santa Barbara Amorphous-15 (SBA-15) and amine-modified Santa Barbara Amorphous-15 (SBA-15) with and without controlled microporosity.

    PubMed

    Yan, Xinlong; Komarneni, Sridhar; Yan, Zifeng

    2013-01-15

    Mesoporous silica SBA-15 samples with and without controlled framework microporosity were prepared and used directly or impregnated with polymer amine as adsorbent for CO(2). These samples were evaluated for their ability to adsorb CO(2) by obtaining their equilibrium adsorption isotherms using volumetric adsorption at three different temperatures of 273 K, 278 K and 283 K. The data obtained were analyzed using Freundlich adsorption isotherm model while the isosteric heats of adsorption were estimated by the Clausius-Clapeyron equation. Under comparable conditions, the adsorption performance of silica SBA-15 was found to be strongly dependent upon the framework microporosity. However, the microporosity contribution to CO(2) adsorption in amine-modified SBA-15 was not obvious as amine blocked micropores and dominated CO(2) adsorption. The SBA-15 sample with higher microporosity displayed higher CO(2) uptake and the CO(2) uptake by amine-modified SBA-15 samples correlated with their total surface areas, as expected. These findings revealed the importance of surface area in designing an adsorbent for CO(2.). PMID:23084869

  6. Evaluation of vermicompost as a raw natural adsorbent for adsorption of pesticide methylparathion.

    PubMed

    Mendes, Camila Bitencourt; Lima, Giovana de Fátima; Alves, Vanessa Nunes; Coelho, Nívia Maria Melo; Dragunski, Douglas Cardoso; Tarley, César Ricardo Teixeira

    2012-01-01

    The assessment of vermicompost (VC) as a low-cost and alternative adsorbent for the removal of the pesticide methylparathion (MP) from an aqueous medium has been investigated by batch and column experiments. Parameters related to MP adsorption, i.e. equilibrium time (61.5 min) and adsorption pH (6.8) were optimized by using Doehlert design. The initial and final MP concentrations after adsorption assays were determined by square-wave adsorptive cathodic stripping voltammetry using an electrode composed of a multiwalled carbon nanotube dispersed in mineral oil. Batch adsorption experimental data were fitted to the Langmuir and Freundlich isotherm adsorptions, and a very good fit to the Langmuir linear model, giving a maximum adsorption capacity (MAC) of 0.17 mg g(-1). This result was very similar to that obtained with the column experiments. In order to evaluate the MP desorption from column packed VC, 100.0 ml of nitric acid solution (pH 3.0) has been percolated through material. No leaching of MP was observed, thus confirming the strong interaction between MP and VC. The satisfactory MAC obtained and low cost makes the VC a reliable natural material for the removal of MP from aqueous effluents. PMID:22519100

  7. Adsorption Model for Off-Gas Separation

    SciTech Connect

    Veronica J. Rutledge

    2011-03-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.

  8. Isothermal Gaseous Detonation Model

    NASA Astrophysics Data System (ADS)

    Prokhorov, E. S.

    2015-05-01

    We propose an isothermal gaseous detonation model taking into account the initial pressure of the explosive mixture that permits describing in a simplified form both the self-sustaining and the supercompressed and undercompressed detonation regimes. The exactness of this model has been estimated on the basis of a comparative analysis with the results of equilibrium calculations of the gas-dynamic parameters at the front of detonation waves.

  9. [Adsorption of methylene blue onto vanadium-doped magnetite].

    PubMed

    Zhong, Yuan-Hong; Liang, Xiao-Liang; Zhu, Jian-Xi; He, Hong-Ping; Yuan, Peng

    2010-06-01

    A series of vanadium-doped magnetite (Fe3-x VxO4, x < 0.4) synthesized by an oxidation-precipitation method, were characterized using chemical analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The obtained results show that the synthetic Fe3-x VxO4 has spinel structure while vanadium mostly replaces Fe3+ in the octahedral sites. The synthetic Fe3-x VxO4 is magnetic material, with crystal size ranging from 28 to 35 nm. The substitution of vanadium in the magnetite structure increases the amount of surface hydroxyls. The experimental adsorption results indicate that, in neutral pH condition, the maximum adsorption capacities of Fe3-x VxO4 increase obviously with the increase of vanadium concentration in magnetite while the adsorption isotherm complies well with the Langmuir model. The adsorption of methylene blue (MB) on Fe3-x VxO4 can get equilibrium in the first 25 min, supporting a pseudo-second order equation. Moreover, the rise of the solution pH value results in an increase of the adsorption capability of MB on Fe3-x VxO4. PMID:20698274

  10. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    NASA Astrophysics Data System (ADS)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.

    2015-10-01

    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  11. Phytoremediation and absorption isotherms of heavy metal ions by Convolvulus tricolor (CTC).

    PubMed

    Valizadeh, Rezvan; Mahdavian, Leila

    2016-01-01

    In recent years, use of plants for remediation of contaminated soils, especially removal of heavy metals, is considered. The current study tends to investigate the removal of lead and nickel ions by the Convolvulus tricolor (CTC), was grown for 30 days in different concentrations of lead and nickel ions. Then concentration of them in soil and different organs of the plant was measured by atomic absorption spectrometry. The highest absorbed of them occurred in concentration 0.001N, which highest Pb(2+) accumulation is in the aerial parts of the plant: leaf > stem > root and for Ni(2)+: root > stem > leaf. No ion was observed into the flowers and nickel ion absorption is more of lead ion in different plant organs of CTC. The experimental isotherm data were investigated using isotherms of Langmuir, Freundlich, BET, Temkin and Dubinin-Radushkevich (DRK). The correlation coefficient for all of them is calculated that show the best correlation coefficient for Ni(2+) adsorption is obtained BET model, whereas for Pb(2+) adsorption in root is Freundlich model but for its leaf and stem is BET model. The results show, CTC is suitable for Pb(2+) and Ni(2+) and this technique is in-situ method, simple, and low cost. PMID:26458024

  12. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.

    PubMed

    Altenor, Sandro; Carene, Betty; Emmanuel, Evens; Lambert, Jacques; Ehrhardt, Jean-Jacques; Gaspard, Sarra

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X(P) (gH(3)PO(4)/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m(2)/g) and high pore volume (up to 1.19 cm(3)/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R(2)) and the normalized standard deviation Deltaq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB

  13. Adsorption performance and mechanism of 2,4,6-trinitrotoluene on a novel adsorption material polyvinylbenzyl acid/SiO 2

    NASA Astrophysics Data System (ADS)

    An, Fuqiang; Gao, Baojiao; Feng, Xiaoqin

    2009-02-01

    Polyvinylbenzene (PVB, namely polystyrene, PSt) was grafted on the surface of silica gel particles by "grafting from" in solution polymerization system, and grafting particles PVB/SiO 2 were obtained. The chloromethylation reaction of the grafted polyvinylbenzene was performed using a novel chloromethylation reagent, 1,4-bis (chloromethyoxy) butane that is un-carcinogenic, and grafting particles CMPVB/SiO 2 were obtained. Subsequently, chloromethyl groups on grafting particles CMPVB/SiO 2 were hydrolyzed and oxidized, and finally adsorption material polyvinylbenzyl acid/SiO 2 (PVBA/SiO 2) was prepared. The adsorption performances and mechanism of 2,4,6-trinitrotoluene (TNT) on PVBA/SiO 2 were investigated through static methods. The experimental results showed that PVBA/SiO 2 possessed strong adsorption ability for TNT with adsorption amount of 26.84 mg g -1. The empirical Freundlich isotherm was also found to agree well with the equilibrium adsorption data. In addition, pH was found to have great influence on the adsorption amount. Finally, PVBA/SiO 2 was observed to possess excellent reusability as well.

  14. Entropic nature of the adsorption of sodium dodecylbenzenesulfonate on nanoparticles of aluminum and iron oxides in aqueous medium

    NASA Astrophysics Data System (ADS)

    Mansurov, R. R.; Safronov, A. P.; Lakiza, N. V.

    2016-06-01

    The adsorption of anionic surfactant sodium dodecylbenzenesulfonate (SDBS) from aqueous solution on the hydrophilic surfaces of aluminum oxide and iron oxide nanoparticles is studied via UV spectrophotometry, electrophoretic light scattering, and isothermal microcalorimetry. It is shown that the isotherms of the adsorption of SDBS on the surfaces of both oxides in the area of concentrations up to 0.6 mmol/L is linear. It is found that the positive zeta potential of the surfaces of the particles falls to zero and shifts toward the range of negative values due to adsorption. The adsorption of SDBS is characterized by positive enthalpy values over the investigated range of concentrations, while the loss of energy during adsorption indicates it is of an entropic nature. It is concluded that the probable cause of the increase in entropy is the dehydration of SDBS molecules during on surface adsorption. The obtained results are discussed in terms of the formation of hemimicelles of surfactant on the hydrophilic surfaces of metal oxide nanoparticles in an aqueous medium.

  15. Generalized gas-solid adsorption modeling: Single-component equilibria

    DOE PAGESBeta

    Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.

    2015-01-07

    Over the last several decades, modeling of gas–solid adsorption at equilibrium has generally been accomplished through the use of isotherms such as the Freundlich, Langmuir, Tóth, and other similar models. While these models are relatively easy to adapt for describing experimental data, their simplicity limits their generality to be used with many different sets of data. This limitation forces engineers and scientists to test each different model in order to evaluate which one can best describe their data. Additionally, the parameters of these models all have a different physical interpretation, which may have an effect on how they can bemore » further extended into kinetic, thermodynamic, and/or mass transfer models for engineering applications. Therefore, it is paramount to adopt not only a more general isotherm model, but also a concise methodology to reliably optimize for and obtain the parameters of that model. A model of particular interest is the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm. The GSTA isotherm has enormous flexibility, which could potentially be used to describe a variety of different adsorption systems, but utilizing this model can be fairly difficult due to that flexibility. To circumvent this complication, a comprehensive methodology and computer code has been developed that can perform a full equilibrium analysis of adsorption data for any gas-solid system using the GSTA model. The code has been developed in C/C++ and utilizes a Levenberg–Marquardt’s algorithm to handle the non-linear optimization of the model parameters. Since the GSTA model has an adjustable number of parameters, the code iteratively goes through all number of plausible parameters for each data set and then returns the best solution based on a set of scrutiny criteria. Data sets at different temperatures are analyzed serially and then linear correlations with temperature are made for the parameters of the model. The end result is a full set

  16. Generalized gas-solid adsorption modeling: Single-component equilibria

    SciTech Connect

    Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.

    2015-01-07

    Over the last several decades, modeling of gas–solid adsorption at equilibrium has generally been accomplished through the use of isotherms such as the Freundlich, Langmuir, Tóth, and other similar models. While these models are relatively easy to adapt for describing experimental data, their simplicity limits their generality to be used with many different sets of data. This limitation forces engineers and scientists to test each different model in order to evaluate which one can best describe their data. Additionally, the parameters of these models all have a different physical interpretation, which may have an effect on how they can be further extended into kinetic, thermodynamic, and/or mass transfer models for engineering applications. Therefore, it is paramount to adopt not only a more general isotherm model, but also a concise methodology to reliably optimize for and obtain the parameters of that model. A model of particular interest is the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm. The GSTA isotherm has enormous flexibility, which could potentially be used to describe a variety of different adsorption systems, but utilizing this model can be fairly difficult due to that flexibility. To circumvent this complication, a comprehensive methodology and computer code has been developed that can perform a full equilibrium analysis of adsorption data for any gas-solid system using the GSTA model. The code has been developed in C/C++ and utilizes a Levenberg–Marquardt’s algorithm to handle the non-linear optimization of the model parameters. Since the GSTA model has an adjustable number of parameters, the code iteratively goes through all number of plausible parameters for each data set and then returns the best solution based on a set of scrutiny criteria. Data sets at different temperatures are analyzed serially and then linear correlations with temperature are made for the parameters of the model. The end result is a full set of

  17. Dynamic behaviour of Cd2+ adsorption in equilibrium batch studies by CaCO3(-)-rich Corbicula fluminea shell.

    PubMed

    Ismail, Farhah Amalya; Aris, Ahmad Zaharin; Latif, Puziah Abdul

    2014-01-01

    This work presents the structural and adsorption properties of the CaCO3(-)-rich Corbicula fluminea shell as a natural and economic adsorbent to remove Cd ions from aqueous solutions under batch studies. Experiments were conducted with different contact times, various initial concentrations, initial solution pH and serial biosorbent dosage to examine the dynamic characterization of the adsorption and its influence on Cd uptake capacity. The characterization of the C. fluminea shell using SEM/EDX revealed that the adsorbent surface is mostly impregnated by small particles of potentially calcium salts. The dominant Cd adsorption mechanism is strongly pH and concentration dependent. A maximum Cd removal efficiency of 96.20% was obtained at pH 7 while the optimum adsorbent dosage was observed as 5 g/L. The Langmuir isotherm was discovered to be more suitable to represent the experimental equilibrium isotherm results with higher correlation coefficients (R(2) > 0.98) than Freundlich (R(2) < 0.97).The correlation coefficient values (p < 0.01) indicated the superiority of the Langmuir isotherm over the Freundlich isotherm. PMID:23771443

  18. Water adsorption at high temperature on core samples from The Geysers geothermal field

    SciTech Connect

    Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

    1998-06-01

    The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal reservoir, California, was measured at 150, 200, and 250 C as a function of pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there is in general no proportionality between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The results indicate that multilayer adsorption rather than capillary condensation is the dominant water storage mechanism at high temperatures.

  19. Adsorption of phenol on wood surfaces

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Lunin, V. V.

    2016-03-01

    Adsorption of phenol on aspen and pine wood is investigated. It is shown that adsorption isotherms are described by the Langmuir model. The woods' specific surface areas and adsorption interaction constants are determined. It is found that the sorption of phenol on surfaces of aspen and pine is due to Van der Waals interactions ( S sp = 45 m2/godw for aspen and 85 m2/godw for pine). The difference between the adsorption characteristics is explained by properties of the wood samples' microstructures.

  20. Cr-Doped ZnO Nanoparticles: Synthesis, Characterization, Adsorption Property, and Recyclability.

    PubMed

    Meng, Alan; Xing, Jing; Li, Zhenjiang; Li, Qingdang

    2015-12-16

    In this paper, a mild solvothermal method has been employed to successfully synthesize a series of Cr-doped ZnO nanoparticles (NPs) with different Cr(3+) contents, which is a kind of novel and high-efficiency absorbent for the removal of acid dye methyl orange (MO) from aqueous solution. The as-prepared products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Brunauer, Emmet, and Teller (BET), and Zeta potential measurements. In accordance with the adsorption capacity of the products, the obtained optimal Cr/Zn molar ratio is 6%. The adsorption process of MO on Cr-doped ZnO was investigated by kinetics, thermodynamics, and isotherm technologies, which, respectively, indicated that the adsorption was fast (adsorption reached equilibrium in 2 h) and followed a pseudo-second-order model, that the adsorption process was spontaneous and endothermic, and that it agreed well with the Langmuir isotherm with a maximum adsorption capacity of 310.56 mg g(-1). Moreover, a reasonable mechanism was proposed to elucidate the reasons for their adsorption behavior. In addition, a simple and low-cost chemical method was developed to separate and recycle ZnO and MO from the used adsorbent, effectively avoiding the secondary pollution. This work can not only describe efficient experimental approaches for obtaining novel adsorbents and recycling them but also offer valuable clues for the preparation and property study of other semiconductor adsorbents. PMID:26600320

  1. Adsorption of simazine on zeolite H-Y and sol-gel technique manufactured porous silica: A comparative study in model and natural waters.

    PubMed

    Sannino, Filomena; Marocco, Antonello; Garrone, Edoardo; Esposito, Serena; Pansini, Michele

    2015-01-01

    In this work, we studied the removal of simazine from both a model and well water by adsorption on two different adsorbents: zeolite H-Y and a porous silica made in the laboratory by using the sol-gel technique. The pH dependence of the adsorption process and the isotherms and pseudo-isotherms of adsorption were studied. Moreover, an iterative process of simazine removal from both the model and well water, which allowed us to bring the residual simazine concentration below the maximum concentration (0.05 mg L(-1)) of agrochemicals in wastewater to be released in surface waters or in sink allowed by Italian laws, was proposed. The results obtained were very interesting and the conclusions drawn from them partly differed from what could reasonably be expected. PMID:26357888

  2. Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile

    NASA Astrophysics Data System (ADS)

    Öztürk, A.; Malkoc, E.

    2014-04-01

    In this work, natural untreated clay (NUC) was studied for the removal of Basic Yellow 2 (BY2) from aqueous solution in batch system. The effects of initial BY2 concentration, contact time, solution temperature and solution pH on BY2 adsorption were investigated. Nitrogen sorption measurements were employed to investigate the variation in surface and pore properties after dye adsorption. The adsorbent was characterized by means of FTIR, PSD, TEM, XRD and BET analysis. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Scatchard isotherm models. The maximum monolayer adsorption capacity was found to be 833.33 mg/g at 25 °C (at room temperature). The pseudo-second-order kinetic model provided the best fit to the experimental datas compared with pseudo-first-order kinetic adsorption models. To explain mass transfer mechanism of BY2 adsorption, obtained experimental datas were applied Weber and Morris model, Body and Frusawa and Smith models. The results show that the adsorption process is controlled by film diffusion. The thermodynamic parameters such as, Gibbs free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°) were determined. Adsorption of BY2 on NUC is exothermic and spontaneous in nature. The calculated activation energy of adsorption was found to be 5.24 kJ/mol for BY2. This value indicates that the adsorption process is a physisorption.

  3. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon.

    PubMed

    Kavitha, D; Namasivayam, C

    2007-01-01

    Varying the parameters such as agitation time, dye concentration, adsorbent dose, pH and temperature carried out the potential feasibility of thermally activated coir pith carbon prepared from coconut husk for removal of methylene blue. Greater percentage of dye was removed with decrease in the initial concentration of dye and increase in amount of adsorbent used. Kinetic study showed that the adsorption of dye on coir pith carbon was a gradual process. Lagergren first-order, second-order, intra particle diffusion model and Bangham were used to fit the experimental data. Equilibrium isotherms were analysed by Langmuir, Freundlich, Dubnin-Radushkevich, and Tempkin isotherm. The adsorption capacity was found to be 5.87 mg/g by Langmuir isotherm for the particle size 250-500 microm. The equilibrium time was found to be 30 and 60 min for 10 and 20 mg/L and 100 min for 30, 40 mg/L dye concentrations, respectively. A maximum removal of 97% was obtained at natural pH 6.9 for an adsorbent dose of 100 mg/50 mL and 100% removal was obtained for an adsorbent dose of 600 mg/50 mL of 10 mg/L dye concentration. The pH effect and desorption studies suggest that chemisorption might be the major mode of the adsorption process. The change in entropy (DeltaS0) and heat of adsorption (DeltaH0) of coir pith carbon was estimated as 117.20 J/mol/K and 30.88 kJ/mol, respectively. The high negative value of change in Gibbs free energy indicates the feasible and spontaneous adsorption of methylene blue on coir pith carbon. PMID:16427273

  4. ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AGED HARBOR SEDIMENTS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic contaminants which have low aqueous solubilities and are common pollutants in harbor sediments. Adsorption and desorption isotherms for PAHs are conducted to study the abiotic sorption of PAHs in uncontami...

  5. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite.

    PubMed

    Sahin, Rubina; Tapadia, Kavita

    2015-01-01

    The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG < 0) and endothermic (ΔH > 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area. PMID:26676015

  6. Synthesis of magnetic γ-Fe2O3-based nanomaterial for ultrasonic assisted dyes adsorption: Modeling and optimization.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Hajati, Shaaker; Goudarzi, Alireza

    2016-09-01

    γ-Fe2O3 nanoparticles were synthesized and loaded on activated carbon. The prepared nanomaterial was characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The γ-Fe2O3 nanoparticle-loaded activated carbon (γ-Fe2O3-NPs-AC) was used as novel adsorbent for the ultrasonic-assisted removal of methylene blue (MB) and malachite green (MG). Response surface methodology and artificial neural network were applied to model and optimize the adsorption of the MB and MG in their individual and binary solutions followed by the investigation on adsorption isotherm and kinetics. The individual effects of parameters such as pH, mass of adsorbent, ultrasonication time as well as MB and MG concentrations in addition to the effects of their possible interactions on the adsorption process were investigated. The numerical optimization revealed that the optimum adsorption (>99.5% for each dye) is obtained at 0.02g, 15mgL(-1), 4min and 7.0 corresponding to the adsorbent mass, each dye concentration, sonication time and pH, respectively. The Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherms were studied. The Langmuir was found to be most applicable isotherm which predicted maximum monolayer adsorption capacities of 195.55 and 207.04mgg(-1) for the adsorption of MB and MG, respectively. The pseudo-second order model was found to be applicable for the adsorption kinetics. Blank experiments (without any adsorbent) were run to investigate the possible degradation of the dyes studied in presence of ultrasonication. No dyes degradation was observed. PMID:27150788

  7. An EDTA-β-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater.

    PubMed

    Zhao, Feiping; Repo, Eveliina; Meng, Yong; Wang, Xueting; Yin, Dulin; Sillanpää, Mika

    2016-03-01

    The separation and recovery of Rare earth elements (REEs) from diluted aqueous streams has attracted great attention in recent years because of ever-increasing REEs demand. In this study, a green synthesized EDTA-cross-linked β-cyclodextrin (EDTA-β-CD) biopolymer was prepared and employed in adsorption of aqueous REEs, such as La(III), Ce(III), and Eu(III). EDTA acts not only as cross-linker but also as coordination site for binding of REEs. The adsorption properties for the adsorption of REEs by varying experimental conditions were carried out by batch tests. The kinetics results revealed that the surface chemical sorption and the external film diffusion were the rate-determining steps of the adsorption process. The obtained maximum adsorption capacities of EDTA-β-CD were 0.343, 0.353, and 0.365mmolg(-1) for La(III), Ce(III) and Eu(III), respectively. Importantly, the isotherms fitted better to Langmuir than Freundlich and Sips models, suggesting a homogenous adsorption surface for REEs on the adsorbent. Moreover, the multi-component adsorption, which was modeled by extended Sips isotherms, revealed adsorbent's selectivity to Eu(III). More significantly, the successful recoveries of the studied ions from tap water and seawater samples makes EDTA-β-CD a promising sorbent for the preconcentration of REEs from diluted aqueous streams. PMID:26674238

  8. Adsorption of sunset yellow FCF from aqueous solution by chitosan-modified diatomite.

    PubMed

    Zhang, Y Z; Li, J; Li, W J; Li, Y

    2015-01-01

    Sunset yellow (SY) FCF is a hazardous azo dye pollutant found in food processing effluent. This study investigates the use of diatomaceous earth with chitosan (DE@C) as a modified adsorbent for the removal of SY from wastewater. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of SY. The obtained N2 adsorption-desorption isotherm values accord well with IUPAC type II. Our calculations determined a surface area of 69.68 m2 g(-1) for DE@C and an average pore diameter of 4.85 nm. Using response surface methodology, optimized conditions of process variables for dye adsorption were achieved. For the adsorption of SY onto DE@C, this study establishes mathematical models for the optimization of pH, contact time and initial dye concentration. Contact time plays a greater role in the adsorption process than either pH or initial dye concentration. According to the adjusted correlation coefficient (adj-R2>0.97), the models used here are suitable for illustration of the adsorption process. Theoretical experimental conditions included a pH of 2.40, initial dye concentration of 113 mg L(-1) and 30.37 minutes of contact time. Experimental values for the adsorption rate (92.54%) were close to the values predicted by the models (95.29%). PMID:26540549

  9. Effect of solution temperature, pH and ionic strength on dye adsorption onto Magellanic peat.

    PubMed

    Sepulveda, Luisa Antonia; Santana, Cesar Costapinto

    2013-01-01

    The aim of this research was to study the effect of the solution temperature, pH and ionic strength on the adsorption of the Basic Blue 3 (BB3) and Acid Black 1 (AB1) dyes in Magellanic peat. The peat used was physically characterized as fibrous, of low decomposition level, without the presence of crystalline material and with a highly porous morphology. The functional groups with major concentration in the surface adsorbent were the carboxylics and phenolics, with values of 0.91 and 0.47 mmol/g, respectively. The results of the batch assays showed that the adsorption of the AB1 dye was strongly dependent of electrical charge density on the surface, contrary to what occurred to the BB3 dye, because the interactions between the dyes and carboxylic groups of the peat could be either electrostatic or non-electrostatic. The Langmuir, Freundlich and Sips isotherm models were fitted to the experimental data; among them, the Sips model presented the best adjustment quality. The maximum adsorption capacities for BB3 and AB1 dyes were 33.1 and 33.7 mg/g, respectively. The adsorption of BB3 dye onto Magellan peat has an exothermic behaviour, obtaining an adsorption enthalpy of -3.44 kJ/mol. Contrarily the adsorption of AB1 has an adsorption enthalpy of 56.76 kJ/mol. PMID:23837348

  10. Physical adsorption and charge transfer of molecular Br2 on graphene.

    PubMed

    Chen, Zheyuan; Darancet, Pierre; Wang, Lei; Crowther, Andrew C; Gao, Yuanda; Dean, Cory R; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Marianetti, Chris A; Brus, Louis E

    2014-03-25

    We present a detailed study of gaseous Br2 adsorption and charge transfer on graphene, combining in situ Raman spectroscopy and density functional theory (DFT). When graphene is encapsulated by hexagonal boron nitride (h-BN) layers on both sides, in a h-BN/graphene/h-BN sandwich structure, it is protected from doping by strongly oxidizing Br2. Graphene supported on only one side by h-BN shows strong hole doping by adsorbed Br2. Using Raman spectroscopy, we determine the graphene charge density as a function of pressure. DFT calculations reveal the variation in charge transfer per adsorbed molecule as a function of coverage. The molecular adsorption isotherm (coverage versus pressure) is obtained by combining Raman spectra with DFT calculations. The Fowler-Guggenheim isotherm fits better than the Langmuir isotherm. The fitting yields the adsorption equilibrium constant (∼0.31 Torr(-1)) and repulsive lateral interaction (∼20 meV) between adsorbed Br2 molecules. The Br2 molecule binding energy is ∼0.35 eV. We estimate that at monolayer coverage each Br2 molecule accepts 0.09 e- from single-layer graphene. If graphene is supported on SiO2 instead of h-BN, a threshold pressure is observed for diffusion of Br2 along the (somewhat rough) SiO2/graphene interface. At high pressure, graphene supported on SiO2 is doped by adsorbed Br2 on both sides. PMID:24528378

  11. Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano-bio complexation.

    PubMed

    Eren, Necla Mine; Narsimhan, Ganesan; Campanella, Osvaldo H

    2016-02-14

    Lysozyme-silica interactions and the resulting complexation were investigated through adsorption isotherms, dynamic and electrophoretic light scattering, circular dichroism (CD), and isothermal titration calorimetry (ITC). A thermodynamic analysis of ITC data revealed the existence of two binding modes during protein-nanoparticle complexation. Both binding modes are driven by the cooperation of a favorable enthalpy in the presence of a dominating entropy gain. The first binding mode has a higher binding affinity, a lower equilibrium stoichiometry and is driven by a higher entropic contribution compared to the second type. The observed favorable enthalpy gain in both modes is attributed to non-covalent complexation whereas the entropy gain is associated with the re-organization of the silica surface including not only the solvent and counter ion release, but also the protein's conformational changes. Possible mechanisms are proposed to explain non-covalent complexations for each binding mode by relating the changes in the zeta potential and hydrodynamic radius to the obtained adsorption isotherms and calorimetry profile. Based on all these findings, it is proposed that lysozyme adsorption on nano-silica is the result of protein-nanoparticle and protein-protein interactions that further leads to spontaneous, non-directional and random complexation of silica through bridging flocculation. PMID:26725375

  12. Proton adsorption onto alumina: extension of multisite complexation (MUSIC) theory

    SciTech Connect

    Nagashima, K.; Blum, F.D.

    1999-09-01

    The adsorption isotherm of protons onto a commercial {gamma}-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species.

  13. Proton Adsorption onto Alumina: Extension of Multisite Complexation (MUSIC) Theory.

    PubMed

    Nagashima; Blum

    1999-09-01

    The adsorption isotherm of protons onto a commercial gamma-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species. Copyright 1999 Academic Press. PMID:10441408

  14. Isotherm parameters and intraparticle mass transfer kinetics on molecularly imprinted polymers in acetonitrile/buffer mobile phases

    SciTech Connect

    Kim, Hyunjung; Kaczmarski, Krzysztof; Guiochon, Georges A

    2006-03-01

    The equilibrium isotherm and the intraparticle mass transfer kinetics of the enantiomers of the template were investigated on an Fmoc-L-tryptophan (Fmoc-L-Trp) imprinted polymer at different pHs and water concentrations in acetonitrile/aqueous buffer mobile phases. The equilibrium isotherm data were measured using frontal analysis at 25 {+-} 2 C. The adsorption energy distribution was found to be trimodal, with narrow modes. Consistent with this distribution, the adsorption data were modeled using a tri-Langmuir isotherm equation and the best estimates of the isotherm parameters were determined. The intraparticle mass transfer parameters were derived by comparing the profiles of experimental overloaded bands and the profiles calculated using the isotherm model and the lumped pore diffusion (POR) model of chromatography. These results showed that different adsorption and mass transfer mechanisms exist in mobile phases made of acetonitrile/aqueous buffer and of acetonitrile/acetic acid solutions.

  15. Effect of the mobile phase composition on the adsorption behavior of tryptophan in reversed-phase liquid chromatography

    SciTech Connect

    Ahmad, Tarab; Guiochon, Georges A

    2006-03-01

    Single-component adsorption isotherm data of l-tryptophan on a C{sub 18}-bonded silica column were acquired by frontal analysis (FA), with aqueous mobile phases containing 2.5, 5, and 7.5% of acetonitrile (ACN) or 7, 10, 15, and 20% of methanol (MeOH). Most of these isotherms have two inflection points and three different parts. The low and the high concentration parts exhibit langmuirian behavior. The intermediate part exhibits anti-langmuirian behavior. The inflection points shift toward higher concentrations with increasing mobile phase concentration in ACN or MeOH, which causes the differences in the isotherm profiles. The nature of the organic modifier and its concentration affect only the isotherm profile and the numerical values of its parameters, not the nature of the best model, which is the bi-Moreau model in all cases. The isotherm profiles depend on the experimental conditions because they affect the intensity of the adsorbate-adsorbate interactions. Overloaded band profiles of tryptophan were recorded with the seven mobile phase compositions. They were used to determine the best values of the isotherm coefficients by the inverse method (IM) of chromatography. There is an excellent agreement between the values of these parameters obtained by FA and by IM. Increasing the concentration of either ACN or MeOH in the mobile phase causes a slight decrease in the saturation capacities of the low and the high energy sites, and in the adsorption constant of the low energy sites. The adsorption constant of the high energy sites increases with increasing concentration of either solvent or is little affected. The adsorbate-adsorbate interaction constants of both low and high energy sites increase for both solvents. Saturation capacities of the high energy sites are higher for ACN than for MeOH.

  16. Adsorption modeling for off-gas treatment

    SciTech Connect

    Ladshaw, A.; Sharma, K.; Yiacoumi, S.; Tsouris, C.; De Paoli, D.W.

    2013-07-01

    Off-gas generated from the reprocessing of used nuclear fuel contains a mixture of several radioactive gases including {sup 129}I{sub 2}, {sup 85}Kr, HTO, and {sup 14}CO{sub 2}. Over the past few decades, various separation and recovery processes have been studied for capturing these gases. Adsorption data for gaseous mixtures of species can be difficult to determine experimentally. Therefore, procedures capable of predicting the adsorption behavior of mixtures need to be developed from the individual isotherms of each of the pure species. A particular isotherm model of interest for the pure species is the Generalized Statistical Thermodynamic Adsorption isotherm. This model contains an adjustable number of parameters and will therefore describe a wide range of adsorption isotherms for a variety of components. A code has been developed in C++ to perform the non-linear regression analysis necessary for the determination of the isotherm parameters, as well as the least number of parameters needed to describe an entire set of data. (authors)

  17. Microcolumn studies of dye adsorption onto manganese oxides modified diatomite.

    PubMed

    Al-Ghouti, M A; Khraisheh, M A M; Ahmad, M N; Allen, S J

    2007-07-19

    The method described here cannot fully replace the analysis of large columns by small test columns (microcolumns). The procedure, however, is suitable for speeding up the determination of adsorption parameters of dye onto the adsorbent and for speeding up the initial screening of a large adsorbent collection that can be tedious if a several adsorbents and adsorption conditions must be tested. The performance of methylene blue (MB), a basic dye, Cibacron reactive black (RB) and Cibacron reactive yellow (RY) was predicted in this way and the influence of initial dye concentration and other adsorption conditions on the adsorption behaviour were demonstrated. On the basis of the experimental results, it can be concluded that the adsorption of RY onto manganese oxides modified diatomite (MOMD) exhibited a characteristic "S" shape and can be simulated effectively by the Thomas model. It is shown that the adsorption capacity increased as the initial dye concentration increased. The increase in the dye uptake capacity with the increase of the adsorbent mass in the column was due to the increase in the surface area of adsorbent, which provided more binding sites for the adsorption. It is shown that the use of high flow rates reduced the time that RY in the solution is in contact with the MOMD, thus allowing less time for adsorption to occur, leading to an early breakthrough of RY. A rapid decrease in the column adsorption capacity with an increase in particle size with an average 56% reduction in capacity resulting from an increase in the particle size from 106-250 microm to 250-500 microm. The experimental data correlated well with calculated data using the Thomas equation and the bed depth-service time (BDST) equation. Therefore, it might be concluded that the Thomas equation and the BDST equations can produce accurate predication for variation of dye concentration, mass of the adsorbent, flow rate and particle size. In general, the values of adsorption isotherm capacity

  18. Effect of grain size on uranium(VI) surface complexation kinetics and adsorption additivity.

    PubMed

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M

    2011-07-15

    The contribution of variable grain sizes to uranium adsorption/desorption was studied using a sediment from the US DOE Hanford site. The sediment was wet sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.053-0.2 mm), and clay/silt fraction (<0.053 mm). For each size fraction and their composite (sediment), batch and flow-cell experiments were performed to determine uranium adsorption isotherms and kinetic uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. One important implication of this study is that grain-size distribution may be used to estimate uranium adsorption site and adsorption/desorption kinetic rates in heterogeneous sediments from a common location. PMID:21648458

  19. Adsorption behavior of anionic polyelectrolyte for chemical mechanical polishing (CMP).

    PubMed

    Kim, Sarah; So, Jae-Hyun; Lee, Dong-Jun; Yang, Seung-Man

    2008-03-01

    In this work, we investigated the adsorption characteristics of anionic polyelectrolytes, which are used in shallow trench isolation chemical mechanical polishing with ceria abrasives. Specifically, the adsorption isotherms and chain conformation of anionic polyelectrolytes were studied in order to elucidate the difference in removal rates of silicon dioxide (SiO2) and silicon nitride (Si3N4) layers and the high selectivity characteristics of ceria slurry. Adsorption isotherms, FT-IR spectroscopy and contact angle measurements revealed that the anionic polyelectrolyte additives had much better adsorption affinities for the Si3N4 surface than for the SiO2 surface. Moreover, blanket wafer polishing results were successfully correlated with the adsorption isotherms of polyelectrolytes on the oxide particle suspensions. PMID:18078949

  20. A comparative study and evaluation of sulfamethoxazole adsorption onto organo-montmorillonites.

    PubMed

    Lu, Laifu; Gao, Manglai; Gu, Zheng; Yang, Senfeng; Liu, Yuening

    2014-12-01

    Three organo-montmorillonites were prepared using surfactants, and their adsorption behaviors toward sulfamethoxazole (SMX) were investigated. The surfactants used were cetyltrimethyl ammonium bromide (CTMAB), 3-(N,N-dimethylhexadecylammonio) propane sulfonate (HDAPS) and 1,3-bis(hexadecyldimethylammonio)-propane dibromide (BHDAP). The properties of the organo-montmorillonites were characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption-desorption isotherm measurements. Results showed that the interlayer spacing of montmorillonite was increased and the surface area as well as the morphology were changed. Batch adsorption experiments showed that the surfactant loading amount had a great effect on the adsorption of SMX. The adsorption process was pH dependent and the maximum adsorption capacity was obtained at pH3 for HDAPS-Mt, while CTMAB-Mt and BHDAP-Mt showed a high removal efficiency at 3-11. The adsorption capacity increased with the initial SMX concentration and contact time but decreased with increasing solution ionic strength. Kinetic data were best described by the pseudo second-order model. Equilibrium data were best represented by the Langmuir model, and the Freundlich constant (n) indicated a favorable adsorption process. The maximum adsorption capacity of SMX was 235.29 mg/g for CTMAB-Mt, 155.28 mg/g for HDAPS-Mt and 242.72 mg/g for BHDAP-Mt. Thermodynamic parameters were calculated to evaluate the spontaneity and endothermic or exothermic nature. The adsorption mechanism was found to be dominated by electrostatic interaction, while hydrophobic interaction played a secondary role. PMID:25499502

  1. Measurements of water vapor adsorption on the Geysers rocks

    SciTech Connect

    Gruszkiewicz, Miroslaw S.; Horita, Juske; Simonson, John M.; Mesmer, Robert E.

    1996-01-24

    The ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quantity of water retained by rock samples taken from three different wells of The Geysers was measured at 150 °C and at 200 °C as a function of pressure in the range 0.00 ≤ p/p0 ≤ 0.98, where p0 is the saturated water vapor pressure. The rocks were crushed and sieved into three fractions of different grain sizes (with different specific surface areas). Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and extent of the hysteresis. Additionally, BET surface area analyses were performed by Porous Materials Inc. on the same rock samples using nitrogen or krypton adsorption measurements at 77 K. Specific surface areas and pore volumes were determined. These parameters are important in estimating water retention capability of a porous material. The same laboratory also determined the densities of the samples by helium pycnometry. Their results were then compared with our own density values obtained by measuring the effect of buoyancy in compressed argon. One of the goals of this project is to determine the dependence of the water retention capacity of the rocks as a function of temperature. The results show a significant dependence of the adsorption and desorption isotherms on the grain size of the sample. The increase in the amount of water retained with temperature observed previously (Shang et al., 1994a, 1994b, 1995) between 90 and 130°C for various reservoir rocks from The Geysers may be due to the contribution of slow chemical adsorption and may be dependent on the time allowed for equilibration. In contrast with the results of Shang et al. (1994a, 1994b, 1995), some closed and nearly closed hysteresis loops on the water adsorption/desorption isotherms (with closing points at p/p0 ≈ 0.6) were obtained in this study. In these cases the effects of activated

  2. Methods for determining the CO2 sorption capacity of coal: Experimental and theoretical high pressure isotherms

    NASA Astrophysics Data System (ADS)

    Weishauptová, Zuzana; Přibyl, Oldřich

    2016-04-01

    One way to reduce CO2 emissions discharged into the atmosphere is by trapping it and storing it in suitable repositories, including coal-bearing strata. The history of coal mining in the Czech Republic is very rich but most of the mines have been closed down in recent years. However, the unmined coal seams are interesting for the purposes of CO2 storage, especially due the opportunities they offer for recovering coal-bed methane. Mine structures of this kind can be found in large parts of the Upper Silesian Basin, where the total storage capacity has been estimated at about 380 Mt CO2. This is an interesting storage potential. In order to identify a suitable high-capacity locality for CO2 storage within a coal seam, it is necessary to study not only the geological conditions within the seam, but also the textural properties of the coal, which control the mechanism and the extent of the storage. The major storage mechanism is by sorption processes that take place in the coal porous system (adsorption in micropores and on the surface of meso/macropores, and absorption in the macromolecular structure). The CO2 sorption capacity is generally indirectly determined in a laboratory by measuring the amount of carbon dioxide captured in a coal sample at a pressure and temperature corresponding to the in situ conditions, using high pressure sorption techniques. The low pressure sorption technique can be used, by setting the partial volumes of CO2 according to its binding and storage mode. The sorption capacity is determined by extrapolation to the saturation pressure as the sum of the individual partially sorbed volumes. The aim of the study was to determine the partial volumes of CO2 bound by different mechanisms in the individual parts of the porous system of the coal, and to compare the sum with the results obtained by the high pressure isotherm. The study was carried out with 3 samples from a borehole survey in the Czech part of the Upper Silesian Basin. A high pressure

  3. Adsorption of alkenyl succinic anhydride from solutions in carbon tetrachloride on a fine magnetite surface

    NASA Astrophysics Data System (ADS)

    Balmasova, O. V.; Ramazanova, A. G.; Korolev, V. V.

    2016-06-01

    The adsorption of alkenyl succinic anhydride from a solution in carbon tetrachloride on a fine magnetite surface at a temperature of 298.15 K is studied using fine magnetite, which forms the basis of magnetic fluids, as the adsorbent. An adsorption isotherm is recorded and interpreted in terms of the theory of the volume filling of micropores (TVFM). Adsorption process parameters are calculated on the basis of the isotherm. It is shown that at low equilibrium concentrations, the experimental adsorption isotherm is linear in the TVFM equation coordinates.

  4. A quantitative method evaluating the selective adsorption of molecularly imprinted polymer.

    PubMed

    Zhang, Z B; Hu, J Y

    2012-01-01

    Adsorption isotherms of 4 estrogenic compounds, estrone, 17β-estradiol, 17α-ethinylestradiol and Bisphenol A, using molecularly imprinted polymer were studied. The isotherms can be simulated by Langmuir model. According to the adsorption isotherms and the template's mass balance, an experimental concept, selective adsorption ratio, SAR, was proposed to assess how many template molecules extracted out of MIP could create selective binding sites. The SAR of the molecularly imprinted polymer was 74.3% for E2. This concept could be used to evaluate quantitatively the selective adsorption. PMID:22423989

  5. Adsorption of H2, Ne, and N2 on Activated Charcoal

    NASA Technical Reports Server (NTRS)

    Chang, C. K.; Tward, E.; Boudaie, K. I.

    1986-01-01

    9-page report presents measured adsorption isotherms of hydrogen, neon, and nitrogen on activated charcoal for temperatures from 77 to 400 K and pressures from 1 to 80 atmospheres (0.1 to 8.1 MPa). Heats of adsorption calculated from isotherms also presented. Report gives expressions, based on ideal-gas law, which show relationship between different definitions of volume of gas adsorbed and used in describing low-pressure isotherms.

  6. Isothermal separation processes

    NASA Technical Reports Server (NTRS)

    England, C.

    1982-01-01

    The isothermal processes of membrane separation, supercritical extraction and chromatography were examined using availability analysis. The general approach was to derive equations that identified where energy is consumed in these processes and how they compare with conventional separation methods. These separation methods are characterized by pure work inputs, chiefly in the form of a pressure drop which supplies the required energy. Equations were derived for the energy requirement in terms of regular solution theory. This approach is believed to accurately predict the work of separation in terms of the heat of solution and the entropy of mixing. It can form the basis of a convenient calculation method for optimizing membrane and solvent properties for particular applications. Calculations were made on the energy requirements for a membrane process separating air into its components.

  7. Interlamellar adsorption of carbon dioxide by smectites

    USGS Publications Warehouse

    Fripiat, J.J.; Cruz, M.I.; Bohor, B.F.; Thomas, J., Jr.

    1974-01-01

    The adsorption of CO2 at low temperature (~ -70 ??C) on thin films of homoionic smectites was studied by X-ray diffraction and by i.r. absorption. An increase in the d001 spacings of these clay films upon adsorption of CO2 was observed. In addition, a dichroic effect was readily discernible by comparing the i.r. spectra at two different orientations of the smectite films; i.e. with the film normal and tilted 35 with respect to the i.r. beam. The CO2 stretching vibration at 2350 cm-1 was used for the i.r. study. These observations conclusively show that CO2 intercalates the smectite structure rather than being adsorbed only in pores between clay tactoids- the limiting process proposed by other investigators. Adsorption isotherm data from earlier surface area studies are re-examined here through application of the Dubinin equation. Again, intercalation is demonstrated by convergence of the plotted experimental data for smectites containing large monovalent interlayer cations toward a pore volume that is near the calculated theoretical value for a monolayer of intercalated CO2. Scanning electron photomicrographs of Li-and Cs- smectites provide additional evidence that aggregation differences are not responsible for the large observed difference in BET surface areas obtained for these smectites with CO2 as the adsorbate. At low magnification, visual differences in macro-aggregates are apparent, but at high magnification no significant differences are observed in the micro-structure of individual aggregates where the major amount of gas adsorption really occurs. ?? 1974.

  8. Coronal Loops: Evolving Beyond the Isothermal Approximation

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.

    2002-05-01

    Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.

  9. Evaluation of theoretical and empirical water vapor sorption isotherm models for soils

    NASA Astrophysics Data System (ADS)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per; de Jonge, Lis W.

    2016-01-01

    The mathematical characterization of water vapor sorption isotherms of soils is crucial for modeling processes such as volatilization of pesticides and diffusive and convective water vapor transport. Although numerous physically based and empirical models were previously proposed to describe sorption isotherms of building materials, food, and other industrial products, knowledge about the applicability of these functions for soils is noticeably lacking. We present an evaluation of nine models for characterizing adsorption/desorption isotherms for a water activity range from 0.03 to 0.93 based on measured data of 207 soils with widely varying textures, organic carbon contents, and clay mineralogy. In addition, the potential applicability of the models for prediction of sorption isotherms from known clay content was investigated. While in general, all investigated models described measured adsorption and desorption isotherms reasonably well, distinct differences were observed between physical and empirical models and due to the different degrees of freedom of the model equations. There were also considerable differences in model performance for adsorption and desorption data. While regression analysis relating model parameters and clay content and subsequent model application for prediction of measured isotherms showed promise for the majority of investigated soils, for soils with distinct kaolinitic and smectitic clay mineralogy predicted isotherms did not closely match the measurements.

  10. A generalized model for simulating adsorption on porous media and checking for reversibility by desorption

    NASA Astrophysics Data System (ADS)

    Batzias, Fragiskos; Bountri, Athanasia; Sidiras, Dimitris

    2012-12-01

    Most adsorption kinetic models are of integer order (mainly of first and to a lesser extent of second order) with two parameters (rate constant and equilibrium parameter) and without an intercept, when used in their analytic form. In this work, we derive a four-parameter nth-order (n being not an integer, in general) model, simulating adsorption on porous media. We proved that this model implied best fitting to experimental data of dye adsorption on fir sawdust. Subsequently, a criterion of competitiveness is presented to find out which simplified form of a pre-set order is the second best, in order to obtain parameter values comparable to results already stored in corresponding Data Bases. Partial reversibility was also confirmed by desorption, from saturated-with-dye biomass to aquatic solution, using a Friendlichtype desorption isotherm.

  11. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber. PMID:18284136

  12. Adsorption of Nickel (II) from Aqueous Solution by Bicarbonate Modified Coconut Oilcake Residue Carbon.

    PubMed

    Vijayakumari, N; Srinivasan, K

    2014-07-01

    The adsorption of Ni (II) on modified coconut oilcake residue carbon (bicarbonate treated coconut oilcake residue carbon-BCORC) was employed for the removal of Ni (II) from water and wastewater. The influence of various factors such as agitation time, pH and carbon dosage on the adsorption capacity has been studied. Adsorption isothermal data could be interpreted by Langmuir and Freundlich equations. In order to understand the reaction mechanism, kinetic data has been studied using reversible first order rate equation. Similar studies were carried out using commercially available activated carbon--CAC, for comparison purposes. Column studies were conducted to obtain breakthrough capacities of BCORC and CAC. Common anions and cations affecting the removal of Ni (II) on both the carbons were also studied. Experiments were also done with wastewater containing Ni (II), to assess the potential of these carbons. PMID:26563074

  13. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    NASA Astrophysics Data System (ADS)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  14. Effects of temperature on trichloroethylene desorption from silica gel and natural sediments. 1. Isotherms

    SciTech Connect

    Werth, C.J.; Reinhard, M.

    1997-03-01

    Aqueous phase isotherms were calculated from vapor phase desorption isotherms measured at 15, 30, and 60{degree}C for trichloroethylene on a silica gel, an aquifer sediment, a soil, a sand fraction, and a clay and silt fraction, all at 100% relative humidity. Isosteric heats of adsorption (Q{sub st}(q)) were calculated as a function of the sorbed concentration, q, and examined with respect to the following mechanisms: adsorption on water wet mineral surfaces, sorption in amorphous organic matter (AOM), and adsorption in hydrophobic micropores. Silica gel, sand fraction, and clay and silt fraction 60{degree}C isotherms are characterized by a Freundlich region and a region at very low concentrations where isotherm points deviate from log-log linear behavior. The latter is designated the non-Freundlich region. For the silica gel, values of Q{sub st}(q) (9.5-45 kJ/mol) in both regions are consistent with adsorption in hydrophobic micropores. For the natural solids, values of Q{sub st}(q) in the Freundlich regions are less than or equal to zero and are consistent with sorption on water wet mineral surfaces and in AOM. In the non-Freundlich regions, diverging different temperature isotherms with decreasing q and Q{sub st}(q) value of 34 kJ/mol for the clay and silt fraction suggest that adsorption is occurring in hydrophobic micropores. The General Adsorption Isotherm is used to capture this adsorption heterogeneity. 57 refs., 5 figs., 2 tabs.

  15. Comparing the removal of perchlorate when using single-walled carbon nanotubes (SWCNTs) or granular activated carbon: adsorption kinetics and thermodynamics.

    PubMed

    Lou, Jie C; Hsu, Yung S; Hsu, Kai L; Chou, Ming S; Han, Jia Y

    2014-01-01

    This study aims to remove perchlorate using single-walled carbon nanotubes (SWCNTs) or granular activated carbon (GAC). Dynamic and equilibrium adsorption experiments were performed to evaluate the thermodynamic behavior of perchlorate on SWCNTs and GAC. Key parameters affecting the adsorption, such as pH, ionic strength, and temperature were studied. The experimental results showed that the dynamic adsorption experiment achieved equilibrium in approximately eight hours. The adsorption capacity increased as the concentration of perchlorate increased or as the ionic strength decreased. The selected adsorption models were the modified Freundlich, the pseudo-1st-order, and the pseudo-2nd-order equations. The results showed that the modified Freundlich equation best described the kinetic adsorption processes. The maximal adsorption capacities of GAC and SWCNTs were 33.87-28.21 mg/g and 13.64 - 10.03 mg/g, respectively, at a constant temperature between 5°C and 45°C. The thermodynamic parameters, such as the equilibrium constant (K0 ), the standard free energy changes (ΔG°), the standard enthalpy change (ΔH°) and the standard entropy change (ΔS°), were obtained. The results of the isothermal equilibrium adsorption experiment showed that low pH levels, low ionic strength, and low-temperature conditions facilitated the perchlorate adsorption, indicating that GAC and SWCNTs are potential absorbents for water treatment. PMID:24410681

  16. Adsorption of pyridine by combusted oil shale

    NASA Astrophysics Data System (ADS)

    Essington, M. E.

    1992-03-01

    Large volumes of solid waste material will be produced during the commercial production of shale oil. An alternative to the disposal of the solid waste product is utilization. One potential use of spent oil shale is for the stabilization of hazardous organic compounds. The objective of this study was to examine the adsorption of pyridine, commonly found in oil shale process water, by spent oil shale. The adsorption of pyridine by fresh and weathered samples of combusted New Albany Shale and Green River Formation oil shale was examined. In general, pyridine adsorption can be classified as L-type and the isotherms modeled with the Langmuir and Freundlich equations. For the combusted New Albany Shale, weathering reduced the predicted pyridine adsorption maximum and increased the amount of pyridine adsorbed at low solution concentrations. For the combusted Green River Formation oil shales, weathering increased the predicted pyridine adsorption maximum. The pyridine adsorption isotherms were similar to those produced for a combusted Australian oil shale. Although adsorption can be mathematically described by empirical models, the reduction in solution concentrations of pyridine was generally less than 10 mg/l at an initial concentration of 100 mg/l. Clearly, the observed reduction in solution pyridine concentrations does not sufficiently justify using spent oil shale as a stabilizing medium. However, data in the literature suggest that other organic compounds can be effectively removed from solution by spent oil shale and that adsorption is dependent on process conditions and organic compound type.

  17. Isothermal Amplification of Nucleic Acids.

    PubMed

    Zhao, Yongxi; Chen, Feng; Li, Qian; Wang, Lihua; Fan, Chunhai

    2015-11-25

    Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed. PMID:26551336

  18. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. PMID:21724329

  19. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes

    PubMed Central

    2012-01-01

    The adsorption characteristics of 4-chloro-2-nitrophenol (4C2NP) onto single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) from aqueous solution were investigated with respect to the changes in the contact time, pH of solution, carbon nanotubes dosage and initial 4C2NP concentration. Experimental results showed that the adsorption efficiency of 4C2NP by carbon nanotubes (both of SWCNTs and MWCNTs) increased with increasing the initial 4C2NP concentration. The maximum adsorption took place in the pH range of 2–6. The linear correlation coefficients of different isotherm models were obtained. Results revealed that the Langmuir isotherm fitted the experimental data better than the others and based on the Langmuir model equation, maximum adsorption capacity of 4C2NP onto SWCNTs and MWCNTs were 1.44 and 4.42 mg/g, respectively. The observed changes in the standard Gibbs free energy, standard enthalpy and standard entropy showed that the adsorption of 4C2NP onto SWCNTs and MWCNTs is spontaneous and exothermic in the temperature range of 298–328 K. PMID:23369489

  20. Adsorption of Hg(II) from aqueous solutions using TiO2 and titanate nanotube adsorbents

    NASA Astrophysics Data System (ADS)

    López-Muñoz, María-José; Arencibia, Amaya; Cerro, Luis; Pascual, Raquel; Melgar, Álvaro

    2016-03-01

    Titania and titanate nanotubes were evaluated as adsorbents for the removal of Hg(II) from aqueous solution. Commercial titanium dioxide (TiO2-P25, Evonik), a synthesized anatase sample obtained by the sol-gel method (TiO2-SG) and titanate nanotubes (TNT) prepared via hydrothermal treatment were compared. Mercury adsorption was analysed by kinetic and equilibrium experiments, studying the influence of pH and the type of adsorbents. The kinetics of Hg(II) adsorption on titania and titanate nanotubes could be well described by the pseudo-second order model. It was found that the process is generally fast with small differences between adsorbents, which cannot be explained by their dissimilarities in textural properties. Equilibrium isotherm data were best fitted with the Sips isotherm model. The maximum adsorption capacities of Hg(II) were achieved with titanate nanotubes sample, whereas between both titania samples, TiO2-SG exhibited the highest mercury uptake. For all adsorbents, adsorption capacities were enhanced as pH was increased, achieving at pH 10 Hg(II) adsorption capacities of 100, 121, and 140 mg g-1 for TiO2-P25, TiO2-SG, and TNT, respectively. Differences between samples were discussed in terms of their crystalline phase composition and chemical nature of both, mercury species and surface active sites.

  1. Calcium lignosulfonate adsorption and desorption on Berea sandstone.

    PubMed

    Grigg, Reid B; Bai, Baojun

    2004-11-01

    This paper describes adsorption and desorption studies carried out with calcium lignosulfonate (CLS) on Berea sandstone. Circulation experiments were performed to determine CLS adsorption isotherms and the effects of CLS concentration, temperature, salinity, brine hardness, and injection rate on adsorption density. Flow-through experiments were performed to assess the reversibility of CLS adsorption and the influence of postflush rate, brine concentration, brine hardness, brine pH, and temperature on the desorption process. Results indicate that CLS adsorption isotherms on Berea sandstone follow the Freundlich isotherm law. The results presented in this paper on the effects of CLS adsorption and desorption on Berea sandstone show that: (1) increasing CLS concentration and salinity increases CLS adsorption density; (2) increasing temperature will decrease adsorption density; (3) increasing injection rate of CLS solution will slightly decrease CLS adsorption density; (4) postflush rate and salinity of brine have a large impact on the CLS desorption process; (5) the adsorption and desorption process are not completely reversible; and (5) temperature and pH of the postflush brine have little effect on desorption. PMID:15380409

  2. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-organic framework composite

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxia; Gong, Wenpeng; Luo, Jing; Zou, Chentao; Yang, Yun; Yang, Shuijin

    2016-01-01

    A novel environmental friendly adsorbent H6P2W18O62/MOF-5 was synthesized by a simple one-step reaction under solvothermal conditions and characterized by XRD, FTIR, thermogravimetric analyses (TGA) and N2 adsorption-desorption isotherms. The removal rate of H6P2W18O62/MOF-5 was quite greater (85%) than that of MOF-5 (almost zero), showing that the adsorption performance of porous MOF-5 can be improved through the modification of H6P2W18O62. Further study revealed that H6P2W18O62/MOF-5 exhibited a fast adsorption rate and selective adsorption ability towards the cationic dyes in aqueous solution. The removal rate was up to 97% for cationic dyes methylene blue (MB) and 68% for rhodamine B(Rhb) within 10 min. However, anionicdye methyl orange(MO) can only reach to 10%. The influences including initial concentration, contact time, initial solution pH and temperature of MB adsorption onto H6P2W18O62/MOF-5 were investigated in detail. The kinetic study indicated that the adsorption of MB onto H6P2W18O62/MOF-5 followed the pseudo second-order model well. The isotherm obtained from experimental data fitted the Langmuir model, yielding maximum adsorption capacity of 51.81 mg/g. The thermodynamic parameters analysis illustrated that the MB adsorption onto H6P2W18O62 immobilized MOF-5 was spontaneous and endothermic process. Besides, these results implied that designing a novel material polyoxometalate-based metal-organic frameworks is great potential for removing cationic organic pollutants and even extended to improve other specific application.

  3. EFFECT OF GAC CHARACTERISTICS ON ADSORPTION OF ORGANIC POLLUTANTS

    EPA Science Inventory

    The impact of the characteristics of granular activated carbon (GAC) on adsorption capacity and on the potential for polymerization of phenolic compounds on the surface of GAC in the presence of molecular oxygen is evaluated in this study. Adsorption isotherm data were collected...

  4. Dependence of the adsorption of chiral compounds on their enantiomeric composition

    NASA Astrophysics Data System (ADS)

    Gordon, Alexander D.; Karakalos, Stavros; Zaera, Francisco

    2014-11-01

    The adsorption of two different chiral molecules on platinum surfaces has been explored as a function of enantiomeric composition. In the first case, the saturation monolayers obtained by the adsorption of 1-(naphthyl)ethylamine (NEA) from CCl4 solutions were characterized in situ by reflection-absorption infrared spectroscopy (RAIRS). It was found that racemic mixtures yield different IR spectra than those obtained from enantiopure monolayers, a behavior that was interpreted as the result of the formation of racemate pairs via hydrogen bonding at the amine moiety also responsible for bonding to the surface. NEA adsorption under these conditions is reversible and can be modified by subsequent exposures to solutions of different chiral compositions, but that appears to take place only via changes in the relative fractions of enantiopure versus racemic domains on the surface; no other enantiomeric ratios are apparent in the IR data. The second study focused on the uptake of propylene oxide (PO) on Pt(111) under ultrahigh vacuum (UHV) conditions. In that case, racemic monolayers show densities up to ~ 20% lower than those obtained with one single enantiomer. This can be explained by kinetic arguments, since data from isothermal molecular-beam experiments indicated that the PO sticking coefficient depends on the chirality of the incoming PO molecules relative to that of the neighboring adsorbed PO species. Monte Carlo simulations could reproduce the experimental data by assuming adsorbate-assisted adsorption and enantiospecific adsorption geometries for molecules impinging on sites adjacent to previously adsorbed surface species.

  5. Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption.

    PubMed

    Terzyk, Artur P

    2003-12-15

    The presented study describes the temperature as well as pH dependence of phenol adsorption (and adsorption kinetics) on four carbons with different chemical compositions of the surface layer but almost identical porosity. In the first part, it is shown, applying the most sophisticated method of carbon porosity characterization (i.e., the method of Do and co-workers-ND method), that the porosity does not change much after the chemical modification of carbons. Then it is shown that the ND method leads to the same results as the DFT (density functional theory) does. Next, the TPD results for D43/1 carbons (initial, modified with HNO(3), fuming H(2)SO(4), and with NH(3)) are described. The TPD results for carbon modified with fuming sulphuric acid has not been reported yet by others. The deconvolution of peaks is performed. The obtained results, together with those already published, lead to the chemical structures of surface functionalities for all studied carbons. The thermogravimetric analysis of phenol adsorption shows that the amount of chemically bonded molecules is small. Then it is shown that the adsorption at the acidic pH (1.5) level is lower for all studied carbons than that at the neutral one. The description of the isotherms applying adsorbability, quasi-Freundlich and DA models, together with enthalpy measurements, lead to the mechanism of phenol adsorption at both pH values. The mechanism is, furthermore, confirmed by some empirical correlations. The analysis of the average hysteresis on adsorption-desorption isotherms as well as the comparison of phenol adsorption in oxic and anoxic conditions leads to the mechanism of irreversible phenol adsorption. It is suggested that the irreversibility is caused by two effects: the creation of strong complexes between phenol and surface carbonyl and lactones as well as by the polymerization. The last effect is due to the ability of carbon to adsorb the oxygen from solution and form superoxo ions. Finally, the

  6. 40 CFR 796.2750 - Sediment and soil adsorption isotherm.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and tissues of soil organisms, and substances synthesized by the microbial population. (iv) “Particle... growth of land plants. Its formation and properties are determined by various factors such as parent... during sieving, crush and grind dried soil very gently. (C) Eliminate microbial growth during the...

  7. Facile synthesis of highly active hydrated yttrium oxide towards arsenate adsorption.

    PubMed

    Yu, Yang; Yu, Ling; Sun, Min; Paul Chen, J

    2016-07-15

    A novel hydrated yttrium oxide adsorbent with high capacity towards the arsenate (As(V)) adsorption was fabricated by a one-step hydrothermal process. Structure analysis identified the hydrated yttrium oxide to be Y2O(OH)4·1.5H2O, which displayed as irregular rods in the range of tens to hundreds of nanometers. The adsorbent exhibited favorable As(V) adsorption efficiency in a wide pH range from 4.0 to 7.0, with the maximum adsorption capacity of 480.2mg-As/g obtained at pH 5.0. Both the kinetics and isotherm studies demonstrated that the adsorption of the As(V) was a monolayer chemical adsorption process, in which the ion exchange between the hydroxyl groups on the hydrated yttrium oxide and arsenate anions played a key role in the uptake of the As(V). During the adsorption, the As(V) anions were replaced the hydroxyl groups and bound to the hydrated yttrium oxide via the linkage of AsOY. The presence of fluoride and phosphate greatly hindered the As(V) uptake on the hydrated yttrium oxide, whereas the bicarbonate, sulfate and humic acid showed insignificant impacts on the removal. PMID:27135142

  8. Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology.

    PubMed

    Xu, Chao; Wang, Jingjing; Yang, Tilong; Chen, Xia; Liu, Xunyue; Ding, Xingcheng

    2015-05-01

    The amidoximated chitosan-grafted polyacrylonitrile (CTS-g-PAO) was prepared for the adsorption of uranium from water. The effects of pH, concentration of uranium and the solid-liquid ratio on the adsorption of uranium by CTS-g-PAO were optimized using Doehlert design of response surface methodology (RSM). The adsorption capacity and removal efficiency achieved 312.06 mg/g and 86.02%, respectively. The adsorption process attained equilibrium only in 120 min. More than 80% of the absorbed uranium could be desorbed by 0.1 mol/l HCl or EDTA-Na, and CTS-g-PAO could be reused at least 3 times. The CTS-g-PAO and U(VI) ions formed a chelate complex due to FTIR spectral analysis. The surface morphology of CTS-g-PAO was also investigated by SEM. The adsorption process was better described by Langmuir isotherm and pseudo second order kinetic model. Results obtained indicated that CTS-g-PAO was very promising in adsorption of uranium from water. PMID:25659674

  9. Adsorption of Congo red from aqueous solutions onto Ca-bentonite.

    PubMed

    Lian, Lili; Guo, Liping; Guo, Chunjing

    2009-01-15

    The ability of Ca-bentonite to remove Congo red dye from aqueous solutions has been carried out as a function of contact time, temperature (20-50 degrees C), pH (5-10) and concentration (50-200mgL(-1)). An amount of 0.2g of Ca-bentonite could remove more than 90.0% of the dye from 100mgL(-1) Congo red dye solution for the temperature range studied here. The amount of dye adsorbed per unit weight of Ca-bentonite increased from 23.25 to 85.29mgg(-1) with increasing concentration from 50 to 200mgL(-1), but it had a little change with temperature and decreased slightly with increasing pH. The kinetics of adsorption in view of three kinetic models, i.e., the pseudo-first-order Lagergren model, the pseudo-second-order model and the intraparticle diffusion model, was discussed. The pseudo-second-order kinetic model described the adsorption of Congo red on Ca-bentonite very well. Analysis of adsorption results obtained at 20 degrees C showed that the adsorption pattern on Ca-bentonite followed the Freundlich isotherms. It was indicative of the heterogeneity of the adsorption sites on the clay particles. From thermodynamic studies, it was seen that the adsorption was spontaneous and endothermic. PMID:18487014

  10. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils.

    PubMed

    Davari, Masoud; Rahnemaie, Rasoul; Homaee, Mehdi

    2015-09-01

    Investigating the interactions of heavy metals is imperative for sustaining environment and human health. Among those, Cd is toxic for organisms at any concentration. While Ni acts as a micronutrient at very low concentration but is hazardous toxic above certain threshold value. In this study, the chemical adsorption and desorption reactions of Ni and Cd in contaminated soils were investigated in both single and binary ion systems. Both Ni and Cd experimental data demonstrated Langmuir type adsorption. In the competitive systems, an antagonistic effect was observed, implying that both ions compete for same type of adsorption sites. Adverse effect of Cd on Ni adsorption was slightly stronger than that of opposite system, consistent with adsorption isotherms in single ion systems. Variation in ionic strength indicated that Ca, a much weaker adsorbate, could also compete with Cd and Ni for adsorption on soil particles. Desorption data indicated that Cd and Ni are adsorbed very tightly such that after four successive desorption steps, less than 0.5 % of initially adsorbed ions released into the soil solution. This implies that Ca, at concentration in equilibrium with calcite mineral, cannot adequately compete with and replace adsorbed Ni and Cd ions. This adsorption behavior was led to considerable hysteresis between adsorption and desorption in both single and binary ion systems. In the binary ion systems, desorption of Cd and Ni was increased by increase in both equilibrium concentration of adsorbed ion and concentration of competitor ion. The overall results obtained in this research indicate that Cd and Ni are strongly adsorbed in calcareous soil and Ca, the major dissolved ion, insignificantly influences metal ions adsorption. Consequently, the contaminated soils by Ni and Cd can simultaneously be remediated by environmentally oriented technologies such as phytoremediation. PMID:25921756

  11. Removal of phenol from aqueous solutions by adsorption.

    PubMed

    Roostaei, Nadia; Tezel, F Handan

    2004-02-01

    Experiments have been conducted to examine the liquid-phase adsorption of phenol from water by silica gel, HiSiv 3000, activated alumina, activated carbon, Filtrasorb-400, and HiSiv 1000. Experiments were carried out for the analysis of adsorption equilibrium capacities and kinetics. The adsorption isotherm model of the Langmuir-Freundlich type was the best to describe adsorption equilibrium data for phenol for the adsorbents studied. Results of kinetic experiments indicated that HiSiv 1000 had the highest rate of adsorption among the adsorbents studied and therefore more detailed studies were carried out with this adsorbent. The influence of particle size, temperature, and thermal regeneration on adsorption of phenol by HiSiv 1000 was evaluated. From particle size experiments it appeared that adsorption capacity of HiSiv 1000 did not change by changing the particle size, but the rate of adsorption decreased considerably by increasing the particle size. The effect of temperature on adsorption was studied by determining equilibrium isotherms for HiSiv 1000 at 25, 40, and 55 degrees C. The results showed that adsorption capacity decreased with increasing temperature. Thermal regeneration of HiSiv 1000 was performed at 360 degrees C. It was observed that adsorption capacity of HiSiv 1000 did not change after 14 regeneration cycles. Equilibrium experiments showed that the adsorption capacities of activated carbon and Filtrasorb-400 were several times higher than that of HiSiv 1000. PMID:15160741

  12. Enhanced selective metal adsorption on optimised agroforestry waste mixtures.

    PubMed

    Rosales, Emilio; Ferreira, Laura; Sanromán, M Ángeles; Tavares, Teresa; Pazos, Marta

    2015-04-01

    The aim of this work is to ascertain the potentials of different agroforestry wastes to be used as biosorbents in the removal of a mixture of heavy metals. Fern (FE), rice husk (RI) and oak leaves (OA) presented the best removal percentages for Cu(II) and Ni(II), Mn(II) and Zn(II) and Cr(VI), respectively. The performance of a mixture of these three biosorbents was evaluated, and an improvement of 10% in the overall removal was obtained (19.25mg/g). The optimum mixture proportions were determined using simplex-centroid mixture design method (FE:OA:RI=50:13.7:36.3). The adsorption kinetics and isotherms of the optimised mixture were fit by the pseudo-first order kinetic model and Langmuir isotherm. The adsorption mechanism was studied, and the effects of the carboxylic, hydroxyl and phenolic groups on metal-biomass binding were demonstrated. Finally, the recoveries of the metals using biomass were investigated, and cationic metal recoveries of 100% were achieved when acidic solutions were used. PMID:25681794

  13. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means

    PubMed Central

    2014-01-01

    In adsorption study, to describe sorption process and evaluation of best-fitting isotherm model is a key analysis to investigate the theoretical hypothesis. Hence, numerous statistically analysis have been extensively used to estimate validity of the experimental equilibrium adsorption values with the predicted equilibrium values. Several statistical error analysis were carried out. In the present study, the following statistical analysis were carried out to evaluate the adsorption isotherm model fitness, like the Pearson correlation, the coefficient of determination and the Chi-square test, have been used. The ANOVA test was carried out for evaluating significance of various error functions and also coefficient of dispersion were evaluated for linearised and non-linearised models. The adsorption of phenol onto natural soil (Local name Kalathur soil) was carried out, in batch mode at 30 ± 20 C. For estimating the isotherm parameters, to get a holistic view of the analysis the models were compared between linear and non-linear isotherm models. The result reveled that, among above mentioned error functions and statistical functions were designed to determine the best fitting isotherm. PMID:25018878

  14. Adsorption-desorption and leaching behavior of kresoxim-methyl in different soils of India: kinetics and thermodynamic studies.

    PubMed

    Sabale, Rupali P; Shabeer T P, Ahammed; Dasgupta, Soma; Utture, Sagar C; Banerjee, Kaushik; Oulkar, Dasharath P; Adsule, Pandurang G; Deshmukh, Madhukar B

    2015-07-01

    The sorption and leaching behavior of kresoxim-methyl was explored in four different soils, viz., clay, sandy loam, loamy sand, and sandy loam (saline), representing vegetables and fruits growing regions of India. Adsorption of kresoxim-methyl in all the soils reached equilibrium within 48 h. The rate constants for adsorption and desorption at two different temperatures were obtained from the Lindstrom model, which simultaneously evaluated adsorption and desorption kinetics. The data for rate constants, activation energies, enthalpy of activation, entropy of activation, and free energy indicated physical adsorption of kresoxim-methyl on soil. The relative adsorptivity of the test soils could be attributed to different organic matter and clay contents of the soils. A good fit to the linear and Freundlich isotherms was observed for both adsorption as well as desorption. The groundwater ubiquity score (GUS) for different soils varied between 0 and 2.26. The GUS and leaching study indicated moderately low leaching potential of kresoxim-methyl. The adsorption on four soil types largely depended on the soil physicochemical properties such as organic carbon content, cation-exchange capacity, and texture of the soil. PMID:26082423

  15. Influence of pH on the adsorption of uranium ions by oxidized activated carbon and chitosan

    SciTech Connect

    Park, G.I.; Park, H.S.; Woo, S.I.

    1999-03-01

    The adsorption characteristics of uranyl ions on surface-oxidized carbon were compared with those of powdered chitosan over a wide pH range. In particular, an extensive analysis was made on solution pH variation during the adsorption process or after adsorption equilibrium. Uranium adsorption on the two adsorbents was revealed to be strongly dependent on the initial pH of the solution. A quantitative comparison of the adsorption capacities of the two adsorbents was made, based on the isotherm data obtained at initial pH 3, 4, and 5. In order to analyze the adsorption kinetics incorporated with pH effects, batch experiments at various initial pH values were carried out, and solution pH profiles with the adsorption time were also evaluated. The breakthrough behavior in a column packed with oxidized carbon was also characterized with respect to the variation of effluent pH. Based on these experimental results, the practical applicability of oxidized carbon for uranium removal from acidic radioactive liquid waste was suggested.

  16. Adsorption of Cu(2+) and methyl orange from aqueous solutions by activated carbons of corncob-derived char wastes.

    PubMed

    Hou, Xiao-Xu; Deng, Qing-Fang; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2013-12-01

    Corncob-derived char wastes (CCW) obtained from biomass conversion to syngas production through corncob steam gasification, which were often discarded, were utilized for preparation of activated carbon by calcination, and KOH and HNO3 activation treatments, on the view of environment protection and waste recycling. Their adsorption performance in the removal of heavy metal ions and dye molecules from wastewater was evaluated by using Cu(2+) and methyl orange (MO) as the model pollutant. The surface and structure characteristics of the CCW-based activated carbons (CACs) were investigated by N2 adsorption, CO2 adsorption, FT-IR, and He-TPD. The adsorption capacity varied with the activation methods of CACs and different initial solution concentrations, indicating that the adsorption behavior was influenced by not only the surface area and porosity but also the oxygen functional groups on the surface of the CACs. The equilibrium adsorption data were analyzed with the Langmuir, Freundlich, and Temkin isotherm models, and the adsorption kinetics was evaluated by the pseudo-first-order and pseudo-second-order models. PMID:23666685

  17. A batch adsorption study on bentonite clay Pertinence to transport modeling?

    NASA Astrophysics Data System (ADS)

    BOURG, I.; BOURG, A. C.; SPOSITO, G.

    2001-12-01

    Bentonite clay is often used as a component of engineered barriers for the isolation of high-level toxic wastes. This swelling clay is used for its physical (impermeability, self-healing) but also for its chemical properties, mostly a high cation exchange capacity (CEC). The adsorbed cations being temporarily immobilized, this should slow down the release of cations from the waste to the surrounding environment. In order to assess the performance of the engineered barrier, the partitioning of solutes between the liquid and solid phases needs to be quantified for use in transport models. The usual method for characterizing the adsorption is through batch adsorption experiments on dispersed suspensions of the solid, yielding an adsorption isotherm (adsorbed concentration vs. dissolved concentration). This isotherm however should be a function of various environmental variables (e.g., pH, ionic strength, concentrations of various ligands and competing adsorbents), so that extrapolation of lab data to performance assessment in the field is problematic. We present results from a study of the adsorption of cesium, strontium, cadmium and lead on dispersed suspensions of the standard BX-80 bentonite. Through a wide range of experimental parameters (pH, ionic strength, reaction time, reactor open or closed to the atmosphere, study of a range of cations of differing properties), we seek a mechanistic interpretation of the results instead of an empirical determination of adsorption parameters. Depending on the mechanisms that control the adsorption in different experimental ranges, we discuss the degree to which the partitioning coefficient (Kd) obtained in the lab can be extrapolated to a transport model through compacted bentonite in a natural environment.

  18. A novel zerovalent manganese for removal of copper ions: synthesis, characterization and adsorption studies

    NASA Astrophysics Data System (ADS)

    Dada, A. O.; Adekola, F. A.; Odebunmi, E. O.

    2015-11-01

    Synthesis of nanoscale zerovalent manganese (nZVMn) by chemical reduction was carried out in a single pot system under inert environment. nZVMn was characterized using a combination of analytical techniques: Ultraviolet-Visible Spectroscopy, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersive X-ray, BET surface area and Point of Zero Charge. The adsorption physicochemical factors: pH, contact time, adsorbent dose, agitation speed, initial copper ion concentration and temperature were optimized. The kinetic data fitted better to Pseudo second-order, Elovich, fractional power and intraparticle diffusion models and their validity was tested by three statistical models: sum of square error, Chi-square (χ 2) and normalized standard deviation (Δq). Seven of the two-parameter isotherm models [Freundlich, Langmuir, Temkin, Dubinin-Kaganer-Raduskevich (DKR), Halsey, Harkin-Jura and Flory-Huggins] were used to analyse the equilibrium adsorption data. The Langmuir monolayer adsorption capacity (Q max = 181.818 mg/g) obtained is greater than other those of nano-adsorbents utilized in adsorption of copper ions. The equilibrium adsorption data were better described by Langmuir, Freundlich, Temkin, DKR and Halsey isotherm models considering their coefficient of regression (R 2 > 0.90). The values of the thermodynamic parameters: standard enthalpy change ∆H° (+50.27848 kJ mol-1), standard entropy change ∆S° (203.5724 J mol-1 K-1) and the Gibbs free energy change ∆G° revealed that the adsorption process was feasible, spontaneous, and endothermic in nature. The performance of this novel nanoscale zerovalent manganese (nZVMn) suggested that it has a great potential for effective removal of copper ions from aqueous solution.

  19. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity

    SciTech Connect

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M.

    2011-07-27

    Laboratory experiments were performed to investigate the contribution of variable grain sizes to uranium adsorption/desorption in a sediment collected from the US DOE Hanford site. The sediment was wet-sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.05-0.2 mm), and clay/silt fraction (< 0.05mm). For each size fraction and their composite (sediment), batch experiments were performed to determine uranium adsorption isotherms, and stirred flow-cell experiments were conducted to derive kinetic data of uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size-specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment, but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. Our analysis also showed that uranium adsorption site concentration estimated from the adsorption isotherms was 3 orders of magnitude less than a site concentration estimated from sediment surface area and generic site density. One important implication of this study is that grain size distribution may be used to estimate uranium adsorption site, and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  20. Role of Confinement on Adsorption and Dynamics of Ethane and an Ethane–CO 2 Mixture in Mesoporous CPG Silica

    DOE PAGESBeta

    Patankar, Sumant; Gautam, Siddharth; Rother, Gernot; Podlesnyak, Andrey; Ehlers, Georg; Liu, Tingting; Cole, David R.; Tomasko, David L.

    2016-02-10

    It was found that ethane is confined to mineral and organic pores in certain shale formations. Effects of confinement on structural and dynamic properties of ethane in mesoporous controlled pore glass (CPG) were studied by gravimetric adsorption and quasi-elastic neutron scattering (QENS) measurements. The obtained isotherms and scattering data complement each other by quantifying the relative strength of the solid–fluid interactions and the transport properties of the fluid under confinement, respectively. We used a magnetic suspension balance to measure the adsorption isotherms at two temperatures and over a range of pressures corresponding to a bulk density range of 0.01–0.35 g/cm3.more » Key confinement effects were highlighted through differences between isotherms for the two pore sizes. A comparison was made with previously published isotherms for CO2 on the same CPG materials. Behavior of ethane in the smaller pore size was probed further using quasi-elastic neutron scattering. By extracting the self-diffusivity and residence time, we were able to study the effect of pressure and transition from gaseous to supercritical densities on the dynamics of confined ethane. Moreover, a temperature variation QENS study was also completed with pure ethane and a CO2–ethane mixture. Activation energies extracted from the Arrhenius plots show the effects of CO2 addition on ethane mobility.« less

  1. Comparative study of the adsorption of acetaminophen on activated carbons in simulated gastric fluid.

    PubMed

    Rey-Mafull, Carlos A; Tacoronte, Juan E; Garcia, Raquel; Tobella, Jorge; Llópiz, Julio C; Iglesias, Alberto; Hotza, Dachamir

    2014-01-01

    Samples of commercial activated carbons (AC) obtained from different sources: Norit E Supra USP, Norit B Test EUR, and ML (Baracoa, Cuba) were investigated. The adsorption of acetaminophen, Co = 2500 mg/L, occured in simulated gastric fluid (SGF) at pH 1.2 in contact with activated carbon for 4 h at 310 K in water bath with stirring. Residual acetaminophen was monitored by UV visible. The results were converted to scale adsorption isotherms using alternative models: Langmuir TI and TII, Freundlich, Dubinin-Radushkevich (DR) and Temkin. Linearized forms of the characteristic parameters were obtained in each case. The models that best fit the experimental data were Langmuir TI and Temkin with R(2) ≥0.98. The regression best fits followed the sequence: Langmuir TI = Temkin > DR > LangmuirTII > Freundlich. The microporosity determined by adsorption of CO2 at 273 K with a single term DR regression presented R(2) > 0.98. The adsorption of acetaminophen may occur in specific sites and also in the basal region. It was determined that the adsorption process of acetaminophen on AC in SGF is spontaneous (ΔG <0) and exothermic (-ΔHads.). Moreover, the area occupied by the acetaminophen molecule was calculated with a relative error from 7.8 to 50%. PMID:24570846

  2. Investigation of the adsorption mechanism of a peptide in reversed phase liquid chromatography, from pH controlled and uncontrolled solutions

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2009-01-01

    The single-component equilibrium adsorption of the tripeptide Leucyl-Leucyl-Leucine (LLL) on a high-efficiency Jupiter Proteo column (C{sub 12}) was investigated experimentally and modeled theoretically. The experimental equilibrium isotherms of LLL for adsorption on a C{sub 12} packing material from an aqueous solution of methanol (48%) and trifluoroacetic acid (0.1%) were measured by frontal analysis (FA). The FA measurements were done with two solutions, one in which the pH was controlled, the other in which it was not. Two solutions of LLL in the mobile phase were prepared (4.3 and 5.4 g/L) and their pH measured (2.94 and 2.88), respectively. The first solution was titrated with TFA to match the pH of the mobile phase (2.03), so its pH was controlled. The pH of the other solution was left uncontrolled. In both cases the isotherms could be modeled by a bi-Langmuir equation, a choice consistent with the bimodal affinity energy distribution (AED) obtained for LLL. The isotherm parameters derived from the inverse method (IM) of isotherm determination under controlled pH conditions (by fitting calculated profiles to experimental breakthrough profiles) are in a good agreement with those derived from the FA data. Under uncontrolled pH conditions, the application of IM suggests the coexistence of two different adsorption mechanisms. According to the isotherm parameters found by these three methods (FA, AED and IM), the C{sub 12}-bonded silica can adsorb around 500 and 70 g/L of LLL under controlled and uncontrolled pH conditions, respectively. The adsorption of LLL on the C{sub 12} material strongly depends on the pH of the mobile phase and on the quantity of TFA added, which plays the role of an ion-pairing agent.

  3. Adsorption of H{sub 2}S and SO{sub 2} and Bigadic clinoptilolite

    SciTech Connect

    Sirkecioglu, A.; Altav, Y.; Erdem-Senatalar, A.

    1995-07-01

    H{sub 2}S and SO{sub 2} adsorption isotherms of Bigadic clinoptilolite and its Na-, K-, Ca- and H-enriched forms were determined in the 0 to 100 kPa range at 25{degrees}C by using a constant volume adsorption system. Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Dubinin-Astakhov (D-A) models were applied to the isotherm data. Higher adsorption capacities and a larger increase in the amount adsorbed at higher pressures were observed for SO{sub 2}, in agreement with its higher permanent dipole moment, resulting in stronger ion-dipole and dipole-dipole interactions for this molecule. The Ca-form exhibited a molecular sieving behavior for both gases, originating from the channel blockage caused by the cation locations in the sample. The highest capacities for both gases were obtained with the sample in its H-form, followed by the Na- and K-forms for SO{sub 2}, parallel to the decrease in the electronegativity and ionic potential and the increase in the polarizability of the cation. In the case of H{sub 2}S, the H-form was followed by the K-form, but the Na-form yielded very low adsorption capacities. Initial dissociative adsorption of H{sub 2}S on certain Na sites to yield SH and OH species is thought to contribute to a more effective blocking of the channels, which were already partially blocked in this sample. Of the isotherm models tested, the D-A model explained the variations in the data better than either the Freundlich or D-R models. For the cation-gas combinations with a lower extent of channel blockage though, the Langmuir model was somewhat more representative. Lower E and n values were obtained from the D-A model for H{sub 2}S on the Na-form, which may be related to the lower extent of micropore adsorption and to the presence of blocked, almost dead-end shorter channel segments in the sample. Pore volumes close to the theoretical value were estimated from the D-A parameters for SO{sub 2} adsorption.

  4. Single time point isothermal drug stability experiments at constant humidity.

    PubMed

    Tao, Jian-Lin; Zhan, Xian-Cheng; Li, Lin-Li; Lin, Bing; Jiang, Lu

    2009-03-01

    A single time point isothermal drug stability experiments at constant humidity is introduced. In the new method, kinetic parameters related to both moisture and temperature were obtained by a single pair of experiments: these related to moisture by one with a group of testing humidities and a fixed temperature, those related to temperature by the other with a group of testing temperatures and a constant humidity. By a simulation, the estimates for the kinetic parameters (E(a), m, A) obtained by the proposed method and the reported programmed humidifying and heating method were statistically evaluated and were compared with those obtained by the isothermal measurements at constant humidity. Results indicated that under the same experimental conditions, the estimates obtained by the proposed method were significantly more precise than those obtained by the reported programmed humidifying and heating method. The estimates obtained by the isothermal method at constant humidity were somewhat more precise than those obtained by the proposed method. However, the experimental period needed by the isothermal method at constant humidity was greatly longer than that needed by the proposed method. The stability of dicloxacillin sodium, as a solid state model, was investigated by the single time point isothermal drug stability experiments at constant humidity. The results indicated that the kinetic parameters obtained by the proposed method were comparable to those from the reported. PMID:19252391

  5. Comparative Study on the Implication of Three Nanoparticles on the Removal of Trichloroethylene by Adsorption - The Pilot and Rapid Small-Scale Column Tests

    EPA Science Inventory

    The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...

  6. Langmuir-Blodgett Films of the Metal-Organic Framework MIL-101(Cr): Preparation, Characterization, and CO2 Adsorption Study Using a QCM-Based Setup.

    PubMed

    Benito, Javier; Sorribas, Sara; Lucas, Irene; Coronas, Joaquin; Gascon, Ignacio

    2016-06-29

    This work reports the fabrication and characterization of Langmuir-Blodgett films of nanoparticles (size 51 ± 10 nm) of the metal organic framework MIL-101(Cr). LB film characterization by SEM, UV-vis, GIXRD, and QCM has shown that the addition of 1 wt % of behenic acid to MOF dispersion allows obtaining dense monolayers at the air-water interface that can be deposited onto solid substrates of different nature with transfer ratios close to 1. Moreover, a QCM-based setup has been built and used for the first time to measure CO2 adsorption isotherms at 303 K on MOF LB films, proving that LB films with MOF masses between 1.2 (1 layer) and 2.3 (2 layers) μg can be used to obtain accurate adsorption values at 100 kPa, similar to those obtained by conventional adsorption methods that require much larger MOF quantities (tens of milligrams). PMID:27268426

  7. Chemical modeling of arsenic(III, V) and selenium(IV, VI) adsorption by soils surrounding ash disposal facilities

    SciTech Connect

    Goldberg, S.; Hyun, S.; Lee, L.S.

    2008-11-15

    Leachate derived from coal ash disposal facilities is a potential anthropogenic source of As and Se to the environment. To establish a practical framework for predicting attenuation and transport of As and Se in ash leachates, the adsorption of As(III), As(V), Se(IV), and Se(VI) had been characterized in prior studies for 18 soils obtained downgradient from ash landfill sites and representing a wide range of soil properties. The constant capacitance model was applied for the first time to describe As(III), As(V), Se(IV), and Se(VI) adsorption on soils as a function of equilibrium solution As(III), As(V), Se(IV), and Se(VI) concentrations. Prior applications of the model had been restricted to describing Se(IV) and As(V) adsorption by soils as a function of solution pH. The constant capacitance model was applied for the first time to describe As(III) and Se(VI) adsorption by soils. The model was able to describe adsorption of these ions on all soils as a function of solution ion concentration by optimizing only one adjustable parameter, the anion surface complexation constant. This chemical model represents an advancement over adsorption isotherm equation approaches that contain two empirical adjustable parameters. Incorporation of these anion surface complexation constants obtained with the constant capacitance model into chemical speciation transport models will allow simulation of soil solution anion concentrations under diverse environmental and agricultural conditions.

  8. Adsorption of reovirus to clay minerals: effects of cation-exchange capacity, cation saturation, and surface area.

    PubMed Central

    Lipson, S M; Stotzky, G

    1983-01-01

    The adsorption of reovirus to clay minerals has been reported by several investigators, but the mechanisms defining this association have been studied only minimally. The purpose of this investigation was to elucidate the mechanisms involved with this interaction. More reovirus type 3 was adsorbed, in both distilled and synthetic estuarine water, by low concentrations of montmorillonite than by comparable concentrations of kaolinite containing a mixed complement of cations on the exchange complex. Adsorption to the clays was essentially immediate and was correlated with the cation-exchange capacity of the clays, indicating that adsorption was primarily to negatively charged sites on the clays. Adsorption was greater with low concentrations of clays in estuarine water than in distilled water, as the higher ionic strength of the estuarine water reduced the electrokinetic potential of both clay and virus particles. The addition of cations (as chloride salts) to distilled water enhanced adsorption, with divalent cations being more effective than monovalent cations and 10(-2) M resulting in more adsorption than 10(-3) M. Potassium ions suppressed reovirus adsorption to montmorillonite, probably by collapsing the clay lattices and preventing the expression of the interlayer-derived cation-exchange capacity. More virus was adsorbed by montmorillonite made homoionic to various mono-, di-, and trivalent cations (except by montmorillonite homoionic to potassium) than by comparable concentrations of kaolinite homoionic to the same cations. The sequence of the amount of adsorption to homoionic montmorillonite was Al greater than Ca greater than Mg greater than Na greater than K; the sequence of adsorption to kaolinite was Na greater than Al greater than Ca greater than Mg greater than K. The constant partition-type adsorption isotherms obtained when the clay concentration was maintained constant and the virus concentration was varied indicated that a fixed proportion of the

  9. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    SciTech Connect

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  10. Protein Adsorption and Deposition onto Microfiltration Membranes: The Role of Solute-Solid Interactions.

    PubMed

    Martínez; Martín; Prádanos; Calvo; Palacio; Hernández

    2000-01-15

    The mass of gamma-globulin fouling an Anodisc alumina membrane with a nominal pore diameter of 0.1 µm has been measured at several concentrations and pHs. This fouling resulted from filtering through the membrane in a continuous recirculation device. The low-concentration fouling can be attributed mainly to adsorption. The complete concentration dependence of fouling mass has been obtained and fitted to a Freundlich heterogeneous isotherm, from which the pH dependence of active fouling sites and energies has been also obtained. Adsorption is studied as a function of the electrostatic forces between the solute and the membrane. A sharp maximum in the adsorbed mass for zero electrostatic force is observed. At high concentrations, accumulation plays a relevant role at alkaline pH, as confirmed by flux decay experiments, retention measurements, and AFM (atomic force microscopy) pictures. Copyright 2000 Academic Press. PMID:10631028

  11. Chromium adsorption by lignin

    SciTech Connect

    Lalvani, S.B.; Huebner, A.; Wiltowski, T.S.

    2000-01-01

    Hexavalent chromium is a known carcinogen, and its maximum contamination level in drinking water is determined by the US Environmental Protection Agency (EPA). Chromium in the wastewaters from plating and metal finishing, tanning, and photographic industries poses environmental problems. A commercially available lignin was used for the removal of hexavalent as well as trivalent chromium from aqueous solution. It is known that hexavalent chromium is present as an anionic species in the solution. It was found that lignin can remove up to 63% hexavalent and 100% trivalent chromium from aqueous solutions. The removal of chromium ions was also investigated using a commercially available activated carbon. This absorbent facilitated very little hexavalent and almost complete trivalent chromium removal. Adsorption isotherms and kinetics data on the metal removal by lignin and activated carbon are presented and discussed.

  12. Synthesis of porous molecularly imprinted polymers for selective adsorption of glutathione

    NASA Astrophysics Data System (ADS)

    Song, Renyuan; Hu, Xiaoling; Guan, Ping; Li, Ji; Qian, Liwei; Wang, Chaoli; Wang, Qiaoli

    2015-03-01

    An effective approach overcome the classical deficiencies of biomolecules molecularly imprinted polymers (MIPs), that is, low binding capacity and slow mass transfer rate, is proposed. With glutathione (GSH) as target molecule, porous imprinted layers were fabricated according to our newly developed method the introduction of a mixture of acetontrile and dimethylsulfoxide as porogen in surface-initiated polymerization systems. The resultant MIPs particles exhibited a large surface area could remarkably improve the imprinting effect in relation to a significantly increased imprinting factor and mass transfer rate, compared to the MIPs prepared by using aqueous solution as solvent. The batch static binding tests were carried out to evaluate the adsorption kinetics, adsorption isotherms and selective recognition of the MIPs particles. The binding behavior followed the pseudo-second order kinetic model, revealing that the process was chemically carried out. Two binding isotherm models were applied to analyze equilibrium data, obtaining the best description by Langmuir isotherm model. In addition, the selective of separation and extraction of GSH from a mixture of GSH and its structural analogs could be achieved on the MIPs solid-phase extraction cartridge, indicating that the possibility for the separation and enrichment of the template from complicated matrices.

  13. Multifractal analysis of soil porosity based on mercury porosimetry and nitrogen adsorption

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Vidal Vázquez, E.; Miranda, J. G. V.

    2009-04-01

    The soil pore space is composed of a continuum of pores extremely variable in size which include structures smaller than nanometres and as large as macropores > 20 mm in diameter, i.e. with an upper size limit of the order of centimetres. Thus, a ratio of at least 106 is displayed in soil pore sizes. Soil pore size distribution directly influences many soil physical, chemical and biological properties. Characterization of soil structure may be achieved by pore size distribution analysis. There is not a unique method for determining soil pore size distributions all over the size scale. Mercury injection porosimetry and N2 adsorption isotherms are techniques commonly used for assessing equivalent pore size diameters in selected ranges. The Hg injection technique provides pore size distributions in the range from about 50 nm to 100 m, whereas N2 adsorption isotherms may be used for finer pores ranging in size from about 2 to 500 nm. In this work, multifractal formalism has been used to describe Hg injection porosimetry and N2 adsorption isotherms measured in a Mollisol and in a Vertisol with four different soil use intensities, ranging from native, never cultivated, land to continuous cropping. Three samples per treatment were analyzed resulting in a total of twelve samples per soil. All the Hg injection curves and N2 adsorption isotherms exhibited multifractal behaviour as shown by singularity spectra and Rényi dimension spectra. The capacity dimension, D0, for both Hg injection and N2 adsorption data sets was not significantly different from 1.00. However, significantly different values of entropy dimension, D1, and correlation dimension, D2, were obtained for mercury injection and nitrogen adsorption experimental data. For instance, entropy dimension, D1, values extracted from multifractal spectra of Hg intrusion porosimetry were on average 0.913 and varied from 0.889 to 0.939. However, the corresponding figures for N2 adsorption isotherms were on average 0

  14. Random sequential adsorption of tetramers

    NASA Astrophysics Data System (ADS)

    Cieśla, Michał

    2013-07-01

    Adsorption of a tetramer built of four identical spheres was studied numerically using the random sequential adsorption (RSA) algorithm. Tetramers were adsorbed on a two-dimensional, flat and homogeneous surface. Two different models of the adsorbate were investigated: a rhomboid and a square one; monomer centres were put on vertices of rhomboids and squares, respectively. Numerical simulations allow us to establish the maximal random coverage ratio as well as the available surface function (ASF), which is crucial for determining kinetics of the adsorption process. These results were compared with data obtained experimentally for KfrA plasmid adsorption. Additionally, the density autocorrelation function was measured.

  15. Development of coconut pith chars towards high elemental mercury adsorption performance - Effect of pyrolysis temperatures.

    PubMed

    Johari, Khairiraihanna; Saman, Norasikin; Song, Shiow Tien; Cheu, Siew Chin; Kong, Helen; Mat, Hanapi

    2016-08-01

    In this study, chars from coconut pith (CP) were prepared aiming for superior adsorption towards elemental mercury (Hg(o)). The yield, proximate analysis, textural characteristics, surface functional groups and elemental composition analyses of the chars produced at pyrolysis temperature of 300 °C, 500 °C, 700 °C and 900 °C were compared. The surface area, pore volume, ash and carbon content of chars increased, while the yield and moisture content decreased with increasing pyrolysis temperatures. The changing of physical and chemical properties of the chars produced at variety pyrolysis temperature was much effect on the Hg(o) adsorption performance and definitely provides important information on the Hg(o) adsorption mechanism. The highest Hg(o) adsorption capacity was observed for CP900 (6067.49 μg/g), followed by CP700 (2395.98 μg/g), CP500 (289.76 μg/g), CP300 (1.68 μg/g), and CP (0.73 μg/g). The equilibrium data were well described by the Freundlich adsorption isotherm model. The pseudo-second order best described the kinetic data of the Hg(o) adsorption onto CP and CP300. For chars produced at higher pyrolysis temperature, however, the pseudo-zero order and pseudo-second order fitted well for the adsorption and breakthrough regions, respectively. The Hg(o) adsorption capacity of chars obtained from high pyrolysis temperature of CP significantly outperformed the commercial activated carbon (Darco KB-B) as well as superior to chars reported in the literature indicating the CP can be used as a precursor for preparation of chars as elemental mercury adsorbents. PMID:27160635

  16. Application of 'waste' wood-shaving bottom ash for adsorption of azo reactive dye.

    PubMed

    Leechart, Piyawan; Nakbanpote, Woranan; Thiravetyan, Paitip

    2009-02-01

    The utilization of wood-shaving bottom ash (WBA) for the removal of Red Reactive 141 (RR141), an azo reactive dye, was investigated. WBA/H(2)O and WBA/H(2)SO(4) were made by treating WBA with water and 0.1M H(2)SO(4), respectively, to increase adsorption capacity. Adsorption of RR141 from reactive dye solution (RDS) and reactive dye wastewater (RDW) by WBA/H(2)O and WBA/H(2)SO(4) involved the BET surface area and pore size diameter. Properties of adsorbents, effect of contact time, initial pH of solution, dissolved metals and elution studies indicated that the decolorisation mechanism involved both chemical adsorption and precipitation with calcium ions. In addition, the WBA/H(2)SO(4) surface might contain sulphate-cation complexes that were specific to enhancing dye adsorption from RDW. The adsorption isotherm had a best fit by the Freundlich model. Freundlich parameters showed that WBA/H(2)O used more heterogeneous surface than WBA/H(2)SO(4) and activated carbon for RDW adsorption. A thermodynamic study indicated that RDW adsorption was an endothermic process. The maximum dye adsorption capacities of WBA/H(2)O, WBA/H(2)SO(4) and activated carbon obtained from a Langmuir model at 30 degrees C were 24.3, 29.9, and 41.5mgl(-1), respectively. In addition, WBA/H(2)O and WBA/H(2)SO(4) could reduce colour and high chemical oxygen demand (COD) of real textile wastewater. According to the difficulty in the elution study, it was an environmentally safe disposal of this waste. Therefore, WBA, a waste from combustion of wood shavings, was suitable to be used as an effective adsorbent for azo reactive dye removal. PMID:18436367

  17. Multiscale characterization of pore size distributions using mercury porosimetry and nitrogen adsorption

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Tarquis, A. M.; Miranda, J. G. V.; Vidal Vázquez, E.

    2009-04-01

    The soil pore space is a continuum extremely variable in size, including structures smaller than nanometres and as large as macropores or cracks with millimetres or even centimetres size. Pore size distributions (PSDs) affects important soil functions, such as those related with transmission and storage of water, and root growth. Direct and indirect measurements of PSDs are becoming increasingly used to characterize soil structure. Mercury injection porosimetry and nitrogen adsorption isotherms are techniques commonly employed for assessing equivalent pore size diameters in the range from about 50 nm to 100 m and 2 to 500 nm, respectively. The multifractal formalism was used to describe Hg injection curves and N2 adsorption isotherms from two series of a Mollisol cultivated under no tillage and minimum tillage. Soil samples were taken from 0-10, 10-20 and 20-30 cm depths in two experimental fields located in the north of Buenos Aires and South of Santa Fe provinces, Argentina. All the data sets analyzed from the two studied soil attributes showed remarkably good scaling trends as assessed by singularity spectrum and generalized dimension spectrum. Both, experimental Hg injection curves and N2 adsorption isotherms could be fitted reasonably well with multifractal models. A wide variety of singularity and generalized dimension spectra was found for the variables. The capacity dimensions, D0, for both Hg injection and N2 adsorption data were not significantly different from the Euclidean dimension. However, the entropy dimension, D1, and correlation dimension, D2, obtained from mercury injection and nitrogen adsorption data showed significant differences. So, D1 values were on average 0.868 and varied from 0.787 to 0.925 for Hg intrusion curves. Entropy dimension, D1, values for N2 adsorption isotherms were on average 0.582 significantly lower than those obtained when using the former technique. Twenty-three out of twenty-four N2 isotherms had D1 values in a

  18. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    PubMed

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater. PMID:24656549

  19. Application of electron stimulated desorption techniques to measure the isotherm and the mean residence time of hydrogen physisorbed on a metal surface

    SciTech Connect

    Arakawa, Ichiro Shimizu, Hideyuki; Kawarabuki, Taku; Yamakawa, Koichiro; Miura, Takashi

    2015-03-15

    Electron stimulated desorption techniques were applied to probe the density of H{sub 2} physisorbed on a cold surface. The adsorption isotherm of H{sub 2} on a copper surface was measured in the equilibrium pressure range between 10{sup −9} and 10{sup −4} Pa at surface temperatures of 6.5 and 4.2 K. The mean residence times of H{sub 2} on copper were obtained from the observation of the time development of the surface density in a transitional state approaching equilibrium, and are 50–500 s for the coverage between 1 and 0.18 at 4.2 K of the substrate temperature. The adsorption energies of 1.18–1.27 kJ/mol, and the condensation coefficient of 0.074–0.018 were also deduced.

  20. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed Reactor

    SciTech Connect

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.

    2009-06-15

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  1. Polyacrylamide-hydroxyapatite composite: Preparation, characterization and adsorptive features for uranium and thorium

    SciTech Connect

    Baybas, Demet; Ulusoy, Ulvi

    2012-10-15

    The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm-HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm-HAP were compared for UO{sub 2}{sup 2+} and Th{sup 4+}. The entrapment of HAP into PAAm-HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm-HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo second order model. The values of enthalpy and entropy changes were positive. Th{sup 4+} adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm-HAP for this ion. In consequence, PAAm-HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements. - Graphical abstract: SEM images of hydroxyapatite (HAP) and polyacrylamide-hydroxyapatite (PAAm-HAP), and the adsorption isotherms for Uranium and Thorium. Highlights: Black-Right-Pointing-Pointer Composite of PAAm-HAP was synthesized from hydroxyapatite and polyacrylamide. Black-Right-Pointing-Pointer The materials were characterized by BET, FT-IR, XRD, SEM, TGA and PZC analysis. Black-Right-Pointing-Pointer HAP and PAAm-HAP had high sorption capacity and very rapid uptake for UO{sub 2}{sup 2+} and Th{sup 4+}. Black-Right-Pointing-Pointer Super porous PAAm was obtained from PAAm-HAP after its removal of HAP content. Black-Right-Pointing-Pointer The composite is potential for deposition of U, Th and its associate radionuclides.

  2. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H 2SO 4 activation and its adsorption behavior in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Gerçel, Özgül; Özcan, Adnan; Özcan, A. Safa; Gerçel, H. Ferdi

    2007-03-01

    The use of activated carbon obtained from Euphorbia rigida for the removal of a basic textile dye, which is methylene blue, from aqueous solutions at various contact times, pHs and temperatures was investigated. The plant material was chemically modified with H 2SO 4. The surface area of chemically modified activated carbon was 741.2 m 2 g -1. The surface characterization of both plant- and activated carbon was undertaken using FTIR spectroscopic technique. The adsorption process attains equilibrium within 60 min. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity of activated carbon was 114.45 mg g -1 at 40° C. The adsorption kinetics of methylene blue obeys the pseudo-second-order kinetic model and also followed by the intraparticle diffusion model up to 60 min. The thermodynamic parameters such as Δ G°, Δ H° and Δ S° were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 55.51 kJ mol -1. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal textile dyes from textile wastewater processes.

  3. An Experimental-Theoretical Analysis of Protein Adsorption on Peptidomimetic Polymer Brushes

    PubMed Central

    Lau, K.H. Aaron; Ren, Chunlai; Park, Sung Hyun; Szleifer, Igal; Messersmith, Phillip B.

    2012-01-01

    Surface-grafted water soluble polymer brushes are being intensely investigated for preventing protein adsorption to improve biomedical device function, prevent marine fouling, and enable applications in biosensing and tissue engineering. In this contribution, we present an experimental-theoretical analysis of a peptidomimetic polymer brush system with regard to the critical brush density required for preventing protein adsorption at varying chain lengths. A mussel adhesive-inspired DOPA-Lys pentapeptide surface grafting motif enabled aqueous deposition of our peptidomimetic polypeptoid brushes over a wide range of chain densities. Critical densities of 0.88 nm−2 for a relatively short polypeptoid 10-mer to 0.42 nm−2 for a 50-mer were identified from measurements of protein adsorption. The experiments were also compared with the protein adsorption isotherms predicted by a molecular theory. Excellent agreements in terms of both the polymer brush structure and the critical chain density were obtained. Furthermore, atomic force microscopy (AFM) imaging is shown to be useful in verifying the critical brush density for preventing protein adsorption. The present co-analysis of experimental and theoretical results demonstrates the significance of characterizing the critical brush density in evaluating the performance of an anti-fouling polymer brush system. The high fidelity of the agreement between the experiments and molecular theory also indicate that the theoretical approach presented can aid in the practical design of antifouling polymer brush systems. PMID:22107438

  4. The adsorption of chromium (VI) from industrial wastewater by acid and base-activated lignocellulosic residues.

    PubMed

    Alvarez, Patricia; Blanco, Clara; Granda, Marcos

    2007-06-01

    This study deals with the adsorption of Cr(VI) from synthetic and industrial wastewater, produced by a sewage plant. The activated carbons were prepared from a lignocellulosic raw material by thermal treatment at 450 and 650 degrees C in the presence of acid (AlCl(3), HCl, H(3)PO(4) and H(2)SO(4)) and base (NaOH) agents. To optimize the adsorption of Cr(VI), the chemical modifications caused by each activating agent (related to the capability of Cr(VI) removal), and the optimal experimental conditions of the pH, Cr(VI) concentration, adsorbent dose and residence time, were studied. Thus, treatment with H(3)PO(4) gives rise to carbons with a high surface area and high efficiency for Cr(VI) removal at short equilibrium times. In contrast, the generation of active surface sites by means of NaOH requires longer equilibrium times, the adsorption being less effective than in the former case. The adsorption isotherms obey the Langmuir equation only in the first stages of the reaction but fit the Freundlich equations over the whole range studied, so the heat of adsorption can be easily calculated. The results also show that the activated carbons obtained can be recovered by filtration with an efficiency of 30% in the third cycle. PMID:17126488

  5. Isotope microscopy visualization of the adsorption profile of 2-methylisoborneol and geosmin in powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Sakamoto, Asuka; Nakao, Soichi; Taniguchi, Takuma; Matsushita, Taku; Shirasaki, Nobutaka; Sakamoto, Naoya; Yurimoto, Hisayoshi

    2014-09-16

    Decreasing the particle size of powdered activated carbon may enhance its equilibrium adsorption capacity for small molecules and micropollutants, such as 2-methylisoborneol (MIB) and geosmin, as well as for macromolecules and natural organic matter. Shell adsorption, in which adsorbates do not completely penetrate the adsorbent but instead preferentially adsorb near the outer surface of the adsorbent, may explain this enhancement in equilibrium adsorption capacity. Here, we used isotope microscopy and deuterium-doped MIB and geosmin to directly visualize the solid-phase adsorbate concentration profiles of MIB and geosmin in carbon particles. The deuterium/hydrogen ratio, which we used as an index of the solid-phase concentration of MIB and geosmin, was higher in the shell region than in the inner region of carbon particles. Solid-phase concentrations of MIB and geosmin obtained from the deuterium/hydrogen ratio roughly agreed with those predicted by shell adsorption model analyses of isotherm data. The direct visualization of the localization of micropollutant adsorbates in activated carbon particles provided direct evidence of shell adsorption. PMID:25162630

  6. Adsorption of ethanol onto activated carbon: Modeling and consequent interpretations based on statistical physics treatment

    NASA Astrophysics Data System (ADS)

    Bouzid, Mohamed; Sellaoui, Lotfi; Khalfaoui, Mohamed; Belmabrouk, Hafedh; Lamine, Abdelmottaleb Ben

    2016-02-01

    In this work, we studied the adsorption of ethanol on three types of activated carbon, namely parent Maxsorb III and two chemically modified activated carbons (H2-Maxsorb III and KOH-H2-Maxsorb III). This investigation has been conducted on the basis of the grand canonical formalism in statistical physics and on simplified assumptions. This led to three parameter equations describing the adsorption of ethanol onto the three types of activated carbon. There was a good correlation between experimental data and results obtained by the new proposed equation. The parameters characterizing the adsorption isotherm were the number of adsorbed molecules (s) per site n, the density of the receptor sites per unit mass of the adsorbent Nm, and the energetic parameter p1/2. They were estimated for the studied systems by a non linear least square regression. The results show that the ethanol molecules were adsorbed in perpendicular (or non parallel) position to the adsorbent surface. The magnitude of the calculated adsorption energies reveals that ethanol is physisorbed onto activated carbon. Both van der Waals and hydrogen interactions were involved in the adsorption process. The calculated values of the specific surface AS, proved that the three types of activated carbon have a highly microporous surface.

  7. Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents.

    PubMed

    Kahu, S S; Shekhawat, A; Saravanan, D; Jugade, R M

    2016-08-01

    Ionic solid (Ethylhexadecyldimethylammoniumbromide) impregnated phosphated chitosan (ISPC) was synthesized and applied for enhanced adsorption of hexavalent chromium from industrial effluent. The compound obtained was extensively characterized using instrumental techniques like FT-IR, TGA-DTA, XRD, SEM, BET and EDX. ISPC showed high adsorption capacity of 266.67mg/g in accordance with Langmuir isotherm model at pH 3.0 due to the presence of multiple sites which contribute for ion pair and electrostatic interactions with Cr(VI) species. The sorption kinetics and thermodynamic studies revealed that adsorption of Cr(VI) followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. Applicability of ISPC for higher sample volumes was discerned through column studies. The real chrome plating industry effluent was effectively treated with total chromium recovery of 94%. The used ISPC was regenerated simply by dilute ammonium hydroxide treatment and tested for ten adsorption-desorption cycles with marginal decrease in adsorption efficiency. PMID:27112874

  8. The preparation of novel adsorbent materials with efficient adsorption performance for both chromium and methylene blue.

    PubMed

    Li, Leilei; Liu, Feng; Duan, Huimin; Wang, Xiaojiao; Li, Jianbo; Wang, Yanhui; Luo, Chuannan

    2016-05-01

    The hydroxy-functionalized ionic liquids (ILs) modified with magnetic chitosan/grapheneoxide (MG-ILs-OH) were synthesized. The surface morphology of MG-ILs-OH was characterized by transmission electron microscopy, X-ray diffraction, thermo gravimetric analysis and Fourier transform infrared spectroscopy techniques. It was found that the adsorption kinetics is well fitted by a pseudo-second-order model and the adsorption isotherms agree well with the Langmuir model, and the MG-ILs-OH could be repeatedly used by simple treatment. The results showed that the addition of ILs-OH can largely increase the adsorption sites (hydroxy and amino groups) and adsorption properties. The MG-ILs-OH were used as adsorbent for the removal of methylene blue (MB) and Cr(VI) from simulated wastewater with a fast solid-liquid separation in the presence of external magnetic field. The maximum obtained adsorption capacities of MB and Cr(VI) were 243.31 and 107.99 mg/g, respectively. The application of MG-ILs-OH could effectively solve the problem that the adsorbent only adsorb similar adsorbate. PMID:26859116

  9. Preferential adsorption of pentachlorophenol from chlorophenols-containing wastewater using N-doped ordered mesoporous carbon.

    PubMed

    Yang, Bin; Liu, Yunpeng; Li, Zhongjian; Lei, Lecheng; Zhou, Jie; Zhang, Xingwang

    2016-01-01

    Preferential removal of pentachlorophenol (PCP) from chlorophenols-containing wastewater has been attracted more attentions in wastewater treatment, since it is one of the most toxic pollutants. The adsorbent of N-doped ordered mesoporous carbon (M-OMC) with high BET surface area of 1901 m(2)/g, large pore volume of 1.64 cm(3)/g and uniform pore size of 3.45 nm has been successfully synthesized via evaporation-induced self-assembly (EISA) method. The effects of solution pH, pore structure of adsorbent and their surface chemical properties on PCP adsorption by M-OMC were investigated in comparison with ordered mesoporous carbon (OMC), and much higher PCP adsorption capacities of M-OMC were obtained. The significantly preferential adsorption of PCP was achieved in the treatment of tri-component wastewater including PCP, p-chlorophenol (CP) and 2.4.6-trichlorophenol (TCP), and its adsorption process well fitted the pseudo-second-order kinetics model and the Langmuir isotherm. The initial sorption rate of PCP was 103.5 μmol/(g/min), which was 2.97 times of TCP. It may be attributed to the intensification of π-π interaction between PCP and M-OMC with the nitrogen functional groups. Therefore, M-OMC is promising for removal of PCP in the adsorption pretreatment of chlorophenols-containing wastewater. PMID:26374540

  10. Removal of phthalates and pharmaceuticals from municipal wastewater by graphene adsorption process.

    PubMed

    Yang, Gordon C C; Tang, Pei-Ling

    2016-01-01

    In this work graphene was used for evaluation of its adsorption behavior and performance in removing phthalate esters and pharmaceuticals in municipal wastewater. Di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), acetaminophen (ACE), caffeine (CAF), cephalexin (CLX), and sulfamethoxazole (SMX) were emerging contaminants (ECs) with detection frequencies over 92% in a one-year monitoring of the occurrence of ECs in influent samples of a sewage treatment plant in Taiwan. Thus, these ECs were selected as the target contaminants for removal by graphene adsorption process. Experimental results showed that the adsorption isotherm data were fitted well to Langmuir model equation. It was also found that the adsorption process obeyed the pseudo-second-order kinetics. A graphene dosage of 0.1 g/L and adsorption time of 12 h were found to be the optimal operating conditions for the ECs of concern in model solutions in a preliminary study. By using the determined optimal operating conditions for removal of such ECs in actual municipal wastewater, removal efficiencies for various ECs were obtained and given as follows: (1) DnBP, 89%, (2) DEHP, 86%, (3) ACE, 43%, (4) CAF, 84%, (5) CLX, 81%, and (6) SMX, 34%. PMID:27148730

  11. Comparing Experimental and Simulated Pressure-Area Isotherms for DPPC

    PubMed Central

    Duncan, Susan L.; Larson, Ronald G.

    2008-01-01

    Although pressure-area isotherms are commonly measured for lipid monolayers, it is not always appreciated how much they can vary depending on experimental factors. Here, we compare experimental and simulated pressure-area isotherms for dipalmitoylphosphatidylcholine (DPPC) at temperatures ranging between 293.15 K and 323.15 K, and explore possible factors influencing the shape and position of the isotherms. Molecular dynamics simulations of DPPC monolayers using both coarse-grained (CG) and atomistic models yield results that are in rough agreement with some of the experimental isotherms, but with a steeper slope in the liquid-condensed region than seen experimentally and shifted to larger areas. The CG lipid model gives predictions that are very close to those of atomistic simulations, while greatly improving computational efficiency. There is much more variation among experimental isotherms than between isotherms obtained from CG simulations and from the most refined simulation available. Both atomistic and CG simulations yield liquid-condensed and liquid-expanded phase area compressibility moduli that are significantly larger than those typically measured experimentally, but compare well with some experimental values obtained under rapid compression. PMID:18199666

  12. Microwave preparation of triethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI).

    PubMed

    Ge, Huacai; Ma, Ziwei

    2015-10-20

    A novel triethylenetetramine modified graphene oxide/chitosan composite (TGOCS) was successfully synthesized by microwave irradiation (MW) method and compared with one prepared by conventional heating. This composite was characterized by FTIR, XRD, SEM, BET and elemental analysis. Adsorption of Cr(VI) on the composite was studied. The experimental results indicated that the product obtained by MW had higher yield and uptake than one obtained by the conventional and uptake of TGOCS for Cr(VI) was higher than that of the recently reported adsorbents. The effects of various variables on adsorption of Cr(VI) by TGOCS were further researched. The highest adsorption capacity of 219.5mg g(-1) was obtained at pH 2. Adsorption followed pseudo-second-order kinetic model and Langmuir isotherm. The capacity increased as increasing temperature. The adsorbent could be recyclable. These results have important implications for the application expansion of microwave preparation and the design of new effective composites for Cr(VI) removal in effluents. PMID:26256186

  13. Effect of previous fertilization on phosphorus adsorption. Measurement of surface phosphorus by isotopic exchange

    SciTech Connect

    Lopez, S.C.; Barbaro, N.O.; De Tramontini, S.R. )

    1990-09-01

    Adsorption properties of a soil with previous additions of different phosphate fertilizers were characterized by means of the Langmuir isotherm. The best correlation with the Langmuir isotherm was obtained for low added-phosphorus concentration and for conditions of different amounts of initial soil phosphorus treatment. The phosphorus initially present in each soil sample was evaluated by isotopic exchange. (The use of different isotopic methodologies is discussed.) Carrier-free {sup 32}P was added to a soil-solution system in adsorption equilibrium after soil agitation with increasing phosphorus concentration solutions for 5 days; this allowed measurement of the adsorbed phosphorus that remained exchangeable phosphorus and equilibrium phosphorus concentration was found. The surface exchangeable phosphorus concentration at 0.3 ppm was used to estimate initial surface soil phosphorus. Taking these corrections into account, the authors found adsorption maximum and the bonding energy constant were similar in spite of the amount and kind of previous fertilizer addition. However, the behavior of superphosphate seemed to be modified in the presence of rock phosphate, especially in relation to exchange ability.

  14. Adsorption of reactive blue BF-5G dye by soybean hulls: kinetics, equilibrium and influencing factors.

    PubMed

    Honorio, Jacqueline Ferandin; Veit, Márcia Teresinha; Gonçalves, Gilberto da Cunha; de Campos, Élvio Antonio; Fagundes-Klen, Márcia Regina

    2016-01-01

    The textile industry is known for the high use of chemicals, such as dyes, and large volumes of effluent that contaminate waters, a fact that has encouraged research and improved treatment techniques. In this study, we used unprocessed soybean hulls for the removal of reactive blue BF-5G dye. The point of zero charge of soybean hulls was 6.76. Regarding the speed of agitation in the adsorption process, the resistance to mass transfer that occurs in the boundary layer was eliminated at 100 rpm. Kinetics showed an experimental amount of dye adsorbed at equilibrium of 57.473 mg g(-1) obtained under the following conditions: dye initial concentration = 400 mg L(-1); diameter of particle = 0.725 mm; dosage = 6 g L(-1); pH 2; 100 rpm; temperature = 30 °C; and duration of 24 hours. The pseudo-second order best showed the dye removal kinetics. The adsorption isotherms performed at different temperatures (20, 30, 40 and 50 °C) showed little variation in the concentration range assessed, being properly adjusted by the Langmuir isotherm model. The maximum capacity of dye adsorption was 72.427 mg g(-1) at 30 °C. Since soybean hull is a low-cost industrial byproduct, it proved to be a potential adsorbent for the removal of the textile dye assessed. PMID:26942540

  15. Adsorption of Pb(2+) from aqueous solution using spinel ferrite prepared from steel pickling sludge.

    PubMed

    Fang, Binbin; Yan, Yubo; Yang, Yang; Wang, Fenglian; Chu, Zhen; Sun, Xiuyun; Li, Jiansheng; Wang, Lianjun

    2016-01-01

    In this paper, spinel ferrite with high crystallinity and high saturation magnetization was successfully prepared from steel pickling sludge by adding iron source and precipitator in the hydrothermal condition. The obtained spinel ferrite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM), and Zeta potential methods and investigated as an adsorbent for removal of Pb(2+) from aqueous solution. Batch experiments were performed by varying the pH values, contact time, temperature and initial metal concentration. The result of pH impact showed that the adsorption of Pb(2+) was a pH dependent process, and the pH 5.8 ± 0.2 was found to be the optimum condition. The achieved experimental data were analyzed with various kinetic and isotherm models. The kinetic studies revealed that Pb(2+) adsorption onto spinel ferrite followed a pseudo-second order model, and the Langmuir isotherm model provided the perfect fit to the equilibrium experimental data. At different temperatures, the maximum Pb(2+) adsorption capacities calculated from the Langmuir equation were in the range of 126.5-175.4 mg/g, which can be in competition with other adsorbents. The thermodynamic results showed that the spinel ferrite could spontaneously and endothermically adsorb Pb(2+) from aqueous solution. The regeneration studies showed that spinel ferrite could be used five times (removal efficiency (%) >90%) by desorption with HNO3 reagent. PMID:26942534

  16. Adsorption-desorption of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in soils

    SciTech Connect

    Xue, S.K.; Selim, H.M.; Iskandar, I.K.

    1995-11-01

    This study studied the adsorption-desorption behavior of TNT (2, 4, 6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in a bentonite/sand reference material (Swy-1 montmorillonite clay mixed with acid-washed sand) and two selected soils (Norwood and Kolin). Release of TNT,RDX, and other compounds from a contaminated soil obtained from the Louisiana Army Ammunition Plant (AAP) site was also investigated. The kinetics of TNT and RDX retention were measured using batch methods for a range of input concentrations. For RDX, the adsorption isotherms were distinctly linear. The TNT adsorption isotherm for bentonite/sand mixture appeared linear and was described equally well using linear, Freundlich, Langmuir, and a modified Langmuir model. For the Norwood and Kolin soils, TNT adsorption isotherms exhibited distinct nonlinearity and the Freundlich model provided the best fit. As indicated by the K{sub d} values, TNT exhibited stronger retention or affinity to all soils and the bentonite/sand mixture than for RDX. The RDX retention data indicated little time-dependent behavior. The TNT retention data indicated a continued decrease in TNT concentration with time in the Norwood and Kolin soils. This was possibly caused by the formation and subsequent adsorption of transformation products because transformation products, such as amino nitro toluene compounds, were identified during batch experiments. For the bentonite/sand mixture, TNT retention was rapid initially and reached apparent equilibrium within 1 day. Unlike Kolin and Norwood soils, there was no hysteretic behavior of TNT adsorption-desorption by the bentonite/sand mixture and a mass balance suggested fully reversible retention mechanisms. 15 refs., 13 figs., 2 tabs.

  17. Evaluation of the isosteric heat of adsorption at zero coverage for hydrogen on activated carbons

    NASA Astrophysics Data System (ADS)

    Dohnke, E.; Beckner, M.; Romanos, J.; Olsen, R.; Wexler, C.; Pfeifer, P.

    2011-03-01

    Activated carbons made from corn cob show promise as materials for high-capacity hydrogen storage. As part of our characterization of these materials, we are interested in learning how different production methods affect the adsorption energies. In this talk, we will show how hydrogen adsorption isotherms may be used to calculate these adsorption energies at zero coverage using Henry's law. We will additionally discuss differences between the binding energy and the isosteric heat of adsorption by applying this analysis at different temperatures.

  18. Mechanism of Co(II) adsorption by zero valent iron/graphene nanocomposite.

    PubMed

    Xing, Min; Xu, Lejin; Wang, Jianlong

    2016-01-15

    Nanoscale zero valent iron (ZVI)/graphene (GF) composite was prepared and characterized by Brunauer-Emmett-Teller (BET) surface area measurement and zeta potential determination. The adsorption isotherm of Co(II) in aqueous solution, as well as the influence of pH values and ionic strengths was studied. The mechanism of Co(II) adsorption by GF was investigated through analyzing the sorption products at initial pH of 3.0, 6.0 and 9.0 using high-resolution transmission electron microscope with energy dispersive X-ray detector (HRTEM-EDX), X-ray diffraction (XRD), vibrating-sample magnetometer (VSM), Raman spectra, X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) measurement. The results indicated that Langmuir isotherm model fitted well and the adsorption capacity was 131.58 mg g(-1) at 30°C. Adsorption capacity was not significantly influenced by ionic strength and kept high at pH 4.0∼9.0. The detail information of GF-Co interaction at different initial pH values was obtained using XAFS analysis combined with other characterization methods. Coordination numbers (CN) and interatomic distances (R) of both Fe and Co were given. At pH 3.0 and pH 6.0, the Co-substituted iron oxides transformed to CoFe2O4-like structure, while at pH 9.0 they changed to green rust-like phases. Co occupied preferentially in the octahedral sites in acid solution. The adsorption mechanism of Co(II) was attributed to inner-sphere complexation and dissolution/re-precipitation of the substituted metal oxides. PMID:26368802

  19. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite

    PubMed Central

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g·L-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics. PMID:26698573

  20. Adsorption of toxic carbamate pesticide oxamyl from liquid phase by newly synthesized and characterized graphene quantum dots nanomaterials.

    PubMed

    Agarwal, Shilpi; Sadeghi, Nima; Tyagi, Inderjeet; Gupta, Vinod Kumar; Fakhri, Ali

    2016-09-15

    Graphene quantum dots have been synthesized using the microwave-assisted hydrothermal route. The surface textural and morphological structure of synthesized adsorbent i.e. graphene quantum dots was analyzed using various analytical techniques such as X-ray diffraction, Transmission electron Microscopy, Atomic Force Microscopy and N2 adsorption-desorption instrumental techniques. The application of graphene quantum dots as an adsorbent for the removal of noxious pesticide compound i.e. oxamyl from aqueous solutions was well investigated and elucidated. The impact of several effective parameters such as effect of agitation speed, pH, adsorbent dose, contact time, temperature and initial concentration on sorption efficiency was studied and optimized using batch adsorption experiments. The optimized pH for maximum oxamyl adsorption was found to be 8.0 and for the maximum adsorption rates the adsorbent dose of 0.6g was found to be optimum to carry out the adsorption with in less than 25min of contact time. From the results obtained, it is clear that for all contact times, an increase in oxamyl concentration resulted in increase in the percent oxamyl removal. The adsorption equilibrium and kinetic data were well fitted and found to be in good agreement with the Langmuir isotherm and pseudo-second-order kinetic model. PMID:27362399

  1. Arsenite adsorption on cryogels embedded with iron-aluminium double hydrous oxides: possible polishing step for smelting wastewater?

    PubMed

    Kumar, Prashanth Suresh; Onnby, Linda; Kirsebom, Harald

    2013-04-15

    Arsenic is among the most toxic elements and it commonly exists in water as arsenite (As(III)) and arsenate (As(V)) ions. As(III) removal often requires a pre-oxidation or pH adjustment step and it is a challenge to adsorb As(III) at circumneutral pH. In this study, iron-aluminium double hydrous oxides were synthesized and incorporated into cryogels. The resulting composite cryogels were evaluated for As(III) adsorption. Initial experiments indicated that the adsorbent showed similar adsorption kinetics for both As(V) and As(III) ions. The adsorption of As(III) best fit the Langmuir isotherm and the maximum adsorption capacity was 24.6 mg/g. Kinetic modeling indicated that the mechanism of adsorption was chemisorption, making the adsorbent-adsorbate interactions independent of charge and hence allowing the adsorbent to function equally efficient across pH 4-11. A Swedish smelting wastewater was used to evaluate the adsorption performance in continuous mode. The studies showed that the adsorbent was successful in reducing the arsenic concentrations below the European Union emission limit (0.15 mg/l) in a smelting wastewater collected after two precipitation processes. The arsenic removal was obtained without requiring a pH adjustment or a pre-oxidation step, making it a potential choice as an adsorbent for As(III) removal from industrial wastewaters. PMID:23500428

  2. Adsorption of Zn2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies.

    PubMed

    Nibou, D; Mekatel, H; Amokrane, S; Barkat, M; Trari, M

    2010-01-15

    The adsorption of Zn(2+) onto NaA and NaX zeolites was investigated. The samples were synthesized according to a hydrothermal crystallization using aluminium isopropoxide (Al[OCH(CH(3))(2)](3)) as a new alumina source. The effects of pH, initial concentration, solid/liquid ratio and temperature were studied in batch experiments. The Freundlich and the Langmuir models were applied and the adsorption equilibrium followed Langmuir adsorption isotherm. The uptake distribution coefficient (K(d)) indicated that the Zn(2+) removal was the highest at minimum concentration. Thermodynamic parameters were calculated. The negative values of standard enthalpy of adsorption revealed the exothermic nature of the adsorption process whereas the negative activation entropies reflected that no significant change occurs in the internal structure of the zeolites solid matrix during the sorption of Zn(2+). The negative values of Gibbs free energy were indicative of the spontaneity of the adsorption process. Analysis of the kinetic and rate data revealed that the pseudo second-order sorption mechanism is predominant and the intra particle diffusion was the determining step for the sorption of zinc ions. The obtained optimal parameters have been applied to wastewater from the industrial zone (Algeria) in order to remove the contained zinc effluents. PMID:19773115

  3. Studies of gas adsorption in flexible Metal-Organic frameworks

    NASA Astrophysics Data System (ADS)

    Sircar, Sarmishtha

    Flexible Metal-Organic frameworks that exhibit a gate-opening (GO) adsorption mechanism have potential for gas separations and gas storage. The GO phenomenon occurs when molecular gates in the structure expand/contract in response to the activation/de-activation of a system variable e.g. temperature, pressure or gas. Sharp discontinuities in the isotherm leading to S-shapes and large adsorption-desorption hysteresis are typical of this phenomenon. This study investigates the kinetics and thermodynamics of the GO behavior by combining adsorption measurements and analytical modeling of adsorption kinetics and capacity as a function of adsorbate, GO pressure, and temperature. Basic understanding of GO mechanism will help harness GO-MOF's as adsorbents for gas separations and storage. Experiments were performed on two precharacterized MOFs with verified GO behavior. These are (1) Zn2(bpdc)2(bpee), which expands from a relative amorphous to crystalline structure and (2) Cu[(dhbc) 2(4,4f-bpy)]H2O, a mutually interdigitated 2-D structure (bpdc = biphenyldicarboxylate, bpee = 1,2]bipyridylethene; DMF = N,N-dimethyl formamide, dhbc= 2,5-dihydroxybenzoic acid, bpy=bipyridine). Both sub- and super-critical adsorption data were collected using three adsorption units: a standard low-pressure volumetric adsorption unit, a commercial high-pressure gravimetric analyzer and a custom-built high-pressure differential volumetric unit. Collected laboratory data were combined with published adsorption rate and isotherm data for analysis to broaden the range of data collection. The accuracy of the high-pressure differential unit was improved by over 300-fold by changing analytical methods of processing data to establish a reliable null correction. A pronounced effect of the allowed experimental time was found at cryogenic temperatures on (1). Tightening the stability criteria used by the adsorption equipment to determine equilibration increased the experimental time from the order of

  4. Isothermal amplification of insect DNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The loop-mediated isothermal amplification of DNA (LAMP) method can amplify a target DNA sequence at a constant temperature in about 1 hour. LAMP has broad application in agriculture and medicine because of the need for rapid and inexpensive diagnoses. The power of LAMP is being used by researchers ...

  5. Scaling in Supersonic Isothermal Turbulence

    NASA Astrophysics Data System (ADS)

    Kritsuk, A. G.; Wagner, R.; Norman, M. L.

    2015-10-01

    An exact relation for third-order structure functions in isothermal compressible turbulence (Galtier & Banerjee 2011) is verified using numerical data from a simulation at Mach 6. The analysis supports a Kolmogorov-like cascade phenomenology and yields a reduced version of the relation for high Mach number turbulence.

  6. Isothermal Amplification of Insect DNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The loop-mediated isothermal amplification of DNA (LAMP) method can amplify a target DNA sequence at a constant temperature in about one hour. LAMP has broad application in agriculture and medicine because of the need for rapid and inexpensive diagnoses. LAMP eliminates the need for temperature cycl...

  7. Isothermal Dendritic Growth Experiment Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  8. Adsorption of organic solvent vapors on hydrophobic Y-type zeolite

    SciTech Connect

    Yun, J.H.; Choi, D.K.; Kim, S.H.

    1998-06-01

    Experimental isotherms and prediction results for adsorption of benzene, toluene, dichloromethane and 1,1-dichloro-1-fluoroethane on hydrophobic Y-type zeolite are reported. Isotherm shows the type-V shape according to the classification by Brunauer et al. A simple thermodynamic method is employed to predict the experimental equilibrium data at various temperatures simultaneously. This plain method is based on the assumption that the value of the isosteric heat of adsorption does not depend on temperature for a certain surface loading. The Clausius-Clapeyron equation was used to calculate the isosteric heat of adsorption. To apply the method, only two sets of the experimental isotherm data at two different temperatures are needed. The Clausius-Clapeyron equation with two isotherms provided simple and reliable prediction of adsorption equilibrium relationships at various temperatures. Results with this method showed that the predicted value agrees well with the experimental data in the range of temperatures for the system tested.

  9. Adsorption of transition metals in aqueous solutions by fluted pumpkin (Telfairia occidentalis Hook f) waste.

    PubMed

    Horsfall, Michael; Spiff, Ayebaemi Ibuteme

    2005-09-01

    The adsorption of some divalent transition metal (Hg, Rh, Pt, and Pd) ions in aqueous solution onto fluted pumpkin waste biomass has been investigated. The data were discussed in terms of ionic radii, surface area, and the hard-soft acid-base (HSAB) concept. The monolayer sorption capacities as obtained by the Langmuir adsorption isotherm model were determined to be ca. 9.89 mg/g, 9.81 mg/g, 10.59 mg/g, and 6.84 mg/g for for Hg(II), Rh(II), Pt(II), and Pd(II), respectively. The results are relevant for the optimal design of a wastewater treatment plant and for prediction of model parameters of sorbate-sorbent interactions. PMID:17193209

  10. Adsorption of Ar on planar surfaces studied with a density functional theory.

    PubMed

    Sartarelli, Salvador A; Szybisz, Leszek

    2009-11-01

    The adsorption of Ar on planar structureless substrates of alkali metals, alkaline-earth metal Mg, CO2 , and Au was analyzed by applying a density functional formalism which includes a recently proposed effective attractive pair potential conditioned to Ar. It is shown that this approach reproduces the experimental surface tension of the liquid-vapor interface over the entire bulk coexistence curve for temperatures T spanning from the triple point Tt up to the critical point Tc. The wetting properties were studied over the entire range temperatures Tt<-->Tc. It was found that Ar wets all the investigated surfaces. The adsorption isotherms for alkali metals exhibit first-order phase transitions. Prewetting lines were resolved even for the less attractive surfaces. In the cases of Mg, CO2 , and Au a continuous growth for T> or =Tt was obtained. A comparison with experimental data and other microscopic calculations is reported. PMID:20365027

  11. Observation of Henry's Law in Low-Density Measurements of Adsorption on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Dzyubenko, Boris; Schmitz, Denise; Lee, Hao-Chun; Vilches, Oscar E.; Cobden, David H.

    2014-03-01

    We have studied the adsorption of noble gases on pristine suspended single-walled carbon nanotubes at low temperatures in the limit of low density (coverage), as determined from the shift of the mechanical resonance frequency of the nanotube due to mass loading. The high homogeneity of the nanotube substrate and the sensitivity of the technique allow us to observe Henry's law, in which the coverage is proportional to the gas pressure. In this limit the adsorption isotherm is determined by single-atom effects, allowing unprecedentedly accurate (+/- 2%) determination of the single-particle binding energies to a nanotube. Also, by measuring the deviation from Henry's law as coverage increases we obtain information about the pairwise interactions between the adsorbed atoms using the virial expansion.

  12. Adsorption interference in mixtures of trace contaminants flowing through activated carbon adsorber beds

    NASA Technical Reports Server (NTRS)

    Madey, R.; Photinos, P. J.

    1980-01-01

    Adsorption interference in binary and ternary mixtures of trace contaminants in a helium carrier gas flowing through activated carbon adsorber beds are studied. The isothermal transmission, which is the ratio of the outlet to the inlet concentration, of each component is measured. Interference between co-adsorbing gases occurs when the components are adsorbed strongly. Displacement of one component by another is manifested by a transmission greater than unity for the displaced component over some range of eluted volume. Interference is evidenced not only by a reduction of the adsorption capacity of each component in the mixture in comparison with the value obtained in a single-component experiment, but also by a change in the slope of the transmission curve of each component experiment.

  13. Nanoporous chalcogenides for adsorption and gas separation.

    PubMed

    Ori, Guido; Massobrio, Carlo; Pradel, Annie; Ribes, Michel; Coasne, Benoit

    2016-05-21

    The adsorption and gas separation properties of amorphous porous chalcogenides such as GeS2 are investigated using statistical mechanics molecular simulation. Using a realistic molecular model of such amorphous adsorbents, we show that they can be used efficiently to separate different gases relevant to environmental and energy applications (H2, CO2, CH4, N2). In addition to shedding light on the microscopic adsorption mechanisms, we show that coadsorption in this novel class of porous materials can be described using the ideal adsorbed solution theory (IAST). Such a simple thermodynamic model, which allows avoiding complex coadsorption measurements, describes the adsorption of mixture from pure component adsorption isotherms. Our results, which are found to be in good agreement with available experimental data, paves the way for the design of gas separation membranes using the large family of porous chalcogenides. PMID:27126718

  14. Thermodynamic investigation of trichloroethylene adsorption in water-saturated microporous adsorbents

    SciTech Connect

    Farrell, J.; Hauck, B.; Jones, M.

    1999-08-01

    Adsorption of trichloroethylene (TCE) in adsorbents containing hydrophilic and hydrophobic micropores was investigated in order to determine the mechanisms responsible for TCE adsorption on mineral solids. A high-pressure liquid chromatography method was used to measure TCE adsorption isotherms on three microporous adsorbents. Silica gel and zeolite type NaX were used as hydrophilic model adsorbents, and hexamethyldisilazane (HMDS)-treated silica gel was used as a model hydrophobic adsorbent. Batch uptake and desorption isotherms were also measured on the hydrophilic silica gel. Uptake of TCE by all three adsorbents was linear over the concentration range investigated. However, the silica gel desorption isotherm was highly nonlinear, as indicated by its Freundlich isotherm exponent of 0.58. Capillary phase separation into hydrophobic micropores was postulated as being responsible for the isotherm hysteresis. Supporting this hypothesis was the conformance of the TCE adsorption isotherm to Dubinin-Radushkevitch volume filling of micropores theory. The enthalpies for TCE adsorption on all three solids were determined by van't Hoff analysis of distribution coefficients measured over a temperature range from 5 to 90 C. The TCE adsorption enthalpies on the silica gel and HMDS silica gel were exothermic, but on the zeolite adsorption was endothermic. High exothermic adsorption enthalpies on the silica gel adsorbents indicated that TCE adsorption was occurring in hydrophobic micropores, and that adsorption on surfaces with large radii of curvature contributed only minimally to the total uptake. This indicates that the predominant mechanism for TCE adsorption on these mineral solids is not partitioning into the vicinal water layer.

  15. Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon.

    PubMed

    Namasivayam, C; Kavitha, D

    2003-03-17

    Adsorption of 2-chlorophenol (2-CP) by coir pith carbon was carried out by varying the parameters such as agitation time, 2-CP concentration, adsorbent dose, pH and temperature. Adsorption equilibrium reached at 40, 60, 80 and 100 min for 2-CP concentration of 10, 20, 30 and 40 mg/l, respectively. Adsorption followed second-order kinetics. The adsorption equilibrium data obeyed Freundlich isotherm. Acidic pH was favorable for the adsorption of 2-CP. Desorption studies showed that chemisorption plays a major role in the adsorption process. PMID:12628792

  16. Peroxide-assisted microwave activation of pyrolysis char for adsorption of dyes from wastewater.

    PubMed

    Nair, Vaishakh; Vinu, R

    2016-09-01

    In this study, mesoporous activated biochar with high surface area and controlled pore size was prepared from char obtained as a by-product of pyrolysis of Prosopis juliflora biomass. The activation was carried out by a simple process that involved H2O2 treatment followed by microwave pyrolysis. H2O2 impregnation time and microwave power were optimized to obtain biochar with high specific surface area and high adsorption capacity for commercial dyes such as Remazol Brilliant Blue and Methylene Blue. Adsorption parameters such as initial pH of the dye solution and adsorbent dosage were also optimized. Pore size distribution, surface morphology and elemental composition of activated biochar were thoroughly characterized. H2O2 impregnation time of 24h and microwave power of 600W produced nanostructured biochar with narrow and deep pores of 357m(2)g(-1) specific surface area. Langmuir and Langmuir-Freundlich isotherms described the adsorption equilibrium, while pseudo second order model described the kinetics of adsorption. PMID:27268436

  17. Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed

    SciTech Connect

    Suyadal, Y.; Erol, M.; Oguz, H.

    2000-03-01

    In this work, the adsorption of trichloroethylene (TCE) vapor was investigated in a laboratory-scale packed-bed adsorber by using granular activated carbon (GAC) at constant pressure (101.3 kPa). The packed-bed adsorber (PBA) was operated batchwise with the charges of GAC particles in the ranges of 2.5--10.0 g for obtaining TCE breakthrough curves. Experiments were carried out at different temperatures (25.6 {le} T({degree}C) {le} 35.8) and TCE feedstock concentrations (6,350 {le} C (ppm TCE) {le} 7,950) within the range of space velocity (5,000 {le} {var_theta} (h{sup {minus}1}) {le} 17,000). The effects of TCE inlet concentration, operating temperature, and mass of adsorbent (m{sub Ads}) on the TCE breakthrough curves were investigated, respectively. The deactivation model (DM) was tested for these curves by using the analogy between the adsorption of TCE and the deactivation of catalyst particles. Observed adsorption rate constants (k{sub S}) and first-order deactivation rate constants (k{sub d}) were obtained from the model. It was found that the deactivation model describes the experimental breakthrough curves more accurately compared to the adsorption isotherms given in the literature.

  18. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char.

    PubMed

    Acosta, R; Fierro, V; Martinez de Yuso, A; Nabarlatz, D; Celzard, A

    2016-04-01

    Tyre pyrolysis char (TPC), produced when manufacturing pyrolysis oil from waste tyre, was used as raw material to prepare activated carbons (ACs) by KOH activation. KOH to TPC weight ratios (W) between 0.5 and 6, and activation temperatures from 600 to 800 °C, were used. An increase in W resulted in a more efficient development of surface area, microporosity and mesoporosity. Thus, ACs derived from TPC (TPC-ACs) with specific surface areas up to 814 m(2) g(-1) were obtained. TPC, TPC-ACs and a commercial AC (CAC) were tested for removing Tetracycline (TC) in aqueous phase, and systematic adsorption studies, including equilibrium, kinetics and thermodynamic aspects, were performed. Kinetics was well described by the pseudo-first order model for TPC, and by a pseudo second-order kinetic model for ACs. TC adsorption equilibrium data were also fitted by different isotherm models: Langmuir, Freundlich, Sips, Dubinin-Radushkevich, Dubinin-Astokov, Temkin, Redlich-Peterson, Radke-Prausnitz and Toth. The thermodynamic study confirmed that TC adsorption onto TPC-ACs is a spontaneous process. TC adsorption data obtained in the present study were compared with those reported in the literature, and differences were explained in terms of textural properties and surface functionalities. TPC-ACs had similar performances to those of commercial ACs, and might significantly improve the economic balance of the production of pyrolysis oil from waste tyres. PMID:26855221

  19. [Adsorption of Cr (VI) on magnetic graphene from aqueous solution].

    PubMed

    Liu, Wei; Yang, Qi; Li, Bo; Chen, Hai; Nie, Lan-Yu

    2015-02-01

    Chemical deposition method was applied to prepare magnetic graphene composites using graphite oxide and ferric salt (FeCl2 - 4H2O and FeCl3 x 6H2O) as starting materials. The static experiments were performed to study kinetics, thermodynamic, adsorption isotherm and effects of various parameters, such as pH, temperature and time on Cr(VI) adsorption. The results showed that adsorption kinetics followed the pseudo-second-order model. Compared with Freundlich isotherm, Langmuir isotherm could better describe the adsorption process. The parameters of thermodynamics were ΔHθ = 33.89 kJ x mol(-1), ΔSθ = 120.15 J x (mol x K)(-1), ΔGθ = -2.51 kJ x mol(-1) (303 K), it demonstrated that the adsorption was a spontaneously endothermic process. It also indicated that the optimal pH was 2. Higher temperature and extension of time were in favor of adsorption. When used repeatedly for three times, the adsorption capacity decreased from 3.9 mg x g(-1) to 2.1 mg x g(-1) with an initial concentration of 5 mg x L(-1). By using a permanent magnet, the recycling process of adsorbent was easy to be operated and adsorbent could be regenerated by sodium hydrate solution. Hence, the composites is a promising adsorbent for efficient removal of Cr(VI) from wastewater. PMID:26031080

  20. Adsorption of water on porous Vycor glass studied by ellipsometry.

    PubMed

    Alvarez-Herrero, A; Heredero, R L; Bernabeu, E; Levy, D

    2001-02-01

    The variation of the optical properties of porous Vycor glass (Corning, Model 7930) under different relative-humidity conditions was studied. The adsorption of water into the glass pores was investigated with spectroscopic ellipsometry. The change of the refractive index was Deltan approximately 0.04 between 5% and 90% relative humidity. A linear relation between the ellipsometer parameter tan Psi, the amount of water adsorbed in the glass pores, and information about the pore-size distributions was established. The results are in accord with the values obtained from N2 isotherms, transmission electron microscope micrographs, and the manufacturer's specifications (radius of approximately 20 A). The possibility of using this material as a transducer for implementation in a fiber-optic sensor to measure humidity was evaluated. PMID:18357027

  1. Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters.

    PubMed

    Henryk, Kołoczek; Jarosław, Chwastowski; Witold, Żukowski

    2016-01-01

    Batch adsorption experiments were performed for the removal of chromium (III) and chromium (VI) ions from aqueous solutions using Canadian peat and coconut fiber. The Langmuir model was used to describe the adsorption isotherm. The maximum adsorption for peat reached 18.75 mg/g for Cr(III) and 8.02 mg/g for Cr(VI), whereas the value for fiber was slightly higher and reached 19.21 mg/g for Cr(III) and 9.54 mg/g for Cr(VI). Both chromium forms could be easily eluted from the materials. The adsorption of chromium forms to organic matter could be explained in terms of formation of donor-acceptor chemical covalent bound with hydroxyl groups as ligands and chromium as the central atom in the formed complex. The chromate-reducing activities were monitored with the use of electron paramagnetic resonance spectroscopy. The results showed that both adsorption and reduction occurred simultaneously and the maximum adsorption capacity of hexavalent chromium being equal to 95% for fiber and 92% for peat was obtained at pH 1.5. The reduction of Cr(VI) in wastewaters began immediately and disappeared after 20 h. Both materials contained yeast and fungi species which can be responsible for reduction of chromium compounds, due to their enzymatic activity (Chwastowski and Koloczek (Acta Biochim Pol 60: 829-834, 2013)). The reduction of Cr(VI) is a two-phase process, the first phase being rapid and based on chemical reaction and the second phase having biological features. After the recovery step, both types of organic materials can be used again for chromium adsorption without any loss in the metal uptake. Both of the materials could be used as biofilters in the wastewater treatment plants. PMID:26315594

  2. Preparation, Characterization and Application of Magnetic Fe3O4-CS for the Adsorption of Orange I from Aqueous Solutions

    PubMed Central

    Du, Yankai; Pei, Meishan; He, Youjun; Yu, Faqi; Guo, Wenjuan; Wang, Luyan

    2014-01-01

    Fe3O4 (Fe3O4-CS) coated with magnetic chitosan was prepared as an adsorbent for the removal of Orange I from aqueous solutions and characterized by FTIR, XRD, SEM, TEM and TGA measurements. The effects of pH, initial concentration and contact time on the adsorption of Orange I from aqueous solutions were investigated. The decoloration rate was higher than 94% in the initial concentration range of 50–150 mg L−1 at pH 2.0. The maximum adsorption amount was 183.2 mg g−1 and was obtained at an initial concentration of 400 mg L−1 at pH 2.0. The adsorption equilibrium was reached in 30 minutes, demonstrating that the obtained adsorbent has the potential for practical application. The equilibrium adsorption isotherm was analyzed by the Freundlich and Langmuir models, and the adsorption kinetics were analyzed by the pseudo-first-order and pseudo-second-order kinetic models. The higher linear correlation coefficients showed that the Langmuir model (R2 = 0.9995) and pseudo-second-order model (R2 = 0.9561) offered the better fits. PMID:25271644

  3. Adsorption of Cd(II) and Cu(II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste.

    PubMed

    Zheng, Wei; Li, Xiao-ming; Yang, Qi; Zeng, Guang-ming; Shen, Xiang-xin; Zhang, Ying; Liu, Jing-jin

    2007-08-17

    Carbonate hydroxylapatite (CHAP) synthesized by using eggshell waste as raw material has been investigated as metal adsorption for Cd(II) and Cu(II) from aqueous solutions. The effect of various parameters on adsorption process such as contact time, solution pH, amount of CHAP and initial concentration of metal ions was studied at room temperature to optimize the conditions for maximum adsorption. The results showed that the removal efficiency of Cd(II) and Cu(II) by CHAP could reach 94 and 93.17%, respectively, when the initial Cd(II) concentration 80 mg/L and Cu(II) 60 mg/L and the liquid/solid ratio was 2.5 g/L. The equilibrium sorption data for single metal systems at room temperature could be described by the Langmuir and Freundlich isotherm models. The highest value of Langmuir maximum uptake, (b), was found for cadmium (111.1mg/g) and copper (142.86 mg/g). Similar Freundlich empirical constants, K, were obtained for cadmium (2.224) and copper (7.925). Ion exchange and surface adsorption might be involved in the adsorption process of cadmium and copper. Desorption experiments showed that CaCl2, NaCl, acetic acid and ultrasonic were not efficient enough to desorb substantial amount of metal ions from the CHAP. The results obtained show that CHAP has a high affinity to cadmium and copper. PMID:17368932

  4. Studies of liquid adsorption, condensation and surface conductivity in porous media

    NASA Astrophysics Data System (ADS)

    Qi, Hao

    In the petroleum industry, accurate estimates of hydrocarbon reserve and its producibility are without a doubt among the most important issues. Quantitative estimates require the knowledge of three basic parameters of the rock formation: the porosity φ, the water saturation S w and the permeability k. Electrical conductivity is one of the most commonly made measurements used to deduce these quantities. Some empirical relationships used to make such estimates are quite well established and understood, however, many still lack a sound scientific foundation. Systematic laboratory investigation and theoretical understanding of the underlying petrophysics are much needed. This dissertation consists of three projects aimed at understanding both the surface conductivity observed in shaly sandstone, and the related phenomena of molecular adsorption on heterogeneous surfaces. In the first project, we carried out nitrogen adsorption experiments on three shale samples whose fractal dimensions had been previously characterized by small angle scattering (SANS). We found that analyzing the adsorption isotherm data according to the available theoretical predictions always resulted in D values that are lower than those obtained by SANS. The second project, a numerical simulation of adsorption on fractal surfaces, was designed to understand the origin of discrepancies revealed in the first project. We found that the interplay between van der Waals adsorption and capillary condensation always leads to a crossover between the two theoretical limits. The simulated isotherms exhibit the same general features we observed in our experimental data. The third project was aimed at understanding the surface conduction in porous media. We isolated the surface conductivity by growing water layers on the surface with water adsorption isotherm technique. Some of our results indicate that AC impedance measurement could let us determine the surface conductivity and separate it from that of the

  5. Adsorption of diethyl phthalate ester to clay minerals.

    PubMed

    Wu, Yanhua; Si, Youbin; Zhou, Dongmei; Gao, Juan

    2015-01-01

    Phthalate esters are a group of plasticizers, which have been widely detected in China's agricultural and industrial soils. In this study, batch adsorption experiments were conducted to investigate the environmental effects on the adsorption of diethyl phthalate ester (DEP) to clay minerals. The results showed that DEP adsorption isotherms were well fitted with the Freundlich model; the interlayer spacing of K(+) saturated montmorillonite (K-mont) was the most important adsorption area for DEP, and di-n-butyl ester (DnBP) was limited to intercalate into the interlayer of K-mont due to the bigger molecular size; there was no significant effect of pH and ionic strength on DEP adsorption to K-mont/Ca-mont, but to Na-mont clay. The adsorption to kaolinite was very limited. Data of X-ray diffraction and FTIR spectra further proved that DEP molecules could intercalate into K-/Ca-mont interlayer, and might interact with clay through H-bonding between carbonyl groups and clay adsorbed water. Coated humic acid on clay surface would enhance DEP adsorption at low concentration, but not at high concentration (eg. Ce>0.26 mM). The calculated adsorption enthalpy (ΔHobs) and adsorption isotherms at varied temperatures showed that DEP could be adsorbed easier as more adsorbed. This study implied that clay type, compound structure, exchangeable cation, soil organic matter and temperature played important roles in phthalate ester's transport in soil. PMID:25150972

  6. Characterization of the carbonaceous materials obtained from different agro-industrial wastes.

    PubMed

    Ensuncho-Muñoz, A E; Carriazo, J G

    2015-01-01

    This paper reports the preparation and characterization of carbonaceous materials obtained from three types of vegetable wastes provided by agricultural industries. Soft carbonization (280°C) and H3PO4-activation procedures were used to convert the agricultural wastes to carbon powders with high adsorbent capacities. This process is excellent for eliminating and exploiting the huge masses (many tons) of vegetable residues remaining after each harvest every year in several Colombian agro-industries. The powders were characterized by X-ray diffraction (XRD), IR spectroscopy, scanning electron microscopy (SEM), and N2-adsorption isotherms. XRD and IR verified the formation of carbons, and SEM showed small particles (20-500 µm) with characteristic morphology for each type of residue used and abundant cavities of different sizes. The N2-adsorption analyses showed that the carbons had high adsorption capacities with important surface area values and large pore volumes. The use of the activated carbonaceous materials as adsorbent of azo dyes (allura red and sunset yellow) from aqueous solutions was evaluated. The results showed a good adsorption capacity indicating the potentiality of these materials as pollutant adsorbents in food industry wastewaters. These results indicate that these powders can be used as potential adsorbents for different gaseous or liquid pollutants. PMID:25189634

  7. Assessing the Adsorption Properties of Shales

    NASA Astrophysics Data System (ADS)

    Pini, R.

    2014-12-01

    Fine-grained rocks, such as shales, contain a significant amount of nanopores that can significantly contribute to their storage capacity through the mechanism of adsorption. The current ability to extract natural gas that is adsorbed in the rock's matrix is limited and current technology focuses primarily on the free gas in the fractures, thus leading to very low recovery efficiencies. Shales constitute also a great portion of so-called caprocks above potential CO2 sequestration sites; hereby, the adsorption process may limit the CO2 mobility within the cap-rock, thus minimizing leakage phenomena. Whether it is a reservoir or a caprock, understanding and quantifying the mechanisms of adsorption in these natural materials is key to improve the engineering design of subsurface operations. Results will be presented from a laboratory study that combines conventional techniques for the measurement of adsorption isotherms with novel methods that allows for the imaging of adsorption using x-rays. Various nanoporous materials are considered, thus including rocks, such as shales and coals, pure clay minerals and engineered adsorbents with well-defined nanopore structures, such as zeolites. Supercritical CO2 adsorption isotherms have been measured with a Rubotherm Magnetic Suspension balance by covering the pressure range 0.1-20~MPa. A medical x-ray CT scanner has been used to identify three-dimensional patterns of the adsorption properties of a packed-bed of adsorbent, thus enabling to assess the spatial variability of the adsorption isotherm. The data are analyzed by using thermodynamically rigorous measures of adsorption and a graphical method is applied for their interpretation. The density of the adsorbed phase is estimated and compared to data reported in the literature; the latter is key to disclose gas-reserves and/or potential storage capacity estimates. When evaluated against classic adsorbent materials, the adsorption mechanism in shales is further complicated by

  8. [Adsorption and Desorption Characteristics of Endosulfan in Purple Soil].

    PubMed

    Zhao, Yan; Zheng, Guo-can; Zhu, Heng; Zhang, Jin-zhong; Zhu, Xiu-ying; Hu, Shu-chun; Wu, Ya-lin

    2015-09-01

    In order to reveal the residual process of endosulfan in purple soil and protect soil ecological environment, the adsorption and desorption characteristics of endosulfan in purple soil were investigated, and effects of temperature, adsorbent amount, and initial pH of adsorption solution on the adsorption capacity were also examined by static adsorption and desorption experiments. The results showed that the adsorption kinetic process could be well described by the second-order kinetic equation with the initial rate constants of α-, β-endosulfan as 0. 157 and 0. 115 mg.(g.min)-1, respectively. The adsorption thermodynamic process could be well described by the Langmuir isotherm with the maximum adsorption capacities of α-, β-endosulfan as 0. 257 mg . g -1 and 0. 155 mg . g -1, respectively. The adsorption process of endosulfan in purple soil may be an exothermic physicochemical process, and is dominated by physical adsorption. Under the experimental conditions examined in this study, the initial pH of adsorption solution had a relative great influence on the adsorption capacity, whereas the temperature and adsorbent amount had no significant influence. The desorption experiments found that the maximum desorption capacities of α-, β-endosulfan adsorbed in purple soil were 0. 029 mg . g -1 and 0. 017 mg . g -1 at 6 and 4 h, and accounted for 10. 5% and 16. 1% in the maximum adsorption capacities, respectively. PMID:26717711

  9. Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: Modeling competitive adsorption consistent with spectroscopic and molecular evidence

    NASA Astrophysics Data System (ADS)

    Kanematsu, Masakazu; Young, Thomas M.; Fukushi, Keisuke; Green, Peter G.; Darby, Jeannie L.

    2013-04-01

    are necessary to identify ternary complexes, especially at high pH. Adsorption isotherms of As(V), a dominant form of arsenic in adsorptive water treatment systems, in the presence of the co-existing ions under relevant conditions of water treatment systems are also obtained and predicted by the ETLM to study and compare the effect of the co-existing ions on As(V) removal.

  10. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon.

    PubMed

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi

    2011-02-01

    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles. PMID:21172719

  11. Magnetic solid phase adsorption, preconcentration and determination of methyl orange in water samples using silica coated magnetic nanoparticles and central composite design

    NASA Astrophysics Data System (ADS)

    Shariati-Rad, Masoud; Irandoust, Mohsen; Amri, Somayyeh; Feyzi, Mostafa; Ja'fari, Fattaneh

    2014-10-01

    This work evaluates the efficiency of SiO2-coated Fe3O4 magnetic nanoparticles (SMNPs) for adsorption of methyl orange (MO). Adsorption of MO on the studied nanoparticle was developed for removal, preconcentration and spectrophotometric determination of trace amounts of it. To find the optimum adsorption conditions, the influence of pH, dosage of the adsorbent and contact time was explored by central composite design. In pH 2.66, with 10.0 mg of the SMNPs and time of 30.0 min, the maximum adsorption of MO was obtained. The experimental adsorption data were analyzed by the Langmuir and Freundlich adsorption isotherms. Both models were fitted to the equilibrium data and the maximum monolayer capacity q max of 53.19 mg g-1 was obtained for MO. Moreover, the sorption kinetics was fitted well to the pseudo-second-order rate equation model. The results showed that desorption efficiencies higher than 99 % can be achieved in a short contact time and in one step elution by 2.0 mL of 0.1 mol L-1 NaOH. The SMNPs were washed with deionized water and reused for two successive removal processes with removal efficiencies more than 90 %. The calibration curve was linear in the range of 10.0-120.0 ng mL-1 for MO. A preconcentration factor of about 45 % was achieved by the method.

  12. Fundamental studies of methyl iodide adsorption in DABCO impregnated activated carbons.

    PubMed

    Herdes, Carmelo; Prosenjak, Claudia; Román, Silvia; Müller, Erich A

    2013-06-11

    Methyl iodide capture from a water vapor stream using 1,4-diazabicyclo[2.2.2]octane (DABCO)-impregnated activated carbons is, for the first time, fundamentally described here on the atomic level by means of both molecular dynamics and grand canonical Monte Carlo simulations. A molecular dynamics annealing strategy was adopted to mimic the DABCO experimental impregnation procedure in a selected slitlike carbon pore. Predictions, restricted to the micropore region, are made about the adsorption isotherms of methyl iodide, water, and nitrogen on both impregnated and bare activated carbon models. Experimental and simulated nitrogen adsorption isotherms are compared for the validation of the impregnation strategy. Selectivity analyses of the preferential adsorption toward methyl iodide over water are also reported. These simulated adsorption isotherms sum up to previous experimental studies to provide an enhanced picture for this adsorption system of widespread use at nuclear plant HVAC facilities for the capture of radioactive iodine compounds. PMID:23679202

  13. Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite.

    PubMed

    Bulut, Emrah; Ozacar, Mahmut; Sengil, I Ayhan

    2008-06-15

    The adsorption of Congo Red onto bentonite in a batch adsorber has been studied. Four kinetic models, the pseudo first- and second-order equations, the Elovich equation and the intraparticle diffusion equation, were selected to follow the adsorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and correlation coefficients, for each kinetic equation were calculated and discussed. It was shown that the adsorption of Congo Red onto bentonite could be described by the pseudo second-order equation. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. Adsorption of Congo Red onto bentonite followed the Langmuir isotherm. A single stage batch adsorber was designed for different adsorbent mass/treated effluent volume ratios using the Langmuir isotherm. PMID:18055111

  14. Molecular structure-adsorption study on current textile dyes.

    PubMed

    Örücü, E; Tugcu, G; Saçan, M T

    2014-01-01

    This study was performed to investigate the adsorption of a diverse set of textile dyes onto granulated activated carbon (GAC). The adsorption experiments were carried out in a batch system. The Langmuir and Freundlich isotherm models were applied to experimental data and the isotherm constants were calculated for 33 anthraquinone and azo dyes. The adsorption equilibrium data fitted more adequately to the Langmuir isotherm model than the Freundlich isotherm model. Added to a qualitative analysis of experimental results, multiple linear regression (MLR), support vector regression (SVR) and back propagation neural network (BPNN) methods were used to develop quantitative structure-property relationship (QSPR) models with the novel adsorption data. The data were divided randomly into training and test sets. The predictive ability of all models was evaluated using the test set. Descriptors were selected with a genetic algorithm (GA) using QSARINS software. Results related to QSPR models on the adsorption capacity of GAC showed that molecular structure of dyes was represented by ionization potential based on two-dimensional topological distances, chromophoric features and a property filter index. Comparison of the performance of the models demonstrated the superiority of the BPNN over GA-MLR and SVR models. PMID:25529487

  15. Adsorption of lysozyme on hyaluronic acid functionalized SBA-15 mesoporous silica: a possible bioadhesive depot system.

    PubMed

    Medda, Luca; Casula, Maria F; Monduzzi, Maura; Salis, Andrea

    2014-11-01

    Silica-based ordered mesoporous materials are very attractive matrices to prepare smart depot systems for several kinds of therapeutic agents. This work focuses on the well-known SBA-15 mesoporous silica and lysozyme, an antimicrobial protein. In order to improve the bioadhesion properties of SBA-15 particles, the effect of hyaluronic acid (HA) functionalization on lysozyme adsorption was investigated. SBA-15 samples having high (H-SBA) and low (L-SBA) levels of functionalization were analyzed during the three steps of the preparations: (1) introduction of the -NH2 groups to obtain the SBA-NH2 samples; (2) functionalization with HA to obtain the SBA-HA matrices; (3) adsorption of lysozyme. All silica matrices were characterized through N2-adsorption/desorption isotherms, small-angle X-ray scattering, transmission electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The whole of the experimental data suggests that a high level of functionalization of the silica surface allows for a negligible lysozyme adsorption mainly due to unfavorable electrostatic interactions (H-SBA-NH2) or steric hindrance (H-SBA-HA). A low degree of functionalization of the silica surface brings about a very good performance toward lysozyme adsorption, being 71% (L-SBA-NH2) and 63% (L-SBA-HA) respectively, compared to that observed for original SBA-15. Finally, two different kinetic models--a "pseudo-second order" and a "intraparticle diffusion"--were compared to fit lysozyme adsorption data, the latter being more reliable than the former. PMID:25295387

  16. IDGE: Isothermal Dendritic Growth Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Isothermal Dendritic Growth Experiment (IDGE) flew on STS-62 to study the microscopic, tree-like structures (dendrites) that form within metals as they solidify from molten materials. The size, shape, and orientation of these dendrites affect the strength and usefulness of metals. Data from this experiment will be used to test and improve the mathematical models that support the industrial production of metals.

  17. Off-gas adsorption model and simulation - OSPREY

    SciTech Connect

    Rutledge, V.J.

    2013-07-01

    A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and Recovery (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed. (author)

  18. Off-gas Adsorption Model and Simulation - OSPREY

    SciTech Connect

    Veronica J Rutledge

    2013-10-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed.

  19. Adsorption thermodynamics of two-domain antifreeze proteins: theory and Monte Carlo simulations.

    PubMed

    Narambuena, Claudio F; Sanchez Varretti, Fabricio O; Ramirez-Pastor, Antonio J

    2016-09-21

    In this paper we develop the statistical thermodynamics of two-domain antifreeze proteins adsorbed on ice. We use a coarse-grained model and a lattice network in order to represent the protein and ice, respectively. The theory is obtained by combining the exact analytical expression for the partition function of non-interacting linear k-mers adsorbed in one dimension, and its extension to higher dimensions. The total and partial adsorption isotherms, and the coverage and temperature dependence of the Helmholtz free energy and configurational entropy are given. The formalism reproduces the classical Langmuir equation, leads to the exact statistical thermodynamics of molecules adsorbed in one dimension, and provides a close approximation for two-dimensional systems. Comparisons with analytical data obtained using the modified Langmuir model (MLM) and Monte Carlo simulations in the grand canonical ensemble were performed in order to test the validity of the theoretical predictions. In the MC calculations, the different mechanisms proposed in the literature to describe the adsorption of two-domain antifreeze proteins on ice were analyzed. Indistinguishable results were obtained in all cases, which verifies the thermodynamic equivalence of these mechanisms and allows the choice of the most suitable mechanism for theoretical studies of equilibrium properties. Even though a good qualitative agreement is obtained between MLM and MC data, it is found that the new theoretical framework offers a more accurate description of the phenomenon of adsorption of two-domain antifreeze proteins. PMID:27539563

  20. Sorption isotherms and isosteric heats of sorption of Malaysian paddy.

    PubMed

    Mousa, Wael; Ghazali, Farinazleen Mohamad; Jinap, S; Ghazali, Hasanah Mohd; Radu, Son

    2014-10-01

    Understanding the water sorption characteristics of cereal is extremely essential for optimizing the drying process and ensuring storage stability. Water relation of rough rice was studied at 20, 30, 40 and 50 °C over relative humidity (RH.) between 0.113 and 0.976 using the gravimetric technique. The isotherms displayed the general sigmoid, Type II pattern and exhibited the phenomenon of hysteresis where it was more pronounced at lower temperatures. The sorption characteristics were temperature dependence where the sorption capacity of the paddy increased as the temperature was decreased at fixed (RH). Among the models assessed for their ability to fit the sorption data, Oswin equation was the best followed by the third order polynomial, GAB, Smith, Chung-Pfost, and Henderson models. The monolayer moisture content was higher for desorption than adsorption and tend to decrease with the increase in temperature. Given the temperature dependence of the sorption isotherms the isosteric heats of sorption were calculated using Claussius-Clapeyron equation. The net isosteric heats decreased as the moisture content was increased and heats of desorption were greater than that of adsorption. PMID:25328208

  1. [Adsorption mechanism of furfural onto modified rice husk charcoals].

    PubMed

    Deng, Yong; Wang, Xianhua; Li, Yunchao; Shao, Jing'ai; Yang, Haiping; Chen, Hanping

    2015-10-01

    To evaluate the absorptive characteristics of furfural onto biomass charcoals derived from rice husk pyrolysis, we studied the information of the structure and surface chemistry properties of the rice husk charcoals modified by thermal treatment under nitrogen and carbon dioxide flow and adsorption mechanism of furfural. The modified samples are labeled as RH-N2 and RH-CO2. Fresh rice husk charcoal sample (RH-450) and modified samples were characterized by elemental analysis, nitrogen adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and Boehm titration. The results show that fresh rice husk charcoal obtained at 450 degrees C had a large number of organic groups on its surface and poor pore structure. After the modification under nitrogen and carbon dioxide flow, oxygenic organics in rice husk charcoals decompose further, leading to the reduction of acidic functional groups on charcoals surface, and the increase of the pyrone structures of the basic groups. Meanwhile, pore structure was improved significantly and the surface area was increased, especially for the micropores. This resulted in the increase of π-π dispersion between the surfaces of rice husk charcoals and furfural molecular. With making comprehensive consideration of π-π dispersion and pore structure, the best removal efficiency of furfural was obtained by rice husk charcoal modified under carbon dioxide flow. PMID:26964338

  2. Fruit waste adsorbent for ammonia nitrogen removal from synthetic solution: Isotherms and kinetics

    NASA Astrophysics Data System (ADS)

    Zahrim, AY; Lija, Y.; Ricky, L. N. S.; Azreen, I.

    2016-06-01

    In this study, four types of watermelon rind (WR) adsorbents; fresh WR, modified WR with sodium hydroxide (NaOH), potassium hydroxide (KOH) and sulphuric acid (H2SO4) were used as a potential low-cost adsorbent to remove NH3-N from solution. The adsorption data were fitted with the adsorption isotherm and kinetic models to predict the mechanisms and kinetic characteristics of the adsorption process. The equilibrium data agreed well with Langmuir isotherm model with highest correlation (R2=1.00). As for kinetic modelling, the adsorption process follows pseudo-second order for all four types of adsorbents which has R2 value of 1.0 and calculated adsorption capacity, Qe of 1.2148mg/g. The calculated Qe for pseudo-second order has the smallest difference with the experimental Qe and thus suggest that this adsorption process is mainly governed by chemical process involving cations sharing or exchange between WR adsorbent and NH3-N in the solution.

  3. Moisture sorption isotherms and thermodynamic properties of mexican mennonite-style cheese.

    PubMed

    Martinez-Monteagudo, Sergio I; Salais-Fierro, Fabiola

    2014-10-01

    Moisture adsorption isotherms of fresh and ripened Mexican Mennonite-style cheese were investigated using the static gravimetric method at 4, 8, and 12 °C in a water activity range (aw) of 0.08-0.96. These isotherms were modeled using GAB, BET, Oswin and Halsey equations through weighed non-linear regression. All isotherms were sigmoid in shape, showing a type II BET isotherm, and the data were best described by GAB model. GAB model coefficients revealed that water adsorption by cheese matrix is a multilayer process characterized by molecules that are strongly bound in the monolayer and molecules that are slightly structured in a multilayer. Using the GAB model, it was possible to estimate thermodynamic functions (net isosteric heat, differential entropy, integral enthalpy and entropy, and enthalpy-entropy compensation) as function of moisture content. For both samples, the isosteric heat and differential entropy decreased with moisture content in exponential fashion. The integral enthalpy gradually decreased with increasing moisture content after reached a maximum value, while the integral entropy decreased with increasing moisture content after reached a minimum value. A linear compensation was found between integral enthalpy and entropy suggesting enthalpy controlled adsorption. Determination of moisture content and aw relationship yields to important information of controlling the ripening, drying and storage operations as well as understanding of the water state within a cheese matrix. PMID:25328178

  4. Adsorption studies of methylene blue dye on tunisian activated lignin

    NASA Astrophysics Data System (ADS)

    Kriaa, A.; Hamdi, N.; Srasra, E.

    2011-02-01

    Activated carbon prepared from natural lignin, providing from a geological deposit, was used as the adsorbent for the removal of methylene blue (MB) dye from aqueous solutions. Batch adsorption studies were conducted to evaluate various experimental parameters like pH and contact time for the removal of this dye. Effective pH for MB removal was 11. Kinetic study showed that the adsorption of dye was gradual process. Quasi equilibrium reached in 4 h. Pseudo-first-order, pseudo-second-order were used to fit the experimental data. Pseudo-second-order rate equation was able to provide realistic description of adsorption kinetics. The experimental isotherms data were also modelled by the Langmuir and Freundlich equation of adsorption. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 147 mg/g. Activated lignin was shown to be a promising material for adsorption of MB from aqueous solutions.

  5. Random sequential adsorption on fractals

    NASA Astrophysics Data System (ADS)

    Ciesla, Michal; Barbasz, Jakub

    2012-07-01

    Irreversible adsorption of spheres on flat collectors having dimension d < 2 is studied. Molecules are adsorbed on Sierpinski's triangle and carpet-like fractals (1 < d < 2), and on general Cantor set (d < 1). Adsorption process is modeled numerically using random sequential adsorption (RSA) algorithm. The paper concentrates on measurement of fundamental properties of coverages, i.e., maximal random coverage ratio and density autocorrelation function, as well as RSA kinetics. Obtained results allow to improve phenomenological relation between maximal random coverage ratio and collector dimension. Moreover, simulations show that, in general, most of known dimensional properties of adsorbed monolayers are valid for non-integer dimensions.

  6. Random sequential adsorption on fractals.

    PubMed

    Ciesla, Michal; Barbasz, Jakub

    2012-07-28

    Irreversible adsorption of spheres on flat collectors having dimension d < 2 is studied. Molecules are adsorbed on Sierpinski's triangle and carpet-like fractals (1 < d < 2), and on general Cantor set (d < 1). Adsorption process is modeled numerically using random sequential adsorption (RSA) algorithm. The paper concentrates on measurement of fundamental properties of coverages, i.e., maximal random coverage ratio and density autocorrelation function, as well as RSA kinetics. Obtained results allow to improve phenomenological relation between maximal random coverage ratio and collector dimension. Moreover, simulations show that, in general, most of known dimensional properties of adsorbed monolayers are valid for non-integer dimensions. PMID:22852643

  7. Computer Modeling of Non-Isothermal Crystallization

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Narayan, K. Lakshmi; Levine, L. E.; Cull, T. C.; Ray, C. S.

    1996-01-01

    A realistic computer model for simulating isothermal and non-isothermal phase transformations proceeding by homogeneous and heterogeneous nucleation and interface-limited growth is presented. A new treatment for particle size effects on the crystallization kinetics is developed and is incorporated into the numerical model. Time-dependent nucleation rates, size-dependent growth rates, and surface crystallization are also included. Model predictions are compared with experimental measurements of DSC/DTA peak parameters for the crystallization of lithium disilicate glass as a function of particle size, Pt doping levels, and water content. The quantitative agreement that is demonstrated indicates that the numerical model can be used to extract key kinetic data from easily obtained calorimetric data. The model can also be used to probe nucleation and growth behavior in regimes that are otherwise inaccessible. Based on a fit to data, an earlier prediction that the time-dependent nucleation rate in a DSC/DTA scan can rise above the steady-state value at a temperature higher than the peak in the steady-state rate is demonstrated.

  8. The adsorption/desorption of phosphorus in freshwater sediments from buffer zones: the effects of sediment concentration and pH.

    PubMed

    Zhang, Liang; Du, Yun; Du, Chao; Xu, Meng; Loáiciga, Hugo A

    2016-01-01

    Riparian buffer zones adjacent to reservoirs and lakes protect aquatic ecosystems from polluted surface runoff. Sediments, collected from the buffer zones of Danjiangkou Reservoir (SR) and Honghu Lake (SL) in an ecologically fragile region in central China, were evaluated to reveal their phosphorus-adsorbing/desorbing properties and storage capacities. A nonlinear regression method was used to fit the pseudo-second-order kinetic and the modified crossover-type Langmuir isotherm models to the experimental data. It is shown that the adsorption of phosphorus onto the studied sediments followed the pseudo-second-order kinetic expression. The modified crossover-type Langmuir isotherm model was found to be a suitable method for describing adsorption/desorption processes in the experimental sediments. The maximum adsorption capacities (Q m), partitioning coefficients (K p), native adsorbed exchangeable phosphorus (NAP), and equilibrium phosphorus concentration (EPC0) were subsequently obtained for the experimental sediments. The effects of sediment concentration and pH were also investigated by batch experiments and Fourier transformation infrared and scanning electron microscopy analyses. The adsorption/desorption characteristics of different phosphate species on the sediments from reservoir and lake buffer zones were identified. PMID:26638155

  9. Adsorption of sodium lauryl sulfate onto arsenic-bearing ferrihydrite.

    PubMed

    Quan, C; Khoe, G; Bagster, D

    2001-02-01

    Ferrihydrite is an excellent adsorbent for binding trace toxic contaminants such as arsenic, and precipitate flotation of the arsenic-bearing ferrihydrite has been studied. Anionic surfactants such as sodium lauryl sulfate (SLS) and sodium oleate (NaOL) are suitable collectors for the flotation. The adsorption of SLS both alone and after the subsequent addition of NaOL on these precipitates at pH 4-5 was measured. It has been shown that the synergistic effect of the two surfactants on flotation is dependent on their addition order. The presence of NaOL before SLS in the conditioning stage can prevent the adsorption of SLS because of the electrostatic shielding of adsorption sites on the precipitates. The post addition of NaOL to the SLS-bearing precipitates can promote the flocculation of the precipitates and enhance entrainment of SLS for better flotation. The SLS adsorption data fit better with the modified Frumkin isotherm than the Langmuir isotherm. Thermodynamic parameters (-delta Gads0,delta Hads0, and delta Sads0) have been derived from the analysis of the adsorption isotherms. The results suggest that the adsorption of SLS on AFH is physical and exothermic. PMID:11229002

  10. Adsorption of naphthalene onto sonicated talc from aqueous solutions.

    PubMed

    Sener, Savaş; Ozyilmaz, Azat

    2010-06-01

    The adsorption behavior of naphthalene onto naturally hydrophobic talc from aqueous solution was investigated in this study. The natural talc was first pretreated by sonication to improve the surface characteristics and enhance the uptake capacity by increasing the specific surface area (SSA) of talc. The naphthalene uptake of talc was found as 276 mg g(-1) and increased to 359 mg g(-1) after the sonication. Adsorption studies also showed that the adsorption of naphthalene onto the sonicated talc was not affected by changes in pH suggesting that the main driving forces for naphthalene adsorption onto talc was hydrophobic bonding rather than electrostatic force. The pseudo-first and pseudo-second orders and intraparticle diffusion equation were used to evaluate the kinetic data and the constants were determined. Adsorption process of naphthalene onto talc followed the pseudo-second-order rate expression for different initial naphthalene concentrations. The Langmuir and Freundlich isotherm models were used to model the isotherm data for their applicability. The Freundlich isotherm best fitted for the adsorption of naphthalene onto talc. PMID:20163977

  11. Modeling and fixed bed column adsorption of As(V) on laterite soil.

    PubMed

    Maji, Sanjoy K; Pal, Anjali; Pal, Tarasankar; Adak, Asok

    2007-09-01

    Laterite soil, an abundant locally available natural adsorbent, has been evaluated for As(V) removal from aqueous solutions in column mode operation. The column studies were conducted using columns of 10, 20, 30 cm bed depth with 2 cm internal diameter. Initial As(V) concentration was 0.5 mg/L and flow rate was 7.75 mL/min. Bohart and Adams sorption model was employed for the determination of different parameters like height of exchange zone, adsorption rate, time required for exchange zone to move, and the adsorption capacity. Effect of flow rate and initial concentration was studied. The adsorption capacity of the laterite soil for 0.5 mg/L of As(V) was found to be 62.32 mg/L, and the adsorption rate constant was 1.0911 L/mg h for the minimum bed depth of 8.47 cm. The column was designed by the BDST model. Freundlich isotherm model was used to compare the theoretical and experimental breakthrough profile in the dynamic process. The bed saturation obtained was 36-80%. Regeneration of the exhausted column was possible with 1M NaOH. PMID:17849300

  12. Adsorption of crystal violet with diatomite earth&carbon by a modification of hydrothermal carbonization process.

    PubMed

    Zhang, Yanzhuo; Li, Jun; Chen, Guanghui; Bian, Wei; Lu, Yun; Li, Wenjing; Zheng, Zhaoming; Cheng, Xiaojie

    2016-01-01

    The high colority and difficulty of decolorization are the most important tasks on printing and dyeing wastewater. This study investigates the ability of diatomite earth&carbon (DE&C) as an adsorbent to removal crystal violet (CV) from aqueous solutions. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of CV. The obtained N2 adsorption-desorption isotherm values accord with well IUPAC type II. Our calculations determined a surface area of 73.15 m(2) g(-1) for DE&C and an average pore diameter of 10.56 nm. Equilibrium data of the adsorption process fitted very well to the Langmuir model (R(2) > 0.99). The results of kinetics study showed that the pseudo-second-order model fitted to the experimental data well. The thermodynamic parameters were also evaluated. ΔH° <0, ΔS° > 0 and ΔG° < 0 demonstrated that the adsorption process was spontaneous and exothermic for dye. Furthermore the positive value of ΔS° reflected good affinity of the CV dye. PMID:27003089

  13. Chitosan hydrogel beads impregnated with hexadecylamine for improved reactive blue 4 adsorption.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2016-02-10

    Adsorption performance of chitosan (CS) hydrogel beads was investigated after impregnation of CS with hexadecylamine (HDA) as a cationic surfactant, for the elimination of reactive blue 4 (RB4) from wastewater. The CS/HDA beads formed with 3.8% HDA were the most effective adsorbent. The adsorption capacity was increased by 1.43 times from 317 mg/g (CS) to 454 mg/g (CS/HDA). The RB4 removal increased with decrease in the pH of dye solution from 4 to 9. The isotherm data obtained from RB4 adsorption on CS and CS/HDA are adequately described by Freundlich model (R(2)=0.946 and 0.934, χ(2)=22.414 and 64.761). The kinetic study revealed that the pseudo-second-order rate model (R(2)=0.996 and 0.997) was in better agreement with the experimental data. The negative values of ΔG° (-2.28 and -6.30 kJ/mol) and ΔH° (-172.18 and -101.62 kJ/mol) for CS beads and HDA modified CS beads, respectively; suggested a spontaneous and exothermic process for RB4 adsorption. PMID:26686114

  14. Adsorption of organic compounds from aqueous solution onto the synthesized zeolite.

    PubMed

    Tsai, Wen-Tien; Hsien, Kuo-Jong; Hsu, Hsin-Chieh

    2009-07-30

    A novel zeolite was synthesized, characterized and employed for the adsorption of methylene blue (cationic dye) and bisphenol-A in aqueous solution. The pore properties of the synthesized zeolite have been determined using N(2) adsorption-desorption isotherms, indicating that it is a supermicroporous adsorbent with BET surface area of over 400 m(2)g(-1). Based on the XRD image, it was indicative of the probable formation of zeolite-P2 in the hydrothermal synthesis. The metal content and zeta-potential of the zeolite were also measured to examine the hydrophilicity and the effect of pH on the surface charge, respectively. It was found that the synthesized zeolite exhibited significantly higher adsorption capacity for methylene blue than that for bisphenol-A due to the difference in molecular properties. Kinetic studies at 25 degrees C indicated that the adsorption of methylene blue well followed the pseudo-second-order model and could be elucidated by considering the pore property and surface charge of the synthesized zeolite. The kinetic parameters thus obtained from the fittings of the model were dependent on initial dye concentration, pH, and adsorbent mass. PMID:19135794

  15. Nitrate adsorption from aqueous solution using granular chitosan-Fe3+ complex

    NASA Astrophysics Data System (ADS)

    Hu, Qili; Chen, Nan; Feng, Chuanping; Hu, WeiWu

    2015-08-01

    In the present study, In order to efficiently remove nitrate, granular chitosan-Fe3+ complex with high chemical stability and good environmental adaptation was synthesized through precipitation method and characterized using SEM, XRD, BET and FTIR. The nitrate adsorption performance was evaluated by batch experiments. The results indicated that granular chitosan-Fe3+ complex was an amorphous and mesoporous material. The BET specific surface area and average pore size were 8.98 m2 g-1 and 56.94 Å, respectively. The point of zero charge was obtained at pH 5. The maximum adsorption capacity reached 8.35 mg NO3--N g-1 based on Langmuir-Freundlich model. Moreover, no significant change in the nitrate removal efficiency was observed in the pH range of 3.0-10.0. The adverse influence of sulphate on nitrate removal was the most significant, followed by bicarbonate and fluoride, whereas chloride had slightly adverse effect. Adsorption process followed the pseudo-second-order kinetic model, and the experimental equilibrium data were fitted well with the Langmuir-Freundlich and D-R isotherm models. Thermodynamic parameters revealed that nitrate adsorption was a spontaneous and exothermic process. Granular chitosan-Fe3+ complex could be effectively regenerated by NaCl solution.

  16. Adsorption of a multicomponent rhamnolipid surfactant to soil

    SciTech Connect

    Noordmann, W.H.; Brusseau, M.L.; Janssen, D.B.

    2000-03-01

    The adsorption of rhamnolipid, a multicomponent biosurfactant with potential application in soil remediation, to two sandy soils was investigated using batch and column studies. The surfactant mixture contained six anionic components differing in lipid chain length and number of rhamnose moieties. Batch adsorption experiments indicated that the overall adsorption isotherms of total surfactant and of the individual components leveled off above a concentration at which micelles were formed. Column experiments showed that the retardation factors for the total surfactant and for the individual components decreased with increasing influent concentration. Extended tailing was observed in the distal portion of the surfactant breakthrough curve. The concentration-dependent retardation factors and the extended tailing are in accordance with the nonlinear (concave) adsorption isotherms found in the batch adsorption studies. The more hydrophobic rhamnolipid components were preferentially adsorbed, but adsorption was not correlated with the organic carbon content of the soil. This suggests that adsorption of rhamnolipid to soil is not a partitioning process but mainly an interfacial adsorption process.

  17. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor

    SciTech Connect

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.

    2009-06-01

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  18. Kink Wave Propagation in Thin Isothermal Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Lopin, I. P.; Nagorny, I. G.; Nippolainen, E.

    2014-08-01

    We investigated the propagation of kink waves in thin and isothermal expanding flux tubes in cylindrical geometry. By using the method of radial expansion for fluctuating variables we obtained a new kink wave equation. We show that including the radial component of the tube magnetic field leads to cutoff-free propagation of kink waves along thin flux tubes.

  19. Modeling isothermal and non-isothermal flows in porous media

    NASA Astrophysics Data System (ADS)

    Mohseni Languri, Ehsan

    2011-12-01

    solutions obtained after applying the stress-continuity and stress-jump boundary conditions are found to work well at low porosities, which is in contradiction with the results achieved earlier by other researchers. The traditional approach of using averaged equations in the regions of sharp gradients in porous media to describe flow and transport is theoretically untenable and perhaps inaccurate. A novel ensemble averaging method is being proposed to test the accuracy of the volume averaged or smoothed description of flows in porous media in the regions of sharp gradients. In the new method, the flow in a certain arrangement of particles (called a realization) is averaged using a small unit cell, much smaller than the REV. Then such an averaged flow variable is further averaged over a whole gamut of randomly-generated particle realizations. First the accuracy of the ensemble averaging method was tested by comparing the permeability of an artificially generated porous medium obtained by the proposed method against the permeability predicted by some established theoretical models of permeability. The proposed method was found to be quite accurate. Later the ensemble average method was applied to the open-channel porous-medium interface region characterized by a sharp gradient in the flow velocities. It was discovered that the volume averaged description of such flows, characterized by the use of the Brinkman equation along with the stress-continuity and stress-jump conditions, is quite accurate for a range of Reynolds numbers. The non-isothermal transport during flow in porous media is examined next. The main focus in this area of research is the thermal dispersion term found in the heat transfer equation for single- and dual-scale porous media. Most of the previous efforts on modeling the heat transfer phenomena in porous media were devoted to isotropic porous media. However, for the anisotropic porous media widely in many industrial applications, not much research on the

  20. Kinetic studies of the sucrose adsorption onto an alumina interface

    NASA Astrophysics Data System (ADS)

    Singh, Kaman; Mohan, Sudhanshu

    2004-01-01

    An account is given of an experimental kinetic study of adsorption of analar reagent sucrose (ARS) onto an alumina interface spectrometrically ( λmax=570 nm) at pH 8.0 and at room temperature. The adsorption isotherm is a typical Langmuirian isotherm (S-type) and adsorption parameters have been deduced according to the Langmuir's model. The adsorption coefficient evaluated from the Langmuir's equation was found to be 2.52×10 2 l mol -1. Adsorption mechanism has been interpreted on the basis of metal-saccharide interaction as found in organometallic compounds and interaction due to negatively charged ends on the disaccharide molecules and positively charge groups on the surface on alumina which depends on the pH value. The effects of variation in experimental conditions of the adsorption system have also been investigated. The adsorption exhibited a typical response to the pH effect and on going towards the PZC the net charge decreases and any reaction making dependence on charge and maximum adsorption (amount) was found near the isoelectric point of alumina (pH 9.0). The presence of ions like Cl -, SO 42- and PO 43- affect the adsorbed amount quantitatively and it seems that these anions compete with sucrose for the positively charged surface sites. The addition of similar concentration of cations was found to reduce the adsorbed amount. The temperature was found to have an inverse effect on adsorption. The additions of catonic and anionic detergents influence both the adsorbed amount and the adsorption rate. The thermodynamics of the titled adsorption model indicates the spontaneous and exothermic nature. The negative value of entropy is an indication of probability of favorable and complex nature of the adsorption.

  1. Characterization and adsorption performance of Pb(II) on CuO nanorods synthesized by the hydrothermal method

    SciTech Connect

    Arfaoui, Lobna; Kouass, Salah; Dhaouadi, Hassouna; Jebali, Raouf; Touati, Fathi

    2015-10-15

    Highlights: • The nanorods of CuO were synthesized by a hydrothermal route without any surfactant. • X-ray diffraction showed monoclinic structure with space group C{sub 2/c}. • The nanorods show relatively high adsorption capacity for the removal of Pb(II). • The adsorption kinetics could be fitted well by the pseudo-second-order model. • The equilibrium data can be fitted well using the Langmuir isotherm model - Abstract: Copper oxide (CuO) nanorods were synthesized by hydrothermal method. The detailed structural, compositional and optical characterization of this material was also evaluated with XRD, FT-IR, EDS, and UV–vis spectroscopy, which confirmed that the obtained nanorods are well-crystallized CuO and possess good optical properties. SEM and TEM studies revealed that the as-synthesized CuO nanorods are uniform with an average diameter of 17 nm. The adsorption activity of the CuO nanostructures was studied. The adsorption results showed that the CuO nanorods are an effective and efficient adsorbent for the removal of Pb(II) ions. The influence of various operational parameters such as the pH of the solution, the contact time and the initial concentrations were also studied and the results were discussed. The estimated maximum lead ion adsorption capacity of the CuO nanorods was found to be 188.67 mg g{sup −1} at an optimum pH of 6.

  2. Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties.

    PubMed

    Han, Yanxue; Boateng, Akwasi A; Qi, Phoebe X; Lima, Isabel M; Chang, Jianmin

    2013-03-30

    In this work, the surface structures of biochars, derived from three types of biomass, switchgrass (SG), hardwood (HW) and softwood (SW) through either fast pyrolysis (FP) in a fluidized-bed reactor (at 500 °C) or slow pyrolysis (at 500° and 700 °C), were studied in detail, and compared with that of the activated carbons obtained by steam activation of the slow pyrolyzed biochars (at 500 °C). The surface acidic functional groups were determined quantitatively by the Boehm Titration method. The adsorptive properties of heavy metals, Zn(2+) and Cu(2+) onto the biochars and the activated carbons were investigated by the adsorption isotherms and SEM images, and correlated with the surface properties. ATR-FTIR and GC techniques were used to analyze the adsorptive behavior of phenol onto the biochars and activated carbons, and the results demonstrated that phenol adsorption capability is directly proportional to the micropore surface area as well as the combined level of the accessible carboxylic and lactonic groups. The relative adsorption capacity with respect to the biomass precursor follows the order: SW > HW > SG. PMID:23454371

  3. Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption.

    PubMed

    Mahdavinia, Gholam Reza; Mousanezhad, Sedigheh; Hosseinzadeh, Hamed; Darvishi, Farshad; Sabzi, Mohammad

    2016-08-20

    In this study double physically crosslinked magnetic hydrogel beads were developed by a simple method including solution mixing of sodium alginate and poly(vinyl alcohol) (PVA) containing magnetic laponite RD (Rapid Dispersion). Sodium alginate and PVA were physically crosslinked by Ca(2+) and freezing-thawing cycles, respectively. Magnetic laponite RD nanoparticles were incorporated into the system to create magnetic response and strengthen the hydrogels. All hybrids double physically crosslinked hydrogel beads were stable under different pH values without any disintegration. Furthermore, adsorption of bovine serum albumin (BSA) on the hydrogel beads was investigated on the subject of pH, ion strength, initial BSA concentration, and temperature. Nanocomposite beads exhibited maximum adsorption capacity for BSA at pH=4.5. The experimental adsorption isotherm data were well followed Langmuir model and based on this model the maximum adsorption capacity was obtained 127.3mgg(-1) at 308K. Thermodynamic parameters revealed spontaneous and monolayer adsorption of BSA on magnetic nanocomposites beads. PMID:27178944

  4. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: Process optimization, kinetics and equilibrium

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-01

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs = 34.10 μM, T = 50 °C, pH = 3.5, and CCR = 160 mg/L for the congo red system, and Cs = 34.10 μM, T = 50 °C, pH = 6.1, and CDR80 = 110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model.

  5. Novel sandwich structure adsorptive membranes for removal of 4-nitrotoluene from water.

    PubMed

    Guo, Yuexin; Jia, Zhiqian

    2016-11-01

    Novel sandwich PES-SPES/PS-PDVB/PTFE adsorptive membranes were prepared by a filtration/immersion precipitation method and employed for the removal of 4-nitrotoluene from water. The static adsorption thermodynamics, kinetics, dynamic adsorption/desorption and membrane reusability were investigated. The results showed that the Freundlich model describes the adsorption isotherm satisfactorily. With increased PS-PDVB content, the maximum static adsorption capacity, partition coefficient, apparent adsorption rate constant, and dynamic adsorption capacity all significantly increased. The sandwich membranes showed much higher removal efficiency and adsorption capacity than those of mixed matrix membranes. With respect to dynamics adsorption/desorption, the sandwich membranes exhibited excellent reusability, with a removal efficiency greater than 95% even after five recycles. PMID:27322899

  6. Tetracycline-loaded biomimetic apatite: an adsorption study.

    PubMed

    Cazalbou, Sophie; Bertrand, Ghislaine; Drouet, Christophe

    2015-02-19

    Biomimetic apatites are appealing compounds for the elaboration of bioactive bone-repair scaffolds due to their intrinsic similarity to bone mineral. Bone surgeries are however often heavy procedures, and the infiltration of pathogens may not be totally avoided. To prevent their development, systemic antibiotic prophylaxis is widespread but does not specifically target surgical sites and involves doses not always optimized. A relevant alternative is a preliminary functionalization by an infection-fighting agent. In this work, we investigated from a physicochemical viewpoint the association of a wide-spectrum antibiotic, tetracycline (TC), and a biomimetic nanocrystalline apatite previously characterized. TC adsorption kinetics and isotherm were thoroughly explored. Kinetic data were fitted to various models (pseudo-first-order, pseudo-second-order, general kinetic model of order n, Elovich, double-exponential, and purely diffusive models). The best fit was found for a double-exponential kinetic model or with a decimal reaction order of 1.4, highlighting a complex process with such TC molecules which do not expose high-affinity end groups for the surface of apatite. The adsorption isotherm was perfectly fitted to the Sips (Langmuir-Freundlich) model, while other models failed to describe it, and the Sips exponent greater than unity (1.08) suggested a joint impact of surface heterogeneity and positive cooperativity between adsorbed molecules. Finally, preliminary insights on TC release from pelletized nanocrystalline apatite, in aqueous medium and neutral pH, were obtained using a recirculation cell, indicating a release profile mainly following a Higuchi-like diffusion-limited rate. This work is intended to shed more light on the interaction between polar molecules not exhibiting high-affinity end groups and biomimetic apatites and is a starting point in view of the elaboration of biomimetic apatite-based bone scaffolds functionalized with polar organic drugs for a

  7. Characteristics of rapeseed oil cake using nitrogen adsorption

    NASA Astrophysics Data System (ADS)

    Sokołowska, Z.; Bowanko, G.; Boguta, P.; Tys, J.; Skiba, K.

    2013-09-01

    Adsorption of nitrogen on the rapeseed oil cake and rapeseed oil cake with wheat meal extrudates was investigated. The results are presented as adsorption-desorption isotherms. The Brunauer-Emmet and Teller equation was used to analyse the experimental sorption data. To obtain estimates of the surface area and surface fractal dimension, the sorption isotherms were analyzed using the Brunauer-Emmet and Teller and Frenkel-Halsey-Hill equations. Mesopore analysis was carried out using the Dollimore and Heal method. The properties and surface characteristic of rapeseed oil cake extrudates are related to different basic properties of particular samples and duration of the extrusion process. Extrusion conditions lead to essential differences in particular products. For all kinds of rapeseed oil cakes the amount of adsorbed nitrogen was different, but for the rapeseed oil cake extrudates a large amount of adsorbed nitrogenwas observed. The average surface area of the rapeseed oil cake extrudates was about 6.5-7.0 m2 g-1, whereas it was equal to about 4.0-6.0 m2 g-1 for rapeseed oil cake with the wheat meal extrudates. In the case of non-extruded rapeseed oil cake and wheat meal, the dominant group included ca. 2 and 5 nmpores. The values of surface fractal dimension suggested that the surface of the extrudates was more homogenous than that of the raw material. Duration of the extrusion process to 80 s resulted in a decrease in the specific surface area, surface fractal dimension, and porosity of the extrudates.

  8. Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres.

    PubMed

    Fu, Jianwei; Xin, Qianqian; Wu, Xuechen; Chen, Zhonghui; Yan, Ya; Liu, Shujun; Wang, Minghuan; Xu, Qun

    2016-01-01

    Polydopamine (PDA) microspheres, synthesized by a facile oxidation polymerization route, were evaluated as a potential adsorbent for selective adsorption and separation of organic dyes. The adsorption processes towards nine water-soluble dyes (anionic dyes: methyl orange (MO), eosin-Y (EY), eosin-B (EB), acid chrome blue K (ACBK), neutral dye: neutral red (NR), and cationic dyes: rhodamine B (RhB), malachite green (MG), methylene blue (MB), safranine T (ST)) were thoroughly investigated. The adsorption selectivity of organic dyes onto PDA microspheres was successfully applied for the separation of dyes mixtures. Various influential factors such as solution pH, temperature, and contact time were employed to ascertain the optimal condition for adsorption of representative organic dyes including MB, MG and NR. The pseudo-first-order and pseudo-second-order kinetics models were used to fit the adsorption kinetics process. Five isothermal adsorption models (Langmuir, Dubnin-Radushkevich, Temkin, Freundlich and Harkins-Jura) were used to investigate the adsorption thermodynamics properties. The results showed that the PDA microspheres owned good selective adsorption ability towards cationic dyes. The adsorption kinetics process conformed to the pseudo-second-order kinetics model and the Langmuir isotherm model was more appropriate for tracing the adsorption behavior than other isotherm models. Thus, we can conclude PDA microspheres may be a high-efficiency selective adsorbent towards some cationic dyes. PMID:26407057

  9. Specific surface area effect on adsorption of chlorpyrifos and TCP by soils and modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adsorption of chlorpyrifos and TCP (3,5,6, trichloro-2-pyridinol) was determined in four soils (Mollisol, Inceptisol, Entisol, Alfisol) having different specific surface areas (19–84 m2/g) but rather similar organic matter content (2.4–3.5%). Adsorption isotherms were derived from batch equilibr...

  10. BORONATE AFFINITY ADSORPTION OF RNA: POSSIBLE ROLE OF CONFORMATIONAL CHANGES. (R825354)

    EPA Science Inventory

    Batch equilibrium adsorption isotherm determination is used to characterize the adsorption of mixed yeast RNA on agarose-immobilized m-aminophenylboronic acid. It is shown that the affinity-enhancing influence of divalent cations depends strongly on the precise nature of t...

  11. Using Compression Isotherms of Phospholipid Monolayers to Explore Critical Phenomena: A Biophysical Chemistry Experiment

    ERIC Educational Resources Information Center

    Gragson, Derek E.; Beaman, Dan; Porter, Rhiannon

    2008-01-01

    Two experiments are described in which students explore phase transitions and critical phenomena by obtaining compression isotherms of phospholipid monolayers using a Langmuir trough. Through relatively simple analysis of their data students gain a better understanding of compression isotherms, the application of the Clapeyron equation, the…

  12. Isothermal compressors for process gases

    SciTech Connect

    Wiederuh, E.; Meinhart, D. )

    1992-09-01

    This paper reports on isothermal compressors which are more efficient for all gases. The study of several representative gases considered stage efficiencies, pressure ratios and pressure losses of the intercoolers. Generally there are two ways to reduce power consumption of a gas compression process: minimize losses of the compressor or improve the thermodynamics of the process. But there are some new ways to reduce losses of turbocompressors. Losses of the impeller labyrinth seals and the balance piston labyrinth seal can be reduced by optimizing the labyrinth geometry and minimizing labyrinth clearances. Therefore, conventional labyrinth seals are still being studied and will be improved.

  13. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char.

    PubMed

    Nguyen, Thanh H; Cho, Hyun-Hee; Poster, Dianne L; Ball, William P

    2007-02-15

    Sorption isotherms for five aromatic hydrocarbons were obtained with a natural wood char (NC1) and its residue after solvent extraction (ENC1). Substantial isotherm nonlinearity was observed in all cases. ENC1 showed higher BET surface area, higher nitrogen-accessible micropore volume, and lower mass of extractable organic chemicals, including quantifiable polycyclic aromatic hydrocarbons (PAHs),while the two chars showed identical surface oxygen/ carbon (O/C) ratio. For two chlorinated benzenes that normally condense as liquids at the temperatures used, sorption isotherms with NC1 and ENC1 were found to be statistically identical. For the solid-phase compounds (1,4-dichlorobenzene (1,4-DCB) and two PAHs), sorption was statistically higher with ENC1, thus demonstrating sorption effects due to both (1) authigenic organic content in the sorbentand (2)the sorbate's condensed state. Polanyi-based isotherm modeling, pore size measurements, and comparisons with activated carbon showthe relative importance of adsorptive pore filling and help explain results. With both chars, maximum sorption increased in the order of decreasing molecular diameter: phenanthrene < naphthalene < 1,2-dichlorobenzene/1,2,4-trichlorobenzene < 1,4-DCB. Comparison of 1,4- and 1,2-DCB shows that the critical molecular diameter was apparently more important than the condensed state, suggesting that 1,4-DCB sorbed in the liquid state for ENC1. PMID:17593721

  14. Synthesis and application of Amberlite xad-4 functionalized with alizarin red-s for preconcentration and adsorption of rhodium (III)

    PubMed Central

    2012-01-01

    A new chelating resin was prepared by coupling Amberlite XAD-4 with alizarin red-s through an azo spacer, characterized by infra-red spectroscopy and thermal analysis and studied for Rh(III) preconcentration using inductively coupled plasma atomic emission spectroscopy (ICP-AES) for rhodium monitoring in the environment. The optimum pH for sorption of the metal ion was 6.5. The sorption capacity was found 2.1 mg/g of resin for Rh(III). A recovery of 88% was obtained for the metal ion with 1.5 M HCl as eluting agent. Kinetic adsorption data were analyzed by adsorption and desorption times of Rh(III) on modified resin. Scat chard analysis revealed that the homogeneous binding sites were formed in the polymers. The linear regression equation was Q/C = –1.3169Q + 27.222 (R2 = 0.9239), for Rh were formed in the SPE sorbent,Kd and Qmax for the affinity binding sites were calculated to be 0.76 μmol/mL and 20.67 μmol/g, respectively. The equilibrium data and parameters of Rh(III) adsorption on modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich–Peterson models. The experimental adsorption isotherm was in good concordance with Langmuir and Freundlich models (R2 > 0.998) and based on the Langmuir isotherm the maximum amount of adsorption (qmax) was 4.842 mg/g. The method was applied for rhodium ions determination in environmental samples. with high recovery (>80%). PMID:23369526

  15. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite

    NASA Astrophysics Data System (ADS)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-12-01

    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  16. Comparison of Fe-Al-modified natural materials by an electrochemical method and chemical precipitation for the adsorption of F- and As(V).

    PubMed

    Vázquez Mejía, G; Martínez-Miranda, V; Fall, C; Linares-Hernández, I; Solache-Ríos, M

    2016-01-01

    The adsorption of fluoride and arsenic ions by modified natural materials may have an impact on the removal of F- and As(V) from waters. In this work, a zeolitic material and pozzolan (commonly known as pumicite) were modified with aluminium an iron by an electrochemical method and chemical precipitation, respectively. The adsorbents were characterized by X-ray diffraction, scanning electron microscopy with energy X-ray disperse spectroscopy analysis and the point of zero charge (pHzpc). F- and As(V) adsorption properties of both materials were investigated. Adsorption kinetic data were best fitted to pseudo-second-order model and equilibrium data to the Langmuir isotherm model. The highest F- and As(V) sorption capacities were obtained for modified zeolitic (0.866 mg/g) and pozzolan (3.35 mg/g) materials, respectively, with initial F- or As(V) concentrations of 10 mg/L. It was found that the unmodified materials did not show either adsorption of F- ions or As(V), which indicated that Al and Fe in the adsorbents are responsible for the adsorption of these ions. In general, both modified materials show similar capacities for the adsorption of F- and As(V). PMID:26362939

  17. Molecular properties and intermolecular forces--factors balancing the effect of carbon surface chemistry in adsorption of organics from dilute aqueous solutions.

    PubMed

    Terzyk, Artur P

    2004-07-01

    Presented paper recapitulates the results of 6 years' study concerning the effect of carbon surface chemical composition on adsorption of paracetamol, phenol, acetanilide, and aniline from dilute aqueous solutions on carbons. Adsorption-desorption isotherms, enthalpy, and kinetics of adsorption data are shown for the measurements performed at three temperatures (300, 310, and 320 K) at two pH levels (1.5 and 7) on commercial activated carbons. The data were obtained for four carbons: the initial carbon D43/1 and forms modified by applying concentrated HNO3, fuming H2SO4, and gaseous NH3. The modification procedures do not change the porosity in a drastic way, but lead to drastic changes of the composition of carbon surface layer. By applying MOPAC (a general-purpose semiempirical molecular orbital package), the physicochemical constants characterizing the molecules of adsorbates are calculated, including the distribution of the Mulliken charges, the dipole moments and ionization potentials, and the energies of interaction with the unique positive and negative charges. They are correlated with the parameters characterizing the adsorption (and kinetics) process of studied molecules on the mentioned above carbons. The mechanisms proposed in the literature for the description of adsorption from dilute aqueous solutions are verified, and a general mechanism of adsorption is proposed. PMID:15158374

  18. Determination of lead(II) sorption capacity of hazelnut shell and activated carbon obtained from hazelnut shell activated with ZnCl2.

    PubMed

    Şencan, Aziz; Karaboyacı, Mustafa; Kılıç, Mehmet

    2015-03-01

    This study aimed to determine the Pb(+2) adsorption capacities of hazelnut shell and activated carbon obtained from hazelnut shell. It also aimed to determine the effect of ZnCl2 in the activation process. The hazelnut was pyrolyzed at 250 and 700 °C. For determining the capture speed of the adsorbents, the pseudo-first- and second-order kinetic studies were performed. The Freundlich and Langmuir isotherm models were used to determine adsorption equilibrium. The surface characterization of hazelnut shell and activated carbon was determined by Brunauer-Emmett-Teller (BET) analysis and FTIR spectrum. Pb(+2) adsorption capacity of obtaining activated carbon was determined by ICP-OES analysis. The raw hazelnut shell's BET surface area is 5.92 m(2)/g and the surface area of activated carbons which is pyrolyzed at 250 and 700 °C were determined (270.2 and 686.7 m(2)/g, respectively. The surface area of hazelnut shell, which pyrolyzed at 700 °C after being activated with ZnCl2, was determined to be 736.49 m(2)/g. Results show that physical adsorption process is dominant for the activated carbon pyrolysis at 700 °C but the chemical adsorption is dominant for the activated carbon pyrolysis at lower degrees and for raw hazelnut shell. PMID:24801293

  19. Ethane adsorption on aggregates of dahlia-like nanohorns: experiments and computer simulations.

    PubMed

    Russell, Brice A; Migone, Aldo D; Petucci, Justin; Mercedes Calbi, M; Yudasaka, Masako; Iijima, Sumio

    2016-06-01

    This is a report on a study of the adsorption characteristics of ethane on aggregates of unopened dahlia-like carbon nanohorns. This sorbent presents two main groups of adsorption sites: the outside surface of individual nanohorns and deep, interstitial spaces between neighbouring nanohorns towards the interior of the aggregates. We have explored the equilibrium properties of the adsorbed ethane films by determining the adsorption isotherms and isosteric heat of adsorption. Computer simulations performed on different model structures indicate that the majority of ethane adsorption occurs on the outer region of the aggregates, near the ends of the nanohorns. We have also measured the kinetics of adsorption of ethane on this sorbent. The measurements and simulations were conducted along several isotherms spanning the range between 120 K and 220 K. PMID:27218414

  20. Correlating N2 and CH4 adsorption on microporous carbon using a new analytical model

    USGS Publications Warehouse

    Sun, Jielun; Chen, S.; Rood, M.J.; Rostam-Abadi, M.

    1998-01-01

    A new pore size distribution (PSD) model is developed to readily describe PSDs of microporous materials with an analytical expression. Results from this model can be used to calculate the corresponding adsorption isotherm to compare the calculated isotherm to the experimental isotherm. This aspect of the model provides another check on the validity of the model's results. The model is developed on the basis of a 3-D adsorption isotherm equation that is derived from statistical mechanical principles. Least-squares error minimization is used to solve the PSD without any preassumed distribution function. In comparison with several well-accepted analytical methods from the literature, this 3-D model offers a relatively realistic PSD description for select reference materials, including activated-carbon fibers. N2 and CH4 adsorption is correlated using the 3-D model for commercial carbons BPL and AX-21. Predicted CH4 adsorption isotherms at 296 K based on N2 adsorption at 77 K are in reasonable agreement with experimental CH4 isotherms. Use of the model is also described for characterizing PSDs of tire-derived activated carbons and coal-derived activated carbons for air-quality control applications.

  1. Statistical mechanical lattice models of endohedral and exohedral xenon adsorption in carbon nanotubes and comparison with Monte-Carlo simulations

    NASA Astrophysics Data System (ADS)

    Dunne, Lawrence J.; Manos, George; Rekabi, Mahdi

    2009-01-01

    Adsorption of xenon in carbon nanotubes has been investigated by Kuznetsova et al. [A. Kuznetsova, J.T. Yates Jr., J. Liu, R.E. Smalley, J. Chem. Phys. 112 (2000) 9590] and Simonyan et al. [V. Simonyan, J.K. Johnson, A Kuznetsova, J.T. Yates Jr., J. Chem. Phys. 114 (2001) 4180] where endohedral adsorption isotherms show a step-like structure. A matrix method is used for calculation of the statistical mechanics of a lattice model of xenon endohedral adsorption which reproduces the isotherm structure while exohedral adsorption is treated by mean-field theory.

  2. A pressure-amplifying framework material with negative gas adsorption transitions.

    PubMed

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M; Zander, Stefan; Pillai, Renjith S; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-21

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials. PMID:27049950

  3. A pressure-amplifying framework material with negative gas adsorption transitions

    NASA Astrophysics Data System (ADS)

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M.; Zander, Stefan; Pillai, Renjith S.; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-01

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers—or metal–organic frameworks (MOFs)—has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

  4. Polymer adsorption on platinum: surface coverage determination using iodide-125. [Polyethylene glycol terephthalate

    SciTech Connect

    Ellis, T.M.; Van de Mark, M.R.; mi, FL

    1981-10-01

    Adsorption of iodide-125, a ..gamma.. emitter, was used as a quantitative methodology for polymer adsorption surface coverage analysis. Adsorption of I-125 on clean platinum produced surface elemental ratios of I:Pt of 1:4. The technique was applied to the adsorption of polyethylene glycol terephthalate from trifluoroacetic acid on platinum flags with a 2-cm/sup 2/ surface area. This polymer adsorption is approximated by a logarithmic relationship similar to the Temkin isotherm. Polymer coverage attained up to 99.6% of the surface.

  5. Selective adsorption in two porous triazolate-oxalate-bridged antiferromagnetic metal-azolate frameworks obtained via in situ decarboxylation of 3-amino-1,2,4-triazole-5-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Hou, Juan-Juan; Xu, Xia; Jiang, Ning; Wu, Ya-Qin; Zhang, Xian-Ming

    2015-03-01

    Solvothermal reactions of metal salts, 3-amino-1,2,4-triazole-5-carboxylic acid (H2atzc) and ammonium oxalate in different temperature produced two metal azolate frameworks, namely, [Cu3(atzc)2(atz)(ox)]·1.5H2O (1) and [Co5(atz)4(ox)3(HCOO)2]·DMF (2) (H2atzc=3-amino-1,2,4-triazole-5-carboxylic acid, Hatz=3-amino-1,2,4-triazole, and ox=oxalate), in which the atzc precusor was in situ decarboxylated. Structural determination reveals that 1 contains [Cu3(atzc)2(atz)]2- layers of mixed μ4-atzc and μ3-atz ligands, which are pillared by ox2- groups to form a 3D porous framework. Compound 2 contains 2D layers with basic spindle-shaped decanuclear units, which extended by ox2- and formates to form 3D porous framework. Gas adsorption investigation revealed that two kinds of frameworks exhibited selective CO2 over N2 sorption. Moreover, activated 2 shows H2 storage capacity. Additionally, magnetic properties of both the compounds have been investigated.

  6. REMOVAL OF VOLATILE ORGANIC CONTAMINANTS FROM GROUND WATER BY ADSORPTION

    EPA Science Inventory

    Laboratory and field studies are underway to determine the effectiveness of activated carbon for removing volatile organic compounds from ground water. For fifteen C1 through C6 compounds being considered for possible regulatory action, the adsorption isotherm capacity ranges fro...

  7. The Extent of Reversibility of Polychlorinated Biphenyl Adsorption

    EPA Science Inventory

    The extent of reversibility of PCB bonding to sediments has been characterized in studies on the partitioning behavior of a hexachlorobiphenyl isomer. Linear non-singular isotherms have been observed for the adsorption and desorption of 2.4.5.2?,4?,5? hexachlorobiphenyl (HCBP) to...

  8. Water vapor adsorption on activated carbon preadsorbed with naphtalene.

    PubMed

    Zimny, T; Finqueneisel, G; Cossarutto, L; Weber, J V

    2005-05-01

    The adsorption of water vapor on a microporous activated carbon derived from the carbonization of coconut shell has been studied. Preadsorption of naphthalene was used as a tool to determine the location and the influence of the primary adsorbing centers within the porous structure of active carbon. The adsorption was studied in the pressure range p/p0=0-0.95 in a static water vapor system, allowing the investigation of both kinetic and equilibrium experimental data. Modeling of the isotherms using the modified equation of Do and Do was applied to determine the effect of preadsorption on the mechanism of adsorption. PMID:15797395

  9. Modeling of boldine alkaloid adsorption onto pure and propyl-sulfonic acid-modified mesoporous silicas. A comparative study.

    PubMed

    Geszke-Moritz, Małgorzata; Moritz, Michał

    2016-12-01

    The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8kJ/mol). PMID:27612776

  10. Adsorption of ferrous ions onto montmorillonites

    NASA Astrophysics Data System (ADS)

    Qin, Dawei; Niu, Xia; Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao

    2015-04-01

    The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe2+/Fetotal ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG0 and ΔH0 were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  11. Comparative Study of Water Adsorption on a H(+) and K(+) Ion Exposed Mica Surface: Monte Carlo Simulation Study.

    PubMed

    Debbarma, Rousan; Malani, Ateeque

    2016-02-01

    Clay minerals are used in variety of applications ranging from composites to electronic devices. For their efficient use in such areas, understanding the effect of surface-active agents on interfacial properties is essential. We investigated the role of surface ions in the adsorption of water molecules by using a muscovite mica surface populated with two different, H(+) and K(+), surface ions. A series of grand canonical Monte Carlo (GCMC) simulations at various relative vapor pressures (p/p0) were performed to obtain the water structure and adsorption isotherm on the H(+)-exposed mica (H-mica) surface. The obtained results were compared to the recent simulation data of water adsorption on the K(+)-exposed mica (K-mica) surface reported by Malani and Ayyappa (Malani, A.; Ayappa, K. G. J. Phys. Chem. B 2009, 113, 1058-1067). Water molecules formed two prominent layers adjacent to the H-mica surface, whereas molecular layering was observed adjacent to the K-mica surface. The adsorption isotherm of water on the K-mica surface was characterized by three stages that corresponded to rapid adsorption in the initial regime below p/p0 = 0.1, followed by a linear development regime for p/p0 = 0.1-0.7 and rapid film thickening for p/p0 ≥ 0.7, whereas only latter two regimes were observed in the H-mica system. In addition, the film thickness of adsorbed water molecules for p/p0 < 0.7 was lower as compared to that for the K-mica surface and comparable beyond. The film thickness obtained from the MC simulations was in excellent agreement with the interferometry experimental data of Balmer et al. (Balmer, T. E.; Christenson, H. K.; Spencer, N. D.; Heuberger, M. Langmuir 2008, 24, 1566-1569). It was observed that the hydration behaviors of the two ions were completely different and depended on the size of their hydration shell and their ability to form hydrogen bonds. The behavior of water adsorption between these two cases was illustrated using the water density distribution

  12. Adsorption and corrosion inhibition properties of thiocarbanilide on the electrochemical behavior of high carbon steel in dilute acid solutions

    NASA Astrophysics Data System (ADS)

    Loto, Roland Tolulope; Loto, Cleophas Akintoye; Joseph, Olufunmilayo; Olanrewaju, Gabriel

    The inhibition performance of thiocarbanilide on the electrochemical corrosion behavior of high carbon steel in 1 M H2SO4 and HCl acid solutions was studied through weight loss method and potentiodynamic polarization test. Data obtained showed that the organic compound performed effectively in acid solutions at all concentrations with an average thiocarbanilide inhibition efficiency above 70% in H2SO4 acid and 80% in HCl acid from weight loss and potentiodynamic polarization test respectively. Results from corrosion thermodynamic calculations showed that the adsorption of thiocarbanilide onto the steel was through chemisorption mechanism whereby the redox electrochemical process responsible for corrosion and the electrolytic transport of corrosive anions were simultaneously suppressed. Statistical derivations through ANOVA analysis confirm that the influences of both the inhibitor concentration and exposure time on inhibition efficiency values are negligible. Adsorption of the compound was determined to obey the Langmuir and Frumkin isotherm model.

  13. Microscopic Theory of Hysteretic Hydrogen Adsorption in Nanoporous Materials

    SciTech Connect

    Kang, J.; Wei, S. H.; Kim, Y. H.

    2010-01-01

    Understanding gas adsorption confined in nanoscale pores is a fundamental issue with broad applications in catalysis and gas storage. Recently, hysteretic H{sub 2} adsorption was observed in several nanoporous metal-organic frameworks (MOFs). Here, using first-principles calculations and simulated adsorption/desorption isotherms, we present a microscopic theory of the enhanced adsorption hysteresis of H{sub 2} molecules using the MOF Co(1,4-benzenedipyrazolate) [Co(BDP)] as a model system. Using activated H{sub 2} diffusion along the small-pore channels as a dominant equilibration process, we demonstrate that the system shows hysteretic H{sub 2} adsorption under changes of external pressure. For a small increase of temperature, the pressure width of the hysteresis, as well as the adsorption/desorption pressure, dramatically increases. The sensitivity of gas adsorption to temperature changes is explained by the simple thermodynamics of the gas reservoir. Detailed analysis of transient adsorption dynamics reveals that the hysteretic H{sub 2} adsorption is an intrinsic adsorption characteristic in the diffusion-controlled small-pore systems.

  14. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rood, M.J.; Rostam-Abadi, M.

    2005-01-01

    Gravimetric techniques were employed to determine the adsorption capacities of commercially available purified electric arc and HiPco single-walled carbon nanotubes (SWNTs) for organic compounds (toluene, methyl ethyl ketone (MEK), hexane and cyclohexane) at relative pressures, p/p0, ranging from 1 ?? 10-4 to 0.95 and at isothermal conditions of 25, 37 and 50 ??C. The isotherms displayed both type I and type II characteristics. Adsorption isotherm modeling showed that SWNTs are heterogeneous adsorbents, and the Freundlich equation best describes the interaction between organic molecules and SWNTs. The heats of adsorption we