Science.gov

Sample records for adsorption ratio sar

  1. The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water.

    PubMed

    Wang, Xiaoyu; Ozdemir, Orhan; Hampton, Marc A; Nguyen, Anh V; Do, Duong D

    2012-10-15

    Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours. PMID:22841594

  2. Measured and Estimated Sodium-Adsorption Ratios for Tongue River and its Tributaries, Montana and Wyoming, 2004-06

    USGS Publications Warehouse

    Cannon, M.R.; Nimick, David A.; Cleasby, Thomas E.; Kinsey, Stacy M.; Lambing, John H.

    2007-01-01

    The Tongue River drains an area of about 5,400 square miles and flows northward from its headwaters in the Bighorn National Forest of northeastern Wyoming to join the Yellowstone River at Miles City, Montana. Water from the Tongue River and its tributaries is extensively used for irrigation in both Wyoming and Montana. The Tongue River watershed contains vast coal deposits that are extracted at several surface mines. In some areas of the watershed, the coal beds also contain methane gas (coal-bed methane or natural gas), which has become the focus of intense exploration and development. Production of coal-bed methane requires the pumping of large volumes of ground water from the coal beds to reduce water pressure within the formation and release the stored gas. Water from the coal beds typically is high in sodium and low in calcium and magnesium, resulting in a high sodium-adsorption ratio (SAR). Disposal of ground water with high sodium concentrations into the Tongue River has the potential to increase salinity and SAR of water in the river, and potentially reduce the quality of water for irrigation purposes. This report documents SAR values measured in water samples collected at 12 monitoring sites in the Tongue River watershed and presents regression relations between specific conductance (SC) and SAR at each site for the years 2004-06. SAR in water samples was determined from laboratory-measured concentrations of sodium, calcium, and magnesium. The results of regression analysis indicated that SC and SAR were significantly related (p-values < 0.05) at most sites. The regression relations developed for most monitoring sites in the Tongue River watershed were used with continuous SC data to estimate daily SAR during the 2004 and 2005 irrigation seasons and to estimate 2006 provisional SAR values, which were displayed on the Web in real-time. Water samples were collected and analyzed from seven sites on the main stem of the Tongue River located at: (1) Monarch

  3. Large Aspect Ratio Roll Vortices (10 km Wavelength) In Tropical Cyclone Boundary Layers: SAR Evidence and Theoretical Modeling

    NASA Astrophysics Data System (ADS)

    Foster, Ralph; Patoux, Jerome; Horstmann, Jochen; Wackerman, Chris; Graber, Hans

    2013-04-01

    Analysis of synthetic aperture radar (SAR) images of the sea surface underneath tropical cyclones shows clear evidence of organized bands of surface wind convergence and wind stress curl. These patterns are consistent with the effects of planetary boundary roll vortices, except the observed wavelengths are O(10 km), which implies the rolls have aspect ratios (wavelength/PBL depth) many times what has been commonly observed in hurricane boundary layers (typically 2.5). The tropical cyclone boundary layer is a very favorable environment for the formation of roll vortices and observations show that O(1-3 km) wavelength rolls are a very common feature. We present an extension of the Foster (2005) nonlinear theory for hurricane PBL roll formation that posits a nonlinear, wave-wave, upscale energy transfer mechanism for the formation of large aspect ratio rolls. These large-aspect ratio rolls induce a circulation that extends from the sea-surface into the storm interior above the boundary layer and modulates the smaller rolls. Implications for improving SAR surface wind retrievals, hurricane boundary layer parameterization and surface fluxes are presented.

  4. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios.

    PubMed

    Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Gaston, Lewis A; Lahori, Altaf Hussain; Mahar, Amanullah

    2016-07-15

    Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution. PMID:27058131

  5. Double-sided F and Cl adsorptions on graphene at various atomic ratios: Geometric, orientation and electronic structure aspects

    NASA Astrophysics Data System (ADS)

    Widjaja, Hantarto; Jiang, Zhong-Tao; Altarawneh, Mohammednoor; Yin, Chun-Yang; Goh, Bee-Min; Mondinos, Nicholas; Amri, Amun; Dlugogorski, Bogdan Z.

    2016-06-01

    Elemental adsorption on graphene offers an effective procedure in fine-tuning electronic and mechanical properties of graphene. The effects of dopants depend on adsorption site, the degree of coverage as well as on the configuration of the deployed supercell. In this contribution, the density functional theory (DFT) calculations were performed to investigate the electronic structures of F and Cl adsorption (double-sided, top site) on graphene in terms of adsorption orientation, atomic ratios, i.e., from C:F/Cl = 18:2 to C:F/Cl = 2:2. Despite being members of the halogens group, F- and Cl-adsorbed on graphene show contrasting trends. F is adsorbed to graphene more strongly than Cl. F favours full and 25% adsorption coverage, while Cl favours 25% coverage. Both F and Cl cases open band gap (at Fermi energy) at certain atomic concentration coverage, but none creates magnetization.

  6. A quantitative method evaluating the selective adsorption of molecularly imprinted polymer.

    PubMed

    Zhang, Z B; Hu, J Y

    2012-01-01

    Adsorption isotherms of 4 estrogenic compounds, estrone, 17β-estradiol, 17α-ethinylestradiol and Bisphenol A, using molecularly imprinted polymer were studied. The isotherms can be simulated by Langmuir model. According to the adsorption isotherms and the template's mass balance, an experimental concept, selective adsorption ratio, SAR, was proposed to assess how many template molecules extracted out of MIP could create selective binding sites. The SAR of the molecularly imprinted polymer was 74.3% for E2. This concept could be used to evaluate quantitatively the selective adsorption. PMID:22423989

  7. SURFACE AND GROUNDWATER INTERACTIONS AND EFFECTS ON SODIUM ADSORPTION RATIOS IN COALBED METHANE EXTRACTION AREAS

    EPA Science Inventory

    This project will be conducted in the Powder River Basin area of northeastern Wyoming. Sampling will start in May, and repeat sampling will be done monthly. To examine the interactions of the production water with the soil and the subsequent effects on SAR, 6 CBM water discharg...

  8. Adsorption of Ribose Nucleotides on Manganese Oxides with Varied Mn/O Ratio: Implications for Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Bhushan, Brij; Shanker, Uma; Kamaluddin

    2011-10-01

    Manganese exists in different oxidation states under different environmental conditions with respect to redox potential. Various forms of manganese oxides, namely, Manganosite (MnO), Bixbyite (Mn2O3), Hausmannite (Mn3O4) and Pyrolusite (MnO2) were synthesized and their possible role in chemical evolution studied. Adsorption studies of ribose nucleotides (5'-AMP, 5'-GMP, 5'-CMP and 5'-UMP) on these manganese oxides at neutral pH, revealed a higher binding affinity to manganosite (MnO) compared to the other manganese oxides. That manganese oxides having a lower Mn-O ratio show higher binding affinity for the ribonucleotides indirectly implies that such oxides may have provided a surface onto which biomonomers could have been concentrated through selective adsorption. Purine nucleotides were adsorbed to a greater extent compared to the pyrimidine nucleotides. Adsorption data followed Langmuir adsorption isotherms, and X m and K L values were calculated. The nature of the interaction and mechanism was elucidated by infrared spectral studies conducted on the metal-oxide and ribonucleotide-metal-oxide adducts.

  9. Adsorption of ribose nucleotides on manganese oxides with varied mn/o ratio: implications for chemical evolution.

    PubMed

    Bhushan, Brij; Shanker, Uma; Kamaluddin

    2011-10-01

    Manganese exists in different oxidation states under different environmental conditions with respect to redox potential. Various forms of manganese oxides, namely, Manganosite (MnO), Bixbyite (Mn(2)O(3)), Hausmannite (Mn(3)O(4)) and Pyrolusite (MnO(2)) were synthesized and their possible role in chemical evolution studied. Adsorption studies of ribose nucleotides (5'-AMP, 5'-GMP, 5'-CMP and 5'-UMP) on these manganese oxides at neutral pH, revealed a higher binding affinity to manganosite (MnO) compared to the other manganese oxides. That manganese oxides having a lower Mn-O ratio show higher binding affinity for the ribonucleotides indirectly implies that such oxides may have provided a surface onto which biomonomers could have been concentrated through selective adsorption. Purine nucleotides were adsorbed to a greater extent compared to the pyrimidine nucleotides. Adsorption data followed Langmuir adsorption isotherms, and X( m ) and K( L ) values were calculated. The nature of the interaction and mechanism was elucidated by infrared spectral studies conducted on the metal-oxide and ribonucleotide-metal-oxide adducts. PMID:21626404

  10. The Effects of Salinity and Sodium Adsorption Ratio on the Water Retention and Hydraulic Conductivity Curves of Soils From The Pampa del Tamarugal, Chile

    NASA Astrophysics Data System (ADS)

    Lagos, M. S.; Munoz, J.; Suarez, F. I.; Fierro, V.; Moreno, C.

    2015-12-01

    The Pampa del Tamarugal is located in the Atacama Desert, the most arid desert of the world. It has important reserves of groundwater, which are probably fed by infiltration coming from the Andes Mountain, with groundwater levels fluctuating between 3 and 10-70 m below the land surface. In zones where shallow groundwater exists, the capillary rise allows to have a permanently moist vadose zone, which sustain native vegetation such as the Tamarugos (Prosopis tamarugo Phil.) and Algarrobos (Prosopis alba Griseb.). The native vegetation relies on the soil moisture and on the evaporative fluxes, which are controlled by the hydrodynamic characteristics of the soils. The soils associated to the salt flats of the Pampa del Tamarugal are a mixture of sands and clays, which have high levels of sulfates, chloride, carbonates, sodium, calcium, magnesium, and potassium, with high pH and electrical conductivity, and low organic matter and cationic exchange capacity. In this research, we are interested in evaluating the impact of salinity and sodium adsorption ratio (SAR) on the hydrodynamic characteristics of the soil, i.e., water retention and hydraulic conductivity curves. Soils were collected from the Pampa del Tamarugal and brought to the laboratory for characterization. The evaporation method (HYPROP, UMS) was used to determine the water retention curve and the hydraulic conductivity curve was estimated combining the evaporation method with direct measurements using a variable head permeameter (KSAT, UMS). It was found that higher sodium concentrations increase the water retention capacity and decrease the soiĺs hydraulic conductivity. These changes occur in the moist range of the hydrodynamic characteristics. The soil's hydraulic properties have significant impact on evaporation fluxes, which is the mayor component of the water balance. Thus, it is important to quantify them and incorporate salt precipitation/dissolution effect on the hydrodynamic properties to correctly

  11. Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to

  12. Ionothermal synthesis and structure analysis of an open-framework zirconium phosphate with a high CO2/CH4 adsorption ratio.

    PubMed

    Liu, Lei; Yang, Jiangfeng; Li, Jinping; Dong, Jinxiang; Sišak, Dubravka; Luzzatto, Marisa; McCusker, Lynne B

    2011-08-22

    Less is more: an open-framework zirconium phosphate with unusual 7-ring channels was synthesized ionothermally from a deep-eutectic solvent. This small-pore material displays a CO(2)/CH(4) adsorption ratio (17.3 at 1 bar) that is significantly higher than that of typical 8-ring materials, making it highly attractive for CO(2)/CH(4) separations. PMID:21739548

  13. SARS Basics

    MedlinePlus

    ... waiting room or office. Top of Page CDC’s response to SARS during the 2003 outbreak CDC worked ... Center to provide round-the-clock coordination and response. Committed more than 800 medical experts and support ...

  14. Ratio

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.

    2014-12-01

    Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

  15. Modelling soil sodium and potassium adsorption ratio (SPAR) in the immediate period after a grassland fire in Lithuania.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerda, Artemi; Misiūnė, Ieva

    2015-04-01

    The soil sodium and potassium adsorption ratio (SPAR) is an index that measures the amount of sodium and potassium adsorbed onto clay and organic matter surfaces, in relation to calcium and magnesium. Assess the potential of soil dispersion or flocculation, a process which has implication in soil hydraulic properties and erosion (Sarah, 2004). Depending on severity and the type of ash produced, fire can changes in the immediate period the soil nutrient status (Bodi et al. 2014). Ash releases onto soil surface a large amount of cations, due the high pH. Previous works showed that SPAR from ash slurries is higher than solutions produced from litter (Pereira et al., 2014a). Normally the spatial distribution of topsoil nutrients in the immediate period after the fire is very heterogeneous, due to the different impacts of fire. Thus it is important to identify the most accurate interpolation method in order to identify with better precision the impacts of fire on soil properties. The objective of this work is to test several interpolation methods. The study area is located in near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. Four days after the fire it was designed a plot in a burned area with near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. Twenty five samples were collected from the topsoil. The SPAR index was calculated according to the formula: (Na++K+)/(Ca2++Mg2+)1/2 (Sarah, 2004). Data followed the normal distribution, thus no transformation was required previous to data modelling. Several well know interpolation models were tested, as Inverse Distance to a Weight (IDW) with the power of 1, 2, 3 and 4, Radial Basis Functions (RBF), Inverse Multiquadratic (IMT), Multilog (MTG), Multiquadratic (MTQ), Natural Cubic Spline (NCS) and Thin Plate Spline (TPS) and Local Polynomial (LP) with the power of 1 and 2 and Ordinary Kriging. The best interpolator was the one which had the lowest Root Mean Square Error (RMSE) (Pereira et al., 2014b). The

  16. PHARUS airborne SAR concept

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Pouwels, Henk; Koomen, Peter J.; Hoogeboom, Peter

    1995-11-01

    PHARUS (phased array universal SAR) is an airborne SAR concept which is being developed in the Netherlands. The PHARUS system differs from other airborne SARs by the use of a phased array antenna, which provides both for the flexibility in the design as well as for a compact, light-weight instrument that can be carried on small aircraft. The concept allows for the construction of airborne SAR systems on a common generic basis but tailored to specific user needs and can be seen as a preparation for future spaceborne SAR systems using solid state transmitters with electronically steerable phased array antenna. The whole approach is aimed at providing an economic and yet technically sophisticated solution to remote sensing or surveying needs of a specific user. The solid state phased array antenna consists of a collection of radiating patches; the design flexibility for a large part resides in the freedom to choose the number of patches, and thereby the essential radar performance parameters such as resolution and swath width. Another consequence of the use of the phased array antenna is the system's compactness and the possibility to rigidly mount it on a small aircraft. The use of small aircraft of course considerably improves the cost/benefit ratio of the use of airborne SAR. Flight altitude of the system is flexible between about 7,000 and 40,000 feet, giving much operational freedom within the meteo and airspace control limits. In the PHARUS concept the airborne segment is complemented by a ground segment, which consists of a SAR processor, possibly extended by a matching image processing package. (A quick look image is available in real-time on board the aircraft.) The SAR processor is UNIX based and runs on easily available hardware (SUN station). Although the additional image processing software is available, the SAR processing software is nevertheless designed to be able to interface with commercially available image processing software, as well as being able

  17. Coating morphology and surface composition of acrylic terpolymers with pendant catechol, OEG and perfluoroalkyl groups in varying ratio and the effect on protein adsorption.

    PubMed

    Zhong, Jun; Ji, Hua; Duan, Jiang; Tu, Haiyang; Zhang, Aidong

    2016-04-01

    This work aims at developing versatile low-biofouling polymeric coatings by using acrylic terpolymers (DOFs) that bear pendant catechol (D), oligo(ethylene glycol) (O), and perfluoroalkyl (F) groups in varying ratios. The polymers were endowed with the ability to form firmly coatings on virtually any surfaces and undergo surface microphase separation and self-assembly, as revealed by the surface enrichment of F pendants and the morphology variation from irregular solid domains to discrete crater-type aggregates of different size. The effect on protein adsorption was investigated using bovine serum albumin (BSA) and adhesive fibrinogen (Fib) as model proteins. The coating of DOF164 (low F content), which has morphology of discrete crater-type aggregates of ∼ 400 nm in size, adsorbed a least amount of protein but with a highest protein unit activity as determined by SPR and immunosorbent assay; whereas the coating of DOF1612 (high F content) showed a 12.3-fold higher adsorption capacity toward Fib. Interestingly, a 2.2-fold lower adsorption amount but with a 1.8-fold higher unit activity was found for Fib adsorbed on the DOF164 surface than on DOF250 (without F fraction), whose OEG segments being a widely recognized protein compatible material. The features of the DOF164 terpolymer presenting a robust coating ability and a minimal protein adsorption capacity while with a high protein unit activity suggest its potential application as a non-fouling surface-modifier for medical antifouling coatings and as a matrix material for selective protein immobilization and activity preservation in biosensor construction. PMID:26764109

  18. SAR based adaptive GMTI

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Guo, Bin; Xu, Luzhou; Li, Jian

    2010-04-01

    We consider ground moving target indication (GMTI) and target velocity estimation based on multi-channel synthetic aperture radar (SAR) images. Via forming velocity versus cross-range images, we show that small moving targets can be detected even in the presence of strong stationary ground clutter. Moreover, the velocities of the moving targets can be estimated, and the misplaced moving targets can be placed back to their original locations based on the estimated velocities. Adaptive beamforming techniques, including Capon and generalizedlikelihood ratio test (GLRT), are used to form velocity versus cross-range images for each range bin of interest. The velocity estimation ambiguities caused by the multi-channel array geometry are analyzed. We also demonstrate the effectiveness of our approaches using the Air Force Research Laboratory (AFRL) publicly-released Gotcha SAR based GMTI data set.

  19. Spaceborne SAR Imaging Algorithm for Coherence Optimized

    PubMed Central

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446

  20. Polarization Filtering of SAR Data

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Van Zyl, Jakob J.

    1991-01-01

    Theoretical analysis of polarization filtering of synthetic-aperture-radar (SAR) returns provide hybrid method applied to either (1) maximize signal-to-noise ratio of return from given target or (2) enhance contrast between targets of two different types (that have different polarization properties). Method valid for both point and extended targets and for both monostatic and bistatic radars as well as SAR. Polarization information in return signals provides more complete description of radar-scattering properties of targets and used to obtain additional information about targets for use in classifying them, discriminating between them, or enhancing features of radar images.

  1. SiSAR: advanced SAR simulation

    NASA Astrophysics Data System (ADS)

    Klaus, Ferdinand

    1995-11-01

    SiSAR was planned as a realistic as possible, modular, user-friendly and fast SAR raw data simulator running on ordinary workstations. Interest in (interferometric) SAR products is growing on an international scale. There is a concentration of manpower and financial resources. Dead ends, respectively failures, have to be avoided during design and mission of every SAR project by simulating the system thoroughly before the experiment. Another reason to make use of extensive reproducible simulations during design and development is the reduction of time and manpower costs. As it comes down to verifying and comparing different processing algorithms we see that (interferometric) SAR simulation is an indispensable tool for testing individual processing steps. SiSAR is a modular SAR raw data simulator for realistic description of the functions of a SAR-system. It contains an implementation of diverse models to characterize radar targets, various approaches to describe the trajectory and the motion of the footprint on the target surface and different raw data formation algorithms. Beyond there is a wide supply of tools for manipulation, analysis and user-friendly simulation handling. Results obtained by SiSAR and some first simulated interferometric SAR raw data are shown in the paper.

  2. Effects of Zeolite Structure and Si/Al Ratio on Adsorption Thermodynamics and Intrinsic Kinetics of Monomolecular Cracking and Dehydrogenation of Alkanes over Bronsted Acid Sites

    NASA Astrophysics Data System (ADS)

    Janda, Amber Leigh

    butene products. Theoretical calculations suggest that this effect originates from the adsorption of isobutene at channel intersections, indicating that dehydrogenation occurs with stronger preference for these locations than does cracking. In order to analyze the effects of zeolite structure on monomolecular alkane activation reactions, it is necessary to separate the contributions of the adsorption and reaction steps to observed kinetics. A method is developed in Chapter 3 for obtaining the enthalpy and entropy changes for adsorption of n-alkanes from the gas phase onto Bronsted protons (DeltaH ads·H+ and DeltaSads·H+) using configurational-bias Monte Carlo (CBMC) simulations. In Chapter 4 the effects of zeolite structural confinement on n-butane cracking and dehydrogenation are characterized for zeolites that differ predominately in the size and abundance of cavities. Values of DeltaHads·H+ and DeltaSads·H+ are obtained from CBMC simulations and used to extract intrinsic rates and activation parameters. As DeltaS ads·H+ (a proxy for confinement) becomes more negative, DeltaH ‡int and DeltaS‡int decrease for terminal cracking and dehydrogenation when the channel topology (e.g., straight, sinusoidal) is fixed. This observation, as well as positive values for DeltaS‡int, indicate that the transition states for these reactions resemble the products. Finally, in Chapter 5 the influence of channel and cage topology on n-alkane adsorption are characterized for zeolites and zeotypes with one-dimensional pore systems. When cages are not present, DeltaHads·H+ and DeltaSads·H+ at fixed pore-limiting diameter (PLD; the diameter of the largest sphere that can traverse the pores) decrease in magnitude as the ratio of the smallest to largest channel diameter decreases and the pore become less circular. The higher entropy of alkanes in non-circular pores is attributed to greater freedom of movement and can cause the free energy to be lower in these environments relative

  3. Severe acute respiratory syndrome (SARS)

    MedlinePlus

    ... when the virus spread from small mammals in China. When someone with SARS coughs or sneezes, infected ... causes SARS include: Antibody tests for SARS Direct isolation of the SARS virus Rapid polymerase chain reaction ( ...

  4. Dynamics of Random Sequential Adsorption (RSA) of linear chains consisting of n circular discs - Role of aspect ratio and departure from convexity

    NASA Astrophysics Data System (ADS)

    Shelke, Pradip B.; Limaye, A. V.

    2015-07-01

    We study Random Sequential Adsorption (RSA) of linear chains consisting of n circular discs on a two-dimensional continuum substrate. The study has been carried out for n = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 50, 70, 100 and 300. For all values of n, instantaneous coverage, Θ(t), in late time regime, is found to approach to jammed state coverage, Θ(∞), in a power law fashion, Θ(∞) - Θ(t) ~ t- p. It is observed that, with the increase in n, the exponent p goes on decreasing from the value 0.33 for n = 2 to the value 0.20 for n = 20 and then again starts rising to reach the value of 0.33 for large n. It is also found that for n ≤ 20, the exponent p has near perfect correlation with the coefficient of departure from convexity. On the other hand the jammed state coverage Θ(∞) is found to depend both on the coefficient of departure from convexity as well as on the aspect ratio of the chain.

  5. SAR Product Control Software

    NASA Astrophysics Data System (ADS)

    Meadows, P. J.; Hounam, D.; Rye, A. J.; Rosich, B.; Börner, T.; Closa, J.; Schättler, B.; Smith, P. J.; Zink, M.

    2003-03-01

    As SAR instruments and their operating modes become more complex, as new applications place more and more demands on image quality and as our understanding of their imperfections becomes more sophisticated, there is increasing recognition that SAR data quality has to be controlled more completely to keep pace. The SAR product CONtrol software (SARCON) is a comprehensive SAR product control software suite tailored to the latest generation of SAR sensors. SARCON profits from the most up-to-date thinking on SAR image performance derived from other spaceborne and airborne SAR projects and is based on the newest applications. This paper gives an overview of the structure and the features of this new software tool, which is a product of a co-operation between teams at BAE SYSTEMS Advanced Technology Centre and DLR under contract to ESA (ESRIN). Work on SARCON began in 1999 and is continuing.

  6. SAR change detection MTI

    NASA Astrophysics Data System (ADS)

    Scarborough, Steven; Lemanski, Christopher; Nichols, Howard; Owirka, Gregory; Minardi, Michael; Hale, Todd

    2006-05-01

    This paper examines the theory, application, and results of using single-channel synthetic aperture radar (SAR) data with Moving Reference Processing (MRP) to focus and geolocate moving targets. Moving targets within a standard SAR imaging scene are defocused, displaced, or completely missing in the final image. Building on previous research at AFRL, the SAR-MRP method focuses and geolocates moving targets by reprocessing the SAR data to focus the movers rather than the stationary clutter. SAR change detection is used so that target detection and focusing is performed more robustly. In the cases where moving target returns possess the same range versus slow-time histories, a geolocation ambiguity results. This ambiguity can be resolved in a number of ways. This paper concludes by applying the SAR-MRP method to high-frequency radar measurements from persistent continuous-dwell SAR observations of a moving target.

  7. A fast, programmable hardware architecture for spaceborne SAR processing

    NASA Technical Reports Server (NTRS)

    Bennett, J. R.; Cumming, I. G.; Lim, J.; Wedding, R. M.

    1983-01-01

    The launch of spaceborne SARs during the 1980's is discussed. The satellite SARs require high quality and high throughput ground processors. Compression ratios in range and azimuth of greater than 500 and 150 respectively lead to frequency domain processing and data computation rates in excess of 2000 million real operations per second for C-band SARs under consideration. Various hardware architectures are examined and two promising candidates and proceeds to recommend a fast, programmable hardware architecture for spaceborne SAR processing are selected. Modularity and programmability are introduced as desirable attributes for the purpose of HTSP hardware selection.

  8. SAR antenna calibration techniques

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Newell, A. C.

    1978-01-01

    Calibration of SAR antennas requires a measurement of gain, elevation and azimuth pattern shape, boresight error, cross-polarization levels, and phase vs. angle and frequency. For spaceborne SAR antennas of SEASAT size operating at C-band or higher, some of these measurements can become extremely difficult using conventional far-field antenna test ranges. Near-field scanning techniques offer an alternative approach and for C-band or X-band SARs, give much improved accuracy and precision as compared to that obtainable with a far-field approach.

  9. Super resolution for FOPEN SAR data

    NASA Astrophysics Data System (ADS)

    Shekarforoush, Hassan; Banerjee, Amit; Chellappa, Rama

    1999-07-01

    Detecting targets occluded by foliage in Foliage penetrating (FOPEN) Ultra-Wide-Band Synthetic Aperture Radar (UWB SAR) images is an important and challenging problem. Given the different nature of FOPEN SAR imagery and very low signal- to-clutter ratio in UWB SAR data, conventional detection algorithms usually fail to yield robust target detection results on raw data with minimum false alarms. Hence improving the resolving power by means of a super-resolution algorithm plays an important role in hypothesis testing for false alarm mitigation and target localization. In this paper we present a new single-frame super-resolution algorithm based on estimating the polyphase components of the observed signal projected on an optimal basis. The estimated polyphase components are then combined into a single super-resolved image using the standard inverse polyphase transform, leading to improved target signature while suppressing noise.

  10. SAR calibration technology review

    NASA Technical Reports Server (NTRS)

    Walker, J. L.; Larson, R. W.

    1981-01-01

    Synthetic Aperture Radar (SAR) calibration technology including a general description of the primary calibration techniques and some of the factors which affect the performance of calibrated SAR systems are reviewed. The use of reference reflectors for measurement of the total system transfer function along with an on-board calibration signal generator for monitoring the temporal variations of the receiver to processor output is a practical approach for SAR calibration. However, preliminary error analysis and previous experimental measurements indicate that reflectivity measurement accuracies of better than 3 dB will be difficult to achieve. This is not adequate for many applications and, therefore, improved end-to-end SAR calibration techniques are required.

  11. SARS/avian coronaviruses.

    PubMed

    Monceyron Jonassen, C

    2006-01-01

    In the hunt for the aetiology of the SARS outbreak in 2003, a newly developed virus DNA micro-array was successfully used to hybridise PCR products obtained by random amplification of nucleic acids extracted from a cell culture infected with material from a SARS patient. The SARS agent was found to hybridise with micro-array probes from both coronaviruses and astroviruses, but one of the coronavirus probes and the four astrovirus probes contained redundant sequences, spanning a highly conserved motif, named s2m, found at the 3' end of the genomes of almost all astroviruses, one picornavirus, and the poultry coronaviruses. The three other coronavirus probes, that hybridised with the SARS agent, were located in the replicase gene, and it could be concluded that the SARS agent was a novel coronavirus, harbouring s2m. The presence of this motif in different virus families is probably the result of recombinations between unrelated viruses, but its presence in both poultry and SARS coronaviruses could suggest a bird involvement in the history of the SARS coronavirus. A recent screening of wild birds for the presence of coronaviruses, using a pan-coronavirus RT-PCR, led to the identification of novel coronaviruses in the three species studied. Phylogenetic analyses performed on both replicase gene and nucleocapsid protein could not add support to a close relationship between avian and SARS coronaviruses, but all the novel avian coronaviruses were found to harbour s2m. The motif is inserted at a homologous place in avian and SARS coronavirus genomes, but in a somewhat different context for the SARS coronavirus. If the presence of s2m in these viruses is a result of two separate recombination events, this suggests that its particular position in these genomes is the only one that would not be deleterious for coronaviral replication, or that it is the result of a copy-choice recombination between coronaviruses, following an ancestral introduction in the coronavirus family by

  12. SAR calibration: A technology review

    NASA Technical Reports Server (NTRS)

    Larson, R. W.; Politis, D. T.; Shuchman, R. A.

    1983-01-01

    Various potential applications of amplitude-calibrated SAR systems are briefly described, along with an estimate of calibration performance requirements. A review of the basic SAR calibration problem is given. For background purposes and to establish consistent definition of terms, various conventional SAR performance parameters are reviewed along with three additional parameters which are directly related to calibrated SAR systems. Techniques for calibrating a SAR are described. Included in the results presented are: calibration philosophy and procedures; review of the calibration signal generator technology development with results describing both the development of instrumentation and internal calibration measurements for two SAR systems; summary of analysis and measurements required to determine optimum retroreflector design and configuration for use as a reference for the absolute calibration of a SAR system; and summary of techniques for in-flight measurements of SAR antenna response.

  13. Segmentation Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J. M.; Chellappa, Rama

    1994-01-01

    Report presents one in continuing series of studies of segmentation of polarimetric synthetic-aperture-radar, SAR, image data into regions. Studies directed toward refinement of method of automated analysis of SAR data.

  14. Detecting slow moving targets in SAR images

    NASA Astrophysics Data System (ADS)

    Linnehan, Robert; Perlovsky, Leonid; Mutz, Chris W.; Schindler, John

    2004-08-01

    Ground moving target indication (GMTI) radars can detect slow-moving targets if their velocities are high enough to produce distinguishable Doppler frequencies. However, no reliable technique is currently available to detect targets that fall below the minimum detectable velocity (MDV) of GMTI radars. In synthetic aperture radar (SAR) images, detection of moving targets is difficult because of target smear due to motion, which could make low-RCS targets fall below stationary ground clutter. Several techniques for SAR imaging of moving targets have been discussed in the literature. These techniques require sufficient signal-to-clutter ratio (SCR) and adequate MDV for pre-detection. Other techniques require complex changes in hardware. Extracting the maximum information from SAR image data is possible using adaptive, model-based approaches. However, these approaches lead to computational complexity, which exceeds current processing power for more than a single object in an image. This combinatorial complexity is due to the need for having to consider a large number of combinations between multiple target models and the data, while estimating unknown parameters of the target models. We are developing a technique for detecting slow-moving targets in SAR images with low signal-to-clutter ratio, without minimal velocity requirements, and without combinatorial complexity. This paper briefly summarizes the difficulties related to current model-based detection algorithms. A new concept, dynamic logic, is introduced along with an algorithm suitable for the detection of very slow-moving targets in SAR images. This new mathematical technique is inspired by the analysis of biological systems, like the human brain, which combines conceptual understanding with emotional evaluation and overcomes the combinatorial complexity of model-based techniques.

  15. Random sequential adsorption of tetramers

    NASA Astrophysics Data System (ADS)

    Cieśla, Michał

    2013-07-01

    Adsorption of a tetramer built of four identical spheres was studied numerically using the random sequential adsorption (RSA) algorithm. Tetramers were adsorbed on a two-dimensional, flat and homogeneous surface. Two different models of the adsorbate were investigated: a rhomboid and a square one; monomer centres were put on vertices of rhomboids and squares, respectively. Numerical simulations allow us to establish the maximal random coverage ratio as well as the available surface function (ASF), which is crucial for determining kinetics of the adsorption process. These results were compared with data obtained experimentally for KfrA plasmid adsorption. Additionally, the density autocorrelation function was measured.

  16. Polarization effects and multipolarization SAR

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1992-01-01

    Imaging radar polarimeters are usually implemented using a Synthetic Aperture Radar (SAR) approach to give a high resolution image in two dimensions: range and azimuth. For each pixel in the image a polarimetric SAR gives sufficient information to characterize the polarimetric scattering properties of the imaged area (or target) as seen by the radar. Using a polarimetric SAR system as opposed to a single-polarization SAR system provides significantly more information about the target scattering mechanisms and allows better discrimination between different types of surfaces. In these notes a brief overview of SAR polarimetry is offered. The notes are intended as a text to accompany a lecture on SAR polarimetry as part of an AGARD-NATO course. Covered in the notes are the following: the polarization properties of electromagnetic waves; the concepts of radar scattering and measuring radar backscatter with a SAR; polarization synthesis; scattering matrix, Stokes matrix, and covariance matrix representations of polarimetric SAR data; polarization signature plots; design and calibration of polarimetric SAR systems; polarization filtering for target detection; fitting a simple model to polarimetric SAR measurements of naturally occurring features; and supervised classification of polarimetric SAR data.

  17. Understanding SARS with Wolfram approach.

    PubMed

    Li, Da-Wei; Pan, Yu-Xi; Duan, Yun; Hung, Zhen-De; Xu, Ming-Qing; He, Lin

    2004-01-01

    Stepping acquired immunodeficiency syndrome (AIDS), severe acute respiratory syndrome (SARS) as another type of disease has been threatening mankind since late last year. Many scientists worldwide are making great efforts to study the etiology of this disease with different approaches. 13 species of SARS virus have been sequenced. However, most people still largely rely on the traditional methods with some disadvantages. In this work, we used Wolfram approach to study the relationship among SARS viruses and between SARS viruses and other types of viruses, the effect of variations on the whole genome and the advantages in the analysis of SARS based on this novel approach. As a result, the similarities between SARS viruses and other coronaviruses are not really higher than those between SARS viruses and non-coronaviruses. PMID:14732867

  18. Bistatic SAR: Proof of Concept.

    SciTech Connect

    Yocky, David A.; Doren, Neall E.; Bacon, Terry A.; Wahl, Daniel E.; Eichel, Paul H.; Jakowatz, Charles V,; Delaplain, Gilbert G.; Dubbert, Dale F.; Tise, Bertice L.; White, Kyle R.

    2014-10-01

    Typical synthetic aperture RADAR (SAR) imaging employs a co-located RADAR transmitter and receiver. Bistatic SAR imaging separates the transmitter and receiver locations. A bistatic SAR configuration allows for the transmitter and receiver(s) to be in a variety of geometric alignments. Sandia National Laboratories (SNL) / New Mexico proposed the deployment of a ground-based RADAR receiver. This RADAR receiver was coupled with the capability of digitizing and recording the signal collected. SNL proposed the possibility of creating an image of targets the illuminating SAR observes. This document describes the developed hardware, software, bistatic SAR configuration, and its deployment to test the concept of a ground-based bistatic SAR. In the proof-of-concept experiments herein, the RADAR transmitter will be a commercial SAR satellite and the RADAR receiver will be deployed at ground level, observing and capturing RADAR ground/targets illuminated by the satellite system.

  19. EARSEC SAR processing system

    NASA Astrophysics Data System (ADS)

    Protheroe, Mark; Sloggett, David R.; Sieber, Alois J.

    1994-12-01

    Traditionally, the production of high quality Synthetic Aperture Radar imagery has been an area where a potential user would have to expend large amounts of money in either the bespoke development of a processing chain dedicated to his requirements or in the purchase of a dedicated hardware platform adapted using accelerator boards and enhanced memory management. Whichever option the user adopted there were limitations based on the desire for a realistic throughput in data load and time. The user had a choice, made early in the purchase, for either a system that adopted innovative algorithmic manipulation, to limit the processing time of the purchase of expensive hardware. The former limits the quality of the product, while the latter excludes the user from any visibility into the processing chain. Clearly there was a need for a SAR processing architecture that gave the user a choice into the methodology to be adopted for a particular processing sequence, allowing him to decide on either a quick (lower quality) product or a detailed slower (high quality) product, without having to change the algorithmic base of his processor or the hardware platform. The European Commission, through the Advanced Techniques unit of the Joint Research Centre (JRC) Institute for Remote Sensing at Ispra in Italy, realizing the limitations on current processing abilities, initiated its own program to build airborne SAR and Electro-Optical (EO) sensor systems. This program is called the European Airborne Remote Sensing Capabilities (EARSEC) program. This paper describes the processing system developed for the airborne SAR sensor system. The paper considers the requirements for the system and the design of the EARSEC Airborne SAR Processing System. It highlights the development of an open SAR processing architecture where users have full access to intermediate products that arise from each of the major processing stages. It also describes the main processing stages in the overall

  20. Random sequential adsorption on fractals

    NASA Astrophysics Data System (ADS)

    Ciesla, Michal; Barbasz, Jakub

    2012-07-01

    Irreversible adsorption of spheres on flat collectors having dimension d < 2 is studied. Molecules are adsorbed on Sierpinski's triangle and carpet-like fractals (1 < d < 2), and on general Cantor set (d < 1). Adsorption process is modeled numerically using random sequential adsorption (RSA) algorithm. The paper concentrates on measurement of fundamental properties of coverages, i.e., maximal random coverage ratio and density autocorrelation function, as well as RSA kinetics. Obtained results allow to improve phenomenological relation between maximal random coverage ratio and collector dimension. Moreover, simulations show that, in general, most of known dimensional properties of adsorbed monolayers are valid for non-integer dimensions.

  1. Random sequential adsorption on fractals.

    PubMed

    Ciesla, Michal; Barbasz, Jakub

    2012-07-28

    Irreversible adsorption of spheres on flat collectors having dimension d < 2 is studied. Molecules are adsorbed on Sierpinski's triangle and carpet-like fractals (1 < d < 2), and on general Cantor set (d < 1). Adsorption process is modeled numerically using random sequential adsorption (RSA) algorithm. The paper concentrates on measurement of fundamental properties of coverages, i.e., maximal random coverage ratio and density autocorrelation function, as well as RSA kinetics. Obtained results allow to improve phenomenological relation between maximal random coverage ratio and collector dimension. Moreover, simulations show that, in general, most of known dimensional properties of adsorbed monolayers are valid for non-integer dimensions. PMID:22852643

  2. A Time Domain Along-Track SAR Interferometry Method

    NASA Astrophysics Data System (ADS)

    Cao, N.; Lee, H.; Jung, H. C.

    2015-12-01

    Differential interferometric synthetic aperture radar (DInSAR) has already been proven to be a useful technique for measuring ground displacement at millimeter level. One major drawback of traditional DInSAR technique is that only 1-D deformation in slant range direction can be detected. In order to obtain along-track displacement using a single InSAR pair, two major attempts have been made. The first one is based on cross-correlation between two SAR amplitude images. The second attempt is based on split-beam processing to generate two SAR images from forward- and backward-looking beams. Comparing with the former method, this multiple-aperture SAR interferometry (MAI) can achieve much better measurement accuracy. The major drawback of the MAI method is degraded signal to noise ratio (SNR) and along-track resolution since total along-track integration time decreases in the split-beam procedure. In order to improve the SNR and along-track resolution as well as to extract the terrain displacement in the along-track direction, a time domain along-track SAR interferometry method is proposed in this study. Using traditional time domain backprojection method, the phase component corresponding to slant range direction offset can be estimated and removed from the range compressed SAR signal. Then a phase estimation procedure is implemented to obtain the phase component in the along-track direction. Using ALOS PALSAR data over Kilauea Volcano area in Hawai'i, our experimental results demonstrate the improved performance of the proposed method in extracting 2-D terrain deformation map from one pair of SAR images.

  3. Target surface finding using 3D SAR data

    NASA Astrophysics Data System (ADS)

    Ruiter, Jason R.; Burns, Joseph W.; Subotic, Nikola S.

    2005-05-01

    Methods of generating more literal, easily interpretable imagery from 3-D SAR data are being studied to provide all weather, near-visual target identification and/or scene interpretation. One method of approaching this problem is to automatically generate shape-based geometric renderings from the SAR data. In this paper we describe the application of the Marching Tetrahedrons surface finding algorithm to 3-D SAR data. The Marching Tetrahedrons algorithm finds a surface through the 3-D data cube, which provides a recognizable representation of the target surface. This algorithm was applied to the public-release X-patch simulations of a backhoe, which provided densely sampled 3-D SAR data sets. The performance of the algorithm to noise and spatial resolution were explored. Surface renderings were readily recognizable over a range of spatial resolution, and maintained their fidelity even under relatively low Signal-to-Noise Ratio (SNR) conditions.

  4. A comparative study of SAR data compression schemes

    NASA Technical Reports Server (NTRS)

    Lambert-Nebout, C.; Besson, O.; Massonnet, D.; Rogron, B.

    1994-01-01

    The amount of data collected from spaceborne remote sensing has substantially increased in the last years. During same time period, the ability to store or transmit data has not increased as quickly. At this time, there is a growing interest in developing compression schemes that could provide both higher compression ratios and lower encoding/decoding errors. In the case of the spaceborne Synthetic Aperture Radar (SAR) earth observation system developed by the French Space Agency (CNES), the volume of data to be processed will exceed both the on-board storage capacities and the telecommunication link. The objective of this paper is twofold: to present various compression schemes adapted to SAR data; and to define a set of evaluation criteria and compare the algorithms on SAR data. In this paper, we review two classical methods of SAR data compression and propose novel approaches based on Fourier Transforms and spectrum coding.

  5. Alaska SAR processor implementation of E-ERS-1

    NASA Technical Reports Server (NTRS)

    Cuddy, David; Chen, Ming-Je; Bicknell, Tom

    1992-01-01

    The synthetic aperture radar (SAR) data processing algorithm used by the Alaska SAR Facility (ASF) for the European Space Agency's first Remote-Sensing Satellite (E-ERS-1) SAR data are examined. Preprocessing highlights two features: signal measurement, which includes signal-to-noise ratio, replica measurement, and noise measurement; and Doppler measurement, which includes clutter lock and autofocus. The custom pipeline architecture performs the main processing with controls at the input interface, range correlator, corner-turn memory, azimuth correlator, and multi-look memory. The control software employs a flexible control scheme. The Committee on Earth Observation Satellites (CEOS) format encapsulates the ASF products. System performance for SAR image processing of E-ERS-1 data is reviewed.

  6. Analysis of Multipath Pixels in SAR Images

    NASA Astrophysics Data System (ADS)

    Zhao, J. W.; Wu, J. C.; Ding, X. L.; Zhang, L.; Hu, F. M.

    2016-06-01

    As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings) and the physical parameters of the surface (roughness, correlation length, permittivity)which determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  7. Bayesian SAR imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhaofu; Tan, Xing; Xue, Ming; Li, Jian

    2010-04-01

    We introduce a maximum a posteriori (MAP) algorithm and a sparse learning via iterative minimization (SLIM) algorithm to synthetic aperture radar (SAR) imaging. Both MAP and SLIM are sparse signal recovery algorithms with excellent sidelobe suppression and high resolution properties. The former cyclically maximizes the a posteriori probability density function for a given sparsity promoting prior, while the latter cyclically minimizes a regularized least squares cost function. We show how MAP and SLIM can be adapted to the SAR imaging application and used to enhance the image quality. We evaluate the performance of MAP and SLIM using the simulated complex-valued backscattered data from a backhoe vehicle. The numerical results show that both MAP and SLIM satisfactorily suppress the sidelobes and yield higher resolution than the conventional matched filter or delay-and-sum (DAS) approach. MAP and SLIM outperform the widely used compressive sampling matching pursuit (CoSaMP) algorithm, which requires the delicate choice of user parameters. Compared with the recently developed iterative adaptive approach (IAA), MAP and SLIM are computationally more efficient, especially with the help of fast Fourier transform (FFT). Also, the a posteriori distribution given by the algorithms provides us with a basis for the analysis of the statistical properties of the SAR image pixels.

  8. Circular SAR GMTI

    NASA Astrophysics Data System (ADS)

    Page, Douglas; Owirka, Gregory; Nichols, Howard; Scarborough, Steven

    2014-06-01

    We describe techniques for improving ground moving target indication (GMTI) performance in multi-channel synthetic aperture radar (SAR) systems. Our approach employs a combination of moving reference processing (MRP) to compensate for defocus of moving target SAR responses and space-time adaptive processing (STAP) to mitigate the effects of strong clutter interference. Using simulated moving target and clutter returns, we demonstrate focusing of the target return using MRP, and discuss the effect of MRP on the clutter response. We also describe formation of adaptive degrees of freedom (DOFs) for STAP filtering of MRP processed data. For the simulated moving target in clutter example, we demonstrate improvement in the signal to interference plus noise (SINR) loss compared to more standard algorithm configurations. In addition to MRP and STAP, the use of tracker feedback, false alarm mitigation, and parameter estimation techniques are also described. A change detection approach for reducing false alarms from clutter discretes is outlined, and processing of a measured data coherent processing interval (CPI) from a continuously orbiting platform is described. The results demonstrate detection and geolocation of a high-value target under track. The endoclutter target is not clearly visible in single-channel SAR chips centered on the GMTI track prediction. Detections are compared to truth data before and after geolocation using measured angle of arrival (AOA).

  9. Wetland InSAR

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Kim, S.; Amelung, F.; Dixon, T.

    2006-12-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from fresh water used by human and provide aquatic habitats for outdoor recreation, tourism, and fishing. Globally, many such regions are under severe environmental stress, mainly from urban development, pollution, and rising sea level. However, there is increasing recognition of the importance of these habitats, and mitigation and restoration activities have begun in a few regions. A key element in wetlands conservation, management, and restoration involves monitoring its hydrologic system, as the entire ecosystem depends on its water supply. Heretofore, hydrologic monitoring of wetlands are conducted by stage (water level) stations, which provide good temporal resolution, but suffer from poor spatial resolution, as stage station are typically distributed several, or even tens of kilometers, from one another. Wetland application of InSAR provides the needed high spatial resolution hydrological observations, complementing the high temporal resolution terrestrial observations. Although conventional wisdom suggests that interferometry does not work in vegetated areas, several studies have shown that both L- and C-band interferograms with short acquisition intervals (1-105 days) can maintain excellent coherence over wetlands. In this study we explore the usage of InSAR for detecting water level changes in various wetland environments around the world, including the Everglades (south Florida), Louisiana Coast (southern US), Chesapeake Bay (eastern US), Pantanal (Brazil), Okavango Delta (Botswana), and Lena Delta (Siberia). Our main study area is the Everglades wetland (south Florida), which is covered by

  10. Formulae for TAR and SAR calculation for Co-60 beam.

    PubMed

    Tripathi, U B

    1980-04-01

    Tissue-air ratio (TAR) and scatter-air ratio (SAR) are very important concepts in radiation dosimetry. In absence of any analytical relation for computation of these quantities a number of empirical equations have been fitted to experimentally measured data. This paper describes the derivation of analytical formulae from first principles. The resultant equations are very simple and can even be evaluated with the help of a slide rule. The computed values of TAR and SAR agree within 1% with the experimental data of Gupta and Cunningham (1966). PMID:7368231

  11. SAR-based vibrometry using the fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Campbell, Justin B.; Wang, Qi; Ade-Bello, Jelili; Caudana, Humberto; Trujillo, Nicole B.; Bhatta, Ishwor; Dunkel, Ralf; Atwood, Thomas; Doerry, Armin; Gerstle, Walter H.; Santhanam, Balu; Hayat, Majeed M.

    2015-05-01

    A fundamental assumption when applying Synthetic Aperture Radar (SAR) to a ground scene is that all targets are motionless. If a target is not stationary, but instead vibrating in the scene, it will introduce a non-stationary phase modulation, termed the micro-Doppler effect, into the returned SAR signals. Previously, the authors proposed a pseudosubspace method, a modification to the Discrete Fractional Fourier Transform (DFRFT), which demonstrated success for estimating the instantaneous accelerations of vibrating objects. However, this method may not yield reliable results when clutter in the SAR image is strong. Simulations and experimental results have shown that the DFRFT method can yield reliable results when the signal-to-clutter ratio (SCR) > 8 dB. Here, we provide the capability to determine a target's frequency and amplitude in a low SCR environment by presenting two methods that can perform vibration estimations when SCR < 3 dB. The first method is a variation and continuation of the subspace approach proposed previously in conjunction with the DFRFT. In the second method, we employ the dual-beam SAR collection architecture combined with the extended Kalman filter (EKF) to extract information from the returned SAR signals about the vibrating target. We also show the potential for extending this SAR-based capability to remotely detect and classify objects housed inside buildings or other cover based on knowing the location of vibrations as well as the vibration histories of the vibrating structures that house the vibrating objects.

  12. Initial viral load and the outcomes of SARS

    PubMed Central

    Chu, Chung-Ming; Poon, Leo L.M.; Cheng, Vincent C.C.; Chan, Kin-Sang; Hung, Ivan F.N.; Wong, Maureen M.L.; Chan, Kwok-Hung; Leung, Wah-Shing; Tang, Bone S.F.; Chan, Veronica L.; Ng, Woon-Leung; Sim, Tiong-Chee; Ng, Ping-Wing; Law, Kin-Ip; Tse, Doris M.W.; Peiris, Joseph S.M.; Yuen, Kwok-Yung

    2004-01-01

    Background Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus. It may progress to respiratory failure, and a significant proportion of patients die. Preliminary data suggest that a high viral load of the SARS coronavirus is associated with adverse outcomes in the intensive care unit, but the relation of viral load to survival is unclear. Methods We prospectively studied an inception cohort of 133 patients with virologically confirmed SARS who were admitted to 2 general acute care hospitals in Hong Kong from Mar. 24 to May 4, 2003. The patients were followed until death or for a minimum of 90 days. We used Cox proportional hazard modelling to analyze potential predictors of survival recorded at the time of presentation, including viral load from nasopharyngeal specimens (measured by quantitative reverse transcriptase polymerase chain reaction [PCR] of the SARS-associated coronavirus). Results Thirty-two patients (24.1%) met the criteria for acute respiratory distress syndrome, and 24 patients (18.0%) died. The following baseline factors were independently associated with worse survival: older age (61–80 years) (adjusted hazard ratio [HR] 5.24, 95% confidence interval [CI] 2.03–13.53), presence of an active comorbid condition (adjusted HR 3.36, 95% CI 1.44–7.82) and higher initial viral load of SARS coronavirus, according to quantitative PCR of nasopharyngeal specimens (adjusted HR 1.21 per log10 increase in number of RNA copies per millilitre, 95% CI 1.06–1.39). Interpretation We found preliminary evidence that higher initial viral load is independently associated with worse prognosis in SARS. Mortality data for patients with SARS should be interpreted in light of age, comorbidity and viral load. These considerations will be important in future studies of SARS. PMID:15557587

  13. Recovering Seasat SAR Data

    NASA Astrophysics Data System (ADS)

    Logan, T. A.; Arko, S. A.; Rosen, P. A.

    2013-12-01

    To demonstrate the feasibility of orbital remote sensing for global ocean observations, NASA launched Seasat on June 27th, 1978. Being the first space borne SAR mission, Seasat produced the most detailed SAR images of Earth from space ever seen to that point in time. While much of the data collected in the USA was processed optically, a mere 150 scenes had been digitally processed by March 1980. In fact, only an estimated 3% of Seasat data was ever digitally processed. Thus, for over three decades, the majority of the SAR data from this historic mission has been dormant, virtually unavailable to scientists in the 21st century. Over the last year, researchers at the Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) have processed the Seasat SAR archives into imagery products. A telemetry decoding system was created and the data were filtered into readily processable signal files. Due to nearly 35 years of bit rot, the bit error rate (BER) for the ASF DAAC Seasat archives was on the order of 1 out of 100 to 1 out of 100,000. This extremely high BER initially seemed to make much of the data undecodable - because the minor frame numbers are just 7 bits and no range line numbers exist in the telemetry even the 'simple' tasks of tracking the minor frame number or locating the start of each range line proved difficult. Eventually, using 5 frame numbers in sequence and a handful of heuristics, the data were successfully decoded into full range lines. Concurrently, all metadata were stored into external files. Recovery of this metadata was also problematic, the BER making the information highly suspect and, initially at least, unusable in any sort of automated fashion. Because of the BER, all of the single bit metadata fields proved unreliable. Even fields that should be constant for a data take (e.g. receiving station, day of the year) showed high variability, each requiring a median filter to be usable. The most challenging, however, were the

  14. SAR Ice Classification Using Fuzzy Screening Method

    NASA Astrophysics Data System (ADS)

    Gill, R. S.

    2003-04-01

    A semi-automatic SAR sea ice classification algorithm is described. It is based on combining the information in the original SAR data with those in the three 'image' products derived from it, namely Power-to-Mean Ratio (PMR), the Gamma distribution and the second order texture parameter entropy, respectively. The latter products contain information which is often useful during the manual interpretation of the images. The technique used to fuse the information in these products is based on a method c lled Multi Experts Multi Criteria Decision Making fuzzy a screening. The Multiple Experts in this case are the above four 'image' products. The two criteria used currently for making decisions are the Kolmogorov-Smirnov distribution matching and the statistical mean of different surface classes. The algorithm classifies an image into any number of predefined classes of sea ice and open water. The representative classes of these surface types are manually identified by the user. Further, as SAR signals from sea ice covered regions and open water are ambiguous, it was found that a minimum of 4 pre-identified surface classes (calm and turbulent water and sea ice with low and high backscatter values) are required to accurately classify an image. Best results are obtained when a total of 8 surface classes (2 each of sea ice and open water in the near range and a similar number in the far range of the SAR image) are used. The main advantage of using this image classification scheme is that, like neural networks, no prior knowledge is required of the statistical distribution of the different surface types. Furthermore, unlike the methods based on neural networks, no prior data sets are required to train the algorithm. All the information needed for image classification by the method is contained in the individual SAR images and associated products. Initial results illustrating the potential of this ice classification algorithm using the RADARSAT ScanSAR Wide data are presented

  15. Extraction of linear features on SAR imagery

    NASA Astrophysics Data System (ADS)

    Liu, Junyi; Li, Deren; Mei, Xin

    2006-10-01

    Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.

  16. Epidemiologic clues to SARS origin in China.

    PubMed

    Xu, Rui-Heng; He, Jian-Feng; Evans, Meiron R; Peng, Guo-Wen; Field, Hume E; Yu, De-Wen; Lee, Chin-Kei; Luo, Hui-Min; Lin, Wei-Sheng; Lin, Peng; Li, Ling-Hui; Liang, Wen-Jia; Lin, Jin-Yan; Schnur, Alan

    2004-06-01

    An epidemic of severe acute respiratory syndrome (SARS) began in Foshan municipality, Guangdong Province, China, in November 2002. We studied SARS case reports through April 30, 2003, including data from case investigations and a case series analysis of index cases. A total of 1,454 clinically confirmed cases (and 55 deaths) occurred; the epidemic peak was in the first week of February 2003. Healthcare workers accounted for 24% of cases. Clinical signs and symptoms differed between children (<18 years) and older persons (> or =65 years). Several observations support the hypothesis of a wild animal origin for SARS. Cases apparently occurred independently in at least five different municipalities; early case-patients were more likely than later patients to report living near a produce market (odds ratio undefined; lower 95% confidence interval 2.39) but not near a farm; and 9 (39%) of 23 early patients, including 6 who lived or worked in Foshan, were food handlers with probable animal contact. PMID:15207054

  17. Bistatic SAR: Imagery & Image Products.

    SciTech Connect

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  18. Processor architecture for airborne SAR systems

    NASA Technical Reports Server (NTRS)

    Glass, C. M.

    1983-01-01

    Digital processors for spaceborne imaging radars and application of the technology developed for airborne SAR systems are considered. Transferring algorithms and implementation techniques from airborne to spaceborne SAR processors offers obvious advantages. The following topics are discussed: (1) a quantification of the differences in processing algorithms for airborne and spaceborne SARs; and (2) an overview of three processors for airborne SAR systems.

  19. Anatomy of a SAR impulse response.

    SciTech Connect

    Doerry, Armin Walter

    2007-08-01

    A principal measure of Synthetic Aperture Radar (SAR) image quality is the manifestation in the SAR image of a spatial impulse, that is, the SAR's Impulse Response (IPR). IPR requirements direct certain design decisions in a SAR. Anomalies in the IPR can point to specific anomalous behavior in the radar's hardware and/or software.

  20. Studies of ice sheet hydrology using SAR

    NASA Technical Reports Server (NTRS)

    Bindschadler, R. A.; Vornberger, P. L.

    1989-01-01

    Analysis of SAR data of the Greenland ice sheet in summer and winter suggest the use of SAR to monitor the temporal hydrology of ice sheets. Comparisons of each SAR data set with summer Landsat TM imagery show an areal-positive correlation with summer SAR data and a negative correlation with winter SAR data. It is proposed that the summer SAR data are most sensitive to the variable concentrations of free water in the surface snow and that the winter SAR data indicate variations in snow grain size.

  1. ERS-1 SAR data processing

    NASA Technical Reports Server (NTRS)

    Leung, K.; Bicknell, T.; Vines, K.

    1986-01-01

    To take full advantage of the synthetic aperature radar (SAR) to be flown on board the European Space Agency's Remote Sensing Satellite (ERS-1) (1989) and the Canadian Radarsat (1990), the implementation of a receiving station in Alaska is being studied to gather and process SAR data pertaining in particular to regions within the station's range of reception. The current SAR data processing requirement is estimated to be on the order of 5 minutes per day. The Interim Digital Sar Processor (IDP) which was under continual development through Seasat (1978) and SIR-B (1984) can process slightly more than 2 minutes of ERS-1 data per day. On the other hand, the Advanced Digital SAR Processore (ADSP), currently under development for the Shuttle Imaging Radar C (SIR-C, 1988) and the Venus Radar Mapper, (VMR, 1988), is capable of processing ERS-1 SAR data at a real time rate. To better suit the anticipated ERS-1 SAR data processing requirement, both a modified IDP and an ADSP derivative are being examined. For the modified IDP, a pipelined architecture is proposed for the mini-computer plus array processor arrangement to improve throughout. For the ADSP derivative, a simplified version is proposed to enhance ease of implementation and maintainability while maintaing real time throughput rates. These processing systems are discussed and evaluated.

  2. SAR/InSAR observation by an HF sounder

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ono, T.

    2007-03-01

    Application of SAR imaging algorithm to spaceborne HF sounder observation was studied. Two types of image ambiguity problems were addressed in the application. One is surface/subsurface image ambiguity arising from deep penetration of HF wave, and another is mirror image ambiguity that is inherent to dipole antenna SAR. A numerical model demonstrated that the surface/subsurface ambiguity can be mitigated by taking a synthetic aperture large enough to defocus subsurface objects. In order to resolve the mirror image ambiguity problem, an image superposition technique was proposed. The performance of the technique was demonstrated by using simulation data of the HF sounder observation to confirm the feasibility of HF SAR and HF InSAR observation.

  3. Synthetic Aperture Radar (SAR) data processing

    NASA Technical Reports Server (NTRS)

    Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.

    1978-01-01

    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.

  4. Design of a monopulse SAR system to determine elevation angles

    NASA Technical Reports Server (NTRS)

    Oettl, H.; Zink, M.; Zeller, K. H.; Freeman, A.

    1992-01-01

    Terrain height variations in mountainous areas cause problems in radiometric corrections of synthetic aperture radar (SAR) images. To determine the elevation angle and the height at the different parts of an image, an application of the monopulse principle is proposed. From the ratios of images radiometrically modulated by the difference and sum antenna pattern in range it is possible to calculate the appropriate elevation angle at any point in the image. Design considerations for a corresponding airborne SAR-system are presented, and some estimates of error influences (e.g., ambiguities), expected performance and precision in topographic mapping are given.

  5. Characterization of sarR, a Modulator of sar Expression in Staphylococcus aureus

    PubMed Central

    Manna, Adhar; Cheung, Ambrose L.

    2001-01-01

    The expression of virulence determinants in Staphylococcus aureus is controlled by global regulatory loci (e.g., sar and agr). The sar locus is composed of three overlapping transcripts (sar P1, P3, and P2 transcripts from P1, P3, and P2 promoters, respectively), all encoding the 372-bp sarA gene. The level of SarA, the major regulatory protein, is partially controlled by the differential activation of sar promoters. We previously partially purified a ∼12 kDa protein with a DNA-specific column containing a sar P2 promoter fragment. In this study, the putative gene, designated sarR, was identified and found to encode a 13.6-kDa protein with homology to SarA. Transcriptional and immunoblot studies revealed the sarR gene to be expressed in other staphylococcal strains. Recombinant SarR protein bound sar P1, P2, and P3 promoter fragments in gel shift and footprinting assays. A sarR mutant expressed a higher level of P1 transcript than the parent, as confirmed by promoter green fluorescent protein fusion assays. As the P1 transcript is the predominant sar transcript, we confirmed that the sarR mutant expressed more SarA than the parental strain. We thus proposed that SarR is a regulatory protein that binds to the sar promoters to down-regulate P1 transcription and the ensuing SarA protein expression. PMID:11159982

  6. Earth observing SAR data processing systems at the Jet Propulsion Laboratory - Seasat to EOS SAR

    NASA Technical Reports Server (NTRS)

    Nichols, David A.; Curlander, John C.

    1991-01-01

    The evolution of SAR digital data processing and management ground systems developed at the JPL for earth science missions is discussed. Attention is given to the SAR ground data system requirements, the early data processing systems, the Seasat SAR system, and the SIR-B data processing system. Special consideration is given to two currently operational SAR data systems: the JPL aircraft SAR processing system that flies on the NASA DC-8 and the Alaska SAR Facility at Fairbanks.

  7. SAR imaging - Seeing the unseen

    NASA Technical Reports Server (NTRS)

    Kobrick, M.

    1982-01-01

    The functional abilities and operations of synthetic aperture radar (SAR) are described. SAR employs long wavelength radio waves in bursts, imaging a target by 'listening' to the small frequency changes that result from the Doppler shift due to the relative motion of the imaging craft and the motions of the target. The time delay of the signal return allows a determination of the location of the target, leading to the build up of a two-dimensional image. The uses of both Doppler shifts and time delay enable detailed imagery which is independent of distance. The synthetic aperture part of the name of SAR derives from the beaming of multiple pulses, which result in a picture that is effectively the same as using a large antenna. Mechanisms contributing to the fineness of SAR images are outlined.

  8. SARS Antibody Test for Serosurveillance

    PubMed Central

    Hsueh, Po-Ren; Kao, Chuan-Liang; Lee, Chun-Nan; Chen, Li-Kuan; Ho, Mei-Shang; Sia, Charles; De Fang, Xin; Lynn, Shugene; Chang, Tseng Yuan; Liu, Shi Kau; Walfield, Alan M.

    2004-01-01

    A peptide-based enzyme-linked immunosorbent assay (ELISA) can be used for retrospective serosurveillance of severe acute respiratory syndrome (SARS) by helping identify undetected chains of disease transmission. The assay was developed by epitope mapping, using synthetic peptides from the spike, membrane, and nucleocapsid protein sequences of SARS-associated coronavirus. The new peptide ELISA consistently detected seroconversion by week 2 of onset of fever, and seropositivity remained through day 100. Specificity was 100% on normal blood donor samples, on serum samples associated with infection by other pathogens, and on an interference panel. The peptide-based test has advantages of safety, standardization, and automation over previous immunoassays for SARS. The assay was used for a retrospective survey of healthy healthcare workers in Taiwan who treated SARS patients. Asymptomatic seroconversions were detected in two hospitals that had nosocomial disease. PMID:15498156

  9. High-Level Performance Modeling of SAR Systems

    NASA Technical Reports Server (NTRS)

    Chen, Curtis

    2006-01-01

    SAUSAGE (Still Another Utility for SAR Analysis that s General and Extensible) is a computer program for modeling (see figure) the performance of synthetic- aperture radar (SAR) or interferometric synthetic-aperture radar (InSAR or IFSAR) systems. The user is assumed to be familiar with the basic principles of SAR imaging and interferometry. Given design parameters (e.g., altitude, power, and bandwidth) that characterize a radar system, the software predicts various performance metrics (e.g., signal-to-noise ratio and resolution). SAUSAGE is intended to be a general software tool for quick, high-level evaluation of radar designs; it is not meant to capture all the subtleties, nuances, and particulars of specific systems. SAUSAGE was written to facilitate the exploration of engineering tradeoffs within the multidimensional space of design parameters. Typically, this space is examined through an iterative process of adjusting the values of the design parameters and examining the effects of the adjustments on the overall performance of the system at each iteration. The software is designed to be modular and extensible to enable consideration of a variety of operating modes and antenna beam patterns, including, for example, strip-map and spotlight SAR acquisitions, polarimetry, burst modes, and squinted geometries.

  10. TerraSAR-X mission

    NASA Astrophysics Data System (ADS)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  11. The X-SAR System

    NASA Technical Reports Server (NTRS)

    Oettl, Herwig

    1986-01-01

    During the past few years, there has been significant progress made in the planning for an X-band SAR, designed to fly in the shuttle together with the SIR-C system of NASA/JPL. New work and studies have been initiated to enable the goal of two missions in 1990 to be met. The antennas of X-SAR and SIR-C will be placed side-by-side on a pivoted steerable foldable structure, which will allow antenna movement without changing the attitude of the shuttle. This figure also shows the pallet, underneath the antenna structure, which houses the electronic sub-systems of both radars. Although the two radar systems, X-band SAR and the L- and C-band SAR of SIR-C, have different technical designs, their overall system performance, in terms of image quality, is expected to be similar. The current predicted performance of the X-SAR system based on results of the continuing Phase B studies is detailed. Differences between the performance parameters of X-SAR and those of SIR-C are only detailed in as far as they affect planning decisions to be made by experimenters.

  12. Classification And Monitoring Of Salt Marsh Habitats With Multi-Polarimetric Airborne SAR

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair

    2013-12-01

    Within the Copernicus programme there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application of Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh vegetation habitats can be identified from polarimetric SAR remotely sensed data. Multi- frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by (1) using both supervised and unsupervised classification routines, using several polarimetric SAR data layers as backscatter intensity, band ratios and polarimetric decomposition products, and by (2) statistical analysis by regression of these different SAR data layers and botanical parameters acquired from recent ecological fieldwork.

  13. Lightweight SAR GMTI radar technology development

    NASA Astrophysics Data System (ADS)

    Kirk, John C.; Lin, Kai; Gray, Andrew; Hseih, Chung; Darden, Scott; Kwong, Winston; Majumder, Uttam; Scarborough, Steven

    2013-05-01

    A small and lightweight dual-channel radar has been developed for SAR data collections. Using standard Displaced Phase Center Antenna (DPCA) radar digital signal processing, SAR GMTI images have been obtained. The prototype radar weighs 5-lbs and has demonstrated the extraction of ground moving targets (GMTs) embedded in high-resolution SAR imagery data. Heretofore this type of capability has been reserved for much larger systems such as the JSTARS. Previously, small lightweight SARs featured only a single channel and only displayed SAR imagery. Now, with the advent of this new capability, SAR GMTI performance is now possible for small UAV class radars.

  14. SAR data exploitation: computational technology enabling SAR ATR algorithm development

    NASA Astrophysics Data System (ADS)

    Majumder, Uttam K.; Casteel, Curtis H., Jr.; Buxa, Peter; Minardi, Michael J.; Zelnio, Edmund G.; Nehrbass, John W.

    2007-04-01

    A fundamental issue with synthetic aperture radar (SAR) application development is data processing and exploitation in real-time or near real-time. The power of high performance computing (HPC) clusters, FPGA, and the IBM Cell processor presents new algorithm development possibilities that have not been fully leveraged. In this paper, we will illustrate the capability of SAR data exploitation which was impractical over the last decade due to computing limitations. We can envision that SAR imagery encompassing city size coverage at extremely high levels of fidelity could be processed at near-real time using the above technologies to empower the warfighter with access to critical information for the war on terror, homeland defense, as well as urban warfare.

  15. On Ambiguities in SAR Design

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    2006-01-01

    Ambiguities are an aliasing effect caused by the periodic sampling of the scene backscatter inherent to pulsed radar systems such as Synthetic Aperture radar (SAR). In this paper we take a fresh look at the relationship between SAR range and azimuth ambiguity constraints on the allowable pulse repetition frequency (PRF) and the antenna length. We show that for high squint angles smaller antennas may be feasible in some cases. For some applications, the ability to form a synthetic aperture at high squint angles is desirable, but the size of the antenna causes problems in the design of systems capable of such operation. This is because the SAR system design is optimized for a side-looking geometry. In two examples design examples we take a suboptimum antenna size and examine the performance in terms of azimuth resolution and swath width as a function of squint angle. We show that for stripmap SARs, the swath width is usually worse for off-boresight squint angles, because it is severely limited by range walk, except in cases where we relax the spatial resolution. We consider the implications for the design of modest-resolution, narrow swath, scanning SAR scatterometers .

  16. Research on Multi-Temporal PolInSAR Modeling and Applications

    NASA Astrophysics Data System (ADS)

    Hong, Wen; Pottier, Eric; Chen, Erxue

    2014-11-01

    In the study of theory and processing methodology, we apply accurate topographic phase to the Freeman-Durden decomposition for PolInSAR data. On the other hand, we present a TomoSAR imaging method based on convex optimization regularization theory. The target decomposition and reconstruction performance will be evaluated by multi-temporal Land P-band fully polarimetric images acquired in BioSAR campaigns. In the study of hybrid Quad-Pol system performance, we analyse the expression of range ambiguity to signal ratio (RASR) in this architecture. Simulations are used to testify its advantage in the improvement of range ambiguities.

  17. Optical and SAR data integration for automatic change pattern detection

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Susaki, J.

    2014-09-01

    Automatic change pattern mapping in urban and sub-urban area is important but challenging due to the diversity of urban land use pattern. With multi-sensor imagery, it is possible to generate multidimensional unique information of Earth surface features that allow developing a relationship between a response of each feature to synthetic aperture radar (SAR) and optical sensors to track the change automatically. Thus, a SAR and optical data integration framework for change detection and a relationship for automatic change pattern detection were developed. It was carried out in three steps: (i) Computation of indicators from SAR and optical images, namely: normalized difference ratio (NDR) from multi-temporal SAR images and the normalized difference vegetation index difference (NDVI) from multi-temporal optical images, (ii) computing the change magnitude image from NDR and ΔNDVI and delineating the change area and (iii) the development of an empirical relationship, for automatic change pattern detection. The experiment was carried out in an outskirts part of Ho Chi Minh City, one of the fastest growing cities in the world. The empirical relationship between the response of surface feature to optical and SAR imagery has successfully delineated six changed classes in a very complex urban sprawl area that was otherwise impossible with multi-spectral imagery. The improvement of the change detection results by making use of the unique information on both sensors, optical and SAR, is also noticeable with a visual inspection and the kappa index was increased by 0.13 (0.75 to 0.88) in comparison to only optical images.

  18. SARS Patients and Their Close Contacts

    MedlinePlus

    ... Fact Sheet for SARS Patients and Their Close Contacts Format: Select one PDF [256 KB] Recommend on ... that are not now known. What does "close contact" mean? In the context of SARS, close contact ...

  19. Method for removing RFI from SAR images

    DOEpatents

    Doerry, Armin W.

    2003-08-19

    A method of removing RFI from a SAR by comparing two SAR images on a pixel by pixel basis and selecting the pixel with the lower magnitude to form a composite image. One SAR image is the conventional image produced by the SAR. The other image is created from phase-history data which has been filtered to have the frequency bands containing the RFI removed.

  20. Registration of interferometric SAR images

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Vesecky, John F.; Zebker, Howard A.

    1992-01-01

    Interferometric synthetic aperture radar (INSAR) is a new way of performing topography mapping. Among the factors critical to mapping accuracy is the registration of the complex SAR images from repeated orbits. A new algorithm for registering interferometric SAR images is presented. A new figure of merit, the average fluctuation function of the phase difference image, is proposed to evaluate the fringe pattern quality. The process of adjusting the registration parameters according to the fringe pattern quality is optimized through a downhill simplex minimization algorithm. The results of applying the proposed algorithm to register two pairs of Seasat SAR images with a short baseline (75 m) and a long baseline (500 m) are shown. It is found that the average fluctuation function is a very stable measure of fringe pattern quality allowing very accurate registration.

  1. Monsoon '90 - Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Van Zyl, Jakob J.; Guerra, Abel G.

    1992-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  2. Monsoon 1990: Preliminary SAR results

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J.; Dubois, Pascale; Guerra, Abel

    1991-01-01

    Multifrequency polarimetric synthetic aperture radar (SAR) images of the Walnut Gulch watershed near Tombstone, Arizona were acquired on 28 Mar. 1990 and on 1 Aug. 1990. Trihedral corner reflectors were deployed prior to both overflights to allow calibration of the two SAR data sets. During both overflights, gravimetric soil moisture and dielectric constant measurements were made. Detailed vegetation height, density, and water content measurements were made as part of the Monsoon 1990 Experiment. Preliminary results based on analysis of the multitemporal polarimetric SAR data are presented. Only the C-band data (5.7-cm wavelength) radar images show significant difference between Mar. and Aug., with the strongest difference observed in the HV images. Based on the radar data analysis and the in situ measurements, we conclude that these differences are mainly due to changes in the vegetation and not due to the soil moisture changes.

  3. A dense medium electromagnetic scattering model for the InSAR correlation of snow

    NASA Astrophysics Data System (ADS)

    Lei, Yang; Siqueira, Paul; Treuhaft, Robert

    2016-05-01

    Snow characteristics, such as snow water equivalent (SWE) and snow grain size, are important characteristics for the monitoring of the global hydrological cycle and as indicators of climate change. This paper derives an interferometric synthetic aperture radar (InSAR) scattering model for dense media, such as snow, which takes into account multiple scattering effects through the Quasi-Crystalline Approximation. The result of this derivation is a simplified version of the InSAR correlation model derived for relating the InSAR correlation measurements to the snowpack characteristics of grain size, volume fraction, and layer depth as well as those aspects of the volume-ground interaction that affects the interferometric observation (i.e., the surface topography and the ratio of ground-to-volume scattering). Based on the model, the sensitivity of the InSAR correlation measurements to the snow characteristics is explored by simulation. Through this process, it is shown that Ka-band InSAR phase has a good sensitivity to snow grain size and volume fraction, while for lower frequency signals (Ku-band to L-band), the InSAR correlation magnitude and phase have a sensitivity to snow depth. Since the formulation depends, in part, on the pair distribution function, three functional forms of the pair distribution function are implemented and their effects on InSAR phase measurements compared. The InSAR scattering model described in this paper is intended to be an observational prototype for future Ka-band and L-band InSAR missions, such as NASA's Surface Water and Ocean Topography and NASA-ISRO Synthetic Aperture Radar missions, planned for launch in the 2020-2021 time frame. This formulation also enables further investigation of the InSAR-based snow retrieval approaches.

  4. Registration Of SAR Images With Multisensor Images

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.; Burnette, Charles F.; Van Zyl, Jakob J.

    1993-01-01

    Semiautomated technique intended primarily to facilitate registration of polarimetric synthetic-aperture-radar (SAR) images with other images of same or partly overlapping terrain while preserving polarization information conveyed by SAR data. Technique generally applicable in sense one or both of images to be registered with each other generated by polarimetric or nonpolarimetric SAR, infrared radiometry, conventional photography, or any other applicable sensing method.

  5. Progress towards SAR based ecosystem analysis

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Sun, Guoqing

    1991-01-01

    Recent progress towards a synthetic aperture radar (SAR) based system for determining forest ecosystem attributes is discussed. Our SAR data processing and analysis sequence, from calibration through classification, is described. In addition, the usefulness of SAR image data for identifying ecosystem classes is discussed.

  6. SAR and InSAR georeferencing algorithms for inertial navigation systems

    NASA Astrophysics Data System (ADS)

    Greco, M.; Kulpa, K.; Pinelli, G.; Samczynski, P.

    2011-10-01

    This paper presents the concept of Synthetic Aperture Radar (SAR) and Interferemetric SAR (InSAR) georeferencing algorithms dedicated for SAR based augmented Inertial Navigation Architecture (SARINA). The SARINA is a novel concept of the Inertial Navigation System (INS), which utilized the SAR radar as an additional sensor to provide information about the platform trajectory position and compensate an aircraft drift due to Inertial Measurement Unit (IMU) errors, Global Positioning System (GPS) lack of integrity, etc.

  7. Realtime processor of SAR systems

    NASA Astrophysics Data System (ADS)

    Schotter, R.

    Attention is given to potential applications of a synthetic aperture radar (SAR) real time processor which was developed for Space Shuttle-based earth sensing, and which may prove useful in military surveillance, ocean wave studies, ship movements in territorial waters, land conservation, geology, and mineralogical prospecting. The SAR processor's signal processing task is characterized by complex algorithms and large quantities of raw data/time unit. A 'pipeline' configuration has been judged optimal for this type of processing, and it will consist of digital hardware modules for Fourier transform, digital filtering, two-dimensional image memory, and complex multiplication.

  8. Squint mode SAR processing algorithms

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Jin, M.; Curlander, J. C.

    1989-01-01

    The unique characteristics of a spaceborne SAR (synthetic aperture radar) operating in a squint mode include large range walk and large variation in the Doppler centroid as a function of range. A pointing control technique to reduce the Doppler drift and a new processing algorithm to accommodate large range walk are presented. Simulations of the new algorithm for squint angles up to 20 deg and look angles up to 44 deg for the Earth Observing System (Eos) L-band SAR configuration demonstrate that it is capable of maintaining the resolution broadening within 20 percent and the ISLR within a fraction of a decibel of the theoretical value.

  9. Electrical swing adsorption gas storage and delivery system

    DOEpatents

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  10. Electrical swing adsorption gas storage and delivery system

    DOEpatents

    Judkins, R.R.; Burchell, T.D.

    1999-06-15

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

  11. hPEPT1 affinity and translocation of selected Gln-Sar and Glu-Sar dipeptide derivatives.

    PubMed

    Eriksson, André Huss; Elm, Peter L; Begtrup, Mikael; Nielsen, Robert; Steffansen, Bente; Brodin, Birger

    2005-01-01

    The intestinal di- and tripeptide transporter hPEPT1 is considered responsible for the absorption of di- and tripeptides arising from digestion, along with several drugs and prodrugs. In order to gather information on the binding site of the protein, several structure-affinity relationships have been suggested. However, these are not necessarily predictive of compounds that are actually translocated by hPEPT1. More information on affinity to and translocation via hPEPT1 of side-chain-modified dipeptides may be gained by conducting a study of selected dipeptide derivatives with variety in size, hydrophobicity, and bond type. The aim of the present study was to synthesize new esters and amides based on L-Glu-Sar and investigate the effects that bond type and size of modification of the N-terminal side chain of sarcosine-containing dipeptides have on the affinity to and translocation via hPEPT1. The esters L-Glu(O-i-Bu)-Sar and L-Glu(OCH(2)Ada)-Sar and the amides L-Gln(N,N-dimethyl)-Sar and L-Gln(N-piperidinyl)-Sar were synthesized, and affinity to and translocation via hPEPT1 were investigated in mature Caco-2 cell monolayers, grown on permeable supports. Affinity was estimated in a competition assay using (14)C-labeled Gly-Sar. Translocation was measured as fluorescence ratios induced by the substrates using the fluorescent probe BCECF and an epifluorescence microscope setup. All compounds showed high affinity to hPEPT1, but only the amides L-Gln(N,N-dimethyl)-Sar and L-Gln(N-piperidinyl)-Sar were translocated by hPEPT1. hPEPT1 is very susceptible to modifications of the N-terminal amino acid side chain of dipeptidomimetic substrates, in terms of achieving compounds with high affinity for the transporter. However, as affinity is not predictive of translocation, derivatization in this position must be performed with great caution since some of the compounds investigated turn out not to be translocated by the transporter. PMID:15934785

  12. Bioelectromagnetic effects measurements - SAR and induced current.

    PubMed

    Dlugosz, Tomasz

    2015-01-01

    The paper discusses several theoretical and practical aspects of the application of currents flowing through the body of a radiotelephone operator and Specific Absorption Rate (SAR). SAR is known as the physical quantity which is a perfect solution for biological experiments. Unfortunately, SAR cannot be measured directly. Contrary to SAR, which is limited to the penetration depth, a current induced in a point of a body is measurable in any other point of the body. The main objective of this paper is to show that the current induced in a human body when using a radiotelephone or mobile phone is significant and should be analyzed as widely as SAR is. Computer simulations of a human's hand with a radiotelephone were made. Experiments were also conducted. The results of the experiments show that induced current is also as important as SAR and it cannot be omitted in bioelectromagnetic experiments. In biomedical studies both parameters: induced current and SAR play a major role. PMID:25585976

  13. Further SEASAT SAR coastal ocean wave analysis

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; Shuchman, R. A.; Meadows, G. A.; Jackson, P. L.; Tseng, Y.

    1981-01-01

    Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results.

  14. Late summer sea ice segmentation with multi-polarisation SAR features in C- and X-band

    NASA Astrophysics Data System (ADS)

    Fors, A. S.; Brekke, C.; Doulgeris, A. P.; Eltoft, T.; Renner, A. H. H.; Gerland, S.

    2015-09-01

    In this study we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around zero degrees Celsius. In situ data consisting of sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporally consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set, and for a reduced SAR feature set limited to temporally consistent features. In general, the algorithm produces a good late summer sea ice segmentation. Excluding temporally inconsistent SAR features improved the segmentation at air temperatures above zero degrees Celcius.

  15. Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band

    NASA Astrophysics Data System (ADS)

    Fors, Ane S.; Brekke, Camilla; Doulgeris, Anthony P.; Eltoft, Torbjørn; Renner, Angelika H. H.; Gerland, Sebastian

    2016-02-01

    In this study, we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around 0 °C. Sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporal consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set and for a reduced SAR feature set limited to temporally consistent features. In C band, the algorithm produced a good late-summer sea ice segmentation, separating the scenes into segments that could be associated with different sea ice types in the next step. The X-band performance was slightly poorer. Excluding temporally inconsistent SAR features improved the segmentation in one of the X-band scenes.

  16. [Severe acute respiratory syndrome (SARS)].

    PubMed

    Gillissen, Adrian; Ruf, Bernhard R

    2003-06-15

    Severe acute respiratory syndrome (SARS) is a viral disease, observed primarily in Southern China in November 2002, with variable flu-like symptoms and pneumonia, in approx. 5% leading to death from respiratory distress syndrome (RDS). The disease was spread over more than 30 states all over the globe by SARS-virus-infected travelers. WHO and CDC received first information about a new syndrome by the end of February 2003, after the first cases outside the Republic of China had been observed. A case in Hanoi, Vietnam, led to the first precise information about the new disease entity to WHO, by Dr. Carlo Urbani, a co-worker of WHO/Doctors without Borders, who had been called by local colleagues to assist in the management of a patient with an unknown severe disease by the end of February 2003. Dr. Urbani died from SARS, as did many other health care workers. In the meantime, more than 7,000 cases have been observed worldwide, predominantly in China and Hong Kong, but also in Taiwan, Canada, Singapore, and the USA, and many other countries, and more than 600 of these patients died from RDS. Since the beginning of March 2003, when WHO and CDC started their activities, in close collaboration with a group of international experts, including the Bernhard-Nocht-Institute in Hamburg and the Department of Virology in Frankfurt/Main, a previously impossible success in the disclosure of the disease was achieved. Within only 8 weeks of research it was possible to describe the infectious agent, a genetically modified coronavirus, including the genetic sequence, to establish specific diagnostic PCR methods and to find possible mechanisms for promising therapeutic approaches. In addition, intensifying classical quarantine and hospital hygiene measures, it was possible to limit SARS in many countries to sporadic cases, and to reduce the disease in countries such as Canada and Vietnam. This review article summarizes important information about many issues of SARS (May 15th, 2003

  17. Preliminary study for the long wavelength planetary SAR sensor design and applications

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Rack; Sumantyo, Josaphat; Lin, Shih-Yuan

    2015-04-01

    The SAR observation over planetary surface has been conducted mainly in two ways. The first case is the subsurface monitoring of planetary surface, for examples Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) and Shallow Surface Radar (SHARAD). In which the long wavelength electromagnetic wave for ground penetration was applied although the functionality for mining spatial distribution of subsurface substances was limited. Imaging SAR sensors using burst mode design, which is another case, have been employed to acquire planet/satellite's surface observations mostly with the presences thick atmosphere such as Venus and Titan's cases. However, the drawbacks of burst mode SAR for the extraction of topographic information of planet/satellite was obvious as shown in the CASSSINI and Magellan SAR missions, where the interferometric capability was absence in existing burst mode planetary SAR and the quality of radargrammetry is largely limited due to the insufficient resolution and the signal-to-noise ratio of acquired images. Therefore, in this study, we proposed the exploitation of the long wavelength SAR system capable of extracting topographic information through both InSAR and radargrammetry techniques and monitoring shallow subsurface with the spatial resolving power. Although imaging SAR sensor has limited penetration depth compared with GPR such as MASIS and SHARAD, P and/or L band SARs will be certainly useful to observe a few meters depth subsurface which includes the most interesting layers in planet/satellite such as permafrost in Mars, underlying regolith of Moon, beneath of resurfacing topography of Venus, inner crust of ice satellite and bathymetry of Titan lakes. Meanwhile, those data can be used not only for the detailed surface imaging but also for the extraction of precise 3D topography reconstruction by either InSAR or stereo radargrammetry in the condition that sufficient orbital tracking accuracy is available. Based on the ideas

  18. How far SAR has fulfilled its expectation for soil moisture retrieval

    NASA Astrophysics Data System (ADS)

    Srivastava, Hari Shanker; Patel, Parul; Navalgund, Ranganath R.

    2006-12-01

    Microwave remote sensing is one of the most promising tools for soil moisture estimation owing to its high sensitivity to dielectric properties of the target. Many ground-based scatterometer experiments were carried out for exploring this potential. After the launch of ERS-1, expectation was generated to operationally retrieve large area soil moisture information. However, along with its strong sensitivity to soil moisture, SAR is also sensitive to other parameters like surface roughness, crop cover and soil texture. Single channel SAR was found to be inadequate to resolve the effects of these parameters. Low and high incidence angle RADARSAT-1 SAR was exploited for resolving these effects and incorporating the effects of surface roughness and crop cover in the soil moisture retrieval models. Since the moisture and roughness should remain unchanged between low and high angle SAR acquisition, the gap period between the two acquisitions should be minimum. However, for RADARSAT-1 the gap is typically of the order of 3 days. To overcome this difficulty, simultaneously acquired ENVISAT-1 ASAR HH/VV and VV/VH data was studied for operational soil moisture estimation. Cross-polarised SAR data has been exploited for its sensitivity to vegetation for crop-covered fields where as co-pol ratio has been used to incorporate surface roughness for the case of bare soil. Although there has not been any multi-frequency SAR system onboard a satellite platform, efforts have also been made to understand soil moisture sensitivity and penetration capability at different frequencies using SIR-C/X-SAR and multi-parametric Airborne SAR data. This paper describes multi-incidence angle, multi-polarised and multi-frequency SAR approaches for soil moisture retrieval over large agricultural area.

  19. New Insights In Intestinal Sar1B GTPase Regulation and Role in Cholesterol Homeostasis.

    PubMed

    Sané, Alain; Seidman, Ernest; Spahis, Schohraya; Lamantia, Valérie; Garofalo, Carole; Montoudis, Alain; Marcil, Valérie; Levy, Emile

    2015-10-01

    Sar1B GTPase is a key component of Coat protein complex II (COPII)-coated vesicles that bud from the endoplasmic reticulum to export newly synthesized proteins. The aims of this study were to determine whether Sar1B responds to lipid regulation and to evaluate its role in cholesterol (CHOL) homeostasis. The influence of lipids on Sar1B protein expression was analyzed in Caco-2/15 cells by Western blot. Our results showed that the presence of CHOL (200 μM) and oleic acid (0.5 mM), bound to albumin, increases Sar1B protein expression. Similarly, supplementation of the medium with micelles composed of taurocholate with monooleylglycerol or oleic acid also stimulated Sar1B expression, but the addition of CHOL (200 μM) to micelle content did not modify its regulation. On the other hand, overexpression of Sar1B impacted on CHOL transport and metabolism in view of the reduced cellular CHOL content along with elevated secretion when incubated with oleic acid-containing micelles for 24 h, thereby disclosing induced CHOL transport. This was accompanied with higher secretion of free- and esterified-CHOL within chylomicrons, which was not the case when oleic acid was replaced with monooleylglycerol or when albumin-bound CHOL was given alone. The aforementioned cellular CHOL depletion was accompanied with a low phosphorylated/non phosphorylated HMG-CoA reductase ratio, indicating elevated enzymatic activity. Combination of Sar1B overexpression with micelle incubation led to reduction in intestinal CHOL transporters (NPC1L1, SR-BI) and metabolic regulators (PCSK9 and LDLR). The present work showed that Sar1B is regulated in a time- and concentration-dependent manner by dietary lipids, suggesting an adaptation to alimentary lipid flux. Our data also suggest that Sar1B overexpression contributes to regulation of CHOL transport and metabolism by facilitating rapid uptake and transport of CHOL. PMID:25826777

  20. Characterization of spatial statistics of distributed targets in SAR data. [applied to sea-ice data

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Kwok, R.

    1993-01-01

    A statistical approach to the analysis of spatial statistics in polarimetric multifrequency SAR data, which is aimed at extracting the intrinsic variability of the target by removing variability from other sources, is presented. An image model, which takes into account three sources of spatial variability, namely, image speckle, system noise, and the intrinsic spatial variability of the target or texture, is described. It is shown that the presence of texture increases the image variance-to-mean square ratio and introduces deviations of the image autocovariance function from the expected SAR system response. The approach is exemplified by sea-ice SAR imagery acquired by the Jet Propulsion Laboratory three-frequency polarimetric airborne SAR. Data obtained indicate that, for different sea-ice types, the spatial statistics seem to vary more across frequency than across polarization and the observed differences increase in magnitude with decreasing frequency.

  1. Application of pixel segmentation to the low rate compression of complex SAR imagery

    SciTech Connect

    Ives, R.W.; Eichel, P.; Magotra, N.

    1998-03-01

    This paper describes a technique to identify pixels within a subregion (chip) of a complex or detected SAR image which are to be losslessly compressed while the remainder of the image is subjected to a high compression ratio. This multi-modal compression is required for the intelligent low rate compression of SAR imagery, which addresses the problem of transmitting massive amounts of high resolution complex SAR data from a remote airborne sensor to a ground station for exploitation by an automatic target recognition (ATR) system, in a real time environment, over a narrow bandwidth. The ATR system results might then be presented to an image analyst who, using the contextual information from the SAR image, makes final target determination.

  2. Controlling Data Collection to Support SAR Image Rotation

    SciTech Connect

    Doerry, Armin W.; Cordaro, J. Thomas; Burns, Bryan L.

    2008-10-14

    A desired rotation of a synthetic aperture radar (SAR) image can be facilitated by adjusting a SAR data collection operation based on the desired rotation. The SAR data collected by the adjusted SAR data collection operation can be efficiently exploited to form therefrom a SAR image having the desired rotational orientation.

  3. Asymptomatic SARS coronavirus infection among healthcare workers, Singapore.

    PubMed

    Wilder-Smith, Annelies; Teleman, Monica D; Heng, Bee H; Earnest, Arul; Ling, Ai E; Leo, Yee S

    2005-07-01

    We conducted a study among healthcare workers (HCWs) exposed to patients with severe acute respiratory syndrome (SARS) before infection control measures were instituted. Of all exposed HCWs, 7.5% had asymptomatic SARS-positive cases. Asymptomatic SARS was associated with lower SARS antibody titers and higher use of masks when compared to pneumonic SARS. PMID:16022801

  4. The SARS-associated stigma of SARS victims in the post-SARS era of Hong Kong.

    PubMed

    Siu, Judy Yuen-man

    2008-06-01

    This article explores the disease-associated stigma attached to the SARS victims in the post-SARS era of Hong Kong. I argue that the SARS-associated stigma did not decrease over time. Based on the ethnographic data obtained from 16 months of participant observation in a SARS victims' self-help group and semistructured interviews, I argue that the SARS-associated stigma was maintained, revived, and reconstructed by the biomedical encounters, government institutions, and public perception. I also provide new insight on how the SARS-associated stigma could create problems for public health development in Hong Kong. As communicable diseases will be a continuing threat for the human society, understanding how the disease-associated stigma affects the outcomes of epidemic control measures will be crucial in developing a more responsive public health policy as well as medical follow-up and social support service to the diseased social groups of future epidemic outbreaks. PMID:18503014

  5. Use of airborne polarimetric SAR, optical and elevation data for mapping and monitoring of salt marsh vegetation habitats

    NASA Astrophysics Data System (ADS)

    van Beijma, Sybrand; Comber, Alexis; Lamb, Alistair

    2014-10-01

    Within the Copernicus programme there is much interest in the ability of remote sensing technology to deliver operational solutions to many areas of life including environmental management. This paper describes research focused on the application of Earth Observation for Integrated Coastal Zone Management. The main topic of this research is to explore to which extent salt marsh vegetation habitats can be identified from polarimetric SAR remotely sensed data. Multi-frequency, multi-polarimetric SAR images from airborne (S- and X-Band quad-polarimetric from the Astrium airborne SAR Demonstrator) is used to examine salt marsh habitat classification potential in the Llanrhidian salt marshes in South Wales, UK. This is achieved by (1) using both supervised and unsupervised classification routines, using several polarimetric SAR data layers as backscatter intensity, band ratios and polarimetric decomposition products, and by (2) statistical analysis by regression of these different SAR data layers and botanical parameters acquired from recent ecological fieldwork.

  6. Advanced digital SAR processing study

    NASA Technical Reports Server (NTRS)

    Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.

    1982-01-01

    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.

  7. Applying PolSAR and PolInSAR to Forest Structure Information Extraction

    NASA Astrophysics Data System (ADS)

    Chen, E.; Li, Z.; Li, W.; Feng, Q.; Zhou, W.; Pottier, E.; Hong, W.

    2013-01-01

    The key research activities and achievements in the field of applying PolSAR and PolInSAR to forest structure information extraction in DRAGON 2 are summarized in this paper. The limitation of the ALOS PolInSAR dataset acquired in the Culai test site for forest height extraction because of its long temporal baseline (46 days), and how the PolInSAR coherence optimization methods can help improve the topography inversion accuracy under forest canopy were presented. We have analyzed and evaluated the capability of multiple polarization parameters extracted from different frequency PolSAR data for forest scar mapping in the Shibazhan test site, and developed the land cover classification method based on SVM (Support Vector Machine) using PolSAR data. With the L-band E-SAR PolInSAR data acquired in the test site in Germany, we developed forest above ground biomass (AGB) estimation approach based on polarization coherence tomography (PCT).

  8. 5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. #2 TRANSMISSION LINES, MARCH 7, 1916. SCE drawing no. 4932. - Santa Ana River Hydroelectric System, Transmission Lines, Redlands, San Bernardino County, CA

  9. SAR Image Complex Pixel Representations

    SciTech Connect

    Doerry, Armin W.

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  10. Reflectors for SAR performance testing.

    SciTech Connect

    Doerry, Armin Walter

    2008-01-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  11. Representing SAR complex image pixels

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2016-05-01

    Synthetic Aperture Radar (SAR) images are often complex-valued to facilitate specific exploitation modes. Furthermore, these pixel values are typically represented with either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values, with constituent components comprised of integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  12. Building detection in SAR imagery

    SciTech Connect

    Steinbach, Ryan Matthew

    2015-04-01

    Current techniques for building detection in Synthetic Aperture Radar (SAR) imagery can be computationally expensive and/or enforce stringent requirements for data acquisition. I present two techniques that are effective and efficient at determining an approximate building location. This approximate location can be used to extract a portion of the SAR image to then perform a more robust detection. The proposed techniques assume that for the desired image, bright lines and shadows, SAR artifact effects, are approximately labeled. These labels are enhanced and utilized to locate buildings, only if the related bright lines and shadows can be grouped. In order to find which of the bright lines and shadows are related, all of the bright lines are connected to all of the shadows. This allows the problem to be solved from a connected graph viewpoint, where the nodes are the bright lines and shadows and the arcs are the connections between bright lines and shadows. For the first technique, constraints based on angle of depression and the relationship between connected bright lines and shadows are applied to remove unrelated arcs. The second technique calculates weights for the connections and then performs a series of increasingly relaxed hard and soft thresholds. This results in groups of various levels on their validity. Once the related bright lines and shadows are grouped, their locations are combined to provide an approximate building location. Experimental results demonstrate the outcome of the two techniques. The two techniques are compared and discussed.

  13. Multiresolution FOPEN SAR image formation

    NASA Astrophysics Data System (ADS)

    DiPietro, Robert C.; Fante, Ronald L.; Perry, Richard P.; Soumekh, Mehrdad; Tromp, Laurens D.

    1999-08-01

    This paper presents a new technique for FOPEN SAR (foliage penetration synthetic aperture radar) image formation of Ultra Wideband UHF radar data. Planar Subarray Processing (PSAP) has successfully demonstrated the capability of forming multi- resolution images for X and Ka band radar systems under MITRE IR&D and the DARPA IBC program. We have extended the PSAP algorithm to provide the capability to form strip map, multi- resolution images for Ultra Wideband UHF radar systems. The PSAP processing can accommodate very large SAR integration angles and the resulting very large range migration. It can also accommodate long coherent integration times and wide swath coverage. Major PSAP algorithm features include: multiple SAR sub-arrays providing different look angles at the same image area that can enable man-made target responses to be distinguished from other targets and clutter by their angle dependent specular characteristics, the capability to provide a full resolution image in these and other selected areas without the processing penalty of full resolution in non required areas, and the capability to include angle-dependent motion compensation within the image formation process.

  14. Random sequential adsorption of trimers and hexamers.

    PubMed

    Cieśla, Michał; Barbasz, Jakub

    2013-12-01

    Adsorption of trimers and hexamers built of identical spheres was studied numerically using the random sequential adsorption (RSA) algorithm. Particles were adsorbed on a two-dimensional, flat and homogeneous surface. Numerical simulations allowed us to determine the maximal random coverage ratio, RSA kinetics as well as the available surface function (ASF), which is crucial for determining the kinetics of the adsorption process obtained experimentally. Additionally, the density autocorrelation function was measured. All the results were compared with previous results obtained for spheres, dimers and tetramers. PMID:24193213

  15. InSAR Forensics: Tracing InSAR Scatterers in High Resolution Optical Image

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Zhu, XiaoXiang

    2015-05-01

    This paper presents a step towards a better interpretation of the scattering mechanism of different objects and their deformation histories in SAR interferometry (InSAR). The proposed technique traces individual SAR scatterer in high resolution optical images where their geometries, materials, and other properties can be better analyzed and classified. And hence scatterers of a same object can be analyzed in group, which brings us to a new level of InSAR deformation monitoring.

  16. Intelligent low rate compression of speckled SAR imagery

    SciTech Connect

    Ives, R.W.; Eichel, P.; Magotra, N.

    1997-05-01

    This paper describes a compression technique under development at Sandia National Laboratories for the compression of complex synthetic aperture radar (SAR) imagery at very low overall bit rates. The methods involved combine several elements of existing and new lossy and lossless compression schemes in order to achieve an overall compression ratio of large SAR scenes of at least 50:1, while maintaining reasonable image quality. It is assumed that the end user will be primarily interested in specific regions of interest within the image (called chips), but that the context in which these chips appear within the entire scene is also of importance to an image analyst. The term intelligent is used to signify an external cuer which locates the chips of interest.

  17. Chirp Scaling Algorithms for SAR Processing

    NASA Technical Reports Server (NTRS)

    Jin, M.; Cheng, T.; Chen, M.

    1993-01-01

    The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.

  18. A Modular and Configurable Instrument Electronics Architecture for "MiniSAR"- An Advanced Smallsat SAR Instrument

    NASA Astrophysics Data System (ADS)

    Gomez, Jaime; Pastena, Max; Bierens, Laurens

    2013-08-01

    MiniSAR is a Dutch program focused on the development of a commercial smallsat featuring a SAR instrument, led by SSBV as prime contractor. In this paper an Instrument Electronics (IEL) system concept to meet the MiniSAR demands is presented. This system has several specificities wrt similar initiatives in the European space industry, driven by our main requirement: keep it small.

  19. High resolution SAR applications and instrument design

    NASA Technical Reports Server (NTRS)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  20. Bistatic SAR: Signal Processing and Image Formation.

    SciTech Connect

    Wahl, Daniel E.; Yocky, David A.

    2014-10-01

    This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013 on Kirtland Air Force Base, New Mexico.

  1. Multitemporal Spaceborne SAR Data For Urbanization Monitoring In China: Preliminary Result

    NASA Astrophysics Data System (ADS)

    Ban, Yifang; Yousif, Osama Adam

    2010-10-01

    The objective of this research is to investigate multitemporal spaceborne SAR data for urbanization monitoring in China. A generalized version of Kittler- Illingworth minimum-error thresholding algorithm, that takes into account the non-Gaussian distribution of SAR images, was tested to automatically classify the change variable derived from SAR multitemporal images into two classes, change and no change. A modified ratio operator was examined for identifying both positive and negative changes by comparing the multitemporal SAR images on a pixel-by-pixel basis. Various probability density functions such as Log normal, Generalized Gaussian, Nakagami ratio, and Weibull ratio models were tested to model the distribution of the change and no change classes. The preliminary results showed that this unsupervised change detection algorithm is very effective in detecting temporal changes in urban areas using multitemporal SAR images. The initial findings indicated that change detection accuracy varies depending on how the assumed conditional class density function fits the histograms of change and no change classes.

  2. Three-dimensional surface reconstruction from multistatic SAR images.

    PubMed

    Rigling, Brian D; Moses, Randolph L

    2005-08-01

    This paper discusses reconstruction of three-dimensional surfaces from multiple bistatic synthetic aperture radar (SAR) images. Techniques for surface reconstruction from multiple monostatic SAR images already exist, including interferometric processing and stereo SAR. We generalize these methods to obtain algorithms for bistatic interferometric SAR and bistatic stereo SAR. We also propose a framework for predicting the performance of our multistatic stereo SAR algorithm, and, from this framework, we suggest a metric for use in planning strategic deployment of multistatic assets. PMID:16121463

  3. Developing a small multi frequency synthetic aperture radar for UAS operation: the SlimSAR

    NASA Astrophysics Data System (ADS)

    Zaugg, Evan; Edwards, Matthew; Margulis, Alex

    2010-04-01

    The SlimSAR is a small, low-cost, Synthetic Aperture Radar (SAR) and represents a new advancement in high-performance SAR. ARTEMIS employed a unique design methodology in designing the SlimSAR that exploits previous developments. The system is designed to be smaller, lighter, and more flexible while consuming less power than typical SAR systems. The system consists of an L-band core and frequency block converters and is very suitable for use on a number of small UAS's. Both linear-frequency-modulated continuous-wave (LFM-CW) and pulsed modes have been tested. The LFM-CW operation achieves high signal-to-noise ratio while transmitting with less peak power than a comparable pulsed system. The flexible control software allows us to change the radar parameters in flight. The system has a built-in high quality GPS/IMU motion measurement solution and can also be packaged with a small data link and a gimbal for high frequency antennas. Multi-frequency SAR provides day and night imaging through smoke, dust, rain, and clouds with the advantages of additional capabilities at different frequencies (i.e. dry ground and foliage penetration at low frequencies, and change detection at high frequencies.)

  4. InfoTerra/TerraSAR initiative

    NASA Astrophysics Data System (ADS)

    Wahl, Manfred W.

    2004-01-01

    The overarching goal of the InfoTerra/TerraSAR Initiative is to establish a self-sustaining operational/commercial business built on Europe"s know-how and experience in space-borne Synthetic Aperture Radar (SAR) technology, in SAR data processing as well as in SAR applications. InfoTerra stands for a new business concept based on supplying innovative geo-information products and services. TerraSAR is a space and ground system conceived to consist of an initial deployment and operation of 2 Radar satellites (one in X- and one in L-band) flying in a tandem configuration in the same orbit. The design of TerraSAR is driven by the market and is user-oriented. TerraSAR is key to capturing a significant proportion of the existing market and to opening new market opportunities, when it becomes operational. The InfoTerra/TerraSAR Initiative has evolved gradually. It started in 1997 as a joint venture between German (DSS) and British (MMS-UK) space industry, strongly supported by both space agencies, DLR and BNSC. In early 2001, DLR and BNSC submitted to ESA the Formal Programme Proposal for InfoTerra/TerraSAR to become an essential element of ESA"s Earth Watch Programme. In summer 2001, when it became evident that there was not yet sufficient support from the ESA Member States to allow immediate start entering into TerraSAR Phase C/D, it has been decided to implement first a TerraSAR consolidation phase. In early 2002, in order to avoid further delays, a contract was signed between DLR and Astrium GmbH on the development of one component of TerraSAR, the TerraSAR-X, in the frame of a national programme, governed by a Public Private Partnership Agreement. Even if now the different launch dates for TerraSAR-X and TerraSAR-L are narrowing down the window of common data acquisition, it is a reasonable starting point, but it should always be kept in mind that the utmost goal for the longterm is to achieve self sustainability by supplying geo-information products and services

  5. Geodetic integration of Sentinel-1A IW data using PSInSAR in Hungary

    NASA Astrophysics Data System (ADS)

    Farkas, Péter; Hevér, Renáta; Grenerczy, Gyula

    2015-04-01

    ESA's latest Synthetic Aperture Radar (SAR) mission Sentinel-1 is a huge step forward in SAR interferometry. With its default acquisition mode called the Interferometric Wide Swath Mode (IW) areas through all scales can be mapped with an excellent return time of 12 days (while only the Sentinel-1A is in orbit). Its operational data policy is also a novelty, it allows scientific users free and unlimited access to data. It implements a new type of ScanSAR mode called Terrain Observation with Progressive Scan (TOPS) SAR. It has the same resolution as ScanSAR but with better signal-to-noise ratio distribution. The bigger coverage is achieved by rotation of the antenna in the azimuth direction, therefore it requires very precise co-registration because even errors under a pixel accuracy can introduce azimuth phase variations caused by differences in Doppler-centroids. In our work we will summarize the benefits and the drawbacks of the IW mode. We would like to implement the processing chain of GAMMA Remote Sensing of such data for mapping surface motion with special attention to the co-registration step. Not only traditional InSAR but the advanced method of Persistent Scatterer InSAR (PSInSAR) will be performed and presented as well. PS coverage, along with coherence, is expected to be good due to the small perpendicular and temporal baselines. We would also like to integrate these measurements into national geodetic networks using common reference points. We have installed trihedral corner reflectors at some selected sites to aid precise collocation. Thus, we aim to demonstrate that Sentinel-1 can be effectively used for surface movement detection and monitoring and it can also provide valuable information for the improvement of our networks.

  6. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea

    PubMed Central

    Salter, Ian; Galand, Pierre E; Fagervold, Sonja K; Lebaron, Philippe; Obernosterer, Ingrid; Oliver, Matthew J; Suzuki, Marcelino T; Tricoire, Cyrielle

    2015-01-01

    A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time<5 h). We propose a conceptual framework in which physical mixing of the water column periodically resets SAR11 communities to a high diversity state and the seasonal evolution of phosphate limitation competitively excludes deeper-dwelling ecotypes to promote low diversity states dominated (>80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study. PMID:25238399

  7. A new MIMO SAR system based on Alamouti space-time coding scheme and OFDM-LFM waveform design

    NASA Astrophysics Data System (ADS)

    Shi, Xiaojin; Zhang, Yunhua

    2015-10-01

    In recent years, multi-input and multi-output (MIMO) radar has attracted much attention of many researchers and institutions. MIMO radar transmits multiple signals, and receives the backscattered signals reflected from the targets. In contrast with conventional phased array radar and SAR system, MIMO radar system has significant potential advantages for achieving higher system SNR, more accurate parameter estimation, or high resolution of radar image. In this paper, we propose a new MIMO SAR system based on Alamouti space-time coding scheme and orthogonal frequency division multiplexing linearly frequency modulated (OFDM-LFM) for obtaining higher system signal-to-noise ratio (SNR) and better range resolution of SAR image.

  8. Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units.

    PubMed

    Booth, Timothy F; Kournikakis, Bill; Bastien, Nathalie; Ho, Jim; Kobasa, Darwyn; Stadnyk, Laurie; Li, Yan; Spence, Mel; Paton, Shirley; Henry, Bonnie; Mederski, Barbara; White, Diane; Low, Donald E; McGeer, Allison; Simor, Andrew; Vearncombe, Mary; Downey, James; Jamieson, Frances B; Tang, Patrick; Plummer, Frank

    2005-05-01

    Severe acute respiratory syndrome (SARS) is characterized by a risk of nosocomial transmission; however, the risk of airborne transmission of SARS is unknown. During the Toronto outbreaks of SARS, we investigated environmental contamination in SARS units, by employing novel air sampling and conventional surface swabbing. Two polymerase chain reaction (PCR)-positive air samples were obtained from a room occupied by a patient with SARS, indicating the presence of the virus in the air of the room. In addition, several PCR-positive swab samples were recovered from frequently touched surfaces in rooms occupied by patients with SARS (a bed table and a television remote control) and in a nurses' station used by staff (a medication refrigerator door). These data provide the first experimental confirmation of viral aerosol generation by a patient with SARS, indicating the possibility of airborne droplet transmission, which emphasizes the need for adequate respiratory protection, as well as for strict surface hygiene practices. PMID:15809906

  9. Sentinel-3 SAR Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Benveniste, Jerome; Lucas, Bruno; DInardo, Salvatore

    2015-04-01

    The prime objective of the SEOM (Scientific Exploitation of Operational Missions) element is to federate, support and expand the large international research community that the ERS, ENVISAT and the Envelope programmes have build up over the last 20 years for the future European operational Earth Observation missions, the Sentinels. Sentinel-3 builds directly on a proven heritage of ERS-2 and Envisat, and CryoSat-2, with a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL) that provides measurements at a resolution of ~300m in SAR mode along track. Sentinel-3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The first of the two Sentinels is expected to be launched in early 2015. The current universal altimetry toolbox is BRAT (Basic Radar Altimetry Toolbox) which can read all previous and current altimetry mission's data, but it does not have the capabilities to read the upcoming Sentinel-3 L1 and L2 products. ESA will endeavour to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats, the BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as netCDF, ASCII text files, KML (Google Earth

  10. SAR Altimetry in Coastal Zone: Performances, Limits, Perspectives

    NASA Astrophysics Data System (ADS)

    Dinardo, S.; Benveniste, J.

    2011-12-01

    Up to now, any effort to retrieve the coastal zone phenomena from the space has been hindered by the intrinsic incapacity of conventional radar altimeters to sample all but largest scales involved in the coastal processes due to its insufficient along- track resolution. However, nowadays, a new technology in Space-borne Altimetry has become reality: the Synthetic Aperture Radar (SAR) Altimeter. The acquisition of altimetric data in SAR mode ensures a higher resolving measurement power that shall enable scientists for the first time to aspire to measure even short-scale weak coastal phenomena, thanks to the 20- fold smaller along track radar resolution and 10 dB higher Signal to Noise ratio. The secondary, but significant in coastal zone, effect of the radar footprint shrinking is the expected reduced impact of land contamination on the radar waveforms in the proximity of the shore. As a consequence of this effect, the advent of SAR focusing promises to bring the satellite altimetry remote sensing closer to the shore up to around 500 meters. Anyway, this lower bound of 500 meter on coastal proximity is not always reachable, as the footprint shrinking occurs only in along track direction while the across track resolution shall remain basically unaltered. Hence, the orientation of the satellite ground-track with respect the coastline plays a role crucial for an effective filtering out of the off-nadir land-originated signals. In the present work, utilizing the current CryoSat-2 Altimeter Dataset (SAR L1b) acquired over coastal sea water, and by retracking the SAR L1b waveforms, a performances study of SAR altimetry in coastal zone will be addressed and the benefits and limits of this new technology highlighted. As particular study area, the Tyrrhenian Sea has been selected: statistics and metrics for sea surface height and significant wave height, as calculated from a cycle of passes, will be assessed, shown and interpreted. Finally, employing the Cryo

  11. Cross-calibration between airborne SAR sensors

    NASA Technical Reports Server (NTRS)

    Zink, Manfred; Olivier, Philippe; Freeman, Anthony

    1993-01-01

    As Synthetic Aperture Radar (SAR) system performance and experience in SAR signature evaluation increase, quantitative analysis becomes more and more important. Such analyses require an absolute radiometric calibration of the complete SAR system. To keep the expenditure on calibration of future multichannel and multisensor remote sensing systems (e.g., X-SAR/SIR-C) within a tolerable level, data from different tracks and different sensors (channels) must be cross calibrated. The 1989 joint E-SAR/DC-8 SAR calibration campaign gave a first opportunity for such an experiment, including cross sensor and cross track calibration. A basic requirement for successful cross calibration is the stability of the SAR systems. The calibration parameters derived from different tracks and the polarimetric properties of the uncalibrated data are used to describe this stability. Quality criteria for a successful cross calibration are the agreement of alpha degree values and the consistency of radar cross sections of equally sized corner reflectors. Channel imbalance and cross talk provide additional quality in case of the polarimetric DC-8 SAR.

  12. A Simple Model for a SARS Epidemic

    ERIC Educational Resources Information Center

    Ang, Keng Cheng

    2004-01-01

    In this paper, we examine the use of an ordinary differential equation in modelling the SARS outbreak in Singapore. The model provides an excellent example of using mathematics in a real life situation. The mathematical concepts involved are accessible to students with A level Mathematics backgrounds. Data for the SARS epidemic in Singapore are…

  13. Knowledge based SAR images exploitations

    NASA Astrophysics Data System (ADS)

    Wang, David L.

    1987-01-01

    One of the basic functions of SAR images exploitation system is the detection of man-made objects. The performance of object detection is strongly limited by performance of segmentation modules. This paper presents a detection paradigm composed of an adaptive segmentation algorithm based on a priori knowledge of objects followed by a top-down hierarchical detection process that generates and evaluates object hypotheses. Shadow information and inter-object relationships can be added to the knowledge base to improve performance over that of a statistical detector based only on the attributes of individual objects.

  14. Regularization Analysis of SAR Superresolution

    SciTech Connect

    DELAURENTIS,JOHN M.; DICKEY,FRED M.

    2002-04-01

    Superresolution concepts offer the potential of resolution beyond the classical limit. This great promise has not generally been realized. In this study we investigate the potential application of superresolution concepts to synthetic aperture radar. The analytical basis for superresolution theory is discussed. In a previous report the application of the concept to synthetic aperture radar was investigated as an operator inversion problem. Generally, the operator inversion problem is ill posed. This work treats the problem from the standpoint of regularization. Both the operator inversion approach and the regularization approach show that the ability to superresolve SAR imagery is severely limited by system noise.

  15. Making Mosaics Of SAR Imagery

    NASA Technical Reports Server (NTRS)

    Curlander, John C.; Kwok, Ronald; Pang, Shirley S.; Pang, Amy A.

    1990-01-01

    Spaceborne synthetic-aperture-radar (SAR) images useful for mapping of planets and investigations in Earth sciences. Produces multiframe mosaic by combining images along ground track, in adjacent cross-track swaths, or in ascending and descending passes. Images registered with geocoded maps such as ones produced by MAPJTC (NPO-17718), required as input. Minimal intervention by operator required. MOSK implemented on DEC VAX 11/785 computer running VMS 4.5. Most subroutines in FORTRAN, but three in MAXL and one in APAL.

  16. Estimation of penetration of forest canopies by Interferometric SAR measurements

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto; Michel, Thierry R.; Harding, David J.

    1995-01-01

    In contrast to traditional Synthetic Aperture Radar (SAR), an Interferometric SAR (INSAR) yields two additional measurements: the phase difference and the correlation between the two interferometric channels. The phase difference has been used to estimate topographic height. For homogeneous surfaces, the correlation depends on the system signal-to-noise (SNR) ratio, the interferometer parameters, and the local slope. In the presence of volume scattering, such as that encountered in vegetation canopies, the correlation between the two channels is also dependent on the degree of penetration of the radiation into the scattering medium. In this paper, we propose a method for removing system and slope effects in order to obtain the decorrelation due to penetration alone. The sensitivities and accuracy of the proposed method are determined by Monte Carlo experiments, and we show that the proposed technique has sufficient sensitivity to provide penetration measurements for airborne SAR systems. Next, we provide a theoretical model to estimate the degree of penetration in a way which is independent of the details of the scattering medium. We also present a model for the correlation from non-homogeneous layers. We assess the sensitivity of the proposed inversion technique to these inhomogeneous situations. Finally, we present a comparison of the interferometric results against in situ data obtained by an airborne laser profilometer which provides a direct measurement of tree height and an estimate of the vegetation density profile in the forested areas around Mt. Adams, WA.

  17. Reconnaissance with slant plane circular SAR imaging.

    PubMed

    Soumekh, M

    1996-01-01

    This paper presents a method for imaging from the slant plane data collected by a synthetic aperture radar (SAR) over the full rotation or a partial segment of a circular flight path. A Fourier analysis for the Green's function of the imaging system is provided. This analysis is the basis of an inversion for slant plane circular SAR data. The reconstruction algorithm and resolution for this SAR system are outlined. It is shown that the slant plane circular SAR, unlike the slant plane linear SAR, has the capability to extract three-dimensional imaging information of a target scene. The merits of the algorithm are demonstrated via a simulated target whose ultra wideband foliage penetrating (FOPEN) or ground penetrating (GPEN) ultrahigh frequency (UHF) radar signature varies with the radar's aspect angle. PMID:18285213

  18. Interferometric SAR imaging by transmitting stepped frequency chaotic noise signals

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhua; Gu, Xiang; Zhai, Wenshuai; Dong, Xiao; Shi, Xiaojin; Kang, Xueyan

    2015-10-01

    Noise radar has been applied in many fields since it was proposed more than 50 years ago. However, it has not been applied to interferometric SAR imaging yet as far as we know. This paper introduces our recent work on interferometric noise radar. An interferometric SAR system was developed which can transmit both chirp signal and chaotic noise signal (CNS) at multiple carrier frequencies. An airborne experiment with this system by transmitting both signals was carried out, and the data were processed to show the capability of interferometric SAR imaging with CNS. The results shows that although the interferometric phase quality of CNS is degraded due to the signal to noise ratio (SNR) is lower compared with that of chirp signal, we still can get satisfied DEM after multi-looking processing. Another work of this paper is to apply compressed sensing (CS) theory to the interferometric SAR imaging with CNS. The CS theory states that if a signal is sparse, then it can be accurately reconstructed with much less sampled data than that regularly required according to Nyquist Sampling Theory. To form a structured random matrix, if the transmitted signal is of fixed waveform, then random subsampling is needed. However, if the transmitted signal is of random waveform, then only uniform subsampling is needed. This is another advantage of noise signal. Both the interferometric phase images and the DEMs by regular method and by CS method are processed with results compared. It is shown that the degradation of interferometric phases due to subsampling is larger than that of amplitude image.

  19. SARS and Population Health Technology

    PubMed Central

    2003-01-01

    The recent global outbreak of SARS (severe acute respiratory syndrome) provides an opportunity to study the use and impact of public health informatics and population health technology to detect and fight a global epidemic. Population health technology is the umbrella term for technology applications that have a population focus and the potential to improve public health. This includes the Internet, but also other technologies such as wireless devices, mobile phones, smart appliances, or smart homes. In the context of an outbreak or bioterrorism attack, such technologies may help to gather intelligence and detect diseases early, and communicate and exchange information electronically worldwide. Some of the technologies brought forward during the SARS epidemic may have been primarily motivated by marketing efforts, or were more directed towards reassuring people that "something is being done," ie, fighting an "epidemic of fear." To understand "fear epidemiology" is important because early warning systems monitoring data from a large number of people may not be able to discriminate between a biological epidemic and an epidemic of fear. The need for critical evaluation of all of these technologies is stressed. PMID:12857670

  20. Analysis of the local worst-case SAR exposure caused by an MRI multi-transmit body coil in anatomical models of the human body

    NASA Astrophysics Data System (ADS)

    Neufeld, Esra; Gosselin, Marie-Christine; Murbach, Manuel; Christ, Andreas; Cabot, Eugenia; Kuster, Niels

    2011-08-01

    Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm3 of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.

  1. History of SAR at Lockheed Martin (previously Goodyear Aerospace)

    NASA Astrophysics Data System (ADS)

    Lasswell, Stephen W.

    2005-05-01

    Synthetic Aperture Radar (SAR) was invented by Carl Wiley at Goodyear Aircraft Company in Goodyear, Arizona, in 1951. From that time forward, as the company became Goodyear Aerospace Corporation, Loral Corporation, and finally Lockheed Martin Corporation, the Arizona employees past and present played a long and storied role in numerous SAR firsts. These include the original SAR patent (known as Simultaneous Doppler Buildup), the first demonstration SAR and flight test, the first operational SAR system, the first operational SAR data link, the first 5-foot resolution operational SAR system, the first 1-foot resolution SAR system, and the first large scale SAR digital processor. The company has installed and flown over five hundred SAR systems on more than thirty different types of aircraft for numerous countries throughout the world. The company designed and produced all of the evolving high performance SAR systems for the U. S. Air Force SR-71 "Blackbird" spy plane throughout its entire operational history, spanning some twenty-nine years. Recent SAR accomplishments include long-range standoff high performance SAR systems, smaller high resolution podded SAR systems for fighter aircraft, and foliage penetration (FOPEN) SAR. The company is currently developing the high performance SAR/MTI (Moving Target Indication) radar for the Army Aerial Common Sensor (ACS) system.

  2. Adsorption Refrigeration System

    SciTech Connect

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  3. SAR image formation toolbox for MATLAB

    NASA Astrophysics Data System (ADS)

    Gorham, LeRoy A.; Moore, Linda J.

    2010-04-01

    While many synthetic aperture radar (SAR) image formation techniques exist, two of the most intuitive methods for implementation by SAR novices are the matched filter and backprojection algorithms. The matched filter and (non-optimized) backprojection algorithms are undeniably computationally complex. However, the backprojection algorithm may be successfully employed for many SAR research endeavors not involving considerably large data sets and not requiring time-critical image formation. Execution of both image reconstruction algorithms in MATLAB is explicitly addressed. In particular, a manipulation of the backprojection imaging equations is supplied to show how common MATLAB functions, ifft and interp1, may be used for straight-forward SAR image formation. In addition, limits for scene size and pixel spacing are derived to aid in the selection of an appropriate imaging grid to avoid aliasing. Example SAR images generated though use of the backprojection algorithm are provided given four publicly available SAR datasets. Finally, MATLAB code for SAR image reconstruction using the matched filter and backprojection algorithms is provided.

  4. The Alaska SAR processor - Operations and control

    NASA Technical Reports Server (NTRS)

    Carande, Richard E.

    1989-01-01

    The Alaska SAR (synthetic-aperture radar) Facility (ASF) will be capable of receiving, processing, archiving, and producing a variety of SAR image products from three satellite-borne SARs: E-ERS-1 (ESA), J-ERS-1 (NASDA) and Radarsat (Canada). Crucial to the success of the ASF is the Alaska SAR processor (ASP), which will be capable of processing over 200 100-km x 100-km (Seasat-like) frames per day from the raw SAR data, at a ground resolution of about 30 m x 30 m. The processed imagery is of high geometric and radiometric accuracy, and is geolocated to within 500 m. Special-purpose hardware has been designed to execute a SAR processing algorithm to achieve this performance. This hardware is currently undergoing acceptance testing for delivery to the University of Alaska. Particular attention has been devoted to making the operations semi-automated and to providing a friendly operator interface via a computer workstation. The operations and control of the Alaska SAR processor are described.

  5. SAR and LIDAR fusion: experiments and applications

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew C.; Zaugg, Evan C.; Bradley, Joshua P.; Bowden, Ryan D.

    2013-05-01

    In recent years ARTEMIS, Inc. has developed a series of compact, versatile Synthetic Aperture Radar (SAR) systems which have been operated on a variety of small manned and unmanned aircraft. The multi-frequency-band SlimSAR has demonstrated a variety of capabilities including maritime and littoral target detection, ground moving target indication, polarimetry, interferometry, change detection, and foliage penetration. ARTEMIS also continues to build upon the radar's capabilities through fusion with other sensors, such as electro-optical and infrared camera gimbals and light detection and ranging (LIDAR) devices. In this paper we focus on experiments and applications employing SAR and LIDAR fusion. LIDAR is similar to radar in that it transmits a signal which, after being reflected or scattered by a target area, is recorded by the sensor. The differences are that a LIDAR uses a laser as a transmitter and optical sensors as a receiver, and the wavelengths used exhibit a very different scattering phenomenology than the microwaves used in radar, making SAR and LIDAR good complementary technologies. LIDAR is used in many applications including agriculture, archeology, geo-science, and surveying. Some typical data products include digital elevation maps of a target area and features and shapes extracted from the data. A set of experiments conducted to demonstrate the fusion of SAR and LIDAR data include a LIDAR DEM used in accurately processing the SAR data of a high relief area (mountainous, urban). Also, feature extraction is used in improving geolocation accuracy of the SAR and LIDAR data.

  6. Next generation SAR demonstration on space station

    SciTech Connect

    Edelstein, Wendy; Kim, Yunjin; Freeman, Anthony; Jordan, Rolando

    1999-01-22

    This paper describes the next generation synthetic aperture radar (SAR) that enables future low cost space-borne radar missions. In order to realize these missions, we propose to use an inflatable, membrane, microstrip antenna that is particularly suitable for low frequency science radar missions. In order to mitigate risks associated with this revolutionary technology, the space station demonstration will be very useful to test the long-term survivability of the proposed antenna. This experiment will demonstrate several critical technology challenges associated with space-inflatable technologies. Among these include space-rigidization of inflatable structures, controlled inflation deployment, flatness and uniform separation of thin-film membranes and RF performance of membrane microstrip antennas. This mission will also verify the in-space performance of lightweight, high performance advanced SAR electronics. Characteristics of this SAR instrument include a capability for high resolution polarimetric imaging. The mission will acquire high quality scientific data using this advanced SAR to demonstrate the utility of these advanced technologies. We will present an inflatable L-band SAR concept for commercial and science applications and a P-band design concept to validate the Biomass SAR mission concept. The ionospheric effects on P-band SAR images will also be examined using the acquired data.

  7. First Results from an Airborne Ka-band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory; Ghaemi, Hirad; Hensley, Scott

    2012-01-01

    NASA/JPL has developed SweepSAR technique that breaks typical Synthetic Aperture Radar (SAR) trade space using time-dependent multi-beam DBF on receive. Developing SweepSAR implementation using array-fed reflector for proposed DESDynI Earth Radar Mission concept. Performed first-of-a-kind airborne demonstration of the SweepSAR concept at Ka-band (35.6 GHz). Validated calibration and antenna pattern data sufficient for beam forming in elevation. (1) Provides validation evidence that the proposed Deformation Ecosystem Structure Dynamics of Ice (DESDynI) SAR architecture is sound. (2) Functions well even with large variations in receiver gain / phase. Future plans include using prototype DESDynI SAR digital flight hardware to do the beam forming in real-time onboard the aircraft.

  8. Geometric accuracy in airborne SAR images

    NASA Technical Reports Server (NTRS)

    Blacknell, D.; Quegan, S.; Ward, I. A.; Freeman, A.; Finley, I. P.

    1989-01-01

    Uncorrected across-track motions of a synthetic aperture radar (SAR) platform can cause both a severe loss of azimuthal positioning accuracy in, and defocusing of, the resultant SAR image. It is shown how the results of an autofocus procedure can be incorporated in the azimuth processing to produce a fully focused image that is geometrically accurate in azimuth. Range positioning accuracy is also discussed, leading to a comprehensive treatment of all aspects of geometric accuracy. The system considered is an X-band SAR.

  9. Design considerations of GeoSAR

    NASA Astrophysics Data System (ADS)

    Kim, Yunjin; Hensley, Scott; Veilleux, Louise; Edelstein, W.; Lou, Yun-Ling; Burken, A.; Skotnicky, W. F.; Sato, T.; Brown, W.

    1996-06-01

    The primary purpose of GeoSAR is to demonstrate the feasibility of interferometric topographic mapping through foliage penetration. GeoSAR should become a commercially viable instrument after the feasibility demonstration. To satisfy both requirements, we have designed a dual frequency (UHF- and X-band) interferometric radar. For foliage penetration, a lower frequency (UHF) radar is used. To obtain better height accuracy for low backscatter areas, we proposed a high frequency (X-band) interferometric system. In this paper, we present a possible GeoSAR system configuration and associated performance estimation.

  10. Primary studies of Chinese spaceborne SAR

    NASA Technical Reports Server (NTRS)

    Wang, Zhen-Song; Wu, Guo-Xiang; Guo, Hua-Dong; Wei, Zhong-Quan; Zhu, Min-Hui

    1993-01-01

    The primary studies on spaceborne synthetic aperture radar (SAR) in China are discussed. The SAR will be launched aboard a Chinese satellite and operated at L-band with HH polarization. The purpose of the mission in consideration is dedicated to resources and environment uses, especially to natural disaster monitoring. The ground resolution is designed as 25 m x 25 m for detailed mode and 100 m x 100 m for wide scan-SAR mode. The off-nadir angle can be varied from 20 to 40 deg. The key system concepts are introduced.

  11. NASA/JPL Aircraft SAR Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Donovan, N. (Editor); Evans, D. L. (Editor); Held, D. N. (Editor)

    1985-01-01

    Speaker-supplied summaries of the talks given at the NASA/JPL Aircraft SAR Workshop on February 4 and 5, 1985, are provided. These talks dealt mostly with composite quadpolarization imagery from a geologic or ecologic prespective. An overview and summary of the system characteristics of the L-band synthetic aperture radar (SAR) flown on the NASA CV-990 aircraft are included as supplementary information. Other topics ranging from phase imagery and interferometric techniques classifications of specific areas, and the potentials and limitations of SAR imagery in various applications are discussed.

  12. Segmentation Of Multifrequency, Multilook SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Kwok, Ronald; Chellappa, Rama

    1993-01-01

    Segmentation of multifrequency, multilook synthetic-aperture radar (SAR) image intensity data into regions, within each of which backscattering characteristics of target scene considered homogeneous, enhanced by use of two statistical models. One represents statistics of multifrequency, multilook speckled intensities of SAR picture elements; other represents statistics of labels applied to regions into which picture elements grouped. Each region represents different type of terrain, terrain cover, or other surface; e.g., forest, agricultural land, sea ice, or water. Segmentation of image into regions of neighboring picture elements accomplished by method similar to that described in "Algorithms For Segmentation Of Complex-Amplitude SAR Data" (NPO-18524).

  13. Change detection in quad and dual pol, single- and bi-frequency SAR data

    NASA Astrophysics Data System (ADS)

    Nielsen, Allan A.; Conradsen, Knut; Skriver, Henning

    2015-10-01

    When the covariance matrix representation is used for multi-look polarimetric synthetic aperture radar (SAR) data, the complex Wishart distribution applies. Based on this distribution a likelihood ratio test statistic for equality of two complex variance-covariance matrices and an associated p-value are given. In a case study airborne EMISAR C- and L-band SAR images covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bi-frequency, bi-temporal change detection with full and dual polarimetry data.

  14. Observation of Planetary Oceans with Fully Polarimetric Synthetic Aperture Radar (SAR)

    NASA Astrophysics Data System (ADS)

    Moon, Wooil M.

    Synthetic Aperture Radar (SAR) is one of the most cost effective and powerful all weather tools for observation of planetary surface without sun light. The SAR systems can observe planetary surfaces with the very high resolution and large spatial coverage. We have developed and improved the algorithms for extracting quantitative information on geophysical parameters using various types of SAR data available on Earth's surface, both space-borne SAR (ERS-1/2, RADARSAT, and ENVISAT ASAR) and airborne SAR (NASA(JPL) AIRSAR). SAR is the only system that can provide a synoptic view of find wind fields near the coastal area on Earth. Many SAR images including RADARSAT and ENVISAT ASAR's alternating polarization mode and wide swath mode were to investigate the ability of retrieving sea surface wind field and the results are quite accurate and operationally acceptable. We installed corner reflectors on the nearby beach to calibrate the SAR data, and we obtained in-situ measurements from the several coast-based automatic weather systems and ocean buoys. Using the simultaneously acquired polarization ENVISAT ASAR data (HH and VV), the most appropriate polarization ratio was evaluated and applied for improving the wind retrieval model. In addition, the best combinations depending on given sea states and incidence angle ranges were investigated. The characteristics of short-period and long-period (near-inertial) internal waves are also investigated with several space-borne SAR systems. The possibility of inferring characteristics of the interior ocean dynamics from the SAR image associated with internal solitary waves was tested using a hydrodynamic interaction model (action balance equation) and a radar backscattering model (two-scale tilted Bragg model). These models were used iteratively to fit the observed SAR data to the simulated SAR. The estimated results were compared with in-situ measurements. The typical scales and the spatial and temporal characteristics of internal

  15. Similarity measures of full polarimetric SAR images fusion for improved SAR image matching

    NASA Astrophysics Data System (ADS)

    Ding, H.

    2015-06-01

    China's first airborne SAR mapping system (CASMSAR) developed by Chinese Academy of Surveying and Mapping can acquire high-resolution and full polarimetric (HH, HV, VH and VV) Synthetic aperture radar (SAR) data. It has the ability to acquire X-band full polarimetric SAR data at a resolution of 0.5m. However, the existence of speckles which is inherent in SAR imagery affects visual interpretation and image processing badly, and challenges the assumption that conjugate points appear similar to each other in matching processing. In addition, researches show that speckles are multiplicative speckles, and most similarity measures of SAR image matching are sensitive to them. Thus, matching outcomes of SAR images acquired by most similarity measures are not reliable and with bad accuracy. Meanwhile, every polarimetric SAR image has different backscattering information of objects from each other and four polarimetric SAR data contain most basic and a large amount of redundancy information to improve matching. Therefore, we introduced logarithmically transformation and a stereo matching similarity measure into airborne full polarimetric SAR imagery. Firstly, in order to transform the multiplicative speckles into additivity ones and weaken speckles' influence on similarity measure, logarithmically transformation have to be taken to all images. Secondly, to prevent performance degradation of similarity measure caused by speckles, measure must be free or insensitive of additivity speckles. Thus, we introduced a stereo matching similarity measure, called Normalized Cross-Correlation (NCC), into full polarimetric SAR image matching. Thirdly, to take advantage of multi-polarimetric data and preserve the best similarity measure value, four measure values calculated between left and right single polarimetric SAR images are fused as final measure value for matching. The method was tested for matching under CASMSAR data. The results showed that the method delivered an effective

  16. SEASAT SAR performance evaluation study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The performance of the SEASAT synthetic aperture radar (SAR) sensor was evaluated using data processed by the MDA digital processor. Two particular aspects are considered the location accuracy of image data, and the calibration of the measured backscatter amplitude of a set of corner reflectors. The image location accuracy was assessed by selecting identifiable targets in several scenes, converting their image location to UTM coordinates, and comparing the results to map sheets. The error standard deviation is measured to be approximately 30 meters. The amplitude was calibrated by measuring the responses of the Goldstone corner reflector array and comparing the results to theoretical values. A linear regression of the measured against theoretical values results in a slope of 0.954 with a correlation coefficient of 0.970.

  17. Image Enhancement and Speckle Reduction of Full Polarimetric SAR Data by Gaussian Markov Random Field

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Motagh, M.; Akbari, V.

    2013-09-01

    In recent years, the use of Polarimetric Synthetic Aperture Radar (PolSAR) data in different applications dramatically has been increased. In SAR imagery an interference phenomenon with random behavior exists which is called speckle noise. The interpretation of data encounters some troubles due to the presence of speckle which can be considered as a multiplicative noise affecting all coherent imaging systems. Indeed, speckle degrade radiometric resolution of PolSAR images, therefore it is needful to perform speckle filtering on the SAR data type. Markov Random Field (MRF) has proven to be a powerful method for drawing out eliciting contextual information from remotely sensed images. In the present paper, a probability density function (PDF), which is fitted well with the PolSAR data based on the goodness-of-fit test, is first obtained for the pixel-wise analysis. Then the contextual smoothing is achieved with the MRF method. This novel speckle reduction method combines an advanced statistical distribution with spatial contextual information for PolSAR data. These two parts of information are combined based on weighted summation of pixel-wise and contextual models. This approach not only preserves edge information in the images, but also improves signal-to-noise ratio of the results. The method maintains the mean value of original signal in the homogenous areas and preserves the edges of features in the heterogeneous regions. Experiments on real medium resolution ALOS data from Tehran, and also high resolution full polarimetric SAR data over the Oberpfaffenhofen test-site in Germany, demonstrate the effectiveness of the algorithm compared with well-known despeckling methods.

  18. Combined DEM Extration Method from StereoSAR and InSAR

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Zhang, J. X.; Duan, M. Y.; Huang, G. M.; Yang, S. C.

    2015-06-01

    A pair of SAR images acquired from different positions can be used to generate digital elevation model (DEM). Two techniques exploiting this characteristic have been introduced: stereo SAR and interferometric SAR. They permit to recover the third dimension (topography) and, at the same time, to identify the absolute position (geolocation) of pixels included in the imaged area, thus allowing the generation of DEMs. In this paper, StereoSAR and InSAR combined adjustment model are constructed, and unify DEM extraction from InSAR and StereoSAR into the same coordinate system, and then improve three dimensional positioning accuracy of the target. We assume that there are four images 1, 2, 3 and 4. One pair of SAR images 1,2 meet the required conditions for InSAR technology, while the other pair of SAR images 3,4 can form stereo image pairs. The phase model is based on InSAR rigorous imaging geometric model. The master image 1 and the slave image 2 will be used in InSAR processing, but the slave image 2 is only used in the course of establishment, and the pixels of the slave image 2 are relevant to the corresponding pixels of the master image 1 through image coregistration coefficient, and it calculates the corresponding phase. It doesn't require the slave image in the construction of the phase model. In Range-Doppler (RD) model, the range equation and Doppler equation are a function of target geolocation, while in the phase equation, the phase is also a function of target geolocation. We exploit combined adjustment model to deviation of target geolocation, thus the problem of target solution is changed to solve three unkonwns through seven equations. The model was tested for DEM extraction under spaceborne InSAR and StereoSAR data and compared with InSAR and StereoSAR methods respectively. The results showed that the model delivered a better performance on experimental imagery and can be used for DEM extraction applications.

  19. SAR Imagery Applied to the Monitoring of Hyper-Saline Deposits: Death Valley Example (CA)

    NASA Technical Reports Server (NTRS)

    Lasne, Yannick; Paillou, Philippe; Freeman, Anthony; Chapman, Bruce

    2009-01-01

    The present study aims at understanding the influence of salinity on the dielectric constant of soils and then on the backscattering coeff cients recorded by airborne/spaceborne SAR systems. Based on dielectric measurements performed over hyper-saline deposits in Death Valley (CA), as well as laboratory electromagnetic characterization of salts and water mixtures, we used the dielectric constants as input parameters of analytical IEM simulations to model both the amplitude and phase behaviors of SAR signal at C, and L-bands. Our analytical simulations allow to reproduce specif c copolar signatures recorded in SAR data, corresponding to the Cottonball Basin saltpan. We also propose the copolar backscattering ratio and phase difference as indicators of moistened and salt-affected soils. More precisely, we show that these copolar indicators should allow to monitor the seasonal variations of the dielectric properties of saline deposits.

  20. Adsorption of ferrous ions onto montmorillonites

    NASA Astrophysics Data System (ADS)

    Qin, Dawei; Niu, Xia; Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao

    2015-04-01

    The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe2+/Fetotal ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG0 and ΔH0 were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  1. Statistical Modeling of SAR Images: A Survey

    PubMed Central

    Gao, Gui

    2010-01-01

    Statistical modeling is essential to SAR (Synthetic Aperture Radar) image interpretation. It aims to describe SAR images through statistical methods and reveal the characteristics of these images. Moreover, statistical modeling can provide a technical support for a comprehensive understanding of terrain scattering mechanism, which helps to develop algorithms for effective image interpretation and creditable image simulation. Numerous statistical models have been developed to describe SAR image data, and the purpose of this paper is to categorize and evaluate these models. We first summarize the development history and the current researching state of statistical modeling, then different SAR image models developed from the product model are mainly discussed in detail. Relevant issues are also discussed. Several promising directions for future research are concluded at last. PMID:22315568

  2. An algorithm for segmenting polarimetric SAR imagery

    NASA Astrophysics Data System (ADS)

    Geaga, Jorge V.

    2015-05-01

    We have developed an algorithm for segmenting fully polarimetric single look TerraSAR-X, multilook SIR-C and 7 band Landsat 5 imagery using neural nets. The algorithm uses a feedforward neural net with one hidden layer to segment different surface classes. The weights are refined through an iterative filtering process characteristic of a relaxation process. Features selected from studies of fully polarimetric complex single look TerraSAR-X data and multilook SIR-C data are used as input to the net. The seven bands from Landsat 5 data are used as input for the Landsat neural net. The Cloude-Pottier incoherent decomposition is used to investigate the physical basis of the polarimetric SAR data segmentation. The segmentation of a SIR-C ocean surface scene into four classes is presented. This segmentation algorithm could be a very useful tool for investigating complex polarimetric SAR phenomena.

  3. Polarimetric SAR Interferometry Evaluation in Mangroves

    NASA Technical Reports Server (NTRS)

    Lee, Seung-Kuk; Fatoyinbo,Temilola; Osmanoglu, Batuhan; Sun, Guoqing

    2014-01-01

    TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data).

  4. Image based SAR product simulation for analysis

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.

    1987-01-01

    SAR product simulation serves to predict SAR image gray values for various flight paths. Input typically consists of a digital elevation model and backscatter curves. A new method is described of product simulation that employs also a real SAR input image for image simulation. This can be denoted as 'image-based simulation'. Different methods to perform this SAR prediction are presented and advantages and disadvantages discussed. Ascending and descending orbit images from NASA's SIR-B experiment were used for verification of the concept: input images from ascending orbits were converted into images from a descending orbit; the results are compared to the available real imagery to verify that the prediction technique produces meaningful image data.

  5. Tracking ocean wave spectrum from SAR images

    NASA Technical Reports Server (NTRS)

    Goldfinger, A. D.; Beal, R. C.; Monaldo, F. M.; Tilley, D. G.

    1984-01-01

    An end to end algorithm for recovery of ocean wave spectral peaks from Synthetic Aperture Radar (SAR) images is described. Current approaches allow precisions of 1 percent in wave number, and 0.6 deg in direction.

  6. SAR/LANDSAT image registration study

    NASA Technical Reports Server (NTRS)

    Murphrey, S. W. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Temporal registration of synthetic aperture radar data with LANDSAT-MSS data is both feasible (from a technical standpoint) and useful (from an information-content viewpoint). The greatest difficulty in registering aircraft SAR data to corrected LANDSAT-MSS data is control-point location. The differences in SAR and MSS data impact the selection of features that will serve as a good control points. The SAR and MSS data are unsuitable for automatic computer correlation of digital control-point data. The gray-level data can not be compared by the computer because of the different response characteristics of the MSS and SAR images.

  7. ARSENIC TREATMENT BY ADSORPTIVE TECHNOLOGY

    EPA Science Inventory

    Presentation will discuss the removal of arsenic from drinking water using the adsorptive media treatment process. Fundamental information is provided on the design and operation of adsorptive media technology including the selection of the adsorptive media. The information cites...

  8. A Simple Adsorption Experiment

    ERIC Educational Resources Information Center

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  9. Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

    USGS Publications Warehouse

    Ramsey III, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2015-01-01

    Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC) correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.             

  10. Using GNSS signals as a proxy for SAR signals: Correcting ionospheric defocusing

    NASA Astrophysics Data System (ADS)

    Mannix, Christopher R.; Belcher, David P.; Cannon, Paul S.; Angling, Matthew J.

    2016-02-01

    Ultrahigh frequency space-based synthetic aperture radar (SAR) can suffer from the degrading effects of a scintillating ionosphere which modulates both the phase and the amplitude of the radar signal. In this paper, we use Global Navigation Satellite System (GNSS) signals to synthesize an L-band SAR point spread function (PSF). The process of transforming the GNSS signal to the equivalent SAR PSF is described. The synthesized PSF is used to explore the possibility of using a phase correction determined from a point target in a SAR image to correct the ionospheric degradation. GNSS data recorded on equatorial Ascension Island during scintillation events are used to test the feasibility of this approach by applying a phase correction to one GNSS receiver from another located along a magnetic east-west baseline. The peak-to-sidelobe ratios of the synthesized L-band SAR point spread functions before and after the correction are compared, and it is shown that this approach improves the L-band PSF over distances of ~3000 m in the ionosphere, corresponding to 6000 m on the ground.

  11. SAR Polarimetry for Oil at Sea Observation

    NASA Astrophysics Data System (ADS)

    Migliaccio, M.; Nunziata, F.

    2013-03-01

    Synthetic aperture radar (SAR) oil slick observation is a topic of great applicative relevance which has been physically recast by a set of new polarimetric approaches that, exploiting the departure from Bragg scattering, allow observing oil at sea in a very robust and effective way. In this study, these polarimetric approaches are reviewed and their performances are discussed with respect to some thought experiments undertaken on quad-pol full-resolution L- and C-band SAR data.

  12. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  13. UAVSAR: InSAR and PolSAR Test Bed for the Proposed NI-SAR Mission

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Hensley, S.; Lou, Y.

    2014-12-01

    UAVSAR, which first became operational in 2009, has served as an operational testbed for the NI-SAR L-band radar concept and a unique instrument in its own right. UAVSAR supports a broad array of basic and applied geoscience, covering on smaller scale all the disciplines NI-SAR would be able to address on a global scale. Although designed specifically to provide high accuracy repeated flight tracks and precise imaging geometry for InSAR-based solid earth studies, its fully polarimetric operation, low noise, and consistent calibration accuracy has made it a premier instrument for PolSAR-based studies also. Since 2009 it has successfully imaged more than 16 million km2 and >4300 quad-polarimetric data products are now publicly available online. Upgrades made in the last year to automate the repeat track processing serve as a model for generating large volumes of InSAR products: Since January 2014 more than 700 interferometric products have been released, exceeding the output of all previous years combined. Standardly available products now include browse images of all InSAR acquisitions and coregistered single-look complex image stacks suitable for standard time series analysis. Here we present an overview of the wide range of studies utilizing UAVSAR data including those based on polarimetry and pair-wise and times series interferometry, highlighting both the unique capabilities of UAVSAR and the ways in which NI-SAR would be able to dramatically extend the capabilities. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  14. Remotely Sensing Tundra Fire Impacts Using InSAR

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K. M.; Jafarov, E. E.; Williams, C. A.; Rogan, J.; Zebker, H. A.

    2013-12-01

    Fire is a major disturbance affecting the arctic tundra and boreal forests, with a significant impacts on the ecosystem, soil hydrology, carbon cycling, and permafrost. The increasing trend in frequency and severity of large fires since 1980, associated with progressively drier conditions, is expected to continue and lead to still greater impacts. In this study, we explore the use of Interferometric Synthetic Aperture Radar (InSAR) to map and quantify several results of tundra fires, including fire severity, the increase in permafrost active layer thickness (ALT), and changes in organic layer thickness. Here we present as an example observations of the Anaktuvuk River fire on the North Slope of Alaska, which burned over 1,000 km2 of tundra in the summer of 2007. Fire causes an abrupt change in the surface scattering characteristics and results in a large drop in InSAR coherence. The magnitude of coherence loss is proportional to the amount of vegetation burned, and thus fire severity. Coherence between two PALSAR images taken by the Japanese ALOS satellite before and after the Anaktuvuk River fire shows a spatial pattern consistent with a map of burn severity based on optical MODIS images using differential Normalized Burn Ratio. Additionally, we used InSAR to calculate the seasonal ground subsidence for the 2006 and 2009 thaw seasons representing pre- and post-fire conditions, and estimated the change in ALT using a retrieval algorithm. Our results are consistent with the 8 to 24 cm ALT increases derived from in situ probing measurements, which we relate to the change in the organic layer thickness due to the fire. Our results illustrate the potential of InSAR for remote sensing of fire impacts in Arctic regions. (a) Burn severity for the Anaktuvuk Rivre Fire based on differential Normalized Burn Ratio (dNBR) from MODIS images. (b) Interferometric coherence loss due to the fire. Spatial mean has been subtracted. Negative values (yellow and red colors) indicate

  15. Online Health Education on SARS to University Students during the SARS Outbreak

    ERIC Educational Resources Information Center

    Wong, Mee Lian; Koh, David; Iyer, Prasad; Seow, Adeline; Goh, Lee Gan; Chia, Sin Eng; Lim, Meng Kin; Ng, Daniel; Ong, Choon Nam; Phua, Kai Hong; Tambyah, Paul; Chow, Vincent T K; Chew, Suok Kai; Chandran, Ravi; Lee, Hin Peng

    2005-01-01

    Little is known about how online learning may be used to disseminate health information rapidly and widely to large university populations if there is an infectious disease outbreak. During the SARS outbreak in Singapore in 2003, a six-lesson elearning module on SARS was developed for a large university population of 32,000 students. The module…

  16. 23. OVERVIEW OF SAR3 AREA, SHOWING CORNER OF SAR3 WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. OVERVIEW OF SAR-3 AREA, SHOWING CORNER OF SAR-3 WITH TAILRACE, ADMINISTRATIVE OFFICE, TOILET SHED, AND RETAINING WALLS AT FORMER EMPLOYEE HOUSING SITE. VIEW TO SOUTHEAST. PANORAMA 1/2. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  17. 20. OVERVIEW OF SAR3 COMPLEX, SHOWING FORMER RESIDENTIAL AREA, SAR3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. OVERVIEW OF SAR-3 COMPLEX, SHOWING FORMER RESIDENTIAL AREA, SAR-3 SWITCH RACK, MAINTENANCE YARD, AND GREENSPOT BRIDGE. NOTE ALSO LARGE PIPE CONDUCTING TAILRACE WATER INTO IRRIGATION SYSTEM. VIEW TO SOUTHWEST. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  18. Sea surface wind field by TerraSAR-X and Tandem-X data

    NASA Astrophysics Data System (ADS)

    Li, Xiaoming; Lehner, Susanne

    2013-04-01

    A new Geophysical Model Function (GMF), denoted XMOD2, is developed to retrieve the sea surface wind field from X-band TerraSAR-X/Tandem-X (TS-X/TD-X) data. In contrary to the previous XMOD1, XMOD2 is based on a nonlinear GMF, and moreover it also depicts the difference between upwind and downwind of the sea surface backscatter. By exploiting 371 collocations, the retrieved TS-X/TD-X sea surface wind speed U10 by XMOD2 agrees well with in situ buoy measurements with a bias of 0.39 m/s, an RMSE of 1.52 m/s and a scatter index (SI) of 16.1%. To apply XMOD2 to TS-X/TD-X data acquired at HH polarization, we verify the X-band SAR Polarization Ratio (PR) models by comparing the retrieved sea surface wind speed to in situ buoy measurements as well. Based on 62 collocated pairs, it is found that by using the Elfouhaily type PR model and XMOD2 yields better U10 retrieval with a bias of -0.27 m/s, an RMSE of 2.06 m/s and a SI of 22.7% than using the X-PR model which yields a bias of -0.98 m, and RMSE of 2.30 m and a SI of 23.4%. Several TerraSAR-X and TanDEM-X ScanSAR images are acquired in October, 2012 to track the Hurricane Sandy. Three of the images are acquired in the open sea, which are presented in this chapter to demonstrate observations of sea surface wind and wave extracted from X-band ScanSAR image with high spatial resolution of 17 m in the hurricane. In the case of the TerraSAR-X image acquired on October 26, 2012, we analyze the peak wave direction and length of swell generated by Hurricane Sandy, as well as interaction of swell with the Abaco Island, Bahamas. In the other two cases, sea surface wind field derived from the TerraSAR-X and TanDEM-X acquired on October 27 and 28 are presented. The sea surface wind speed retrieved by the X-band Geophysical Model Function (GMF) XMOD2 using wind direction derived from SAR images and the NOAA Hurricane Research Division (HRD) wind analyses are both presented for comparisons. We also compare the retrieved sea surface

  19. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    DOE PAGESBeta

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that themore » GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.« less

  20. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    SciTech Connect

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that the GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.

  1. Investigation of ionospheric effects on SAR Interferometry (InSAR): A case study of Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhu, Wu; Ding, Xiao-Li; Jung, Hyung-Sup; Zhang, Qin; Zhang, Bo-Chen; Qu, Wei

    2016-08-01

    Synthetic Aperture Radar Interferometry (InSAR) has demonstrated its potential for high-density spatial mapping of ground displacement associated with earthquakes, volcanoes, and other geologic processes. However, this technique may be affected by the ionosphere, which can result in the distortions of Synthetic Aperture Radar (SAR) images, phases, and polarization. Moreover, ionospheric effect has become and is becoming further significant with the increasing interest in low-frequency SAR systems, limiting the further development of InSAR technique. Although some research has been carried out, thorough analysis of ionospheric influence on true SAR imagery is still limited. Based on this background, this study performs a thorough investigation of ionospheric effect on InSAR through processing L-band ALOS-1/PALSAR-1 images and dual-frequency Global Positioning System (GPS) data over Hong Kong, where the phenomenon of ionospheric irregularities often occurs. The result shows that the small-scale ionospheric irregularities can cause the azimuth pixel shifts and phase advance errors on interferograms. Meanwhile, it is found that these two effects result in the stripe-shaped features in InSAR images. The direction of the stripe-shaped effects keep approximately constant in space for our InSAR dataset. Moreover, the GPS-derived rate of total electron content change index (ROTI), an index to reflect the level of ionospheric disturbances, may be a useful indicator for predicting the ionospheric effect for SAR images. This finding can help us evaluate the quality of SAR images when considering the ionospheric effect.

  2. Water Vapor Adsorption - Desorption Behavior of a Small Piece of Desiccant Rotor in Temperature Swing

    NASA Astrophysics Data System (ADS)

    Washio, Yasuko; Kodama, Akio

    This study aims to clarify the adsorption / desorption behavior of water vapor onto / from a desiccant rotor in temperature swing. A magnetic suspension balance followed time variations of the weight of a small piece of desiccant rotor at various desorption temperature, adsorption / desorption time and their duration time ratio. Adsorption-desorption swing in steady state settled down at certain amplitude of the amount adsorbed keeping the balance of the adsorption and desorption rates averaged over each period. At low regeneration temperature around 40-50 oC, adsorption and desorption rates were affected considerably by the change of driving force of adsorption q*-q rather than the temperature dependence of the mass transfer coefficient. At constant adsorption and desorption air conditions, the adsorption /desorption rates could be summarized by the amount of adsorption and temperature, independently of the length of cycle time. Also, region of the amount of adsorption at which adsorption - desorption swing occurred was predicted considering the adsorption / desorption rates - amount adsorbed relationship and the adsorption / desorption duration ratio.

  3. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  4. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  5. Circular Polarization Characteristics of South Polar Lunar Craters using Chandrayaan-1 Mini-SAR and LRO Mini-RF

    NASA Astrophysics Data System (ADS)

    Calla, Om Prakash Narayan; Mathur, Shubhra; Jangid, Monika; Gadri, Kishan Lal

    2015-07-01

    The paper presents a case study of inconsistent behaviour of Chandrayaan-1 Mini-SAR and LRO Mini-RF data over south polar lunar craters. The paper includes analysis of Stokes parameters and characterization of received time-varying electromagnetic fields over the south pole lunar craters. For the study, Chandrayaan-1 Mini-SAR and LRO Mini-RF data at 2.38 GHz are used. Total five lunar craters in south polar region are analyzed to study the effect of various parameters on the polarization of the signal. We have compared linear horizontal (LH) and linear vertical (LV) polarization components of received radar signal over the same targets using two different SAR data. Ratios of received LH to LV components are also derived over the five craters. It is observed that Chandrayaan-1 Mini-SAR is receiving high LH component as compared to LV component. This is not consistent with the scattering theory (Fawwaz et al. in Microwave remote sensing active and passive, Artech House Inc., New York, 1981), which states that for incidence angle greater than 15°, the vertical polarized component of a received signal should be always high as compared to horizontal polarized component over rough surfaces. These inconsistent results of Chandrayaan-1 Mini-SAR are observed over all five craters. In the paper, various effects of sensor parameters like incident angle, ellipticity angle, orientation angle etc. on scattering mechanism are discussed to understand the inconsistent behaviour of two SAR data over same target.

  6. A comparative evaluation of SAR and SLAR

    SciTech Connect

    Mastin, G.A.; Manson, J.J.; Bradley, J.D.; Axline, R.M.; Hover, G.L.

    1993-11-01

    Synthetic aperture radar (SAR) was evaluated as a potential technological improvement over the Coast Guard`s existing side-looking airborne radar (SLAR) for oil-spill surveillance applications. The US Coast Guard Research and Development Center (R&D Center), Environmental Branch, sponsored a joint experiment including the US Coast Guard, Sandia National Laboratories, and the Naval Oceanographic and Atmospheric Administration (NOAA), Hazardous Materials Division. Radar imaging missions were flown on six days over the coastal waters off Santa Barbara, CA, where there are constant natural seeps of oil. Both the Coast Guard SLAR and the Sandia National Laboratories SAR were employed to acquire simultaneous images of oil slicks and other natural sea surface features that impact oil-spill interpretation. Surface truth and other environmental data were also recorded during the experiment. The experiment data were processed at Sandia National Laboratories and delivered to the R&D Center on a computer workstation for analysis by experiment participants. Issues such as optimal spatial resolution, single-look vs. multi-look SAR imaging, and the utility of SAR for oil-spill analysis were addressed. Finally, conceptual design requirements for a possible future Coast Guard SAR were outlined and evaluated.

  7. ICAO's anti-SARS airport activities.

    PubMed

    Finkelstein, Silvio; Curdt-Christiansen, Claus M

    2003-11-01

    To prevent SARS from spreading through air travel and in order to rebuild the confidence of the traveling public in the safety of air travel, ICAO has set up an "Anti-SARS Airport Evaluation Project." The first phase of this project was to develop a set of protective measures for international airports in affected areas to adopt and implement and then to send out, on the request of Contracting States, a team of inspectors to evaluate and assess airports and issue a "statement of evaluation" that the airport inspected complies with the ICAO anti-SARS protective measures. In cooperation with the World Health Organization (WHO), the first part of phase 1 was completed in early June this year, and the second part of phase 1 followed soon after. By mid-July, five international airports in Southeast Asia had been inspected and found to be in full compliance with the ICAO anti-SARS protective measures. The success of this ICAO project is believed to have contributed significantly to the recovery of international air travel and related industries now taking place. Phase 2 of the project is now being developed. It is aimed at preventing a resurgence of SARS, but it also contains elements to make the methodology developed applicable to future outbreaks of any other communicable disease in which the mode of transmission could involve aviation and/or the need to prevent the spread of the disease by air travel. PMID:14620481

  8. Low complexity efficient raw SAR data compression

    NASA Astrophysics Data System (ADS)

    Rane, Shantanu; Boufounos, Petros; Vetro, Anthony; Okada, Yu

    2011-06-01

    We present a low-complexity method for compression of raw Synthetic Aperture Radar (SAR) data. Raw SAR data is typically acquired using a satellite or airborne platform without sufficient computational capabilities to process the data and generate a SAR image on-board. Hence, the raw data needs to be compressed and transmitted to the ground station, where SAR image formation can be carried out. To perform low-complexity compression, our method uses 1-dimensional transforms, followed by quantization and entropy coding. In contrast to previous approaches, which send uncompressed or Huffman-coded bits, we achieve more efficient entropy coding using an arithmetic coder that responds to a continuously updated probability distribution. We present experimental results on compression of raw Ku-SAR data. In those we evaluate the effect of the length of the transform on compression performance and demonstrate the advantages of the proposed framework over a state-of-the-art low complexity scheme called Block Adaptive Quantization (BAQ).

  9. Possible SARS Coronavirus Transmission during Cardiopulmonary Resuscitation

    PubMed Central

    Loutfy, Mona; McDonald, L. Clifford; Martinez, Kenneth F.; Ofner, Mariana; Wong, Tom; Wallington, Tamara; Gold, Wayne L.; Mederski, Barbara; Green, Karen; Low, Donald E.

    2004-01-01

    Infection of healthcare workers with the severe acute respiratory syndrome–associated coronavirus (SARS-CoV) is thought to occur primarily by either contact or large respiratory droplet transmission. However, infrequent healthcare worker infections occurred despite the use of contact and droplet precautions, particularly during certain aerosol-generating medical procedures. We investigated a possible cluster of SARS-CoV infections in healthcare workers who used contact and droplet precautions during attempted cardiopulmonary resuscitation of a SARS patient. Unlike previously reported instances of transmission during aerosol-generating procedures, the index case-patient was unresponsive, and the intubation procedure was performed quickly and without difficulty. However, before intubation, the patient was ventilated with a bag-valve-mask that may have contributed to aerosolization of SARS-CoV. On the basis of the results of this investigation and previous reports of SARS transmission during aerosol-generating procedures, a systematic approach to the problem is outlined, including the use of the following: 1) administrative controls, 2) environmental engineering controls, 3) personal protective equipment, and 4) quality control. PMID:15030699

  10. SARS revisited: managing "outbreaks" with "communications".

    PubMed

    Menon, K U

    2006-05-01

    "Risk communications" has acquired some importance in the wake of our experience of SARS. Handled well, it helps to build mutual respect between a government or an organisation and the target groups with which it is communicating. It helps nurture public trust and confidence in getting over the crisis. The World Health Organization (WHO) has also come to recognise its importance after SARS and organised the first Expert Consultation on Outbreak Communications conference in Singapore in September 2004. This article assesses the context and the key features which worked to Singapore's advantage. Looking at the data now widely available on the Internet of the experience of SARS-infected countries like China, Taiwan, Canada, the article identifies the key areas of strategic communications in which Singapore fared particularly well. Another issue discussed is whether Singapore's experience has universal applicability or whether it is limited because of Singapore's unique cultural, historical and geographical circumstances. Finally, the article also looks at some of the post-SARS enhancements that have been put in place following the lessons learnt from SARS and the need to confront new infectious outbreaks like avian flu. PMID:16830005

  11. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination

    PubMed Central

    Lau, Susanna K. P.; Feng, Yun; Chen, Honglin; Luk, Hayes K. H.; Yang, Wei-Hong; Li, Kenneth S. M.; Zhang, Yu-Zhen; Huang, Yi; Song, Zhi-Zhong; Chow, Wang-Ngai; Fan, Rachel Y. Y.; Ahmed, Syed Shakeel; Yeung, Hazel C.; Lam, Carol S. F.; Cai, Jian-Piao; Wong, Samson S. Y.; Chan, Jasper F. W.; Yuen, Kwok-Yung

    2015-01-01

    ABSTRACT Despite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-related Rhinolophus sinicus bat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs. To elucidate the origin of SARS-CoV ORF8, we sampled 348 bats of various species in Yunnan, among which diverse alphacoronaviruses and betacoronaviruses, including potentially novel CoVs, were identified, with some showing potential interspecies transmission. The genomes of two betacoronaviruses, SARSr-Rf-BatCoV YNLF_31C and YNLF_34C, from greater horseshoe bats (Rhinolophus ferrumequinum), possessed 93% nucleotide identities to human/civet SARSr-CoV genomes. Although these two betacoronaviruses displayed lower similarities than SARSr-Rs-BatCoV RsSHC014 and Rs3367 in S protein to civet SARSr-CoVs, their ORF8 proteins demonstrated exceptionally high (80.4 to 81.3%) amino acid identities to that of human/civet SARSr-CoVs, compared to SARSr-BatCoVs from other horseshoe bats (23.2 to 37.3%). Potential recombination events were identified around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. The expression of ORF8 subgenomic mRNA suggested that the ORF8 protein may be functional in SARSr-Rf-BatCoVs. The high Ka/Ks ratio among human SARS-CoVs compared to that among SARSr-BatCoVs supported that ORF8 is under strong positive selection during animal-to-human transmission. Molecular clock analysis using ORF1ab showed that SARSr-Rf-BatCoV YNLF_31C and YNLF_34C diverged from civet/human SARSr-CoVs in approximately 1990. SARS

  12. Influence of Ca2+ on tetracycline adsorption on montmorillonite.

    PubMed

    Parolo, M Eugenia; Avena, Marcelo J; Pettinari, Gisela R; Baschini, Miria T

    2012-02-15

    The adsorption of tetracycline (TC) on montmorillonite was studied as a function of pH and Ca(2+) concentration using a batch technique complemented with X-ray diffraction and transmission electron microscopy. In the absence of Ca(2+), TC adsorption was high at low pH and decreased as the pH increased. In the presence of Ca(2+), at least two different adsorption processes took place in the studied systems, i.e., cation exchange and Ca-bridging. Cation exchange was the prevailing process at pH<5, and thus, TC adsorption decreased by increasing total Ca(2+) concentration. On the contrary, Ca-bridging was the prevailing process at pH>5, and thus, TC adsorption increased by increasing Ca(2+) concentration. The pH 5 represents an isoadsorption pH where both adsorption processes compensate each other. TC adsorption became independent of Ca(2+) concentration at this pH. For TC adsorption on Ca(2+)-montmorillonite in 0.01 M NaCl experiments, the ratio adsorbed TC/retained Ca(2+) was close to 1 in the pH range of 5-9, indicating an important participation of Ca(2+) in the binding of TC to montmorillonite. X-ray diffraction and transmission electron microscopy showed that TC adsorption induced intercalation between montmorillonite layers forming a multiphase system with stacking of layers with and without intercalated TC. PMID:22189389

  13. Statistical Approach To Determination Of Texture In SAR

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Kwok, Ronald

    1993-01-01

    Paper presents statistical approach to analysis of texture in synthetic-aperture-radar (SAR) images. Objective: to extract intrinsic spatial variability of distributed target from overall spatial variability of SAR image.

  14. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways.

    PubMed

    Ding, Yanqing; He, Li; Zhang, Qingling; Huang, Zhongxi; Che, Xiaoyan; Hou, Jinlin; Wang, Huijun; Shen, Hong; Qiu, Liwen; Li, Zhuguo; Geng, Jian; Cai, Junjie; Han, Huixia; Li, Xin; Kang, Wei; Weng, Desheng; Liang, Ping; Jiang, Shibo

    2004-06-01

    We previously identified the major pathological changes in the respiratory and immune systems of patients who died of severe acute respiratory syndrome (SARS) but gained little information on the organ distribution of SARS-associated coronavirus (SARS-CoV). In the present study, we used a murine monoclonal antibody specific for SARS-CoV nucleoprotein, and probes specific for a SARS-CoV RNA polymerase gene fragment, for immunohistochemistry and in situ hybridization, respectively, to detect SARS-CoV systematically in tissues from patients who died of SARS. SARS-CoV was found in lung, trachea/bronchus, stomach, small intestine, distal convoluted renal tubule, sweat gland, parathyroid, pituitary, pancreas, adrenal gland, liver and cerebrum, but was not detected in oesophagus, spleen, lymph node, bone marrow, heart, aorta, cerebellum, thyroid, testis, ovary, uterus or muscle. These results suggest that, in addition to the respiratory system, the gastrointestinal tract and other organs with detectable SARS-CoV may also be targets of SARS-CoV infection. The pathological changes in these organs may be caused directly by the cytopathic effect mediated by local replication of the SARS-CoV; or indirectly as a result of systemic responses to respiratory failure or the harmful immune response induced by viral infection. In addition to viral spread through a respiratory route, SARS-CoV in the intestinal tract, kidney and sweat glands may be excreted via faeces, urine and sweat, thereby leading to virus transmission. This study provides important information for understanding the pathogenesis of SARS-CoV infection and sheds light on possible virus transmission pathways. This data will be useful for designing new strategies for prevention and treatment of SARS. PMID:15141376

  15. Adsorption in sparse networks. 1: Cylinder model

    SciTech Connect

    Scherer, G.W.

    1998-06-15

    Materials with very low density, such as aerogels, are networks with polymers or chains of particles joined at nodes, where the spacing of the nodes is large compared to the thickness of the chains. In such a material, most of the solid surface has positive curvature, so condensation of an adsorbate is more difficult than condensation in a body containing cavities whose surfaces have negative curvature. A model is presented in which the network is represented by straight cylinders joined at nodes with coordination numbers 4, 6, or 12. The shape of the adsorbate/adsorptive interface is obtained for each network by minimizing its surface area. The adsorption behavior is found to depend on the ratio of the node separation, l, to the radius of the cylinders, a: if l/a exceeds a critical value (which depends on the coordination of the node), then the curvature of the adsorbate/adsorptive interface approaches zero while the adsorbate occupies a small fraction of the pore volume; if l/a is less than the critical value, then condensation occurs. Even in the latter case, interpretation of the adsorption isotherm in terms of cylindrical pores (as in the BJH model) yields apparent pore sizes much greater than the actual spacing of the nodes. In a companion paper, this model is applied to silica aerogels and found to give a good fit to both the adsorption and desorption curves with a single distribution of node spacings.

  16. Characterizing hydrologic changes of Great Dismal Swamp using SAR/InSAR technology

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lu, Z.; Zhu, Z.

    2015-12-01

    Great Dismal Swamp is one of the largest, northernmost peatlands on the Atlantic Coastal Plain, and the swamp is underlain by a thick water-logged organic soil layer (peat) made up of dead and decaying plant material. The peatlands play a role as the sink of large amount of soil organic carbon and methane. However, the disturbance of the peatland negatively impacted the ecosystem and contributed to the climate change caused by the released greenhouse gas. Our SAR/InSAR methods observed the hydrologic changes in the peatlands, which is a key factor to conserve the wetland, through several methods. First, we compared averaged SAR intensity from C- and L-band SAR sensors with groundwater level changes, and deduced a linear relationship between the SAR backscattering intensity and the groundwater level change. Second, we extracted the inundated area during wet season from InSAR coherence. Third, we measured the relative water level changes in the inundated area using the interferometric phases. Finally, we estimated the groundwater level changes corresponding to the soil moisture changes from time-series InSAR method. Our results can provide the unique opportunity to understand the occurring hydrologic and vegetation changes in the Great Dismal Swamp.

  17. Mine drainage water from the Sar Cheshmeh porphyry copper mine, Kerman, IR Iran.

    PubMed

    Shahabpour, J; Doorandish, M

    2008-06-01

    This paper presents the results of a study on stream and mine waters in the area of one of the world largest porphyry copper deposit located in the southeastern Iran, the Sar Cheshmeh porphyry copper mine. Trace metals are present as adsorption on Fe and Mn oxide and hydroxide particles, as sulfate, simple metal ions, and scarcely as adsorption on clay particles and hydrous aluminium oxides. Mean pH decreases and the mean concentration of trace elements, EC and SO4(2-) increases from the maximum discharge period (MXDP) during snow melt run off (May), through the moderate discharge period (MDDP; March and July) to the minimum discharge period (MNDP; September). Water samples have sulfatic character essentially, however, from the MNDP through the MDDP towards the MXDP they show a bicarbonate tendency. This study indicates that the surface waters draining the Sar Cheshmeh open pit have a higher pH and lower concentration of trace metals compared with some other porphyry copper deposits. PMID:17879141

  18. Coastal Sea Level From CRYOSAT-2 SAR and SAR-In Altimetry

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Abulaitijiang, A.; Knudsen, P.; Stenseng, L.

    2014-12-01

    Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using bor SAR-altimetry and SAR-In altimetry. With this technological leap forward Cryosat-2 is now able to observe sea level in very small water bodies and also to provide coastal sea level very close to the shore. We perform an investigation into the retrieval of sea surface height around Denmark and Greenland. These regions have been chosen as the coastal regions around Denmark falls within the SAR mask and the coastal regions of Greenland falls in under the SAR-in mask employed on Cryosat-2. SAR-in was mainly used in coastal regions of Greenland because of its huge topographic changes as Cryosat-2 is designed to map the margins of the ice-sheet. The coastal region around Denmark is a test region of the EU FP7 sponsored project LOTUS esablishing SAR altimetry product in preparation for Sentinel-3. With the increased spatial resolution of Cryosat-2 SAR we provide valuable sea level observations within the Straits around Denmark which are crucial to constrain the waterflow in and out of the Baltic Sea. The investigation of SAR-in data in Greenland adds an entire new dimension to coastal altimetry. An amazing result of the investigation is the ability of Cryosat-2 to detect and recover sea level even though the coast (sealevel) is up to 15 km away from the nadir location of the satellite. This ability of capture and use returns from outside the main (-3Db) loop in theory enables Cryosat-2 SAR-in to map sea level height of fjords more frequently than the 369 days repeat.

  19. The Radarsat SAR multi-beam antenna

    NASA Astrophysics Data System (ADS)

    Martins-Camelo, L.; Cooper, R. T.; Zimcik, D. G.

    1984-10-01

    Radarsat, the Canadian radar imaging satellite, will have a Synthetic Aperture Radar (SAR) antenna as one of its sensors. The requirements on the performance of the SAR antenna are such as to make it a complex system. Radarsat is required to have some unique characteristics which present some new challenges to the antenna designers. The requirements for switchability among 4 shaped beams and high power of transmit operation are major design constraints which strongly impact on the antenna complexity, weight, and cost. A trade-off study was carried out to select the preferred antenna type for the Radarsat SAR function. The antenna types analyzed were planar-array and array-fed reflector. A set of comparison criteria was developed. The antenna concepts studied were then compared against these criteria, and a final decision was reached.

  20. New approaches in interferometric SAR data processing

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Vesecky, John F.; Zebker, Howard A.

    1992-01-01

    It is well established that interferometric synthetic aperture radar (SAR) images can be inverted to perform surface elevation mapping. Among the factors critical to the mapping accuracy are registration of the interfering SAR images and phase unwrapping. A novel registration algorithm is presented that determines the registration parameters through optimization. A new figure of merit is proposed that evaluates the registration result during the optimization. The phase unwrapping problem is approached through a new method involving fringe line detection. The algorithms are tested with two SEASAT SAR images of terrain near Yellowstone National Park. These images were collected on Seasat orbits 1334 and 1420, which were very close together in space, i.e., less than 100 m. The resultant elevation map is compared with the USGS digital terrain elevation model.

  1. Stop outbreak of SARS with infrared cameras

    NASA Astrophysics Data System (ADS)

    Wu, Yigang M.

    2004-04-01

    SARS (Severe Acute Respiratory Syndrome, commonly known as Atypical Pneumonia in mainland China) caused 8422 people affected and resulting in 918 deaths worldwide in half year. This disease can be transmitted by respiratory droplets or by contact with a patient's respiratory secretions. This means it can be spread out very rapidly through the public transportations by the travelers with the syndrome. The challenge was to stop the SARS carriers traveling around by trains, airplanes, coaches and etc. It is impractical with traditional oral thermometers or spot infrared thermometers to screen the tens of travelers with elevated body temperature from thousands of normal travelers in hours. The thermal imager with temperature measurement function is a logical choice for this special application although there are some limitations and drawbacks. This paper discusses the real SARS applications of industrial infrared cameras in China from April to July 2003.

  2. INTA-SAR real-time processor

    SciTech Connect

    Gomez, B.; Leon, J.

    1996-10-01

    This paper presents the INTASAR real time processor development based on a DSP open architecture for processing Synthetic Aperture Radar (SAR) signal. The final designed architecture must consider three different constraints sources: (a) SAR signal characteristics : high dynamic range, and complex SAR imaging algorithms with high computational load (multiprocessing is convenient). (b) Flexible: in connectivity and algorithms to be programmed. (c) Suitable: for on-board and ground working. The real time constraints will be defined by the image acquisition time, within it the INTASAR system will process the rawdata image and finally presents the results in the system monitor. At ground, however, the real time processing is not a constraint, but the high quality image is. The first algorithm implemented in the system was a Range - Doppler one. With the multiprocessor architecture selected, a pipeline processing method is used. 17 refs., 4 figs., 2 tabs.

  3. SARS: lessons learned from other coronaviruses.

    PubMed

    Navas-Martin, Sonia; Weiss, Susan R

    2003-01-01

    The identification of a new coronavirus as the etiological agent of severe acute respiratory syndrome (SARS) has evoked much new interest in the molecular biology and pathogenesis of coronaviruses. This review summarizes present knowledge on coronavirus molecular biology and pathogenesis with particular emphasis on mouse hepatitis virus (MHV). MHV, a member of coronavirus group 2, is a natural pathogen of the mouse; MHV infection of the mouse is considered one of the best models for the study of demyelinating disease, such as multiple sclerosis, in humans. As a result of the SARS epidemic, coronaviruses can now be considered as emerging pathogens. Future research on SARS needs to be based on all the knowledge that coronavirologists have generated over more than 30 years of research. PMID:14733734

  4. Linear Approximation SAR Azimuth Processing Study

    NASA Technical Reports Server (NTRS)

    Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.

    1979-01-01

    A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.

  5. Calibration of a polarimetric imaging SAR

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Pierce, L. E.; Ulaby, F. T.

    1991-01-01

    Calibration of polarimetric imaging Synthetic Aperture Radars (SAR's) using point calibration targets is discussed. The four-port network calibration technique is used to describe the radar error model. The polarimetric ambiguity function of the SAR is then found using a single point target, namely a trihedral corner reflector. Based on this, an estimate for the backscattering coefficient of the terrain is found by a deconvolution process. A radar image taken by the JPL Airborne SAR (AIRSAR) is used for verification of the deconvolution calibration method. The calibrated responses of point targets in the image are compared both with theory and the POLCAL technique. Also, response of a distributed target are compared using the deconvolution and POLCAL techniques.

  6. Probing Mechanical Properties of Rock with InSAR

    NASA Astrophysics Data System (ADS)

    Jónsson, S.

    2012-04-01

    Interferometric Synthetic Aperture Radar (InSAR) observations from satellites have revolutionized our crustal deformation measurement capabilities with its high spatial resolution, global coverage, and low cost. The high spatial resolution (typically 5-20 m) allows us to map many small-scale surface deformation phenomena in great detail. These include surface faulting, fissuring, fault creep, and other strain localization phenomena. Another advantage of the small-scale deformation mapping is that it can provide information about mechanical properties of near-surface rocks. Several studies have already been published on using InSAR to probe material properties of rock. Strain localizations at fault zones have been observed in co-seismic deformation fields near to large earthquakes and interpreted as expressions of weak fault zone materials that are a factor of two more compliant than the surrounding unbroken rock [Fialko et al., 2002]. Peltzer et al. [1999] argued that asymmetries in coseismic deformation patterns observed by InSAR showed evidence for non-linear elasticity, i.e. that the elastic moduli of shallow crustal material are different for compression and extension, due to small-scale cracks in the medium. This interpretation was later disputed by Funning et al. [2007], who provided an alternative explanation for observed deformation pattern based on along-strike variations in fault geometry and slip. In addition, observations and modeling of poro-elastic rebound after earthquakes have provided information about the difference in undrained and drained Poisson's ratio values of the near-surface rocks [Peltzer et al., 1996; Jónsson et al., 2003]. More recently we have used InSAR observations to put bounds on the tensional bulk strength of surface rocks. A dyke intrusion that took place in western Saudi Arabia in 2009 caused many moderate-sized earthquakes and extensive surface faulting. InSAR data of the area show that large-scale (40 km x 40 km) east

  7. First Results from an Airborne Ka-Band SAR Using SweepSAR and Digital Beamforming

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory A.; Ghaemi, Hirad; Hensley, Scott C.

    2012-01-01

    SweepSAR is a wide-swath synthetic aperture radar technique that is being studied for application on the future Earth science radar missions. This paper describes the design of an airborne radar demonstration that simulates an 11-m L-band (1.2-1.3 GHz) reflector geometry at Ka-band (35.6 GHz) using a 40-cm reflector. The Ka-band SweepSAR Demonstration system was flown on the NASA DC-8 airborne laboratory and used to study engineering performance trades and array calibration for SweepSAR configurations. We present an instrument and experiment overview, instrument calibration and first results.

  8. Longitudinal Analysis of Severe Acute Respiratory Syndrome (SARS) Coronavirus-Specific Antibody in SARS Patients

    PubMed Central

    Chang, Shan-Chwen; Wang, Jann-Tay; Huang, Li-Min; Chen, Yee-Chun; Fang, Chi-Tai; Sheng, Wang-Huei; Wang, Jiun-Ling; Yu, Chong-Jen; Yang, Pan-Chyr

    2005-01-01

    The serum antibodies to severe acute respiratory syndrome (SARS) coronavirus of 18 SARS patients were checked at 1 month and every 3 months after disease onset. All of them except one, who missed blood sampling at 1 month, tested positive for the immunoglobulin G (IgG) antibody at 1 month. Fifteen out of 17 tested positive for the IgM antibody at 1 month. The serum IgM antibody of most patients became undetectable within 6 months after the onset of SARS. The IgG antibody of all 17 patients, whose serum was checked 1 year after disease onset, remained positive. PMID:16339072

  9. Advanced InSAR Processing in the Footsteps of SqueeSAR

    NASA Astrophysics Data System (ADS)

    Even, Markus

    2015-05-01

    Several years ago a promising approach for processing InSAR time series was introduced under the name SqueeSAR [1]. The successful application of this framework poses some delicate questions. This paper focuses on the problem that real data do rarely behave perfectly Gaussian. An augmentation of the stochastic model underlying the phase linking step is presented and the applicability under the assumption of complex elliptically symmetric distribution is discussed. Results from tests with two time series of TerraSAR-X HRS data are presented and preliminary conclusions drawn.

  10. SAR measurement in MRI: an improved method

    NASA Astrophysics Data System (ADS)

    Romano, Rocco; Acernese, Fausto; Indovina, Pietro Luigi; Barone, Fabrizio

    2009-03-01

    During an MR procedure, the patient absorbs a portion of the transmitted RF energy, which may result in tissue heating and other adverse effects, such as alterations in visual, auditory and neural functions. The Specific Absorption Rate (SAR), in W/kg, is the RF power absorbed per unit mass of tissue and is one of the most important parameters related with thermal effects and acts as a guideline for MRI safety. Strict limits to the SAR levels are imposed by patient safety international regulations (CEI - EN 60601 - 2 - 33) and SAR measurements are required in order to verify its respect. The recommended methods for mean SAR measurement are quite problematic and often require a maintenance man intervention and long stop machine. For example, in the CEI recommended pulse energy method, the presence of a maintenance man is required in order to correctly connect the required instrumentation; furthermore, the procedure is complex and requires remarkable processing and calculus. Simpler are the calorimetric methods, also if in this case long acquisition times are required in order to have significant temperature variations and accurate heat capacity knowledge (CEI - EN 60601 - 2- 33). The phase transition method is a new method to measure SAR in MRI which has the advantages to be very simple and to overcome all the typical calorimetric method problems. It does not require in gantry temperature measurements, any specific heat or heat capacity knowledge, but only mass and time measurement. Furthermore, in this method, it is possible to show that all deposited SAR power can be considered acquired and measured.

  11. Severe Acute Respiratory Syndrome (SARS) Prevention in Taiwan

    ERIC Educational Resources Information Center

    Liu, Hsueh-Erh

    2004-01-01

    Severe Acute Respiratory Syndrome (SARS) is a newly identified respiratory disease that threatened Taiwan between April 14 and July 5, 2003. Chang Gung University experienced various SARS-related episodes, such as the postponement of classes for 7 days, the reporting of probable SARS cases, and the isolation of students under Level A and B…

  12. A tool for bistatic sar geometry determinations

    NASA Astrophysics Data System (ADS)

    Hawkins, R.; Gibson, J.; Antonik, P.; Saper, R.; Seymour, M.; St Hilaire, M.; Livingstone, C.

    The geometry of wide angle bistatic SAR is somewhat more complex than that of conventional SAR because the transmitter and receiver are displaced considerably. Constant bistatic range contours projected onto the geoid form ellipse-like profiles with the transmitter and receiver located at the two foci. Constant Doppler lines intersect the range ellipses and allow under special circumstances a simple orthogonal basis for processing and analysis. This paper illustrates a simple GUI- based tool developed in a MatLab that uses satellite orbit parameters and RADARSAT-1 data to simulate the bistatic geometry and scattering for a tower- based receiver.

  13. SAR simulation of three-dimensional scenes

    NASA Astrophysics Data System (ADS)

    Franceschetti, Giorgio; Marino, Raimundo; Migliaccio, Maurizio; Riccio, Daniele

    1994-12-01

    In this paper we examine the SAR raw signal simulation of extended mountainous natural terrain. In order to cope with this goal we need to consider some problems relative to the evaluation of the backscattering pattern and of the efficient and correct inclusion of the SAR system unit response. In particular, and with regard to the first issue inclusion of the third dimension requires accommodation of its coarse description. Subjective and objective norms in order to judge the simulation results are presented and discussed, together with a number of examples.

  14. FOPEN ultrawideband SAR imaging by wavelet interpolation

    NASA Astrophysics Data System (ADS)

    Guo, Hanwei; Liang, Diannong; Wang, Yan; Huang, Xiaotao; Dong, Zhen

    2003-09-01

    Wave number Domain Imaging algorithm can deal with the problem of foliage-penetrating ultra-wide band synthesis aperture radar (FOPEN UWB SAR) imaging. Stolt interpolation is a key role in Imaging Algorithm and is unevenly interpolation problem. There is no fast computation algorithm on Stolt interpolation. In this paper, A novel 4-4 tap of integer wavelet filters is used as Stolt interpolation base function. A fast interpolation algorithm is put forwards to. There is only plus and shift operation in wavelet interpolation that is easy to realize by hardware. The real data are processed to prove the wavelet interpolation valid for FOPEN UWB SAR imaging.

  15. CCD architecture for spacecraft SAR image processing

    NASA Technical Reports Server (NTRS)

    Arens, W. E.

    1977-01-01

    A real-time synthetic aperture radar (SAR) image processing architecture amenable to future on-board spacecraft applications is currently under development. Using state-of-the-art charge-coupled device (CCD) technology, low cost and power are inherent features. Other characteristics include the ability to reprogram correlation reference functions, correct for range migration, and compensate for antenna beam pointing errors on the spacecraft in real time. The first spaceborne demonstration is scheduled to be flown as an experiment on a 1982 Shuttle imaging radar mission (SIR-B). This paper describes the architecture and implementation characteristics of this initial spaceborne CCD SAR image processor.

  16. Unsupervised Segmentation Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Dubois, Pascale; Van Zyl, Jakob; Kwok, Ronald; Chellappa, Rama

    1994-01-01

    Method of unsupervised segmentation of polarimetric synthetic-aperture-radar (SAR) image data into classes involves selection of classes on basis of multidimensional fuzzy clustering of logarithms of parameters of polarimetric covariance matrix. Data in each class represent parts of image wherein polarimetric SAR backscattering characteristics of terrain regarded as homogeneous. Desirable to have each class represent type of terrain, sea ice, or ocean surface distinguishable from other types via backscattering characteristics. Unsupervised classification does not require training areas, is nearly automated computerized process, and provides nonsubjective selection of image classes naturally well separated by radar.

  17. Estimating IMU heading error from SAR images.

    SciTech Connect

    Doerry, Armin Walter

    2009-03-01

    Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.

  18. The influence of speckle suppressing on primitive line segments extraction from sar imagery

    NASA Astrophysics Data System (ADS)

    Jia, Chengli

    of performance metrics. We consider in this paper three categories of performance metrics, namely: a) pixel-based metrics, which are composed of completeness, correctness, quality, and ROC curve; b) linebased metrics, which are composed of the percentage of the extracted lines and mean number of PLs per line, c) computational complexity. To correctly compute these quantities, we need first to define when a line may be considered as extracted, and then manually extract the start and end points of the center line of each line in the test image as a reference. We design the following procedure to compare the PL extraction performance on undespeckled SAR images with that on despeckled SAR images: a)Detect edge on the undespeckled SAR images and the SAR images despeckled by Frost filter respectively using RoA (Ratio Of Average) edge detector with the threshold varying from 0.0 (spaced by 0.05) to 1.0. b)Extract PLs by the three PL extraction methods on the edge detection results, and compute numerical scores of the performance metrics. c)Compare the numerical scores of the performance metrics of each PL extraction method on undespeckled SAR images with that on despeckled SAR images. By lots of experiments, we arrive at the instructive conclusion that speckle filtering is able to improve the performance of PL extraction and can improve the performance of linear objects extraction as a result. So speckle filtering is suggested for linear object extraction from SAR images.

  19. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade

    PubMed Central

    2013-01-01

    Background The SAR11 group of Alphaproteobacteria is highly abundant in the oceans. It contains a recently diverged freshwater clade, which offers the opportunity to compare adaptations to salt- and freshwaters in a monophyletic bacterial group. However, there are no cultivated members of the freshwater SAR11 group and no genomes have been sequenced yet. Results We isolated ten single SAR11 cells from three freshwater lakes and sequenced and assembled their genomes. A phylogeny based on 57 proteins indicates that the cells are organized into distinct microclusters. We show that the freshwater genomes have evolved primarily by the accumulation of nucleotide substitutions and that they have among the lowest ratio of recombination to mutation estimated for bacteria. In contrast, members of the marine SAR11 clade have one of the highest ratios. Additional metagenome reads from six lakes confirm low recombination frequencies for the genome overall and reveal lake-specific variations in microcluster abundances. We identify hypervariable regions with gene contents broadly similar to those in the hypervariable regions of the marine isolates, containing genes putatively coding for cell surface molecules. Conclusions We conclude that recombination rates differ dramatically in phylogenetic sister groups of the SAR11 clade adapted to freshwater and marine ecosystems. The results suggest that the transition from marine to freshwater systems has purged diversity and resulted in reduced opportunities for recombination with divergent members of the clade. The low recombination frequencies of the LD12 clade resemble the low genetic divergence of host-restricted pathogens that have recently shifted to a new host. PMID:24286338

  20. Irreversible adsorption of particles on heterogeneous surfaces.

    PubMed

    Adamczyk, Zbigniew; Jaszczółt, Katarzyna; Michna, Aneta; Siwek, Barbara; Szyk-Warszyńska, Lilianna; Zembala, Maria

    2005-12-30

    Methods of theoretical and experimental evaluation of irreversible adsorption of particles, e.g., colloids and globular proteins at heterogeneous surfaces were reviewed. The theoretical models were based on the generalized random sequential adsorption (RSA) approach. Within the scope of these models, localized adsorption of particles occurring as a result of short-ranged attractive interactions with discrete adsorption sites was analyzed. Monte-Carlo type simulations performed according to this model enabled one to determine the initial flux, adsorption kinetics, jamming coverage and the structure of the particle monolayer as a function of the site coverage and the particle/site size ratio, denoted by lambda. It was revealed that the initial flux increased significantly with the site coverage theta(s) and the lambda parameter. This behavior was quantitatively interpreted in terms of the scaled particle theory. It also was demonstrated that particle adsorption kinetics and the jamming coverage increased significantly, at fixed site coverage, when the lambda parameter increased. Practically, for alpha = lambda2theta(s) > 1 the jamming coverage at the heterogeneous surfaces attained the value pertinent to continuous surfaces. The results obtained prove unequivocally that spherically shaped sites were more efficient in binding particles in comparison with disk-shaped sites. It also was predicted that for particle size ratio lambda < 4 the site multiplicity effect plays a dominant role, affecting significantly the structure of particle monolayers and the jamming coverage. Experimental results validating main aspects of these theoretical predictions also have been reviewed. These results were derived by using monodisperse latex particles adsorbing on substrates produced by covering uniform surface by adsorption sites of a desired size, coverage and surface charge. Particle deposition occurred under diffusion-controlled transport conditions and their coverage was

  1. A sea ice concentration estimation algorithm utilizing radiometer and SAR data

    NASA Astrophysics Data System (ADS)

    Karvonen, J.

    2014-04-01

    We have studied the possibility of combining the high-resolution SAR segmentation and ice concentration estimated by radiometer brightness temperatures. Here we present an algorithm for mapping a radiometer-based concentration value for each SAR segment. The concentrations are estimated by a MLP neural network which has the AMSR-2 radiometer polarization ratios and gradient ratios of four radiometer channels as its inputs. The results have been compared numerically to the gridded FMI ice chart concentrations and high-resolution AMSR-2 ASI algorithm concentrations provided by University of Hamburg and also visually to the AMSR-2 bootstrap algorithm concentrations, which are given in much coarser resolution. The results when compared to FMI ice charts were very promising.

  2. Adsorption and regenerative oxidation of trichlorophenol with synthetic zeolite: Ozone dosage and its influence on adsorption performance.

    PubMed

    Zhang, Yongjun; Prigent, Bastien; Geißen, Sven-Uwe

    2016-07-01

    Regeneration of loaded adsorbents is a key step for the sustainability of an adsorption process. In this study, ozone was applied to regenerate a synthetic zeolite for the adsorption of trichlorophenol (TCP) as an organic model pollutant. Three initial concentrations of TCP in water phase were used in adsorption tests. After the equilibrium, zeolite loaded different amounts of TCP was dried and then regenerated with ozone gas. It was found that the adsorption capacity of zeolite was increased through three regeneration cycles. However, the adsorption kinetics was compromised after the regeneration with slightly declined 2nd order reaction constants. The ozone demand for the regeneration was highly dependent on the TCP mass loaded onto the zeolite. It was estimated that the mass ratio of ozone to TCP was 1.2 ± 0.3 g O3/g TCP. PMID:27043379

  3. Quantum-SAR extension of the spectral-SAR algorithm: application to polyphenolic anticancer bioactivity.

    PubMed

    Putz, Mihai V; Putz, Ana-Maria; Lazea, Marius; Ienciu, Luciana; Chiriac, Adrian

    2009-03-01

    Aiming to assess the role of individual molecular structures in the molecular mechanism of ligand-receptor interaction correlation analysis, the recent Spectral-SAR approach is employed to introduce the Quantum-SAR (QuaSAR) "wave" and "conversion factor" in terms of difference between inter-endpoint inter-molecular activities for a given set of compounds; this may account for inter-conversion (metabolization) of molecular (concentration) effects while indicating the structural (quantum) based influential/detrimental role on bio-/eco- effect in a causal manner rather than by simple inspection of measured values; the introduced QuaSAR method is then illustrated for a study of the activity of a series of flavonoids on breast cancer resistance protein. PMID:19399244

  4. The "Myth" of the Minimum SAR Antenna Area Constraint

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Johnson, W. T. K.; Huneycutt, B.; Jordan, R.; Hensley, S.; Siqueira, P.; Curlander, J.

    1998-01-01

    A design constraint traceable ot the early days of spaceborne Synthetic Aperture Radar (SAR) is known as the minimum antenna area constraint for SAR. In this paper, it is confirmed that this constraint strictly applies only to the case where both the best possible resolution and the widest possible swath are the design goals. SAR antennas with area smaller than the constraint allows are shown to be possible, have been used on spaceborne SAR missions in the past, and should permit further, lower-cost SAR mission in the future.

  5. Cryosat-2 SAR and SAR-In Altimetry for Coastal Sea Level

    NASA Astrophysics Data System (ADS)

    Baltazar Andersen, Ole; Knudsen, Per; Abulaitijiang, Adil; Stenseng, Lars

    2015-04-01

    Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using SAR-Interferometry as well as SAR altimetry. With this technological leap forward Cryosat-2 is now able to observe sea level in very small water bodies and also to provide coastal sea level very close to the shore. We perform an investigation into the retrieval of sea surface height around Denmark and Greenland. These regions have been chosen as the coastal regions around Denmark falls within the SAR mask and the coastal regions of Greenland falls in under the SAR-in mask employed on Cryosat-2. SAR-in was mainly used in coastal regions of Greenland because of its huge topographic changes as Cryosat-2 is designed to map the margins of the ice-sheet. The coastal region around Denmark is a test region of the EU sponsored project LOTUS in which With the increased spatial resolution of Cryosat-2 SAR we provide valuable sea level observations within the Straits around Denmark which are crucial to constrain the waterflow in and out of the Baltic Sea. The investigation of SAR-in data in Greenland adds an entire new dimension to coastal altimetry. An amazing result of the investigation is the ability of Cryosat-2 to detect and recover sea level even though the coast (sealevel) is up to 15 km away from the nadir location of the satellite. This ability of capture and use returns from outside the main (-3Db) loop in theory enables Cryosat-2 SAR-in to map sea level height of fjords more frequently than the 369 days repeat.

  6. Research on data fusion for monitoring ground subsidence using InSAR

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Zhang, Qin; Liu, Xianglei; Zhao, Chaoying

    2008-12-01

    Interferometric Synthetic Aperture Radar (InSAR) magtitude map, extracted from Differential- Interferometric Syntheric Aperture Radar (D-InSAR) technology, has a low-resolution, so it has a certain limitation to the explanation and analysis of subsiding area. In order to solve the problem of lacking enough spatial information of D-InSAR image, in this essay we take a data fusion between D-InSAR image and high resolution Remote Sensing (RS) image, obtaining an image containing subsiding information and high-resolution spatial information. This paper mainly focuses on the study of a Mag-Phase algorithm (MPH) algorithm and other fusion algorithms including Hue-Intensity-Saturation (HIS) transformation, Principal Component Analysis (PCA) transformation, Product fusion, Ratio fusion, Wavelet fusion for magtitude map and deformation map, and we take the deformation map and panchromatic (PAN) image of Enhanced Thematic Mapper + (ETM+) (magtitude map) of Xi'an area as an example to do data fusion according to the algorithms above. At last, a comprehensive evaluation and analysis for fusion images is made with subjective and objective evaluation criteria, and a conclusion that MPH fusion algorithm is better than others is also obtained.

  7. Analysis of Scattering Components from Fully Polarimetric SAR Images for Improving Accuracies of Urban Density Estimation

    NASA Astrophysics Data System (ADS)

    Susaki, J.

    2016-06-01

    In this paper, we analyze probability density functions (PDFs) of scatterings derived from fully polarimetric synthetic aperture radar (SAR) images for improving the accuracies of estimated urban density. We have reported a method for estimating urban density that uses an index Tv+c obtained by normalizing the sum of volume and helix scatterings Pv+c. Validation results showed that estimated urban densities have a high correlation with building-to-land ratios (Kajimoto and Susaki, 2013b; Susaki et al., 2014). While the method is found to be effective for estimating urban density, it is not clear why Tv+c is more effective than indices derived from other scatterings, such as surface or double-bounce scatterings, observed in urban areas. In this research, we focus on PDFs of scatterings derived from fully polarimetric SAR images in terms of scattering normalization. First, we introduce a theoretical PDF that assumes that image pixels have scatterers showing random backscattering. We then generate PDFs of scatterings derived from observations of concrete blocks with different orientation angles, and from a satellite-based fully polarimetric SAR image. The analysis of the PDFs and the derived statistics reveals that the curves of the PDFs of Pv+c are the most similar to the normal distribution among all the scatterings derived from fully polarimetric SAR images. It was found that Tv+c works most effectively because of its similarity to the normal distribution.

  8. Compressed Sensing for Millimeter-wave Ground Based SAR/ISAR Imaging

    NASA Astrophysics Data System (ADS)

    Yiğit, Enes

    2014-11-01

    Millimeter-wave (MMW) ground based (GB) synthetic aperture radar (SAR) and inverse SAR (ISAR) imaging are the powerful tools for the detection of foreign object debris (FOD) and concealed objects that requires wide bandwidths and highly frequent samplings in both slow-time and fast-time domains according to Shannon/Nyquist sampling theorem. However, thanks to the compressive sensing (CS) theory GB-SAR/ISAR data can be reconstructed by much fewer random samples than the Nyquist rate. In this paper, the impact of both random frequency sampling and random spatial domain data collection of a SAR/ISAR sensor on reconstruction quality of a scene of interest was studied. To investigate the feasibility of using proposed CS framework, different experiments for various FOD-like and concealed object-like targets were carried out at the Ka and W band frequencies of the MMW. The robustness and effectiveness of the recommend CS-based reconstruction configurations were verified through a comparison among each other by using integrated side lobe ratios (ISLR) of the images.

  9. Polymer adsorption on platinum: surface coverage determination using iodide-125. [Polyethylene glycol terephthalate

    SciTech Connect

    Ellis, T.M.; Van de Mark, M.R.; mi, FL

    1981-10-01

    Adsorption of iodide-125, a ..gamma.. emitter, was used as a quantitative methodology for polymer adsorption surface coverage analysis. Adsorption of I-125 on clean platinum produced surface elemental ratios of I:Pt of 1:4. The technique was applied to the adsorption of polyethylene glycol terephthalate from trifluoroacetic acid on platinum flags with a 2-cm/sup 2/ surface area. This polymer adsorption is approximated by a logarithmic relationship similar to the Temkin isotherm. Polymer coverage attained up to 99.6% of the surface.

  10. Possibility of using adsorption refrigeration unit in district heating network

    NASA Astrophysics Data System (ADS)

    Grzebielec, Andrzej; Rusowicz, Artur; Jaworski, Maciej; Laskowski, Rafał

    2015-09-01

    Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50 °C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25 °C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.

  11. Support Detection for SAR Tomographic Reconstructions from Compressive Measurements

    PubMed Central

    Budillon, Alessandra; Schirinzi, Gilda

    2015-01-01

    The problem of detecting and locating multiple scatterers in multibaseline Synthetic Aperture Radar (SAR) tomography, starting from compressive measurements and applying support detection techniques, is addressed. Different approaches based on the detection of the support set of the unknown sparse vector, that is, of the position of the nonzero elements in the unknown sparse vector, are analyzed. Support detection techniques have already proved to allow a reduction in the number of measurements required for obtaining a reliable solution. In this paper, a support detection method, based on a Generalized Likelihood Ratio Test (Sup-GLRT), is proposed and compared with the SequOMP method, in terms of probability of detection achievable with a given probability of false alarm and for different numbers of measurements. PMID:26495434

  12. Support Detection for SAR Tomographic Reconstructions from Compressive Measurements.

    PubMed

    Budillon, Alessandra; Schirinzi, Gilda

    2015-01-01

    The problem of detecting and locating multiple scatterers in multibaseline Synthetic Aperture Radar (SAR) tomography, starting from compressive measurements and applying support detection techniques, is addressed. Different approaches based on the detection of the support set of the unknown sparse vector, that is, of the position of the nonzero elements in the unknown sparse vector, are analyzed. Support detection techniques have already proved to allow a reduction in the number of measurements required for obtaining a reliable solution. In this paper, a support detection method, based on a Generalized Likelihood Ratio Test (Sup-GLRT), is proposed and compared with the SequOMP method, in terms of probability of detection achievable with a given probability of false alarm and for different numbers of measurements. PMID:26495434

  13. SAR Images Generated Using the Least Mean Squares (LMS) Algorithm

    NASA Astrophysics Data System (ADS)

    Minardi, John E., II; Minardi, Michael J.

    2007-04-01

    It is believed that the LMS algorithm can be used to form a two dimensional image from radar return data. A version of the LMS algorithm was written to form SAR images from radar phase history data. Images were formed from fifty sets of twenty synthetically generated random points. The signal-to-noise ratio (SNR) was measured for each image and showed an average of 30 dB. A more complex synthetic scene was also formed from a black and white JPEG image. This image showed excellent qualitative results. Actual radar range data was collected from a set of vertical pins and from a model car painted with conductive paint. The data was from a full 360-degree aperture. The resulting images were of high quality; the vertical pins acted as pure point sources and indicated that the image had a resolution of 4.5 mm, which agrees with theory.

  14. Epidemic Models for SARS and Measles

    ERIC Educational Resources Information Center

    Rozema, Edward

    2007-01-01

    Recent events have led to an increased interest in emerging infectious diseases. This article applies various deterministic models to the SARS epidemic of 2003 and a measles outbreak in the Netherlands in 1999-2000. We take a historical approach beginning with the well-known logistic curve and a lesser-known extension popularized by Pearl and Reed…

  15. Acousto-Optical/Electronic Processor For SAR

    NASA Technical Reports Server (NTRS)

    Bicknell, T. J.; Farr, W. H.

    1992-01-01

    Lightweight, compact, low-power apparatus processes synthetic-aperture-radar (SAR) returns in real time, providing imagery aboard moving aircraft or spacecraft platform. Processor includes optical and electronic subsystems that, together, resolve range and azimuth coordinates of radar targets by combination of spatial and temporal integrations.

  16. SARS: An Emerging Global Microbial Threat.

    PubMed Central

    Hughes, James M.

    2004-01-01

    In March 2003, the Institute of Medicine published an update to its 1992 landmark report on emerging infections. The new report, Microbial Threats to Health: Emergence, Detection, and Response, describes the current spectrum of global microbial threats, factors affecting their emergence or resurgence, and measures that should be undertaken to effectively address them. Coincident with this publication came increasing reports of severe atypical pneumonia of unknown etiology among persons in southeast Asia. This new disease, designated severe acute respiratory syndrome (SARS), spread globally in a matter of weeks, infecting primarily close contacts of index patients (e.g., household members and healthcare workers caring for index patients) but also resulting in community transmission in some areas. An unprecedented worldwide collaborative effort was undertaken to determine the cause of the illness and implement prevention measures. A previously unrecognized coronavirus was identified as the causative agent, and health officials throughout the world struggled to implement measures to contain its spread, including isolation of suspect SARS cases and quarantine of exposed persons. The emergence of SARS is a timely reminder of the need to expect the unexpected and to ensure strong national and global public health partnerships when preparing for and responding to infectious diseases. Effectively addressing the threat of SARS will require enhanced global infectious disease surveillance, the development of rapid diagnostics, new therapies, and vaccines, implementation of aggressive evidence-based infection control strategies, and effective communication. Images Fig. 2 Fig. 3 PMID:17060979

  17. Ambiguity noise analysis of a SAR system

    NASA Astrophysics Data System (ADS)

    Tian, Haishan; Chang, Wenge; Li, Xiangyang

    2015-12-01

    The presence of range and azimuth (or Doppler) ambiguities in synthetic aperture radars (SARs) is well known. The ambiguity noise is related to the antenna pattern and the value of pulse repetition frequency (PRF). Because a new frequency modulated continuous wave (FMCW) SAR has the characters of low cost and small size, and the capacity of real-time signal processing, the antenna will likely vibrate or deform due to a lack of the stabilized platform. And the value of PRF cannot be much high because of the high computation burden for the real-time processing. The aim of this study is to access and improve the performance of a new FMCW SAR system based on the ambiguity noise. First, the quantitative analysis of the system's ambiguity noise level is performed; an antenna with low sidelobes is designed. The conclusion is that the range ambiguity noise is small; the azimuth ambiguity noise is somewhat increased, however, it is sufficiently small to have marginal influence on the image quality. Finally, the ambiguity noise level is measured using the imaging data from a Ku-band FMCW SAR. The results of this study show that the measured noise level coincides with the theoretical noise level.

  18. Discovery and SAR of hydantoin TACE inhibitors

    SciTech Connect

    Yu, Wensheng; Guo, Zhuyan; Orth, Peter; Madison, Vincent; Chen, Lei; Dai, Chaoyang; Feltz, Robert J.; Girijavallabhan, Vinay M.; Kim, Seong Heon; Kozlowski, Joseph A.; Lavey, Brian J.; Li, Dansu; Lundell, Daniel; Niu, Xiaoda; Piwinski, John J.; Popovici-Muller, Janeta; Rizvi, Razia; Rosner, Kristin E.; Shankar, Bandarpalle B.; Shih, Neng-Yang; Siddiqui, M.A.; Sun, J.; Tong, L.; Umland, S.; Wong, M.K.; Yang, D.Y.; Zhou, G.

    2010-09-03

    We disclose inhibitors of TNF-{alpha} converting enzyme (TACE) designed around a hydantoin zinc binding moiety. Crystal structures of inhibitors bound to TACE revealed monodentate coordination of the hydantoin to the zinc. SAR, X-ray, and modeling designs are described. To our knowledge, these are the first reported X-ray structures of TACE with a hydantoin zinc ligand.

  19. The Seamless SAR Archive (SSARA) Project and Other SAR Activities at UNAVCO

    NASA Astrophysics Data System (ADS)

    Baker, S.; Crosby, C. J.; Meertens, C. M.; Fielding, E. J.; Bryson, G.; Buechler, B.; Nicoll, J.; Baru, C.

    2014-12-01

    The seamless synthetic aperture radar archive (SSARA) implements a seamless distributed access system for SAR data and derived data products (i.e. interferograms). SSARA provides a unified application programming interface (API) for SAR data search and results at the Alaska Satellite Facility and UNAVCO (WInSAR and EarthScope data archives) through the use of simple web services. A federated query service was developed using the unified APIs, providing users a single search interface for both archives. Interest from the international community has prompted an effort to incorporate ESA's Virtual Archive 4 Geohazard Supersites and Natural Laboratories (GSNL) collections and other archives into the federated query service. SSARA also provides Digital Elevation Model access for topographic correction via a simple web service through OpenTopography and tropospheric correction products through JPL's OSCAR service. Additionally, UNAVCO provides data storage capabilities for WInSAR PIs with approved TerraSAR-X and ALOS-2 proposals which allows easier distribution to US collaborators on associated proposals and facilitates data access through the SSARA web services. Further work is underway to incorporate federated data discovery for GSNL across SAR, GPS, and seismic datasets provided by web services from SSARA, GSAC, and COOPEUS.

  20. A 1 V 186-μW 50-MS/s 10-bit subrange SAR ADC in 130-nm CMOS process

    NASA Astrophysics Data System (ADS)

    Mingyuan, Yu; Ting, Li; Jiaqi, Yang; Shuangshuang, Zhang; Fujiang, Lin; Lin, He

    2016-07-01

    This paper presents a 10-bit 50-MS/s subrange successive-approximation register (SAR) analog-to-digital converter (ADC) composed of a 4-bit SAR coarse ADC and a 6-bit SAR fine ADC. In the coarse ADC, multi-comparator SAR architecture is used to reduce the digital logic propagation delay, and a traditional asynchronous SAR ADC with monotonic switching method is used as the fine ADC. With that combination, power dissipation also can be much reduced. Meanwhile, a modified SAR control logic is adopted in the fine ADC to speed up the conversion and other techniques, such as splitting capacitors array, are borrowed to reduce the power consumption. Fabricated with 1P8M 130-nm CMOS technology, the proposed SAR ADC achieves 51.6-dB signal to noise and distortion ratio (SNDR) and consumes 186 μW at 50 MS/s with a 1-V supply, resulting in a figure of merit (FOM) of 12 fJ/conversion-step. The core area is only 0.045 mm2. Project supported by the National Natural Science Foundation of China (Nos. 61204033, 61331015), the Fundamental Research Funds for the Central Universities (No. WK2100230015), and the Funds of Science and Technology on Analog Integrated Circuit Laboratory (No. 9140C090111150C09041).

  1. Modeling and a correlation algorithm for spaceborne SAR signals

    NASA Technical Reports Server (NTRS)

    Wu, C.; Liu, K. Y.; Jin, M.

    1982-01-01

    A mathematical model of a spaceborne synthetic aperture radar (SAR) response is presented. Thhe associated SAR system performance, in terms of the resolution capability, is also discussed. The analysis of spaceborne SAR target response indicates that the SAR correlation problem is a two-dimensional one with a linear shift-variant response function. A new digital processing algorithm is proposed here in order to realize an economical digital SAR correlation system. The proposed algorithm treats the two-dimensional correlation by a combination of frequency domain fast correlation in the azimuth dimension and a time-domain convolver type of operation in the range dimension. Finally, digitally correlated SEASAT satellite SAR imagery is used in an exemplary sense to validate the SAR response model and the new digital processing technique developed.

  2. Retrieval of the thickness of undeformed sea ice from C-band compact polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Dierking, W.; Zhang, J.; Meng, J. M.; Lang, H. T.

    2015-10-01

    In this paper we introduce a parameter for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric SAR images. The parameter is denoted as "CP-Ratio". In model simulations we investigated the sensitivity of CP-Ratio to the dielectric constant, thickness, surface roughness, and incidence angle. From the results of the simulations we deduced optimal conditions for the thickness retrieval. On the basis of C-band CTLR SAR data, which were generated from Radarsat-2 quad-polarization images acquired jointly with helicopter-borne sea ice thickness measurements in the region of the Sea of Labrador, we tested empirical equations for thickness retrieval. An exponential fit between CP-Ratio and ice thickness provides the most reliable results. Based on a validation using other compact polarimetric SAR images from the same region we found a root mean square (rms) error of 8 cm and a maximum correlation coefficient of 0.92 for the retrieval procedure when applying it on level ice of 0.9 m mean thickness.

  3. BioSAR Airborne Biomass Sensing System

    SciTech Connect

    Graham, R.L.; Johnson, P.

    2007-05-24

    This CRADA was developed to enable ORNL to assist American Electronics, Inc. test a new technology--BioSAR. BioSAR is a an airborne, low frequency (80-120 MHz {approx} FM radio frequencies) synthetic aperture radar (SAR) technology which was designed and built for NASA by ZAI-Amelex under Patrick Johnson's direction. At these frequencies, leaves and small branches are nearly transparent and the majority of the energy reflected from the forest and returned to the radar is from the tree trunks. By measuring the magnitude of the back scatter, the volume of the tree trunk and therefore the biomass of the trunks can be inferred. The instrument was successfully tested on tropical rain forests in Panama. Patrick Johnson, with American Electronics, Inc received a Phase II SBIR grant from DOE Office of Climate Change to further test and refine the instrument. Mr Johnson sought ORNL expertise in measuring forest biomass in order for him to further validate his instrument. ORNL provided ground truth measurements of forest biomass at three locations--the Oak Ridge Reservation, Weyerhaeuser Co. commercial pine plantations in North Carolina, and American Energy and Power (AEP) Co. hardwood forests in southern Ohio, and facilitated flights over these forests. After Mr. Johnson processed the signal data from BioSAR instrument, the processed data were given to ORNL and we attempted to derive empirical relationships between the radar signals and the ground truth forest biomass measurements using standard statistical techniques. We were unsuccessful in deriving such relationships. Shortly before the CRADA ended, Mr Johnson discovered that FM signal from local radio station broadcasts had interfered with the back scatter measurements such that the bulk of the signal received by the BioSAR instrument was not backscatter from the radar but rather was local radio station signals.

  4. New Adsorption Methods.

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    1984-01-01

    Discusses a simple method for following the movement of a solute in an adsorption or ion exchange system. This movement is used to study a variety of operational methods, including continuous flow and pulsed flow counter-current operations and simulated counter-current systems. Effect of changing thermodynamic variables is also considered. (JM)

  5. The adsorption of HCl on volcanic ash

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Xochilt; Schiavi, Federica; Keppler, Hans

    2016-03-01

    data provided here, the gas compositions in equilibrium with the ash surfaces can be calculated. In particular, for dacitic composition, the molar ratio of S/Cl adsorbed to the ash surface is related to the molar S/Cl ratio in the gas phase according to the equation ln ⁡(S / Cl) adsorbed = 2855T-1 + 0.28 ln ⁡(S / Cl) gas - 11.14. Our data also show that adsorption on ash will significantly reduce the fraction of HCl reaching the stratosphere, only if the initial HCl content in the volcanic gas is low (<1 mol%). For higher initial HCl concentrations, adsorption on ash has only a minor effect. While HCl scavenging by hydrometeors may remove a considerable fraction of HCl from the eruption column, recent models suggest that this process is much less efficient than previously thought. Our experimental data therefore support the idea that the HCl loading from major explosive eruptions may indeed cause severe depletions of stratospheric ozone.

  6. Thermodynamic analysis of adsorption refrigeration cycles

    SciTech Connect

    Saha, B.B.; Akisawa, Atsushi; Kashiwagi, Takao

    1997-12-31

    High- and mid-temperature waste heat can be recovered by using existing heat pump technologies. However, heat utilization near environmental temperatures still faces technical hurdles. Silica gel-water adsorption cycles have a distinct advantage over other systems in their ability to be driven by near-ambient temperature heat. Waste heat (above 60 C) can be exploited by using conventional silica gel-water adsorption chiller. The advanced silica gel-water adsorption chiller can operate effectively by utilizing low-grade waste heat ({approximately}50 C) as the driving source with a cooling source of 30 C. In this paper, the effect of operating temperatures on cycle performance is discussed from the thermodynamic viewpoint. The temperature effectiveness and the entropy generation number on cycle time are analyzed. For a comparatively short cycle time, adsorber/desorber heat exchanger temperature effectiveness reaches up to 92% after only 200 sec. The entropy generation number N{sub s} is defined by the ratio between irreversibility generated during a cycle and availability of the heat transfer fluid. The result showed that for the advanced adsorption cycle the entropy generation number N{sub s} is smaller for hot water temperature between 45 to 55 C with a cooling source of 30 C, while for the conventional cycle N{sub s} is smaller for hot water temperature between 65 to 75 C /with the same cooling source temperature.

  7. Adsorption of aluminium by stream particulates.

    PubMed

    Tipping, E; Ohnstad, M; Woof, C

    1989-01-01

    An experimental study was made of the adsorption of aluminium by fine particulates from Whitray Beck, a hill stream in NW England. Adsorption increased with Al(3) activity, pH and concentration of particles, and could be quantitatively described by the empirical equation: [Formula: see text] [particles] where square brackets indicate concentrations, curly brackets, activities, and alpha, beta and gamma are constants with values of 5.14x10(-10) (mol litre(-1))(2.015) (g particles litre(-1))(-1), 0.457, and 1.472, respectively. For the experimental data, the equation gave a correlation ratio of 0.99. The equation accounts reasonably well for the adsorption of Al by particulates from seven other streams. In applying the equation, it must be borne in mind that the desorption kinetics of Al depend on pH, and rapid reversibility (<15min) can only be assumed for pHadsorption equation, and taking competition by dissolved humic substances into account, suggest that adsorbed Al may commonly account for a significant proportion (>or=10%) of total monomeric Al. PMID:15092454

  8. Characterizing and estimating noise in InSAR and InSAR time series with MODIS

    USGS Publications Warehouse

    Barnhart, William D.; Lohman, Rowena B.

    2013-01-01

    InSAR time series analysis is increasingly used to image subcentimeter displacement rates of the ground surface. The precision of InSAR observations is often affected by several noise sources, including spatially correlated noise from the turbulent atmosphere. Under ideal scenarios, InSAR time series techniques can substantially mitigate these effects; however, in practice the temporal distribution of InSAR acquisitions over much of the world exhibit seasonal biases, long temporal gaps, and insufficient acquisitions to confidently obtain the precisions desired for tectonic research. Here, we introduce a technique for constraining the magnitude of errors expected from atmospheric phase delays on the ground displacement rates inferred from an InSAR time series using independent observations of precipitable water vapor from MODIS. We implement a Monte Carlo error estimation technique based on multiple (100+) MODIS-based time series that sample date ranges close to the acquisitions times of the available SAR imagery. This stochastic approach allows evaluation of the significance of signals present in the final time series product, in particular their correlation with topography and seasonality. We find that topographically correlated noise in individual interferograms is not spatially stationary, even over short-spatial scales (<10 km). Overall, MODIS-inferred displacements and velocities exhibit errors of similar magnitude to the variability within an InSAR time series. We examine the MODIS-based confidence bounds in regions with a range of inferred displacement rates, and find we are capable of resolving velocities as low as 1.5 mm/yr with uncertainties increasing to ∼6 mm/yr in regions with higher topographic relief.

  9. Synergistic measurements of ocean winds and waves from SAR

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Li, Xiaofeng; Perrie, William; He, Yijun

    2015-09-01

    In this study we present a synergistic method to retrieve both ocean surface wave and wind fields from spaceborne quad-polarization (QP) synthetic aperture radar (SAR) imaging mode data. This algorithm integrates QP-SAR wind vector retrieval model and the wave retrieval model, with consideration to the nonlinear mapping relationship between ocean wave spectra and SAR image spectra, in order to synergistically retrieve wind fields and wave directional spectra. The method does not require a priori information on the sea state. It combines the observed VV-polarized SAR image spectra with the retrieved wind vectors from the VH-polarized SAR image, to estimate the wind-generated wave directional spectra. The differences between the observed SAR spectra and optimal SAR image spectra associated with the wind waves are interpreted as the contributions from the swell waves. The retrieved ocean wave spectra are used to estimate the integrated spectral wave parameters such as significant wave heights, wavelengths, wave directions and wave periods. The wind and wave parameters retrieved by QP-SAR are validated against those measured by the National Data Buoy Center (NDBC) directional wave buoys under different sea states. The validation results show that the QP-SAR SAR has potential to simultaneously measure the ocean surface waves and wind fields from space.

  10. Simulation of SAR backscatter for forest vegetation

    NASA Astrophysics Data System (ADS)

    Prajapati, Richa; Kumar, Shashi; Agrawal, Shefali

    2016-05-01

    Synthetic Aperture Radar (SAR) is one of the most recent imaging technology to study the forest parameters. The invincible characteristics of microwave acquisition in cloudy regions and night imaging makes it a powerful tool to study dense forest regions. A coherent combination of radar polarimetry and interferometry (PolInSAR) enhances the accuracy of retrieved biophysical parameters. This paper attempts to address the issue of estimation of forest structural information caused due to instability of radar platforms through simulation of SAR image. The Terai Central Forest region situated at Haldwani area in Uttarakhand state of India was chosen as the study area. The system characteristics of PolInSAR dataset of Radarsat-2 SAR sensor was used for simulation process. Geometric and system specifications like platform altitude, center frequency, mean incidence angle, azimuth and range resolution were taken from metadata. From the field data it was observed that average tree height and forest stand density were 25 m and 300 stems/ha respectively. The obtained simulated results were compared with the sensor acquired master and slave intensity images. It was analyzed that for co-polarized horizontal component (HH), the mean values of simulated and real master image had a difference of 0.3645 with standard deviation of 0.63. Cross-polarized (HV) channel showed better results with mean difference of 0.06 and standard deviation of 0.1 while co-polarized vertical component (VV) did not show similar values. In case of HV polarization, mean variation between simulated and real slave images was found to be the least. Since cross-polarized channel is more sensitive to vegetation feature therefore better simulated results were obtained for this channel. Further the simulated images were processed using PolInSAR inversion modelling approach using three different techniques DEM differencing, Coherence Amplitude Inversion and Random Volume over Ground Inversion. DEM differencing

  11. Federated query services provided by the Seamless SAR Archive project

    NASA Astrophysics Data System (ADS)

    Baker, S.; Bryson, G.; Buechler, B.; Meertens, C. M.; Crosby, C. J.; Fielding, E. J.; Nicoll, J.; Youn, C.; Baru, C.

    2013-12-01

    The NASA Advancing Collaborative Connections for Earth System Science (ACCESS) seamless synthetic aperture radar (SAR) archive (SSARA) project is a 2-year collaboration between UNAVCO, the Alaska Satellite Facility (ASF), the Jet Propulsion Laboratory (JPL), and OpenTopography at the San Diego Supercomputer Center (SDSC) to design and implement a seamless distributed access system for SAR data and derived data products (i.e. interferograms). A major milestone for the first year of the SSARA project was a unified application programming interface (API) for SAR data search and results at ASF and UNAVCO (WInSAR and EarthScope data archives) through the use of simple web services. A federated query service was developed using the unified APIs, providing users a single search interface for both archives (http://www.unavco.org/ws/brokered/ssara/sar/search). A command line client that utilizes this new service is provided as an open source utility for the community on GitHub (https://github.com/bakerunavco/SSARA). Further API development and enhancements added more InSAR specific keywords and quality control parameters (Doppler centroid, faraday rotation, InSAR stack size, and perpendicular baselines). To facilitate InSAR processing, the federated query service incorporated URLs for DEM (from OpenTopography) and tropospheric corrections (from the JPL OSCAR service) in addition to the URLs for SAR data. This federated query service will provide relevant QC metadata for selecting pairs of SAR data for InSAR processing and all the URLs necessary for interferogram generation. Interest from the international community has prompted an effort to incorporate other SAR data archives (the ESA Virtual Archive 4 and the DLR TerraSAR-X_SSC Geohazard Supersites and Natural Laboratories collections) into the federated query service which provide data for researchers outside the US and North America.

  12. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  13. Investigating long-term subsidence at Medicine Lake Volcano, CA, using multitemporal InSAR

    NASA Astrophysics Data System (ADS)

    Parker, Amy L.; Biggs, Juliet; Lu, Zhong

    2014-11-01

    Long-term volcanic subsidence provides insight into intereruptive processes, which comprise the longest portion of the eruptive cycle. Ground-based geodetic surveys of Medicine Lake Volcano (MLV), northern CA, document subsidence at rates of ˜-10 mm yr-1 between 1954 and 2004. The long observation period plus the duration and stable magnitude of this signal presents an ideal opportunity to study long-term volcanic deformation, but this first requires accurate knowledge of the geometry and magnitude of the source. Best-fitting analytical source models to past levelling and GPS data sets show conflicting source parameters-primarily the model depth. To overcome this, we combine multiple tracks of InSAR data, each with a different look angle, to improve upon the spatial resolution of ground-based measurements. We compare the results from InSAR to those of past geodetic studies, extending the geodetic record to 2011 and demonstrating that subsidence at MLV continues at ˜-10 mm yr-1. Using geophysical inversions, we obtain the best-fitting analytical source model-a sill located at 9-10 km depth beneath the caldera. This model geometry is similar to those of past studies, providing a good fit to the high spatial density of InSAR measurements, while accounting for the high ratio of vertical to horizontal deformation derived from InSAR and recorded by existing levelling and GPS data sets. We discuss possible causes of subsidence and show that this model supports the hypothesis that deformation at MLV is driven by tectonic extension, gravitational loading, plus a component of volume loss at depth, most likely due to cooling and crystallization within the intrusive complex that underlies the edifice. Past InSAR surveys at MLV, and throughout the Cascades, are of variable success due to dense vegetation, snow cover and atmospheric artefacts. In this study, we demonstrate how InSAR may be successfully used in this setting by applying a suite of multitemporal analysis methods

  14. Chandrayaan-2 dual-frequency SAR: Further investigation into lunar water and regolith

    NASA Astrophysics Data System (ADS)

    Putrevu, Deepak; Das, Anup; Vachhani, J. G.; Trivedi, Sanjay; Misra, Tapan

    2016-01-01

    The Space Applications Centre (SAC), one of the major centers of the Indian Space Research Organization (ISRO), is developing a high resolution, dual-frequency Synthetic Aperture Radar as a science payload on Chandrayaan-2, ISRO's second moon mission. With this instrument, ISRO aims to further the ongoing studies of the data from S-band MiniSAR onboard Chandrayaan-1 (India) and the MiniRF of Lunar Reconnaissance Orbiter (USA). The SAR instrument has been configured to operate with both L- and S-bands, sharing a common antenna. The S-band SAR will provide continuity to the MiniSAR data, whereas L-band is expected to provide deeper penetration of the lunar regolith. The system will have a selectable slant-range resolution from 2 m to 75 m, along with standalone (L or S) and simultaneous (L and S) modes of imaging. Various features of the instrument like hybrid and full-polarimetry, a wide range of imaging incidence angles (∼10° to ∼35°) and the high spatial resolution will greatly enhance our understanding of surface properties especially in the polar regions of the Moon. The system will also help in resolving some of the ambiguities in interpreting high values of Circular Polarization Ratio (CPR) observed in MiniSAR data. The added information from full-polarimetric data will allow greater confidence in the results derived particularly in detecting the presence (and estimating the quantity) of water-ice in the polar craters. Being a planetary mission, the L&S-band SAR for Chandrayaan-2 faced stringent limits on mass, power and data rate (15 kg, 100 W and 160 Mbps respectively), irrespective of any of the planned modes of operation. This necessitated large-scale miniaturization, extensive use of on-board processing, and devices and techniques to conserve power. This paper discusses the scientific objectives which drive the requirement of a lunar SAR mission and presents the configuration of the instrument, along with a description of a number of features of the

  15. The flight test of Pi-SAR(L) for the repeat-pass interferometric SAR

    NASA Astrophysics Data System (ADS)

    Nohmi, Hitoshi; Shimada, Masanobu; Miyawaki, Masanori

    2006-09-01

    This paper describes the experiment of the repeat pass interferometric SAR using Pi-SAR(L). The air-borne repeat-pass interferometric SAR is expected as an effective method to detect landslide or predict a volcano eruption. To obtain a high-quality interferometric image, it is necessary to make two flights on the same flight pass. In addition, since the antenna of the Pi-SAR(L) is secured to the aircraft, it is necessary to fly at the same drift angle to keep the observation direction same. We built a flight control system using an auto pilot which has been installed in the airplane. This navigation system measures position and altitude precisely with using a differential GPS, and the PC Navigator outputs a difference from the desired course to the auto pilot. Since the air density is thinner and the speed is higher than the landing situation, the gain of the control system is required to be adjusted during the repeat pass flight. The observation direction could be controlled to some extent by adjusting a drift angle with using a flight speed control. The repeat-pass flight was conducted in Japan for three days in late November. The flight was stable and the deviation was within a few meters for both horizontal and vertical direction even in the gusty condition. The SAR data were processed in time domain based on range Doppler algorism to make the complete motion compensation. Thus, the interferometric image processed after precise phase compensation is shown.

  16. The influence of the adsorption of metoclopramide on the surface ionization of fumed silica.

    PubMed

    Buyuktimkin, Tuba; Wurster, Dale Eric

    2015-01-15

    The effect of adsorbed metoclopramide on the surface ionization of fumed silica was studied using potentiometric titration. Adsorption isotherms of metoclopramide to unionized and negatively-charged silica surfaces were generated and compared to the titration data. The adsorption of metoclopramide caused the silica surface charge to become more negative with increasing pH that was independent of ionic strength which suggested that specific adsorbate-surface interactions were occurring. Adsorption studies showed that metoclopramide adsorbs to the unionized silica surface. Ionization caused drug adsorption to increase which was consistent with at least two distinct surface adsorption sites. The ratio of the additional amount of metoclopramide adsorbed to the surface ionized group density determined from the titration curves was approximately unity which showed conclusively that the negatively-charged silanols constitute one of the surface adsorption sites. Potentiometric titration has been shown to be a useful technique for determining the number and types of adsorption sites on the silica surface. PMID:25448578

  17. Fundamentals of high pressure adsorption

    SciTech Connect

    Zhou, Y.P.; Zhou, L.

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  18. Animal models for SARS and MERS coronaviruses

    PubMed Central

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-01-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV. PMID:26184451

  19. Synergistic combination technique for SAR image classification

    NASA Astrophysics Data System (ADS)

    Burman, Bhaskar

    1998-07-01

    Classification of earth terrain from satellite radar imagery represents an important and continually developing application of microwave remote sensing. The basic objective of this paper is to derive more information, through combining, than is present in any individual element of input data. Multispectral data has been used to provide complementary information so as to utilize a single SAR data for the purpose of land-cover classification. More recently neural networks have been applied to a number of image classification problems and have shown considerable success in exceeding the performance of conventional algorithms. In this work, a comparison study has been carried out between a conventional Maximum Likelihood (ML) classifier and a neural network (back-error-propagation) classifier in terms of classification accuracy. The results reveal that the combination of SAR and MSS data of the same scene produced better classification accuracy than either alone and the neural network classification has an edge over the conventional classification scheme.

  20. SARS: Safeguards Accounting and Reporting Software

    NASA Astrophysics Data System (ADS)

    Mohammedi, B.; Saadi, S.; Ait-Mohamed, S.

    In order to satisfy the requirements of the SSAC (State System for Accounting and Control of nuclear materials), for recording and reporting objectives; this computer program comes to bridge the gape between nuclear facilities operators and national inspection verifying records and delivering reports. The SARS maintains and generates at-facility safeguards accounting records and generates International Atomic Energy Agency (IAEA) safeguards reports based on accounting data input by the user at any nuclear facility. A database structure is built and BORLAND DELPHI programming language has been used. The software is designed to be user-friendly, to make extensive and flexible management of menus and graphs. SARS functions include basic physical inventory tacking, transaction histories and reporting. Access controls are made by different passwords.

  1. SAR observations in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Sheres, David

    1992-01-01

    The Gulf of Mexico (GOM) exhibits a wealth of energetic ocean features; they include the Loop Current with velocities of about 2 m/s and strong shear fronts, mesoscale eddies, double vortices, internal waves, and the outflow of the 'Mighty Mississippi' river. These energetic features can have a strong impact on the economies of the states surrounding the Gulf. Large fisheries, oil and gas production as well as pollution transport are relevant issues. These circulation features in the Gulf are invisible to conventional IR and visible satellite imagery during the Summer months due to cloud cover and uniform surface temperatures. Synthetic Aperture Radar (SAR) imagery of the Gulf does penetrate the cloud cover and shows a rich assembly of features there year-round. Below are preliminary results from GOM SAR imagery taken by SEASAT in 1978 and by the AIRSAR program in 1991.

  2. Landslide Mapping Using SqueeSAR Data

    NASA Astrophysics Data System (ADS)

    Ferretti, A.; Bellotti, F.; Alberti, S.; Allievi, J.; Del Conte, S.; Tamburini, A.; Broccolato, M.; Ratto, S.; Alberto, W.

    2011-12-01

    SqueeSAR represents the most recent advancement of PSInSAR algorithm. By exploiting signal radar returns both from Permanent and Distributed Scatterers (PS and DS), it is able to detect millimetre displacements over long periods and large areas and to obtain a significant increase in the spatial density of ground measurement points. SqueeSAR analysis is complementary to conventional geological and geomorphological studies in landslide mapping over wide areas, traditionally based on aerial-photo interpretation and field surveys. However, whenever surface displacement rates are low (mm to cm per year), assessing landslide activity is difficult or even impossible without a long-term monitoring tool, as in the case of Deep-seated Gravitational Slope Deformations (DGSD), typically characterized by large areal extent and subtle surface displacement. The availability of surface displacement time series per each measurement point allows one to have both a synoptic overview, at regional scale, as well as an in depth characterization of the instability phenomena analyzed, a meaningful support to the design of traditional monitoring networks and the efficiency testing of remedial works. When data archives are available, SqueeSAR can also provide valuable information before the installation of any terrestrial measurement system. The Italian authorities increasing interest in the application of SqueeSAR as a standard monitoring tool to help hydrogeological risk assessment, resulted in a national project, Piano Straordinario di Telerilevamento (PST), founded by the Ministry of the Environment. The aim of the project was to create the first interferometric database on a national scale for mapping unstable areas. More than 12,000 ERS and ENVISAT radar scenes acquired over Italy were processed spanning the period 1992-2010, proving that, in less than ten years, radar interferometry has become a standard monitoring tool. Recently, many regional governments in Italy have applied

  3. International collaboration in SAR ground data systems

    NASA Technical Reports Server (NTRS)

    Curlander, John C.

    1993-01-01

    A set of considerations that are pertinent to future international cooperation in the area of synthetic aperture radar (SAR) ground data systems are presented. The considerations are as follows: (1) success of future spaceborne SAR missions will require multi-agency and/or multi-national collaboration; (2) ground processing is typically performed by each agency for their user base; (3) international standards are required to achieve a uniform data product independent of the processing center; (4) to reduce the aggregate cost of the ground data systems, collaboration is required in design and development; (5) effective utilization of the data by an international user community; (6) commercialization of data products; and (7) security of data systems.

  4. SAR impulse response with residual chirps.

    SciTech Connect

    Doerry, Armin Walter

    2009-06-01

    A Linear Frequency-Modulated (LFM) chirp is a function with unit amplitude and quadratic phase characteristic. In a focused Synthetic Aperture Radar (SAR) image, a residual chirp is undesired for targets of interest, as it coarsens the manifested resolution. However, for undesired spurious signals, a residual chirp is often advantageous because it spreads the energy and thereby diminishes its peak value. In either case, a good understanding of the effects of a residual LFM chirp on a SAR Impulse Response (IPR) is required to facilitate system analysis and design. This report presents an analysis of the effects of a residual chirp on the IPR. As reference, there is a rich body of publications on various aspects of LFM chirps. A quick search reveals a plethora of articles, going back to the early 1950s. We mention here purely as trivia one of the earlier analysis papers on this waveform by Klauder, et al.

  5. A fast and reliable change detection feature from bi-temporal amplitude SAR images

    NASA Astrophysics Data System (ADS)

    Garzelli, Andrea; Zoppetti, Claudia

    2015-10-01

    In this paper, we propose a change detection feature for an amplitude SAR image pair, based on both information theoretic (IT) assumptions and a CFAR criterion derived from the probabilistic model of the ratio image. In particular, the proposed method aims to introduce two main improvements with respect to the previous IT-based approaches. The first goal is to find a strategy to adaptively quantize the 2-D scatterplot instead of applying clustering. This is carried out by performing a preliminary partition of the image pixels according to a constant false alarm rate criterion that is based on the probabilistic model of the ratio image. The second goal is to test the proposed method in order to assess reliable performances in case of severe speckle noise and in case of small percentage of change within the scene. Therefore, experimental results have been carried out with simulated changes applied to synthetically-generated 1-look SAR images produced from an optical remote sensing image. True Cosmo-SkyMed SAR images have been also considered on a damage assessment scenario.

  6. Quantitative validation of the 3D SAR profile of hyperthermia applicators using the gamma method.

    PubMed

    de Bruijne, Maarten; Samaras, Theodoros; Chavannes, Nicolas; van Rhoon, Gerard C

    2007-06-01

    For quality assurance of hyperthermia treatment planning systems, quantitative validation of the electromagnetic model of an applicator is essential. The objective of this study was to validate a finite-difference time-domain (FDTD) model implementation of the Lucite cone applicator (LCA) for superficial hyperthermia. The validation involved (i) the assessment of the match between the predicted and measured 3D specific absorption rate (SAR) distribution, and (ii) the assessment of the ratio between model power and real-world power. The 3D SAR distribution of seven LCAs was scanned in a phantom bath using the DASY4 dosimetric measurement system. The same set-up was modelled in SEMCAD X. The match between the predicted and the measured SAR distribution was quantified with the gamma method, which combines distance-to-agreement and dose difference criteria. Good quantitative agreement was observed: more than 95% of the measurement points met the acceptance criteria 2 mm/2% for all applicators. The ratio between measured and predicted power absorption ranged from 0.75 to 0.92 (mean 0.85). This study shows that quantitative validation of hyperthermia applicator models is feasible and is worth considering as a part of hyperthermia quality assurance procedures. PMID:17505090

  7. A sea ice concentration estimation algorithm utilizing radiometer and SAR data

    NASA Astrophysics Data System (ADS)

    Karvonen, J.

    2014-09-01

    We have studied the possibility of combining the high-resolution synthetic aperture radar (SAR) segmentation and ice concentration estimated by radiometer brightness temperatures. Here we present an algorithm for mapping a radiometer-based concentration value for each SAR segment. The concentrations are estimated by a multi-layer perceptron (MLP) neural network which has the AMSR-2 (Advanced Microwave Scanning Radiometer 2) polarization ratios and gradient ratios of four radiometer channels as its inputs. The results have been compared numerically to the gridded Finnish Meteorological Institute (FMI) ice chart concentrations and high-resolution AMSR-2 ASI (ARTIST Sea Ice) algorithm concentrations provided by the University of Hamburg and also visually to the AMSR-2 bootstrap algorithm concentrations, which are given in much coarser resolution. The differences when compared to FMI daily ice charts were on average small. When compared to ASI ice concentrations, the differences were a bit larger, but still small on average. According to our comparisons, the largest differences typically occur near the ice edge and sea-land boundary. The main advantage of combining radiometer-based ice concentration estimation and SAR segmentation seems to be a more precise estimation of the boundaries of different ice concentration zones.

  8. Rapid Disaster Analysis based on SAR Techniques

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Soergel, U.

    2015-03-01

    Due to all-day and all-weather capability spaceborne SAR is a valuable means for rapid mapping during and after disaster. In this paper, three change detection techniques based on SAR data are discussed: (1) initial coarse change detection, (2) flooded area detection, and (3) linear-feature change detection. The 2011 Tohoku Earthquake and Tsunami is used as case study, where earthquake and tsunami events provide a complex case for this study. In (1), pre- and post-event TerraSAR-X images are coregistered accurately to produce a false-color image. Such image provides a quick and rough overview of potential changes, which is useful for initial decision making and identifies areas worthwhile to be analysed further in more depth. In (2), the post-event TerraSAR-X image is used to extract the flooded area by morphological approaches. In (3), we are interested in detecting changes of linear shape as indicator for modified man-made objects. Morphological approaches, e.g. thresholding, simply extract pixel-based changes in the difference image. However, in this manner many irrelevant changes are highlighted, too (e.g., farming activity, speckle). In this study, Curvelet filtering is applied in the difference image not only to suppress false alarms but also to enhance the change signals of linear-feature form (e.g. buildings) in settlements. Afterwards, thresholding is conducted to extract linear-shaped changed areas. These three techniques mentioned above are designed to be simple and applicable in timely disaster analysis. They are all validated by comparing with the change map produced by Center for Satellite Based Crisis Information, DLR.

  9. Synthesis and SAR of vinca alkaloid analogues.

    PubMed

    Voss, Matthew E; Ralph, Jeffery M; Xie, Dejian; Manning, David D; Chen, Xinchao; Frank, Anthony J; Leyhane, Andrew J; Liu, Lei; Stevens, Jason M; Budde, Cheryl; Surman, Matthew D; Friedrich, Thomas; Peace, Denise; Scott, Ian L; Wolf, Mark; Johnson, Randall

    2009-02-15

    Versatile intermediates 12'-iodovinblastine, 12'-iodovincristine and 11'-iodovinorelbine were utilized as substrates for transition metal based chemistry which led to the preparation of novel analogues of the vinca alkaloids. The synthesis of key iodo intermediates, their transformation into final products, and the SAR based upon HeLa and MCF-7 cell toxicity assays is presented. Selected analogues 27 and 36 show promising anticancer activity in the P388 murine leukemia model. PMID:19147348

  10. Processing of polarametric SAR images. Final report

    SciTech Connect

    Warrick, A.L.; Delaney, P.A.

    1995-09-01

    The objective of this work was to develop a systematic method of combining multifrequency polarized SAR images. It is shown that the traditional methods of correlation, hard targets, and template matching fail to produce acceptable results. Hence, a new algorithm was developed and tested. The new approach combines the three traditional methods and an interpolation method. An example is shown that demonstrates the new algorithms performance. The results are summarized suggestions for future research are presented.

  11. Interferometric SAR coherence classification utility assessment

    SciTech Connect

    Yocky, D.A.

    1998-03-01

    The classification utility of a dual-antenna interferometric synthetic aperture radar (IFSAR) is explored by comparison of maximum likelihood classification results for synthetic aperture radar (SAR) intensity images and IPSAR intensity and coherence images. The addition of IFSAR coherence improves the overall classification accuracy for classes of trees, water, and fields. A threshold intensity-coherence classifier is also compared to the intensity-only classification results.

  12. Extracorporeal adsorption of endotoxin.

    PubMed

    Staubach, K H; Rosenfeldt, J A; Veit, O; Bruch, H P

    1997-02-01

    In a porcine endotoxin shock model using a continuous intravenous endotoxin infusion of 250 ng/kg body weight per hour, the cardiorespiratory and hematologic parameters were studied while applying a new on-line polymyxin B immobilized adsorption system. This preliminary report shows that the new adsorbent can remove endotoxin selectively from the circulation and confers a good amount of protection from endotoxin-induced cardiopulmonary decompensation as well as hematologic alterations. Survival time could be extended from 216 min to 313 min. Whereas cardiac output and mean arterial pressure declined critically after 3 h in the controls, the treated group remained stable for another 3 h. These data show that endotoxin adsorption by polymyxin B coupled covalently to acrylic spheres as an adjunctive on-line measure in the septic syndrome seems feasible. PMID:10225785

  13. A 3-D SAR approach to IFSAR processing

    SciTech Connect

    DOERRY,ARMIN W.; BICKEL,DOUGLAS L.

    2000-03-01

    Interferometric SAR (IFSAR) can be shown to be a special case of 3-D SAR image formation. In fact, traditional IFSAR processing results in the equivalent of merely a super-resolved, under-sampled, 3-D SAR image. However, when approached as a 3-D SAR problem, a number of IFSAR properties and anomalies are easily explained. For example, IFSAR decorrelation with height is merely ordinary migration in 3-D SAR. Consequently, treating IFSAR as a 3-D SAR problem allows insight and development of proper motion compensation techniques and image formation operations to facilitate optimal height estimation. Furthermore, multiple antenna phase centers and baselines are easily incorporated into this formulation, providing essentially a sparse array in the elevation dimension. This paper shows the Polar Format image formation algorithm extended to 3 dimensions, and then proceeds to apply it to the IFSAR collection geometry. This suggests a more optimal reordering of the traditional IFSAR processing steps.

  14. Polarization filtering of SAR data

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Van Zyl, Jakob J.

    1989-01-01

    A theoretical analysis of polarization filtering for the bistatic case is developed for optimum discrimination between two types of targets. The resulting method is half analytical and half numerical. Because it is based on the Stokes matrix representation, the targets of interest can be extended targets. The scattered field from such targets is partially polarized. This method is then applied to the monostatic case with numerical examples relying on the JPL (Jet Propulsion Laboratory) full-polarimetric L-band radar data. A matched filter to maximize the power ratio between urban and natural targets is developed. The results show that the same filter is optimal for both ocean and forest targets as natural targets.

  15. The InSAR Scientific Computing Environment

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Gurrola, Eric; Sacco, Gian Franco; Zebker, Howard

    2012-01-01

    We have developed a flexible and extensible Interferometric SAR (InSAR) Scientific Computing Environment (ISCE) for geodetic image processing. ISCE was designed from the ground up as a geophysics community tool for generating stacks of interferograms that lend themselves to various forms of time-series analysis, with attention paid to accuracy, extensibility, and modularity. The framework is python-based, with code elements rigorously componentized by separating input/output operations from the processing engines. This allows greater flexibility and extensibility in the data models, and creates algorithmic code that is less susceptible to unnecessary modification when new data types and sensors are available. In addition, the components support provenance and checkpointing to facilitate reprocessing and algorithm exploration. The algorithms, based on legacy processing codes, have been adapted to assume a common reference track approach for all images acquired from nearby orbits, simplifying and systematizing the geometry for time-series analysis. The framework is designed to easily allow user contributions, and is distributed for free use by researchers. ISCE can process data from the ALOS, ERS, EnviSAT, Cosmo-SkyMed, RadarSAT-1, RadarSAT-2, and TerraSAR-X platforms, starting from Level-0 or Level 1 as provided from the data source, and going as far as Level 3 geocoded deformation products. With its flexible design, it can be extended with raw/meta data parsers to enable it to work with radar data from other platforms

  16. SAR Image Segmentation Using Morphological Attribute Profiles

    NASA Astrophysics Data System (ADS)

    Boldt, M.; Thiele, A.; Schulz, K.; Hinz, S.

    2014-08-01

    In the last years, the spatial resolution of remote sensing sensors and imagery has continuously improved. Focusing on spaceborne Synthetic Aperture Radar (SAR) sensors, the satellites of the current generation (TerraSAR-X, COSMO-SykMed) are able to acquire images with sub-meter resolution. Indeed, high resolution imagery is visually much better interpretable, but most of the established pixel-based analysis methods have become more or less impracticable since, in high resolution images, self-sufficient objects (vehicle, building) are represented by a large number of pixels. Methods dealing with Object-Based Image Analysis (OBIA) provide help. Objects (segments) are groupings of pixels resulting from image segmentation algorithms based on homogeneity criteria. The image set is represented by image segments, which allows the development of rule-based analysis schemes. For example, segments can be described or categorized by their local neighborhood in a context-based manner. In this paper, a novel method for the segmentation of high resolution SAR images is presented. It is based on the calculation of morphological differential attribute profiles (DAP) which are analyzed pixel-wise in a region growing procedure. The method distinguishes between heterogeneous and homogeneous image content and delivers a precise segmentation result.

  17. Using APES for interferometric SAR imaging

    NASA Astrophysics Data System (ADS)

    Li, Jian; Palsetia, Marzban

    1996-06-01

    In this paper, we present an adaptive FIR filtering approach, which is referred to as the APES (amplitude and phase estimation of a sinusoid) algorithm, for interferometric SAR imaging. We apply the APES algorithm on the data obtained from two vertically displaced apertures of a SAR system to obtain the complex amplitude and the phase difference estimates, which are proportional to the radar cross section and the height of the scatterer, respectively, at the frequencies of interest. We also demonstrate how the APES algorithm can be applied to data matrices with large dimensions without incurring high computational overheads. We compare the APES algorithm with other FIR filtering approaches including the Capon and FFT methods. We show via both numerical and experimental examples that the adaptive FIR filtering approaches such as Capon and APES can yield more accurate spectral estimates with much lower sidelobes and narrower spectral peaks than the FFT method. We show that although the APES algorithm yields somewhat wider spectral peaks than the Capon method, the former gives more accurate overall spectral estimates and SAR images than the latter and the FFT method.

  18. Public Health Interventions and SARS Spread, 2003

    PubMed Central

    2004-01-01

    The 2003 outbreak of severe acute respiratory syndrome (SARS) was contained largely through traditional public health interventions, such as finding and isolating case-patients, quarantining close contacts, and enhanced infection control. The independent effectiveness of measures to "increase social distance" and wearing masks in public places requires further evaluation. Limited data exist on the effectiveness of providing health information to travelers. Entry screening of travelers through health declarations or thermal scanning at international borders had little documented effect on detecting SARS cases; exit screening appeared slightly more effective. The value of border screening in deterring travel by ill persons and in building public confidence remains unquantified. Interventions to control global epidemics should be based on expert advice from the World Health Organization and national authorities. In the case of SARS, interventions at a country's borders should not detract from efforts to identify and isolate infected persons within the country, monitor or quarantine their contacts, and strengthen infection control in healthcare settings. PMID:15550198

  19. Regenerable adsorption system

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Perry, Jay (Inventor); Walsh, Dennis (Inventor)

    2006-01-01

    A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent.

  20. Monitoring The Dynamics Of Hyper-Saline Environments With Polarimetric SAR: Death Valley, California Example

    NASA Astrophysics Data System (ADS)

    Lasne, Y.; McDonald, K.; Paillou, P.; Freeman, A.; Chapman, B.; Farr, T.; Ruffié, G.; Malézieux, J.

    2008-12-01

    Soil salinization in arid and semi-arid regions still remains one of the most important threats not only for socio-economical issues when dealing with water ressources management, but also for ecological matters such as: desertification, climate changes, and biomass reduction. Then, monitoring and mapping of soil salinity distribution represent today a key challenge in our understanding of such environmental processes. Being highly dependent on the dielectric properties of soils, synthetic aperture radar (SAR) appears to be an efficient tool for the remote sensing of hyper-saline environments. More precisely, the influence of saline deposits on SAR imagery lies in the solubility and ionic properties of the minerals which strongly influence both real and imaginary parts of the complex permittivity of such deposits, and thus the radar backscattering coefficient. Based on temporal series acquired with spaceborne SAR systems (ALOS/PALSAR, SIR-C) over the Death Valley (CA), we show that the copolarized backscattering ratio and phase difference derived from SAR data can be used as suitable indicators to monitor the dynamics of hyper-saline deposits. In particular, we propose these copolar parameters to follow the variations in the dielectric properties of moistened and salt-affected soils on a seasonal time scale because of the close relationship between the salinity (governed by the soil moisture content) and the complex permittivity of the soils. We also highlight a strong temporal correlation between the copolar parameters and weather data since precipitation events control the soil moisture and salinity. In order to allow for a better interpretation of the saline deposits signatures observed on SAR data, we also perform analytical simulations of the radar backscattering associated with saline deposits by means of the IEM scattering model. Using laboratory and in~ situ dielectric measurements as input parameters, we simulate the copolar ratio and phase difference as

  1. Microemulsion synthesis of hydroxyapatite nanomaterials and their adsorption behaviors for Cr3+ ions

    NASA Astrophysics Data System (ADS)

    Gao, Y. L.; Wang, X. S.; Cui, H. H.; Mu, M. M.; Huang, F. Z.

    2016-05-01

    Hydroxyapatite (HAP) nanoparticles with different morphologies, such as nanorods, nanospheres, and their mixtures were successfully synthesized by microemulsion method with soluble additive. Their adsorption capacity for Cr3+ ion was investigated. Most of the Cr3+ were absorbed by HAP within 60 min. The adsorption capacity of the HAP nanospheres was the best, and the maximum Cr3+ removal ratio was 96.4%, revealing that the metal ions adsorption by HAP is dependent on the morphology of its particles.

  2. Fast SAR Image Change Detection Using Bayesian Approach Based Difference Image and Modified Statistical Region Merging

    PubMed Central

    Ni, Weiping; Yan, Weidong; Bian, Hui; Wu, Junzheng

    2014-01-01

    A novel fast SAR image change detection method is presented in this paper. Based on a Bayesian approach, the prior information that speckles follow the Nakagami distribution is incorporated into the difference image (DI) generation process. The new DI performs much better than the familiar log ratio (LR) DI as well as the cumulant based Kullback-Leibler divergence (CKLD) DI. The statistical region merging (SRM) approach is first introduced to change detection context. A new clustering procedure with the region variance as the statistical inference variable is exhibited to tailor SAR image change detection purposes, with only two classes in the final map, the unchanged and changed classes. The most prominent advantages of the proposed modified SRM (MSRM) method are the ability to cope with noise corruption and the quick implementation. Experimental results show that the proposed method is superior in both the change detection accuracy and the operation efficiency. PMID:25258740

  3. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches

    NASA Astrophysics Data System (ADS)

    Hooper, Andrew

    2008-08-01

    Synthetic aperture radar (SAR) interferometry is a technique that provides high-resolution measurements of the ground displacement associated with many geophysical processes. Advanced techniques involving the simultaneous processing of multiple SAR acquisitions in time increase the number of locations where a deformation signal can be extracted and reduce associated error. Currently there are two broad categories of algorithms for processing multiple acquisitions, persistent scatterer and small baseline methods, which are optimized for different models of scattering. However, the scattering characteristics of real terrains usually lay between these two end-member models. I present here a new method that combines both approaches, to extract the deformation signal at more points and with higher overall signal-to-noise ratio than can either approach alone. I apply the combined method to data acquired over Eyjafjallajökull volcano in Iceland, and detect time-varying ground displacements associated with two intrusion events.

  4. A new maximum-likelihood change estimator for two-pass SAR coherent change detection

    DOE PAGESBeta

    Wahl, Daniel E.; Yocky, David A.; Jakowatz, Jr., Charles V.; Simonson, Katherine Mary

    2016-01-11

    In past research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate—the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimatormore » is a surprisingly simple expression, easy to implement, and optimal in the ML sense. As a result, this new estimate produces improved results in the coherent pair collects that we have tested.« less

  5. Rapid extraction of water bodies from SAR imagery assisted by InSAR DEMs

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Ming; Zmuda, Andy

    1998-08-01

    In China, detailed flood maps are produced in near real time using an airborne SAR and data transmission system. Water bodies are extracted and the information is integrated with other thematic data to facilitate the rapid response to economic and humanitarian relief. One problem has been that terrain shadow on SAR images is classified as water and this proves difficult to eliminate without detailed elevation data. However interferometric processing of ERS Tandem Mission data has been used to produce a digital elevation model for a test area in China. This has been used to mask areas of terrain shadow on SAR images therefore improving the automatic classification of water bodies. The result is promising compared with the previously used method that relied on manual elimination of shadow areas.

  6. Forming rotated SAR images by real-time motion compensation.

    SciTech Connect

    Doerry, Armin Walter

    2012-12-01

    Proper waveform parameter selection allows collecting Synthetic Aperture Radar (SAR) phase history data on a rotated grid in the Fourier Space of the scene being imaged. Subsequent image formation preserves the rotated geometry to allow SAR images to be formed at arbitrary rotation angles without the use of computationally expensive interpolation or resampling operations. This should be useful where control of image orientation is desired such as generating squinted stripmaps and VideoSAR applications, among others.

  7. Applications of SAR Interferometry in Earth and Environmental Science Research.

    PubMed

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992

  8. Applications of SAR Interferometry in Earth and Environmental Science Research

    PubMed Central

    Zhou, Xiaobing; Chang, Ni-Bin; Li, Shusun

    2009-01-01

    This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. PMID:22573992

  9. Epipolar geometry comparison of SAR and optical camera

    NASA Astrophysics Data System (ADS)

    Li, Dong; Zhang, Yunhua

    2016-03-01

    In computer vision, optical camera is often used as the eyes of computer. If we replace camera with synthetic aperture radar (SAR), we will then enter a microwave vision of the world. This paper gives a comparison of SAR imaging and camera imaging from the viewpoint of epipolar geometry. The imaging model and epipolar geometry of the two sensors are analyzed in detail. Their difference is illustrated, and their unification is particularly demonstrated. We hope these may benefit researchers in field of computer vision or SAR image processing to construct a computer SAR vision, which is dedicated to compensate and improve human vision by electromagnetically perceiving and understanding the images.

  10. InSAR Scientific Computing Environment

    NASA Astrophysics Data System (ADS)

    Gurrola, E. M.; Rosen, P. A.; Sacco, G.; Zebker, H. A.; Simons, M.; Sandwell, D. T.

    2010-12-01

    The InSAR Scientific Computing Environment (ISCE) is a software development effort in its second year within the NASA Advanced Information Systems and Technology program. The ISCE will provide a new computing environment for geodetic image processing for InSAR sensors that will enable scientists to reduce measurements directly from radar satellites and aircraft to new geophysical products without first requiring them to develop detailed expertise in radar processing methods. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. The NRC Decadal Survey-recommended DESDynI mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment is planned to become a key element in processing DESDynI data into higher level data products and it is expected to enable a new class of analyses that take greater advantage of the long time and large spatial scales of these new data, than current approaches. At the core of ISCE is both legacy processing software from the JPL/Caltech ROI_PAC repeat-pass interferometry package as well as a new InSAR processing package containing more efficient and more accurate processing algorithms being developed at Stanford for this project that is based on experience gained in developing processors for missions such as SRTM and UAVSAR. Around the core InSAR processing programs we are building object-oriented wrappers to enable their incorporation into a more modern, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models, and a robust, intuitive user interface with

  11. Polymorphism of SARS-CoV genomes.

    PubMed

    Shang, Lei; Qi, Yan; Bao, Qi-Yu; Tian, Wei; Xu, Jian-Cheng; Feng, Ming-Guang; Yang, Huan-Ming

    2006-04-01

    In this work, severe acute respiratory syndrome associated coronavirus (SARS-CoV) genome BJ202 (AY864806) was completely sequenced. The genome was directly accessed from the stool sample of a patient in Beijing. Comparative genomics methods were used to analyze the sequence variations of 116 SARS-CoV genomes (including BJ202) available in the NCBI GenBank. With the genome sequence of GZ02 as the reference, there were 41 polymorphic sites identified in BJ202 and a total of 278 polymorphic sites present in at least two of the 116 genomes. The distribution of the polymorphic sites was biased over the whole genome. Nearly half of the variations (50.4%, 140/278) clustered in the one third of the whole genome at the 3' end (19.0 kb-29.7 kb). Regions encoding Orf10-11, Orf3/4, E, M and S protein had the highest mutation rates. A total of 15 PCR products (about 6.0 kb of the genome) including 11 fragments containing 12 known polymorphic sites and 4 fragments without identified polymorphic sites were cloned and sequenced. Results showed that 3 unique polymorphic sites of BJ202 (positions 13 804, 15 031 and 20 792) along with 3 other polymorphic sites (26 428, 26 477 and 27 243) all contained 2 kinds of nucleotides. It is interesting to find that position 18379 which has not been identified to be polymorphic in any of the other 115 published SARS-CoV genomes is actually a polymorphic site. The nucleotide composition of this site is A (8) to G (6). Among 116 SARS-CoV genomes, 18 types of deletions and 2 insertions were identified. Most of them were related to a 300 bp region (27,700-28,000) which encodes parts of the putative ORF9 and ORF10-11. A phylogenetic tree illustrating the divergence of whole BJ202 genome from 115 other completely sequenced SARS-CoVs was also constructed. BJ202 was phylogeneticly closer to BJ01 and LLJ-2004. PMID:16625834

  12. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. [Synthetic Aperture Radar (SAR)

    SciTech Connect

    Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.; Eichel, P.H.

    1991-01-01

    Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why such correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.

  13. Curvelet-based compressive sensing for InSAR raw data

    NASA Astrophysics Data System (ADS)

    Costa, Marcello G.; da Silva Pinho, Marcelo; Fernandes, David

    2015-10-01

    The aim of this work is to evaluate the compression performance of SAR raw data for interferometry applications collected by airborne from BRADAR (Brazilian SAR System operating in X and P bands) using the new approach based on compressive sensing (CS) to achieve an effective recovery with a good phase preserving. For this framework is desirable a real-time capability, where the collected data can be compressed to reduce onboard storage and bandwidth required for transmission. In the CS theory, a sparse unknown signals can be recovered from a small number of random or pseudo-random measurements by sparsity-promoting nonlinear recovery algorithms. Therefore, the original signal can be significantly reduced. To achieve the sparse representation of SAR signal, was done a curvelet transform. The curvelets constitute a directional frame, which allows an optimal sparse representation of objects with discontinuities along smooth curves as observed in raw data and provides an advanced denoising optimization. For the tests were made available a scene of 8192 x 2048 samples in range and azimuth in X-band with 2 m of resolution. The sparse representation was compressed using low dimension measurements matrices in each curvelet subband. Thus, an iterative CS reconstruction method based on IST (iterative soft/shrinkage threshold) was adjusted to recover the curvelets coefficients and then the original signal. To evaluate the compression performance were computed the compression ratio (CR), signal to noise ratio (SNR), and because the interferometry applications require more reconstruction accuracy the phase parameters like the standard deviation of the phase (PSD) and the mean phase error (MPE) were also computed. Moreover, in the image domain, a single-look complex image was generated to evaluate the compression effects. All results were computed in terms of sparsity analysis to provides an efficient compression and quality recovering appropriated for inSAR applications

  14. TerraSAR InSAR Investigation of Active Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Lei, L.; Burgmann, R.

    2009-12-01

    We aim to utilize advanced analysis of TerraSAR-X data to investigate the dynamics and interactions of solid Earth deformation processes, such as earthquakes and fault creep, and Earth surface processes, such as land subsidence and groundwater movements, in a densely populated, urban region, the San Francisco Bay Area. Ongoing deformation imaging reveals a number of natural hazards including elastic strain accumulation about seismologic faults, active landsliding, land subsidence and rebound, and settling of unconsolidated sediments that are highly susceptible to liquefaction. Up to now, we have ordered and received 20 more TerraSAR-X Spotlight Single Look Complex (SLC) images and a few Stripmap SLC images delivered by DLR and got a few preliminary results. The TerraSAR-X images were acquired over the San Francisco Bay Area particularly around an area of active landsliding, coastal subsidence and shallow Hayward fault creep near the city of Berkeley. Berkeley is situated between latitude 37.45 and 38.00, longitude 237.30 and 238.00. The data acquisition interval is from November, 2008 to now. Four types of Spotlight images and one type of Stripmap images in time sequence were ordered and acquired: spot_012, spot_038, spot_049, spot_075 and strip_003, having different look angles and pass directions. Access to the SAR data is via ftp about 10 days after acquisition date. The data is supplied in TerraSAR-X standard SLC COSAR (COmplex SAR) format with orbital information in an Extensible Markup Language (XML) header. The file contains integer real-complex components with double sampling and calibration constants for values. I am using ROI_PAC to do the interferograms. But ROI_PAC was designed to process the raw data rather SLC images. So there are some problems in azimuth processing with TerraSAR SLC data especially the Spotlight data. We now have some preliminary results of Stripmap interferograms and Spotlight interferograms but still work on those problems and

  15. [Adsorption characteristics of f2 bacteriophages by four substrates in constructed wetland].

    PubMed

    Chen, Di; Zheng, Xiang; Wei, Yuan-Song; Yang, Yong

    2013-10-01

    Performance of f2 phages adsorption by four substrates including anthracite coal, steel slag, zeolite and forsterite was investigated through batch and dynamic experiments. Results of batch experiments showed that the removal efficiency of f2 phages by these four substrates was in the order of anthracite > steel slag > forsterite approximately zeolite. The adsorption of f2 phages by anthracite experienced fast, medium and slow stages, and the removal efficiency of f2 phages increased gradually with the increase of anthracite dosage, e. g. the optimized dosage of anthracite was 8.0 g at a solid/liquid ratio of 1:12.5 (m/V). The isothermal adsorption of all four substrates was described with Freundlich and Langmuir isothermal adsorption equation very well, and the adsorption of f2 phages by both anthracite and steel slag fitted pseudo-second order adsorption kinetics at their theoretical adsorption capacities of 3. 35 x 10(8) PFU.g-1 and 2.56 x 10(8) PFU.g-1, respectively, nearly the same as the equilibrium adsorption capacities obtained under the experiment conditions. And the liquid diffusion process was a rate-limiting step of the adsorption of f2 phage by both anthracite and steel slag, but not the only one. The results of dynamic adsorption experiments showed that the adsorption process of f2 phages in the three adsorption columns including anthracite, steel slag and zeolite experienced four stages of adaption, adsorption, pulse adsorption and adsorption equilibrium, and the total removal rates of f2 phages were more than 2. 55 Ig. PMID:24364309

  16. Multi-Temporal SAR Interferometry for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Dwivedi, R.; Narayan, A. B.; Tiwari, A.; Dikshit, O.; Singh, A. K.

    2016-06-01

    In the past few years, SAR Interferometry specially InSAR and D-InSAR were extensively used for deformation monitoring related applications. Due to temporal and spatial decorrelation in dense vegetated areas, effectiveness of InSAR and D-InSAR observations were always under scrutiny. Multi-temporal InSAR methods are developed in recent times to retrieve the deformation signal from pixels with different scattering characteristics. Presently, two classes of multi-temporal InSAR algorithms are available- Persistent Scatterer (PS) and Small Baseline (SB) methods. This paper discusses the Stanford Method for Persistent Scatterer (StaMPS) based PS-InSAR and the Small Baselines Subset (SBAS) techniques to estimate the surface deformation in Tehri dam reservoir region in Uttarkhand, India. Both PS-InSAR and SBAS approaches used sixteen ENVISAT ASAR C-Band images for generating single master and multiple master interferograms stack respectively and their StaMPS processing resulted in time series 1D-Line of Sight (LOS) mean velocity maps which are indicative of deformation in terms of movement towards and away from the satellites. From 1D LOS velocity maps, localization of landslide is evident along the reservoir rim area which was also investigated in the previous studies. Both PS-InSAR and SBAS effectively extract measurement pixels in the study region, and the general results provided by both approaches show a similar deformation pattern along the Tehri reservoir region. Further, we conclude that StaMPS based PS-InSAR method performs better in terms of extracting more number of measurement pixels and in the estimation of mean Line of Sight (LOS) velocity as compared to SBAS method. It is also proposed to take up a few major landslides area in Uttarakhand for slope stability assessment.

  17. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus.

    PubMed

    Andrey, Diego O; Jousselin, Ambre; Villanueva, Maite; Renzoni, Adriana; Monod, Antoinette; Barras, Christine; Rodriguez, Natalia; Kelley, William L

    2015-01-01

    Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1), encoded by tst(H), and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1), RNAIII, rot, and the alternative stress sigma factor sigB (σB). By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression. PMID:26275216

  18. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus

    PubMed Central

    Villanueva, Maite; Renzoni, Adriana; Monod, Antoinette; Barras, Christine; Rodriguez, Natalia; Kelley, William L.

    2015-01-01

    Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1), encoded by tst(H), and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1), RNAIII, rot, and the alternative stress sigma factor sigB (σB). By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression. PMID:26275216

  19. Classification and monitoring of reed belts using dual-polarimetric TerraSAR-X time series

    NASA Astrophysics Data System (ADS)

    Heine, Iris; Jagdhuber, Thomas; Itzerott, Sibylle

    2016-04-01

    The shorelines of lakes in northeastern Germany are often covered by reed. These reed belts fulfill an important function as erosion protection, biotope for animals, carbon storage, and as cleaning filter for lake water. However, despite their importance for the limnic ecosystem, reed vegetation in northeastern Germany is not regularly monitored. In this research study we investigate the potential of synthetic aperture radar polarimetry (PolSAR) for seasonal monitoring of reed vegetation. SAR imagery enables sunlight- and (almost) weather-independent monitoring. Polarimetric decomposition techniques allow the physical characterization of the scattering scenario and the involved scatterers. Our study is based on 19 dual-polarimetric (HH/VV) TerraSAR-X images acquired between August 2014 and May 2015. We calculated different polarimetric indices comprising the HH and VV intensities, the dual-polarimetric coherency matrix with dominant and mean alpha scattering angles, entropy and anisotropy (normalized eigen-value difference) as well as combinations of entropy and anisotropy for the analysis of the scattering scenarios. The reed areas in the TerraSAR-X images were classified using a random forest algorithm and validated with high-resolution digital orthophotos. The time series analysis of the reed belts revealed significant seasonal changes in the double bounce sensitive parameters (intensity ratio HH/VV and intensity difference HH-VV, the co-polarimetric coherence phase and the dominant and mean alpha scattering angles). Additionally, the dual-polarimetric coherence (amplitude), anisotropy, entropy, and anisotropy-entropy-combinations showed seasonal changes of reed. In summer, the reed areas are characterized within the X-band SAR data by volume scattering, whereas in winter double-bounce scattering dominates. The volume scattering in summer is caused predominantly by reed leaves. In autumn, the leaves start to wither and fall off, so that in winter predominately

  20. SAR digital spotlight implementation in MATLAB

    NASA Astrophysics Data System (ADS)

    Dungan, Kerry E.; Gorham, LeRoy A.; Moore, Linda J.

    2013-05-01

    Legacy synthetic aperture radar (SAR) exploitation algorithms were image-based algorithms, designed to exploit complex and/or detected SAR imagery. In order to improve the efficiency of the algorithms, image chips, or region of interest (ROI) chips, containing candidate targets were extracted. These image chips were then used directly by exploitation algorithms for the purposes of target discrimination or identification. Recent exploitation research has suggested that performance can be improved by processing the underlying phase history data instead of standard SAR imagery. Digital Spotlighting takes the phase history data of a large image and extracts the phase history data corresponding to a smaller spatial subset of the image. In a typical scenario, this spotlighted phase history data will contain much fewer samples than the original data but will still result in an alias-free image of the ROI. The Digital Spotlight algorithm can be considered the first stage in a "two-stage backprojection" image formation process. As the first stage in two-stage backprojection, Digital Spotlighting filters the original phase history data into a number of "pseudo"-phase histories that segment the scene into patches, each of which contain a reduced number of samples compared to the original data. The second stage of the imaging process consists of standard backprojection. The data rate reduction offered by Digital Spotlighting improves the computational efficiency of the overall imaging process by significantly reducing the total number of backprojection operations. This paper describes the Digital Spotlight algorithm in detail and provides an implementation in MATLAB.

  1. Utilizing feedback in adaptive SAR ATR systems

    NASA Astrophysics Data System (ADS)

    Horsfield, Owen; Blacknell, David

    2009-05-01

    Existing SAR ATR systems are usually trained off-line with samples of target imagery or CAD models, prior to conducting a mission. If the training data is not representative of mission conditions, then poor performance may result. In addition, it is difficult to acquire suitable training data for the many target types of interest. The Adaptive SAR ATR Problem Set (AdaptSAPS) program provides a MATLAB framework and image database for developing systems that adapt to mission conditions, meaning less reliance on accurate training data. A key function of an adaptive system is the ability to utilise truth feedback to improve performance, and it is this feature which AdaptSAPS is intended to exploit. This paper presents a new method for SAR ATR that does not use training data, based on supervised learning. This is achieved by using feature-based classification, and several new shadow features have been developed for this purpose. These features allow discrimination of vehicles from clutter, and classification of vehicles into two classes: targets, comprising military combat types, and non-targets, comprising bulldozers and trucks. The performance of the system is assessed using three baseline missions provided with AdaptSAPS, as well as three additional missions. All performance metrics indicate a distinct learning trend over the course of a mission, with most third and fourth quartile performance levels exceeding 85% correct classification. It has been demonstrated that these performance levels can be maintained even when truth feedback rates are reduced by up to 55% over the course of a mission.

  2. Development of VHF CARABAS II SAR

    NASA Astrophysics Data System (ADS)

    Hellsten, Hans; Ulander, Lars M.; Gustavsson, Anders; Larsson, Bjoern

    1996-06-01

    There is an increasing interest in imaging radar systems operating at low frequencies. Examples of military and civilian applications are detection of stealth-designed man- made objects, targets hidden under foliage, biomass estimation, and penetration into glaciers or ground. The developed CARABAS technology is a contribution to this field of low frequency SAR imagery. The used wavelengths offer a potential of penetration below the upper scattering layer in combination with high spatial resolution. The first prototype of the system (CARABAS I) has been tested in environments ranging from rain forests to deserts, collecting a considerably amount of data often in parallel with other SAR sensors. The work on data analysis proceeds and results obtained so far seem promising, especially for application in forested regions. The experiences gained are used in the development of a new upgraded system (CARABAS II), which is near completion and initial airborne radar tests for system verifications followed by some major field campaign are scheduled to take place during 1996. This paper will summarize the CARABAS I system characteristics and system performance evaluation. The major imperfections discovered in the radar functioning will be identified, and we explain some of the modification made in the system design for CARABAS II. A new algorithm for future real-time CARABAS data processing has been derived, with a structure well-suited for a multi-processor environment. Motion compensation and radio frequency interference mitigation are both included in this scheme. Some comments on low frequency SAR operation at UHF-based versus VHF-band will be given.

  3. A theoretical basis and methodology for the quantitative evaluation of thematic map series from SAR/InSAR data

    NASA Astrophysics Data System (ADS)

    Stevenson, Paula Jean

    2001-07-01

    Synthetic aperture radar (SAR) and interferometric SAR (InSAR) data are increasingly being used for specific operational purposes such as detailed elevation maps, detection of military targets, and coastline mapping of perpetually cloud-covered areas. One topic that has been studied extensively since the 1970's is the generation of thematic maps from this data. However, most of the relevant literature relies on highly labor-intensive approaches to yield "accurate" results for a particular scene, by fine-tuning parameters to minimize the "error" in the scene (as compared to sampled ground truth for the same scene). Consequently, it remains to be seen whether or how these data can be used to produce thematic map series efficiently and reliably in the face of varying landscapes, sensors, processors, classifiers, and output requirements. To the best of our knowledge, no one has yet examined the linked, complex, and multi-faceted issues involved in using SAR/InSAR data for this purpose; indeed, even a basis for conducting such a study has not been determined. This study adapts recent ISO (International Organization of Standardization) standards on measurand, repeatability, and reproducibility and applies them to the study of these issues. The standards are applied to analyze the range of measurement uncertainties associated with the end-to-end processes that are involved in generating thematic maps. These processes are: (1) the physical interaction of the SAR/InSAR signal with various terrain and landscape characteristics; (2) antenna characteristics and signal processing steps in generating an image; (3) image classification models and algorithms; and (4) standard map output requirements. The primary outcome is the development of a methodology through applying the ISO principles to thematic map classification of SAR/InSAR data. The methodology is expected to aid in determining the expected quality of a SAR/InSAR-based thematic map series and its fitness for intended

  4. The SAR of brain penetration for a series of heteroaryl urea FAAH inhibitors.

    PubMed

    Keith, John M; Tichenor, Mark S; Apodaca, Richard L; Xiao, Wei; Jones, William M; Seierstad, Mark; Pierce, Joan M; Palmer, James A; Webb, Michael; Karbarz, Mark J; Scott, Brian P; Wilson, Sandy J; Wennerholm, Michelle L; Rizzolio, Michele; Rynberg, Raymond; Chaplan, Sandra R; Breitenbucher, J Guy

    2016-07-01

    The SAR of brain penetration for a series of heteroaryl piperazinyl- and piperadinyl-urea fatty acid amide hydrolase (FAAH) inhibitors is described. Brain/plasma (B/P) ratios ranging from >4:1 to as low as 0.02:1 were obtained through relatively simple structural changes to various regions of the heteroaryl urea scaffold. It was not possible to predict the degree of central nervous system (CNS) penetration from the volumes of distribution (Vd) obtained from pharmacokinetic (PK) experiments as very high Vds did not correlate with high B/P ratios. Similarly, calculated topological polar surface areas (TPSAs) did not consistently correlate with the degree of brain penetration. The lowest B/P ratios were observed for those compounds that were significantly ionized at physiological pH. However, as this class of compounds inhibits the FAAH enzyme through covalent modification, low B/P ratios did not preclude effective central target engagement. PMID:27189675

  5. Synthetic aperture design for increased SAR image rate

    DOEpatents

    Bielek, Timothy P.; Thompson, Douglas G.; Walker, Bruce C.

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  6. An Adaptive Ship Detection Scheme for Spaceborne SAR Imagery.

    PubMed

    Leng, Xiangguang; Ji, Kefeng; Zhou, Shilin; Xing, Xiangwei; Zou, Huanxin

    2016-01-01

    With the rapid development of spaceborne synthetic aperture radar (SAR) and the increasing need of ship detection, research on adaptive ship detection in spaceborne SAR imagery is of great importance. Focusing on practical problems of ship detection, this paper presents a highly adaptive ship detection scheme for spaceborne SAR imagery. It is able to process a wide range of sensors, imaging modes and resolutions. Two main stages are identified in this paper, namely: ship candidate detection and ship discrimination. Firstly, this paper proposes an adaptive land masking method using ship size and pixel size. Secondly, taking into account the imaging mode, incidence angle, and polarization channel of SAR imagery, it implements adaptive ship candidate detection in spaceborne SAR imagery by applying different strategies to different resolution SAR images. Finally, aiming at different types of typical false alarms, this paper proposes a comprehensive ship discrimination method in spaceborne SAR imagery based on confidence level and complexity analysis. Experimental results based on RADARSAT-1, RADARSAT-2, TerraSAR-X, RS-1, and RS-3 images demonstrate that the adaptive scheme proposed in this paper is able to detect ship targets in a fast, efficient and robust way. PMID:27563902

  7. Real-time SAR change-detection using neural networks

    NASA Astrophysics Data System (ADS)

    Oliver, Christopher J.; White, Richard G.

    1990-11-01

    This paper describes the techniques evolved at RSRE for the production of undistorted, focused synthetic aperture radar (SAR) images, target detection using a neural network method and the automatic detection of changes between pairs of SAR images. All these processes are achievable in a single pipelined process operating on an input data rate in excess of 10 Mbytes/second.

  8. Fully polarimetric data from the ARL RailSAR

    NASA Astrophysics Data System (ADS)

    Ranney, Kenneth; Kirose, Getachew; Phelan, Brian; Sherbondy, Kelly

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has recently upgraded the indoor, rail-mounted synthetic aperture radar (SAR) system, RailSAR, to enable collection of large amounts of low-frequency, ultrawideband (UWB) data. Our intent is to provide a research tool that is capable of emulating airborne SAR configuration and associated data collection geometries against surrogate explosive hazard threat deployments. By having such a capability, ARL's facility will afford a more rapid response to the ever changing improvised characteristics associated with explosive hazards today and in the future. Therefore, upgrades to this RailSAR tool to improve functionality and performance are needed to meet the potential rapid response assessments to be carried out. The new, lighter RailSAR cart puts less strain on the radar positioning hardware and allows the system to move smoothly along a specified portion of the rail. In previous papers, we have presented co-polarized SAR data collected using the ARL RailSAR. Recently, however, researchers at ARL have leveraged this asset to collect polarimetric data against multiple targets. This paper presents the SAR imagery resulting from these experiments and documents characteristics of certain target signatures that should be of interest to developers of automatic target detection (ATD) algorithms.

  9. Risk factors for SARS infection within hospitals in Hanoi, Vietnam.

    PubMed

    Nishiyama, Ayako; Wakasugi, Naomi; Kirikae, Teruo; Quy, Tran; Ha, Le Dang; Ban, Vo Van; Long, Hoang Thuy; Keicho, Naoto; Sasazuki, Takehiko; Kuratsuji, Tadatoshi

    2008-09-01

    We investigated a nosocomial infection of severe acute respiratory syndrome (SARS) in Vietnam in 2003 and attempted to identify risk factors for SARS infection. Of the 146 subjects who came into contact with SARS patients at Hospital A, 43 (29.5%) developed SARS, and an additional 16 (11%) were asymptomatic but SARS-coronavirus (CoV) seropositive. The asymptomatic infection rate accounted for 15.5% of the total number of infected patients at Hospital A, which was higher than that of 6.5% observed at Hospital B, to where all patients from Hospital A were eventually transported (P<0.05). At Hospital A, the risk for developing SARS was 12.6 times higher in individuals not using a mask than in those using a mask. The SARS epidemic in Vietnam resulted in numerous secondary infections due to its unknown etiology and delayed recognition at the beginning of the epidemic. The consistent and proper use of a mask was shown to be crucial for constant protection against infection with SARS. PMID:18806349

  10. The Yellowstone Fires as Observed by SIR-C SAR

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Despain, Don; Holecz, Francesco

    1996-01-01

    Covers SIR-C (Spaceborne Imaging Radar C) SAR (Synthetic Aperture Radar) imaging of the 1988 Yellowstone National Forest fires. Discusses some of the images and data collected, and some conclusions drawn from them about both the fires, and SIR-C SAR imaging capabilities.

  11. Web-GIS-based SARS epidemic situation visualization

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolin

    2004-03-01

    In order to research, perform statistical analysis and broadcast the information of SARS epidemic situation according to the relevant spatial position, this paper proposed a unified global visualization information platform for SARS epidemic situation based on Web-GIS and scientific virtualization technology. To setup the unified global visual information platform, the architecture of Web-GIS based interoperable information system is adopted to enable public report SARS virus information to health cure center visually by using the web visualization technology. A GIS java applet is used to visualize the relationship between spatial graphical data and virus distribution, and other web based graphics figures such as curves, bars, maps and multi-dimensional figures are used to visualize the relationship between SARS virus tendency with time, patient number or locations. The platform is designed to display the SARS information in real time, simulate visually for real epidemic situation and offer an analyzing tools for health department and the policy-making government department to support the decision-making for preventing against the SARS epidemic virus. It could be used to analyze the virus condition through visualized graphics interface, isolate the areas of virus source, and control the virus condition within shortest time. It could be applied to the visualization field of SARS preventing systems for SARS information broadcasting, data management, statistical analysis, and decision supporting.

  12. (Q)SAR: A Tool for the Toxicologist.

    PubMed

    Steinbach, Thomas; Gad-McDonald, Samantha; Kruhlak, Naomi; Powley, Mark; Greene, Nigel

    2015-01-01

    A continuing education (CE) course at the 2014 American College of Toxicology annual meeting covered the topic of (Quantitative) Structure-Activity Relationships [(Q)SAR]. The (Q)SAR methodologies use predictive computer modeling based on predefined rules to describe the relationship between chemical structure and a chemical's associated biological activity or statistical tools to find correlations between biologic activity and the molecular structure or properties of a compound. The (Q)SAR has applications in risk assessment, drug discovery, and regulatory decision making. Pressure within industry to reduce the cost of drug development and societal pressure for government regulatory agencies to produce more accurate and timely risk assessment of drugs and chemicals have necessitated the use of (Q)SAR. Producing a high-quality (Q)SAR model depends on many factors including the choice of statistical methods and descriptors, but first and foremost the quality of the data input into the model. Understanding how a (Q)SAR model is developed and applied is critical to the successful use of such a tool. The CE session covered the basic principles of (Q)SAR, practical applications of these computational models in toxicology, how regulatory agencies use and interpret (Q)SAR models, and potential pitfalls of using them. PMID:25979517

  13. Wave retrieval from SAR imagery in the East China Sea

    NASA Astrophysics Data System (ADS)

    Lou, Xiulin; Chang, Junfang; Liu, Xiaoyan

    2015-12-01

    Synthetic aperture radar (SAR) plays an important role in measuring directional ocean wave spectra with continuous and global coverage. In this article, satellite SAR images were used to estimate the wave parameters in the East China Sea. The Max-Planck Institut (MPI) method was applied to retrieve directional wave spectra from the SAR imagers with the Simulating WAves Nearshore (SWAN) model data as the first guess wave spectra. In order to validate the SAR retrieved wave spectra, a set of buoy measurements during the SAR imaging times was collected and used. The SAR retrieved significant wave heights (SWHs) were analyzed against the buoy measurements to assess the wave retrieval of this study. The root-mean-square error between the SAR SWHs and the buoy measurements is 0.25 m, which corresponds to a relative error of 12%. The case study here shows that the SWAN model data is a potential first guess wave spectra source to the MPI method to retrieve ocean wave spectra from SAR imagery.

  14. A short note on calculating the adjusted SAR index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple algebraic technique is presented for computing the adjusted SAR Index proposed by Suarez (1981). The statistical formula presented in this note facilitates the computation of the adjusted SAR without the use of either a look-up table, custom computer software or the need to compute exact a...

  15. P3 SAR exploration of biphenyl carbamate based Legumain inhibitors.

    PubMed

    Higgins, Catherine; Bouazzaoui, Samira; Gaddale, Kishore; D'Costa, Zenobia; Templeman, Amy; O'Rourke, Martin; Young, Andrew; Scott, Christopher; Harrison, Tim; Mullan, Paul; Williams, Rich

    2014-06-01

    This Letter describes the further development and SAR exploration of a novel series of Legumain inhibitors. Based upon a previously identified Legumain inhibitor from our group, we explored the SAR of the carbamate phenyl ring system to probe the P3 pocket of the enzyme. This led to the identification of a sub-nanomolar inhibitor of Legumain. PMID:24775305

  16. SARS in Singapore--key lessons from an epidemic.

    PubMed

    Tan, Chorh-Chuan

    2006-05-01

    The rapid containment of the Singapore severe acute respiratory syndrome (SARS) outbreak in 2003 involved the introduction of several stringent control measures. These measures had a profound impact on the healthcare system and community, and were associated with significant disruptions to normal life, business and social intercourse. An assessment of the relative effectiveness of the various control measures is critical in preparing for future outbreaks of a similar nature. The very "wide-net" surveillance, isolation and quarantine policy adopted was effective in ensuring progressively earlier isolation of probable SARS cases. However, it resulted in nearly 8000 contacts being put on home quarantine and 4300 on telephone surveillance, with 58 individuals eventually being diagnosed with probable SARS. A key challenge is to develop very rapid and highly sensitive tests for SARS infection, which would substantially reduce the numbers of individuals that need to be quarantined without decreasing the effectiveness of the measure. Daily temperature monitoring of all healthcare workers (HCWs) in hospitals was useful for early identification of HCWs with SARS. However, daily temperature screening of children in schools failed to pick up any SARS cases. Similarly, temperature screening at the airport and other points of entry did not yield any SARS cases. Nevertheless, the latter 2 measures probably helped to reassure the public that schools and the community were safe during the SARS outbreak. Strong political leadership and effective command, control and coordination of responses were critical factors for the containment of the outbreak. PMID:16830002

  17. Salt Kinematics and InSAR

    NASA Technical Reports Server (NTRS)

    Aftabi, Pedarm; Talbot, hristopher; Fielding, Eric

    2005-01-01

    As part of a long-term attempt to learn how the climatic and tectonic signal interact to shape a steady state mountain monitored displacement of a markers in SE termination and also near the summit of a small viscous salt fountain extruding onto the Central plateau of Iran. The marker displacements relate to the first InSAR interferograms of salt extrusion (980913 to 990620) calculated Earth tides, winds, air pressures and temperatures. In the first documented staking exercise, hammered wooden stakes vertically through the surgical marl (c. 1 Ocm deep) onto the top of crystalline salt. These stakes installed in an irregular array elongate E-W along the c.50 m high cliff marking the effective SE terminus of the glacier at Qum Kuh(Centra1 Iran) ,just to the E of a NE trending river cliff about 40 m high. We merely measured the distances between pairs of stakes with known azimuth about 2 m apart to calculate sub horizontal strain in a small part of Qum Kuh. Stakes moved and micro strains for up to 46 pairs of stakes (p strain= ((lengthl-length2)/1engthl) x 10-1) was calculated for each seven stake epochs and plotted against their azimuth on simplified array maps. The data fit well the sine curves cxpected of the maximum and minimum strain ellipses. The first documented stakes located on the SE where the InSAR image show -1 1 to 0 mm pink to purple, 0 to lOmm purple to blue, and show high activity of salt in low activity area of the InSAR image (980913 to 990620).Short term micro strains of stake tie lines record anisotropic expansions due to heating and contraction due to cooling. All epochs changed between 7 to 1 17 days (990928 to000 1 16), showed 200 to 400 micro strain lengthening and shortening. The contraction and extension existed in each epoch, but the final strain was extension in E-W in Epoch land 6, contraction in E-W direction during epochs 2-3-4-5 and 7. The second pair of stakes hammered about 20 cm deep into the deep soils(more than 1 m) , near summit

  18. Compression of Complex-Valued SAR Imagery

    SciTech Connect

    Eichel P.; Ives, R.W.

    1999-03-03

    Synthetic Aperture Radars are coherent imaging systems that produce complex-valued images of the ground. Because modern systems can generate large amounts of data, there is substantial interest in applying image compression techniques to these products. In this paper, we examine the properties of complex-valued SAR images relevant to the task of data compression. We advocate the use of transform-based compression methods but employ radically different quantization strategies than those commonly used for incoherent optical images. The theory, methodology, and examples are presented.

  19. Detection of land degradation with polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Farr, Tom G.; Van Zyl, Jakob J.

    1992-01-01

    Multispectral radar polarimeter data were collected over the Manix Basin Area of the Mojave desert using an airborne SAR. An analysis of the data reveals unusual polarization responses which are attributed to the formation of wind ripples on the surfaces of fields that have been abandoned for more than 5 years. This hypothesis has been confirmed through field observations, and a second-order perturbation model is shown to effectively model the polarization responses. The results demonstrate the usefulness of remote sensing techniques for the study of land degradation at synoptic scales.

  20. Adsorption of Cadmium, Nickel and Zinc in a Brazilian Oxisoil

    NASA Astrophysics Data System (ADS)

    Casagrande, José Carlos; Martins, Susian Christian; Soares, Marcio Roberto

    2010-05-01

    The adsorption reactions mechanisms provide the understanding of the pollutant fate metals and often control the bioavailability and transport of heavy metals ions in soil, indicating the preventive environmental control. The cadmium, nickel and zinc behavior in the soils are explained by the reactions of adsorption, influenced by pH and ionic strength. The objective of this work was to study the influence of those factors on cadmium, nickel and zinc adsorption in an oxisol. It was studied the Cd, Ni and Zn adsorption in soil samples of the State of São Paulo (Anionic "Xanthic" Acrudox), collected in surface and in depth and submitted to solutions of Ca(NO3)2 1,0; 0,1 and 0,01 mol L-1. The pH of the samples from 3,0 to 10,0 was varied adding NaOH or HCl 4 mol L-1 not surpassing 2% of the electrolyte volume. The soil samples received 5,0 mg dm-3 of cadmium, nickel and zinc, ratio 1:10 (2,0 g of soil: 20 solution ml) and were shacked for 24 hours. The cadmium, nickel and zinc adsorption increased with pH, reaching it picks at pH 7,0 for cadmium and approximately at pH 6,0 for nickel and zinc. This indicates that zinc and nickel have higher affinity than cadmium with the soil colloids, because it reached the maximum adsorption in a small pH value. In other words, the amount of negative charges necessary to promote the maximum adsorption was small for zinc. The influence of ionic strengths was small for cadmium, nickel and zinc adsorption, being similar from pH 3,0 to 10,0, in surface soil layer and in depth, demonstrating that competition with Ca2+ for the retention colloid sites of the soils didn't interfere in the adsorption. In that way, it is supposed that cadmium, nickel and zinc binding energy is high in a soil rich in Fe and Al oxides. Adsorption of cadmium, nickel and zinc was similar for the ionic strengths, not depending on PZSE. The cadmium, nickel and zinc adsorption increased with pH elevation, with small ionic strength influence. Nickel and zinc have

  1. Multisite adsorption of cadmium on goethite

    SciTech Connect

    Venema, P.; Hiemstra, T.; Riemsdijk, W.H. van

    1996-11-10

    Recently a new general ion adsorption model has been developed for ion binding to mineral surfaces (Hiemstra and van Riemsdijk, 1996). The model uses the Pauling concept of charge distribution (CD) and is an extension of the multi-site complexation (MUSIC) approach. In the CD-MUSIC model the charge of an adsorbing ion that forms an inner sphere complex is distributed over its ligands, which are present in two different electrostatic planes. In this paper the authors have applied the CD-MUSIC model to the adsorption of metal cations, using an extended data set for cadmium adsorbing on goethite. The adsorption of cadmium and the cadmium-proton exchange ratio were measured as function of metal ion concentration, pH, and ionic strength. The data could be described well, taking into account the surface heterogeneity resulting from the presence of two different crystal planes (the dominant 110 face and the minor 021 face). The surface species used in the model are consistent with recent EXAFS data. In accordance with the EXAFS results, high-affinity complexes at the 021 face were used in the model.

  2. Rethinking Critical Adsorption

    NASA Astrophysics Data System (ADS)

    Franck, Carl; Peach, Sarah; Polak, Robert D.

    1996-03-01

    Recent reflectivity experiments on near-critical mixtures of carbon disulfide and nitromethane contained in glass cells footnote Niraj S. Desai, Sarah Peach, and Carl Franck, Phys. Rev. E 52, 4129 (1995) have shown that preferential adsorption of one liquid component onto the wall can be controlled by chemical modification of the glass. The glass was treated with varying amounts of hexamethyldisilazane to decrease surface polarity and therefore enhance the adsorption of carbon disulfide in a surprisingly continuous way. The effect of the glass wall on the local liquid composition can be described by two different scaling hypotheses: using a short range field on the liquid closest to the wall, or pinning the amplitude of the order parameter at the surface. We have found that only the second approach is consistent with the experimental data, although this is difficult to reconcile with observed wetting critical phenomena. We also have reexamined the issue of substrate inhomogeneity and conclude that the substrates were indeed homogeneous on relevant length scales. Supported by the NSF under DMR-9320910 and the central facilities of the Materials Science Center at Cornell University.

  3. Adsorption behaviour of bulgur.

    PubMed

    Erbaş, Mustafa; Aykın, Elif; Arslan, Sultan; Durak, Atike N

    2016-03-15

    The aim of this research was to determine the adsorption behaviour of bulgur. Three different particle sizes (2adsorption, because of %E values lower than 10%. Bulgur must be stored below 70% relative humidity and with less than 10 g water per 100 g of dry mater. PMID:26575716

  4. The Accuratre Signal Model and Imaging Processing in Geosynchronous SAR

    NASA Astrophysics Data System (ADS)

    Hu, Cheng

    With the development of synthetic aperture radar (SAR) application, the disadvantage of low earth orbit (LEO) SAR becomes more and more apparent. The increase of orbit altitude can shorten the revisit time and enlarge the coverage area in single look, and then satisfy the application requirement. The concept of geosynchronous earth orbit (GEO) SAR system is firstly presented and deeply discussed by K.Tomiyasi and other researchers. A GEO SAR, with its fine temporal resolution, would overcome the limitations of current imaging systems, allowing dense interpretation of transient phenomena as GPS time-series analysis with a spatial density several orders of magnitude finer. Until now, the related literatures about GEO SAR are mainly focused in the system parameter design and application requirement. As for the signal characteristic, resolution calculation and imaging algorithms, it is nearly blank in the related literatures of GEO SAR. In the LEO SAR, the signal model analysis adopts the `Stop-and-Go' assumption in general, and this assumption can satisfy the imaging requirement in present advanced SAR system, such as TerraSAR, Radarsat2 and so on. However because of long propagation distance and non-negligible earth rotation, the `Stop-and-Go' assumption does not exist and will cause large propagation distance error, and then affect the image formation. Furthermore the long propagation distance will result in the long synthetic aperture time such as hundreds of seconds, therefore the linear trajectory model in LEO SAR imaging will fail in GEO imaging, and the new imaging model needs to be proposed for the GEO SAR imaging processing. In this paper, considering the relative motion between satellite and earth during signal propagation time, the accurate analysis method for propagation slant range is firstly presented. Furthermore, the difference between accurate analysis method and `Stop-and-Go' assumption is analytically obtained. Meanwhile based on the derived

  5. ADSORPTION AND CATALYTIC DESTRUCTION OF TRICHLOROETHYLENE IN HYDROPHOBIC ZEOLITES

    EPA Science Inventory

    Several chromium exchanged ZSM-5 zeolites of varying SiO2/Al2O3 ratio were prepared and investigated for ambient (23 ?C) adsorption and subsequent oxidative destruction (250-400 ?C) of gaseous trichloroethylene (TCE, Cl2C=CHCl) in a humid air stream. With an increase in the SiO2...

  6. Single Baseline Tomography SAR for Forest Above Ground Biomass Estimation

    NASA Astrophysics Data System (ADS)

    Li, Wenmei; Chen, Erxue; Li, Zengyuan; Wang, Xinshuang; Feng, Qi

    2013-01-01

    Single baseline tomography SAR is used for forest height estimation as its little restriction on the number of baselines and configurations of tracks in recent years. There existed two kinds of single baseline tomography SAR techniques, the polarimetric coherence tomography (PCT) and the sum of Kronecker product (SKP), algebraic synthesis (AS) and Capon spectral estimator approach (SKP-AS-Capon). Few researches on forest above ground biomass (AGB) estimation are there using single baseline tomography SAR. In this paper, PCT and SKP-AS-Capon approaches are proposed for forest AGB estimation. L-band data set acquired by E-SAR airborne system in 2003 for the forest test site in Traunstein, is used for this experiment. The result shows that single baseline polarimetric tomography SAR can obtain forest AGB in forest stand scale, and SKP-AS-Capon method has better detailed vertical structure information, while the Freeman 3-component combined PCT approach gets a homogenous vertical structure in forest stand.

  7. Assessing ScanSAR Interferometry for Deformation Studies

    NASA Astrophysics Data System (ADS)

    Buckley, S. M.; Gudipati, K.

    2007-12-01

    There is a trend in civil satellite SAR mission design to implement an imaging strategy that incorporates both stripmap mode and ScanSAR imaging. This represents a compromise between high resolution data collection and a desire for greater spatial coverage and more frequent revisit times. However, mixed mode imaging can greatly reduce the number of stripmap images available for measuring subtle ground deformation. Although ScanSAR-ScanSAR and ScanSAR-stripmap repeat-pass interferometry have been demonstrated, these approaches are infrequently used for single interferogram formation and nonexistent for InSAR time series analysis. For future mission design, e.g., a dedicated US InSAR mission, the effect of various ScanSAR system parameter choices on InSAR time series analysis also remains unexplored. Our objective is to determine the utility of ScanSAR differential interferometry. We will demonstrate the use of ScanSAR interferograms for several previous deformation studies: localized and broad-scale urban land subsidence, tunneling, volcanic surface movements and several examples associated with the seismic cycle. We also investigate the effect of various ScanSAR burst synchronization levels on our ability to detect and make quality measurements of deformation. To avoid the issues associated with Envisat ScanSAR burst alignment and to exploit a decade of InSAR measurements, we simulate ScanSAR data by bursting (throwing away range lines of) ERS-1/2 data. All the burst mode datasets are processed using a Modified SPECAN algorithm. To investigate the effects of burst misalignment, a number of cases with varying degrees of burst overlap are considered. In particular, we look at phase decorrelation as a function of percentage of burst overlap. Coherence clearly reduces as the percentage of overlap decreases and we find a useful threshold of 40-70% burst overlap depending on the study site. In order to get a more generalized understanding for different surface conditions

  8. Ship detection in SAR images using efficient land masking methods

    NASA Astrophysics Data System (ADS)

    Mashaly, Ahmed S.; AbdElkawy, Ezz F.; Mahmoud, Tarek A.

    2014-06-01

    Synthetic Aperture Radar (SAR) has an important contribution in monitoring ships in the littoral regions. This stems from the substantial information that SAR images have which can facilitate the ships detection operation. Coastline images produced by SAR suffer from many deficiencies which arise from the presence of speckles and strong signals returned from land and rough sea. The first step in many ship detection systems is to mark and reject the land in SAR images (land masking). This is performed to reduce the number of false alarms that might be introduced if the land is processed by ship detector. In this paper, two powerful methods for land masking are introduced. One is based on mathematical morphology while the other is based on Lee-Jurkevich coastline detection and mean estimator algorithm. From experimental results, the proposed methods give promising results for both strongly marking the land area in SAR images and efficiently preserving the details of coastlines as well.

  9. Adsorption and desorption of uranium (VI) in aerated zone soil.

    PubMed

    Li, Xiaolong; Wu, Jiaojiao; Liao, Jiali; Zhang, Dong; Yang, Jijun; Feng, Yue; Zeng, Junhui; Wen, Wei; Yang, Yuanyou; Tang, Jun; Liu, Ning

    2013-01-01

    In this paper, the adsorption and desorption behavior of uranium (VI) in aerated zone soil (from Southwest China) was systematically investigated using a static experimental method in order to provide useful information for safety assessment of the disposal of (ultra-)low uraniferous radioactive waste, as well as a potential remediation method for uranium-contaminated soils. The adsorption behavior of uranium (VI) was firstly studied by batch experiments as functions of contact time, pH, liquid/solid ratio, temperature, colloids, minerals and coexistent ions. The results indicated that the adsorption of uranium (VI) by natural soil was efficient at an initial concentration of 10 mg/L uranium (VI) nitrate solution with 100 mg natural soil at room temperature when pH is about 7.0. The adsorption was strongly influenced by the solution pH, contact time, initial concentration and colloids. The adsorption equilibrium for uranium (VI) in soil was obtained within 24 h and the process could be described by the Langmuir adsorption equation. For uranium (VI) desorption, EDTA, citric acid and HNO(3) were evaluated under different conditions of temperature, concentration and proportion of liquid to solid. The adsorbed uranium (VI) on natural soil could be easily extracted by all these agents, especially by HNO(3), implying that the uranium-contaminated soils can be remedied by these reagents. PMID:22939949

  10. Internal wave parameters retrieval from space-borne SAR image

    NASA Astrophysics Data System (ADS)

    Fan, Kaiguo; Fu, Bin; Gu, Yanzhen; Yu, Xingxiu; Liu, Tingting; Shi, Aiqin; Xu, Ke; Gan, Xilin

    2015-12-01

    Based on oceanic internal wave SAR imaging mechanism and the microwave scattering imaging model for oceanic surface features, we developed a new method to extract internal wave parameters from SAR imagery. Firstly, the initial wind fields are derived from NCEP reanalysis data, the sea water density and oceanic internal wave pycnocline depth are estimated from the Levites data, the surface currents induced by the internal wave are calculated according to the KDV equation. The NRCS profile is then simulated by solving the action balance equation and using the sea surface radar backscatter model. Both the winds and internal wave pycnocline depth are adjusted by using the dichotomy method step by step to make the simulated data approach the SAR image. Then, the wind speed, pycnocline depth, the phase speed, the group velocity and the amplitude of internal wave can be retrieved from SAR imagery when a best fit between simulated signals and the SAR image appears. The method is tested on one scene SAR image near Dongsha Island, in the South China Sea, results show that the simulated oceanic internal wave NRCS profile is in good agreement with that on the SAR image with the correlation coefficient as high as 90%, and the amplitude of oceanic internal wave retrieved from the SAR imagery is comparable with the SODA data. Besides, the phase speeds retrieved from other 16 scene SAR images in the South China Sea are in good agreement with the empirical formula which describes the relations between internal wave phase speed and water depths, both the root mean square and relative error are less than 0.11 m•s-1 and 7%, respectively, indicating that SAR images are useful for internal wave parameters retrieval and the method developed in this paper is convergent and applicable.

  11. Comparison and Analysis of Geometric Correction Models of Spaceborne SAR

    PubMed Central

    Jiang, Weihao; Yu, Anxi; Dong, Zhen; Wang, Qingsong

    2016-01-01

    Following the development of synthetic aperture radar (SAR), SAR images have become increasingly common. Many researchers have conducted large studies on geolocation models, but little work has been conducted on the available models for the geometric correction of SAR images of different terrain. To address the terrain issue, four different models were compared and are described in this paper: a rigorous range-doppler (RD) model, a rational polynomial coefficients (RPC) model, a revised polynomial (PM) model and an elevation derivation (EDM) model. The results of comparisons of the geolocation capabilities of the models show that a proper model for a SAR image of a specific terrain can be determined. A solution table was obtained to recommend a suitable model for users. Three TerraSAR-X images, two ALOS-PALSAR images and one Envisat-ASAR image were used for the experiment, including flat terrain and mountain terrain SAR images as well as two large area images. Geolocation accuracies of the models for different terrain SAR images were computed and analyzed. The comparisons of the models show that the RD model was accurate but was the least efficient; therefore, it is not the ideal model for real-time implementations. The RPC model is sufficiently accurate and efficient for the geometric correction of SAR images of flat terrain, whose precision is below 0.001 pixels. The EDM model is suitable for the geolocation of SAR images of mountainous terrain, and its precision can reach 0.007 pixels. Although the PM model does not produce results as precise as the other models, its efficiency is excellent and its potential should not be underestimated. With respect to the geometric correction of SAR images over large areas, the EDM model has higher accuracy under one pixel, whereas the RPC model consumes one third of the time of the EDM model. PMID:27347973

  12. Real-time optical processor prototype for remote SAR applications

    NASA Astrophysics Data System (ADS)

    Marchese, Linda; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Bourqui, Pascal; Legros, Mathieu; Desnoyers, Nichola; Guillot, Ludovic; Mercier, Luc; Savard, Maxime; Martel, Anne; Châteauneuf, François; Bergeron, Alain

    2009-09-01

    A Compact Real-Time Optical SAR Processor has been successfully developed and tested. SAR, or Synthetic Aperture Radar, is a powerful tool providing enhanced day and night imaging capabilities. SAR systems typically generate large amounts of information generally in the form of complex data that are difficult to compress. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Indeed, the first SAR images have been optically processed. The optical processor architecture provides inherent parallel computing capabilities that can be used advantageously for the SAR data processing. Onboard SAR image generation would provide local access to processed information paving the way for real-time decision-making. This could eventually benefit navigation strategy and instrument orientation decisions. Moreover, for interplanetary missions, onboard analysis of images could provide important feature identification clues and could help select the appropriate images to be transmitted to Earth, consequently helping bandwidth management. This could ultimately reduce the data throughput requirements and related transmission bandwidth. This paper reviews the design of a compact optical SAR processor prototype that would reduce power, weight, and size requirements and reviews the analysis of SAR image generation using the table-top optical processor. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and size are reviewed. Results of image generation from simulated point targets as well as real satellite-acquired raw data are presented.

  13. Comparison and Analysis of Geometric Correction Models of Spaceborne SAR.

    PubMed

    Jiang, Weihao; Yu, Anxi; Dong, Zhen; Wang, Qingsong

    2016-01-01

    Following the development of synthetic aperture radar (SAR), SAR images have become increasingly common. Many researchers have conducted large studies on geolocation models, but little work has been conducted on the available models for the geometric correction of SAR images of different terrain. To address the terrain issue, four different models were compared and are described in this paper: a rigorous range-doppler (RD) model, a rational polynomial coefficients (RPC) model, a revised polynomial (PM) model and an elevation derivation (EDM) model. The results of comparisons of the geolocation capabilities of the models show that a proper model for a SAR image of a specific terrain can be determined. A solution table was obtained to recommend a suitable model for users. Three TerraSAR-X images, two ALOS-PALSAR images and one Envisat-ASAR image were used for the experiment, including flat terrain and mountain terrain SAR images as well as two large area images. Geolocation accuracies of the models for different terrain SAR images were computed and analyzed. The comparisons of the models show that the RD model was accurate but was the least efficient; therefore, it is not the ideal model for real-time implementations. The RPC model is sufficiently accurate and efficient for the geometric correction of SAR images of flat terrain, whose precision is below 0.001 pixels. The EDM model is suitable for the geolocation of SAR images of mountainous terrain, and its precision can reach 0.007 pixels. Although the PM model does not produce results as precise as the other models, its efficiency is excellent and its potential should not be underestimated. With respect to the geometric correction of SAR images over large areas, the EDM model has higher accuracy under one pixel, whereas the RPC model consumes one third of the time of the EDM model. PMID:27347973

  14. An introduction to the interim digital SAR processor and the characteristics of the associated Seasat SAR imagery

    NASA Technical Reports Server (NTRS)

    Wu, C.; Barkan, B.; Huneycutt, B.; Leang, C.; Pang, S.

    1981-01-01

    Basic engineering data regarding the Interim Digital SAR Processor (IDP) and the digitally correlated Seasat synthetic aperature radar (SAR) imagery are presented. The correlation function and IDP hardware/software configuration are described, and a preliminary performance assessment presented. The geometric and radiometric characteristics, with special emphasis on those peculiar to the IDP produced imagery, are described.

  15. Relations of SARS-Related Stressors and Coping to Chinese College Students' Psychological Adjustment during the 2003 Beijing SARS Epidemic

    ERIC Educational Resources Information Center

    Main, Alexandra; Zhou, Qing; Ma, Yue; Luecken, Linda J.; Liu, Xin

    2011-01-01

    This study examined the main and interactive relations of stressors and coping related to severe acute respiratory syndrome (SARS) with Chinese college students' psychological adjustment (psychological symptoms, perceived general health, and life satisfaction) during the 2003 Beijing SARS epidemic. All the constructs were assessed by self-report…

  16. Global versus local adsorption selectivity

    NASA Astrophysics Data System (ADS)

    Pauzat, Françoise; Marloie, Gael; Markovits, Alexis; Ellinger, Yves

    2015-10-01

    The origin of the enantiomeric excess found in the amino acids present in the organic matter of carbonaceous meteorites is still unclear. Selective adsorption of one of the two enantiomers existing after a racemic formation could be part of the answer. Hereafter we report a comparative study of the adsorption of the R and S enantiomers of α-alanine and lactic acid on the hydroxylated { } chiral surface of α-quartz using numerical simulation techniques. Structurally different adsorption sites were found with opposite R versus S selectivity for the same molecule-surface couple, raising the problem of whether to consider adsorption as a local property or as a global response characteristic of the whole surface. To deal with the second term of this alternative, a statistical approach was designed, based on the occurrence of each adsorption site whose energy was calculated using first principle periodic density functional theory. It was found that R-alanine and S-lactic acid are the enantiomers preferentially adsorbed, even if the adsorption process on the quartz { } surface stays with a disappointingly poor enantio-selectivity. Nevertheless, it highlighted the important point that considering adsorption as a global property changes perspectives in the search for more efficient enantio-selective supports and more generally changes the way to apprehend adsorption processes in astro-chemistry/biology.

  17. Liquid-Phase Adsorption Fundamentals.

    ERIC Educational Resources Information Center

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  18. ADSORPTION MEDIA FOR ARSENIC REMOVAL

    EPA Science Inventory

    Presentation will discuss the use of adsorptive media for the removal of arsenic from drinking water. Presentation is a fundamental discussion on the use of adsorptive media for arsenic removal and includes information from several EPA field studies on removal of arsenic from dr...

  19. Discrimination of crop types with TerraSAR-X-derived information

    NASA Astrophysics Data System (ADS)

    Sonobe, Rei; Tani, Hiroshi; Wang, Xiufeng; Kobayashi, Nobuyuki; Shimamura, Hideki

    Although classification maps are required for management and for the estimation of agricultural disaster compensation, those techniques have yet to be established. This paper describes the comparison of three different classification algorithms for mapping crops in Hokkaido, Japan, using TerraSAR-X (including TanDEM-X) dual-polarimetric data. In the study area, beans, beets, grasslands, maize, potatoes and winter wheat were cultivated. In this study, classification using TerraSAR-X-derived information was performed. Coherence values, polarimetric parameters and gamma nought values were also obtained and evaluated regarding their usefulness in crop classification. Accurate classification may be possible with currently existing supervised learning models. A comparison between the classification and regression tree (CART), support vector machine (SVM) and random forests (RF) algorithms was performed. Even though J-M distances were lower than 1.0 on all TerraSAR-X acquisition days, good results were achieved (e.g., separability between winter wheat and grass) due to the characteristics of the machine learning algorithm. It was found that SVM performed best, achieving an overall accuracy of 95.0% based on the polarimetric parameters and gamma nought values for HH and VV polarizations. The misclassified fields were less than 100 a in area and 79.5-96.3% were less than 200 a with the exception of grassland. When some feature such as a road or windbreak forest is present in the TerraSAR-X data, the ratio of its extent to that of the field is relatively higher for the smaller fields, which leads to misclassifications.

  20. Multi-scale InSAR analysis of aseismic creep across the San Andreas, Calevaras,and Hayward Fault systems

    NASA Astrophysics Data System (ADS)

    Agram, P. S.; Simons, M.

    2011-12-01

    We apply the Multi-scale Interferometric Time-series (MInTS) technique, developed at Caltech,to study spatial variations in aseismic creep across the San Andreas, Calaveras and Hayward Faultsystems in Central California.Interferometric Synthetic Aperture Radar (InSAR) Time-series methods estimate the spatio-temporal evolution of surface deformation using multiple SAR interferograms. Traditional time-series analysis techniques like persistent scatterers and short baseline methods assume the statistical independence of InSAR phase measurements over space and time when estimating deformation. However, existing atmospheric phase screen models clearly show that noise in InSAR phase observations is correlated over the spatial domain. MInTS is an approach designed to exploit the correlation of phase observations over space to significantly improve the signal-to-noise ratio in the estimated deformation time-series compared to the traditional time-series InSAR techniques. The MInTS technique reduces the set of InSAR observations to a set of almost uncorrelated observations at various spatial scales using wavelets. Traditional inversion techniques can then be applied to the wavelet coefficients more effectively. Creep across the Central San Andreas Fault and the Hayward Fault has been studied previously using C-band (6 cm wavelength) ERS data, but detailed analysis of the transition zone between the San Andreas and Hayward Faults was not possible due to severe decorrelation. Improved coherence at L-band (24 cm wavelength) significantly improves the spatial coverage of the estimated deformation signal in our ALOS PALSAR data set. We analyze 450 ALOS PALSAR interferograms processed using 175 SAR images acquired between Dec 2006 and Dec 2010 that cover the area along the San Andreas Fault System from Richmond in the San Francisco Bay Area to Maricopa in the San Joaquin Valley.We invert the InSAR phase observations to estimate the constant Line-of-Sight (LOS) deformation

  1. Estimation of Biomass Carbon Stocks over Peat Swamp Forests using Multi-Temporal and Multi-Polratizations SAR Data

    NASA Astrophysics Data System (ADS)

    Wijaya, A.; Liesenberg, V.; Susanti, A.; Karyanto, O.; Verchot, L. V.

    2015-04-01

    The capability of L-band radar backscatter to penetrate through the forest canopy is useful for mapping the forest structure, including above ground biomass (AGB) estimation. Recent studies confirmed that the empirical AGB models generated from the L-band radar backscatter can provide favourable estimation results, especially if the data has dual-polarization configuration. Using dual polarimetry SAR data the backscatter signal is more sensitive to forest biomass and forest structure because of tree trunk scattering, thus showing better discriminations of different forest successional stages. These SAR approaches, however, need to be further studied for the application in tropical peatlands ecosystem We aims at estimating forest carbon stocks and stand biophysical properties using combination of multi-temporal and multi-polarizations (quad-polarimetric) L-band SAR data and focuses on tropical peat swamp forest over Kampar Peninsula at Riau Province, Sumatra, Indonesia which is one of the most peat abundant region in the country. Applying radar backscattering (Sigma nought) to model the biomass we found that co-polarizations (HH and VV) band are more sensitive than cross-polarization channels (HV and VH). Individual HH polarization channel from April 2010 explained > 86% of AGB. Whereas VV polarization showed strong correlation coefficients with LAI, tree height, tree diameter and basal area. Surprisingly, polarimetric anisotropy feature from April 2007 SAR data show relatively high correlations with almost all forest biophysical parameters. Polarimetric anisotropy, which explains the ratio between the second and the first dominant scattering mechanism from a target has reduced at some extent the randomness of scattering mechanism, thus improve the predictability of this particular feature in estimating the forest properties. These results may be influenced by local seasonal variations of the forest as well as moisture, but available quad-pol SAR data were unable to

  2. Controlling the adsorption enthalpy of CO(2) in zeolites by framework topology and composition.

    PubMed

    Grajciar, Lukáš; Čejka, Jiří; Zukal, Arnošt; Otero Areán, Carlos; Turnes Palomino, Gemma; Nachtigall, Petr

    2012-10-01

    Zeolites are often investigated as potential adsorbents for CO(2) adsorption and separation. Depending on the zeolite topology and composition (Si/Al ratio and extra-framework cations), the CO(2) adsorption heats at low coverages vary from -20 to -60 kJ mol(-1), and with increasing surface coverage adsorption heats either stay approximately constant or they quickly drop down. Experimental adsorption heats obtained for purely siliceous porous solids and for ion-exchanged zeolites of the structural type MFI, FER, FAU, LTA, TUN, IMF, and -SVR are discussed in light of results of periodic density functional theory calculations corrected for the description of dispersion interactions. Key factors influencing the stability of CO(2) adsorption complexes are identified and discussed at the molecular level. A general model for CO(2) adsorption in zeolites and related materials is proposed and data reported in literature are evaluated with regard to the proposed model. PMID:22887989

  3. Ultrawideband VHF SAR design and measurements

    NASA Astrophysics Data System (ADS)

    Hellsten, Hans; Froelind, Per-Olov; Gustafsson, Anders; Jonsson, T.; Larsson, Bjoern; Stenstroem, Gunnar; Binder, Bradley T.; Mirkin, Mitchell I.; Ayasli, Serpil

    1994-07-01

    CARABAS, an acronym for `coherent all radio band sensing,' is an airborne, horizontal-polarization SAR operating across the frequency band 20 to 90 MHz, conceived, designed and built by FOA in Sweden. The original motivation for designing such a low frequency system was that a large relative or fractional bandwidth could be achieved at low frequencies. For reasons to be explained, a large fractional bandwidth was considered to be of potential benefit for radar detection in severe clutter environments. A feasibility study of a short wave ultra-wideband radar started at FOA in 1985. Actual construction of the CARABAS system commenced 1987, aircraft integration took place during 1991 and the first radar tests were conducted in early 1992. From the fall of 1992 onwards, field campaigns and evaluation studies have been conducted as a joint effort between FOA and MIT Lincoln Laboratory in the US. This article will focus on experiences concerning foliage penetration with the system. First we touch upon the CARABAS system characteristics, outline the arguments behind a large fractional bandwidth VHF-band SAR approach to foliage penetration, and finally present some early experimental results. We refer to other papers for a fuller explanation of the system, for more details of image calibration, and for results concerning underground imaging.

  4. Coherent aspect-dependent SAR image formation

    NASA Astrophysics Data System (ADS)

    Chaney, Ronald D.; Willsky, Alan S.; Novak, Leslie M.

    1994-06-01

    An adaptive image formation algorithm is proposed to exploit the aspect-angle dependence of man-made scatterers in foliage penetrating (FOPEN) synthetic aperture radar (SAR). Man-made scatterers often exhibit a strong dependence on the aspect angle between the orientation of the scatterer and the line of sight of the radar. More specifically, the return from a man-made target is greater when the target is oriented broadside with respect to the radar. Conventional SAR image formation processing assumes that backscatter is independent of the aspect angle; by relaxing this assumption, it is possible to reformulate the image formation process to improve the separability of man-made scatterers vs. natural clutter. We propose an image formation process that adapts the length and position of the aperture used during the cross-range compression stage. The algorithm identifies the locations that are likely to correspond to aspect- dependent scatterers. In the vicinity of such scatterers, the algorithm chooses the aperture to match the expected return from a man-made scatterer. Elsewhere, the algorithm uses the full aperture. The resulting imagery enhances man-made targets relative to the background clutter and facilitates improved detection performance.

  5. Classification SAR targets with support vector machine

    NASA Astrophysics Data System (ADS)

    Cao, Lanying

    2007-02-01

    With the development of Synthetic Aperture Radar (SAR) technology, automatic target recognition (ATR) is becoming increasingly important. In this paper, we proposed a 3-class target classification system in SAR images. The system is based on invariant wavelet moments and support vector machine (SVM) algorithm. It is a two-stage approach. The first stage is to extract and select a small set of wavelet invariant moment features to indicate target images. The wavelet invariant moments take both advantages of the wavelet inherent property of multi-resolution analysis and moment invariants quality of invariant to translation, scaling changes and rotation. The second stage is classification of targets with SVM algorithm. SVM is based on the principle of structural risk minimization (SRM), which has been shown better than the principle of empirical risk minimization (ERM) which is used by many conventional networks. To test the performance and efficiency of the proposed method, we performed experiments on invariant wavelet moments, different kernel functions, 2-class identification, and 3-class identification. Test results show that wavelet invariant moments indicate the target effectively; linear kernel function achieves better results than other kernel functions, and SVM classification approach performs better than conventional nearest distance approach.

  6. SAR Image despeckling via sparse representation

    NASA Astrophysics Data System (ADS)

    Wang, Zhongmei; Yang, Xiaomei; Zheng, Liang

    2014-11-01

    SAR image despeckling is an active research area in image processing due to its importance in improving the quality of image for object detection and classification.In this paper, a new approach is proposed for multiplicative noise in SAR image removal based on nonlocal sparse representation by dictionary learning and collaborative filtering. First, a image is divided into many patches, and then a cluster is formed by clustering log-similar image patches using Fuzzy C-means (FCM). For each cluster, an over-complete dictionary is computed using the K-SVD method that iteratively updates the dictionary and the sparse coefficients. The patches belonging to the same cluster are then reconstructed by a sparse combination of the corresponding dictionary atoms. The reconstructed patches are finally collaboratively aggregated to build the denoised image. The experimental results show that the proposed method achieves much better results than many state-of-the-art algorithms in terms of both objective evaluation index (PSNR and ENL) and subjective visual perception.

  7. Rapid inactivation of SARS-like coronaviruses.

    SciTech Connect

    Kapil, Sanjay; Oberst, R. D.; Bieker, Jill Marie; Tucker, Mark David; Souza, Caroline Ann; Williams, Cecelia Victoria

    2004-03-01

    Chemical disinfection and inactivation of viruses is largely understudied, but is very important especially in the case of highly infectious viruses. The purpose of this LDRD was to determine the efficacy of the Sandia National Laboratories developed decontamination formulations against Bovine Coronavirus (BCV) as a surrogate for the coronavirus that causes Severe Acute Respiratory Syndrome (SARS) in humans. The outbreak of SARS in late 2002 resulted from a highly infectious virus that was able to survive and remain infectious for extended periods. For this study, preliminary testing with Escherichia coli MS-2 (MS-2) and Escherichia coli T4 (T4) bacteriophages was conducted to develop virucidal methodology for verifying the inactivation after treatment with the test formulations following AOAC germicidal methodologies. After the determination of various experimental parameters (i.e. exposure, concentration) of the formulations, final testing was conducted on BCV. All experiments were conducted with various organic challenges (horse serum, bovine feces, compost) for results that more accurately represent field use condition. The MS-2 and T4 were slightly more resistant than BCV and required a 2 minute exposure while BCV was completely inactivated after a 1 minute exposure. These results were also consistent for the testing conducted in the presence of the various organic challenges indicating that the test formulations are highly effective for real world application.

  8. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; Lu, Daniel

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  9. Adsorption of coliphages T1 and T7 to clay minerals.

    PubMed Central

    Schiffenbauer, M; Stotzky, G

    1982-01-01

    Coliphages T1 and T7 of Escherichia coli were absorbed by kaolinite (K) and montmorillonite (M). Maximum adsorption of T7 (96%) to M was greater than that of T1 (84%), but the adsorption of both coliphages to K was the same (99%). Positively charged sites (i.e., anion exchange sites) on the clays appeared to be primarily responsible for the adsorption of T1 to K but only partially responsible for the adsorption of T1 to M; equilibrium adsorption isotherms of T1 to K and M did not show a correlation between adsorption and the cation exchange capacity of the clays, and the reduction in adsorption caused by sodium metaphosphate (a polyanion that interacts with positively charged sites on clay) was more pronounced with K than with M. The equilibrium adsorption isotherms of T7 to K and M suggested a correlation between adsorption and the cation exchange capacity of the clays. However, studies with sodium metaphosphate indicated that T7 also adsorbed to positively charged sites on the clays, especially on K. Adsorption of the coliphages to positively charged sites was greater with K than with M, probably because the ratio of positively charged sites to negatively charged sites was greater on K than on M. PMID:7041821

  10. Isotopic Ratio, Isotonic Ratio, Isobaric Ratio and Shannon Information Uncertainty

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Wei, Hui-Ling

    2014-11-01

    The isoscaling and the isobaric yield ratio difference (IBD) probes, both of which are constructed by yield ratio of fragment, provide cancelation of parameters. The information entropy theory is introduced to explain the physical meaning of the isoscaling and IBD probes. The similarity between the isoscaling and IBD results is found, i.e., the information uncertainty determined by the IBD method equals to β - α determined by the isoscaling (α (β) is the parameter fitted from the isotopic (isotonic) yield ratio).

  11. Physical Adsorption of Gases on Heterogeneous Solids and Equilibrium Studies of the Pressure Swing Adsorption Process.

    NASA Astrophysics Data System (ADS)

    Lu, Xiaochun

    1990-01-01

    Adsorption isotherms of ethane, propane, and n -butane on two polystyrene adsorbents and two activated carbons were measured at 0, 25, and 40^ circC. A dynamic chromatographic experimental system was used to measure the transmission curves of gases through a packed bed. The transmission is defined as the ratio of the adsorbate concentration at the bed outlet to that at the bed inlet. A mass-balance equation was used to calculate the solid-phase concentration and the dimensionless adsorption capacity. The structural and energetic heterogeneities of microporous adsorbents were explored by means of Dubinin's Theory of Volume Filling of Micropores (TVFM) and by a modified TVFM. The structural heterogeneity of a microporous adsorbent refers to the non-uniformity of the pore sizes and pore shapes. In polystyrene adsorbents, these non -uniform pores were formed by different copolymerization of monomers; while in activated carbons, these non-uniform pores were formed in the processes of carbonization and activation. The energetic heterogeneities of a microporous adsorbent comes from the structural heterogeneity as well as from the various atoms and functional groups exposed at the pore surface, the impurities strongly bound to the surface, and the irregularities in the crystallographical structure of the surface. Dubinin's original TVFM applies well in structurally homogeneous or weakly-heterogeneous microporous activated carbons; however, fits of experimental isotherms to the Dubinin-Radushkevich equation reveal deviations for structurally -heterogeneous adsorbents. We extended Dubinin's TVFM to the case of structurally-heterogeneous adsorbents by using an overall integral isotherm equation. A gamma-function type micropore-size distribution was used and a three-parameter isotherm equation was obtained. The experimental isotherms on activated carbons were fitted well by this isotherm equation. We characterized eight different activated carbons with the three

  12. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  13. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  14. Chromium adsorption by lignin

    SciTech Connect

    Lalvani, S.B.; Huebner, A.; Wiltowski, T.S.

    2000-01-01

    Hexavalent chromium is a known carcinogen, and its maximum contamination level in drinking water is determined by the US Environmental Protection Agency (EPA). Chromium in the wastewaters from plating and metal finishing, tanning, and photographic industries poses environmental problems. A commercially available lignin was used for the removal of hexavalent as well as trivalent chromium from aqueous solution. It is known that hexavalent chromium is present as an anionic species in the solution. It was found that lignin can remove up to 63% hexavalent and 100% trivalent chromium from aqueous solutions. The removal of chromium ions was also investigated using a commercially available activated carbon. This absorbent facilitated very little hexavalent and almost complete trivalent chromium removal. Adsorption isotherms and kinetics data on the metal removal by lignin and activated carbon are presented and discussed.

  15. 76 FR 20822 - Proposed Information Collection (Servicer's Staff Appraisal Reviewer (SAR) Application) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... AFFAIRS Proposed Information Collection (Servicer's Staff Appraisal Reviewer (SAR) Application) Activity... (SAR) Application, VA Form 26-0829. OMB Control Number: 2900-0715. Type of Review: Extension of a... approval as Staff Appraisal Reviewer (SAR). Servicers SAR's will have the authority to review real...

  16. A 100 MS/s 9 bit 0.43 mW SAR ADC with custom capacitor array

    NASA Astrophysics Data System (ADS)

    Jingjing, Wang; Zemin, Feng; Rongjin, Xu; Chixiao, Chen; Fan, Ye; Jun, Xu; Junyan, Ren

    2016-05-01

    A low power 9 bit 100 MS/s successive approximation register analog-to-digital converter (SAR ADC) with custom capacitor array is presented. A brand-new 3-D MOM unit capacitor is used as the basic capacitor cell of this capacitor array. The unit capacitor has a capacitance of 1 fF. Besides, the advanced capacitor array structure and switch mode decrease the power consumption a lot. To verify the effectiveness of this low power design, the 9 bit 100 MS/s SAR ADC is implemented in TSMC IP9M 65 nm LP CMOS technology. The measurement results demonstrate that this design achieves an effective number of bits (ENOB) of 7.4 bit, a signal-to-noise plus distortion ratio (SNDR) of 46.40 dB and a spurious-free dynamic range (SFDR) of 62.31 dB at 100 MS/s with 1 MHz input. The SAR ADC core occupies an area of 0.030 mm2 and consumes 0.43 mW under a supply voltage of 1.2 V. The figure of merit (FOM) of the SAR ADC achieves 23.75 fJ/conv. Project supported by the National High-Tech Research and Development Program of China (No. 2013AA014101).

  17. A 12-bit 1 MS/s SAR-ADC for multi-channel CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Wei, Liu; Tingcun, Wei; Bo, Li; Panjie, Guo; Yongcai, Hu

    2015-04-01

    This paper presents a low power, area-efficient and radiation-hardened 12-bit 1 MS/s successive approximation register (SAR) analog-to-digital converter (ADC) for multi-channel CdZnTe (CZT) detector applications. In order to improve the SAR-ADC's accuracy, a novel comparator is proposed in which the offset voltage is self-calibrated and also a new architecture for the unit capacitor array is proposed to reduce the capacitance mismatches in the charge-redistribution DAC. The ability to radiation-harden the SAR-ADC is enhanced through circuit and layout design technologies. The prototype chip was fabricated using a TSMC 0.35 μm 2P4M CMOS process. At a 3.3/5 V power supply and a sampling rate of 1 MS/s, the proposed SAR-ADC achieves a peak signal to noise and distortion ratio (SINAD) of 67.64 dB and consumes only 10 mW power. The core of the prototype chip occupies an active area of 1180 × 1080 μm2. Project supported by the Special-Funded Program on National Key Scientific Instruments and Equipment Development (No. 2011YQ040082).

  18. Adsorptive removal of methylene blue by CuO-acid modified sepiolite as effective adsorbent and its regeneration with high-temperature gas stream.

    PubMed

    Su, Chengyuan; Wang, Liang; Chen, Menglin; Huang, Zhi; Lin, Xiangfeng

    2016-01-01

    In this study, the dynamic adsorption of methylene blue dye onto CuO-acid modified sepiolite was investigated. Meanwhile, the equilibrium and kinetic data of the adsorption process were studied to understand the adsorption mechanism. Furthermore, a high-temperature gas stream was applied to regenerate the adsorbent. The results showed that the Langmuir isotherm model was applied to describe the adsorption process. The positive value of enthalpy change indicated that the adsorption process was endothermic in nature. In the dynamic adsorption process, the best adsorption performance was achieved when the ratio of column height to diameter was 2.56 and the treatment capacity was 6 BV/h. The optimal scenario for regeneration experiments was the regeneration temperature of 550-650 °C, the space velocity of 100 min(-1) and the regeneration time of 10 min. The effective adsorption of CuO-acid modified sepiolite was kept for 12 cycles of adsorption and regeneration. PMID:27533859

  19. A New Maximum-Likelihood Change Estimator for Two-Pass SAR Coherent Change Detection.

    SciTech Connect

    Wahl, Daniel E.; Yocky, David A.; Jakowatz, Charles V,

    2014-09-01

    In this paper, we derive a new optimal change metric to be used in synthetic aperture RADAR (SAR) coherent change detection (CCD). Previous CCD methods tend to produce false alarm states (showing change when there is none) in areas of the image that have a low clutter-to-noise power ratio (CNR). The new estimator does not suffer from this shortcoming. It is a surprisingly simple expression, easy to implement, and is optimal in the maximum-likelihood (ML) sense. The estimator produces very impressive results on the CCD collects that we have tested.

  20. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    P. Somasundaran

    2006-04-30

    During this reporting period, further fundamental studies were conducted to understand the mechanism of the interactions between surfactants and minerals with the aim of minimizing chemical loss by adsorption. The effects of pH and mixing ratio on the chemical loss by adsorption were investigated. Some preliminary modeling work has been done towards the aim of developing a guide book to design optimal polymer/surfactant formula based on the understanding of adsorption and orientation of surfactants and their aggregates at solid/liquid interfaces. The study of adsorption of mixed system of n-dodecyl-{beta}-D-maltoside (DM) and dodecyl sulfonate (C{sub 12}SO{sub 3}Na) was continued during this period. Based on the adsorption results, the effects of pH and mixing ratio on reagent loss were quantitatively evaluated. Adsorption of dodecyl maltoside showed a maximum at certain mixing ratio at low pH (3{approx}5), while adsorption of dodecyl maltoside steadily decreased with the increase in C{sub 12}SO{sub 3}Na. Analytical ultracentrifuge technique was employed to study the micellization of DM/C{sub 12}SO{sub 3}Na mixtures. Compositional changes of the aggregates were observed the mixing ratio of the components. Surfactant mixture micellization affects the conformation and orientation of adsorption layer at mineral/water interface and thus the wettability and as a result, the oil release efficiency of the chemical flooding processes. A preliminary term, Reagent Loss Index (RLI), has been proposed to represent the adsorption of all the surfactants in a standardized framework for the development of the models. Previously reported adsorption data have been analyzed using the theoretical framework for the preparation of a guidebook to help optimization of chemical combinations and selection of reagent scheme for enhanced oil recovery.

  1. Interferometric SAR Persistent Scatterer Analysis of Mayon volcano, Albay, Philippines

    NASA Astrophysics Data System (ADS)

    Bato, M. P.; Lagmay, A. A.; Paguican, E. R.

    2011-12-01

    Persistent Scatterer Interferometry (PSInSAR) is a new method of interferometric processing that overcomes the limitations of conventional Synthetic Aperture Radar differential interferometry (DInSAR) and is capable of detecting millimeter scale ground displacements. PSInSAR eliminate anomalies due to atmospheric delays and temporal and geometric decorrelation eminent in tropical regions by exploiting the temporal and spatial characteristics of radar interferometric signatures derived from time-coherent point-wise targets. In this study, PSInSAR conducted in Mayon Volcano, Albay Province, Bicol, Philippines, reveal tectonic deformation passing underneath the volcano. Using 47 combined ERS and ENVISAT ascending and descending imageries, differential movement between the northern horst and graben on which Mayon volcano lies, is as much as 2.5 cm/year in terms of the line-of-sight (LOS) change in the radar signal. The northern horst moves in the northwest direction whereas the graben moves mostly downward. PSInSAR results when coupled with morphological interpretation suggest left-lateral oblique-slip movement of the northern bounding fault of the Oas graben. The PSInSAR results are validated with dGPS measurements. This work presents the functionality of PSInSAR in a humid tropical environment and highlights the probable landslide hazards associated with an oversteepened volcano that may have been further deformed by tectonic activity.

  2. Flight demonstration of image fix-taking with SAR

    SciTech Connect

    Gibbs, R.; Bottkol, M.; Owen, T.

    1993-06-11

    Airborne Synthetic Aperture Radar (SAR) uses coherent radar processing techniques to image ground reflectors. After processing, range and Doppler can be associated with any feature of interest in the final image. The location of any imaged feature can be estimated using a Kalman filter to combine these data with GPS and INS navigation data. This paper reports on the results of a flight demonstration of such a system, using an airborne SAR developed at Sandia. Collected data consisted of multiple SAR images containing surveyed reflectors. GPS/INS output taken aboard the aircraft, and GPS output recorded at surveyed ground stations. These data were post-processed at Sandia and at Draper Laboratory to obtain a navigation solution based on differential GPS and to demonstrate SAR fix-taking performance. This study successfully demonstrates accuracy of about 1 meter for fixing the position of a point imaged with SAR from an airborne platform. Because differential GPS was used, the navigation error was of about the same magnitude as the SAR range measurement error. Consequently, the measurements served primarily to fix the SAR image rather than to update the navigator.

  3. Polarimetric SAR Tomopgraphy With TerraSAR-X By Means Of Distributed Compressed Sensing

    NASA Astrophysics Data System (ADS)

    Aguilera, E.; Nannini, M.; Antonello, A.; Marotti, L.; Prats, P.; Reigber, A.

    2012-01-01

    In SAR tomography, the vertical reflectivity function for every azimuth-range pixel is usually recovered by processing data collected using a defined repeat-pass acquisition geometry. A common and appealing approach is to generate a synthetic aperture in the elevation direction through imaging from parallel tracks. However, the quality of conventional reconstruction methods is generally dictated by the Nyquist rate, which can be considerably high. In an attempt to reduce this rate, we propose a new tomographic focusing approach that exploits correlations between neighboring azimuth-range pixels and polarimetric channels. As a matter of fact, this can be done under the framework of Distributed Com- pressed Sensing (DCS), which stems from Compressed Sensing (CS) theory, thus also exploiting sparsity in the tomographic signal. Results demonstrating the potential of the DCS methodology will be validated, for the first time, using dual-polarized data acquired at X-band by the TerraSAR-X spaceborne system.

  4. Adsorption of polymeric brushes: Bridging

    NASA Astrophysics Data System (ADS)

    Johner, Albert; Joanny, Jean-François

    1992-04-01

    We study the adsorption of grafted polymer layers on a planar surface parallel to the grafting surface. The layer consists of two types of chains: nonadsorbed chains with a free end and adsorbed chains forming bridges between the two plates. In the limit of strong adsorption a dead zone exists in the vicinity of the adsorbing plate; its size increases with the adsorption strength. Two adsorption mechanisms are possible: adsorption of the last monomer only and adsorption of all the monomers. In both cases the adsorption regimes at equilibrium (when no external force acts on the plates) are discussed within the framework of the self-consistent mean-field theory. We also give scaling laws taking into account excluded volume correlations. Finally, we consider situations where a finite external force, either tangential or normal to the plates, is applied on the adsorbing plate. Pulling and tangential forces both reduce the fraction of bridges and eventually lead to rupture, whereas compressional forces favor bridging. For normal forces, force vs distance profiles between planes and crossed cylinders are given.

  5. The TerraSAR-L Interferometric Mission Objectives

    NASA Astrophysics Data System (ADS)

    Zink, M.

    2004-06-01

    TerraSAR-L is the new imaging radar mission of the European Space Agency. The platform, based on the novel Snapdragon concept, is built around the active phase array antenna of the L-band Synthetic Aperture Radar (SAR). Specification of the L-SAR has been guided by careful analysis of the product requirements resulting in a robust baseline design with considerable margins. Besides having a commercial role for the provision of geo-information products, TerraSAR-L will contribute to the Global Monitoring for Environment and Security (GMES) initiative and serve the scientific user community. Interferometry (INSAR) is a key element behind a number of mission objectives. A L-band SAR in a 14-day repeat orbit is an ideal sensor for solid earth applications (earth quake and volcano monitoring, landslides and subsidence) relying on differential interferometry. L-band penetration of vegetation cover facilitates these applications also over vegetated surfaces. Because of the high coherence, L-band is also the preferred frequency for monitoring ice sheet and glacier dynamics. Highly accurate orbit control (orbital tube <100m) and special wideband INSAR modes are required to support these applications globally and systematically. Precise burst synchronisation enables repeat-pass ScanSAR interferometry and global coverage within the short repeat cycle. A feasibility study into cartwheel constellations flying in close formation with TerraSAR-L revealed the potential for generating Digital Elevation Models (DEMs) of unprecedented quality (2m relative height accuracy @ 12m posting). The TerraSAR-L operations strategy is based on a long-term systematic and repetitive acquisition scenario to ensure consistent data archives and to maximise the exploitation of this very powerful SAR system.

  6. Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Dierking, Wolfgang; Zhang, Jie; Meng, Junmin; Lang, Haitao

    2016-07-01

    In this paper we introduce a parameter for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric (CP) synthetic aperture radar (SAR) images. The parameter is denoted as the "CP ratio". In model simulations we investigated the sensitivity of the CP ratio to the dielectric constant, ice thickness, ice surface roughness, and radar incidence angle. From the results of the simulations we deduced optimal sea ice conditions and radar incidence angles for the ice thickness retrieval. C-band SAR data acquired over the Labrador Sea in circular transmit and linear receive (CTLR) mode were generated from RADARSAT-2 quad-polarization images. In comparison with results from helicopter-borne measurements, we tested different empirical equations for the retrieval of ice thickness. An exponential fit between the CP ratio and ice thickness provides the most reliable results. Based on a validation using other compact polarimetric SAR images from the same region, we found a root mean square (rms) error of 8 cm and a maximum correlation coefficient of 0.94 for the retrieval procedure when applying it to level ice between 0.1 and 0.8 m thick.

  7. Indoor experimental facility for airborne synthetic aperture radar (SAR) configurations - rail-SAR

    NASA Astrophysics Data System (ADS)

    Kirose, Getachew; Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Koenig, Francois; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) is developing an indoor experimental facility to evaluate and assess airborne synthetic-aperture-radar-(SAR)-based detection capabilities. The rail-SAR is located in a multi-use facility that also provides a base for research and development in the area of autonomous robotic navigation. Radar explosive hazard detection is one key sensordevelopment area to be investigated at this indoor facility. In particular, the mostly wooden, multi-story building houses a two (2) story housing structure and an open area built over a large sandbox. The housing structure includes reconfigurable indoor walls which enable the realization of multiple See-Through-The-Wall (STTW) scenarios. The open sandbox, on the other hand, allows for surface and buried explosive hazard scenarios. The indoor facility is not rated for true explosive hazard materials so all targets will need to be inert and contain surrogate explosive fills. In this paper we discuss the current system status and describe data collection exercises conducted using canonical targets and frequencies that may be of interest to designers of ultra-wideband (UWB) airborne, ground penetrating SAR systems. A bi-static antenna configuration will be used to investigate the effects of varying airborne SAR parameters such as depression angle, bandwidth, and integration angle, for various target types and deployment scenarios. Canonical targets data were used to evaluate overall facility capabilities and limitations. These data is analyzed and summarized for future evaluations. Finally, processing techniques for dealing with RF multi-path and RFI due to operating inside the indoor facility are described in detail. Discussion of this facility and its capabilities and limitations will provide the explosive hazard community with a great airborne platform asset for sensor to target assessment.

  8. FlexSAR, a high quality, flexible, cost effective, prototype SAR system

    NASA Astrophysics Data System (ADS)

    Jensen, Mark; Knight, Chad; Haslem, Brent

    2016-05-01

    The FlexSAR radar system was designed to be a high quality, low-cost, flexible research prototype instrument. Radar researchers and practitioners often desire the ability to prototype new or advanced configurations, yet the ability to enhance or upgrade existing radar systems can be cost prohibitive. FlexSAR answers the need for a flexible radar system that can be extended easily, with minimal cost and time expenditures. The design approach focuses on reducing the resources required for developing and validating new advanced radar modalities. Such an approach fosters innovation and provides risk reduction since actual radar data can be collected in the appropriate mode, processed, and analyzed early in the development process. This allows for an accurate, detailed understanding of the corresponding trade space. This paper is a follow-on to last years paper and discusses the advancements that have been made to the FlexSAR system. The overall system architecture is discussed and presented along with several examples illustrating the system utility.

  9. Radar observation of Venus' terrestrial analogues using TecSAR X-band SAR

    NASA Astrophysics Data System (ADS)

    Blumberg, D. G.

    2012-04-01

    Venus is shrouded in a dense CO2 atmosphere that prevents us from viewing the surface in visible light or with optronic sensors. Long wavelengths are required to 'see' through the dense atmosphere. In the early 1990s, the S-band synthetic aperture radar of the Magellan spacecraft acquired images of a variety of surface features on Venus, including morphologies attributed to wind processes. These include sand dunes, wind-sculpted hills (yardangs), and almost 6000 wind streaks. These aeolian landscapes were formed and shaped by near surface atmospheric circulation and local winds. These can serve as local markers, each providing an integrated wind direction. Since the Magellan mission, there were no missions to Venus until the Venus Express Mission of 2005 to examine the upper atmosphere. The future will probably include high-resolution SAR images of Venus. This poster will demonstrate high resolution SAR images in X-band from the TecSAR sensor launched by Israel in 2008. Observations of wind streaks, dunes and impact craters in desert areas will show the wealth of information that is extracted from high-res X-band data. Detailed images of Aurounga impact crater in Chad, Kelso dunes, California and Pisgah lava flow show immense detail of the morphologies associated with these features. These are compared with Magellan images of sites on Venus and SRL data in C and L-bands. The X-band provides extremely high resolution and resembles optical data much more than the longer wavelengths.

  10. FlexSAR, a high-quality, flexible, cost-effective, prototype SAR system

    NASA Astrophysics Data System (ADS)

    Jensen, Mark; Knight, Chad; Haslem, Brent

    2015-05-01

    The FlexSAR radar system was designed to be a high quality, low-cost, flexible prototype instrument. Many radar researchers and practitioners desire the ability to efficiently prototype novel configurations. However, the cost and time required to modify existing radar systems is a challenging hurdle that can be prohibitive. The FlexSAR system couples an RF design that leverages connectorized components with digital commercial-off-the-shelf (COTS) cards. This design allows for a scalable system that supports software defined radio (SDR) capabilities. This paper focuses on the RF and digital system design, discussing the advantages and disadvantages. The FlexSAR system design objective was to support diverse configurations with minimal non-recurring engineering (NRE) costs. Multiple diverse applications are examined, demonstrating the flexible system nature. The configurations discussed utilize different system parameters (e.g., number of phase-centers, transmit configurations, etc.). The resultant products are examined, illustrating that high-quality data products are still attained.

  11. Detection of Creep displacement along the North Anatolian Fault by ScanSAR-ScanSAR Interferometry

    NASA Astrophysics Data System (ADS)

    Deguchi, Tomonori

    North Anatolian Fault (NAF) has several records of a huge earthquake occurrence in the last one century, which is well-known as a risky active fault. Some signs indicating a creep displacement could be observed on the Ismetpasa segment. The fault with creep deformation is aseismic and never generates the large scale earthquakes. But the scale and rate of fault creep are important factors to watch the fault behavior and to understand the cycle of earthquake. The author had investigated the distribution of spatial and temporal change on the ground motion due to fault creep in the surrounding of the Ismetpasa by InSAR time series analysis using PALSAR datasets from 2007 until 2011. As a result, the land deformation that the northern and southern parts of the fault have slipped to east and west at a rate of 7.5 and 6.5 mm/year in line of sight respectively were obviously detected. These results had good agreement with GPS data. In addition, it became clear that the fault creep along the NAF extended 61 km in east to west direction. In this study, the author applied ScanSAR-ScanSAR Interferometry using PALSAR data to the Ismetpasa segment of NAF.

  12. Operational Quality Control of SAR Data under the IDEAS Contract

    NASA Astrophysics Data System (ADS)

    Griffiths, Emma; Haria, Kajal; Meadowws, Peter; Miranda, Nuno

    2010-12-01

    Operational Quality Control (QC) of ERS-1/2 Synthetic Aperture Radar (SAR), Envisat's Advanced Synthetic Aperture Radar (ASAR) and the Phased-Array L-band SAR (PALSAR) on board JAXA's Advanced Land Observing Satellite (ALOS) is currently carried out under the Image Data quality Evaluation and Analysis Service (IDEAS). This paper introduces the concept of IDEAS as it applies to SAR QC including the daily and long-term analysis and shows the interaces to related services, including ESA's user-facing Earth Observation (EO) Help Desk

  13. Derivation of terrain slope from SAR interferometric phase gradient

    NASA Technical Reports Server (NTRS)

    Wegmueller, Urs; Werner, Charles L.; Rosen, Paul A.

    1994-01-01

    The relationship between the gradient of the interferometric phase and the terrain slope, which, it is thought, would allow a derivation of the terrain slopes without phase unwrapping, is presented. A linear relationship between the interferometric phase gradient and the terrain slopes was found. A quantitative error analysis showed that only very small errors are introduced by these approximations for orbital Synthetic Aperture Radar (SAR) geometries. An example of a slope map for repeat pass interferometry from ERS-1 SAR data is given. A number of direct and indirect applications of the terrain slope are indicated: erosion and avalanche hazard studies, radiometric calibration of SAR data, and normalization of the interferometric correlation coefficient.

  14. SAR Reduction of PIFA with EBG Structures for Mobile Applications

    NASA Astrophysics Data System (ADS)

    Kwak, Sangil; Sim, Dong-Uk; Kwon, Jong Hwa; Yun, Je Hoon

    This paper proposes two types of electromagnetic bandgap (EBG) structures aimed for SAR reduction on a mobile phone antenna. The EBG structures, one which uses vias while the other does not can reduce the surface wave and prevent the undesired radiation from the antenna. Thus, these structures can reduce the electromagnetic fields toward the human head direction and reduction the SAR value. Tests demonstrate the reduction of SAR values and therefore, the human body can be protected from hazard electromagnetic fields by using the proposed EBG structures, regardless of whether vias are used or not.

  15. Mapping and monitoring renewable resources with space SAR

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Brisco, B.; Dobson, M. C.; Moezzi, S.

    1983-01-01

    The SEASAT-A SAR and SIR-A imagery was examined to evaluate the quality and type of information that can be extracted and used to monitor renewable resources on Earth. Two tasks were carried out: (1) a land cover classification study which utilized two sets of imagery acquired by the SEASAT-A SAR, one set by SIR-A, and one LANDSAT set (4 bands); and (2) a change detection to examine differences between pairs of SEASAT-A SAR images and relates them to hydrologic and/or agronomic variations in the scene.

  16. The potential of SAR directional spectra in operational wave forecasting

    NASA Technical Reports Server (NTRS)

    Beal, R. C.; Gerling, T. W.; Irvine, D. E.

    1983-01-01

    Digitally processed Seasat SAR ocean wave imagery, when digitally transformed, smoothed, and corrected for known instrument biases, can accurately track multiple (at least three) wave systems in the open ocean, across major currents, and into shallow water. Furthermore, the relative backscatterer of the digitally processed SAR image, when sampled within a single pass and along a constant range, responds to the local wind through a simple power law relationship. The results indicate that SAR spectra, if obtained from a low altitude satellite, could be an important supplement to global winds and non-directional wave heights obtained through other methods.

  17. SAR image effects on coherence and coherence estimation.

    SciTech Connect

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  18. Use of SAR in Regional Methane Exchange Studies

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Livingston, G. P.; Durden, S. L.

    1994-01-01

    Significant sources of uncertainty in global trace gas budgets are due to lack of knowledge concerning the areal and temporal extent of source and sink areas. Synthetic aperture radar (SAR) is particularly suited to studies of northern ecosystems because of its all-weather operating capability which enables the acquisition of seasonal data. As key controls on methane exchange, the ability to differentiate major vegetation communities, inundation, and leaf area index (LAI) with satellite and airborne SAR data would increase the accuracy and precision of regional and seasonal estimates of methane exchange. The utility of SAR data for monitoring key controls on methane emissions from Arctic and boreal ecosystems is examined.

  19. Process for combining multiple passes of interferometric SAR data

    DOEpatents

    Bickel, Douglas L.; Yocky, David A.; Hensley, Jr., William H.

    2000-11-21

    Interferometric synthetic aperture radar (IFSAR) is a promising technology for a wide variety of military and civilian elevation modeling requirements. IFSAR extends traditional two dimensional SAR processing to three dimensions by utilizing the phase difference between two SAR images taken from different elevation positions to determine an angle of arrival for each pixel in the scene. This angle, together with the two-dimensional location information in the traditional SAR image, can be transformed into geographic coordinates if the position and motion parameters of the antennas are known accurately.

  20. Segmentation Of Multifrequency Complex-Amplitude SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Chellappa, Ramalingam

    1994-01-01

    Several mathematical models and associated algorithms implement method of segmenting multifrequency, highly speckled, high-resolution, complex-amplitude (amplitude and phase) synthetic-aperture-radar (SAR) digitized image into regions, within each of which radar backscattering characteristics are similar or homogeneous from place to place. Typically, each region represents different type of terrain or other surface; e.g., forest, agricultural land, sea ice, or water. Method of segmentation of SAR scene into regions is product of generalization, to multifrequency case, of single-frequency method described in "Algorithms for Segmentation of Complex-Amplitude SAR Data" (NPO-18524).

  1. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  2. Program Merges SAR Data on Terrain and Vegetation Heights

    NASA Technical Reports Server (NTRS)

    Siqueira, Paul; Hensley, Scott; Rodriguez, Ernesto; Simard, Marc

    2007-01-01

    X/P Merge is a computer program that estimates ground-surface elevations and vegetation heights from multiple sets of data acquired by the GeoSAR instrument [a terrain-mapping synthetic-aperture radar (SAR) system that operates in the X and bands]. X/P Merge software combines data from X- and P-band digital elevation models, SAR backscatter magnitudes, and interferometric correlation magnitudes into a simplified set of output topographical maps of ground-surface elevation and tree height.

  3. Quantitation of enantiospecific adsorption on chiral nanoparticles from optical rotation

    NASA Astrophysics Data System (ADS)

    Shukla, Nisha; Ondeck, Nathaniel; Gellman, Andrew J.

    2014-11-01

    Au nanoparticles modified with enantiomerically pure D- or L-cysteine have been shown to serve as enantioselective adsorbents of R- and S-propylene oxide. A simple adsorption model and accompanying experimental protocol have been developed to enable optical rotation measurements to be analyzed for quantitative determination of the ratios of the enantiospecific adsorption equilibrium constants of chiral species on the surfaces of chiral nanoparticles, KLS/KDS = KDR/KLR. This analysis is robust in the sense that it obviates the need to measure the absolute surface area of the absorbent nanoparticles, a quantity that is somewhat difficult to obtain accurately. This analysis has been applied to optical rotation data obtained from solutions of R- and S-propylene oxide, in varying concentration ratios, with D- and L-cysteine coated Au nanoparticles, in varying concentration ratios.

  4. Deformation Monitoring of Urban Infrastructure by Tomographic SAR Using Multi-View TerraSAR-X Data Stacks

    NASA Astrophysics Data System (ADS)

    Montazeri, Sina; Zhu, Xiaoxiang; Eineder, Michael; Hanssen, Ramon F.; Bamler, Richard

    2015-05-01

    Synthetic Aperture Radar Tomography (TomoSAR) coupled with data from modern SAR sensors, such as the German TerraSAR-X (TS-X) produces the most detailed three-dimensional (3D) maps by distinguishing among multiple scatterers within a resolution cell. Furthermore, multi-temporal TomoSAR allows for recording the underlying deformation phenomenon of each individual scatterer. One of the limitations of using InSAR techniques, including TomoSAR, is that they only measure deformation along the radar Line-of-Sight (LOS). In order to enhance the understanding of deformation, a decomposition of the observed LOS displacement into the 3D deformation vector in the local coordinate system is desired. In this paper we propose a method, based on L1 norm minimization within local spatial cubes, to reconstruct 3D deformation vectors from TomoSAR point clouds available from, at least, three different viewing geometries. The methodology is applied on two pair of cross-heading TS-X spotlight image stacks over the city of Berlin. The linear deformation rate and amplitude of seasonal deformation are decomposed and the results from two individual test sites with remarkable deformation patterns are discussed in details.

  5. A tool for bistatic SAR geometry determinations

    NASA Astrophysics Data System (ADS)

    Hawkins, R. K.; Gibson, J. R.; Saper, R.; Hilaire, M.

    2003-12-01

    The geometry of wide-angle bistatic Synthetic Aperture Radar (SAR) is somewhat more complex than that of conventional Synthetic Aperture Radar because the transmitter and receiver are displaced considerably. Constant bistatic range surfaces form ellipsoids, with the transmitter and receiver located at the two foci. These ellipsoids of constant bistatic range intersect the earth's surface in a series of ellipse-like contours. Constant Doppler lines intersect the range ellipses and allow, under special circumstances, a simple orthogonal basis for processing and analysis. This paper introduces a simple tool, developed in MatLab® and C++, that uses RADARSAT-1 as a satellite illuminator and a tower-based receiver. Actual orbit parameters and data from RADARSAT-1 are used in the simulation of the bistatic geometry and scattering.

  6. SAR Agriculture Rice Production Estimation (SARPE)

    NASA Astrophysics Data System (ADS)

    Raimadoya, M.

    2013-12-01

    The study of SAR Agriculture Rice Production Estimation (SARPE) was held in Indonesia on 2012, as part of Asia-Rice Crop Estimation & Monitoring (Asia-RiCE), which is a component for the GEO Global Agricultural Monitoring (GEOGLAM) initiative. The study was expected to give a breakthrough result, by using radar technology and paradigm shift of the standard production estimation system from list frame to area frame approach. This initial product estimation system is expected to be refined (fine tuning) in 2013, by participating as part of Technical Demonstration Site (Phase -1A) of Asia-RICE. The implementation period of this initial study was from the date of March 12 to December 10, 2012. The implementation of the study was done by following the approach of the BIMAS-21 framework, which has been developed since 2008. The results of this study can be briefly divided into two major components, namely: Rice-field Baseline Mapping (PESBAK - Peta Sawah Baku) and Crop Growth Monitoring. Rice-fields were derived from the mapping results of the Ministry of Agriculture (Kemtan), and validated through Student Extension Campaign of the Faculty of Agriculture, Bogor Agricultural University (IPB). While for the crop growth, it was derived from the results of image analysis process. The analysis was done, either on radar/Radarsat-2 (medium resolution) or optical/ MODIS (low resolution), based on the Planting Calendar (KATAM) of Kemtan. In this case, the planting season II/2012-2013 of rice production centers in West Java Province (Karawang, Subang and Indramayu counties). The selection of crop season and county were entirely dependent on the quality of the available PESBAK and procurement process of radar imagery. The PESBAK is still in the form of block instead of fields, so it can not be directly utilized in this study. Efforts to improve the PESBAK can not be optimal because the provided satellite image (ECW format) is not the original one. While the procurement process of

  7. What have we learnt from SARS?

    PubMed Central

    Weiss, Robin A; McLean, Angela R

    2004-01-01

    With outbreaks of infectious disease emerging from animal sources, we have learnt to expect the unexpected. We were, and are, expecting a new influenza A pandemic, but no one predicted the emergence of an unknown coronavirus (CoV) as a deadly human pathogen. Thanks to the preparedness of the international network of influenza researchers and laboratories, the cause of severe acute respiratory syndrome (SARS) was rapidly identified, but there is no complacency over the global or local management of the epidemic in terms of public health logistics. The human population was lucky that only a small proportion of infected persons proved to be highly infectious to others, and that they did not become so before they felt ill. These were the features that helped to make the outbreak containable. The next outbreak of another kind of transmissible disease may well be quite different. PMID:15306402

  8. Technology for the ERS-1 SAR antenna

    NASA Astrophysics Data System (ADS)

    Wagner, R.

    1984-09-01

    The metallization of CFRP waveguides, the Deployable Truss Structure (DTS) and verification in terrestrial environment of the 10 x 1 m SAR antenna of ERS-1 (ESA satellite) are discussed. Waveguide metallization was achieved indirectly with metallization of the mandrel prior to CFRP lay-up, and directly, by electroplating of manufactured CFRP components. Both techniques proved unsatisfactory, but a surface treatment applied to the metal layer in the indirect technique improves adhesion strength by an order of magnitude, and enables the waveguides to meet requirements. The DTS satisfies launch, deployment, and inflight specifications for a 5 panel/2 wing structure. Ground tests include analytical simulation of deployment with and without gravity effects, and a gravity compensation technique for tests.

  9. Hybrid reduced graph for SAR studies.

    PubMed

    Carrasco-Velar, R; Prieto-Entenza, J O; Antelo-Collado, A; Padrón-García, J A; Cerruela-García, G; Maceo-Pixa, Á L; Alcolea-Núñez, R; Silva-Rojas, L G

    2013-01-01

    The purpose of this work is the definition and evaluation of both atomic and local new hybrid indices. Inspired by the Refractotopological State Index for Atoms, the new atomic indices are theoretically supported by graph theory principles. The local indices, named Descriptor Centres (DCs), are obtained from the sum of the atomic values of the atoms in the selected group. Different classifiers were used for structure-activity relationship (SAR) studies, including multilayer perceptron (MLP), support vector machines (SVM) and meta-classifiers. Prediction with SVM and MLP was around 60%, but the best result was obtained with the meta-classifiers, bagging, decorate and others, with more than 92% accurate prediction. These new hybrid descriptors derived from the Refractotopological State Index for Atoms show a low mutual correlation coefficient. The same behaviour is found in the analogously defined Descriptors Centres. The best results are obtained with the inclusion of the distance between DCs with the use of meta-classifiers. PMID:23439282

  10. SAR polar format implementation with MATLAB.

    SciTech Connect

    Martin, Grant D.; Doerry, Armin Walter

    2005-11-01

    Traditional polar format image formation for Synthetic Aperture Radar (SAR) requires a large amount of processing power and memory in order to accomplish in real-time. These requirements can thus eliminate the possible usage of interpreted language environments such as MATLAB. However, with trapezoidal aperture phase history collection and changes to the traditional polar format algorithm, certain optimizations make MATLAB a possible tool for image formation. Thus, this document's purpose is two-fold. The first outlines a change to the existing Polar Format MATLAB implementation utilizing the Chirp Z-Transform that improves performance and memory usage achieving near realtime results for smaller apertures. The second is the addition of two new possible image formation options that perform a more traditional interpolation style image formation. These options allow the continued exploration of possible interpolation methods for image formation and some preliminary results comparing image quality are given.

  11. Centrifugal Adsorption Cartridge System

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas-permeable, hydrophobic membrane. During operation, the liquid effluent from the bioreactor is introduced at one end of the spiral ramp, which then constrains the liquid to flow along the spiral path through the adsorbent material. The spiral ramp also makes the flow more nearly uniform than it would otherwise be, and it minimizes any channeling other than that of the spiral flow itself. The adsorbent material is formulated to selectively capture the bioproduct(s) of interest. The bioproduct(s) can then be stored in bound form in the cartridge or else eluted from the cartridge. The centrifugal effect of the spiral flow is utilized to remove gas bubbles from the liquid. The centrifugal effect forces the bubbles radially inward, toward and through the membrane of the inner cylinder. The gas-permeable, hydrophobic membrane allows the bubbles to enter the inner cylinder while keeping the liquid out. The bubbles that thus enter the cylinder are vented to the atmosphere. The spacing between the ramps determines rate of flow along the spiral, and thereby affects the air-bubble-removal efficiency. The spacing between the ramps also determines the length of the fluid path through the cartridge adsorbent, and thus affects the bioproduct

  12. Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite.

    PubMed

    Wang, Li; Wang, Aiqin

    2007-08-25

    A series of biopolymer chitosan/montmorillonite (CTS/MMT) nanocomposites were prepared by controlling the molar ratio of chitosan (CTS) and montmorillonite (MMT). The nanocomposites were characterized by FTIR and XRD. The effects of different molar ratios of CTS and MMT, initial pH value of the dye solution and temperature on adsorption capacities of samples for Congo Red (CR) dye have been investigated. The adsorption capacities of CTS, MMT and CTS/MMT nanocomposite with CTS to MMT molar ratio of 5:1 for CR were compared. The results indicated that the adsorption capacity of CTS/MMT nanocomposite was higher than the mean values of those of CTS and MMT. The adsorption kinetics and isotherms were also studied. It was shown that all the sorption processes were better fitted by pseudo-second-order equation and the Langmuir equation. PMID:17349744

  13. CARABAS - an airborne VHF SAR system

    SciTech Connect

    Larsson, B.; Frolined, P.O.; Gustavsson, A.

    1996-11-01

    There is an increasing interest in imaging radar systems operating at low frequencies, Examples of civilian and military applications are detection of stealth-designed man-made objects, targets hidden under foliage, biomass estimation, and penetration into glaciers or ground. CARABAS (Coherent All Radio Band Sensing) is a new airborne SAR system developed by FOA. It is designed for operation in the lowest part of the VHF band (20-90 NHz), using horizontal polarisation. This frequency region gives the system a good ability to penetrate vegetation and to some extent ground. CARABAS is the first known SAR sensor with a capability of diffraction limited imaging, i.e. a resolution in magnitude of the adopted wavelengths. A Sabreliner business jet aircraft is used as the airborne platform. Critical parts in the development have been the antenna system, the receiver and the processing algorithms. Based upon the experiences gained with CARABAS I a major system upgrade is now taking place. The new CARABAS II system is scheduled to fly in May 1996. This system is designed to give operational performance while CARABAS I was used to verify the feasibility. The first major field campaigns are planned for the second half of 1996. CARABAS II is jointly developed by FOA and Ericsson Microwave Systems AB in Sweden. This paper will give an overview of the system design and data collected with the current radar system, including some results for forested regions. The achieved system performance will be discussed, with a presentation of the major modifications made in the new CARABAS 11 system. 12 refs., 7 figs., 2 tabs.

  14. Bats and emerging zoonoses: henipaviruses and SARS.

    PubMed

    Field, H E

    2009-08-01

    Nearly 75% of all emerging infectious diseases (EIDs) that impact or threaten human health are zoonotic. The majority have spilled from wildlife reservoirs, either directly to humans or via domestic animals. The emergence of many can be attributed to predisposing factors such as global travel, trade, agricultural expansion, deforestation/habitat fragmentation, and urbanization; such factors increase the interface and/or the rate of contact between human, domestic animal, and wildlife populations, thereby creating increased opportunities for spillover events to occur. Infectious disease emergence can be regarded as primarily an ecological process. The epidemiological investigation of EIDs associated with wildlife requires a trans-disciplinary approach that includes an understanding of the ecology of the wildlife species, and an understanding of human behaviours that increase risk of exposure. Investigations of the emergence of Nipah virus in Malaysia in 1999 and severe acute respiratory syndrome (SARS) in China in 2003 provide useful case studies. The emergence of Nipah virus was associated with the increased size and density of commercial pig farms and their encroachment into forested areas. The movement of pigs for sale and slaughter in turn led to the rapid spread of infection to southern peninsular Malaysia, where the high-density, largely urban pig populations facilitated transmission to humans. Identifying the factors associated with the emergence of SARS in southern China requires an understanding of the ecology of infection both in the natural reservoir and in secondary market reservoir species. A necessary extension of understanding the ecology of the reservoir is an understanding of the trade, and of the social and cultural context of wildlife consumption. Emerging infectious diseases originating from wildlife populations will continue to threaten public health. Mitigating and managing the risk requires an appreciation of the connectedness between human

  15. Two microstrip arrays for interferometric SAR applications

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1993-01-01

    Two types of C-band aircraft interferometric Synthetic Aperture Radar (SAR) are being developed at JPL to measure the ocean wave characteristics. Each type requires two identical antennas with each having a long rectangular aperture to radiate fan-shaped beam(s). One type of these radars requires each of its antennas to radiate a broadside beam that will measure the target's cross-track velocity. The other type, having each of its antennas to radiate two off-broadside pointed beams, will allow the measurement of both the cross-track and the along-track velocities of the target. Because flush mounting of the antenna on the aircraft fuselage is desirable, microstrip patch array is selected for these interferometric SAR antennas. To meet the radar system requirement, each array needs a total of 76 microstrip patches which are arranged in a 38 x 2 rectangular aperture with a physical size of 1.6m x 16.5cm. To minimize the insertion loss and physical real estate of this relatively long array, a combined series/parallel feed technique is used. Techniques to suppress cross-pol radiation and to effectively utilize the RF power are also implemented. Cross-pol level of lower than -30 dB from the co-pol peak and low insertion loss of 0.36 dB have been achieved for both types of arrays. For the type of radar that requires two off-braodside pointed beams, a simple phasing technique is used to achieve this dual-beam capability with adequate antenna gain (20 dBi) and sidelobe level (-14 dB). Both radar arrays have been flight tested on aircraft with excellent antenna performance demonstrated.

  16. Analysing multitemporal SAR images for forest mapping

    NASA Astrophysics Data System (ADS)

    Maghsoudi, Yasser; Collins, Michael J.; Leckie, Donald G.

    2010-10-01

    The objective of this paper is twofold: first, to presents a generic approach for the analysis of Radarsat-1 multitemporal data and, second, to presents a multi classifier schema for the classification of multitemporal images. The general approach consists of preprocessing step and classification. In the preprocessing stage, the images are calibrated and registered and then temporally filtered. The resulted multitemporally filtered images are subsequently used as the input images in the classification step. The first step in a classifier design is to pick up the most informative features from a series of multitemporal SAR images. Most of the feature selection algorithms seek only one set of features that distinguish among all the classes simultaneously and hence a limited amount of classification accuracy. In this paper, a class-based feature selection (CBFS) was proposed. In this schema, instead of using feature selection for the whole classes, the features are selected for each class separately. The selection is based on the calculation of JM distance of each class from the rest of classes. Afterwards, a maximum likelihood classifier is trained on each of the selected feature subsets. Finally, the outputs of the classifiers are combined through a combination mechanism. Experiments are performed on a set of 34 Radarsat-1 images acquired from August 1996 to February 2007. A set of 9 classes in a forest area are used in this study. Classification results confirm the effectiveness of the proposed approach compared with the case of single feature selection. Moreover, the proposed process is generic and hence is applicable in different mapping purposes for which a multitemporal set of SAR images are available.

  17. Soviet oceanographic synthetic aperture radar (SAR) research

    SciTech Connect

    Held, D.N.; Gasparovic, R.F.; Mansfield, A.W.; Melville, W.K.; Mollo-Christensen, E.L.; Zebker, H.A.

    1991-01-01

    Radar non-acoustic anti-submarine warfare (NAASW) became the subject of considerable scientific investigation and controversy in the West subsequent to the discovery by the Seasat satellite in 1978 that manifestations of underwater topography, thought to be hidden from the radar, were visible in synthetic aperture radar (SAR) images of the ocean. In addition, the Seasat radar produced images of ship wakes where the observed angle between the wake arms was much smaller than expected from classical Kelvin wake theory. These observations cast doubt on the radar oceanography community's ability to adequately explain these phenomena, and by extension on the ability of existing hydrodynamic and radar scattering models to accurately predict the observability of submarine-induced signatures. If one is of the opinion that radar NAASW is indeed a potentially significant tool in detecting submerged operational submarines, then the Soviet capability, as evidenced throughout this report, will be somewhat daunting. It will be shown that the Soviets have extremely fine capabilities in both theoretical and experimental hydrodynamics, that Soviet researchers have been conducting at-sea radar remote sensing experiments on a scale comparable to those of the United States for several years longer than we have, and that they have both an airborne and spaceborne SAR capability. The only discipline that the Soviet Union appears to be lacking is in the area of digital radar signal processing. If one is of the opinion that radar NAASW can have at most a minimal impact on the detection of submerged submarines, then the Soviet effort is of little consequence and poses not threat. 280 refs., 31 figs., 12 tabs.

  18. Bromide Adsorption by Reference Minerals and Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bromide, Br-, adsorption behavior was investigated on amorphous Al and Fe oxide, montmorillonite, kaolinite, and temperate and tropical soils. Bromide adsorption decreased with increasing solution pH with minimal adsorption occurring above pH 7. Bromide adsorption was higher for amorphous oxides t...

  19. Decreasing range resolution of a SAR image to permit correction of motion measurement errors beyond the SAR range resolution

    SciTech Connect

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2010-07-20

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  20. Molecular adsorption on graphene

    NASA Astrophysics Data System (ADS)

    Kong, Lingmei; Enders, Axel; Rahman, Talat S.; Dowben, Peter A.

    2014-11-01

    Current studies addressing the engineering of charge carrier concentration and the electronic band gap in epitaxial graphene using molecular adsorbates are reviewed. The focus here is on interactions between the graphene surface and the adsorbed molecules, including small gas molecules (H2O, H2, O2, CO, NO2, NO, and NH3), aromatic, and non-aromatic molecules (F4-TCNQ, PTCDA, TPA, Na-NH2, An-CH3, An-Br, Poly (ethylene imine) (PEI), and diazonium salts), and various biomolecules such as peptides, DNA fragments, and other derivatives. This is followed by a discussion on graphene-based gas sensor concepts. In reviewing the studies of the effects of molecular adsorption on graphene, it is evident that the strong manipulation of graphene’s electronic structure, including p- and n-doping, is not only possible with molecular adsorbates, but that this approach appears to be superior compared to these exploiting edge effects, local defects, or strain. However, graphene-based gas sensors, albeit feasible because huge adsorbate-induced variations in the relative conductivity are possible, generally suffer from the lack of chemical selectivity.

  1. Molecular adsorption on graphene.

    PubMed

    Kong, Lingmei; Enders, Axel; Rahman, Talat S; Dowben, Peter A

    2014-11-01

    Current studies addressing the engineering of charge carrier concentration and the electronic band gap in epitaxial graphene using molecular adsorbates are reviewed. The focus here is on interactions between the graphene surface and the adsorbed molecules, including small gas molecules (H(2)O, H(2), O(2), CO, NO(2), NO, and NH(3)), aromatic, and non-aromatic molecules (F4-TCNQ, PTCDA, TPA, Na-NH(2), An-CH(3), An-Br, Poly (ethylene imine) (PEI), and diazonium salts), and various biomolecules such as peptides, DNA fragments, and other derivatives. This is followed by a discussion on graphene-based gas sensor concepts. In reviewing the studies of the effects of molecular adsorption on graphene, it is evident that the strong manipulation of graphene's electronic structure, including p- and n-doping, is not only possible with molecular adsorbates, but that this approach appears to be superior compared to these exploiting edge effects, local defects, or strain. However, graphene-based gas sensors, albeit feasible because huge adsorbate-induced variations in the relative conductivity are possible, generally suffer from the lack of chemical selectivity. PMID:25287516

  2. Zinc and cadmium adsorption to aluminum oxide nanoparticles affected by naturally occurring ligands.

    PubMed

    Stietiya, M Hashem; Wang, Jim J

    2014-03-01

    Nanoparticles of aluminum oxide (AlO) are efficient in removing Cd, Zn, and other heavy metals from wastewaters and soil solutions due to their high specific surface area and surface area to volume ratio. Naturally occurring ligands, such as phosphate (PO), citrate, and humic acid (HA), may affect the efficiency of AlO nanoparticles in adsorption of Cd and Zn. The objective of this study was to investigate Zn and Cd adsorption to AlO nanoparticles as influenced by PO, citrate, and HA. Adsorption of Zn and Cd was performed in mono-metal and binary-metal systems at pH 6.5 with initial metal concentration of 1.0 mmol L and varying ligand concentration at a solid:solution ratio of 1:1000. Adsorption isotherms showed that Zn had higher affinity to the AlO nanoparticle surface than Cd and that adsorption of Zn and Cd in the binary-metal system was lower than in the respective mono-metal systems. Phosphate and HA enhanced Zn and Cd adsorption in all systems, whereas citrate reduced Zn adsorption in the mono-metal system by 25% and increased adsorption in the other metal systems. Removal of Zn or Cd from the systems was generally accompanied by enhanced removal of PO and HA, which may indicate enhanced adsorption due to ternary complex formation or metal-ligand precipitation. Phosphate was the most effective among the three ligands in enhancing Zn and Cd adsorption. Overall, AlO nanoparticles are suitably used for Zn and Cd adsorption, which can be significantly enhanced by the presence of PO or HA and to a lesser degree by citrate at low concentrations. PMID:25602651

  3. Short-Cycle Adsorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1988-01-01

    Modular adsorption/Joule-Thomson-effect refrigerator offers fast regeneration; adsorption/desorption cycle time expected to be 1 minute. Pressurized hydrogen generated by bank of compressor modules during heating phase passes through system of check valves and expands in Joule-Thomson junction as it enters refrigeration chamber. Hydrogen absorbs heat from load before it is sucked out by another bank of compressor modules in cooling phase.

  4. [Thermodynamics adsorption and its influencing factors of chlorpyrifos and triazophos on the bentonite and humus].

    PubMed

    Zhu, Li-Jun; Zhang, Wei; Zhang, Jin-Chi; Zai, De-Xin; Zhao, Rong

    2010-11-01

    The adsorption of chlorpyrifos and triazophos on bentonite and humus was investigated by using the equilibrium oscillometry. The adsorption capacity of chlorpyrifos and triazophos on humus was great higher than bentonite at the same concentration. Equilibrium data of Langmuir, Freundlich isotherms showed significant relationship to the adsorption of chlorpyrifos and triazophos on humus (chlorpyrifos: R2 0.996 4, 0.996 3; triazophos: R2 0.998 9, 0.992 4). Langmuir isotherm was the best for chlorpyrifos and triazophos on bentonite (chlorpyrifos: R2 = 0.995 7, triazophos: R2 = 0.998 9). The pH value, adsorption equilibrium time and temperature were the main factors affecting adsorption of chlorpyrifos and triazophos on bentonite and humus. The adsorption equilibrium time on mixed adsorbent was 12h for chlorpyrifos and 6h for triazophos respectively. The mass ratio of humus and bentonite was 12% and 14% respectively, the adsorption of chlorpyrifos and triazophos was the stronglest and tended to saturation. At different temperatures by calculating the thermodynamic parameters deltaG, deltaH and deltaS, confirmed that the adsorption reaction was a spontaneous exothermic process theoretically. The adsorption was the best when the pH value was 6.0 and the temperature was 15 degrees C. PMID:21250454

  5. The Grand Banks ERS-1 SAR wave spectra validation experiment

    NASA Technical Reports Server (NTRS)

    Vachon, P. W.; Dobson, F. W.; Smith, S. D.; Anderson, R. J.; Buckley, J. R.; Allingham, M.; Vandemark, D.; Walsh, E. J.; Khandekar, M.; Lalbeharry, R.

    1993-01-01

    As part of the ERS-1 validation program, the ERS-1 Synthetic Aperture Radar (SAR) wave spectra validation experiment was carried out over the Grand Banks of Newfoundland (Canada) in Nov. 1991. The principal objective of the experiment was to obtain complete sets of wind and wave data from a variety of calibrated instruments to validate SAR measurements of ocean wave spectra. The field program activities are described and the rather complex wind and wave conditions which were observed are summarized. Spectral comparisons with ERS-1 SAR image spectra are provided. The ERS-1 SAR is shown to have measured swell and range traveling wind seas, but did not measure azimuth traveling wind seas at any time during the experiment. Results of velocity bunching forward mapping and new measurements of the relationship between wind stress and sea state are also shown.

  6. a Rail Central Displacement Method about Gb-Sar

    NASA Astrophysics Data System (ADS)

    Peng, J.; Cai, J.; Yang, H.

    2016-06-01

    This paper presents a new method to correct rail errors of Ground Based Synthetic Aperture Radar (GB-SAR) in the discontinue mode. Generally, "light positioning" is performed to mark the GB-SAR position in the dis-continuous observation mode. Usually we assume there is no difference between the marked position and the real installation position. But in fact, it is hard to keep the GB-SAR positions of two campaigns the same, so repositioning errors can't be neglected. In order to solve this problem, we propose an algorithm to correct the rail error after analyzing the GB-SAR rail error geometry. Results of the simulation experiment and the real experiment of a landslide in Lvliang, Shanxi, China, show the proposed method achieves an mm-level precision, enabling the D-GBSAR mode to be used in engineering projects.

  7. SAR imaging technique for reduction of sidelobes and noise

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam

    2009-05-01

    Multiplicative noise poses a big challenge for SAR imaging system, in which energy from the sidelobes of large RCS man-made and natural clutter objects spread throughout the resulting SAR imagery. Detection of small RCS targets is very difficult since their signatures might be obscured or even embedded in this multiplicative noise floor that is proportional to the RCS of surrounding clutter objects. ARL has developed a Recursive Sidelobe Minimization (RSM) technique that is combined with the standard backprojection image formation algorithm to suppress the multiplicative noise floor in the resulting SAR imagery. In this paper, we present the Recursive Sidelobe Minimization (RSM) technique. Although the technique is originally developed and tested using data from the Army Research Lab (ARL) UWB Synchronous Impulse Reconstruction (SIRE) forward-looking radar, it is also applicable for other SAR data sets with different configurations.

  8. Copernicus Sentinel-1 Satellite And C-SAR Instrument

    NASA Astrophysics Data System (ADS)

    Panetti, Aniceto; Rostan, Friedhelm; L'Abbate, Michelangelo; Bruno, Claudio; Bauleo, Antonio; Catalano, Toni; Cotogni, Marco; Galvagni, Luigi; Pietropaolo, Andrea; Taini, Giacomo; Venditti, Paolo; Huchler, Markus; Torres, Ramon; Lokaas, Svein; Bibby, David

    2013-12-01

    The Copernicus Sentinel-1 Earth Radar Observatory, a mission funded by the European Union and developed by ESA, is a constellation of two C-band radar satellites. The satellites have been conceived to be a continuous and reliable source of C-band SAR imagery for operational applications such as mapping of global landmasses, coastal zones and monitoring of shipping routes. The Sentinel-1 satellites are built by an industrial consortium led by Thales Alenia Space Italia as Prime Contractor and with Astrium GmbH as SAR Instrument Contractor. The paper describes the general satellite architecture, the spacecraft subsystems, AIT flow and the satellite key performances. It provides also an overview on the C-SAR Instrument, its development status and pre- launch SAR performance prediction.

  9. Range stacking: an interpolation-free SAR reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Soumekh, Mehrdad

    1998-09-01

    A method for digital image formation in Synthetic Aperture Radar (SAR) systems is presented. The proposed approach is based on the wavefront reconstruction theory for SAR imaging systems. However, this is achieved without image formation in the spatial frequency domain of the target function which requires interpolation. The proposed method forms the target function at individual range points within the radar range swath; this is referred to as range stacking. The range stacking reconstruction method is applicable in stripmap and spotlight (broadside and squint) SAR systems. Results using a wide-beamwidth FOliage PENetrating (FOPEN) SAR database are provided, and the effect of beamwidth filtering on the signature of moving targets in the imaging scene is shown.

  10. [Simulation of polarization SAR imaging of ocean surface].

    PubMed

    Guo, Ding; Gu, Xing-Fa; Yu, Tao; Fernado, N; Li, Juan; Chen, Xing-Feng

    2011-10-01

    The polarization synthetic aperture radar (SAR) imaging simulation is of great significance to ocean surface scattering. According to the theory of wind-wave spectrum, rough ocean surface was modeled in the present paper using the two-scale-model. This treatment takes both the large scale and small scale surface into account. By using the velocity bunching (VB) theory, Bragg scattering model and the small perturbation model (SPM), the polarization SAR system can simulate the ocean surface with various parameters and ocean states. The effects of the parameters of ocean waves and the parameters of SAR system were analyzed. Finally, some useful conclusions were drawn, which are helpful for extracting the information of ocean surface. The method is an effective way in the ocean SAR design and the ocean surface research. PMID:22250525

  11. Modeling of SAR signatures of shallow water ocean topography

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Kozma, A.; Kasischke, E. S.; Lyzenga, D. R.

    1984-01-01

    A hydrodynamic/electromagnetic model was developed to explain and quantify the relationship between the SEASAT synthetic aperture radar (SAR) observed signatures and the bottom topography of the ocean in the English Channel region of the North Sea. The model uses environmental data and radar system parameters as inputs and predicts SAR-observed backscatter changes over topographic changes in the ocean floor. The model results compare favorably with the actual SEASAT SAR observed backscatter values. The developed model is valid for only relatively shallow water areas (i.e., less than 50 meters in depth) and suggests that for bottom features to be visible on SAR imagery, a moderate to high velocity current and a moderate wind must be present.

  12. Diverse deformation patterns of Aleutian volcanoes from InSAR

    USGS Publications Warehouse

    Lu, Zhiming; Dzurisin, D.; Wicks, C., Jr.; Power, J.

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) is capable of measuring ground-surface deformation with centimeter-to-subcentimeter precision at a spatial resolution of tens of meters over an area of hundreds to thousands of square kilometers. With its global coverage and all-weather imaging capability, InSAR has become an increasingly important measurement technique for constraining magma dynamics of volcanoes over remote regions such as the Aleutian Islands. The spatial pattern of surface deformation data derived from InSAR images enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper summarizes the diverse deformation patterns of the Aleutian volcanoes observed with InSAR and demonstrates that deformation patterns and associated magma supply mechanisms in the Aleutians are diverse and vary between volcanoes. These findings provide a basis for improved models and better understanding of magmatic plumbing systems.

  13. THE PRACTICE OF STRUCTURE ACTIVITY RELATIONSHIPS (SAR) IN TOXICOLOGY

    EPA Science Inventory

    Both qualitative and quantitative modeling methods relating chemical structure to biological activity, called structure-activity relationship analyses or SAR, are applied to the prediction and characterization of chemical toxicity. This minireview will discuss some generic issue...

  14. An analysis of Seasat SAR for detecting geologic linears

    NASA Technical Reports Server (NTRS)

    Yan, S.-Y.; Philipson, W. R.; Teng, W. L.

    1982-01-01

    The value of Seasat synthetic aperture radar (SAR) imagery for detecting geologic linears was assessed in a study of an 89,000 sq km section of New York's Adirondack Mountains. A photographic print of optically processed, 1:500,000 scale SAR imagery (one look direction) was analyzed visually, and the detected linears were compared to those recorded on a 1:250,000 scale geologic map. Eighty percent of the 4,170 km of mapped, geologic linears were detected with the SAR imagery. Moreover, nearly 6,900 km of unmapped linears were also detected. Of these, an estimated 90 percent could be observed on high altitude aerial photographs. The relationship between SAR image detection of linears and the different types of indicators (e.g., straight valleys or shorelines) is reported.

  15. 3. DETAIL, LIGHTNING ARRESTER ON SAR TRANSMISSION LINE. EEC print ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL, LIGHTNING ARRESTER ON SAR TRANSMISSION LINE. EEC print no. S-C-01-00478, no date. Photographer unknown. - Santa Ana River Hydroelectric System, Transmission Lines, Redlands, San Bernardino County, CA

  16. Ionospheric composition in SAR-arcs. [Stable Auroral Red Arcs

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Schunk, R. W.; Banks, P. M.

    1976-01-01

    Theoretical ion and electron density profiles in the SAR-arc region are calculated using a model of the ionosphere based on the coupled continuity, momentum, and energy equations for O(+), NO(+), and O2(+). It is found that an increase in the reaction O(+) + N2 yields NO(+) + N, which results from enhanced N2 vibrational excitation due to the high electron temperatures found in SAR arcs, can cause a reduction in F-region electron densities by up to a factor of two. The increase in the O(+) + N2 reaction rate is shown to result in a marked change in the ion composition in SAR arcs, with NO(+) being an important ion up to altitudes of about 350 km at night. Since observed electron-density depressions in SAR arcs generally vary between factors of two and seven, it is concluded that the increase in the O(+) + N2 reaction rate cannot account for these depressions by itself.

  17. Characteristics of merchant vessels in spaceborne SAR imagery

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Huang, Weigen; Yang, Jingsong; Fu, Bin; Lou, XiuLin; Zhang, Huagon

    2006-12-01

    Ship features in high-resolution spaceborne Synthetic Aperture Radar (SAR) imagery has crucial significance for ship classification from satellite. In this paper, we discuss the features of merchant Ships including oil tanker, container ship and bulk carrier in SAR imagery, which is comprised of geometrical feature, scattering feature, tonnage information with Radar Cross Section (RCS) and wake. The study show that the ship lengths measured from SAR imagery has a good correlation with the real lengths, but the correlation of ship beam is worse. Ship scattering feature has positive correlation with the ship structure, which maybe is a feature to distinguish container ship from other vessels. A new equation about ship length and its displacement in tons is presented in this paper. The relation suggested by Skolnik M.I between ship tonnage and RCS is tested but not validated. We also validate the means of extracting ship speed by ship turbulence wake in SAR imagery.

  18. A beamforming algorithm for bistatic SAR image formation.

    SciTech Connect

    Yocky, David Alan; Wahl, Daniel Eugene; Jakowatz, Charles V., Jr.

    2010-03-01

    Beamforming is a methodology for collection-mode-independent SAR image formation. It is essentially equivalent to backprojection. The authors have in previous papers developed this idea and discussed the advantages and disadvantages of the approach to monostatic SAR image formation vis--vis the more standard and time-tested polar formatting algorithm (PFA). In this paper we show that beamforming for bistatic SAR imaging leads again to a very simple image formation algorithm that requires a minimal number of lines of code and that allows the image to be directly formed onto a three-dimensional surface model, thus automatically creating an orthorectified image. The same disadvantage of beamforming applied to monostatic SAR imaging applies to the bistatic case, however, in that the execution time for the beamforming algorithm is quite long compared to that of PFA. Fast versions of beamforming do exist to help alleviate this issue. Results of image reconstructions from phase history data are presented.

  19. Nonuniform FFTs (NUFFT) algorithms applied to SAR imaging

    NASA Astrophysics Data System (ADS)

    Subiza, Begona; Gimeno-Nieves, Encarna; Lopez-Sanchez, Juan M.; Fortuny-Guasch, Joaquim

    2004-01-01

    Some recently developed algorithms known as Non-Uniform FFT's (NUFFT), which enable the computation of efficient FFT's with unequally spaced data in the time or frequency domain, have been applied to SAR imaging in this study. The main objective has been to analyze the potential improvement of the computational efficiency and/or image accuracy of seismic migration SAR processing techniques, like the ω-k algorithm. Our approach consists in substituting both the Stolt interpolation and the final range inverse FFT by a single NUFFT. Numerical simulations illustrate the performance of the new method and the influence of the selection of NUFFT parameters in the precision and computation time of the SAR imaging algorithm. The new method is especially suited for near-field wide-band configurations, such as inverse SAR (ISAR) and ground-based systems, where a very precise imaging algorithm is required.

  20. New military uses for synthetic aperture radar (SAR)

    NASA Astrophysics Data System (ADS)

    Reamer, Richard E.; Stockton, Wayne; Stromfors, Richard D.

    1993-02-01

    Loral Defense Systems-Arizona, holder of the original patent for the invention of Synthetic Aperture Radar (SAR), developed SAR to meet the military's need for an all-weather, day/night sensor that could produce high quality reconnaissance imagery in adverse weather and restricted visibility conditions. These features, and the ability to image large areas with fine resolution in a relatively short period of time make this sensor useful for many military applications. To date, however, SARs for military use have been hampered by the fact that they've been large, complex, and expensive. Additionally, they have been mounted on special purpose, single mission aircraft which are costly to operate. That situation has changed. A small, modular SAR, called Miniature Synthetic Aperture Radar (MSAR) developed by Loral can be mounted with relative ease on Unmanned Aerial Vehicles (UAV) or on multi-mission aircraft such as the F-16, F/A-18, or on the F-14.

  1. The Staphylococcus aureus Protein-Coding Gene gdpS Modulates sarS Expression via mRNA-mRNA Interaction

    PubMed Central

    Chen, Chuan; Zhang, Xu; Shang, Fei; Sun, Haipeng

    2015-01-01

    Staphylococcus aureus is an important Gram-positive pathogen responsible for numerous diseases ranging from localized skin infections to life-threatening systemic infections. The virulence of S. aureus is essentially determined by a wide spectrum of factors, including cell wall-associated proteins and secreted toxins that are precisely controlled in response to environmental changes. GGDEF domain protein from Staphylococcus (GdpS) is the only conserved staphylococcal GGDEF domain protein that is involved not in c-di-GMP synthesis but in the virulence regulation of S. aureus NCTC8325. Our previous study showed that the inactivation of gdpS generates an extensive change of virulence factors together with, in particular, a major Spa (protein A) surface protein. As reported, sarS is a direct positive regulator of spa. The decreased transcript levels of sarS in the gdpS mutant compared with the parental NCTC8325 strain suggest that gdpS affects spa through interaction with sarS. In this study, site mutation and complementary experiments showed that the translation product of gdpS was not involved in the regulation of transcript levels of sarS. We found that gdpS functioned through direct RNA-RNA base pairing with the 5′ untranslated region (5′UTR) of sarS mRNA and that a putative 18-nucleotide region played a significant role in the regulatory process. Furthermore, the mRNA half-life analysis of sarS in the gdpS mutant showed that gdpS positively regulates the mRNA levels of sarS by contributing to the stabilization of sarS mRNA, suggesting that gdpS mRNA may regulate spa expression in an RNA-dependent pathway. PMID:26056387

  2. Adsorption of cadmium ions on oxygen surface sites in activated carbon

    SciTech Connect

    Jia, Y.F.; Thomas, K.M.

    2000-02-08

    Various types of oxygen functional groups were introduced onto the surface of coconut shell derived activated carbon by oxidation using nitric acid. Fourier-transform infrared spectroscopy (FTIR), temperature-programmed desorption (TPD), and selective neutralization were used to characterize the surface oxygen functional groups. The oxidized carbons were also heat treated to provide a suite of carbons where the oxygen functional groups of various thermal stabilities were varied progressively. The adsorption of cadmium ions was enhanced dramatically by oxidation of the carbon. The ratio of released protons to adsorbed cadmium ions on oxidized carbon was approximately 2, indicating cation exchange was involved in the process of adsorption. Na{sup +} exchange studies with the oxidized carbon gave a similar ratio. After heat treatment of the oxidized carbons to remove oxygen functional groups, the ratio of H{sup +} released to Cd{sup 2+} adsorbed and the adsorption capacity decreased significantly. Both reversible and irreversible processes were involved in cadmium ion adsorption with reversible adsorption having higher enthalpy. The irreversible adsorption resulted from cation exchange with carboxylic acid groups, whereas the reversible adsorption probably involved physisorption of the partially hydrated cadmium ion.

  3. Adsorption of water vapor on modified methacrylate polymeric sorbents

    SciTech Connect

    Platonova, N.P.; Tataurova, O.G.; Vartapetyan, R.Sh.

    1995-12-31

    Adsorption of water vapor on methacrylate copolymers and terpolymers was studied. An increase in the content of the cross-linking agent gives rise to increase in the limiting adsorption of water vapor at the saturation pressure (a{sub s}) and to decrease in the concentration of primary adsorption centers. Modification of the initial copolymer containing 60% of 2,3-epoxypropyl methacrylate (EPMA) monomer and 40% of cross-linking agent, ethylene dimethacrylate, with diethylenetriamine (DETA) results in an increase in the a{sub s} value, while modification with C{sub 12} and C{sub 18} alkyl, benzyl, and phenyl groups gives rise to decrease in the a{sub s} values for the copolymeric sorbents. The concentration of primary adsorption centers (a{sub m}) increases considerably on modification of the copolymer with DETA and C{sub 12} groups and decreases markedly on modification with benzyl and phenyl groups. For terpolymers, containing EPMA and styrene, an increase in the styrene/EPMA ratio reduces the a{sub s}, and a{sub m} values. The copolymer modified with DETA groups possesses the most hydrophilic properties, while the copolymer modified with benzyl group exhibits the most hydrophobic properties. The mechanism of adsorption of water molecules on the polymers is discussed.

  4. Macroscopic and spectroscopic analysis of lanthanide adsorption to bacterial cells

    NASA Astrophysics Data System (ADS)

    Ngwenya, Bryne T.; Mosselmans, J. Fred W.; Magennis, Marisa; Atkinson, Kirk D.; Tourney, Janette; Olive, Valerie; Ellam, Robert M.

    2009-06-01

    This study was designed to combine surface complexation modelling of macroscopic adsorption data with X-ray Absorption Spectroscopic (XAS) measurements to identify lanthanide sorption sites on the bacterial surface. The adsorption of selected representatives for light (La and Nd), middle (Sm and Gd) and heavy (Er and Yb) lanthanides was measured as a function of pH, and biomass samples exposed to 4 mg/L lanthanide at pH 3.5 and 6 were analysed using XAS. Surface complexation modelling was consistent with the light lanthanides adsorbing to phosphate sites, whereas the adsorption of middle and heavy lanthanides could be modelled equally well by carboxyl and phosphate sites. The existence of such mixed mode coordination was confirmed by Extended X-ray Absorption Fine Structure (EXAFS) analysis, which was also consistent with adsorption to phosphate sites at low pH, with secondary involvement of carboxyl sites at high adsorption density (high pH). Thus, the two approaches yield broadly consistent information with regard to surface site identity and lanthanide coordination environment. Furthermore, spectroscopic analysis suggests that coordination to phosphate sites is monodentate at the metal/biomass ratios used. Based on the best-fitting p Ka site, we infer that the phosphate sites are located on N-acetylglucosamine phosphate, the most likely polymer on gram-negative cells with potential phosphate sites that deprotonate around neutral pH.

  5. A SAR ATR algorithm based on coherent change detection

    SciTech Connect

    Harmony, D.W.

    2000-12-01

    This report discusses an automatic target recognition (ATR) algorithm for synthetic aperture radar (SAR) imagery that is based on coherent change detection techniques. The algorithm relies on templates created from training data to identify targets. Objects are identified or rejected as targets by comparing their SAR signatures with templates using the same complex correlation scheme developed for coherent change detection. Preliminary results are presented in addition to future recommendations.

  6. Using airborne and satellite SAR for wake mapping offshore

    NASA Astrophysics Data System (ADS)

    Christiansen, Merete B.; Hasager, Charlotte B.

    2006-09-01

    Offshore wind energy is progressing rapidly around Europe. One of the latest initiatives is the installation of multiple wind farms in clusters to share cables and maintenance costs and to fully exploit premium wind resource sites. For siting of multiple nearby wind farms, the wind turbine wake effect must be considered. Synthetic aperture radar (SAR) is an imaging remote sensing technique which offers a unique opportunity to describe spatial variations of wind speed offshore. For the first time an airborne SAR instrument was used for data acquisition over a large offshore wind farm. The aim was to identify the turbine wake effect from SAR-derived wind speed maps as a downstream region of reduced wind speed. The aircraft SAR campaign was conducted on 12 October 2003 over the wind farm at Horns Rev in the North Sea. Nearly simultaneous measurements were acquired over the area by the SAR on board the ERS-2 satellite. In addition, meteorological data were collected. Both aircraft and satellite SAR-derived wind speed maps showed significant velocity deficits downstream of the wind farm. Wind speed maps retrieved from aircraft SAR suggested deficits of up to 20% downstream of the last turbine, whereas satellite SAR-derived maps showed deficits of the order of 10%. The difference originated partly from the two different reference methods used for normalization of measured wind speeds. The detected region of reduced wind speed had the same width as the wind turbine array, indicating a low degree of horizontal wake dispersion. The downstream wake extent was approximately 10 km, which corresponds well with results from previous studies and with wake model predictions. Copyright

  7. SAR terrain classifier and mapper of biophysical attributes

    NASA Technical Reports Server (NTRS)

    Ulaby, Fawwaz T.; Dobson, M. Craig; Pierce, Leland; Sarabandi, Kamal

    1993-01-01

    In preparation for the launch of SIR-C/X-SAR and design studies for future orbital SAR, a program has made considerable progress in the development of an SAR terrain classifier and algorithms for quantification of biophysical attributes. The goal of this program is to produce a generalized software package for terrain classification and estimation of biophysical attributes and to make this package available to the larger scientific community. The basic elements of the SAR (Synthetic Aperture Radar) terrain classifier are outlined. An SAR image is calibrated with respect to known system and processor gains and external targets (if available). A Level 1 classifier operates on the data to differentiate: urban features, surfaces and tall and short vegetation. Level 2 classifiers further subdivide these classes on the basis of structure. Finally, biophysical and geophysical inversions are applied to each class to estimate attributes of interest. The process used to develop the classifiers and inversions is shown. Radar scattering models developed from theory and from empirical data obtained by truck-mounted polarimeters and the JPL AirSAR are validated. The validated models are used in sensitivity studies to understand the roles of various scattering sources (i.e., surface trunk, branches, etc.) in determining net backscatter. Model simulations of sigma (sup o) as functions of the wave parameters (lambda, polarization and angle of incidence) and the geophysical and biophysical attributes are used to develop robust classifiers. The classifiers are validated using available AirSAR data sets. Specific estimators are developed for each class on the basis of the scattering models and empirical data sets. The candidate algorithms are tested with the AirSAR data sets. The attributes of interest include: total above ground biomass, woody biomass, soil moisture and soil roughness.

  8. SARAS - A synthetic aperture radar (SAR) raw signal simulator

    NASA Astrophysics Data System (ADS)

    Franceschetti, Giorgio; Migliaccio, Maurizio; Riccio, Daniele; Schirinzi, Gilda

    1992-01-01

    An SAR simulator of an extended three-dimensional scene is presented. It is based on a fact model for the scene, asymptotic evaluation of SAR unit response, and two-dimensional fast Fourier transform (FFT) code for data processing. Prescribed statistics of the model account for a realistic speckle of the image. The simulator is implemented in SARAS, whose performance is described and illustrated by a number of examples.

  9. Archived 1976-1985 JPL Aircraft SAR Data

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Blom, Ronald G.

    2016-01-01

    This report describes archived data from the Jet Propulsion Laboratory (JPL) aircraft radar expeditions in the mid-1970s through the mid-1980s collected by Ron Blom, JPL Radar Geologist. The dataset was collected during Ron's career at JPL from the 1970s through 2015. Synthetic Aperture Radar (SAR) data in the 1970s and 1980s were recorded optically on long strips of film. SAR imagery was produced via an optical, holographic technique that resulted in long strips of film imagery.

  10. One carbon metabolism in SAR11 pelagic marine bacteria.

    PubMed

    Sun, Jing; Steindler, Laura; Thrash, J Cameron; Halsey, Kimberly H; Smith, Daniel P; Carter, Amy E; Landry, Zachary C; Giovannoni, Stephen J

    2011-01-01

    The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique) genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF)-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of (14)C-labeled compounds to (14)CO(2) indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT), trimethylamine (TMA), trimethylamine N-oxide (TMAO), and dimethylsulfoniopropionate (DMSP) were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of (14)C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27-35%) than of C1 compounds (2-6%) into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO(2) in the upper ocean. PMID:21886845

  11. Statistical Approach To Extraction Of Texture In SAR

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Kwok, Ronald

    1992-01-01

    Improved statistical method of extraction of textural features in synthetic-aperture-radar (SAR) images takes account of effects of scheme used to sample raw SAR data, system noise, resolution of radar equipment, and speckle. Treatment of speckle incorporated into overall statistical treatment of speckle, system noise, and natural variations in texture. One computes speckle auto-correlation function from system transfer function that expresses effect of radar aperature and incorporates range and azimuth resolutions.

  12. Taiga forest stands and SAR: Monitoring for subarctic global change

    SciTech Connect

    Way, J.; Kwok, R.; Viereck, L.; Slaughter, C.; Dobson, C.

    1992-03-01

    In preparation for the first European Earth Remote Sensing (ERS-1) mission, a series of multitemporal, multifrequency, multipolarization aircraft synthetic aperture radar (SAR) data sets were acquired over the Bonanza Creek Experimental Forest near Fairbanks, Alaska in March 1988. Significant change in radar backscatter was observed over the two-week experimental period due to changing environmental conditions. These preliminary results are presented to illustrate the opportunity afforded by the ERS-1 SAR to monitor temporal change in forest ecosystems.

  13. SAR image formation with azimuth interpolation after azimuth transform

    SciTech Connect

    Doerry; Armin W. , Martin; Grant D. , Holzrichter; Michael W.

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  14. Nano(Q)SAR: Challenges, pitfalls and perspectives.

    PubMed

    Tantra, Ratna; Oksel, Ceyda; Puzyn, Tomasz; Wang, Jian; Robinson, Kenneth N; Wang, Xue Z; Ma, Cai Y; Wilkins, Terry

    2015-01-01

    Regulation for nanomaterials is urgently needed, and the drive to adopt an intelligent testing strategy is evident. Such a strategy will not only provide economic benefits but will also reduce moral and ethical concerns arising from animal testing. For regulatory purposes, such an approach is promoted by REACH, particularly the use of quantitative structure-activity relationships [(Q)SAR] as a tool for the categorisation of compounds according to their physicochemical and toxicological properties. In addition to compounds, (Q)SAR has also been applied to nanomaterials in the form of nano(Q)SAR. Although (Q)SAR in chemicals is well established, nano(Q)SAR is still in early stages of development and its successful uptake is far from reality. This article aims to identify some of the pitfalls and challenges associated with nano-(Q)SARs in relation to the categorisation of nanomaterials. Our findings show clear gaps in the research framework that must be addressed if we are to have reliable predictions from such models. Three major barriers were identified: the need to improve quality of experimental data in which the models are developed from, the need to have practical guidelines for the development of the nano(Q)SAR models and the need to standardise and harmonise activities for the purpose of regulation. Of these three, the first, i.e. the need to improve data quality requires immediate attention, as it underpins activities associated with the latter two. It should be noted that the usefulness of data in the context of nano-(Q)SAR modelling is not only about the quantity of data but also about the quality, consistency and accessibility of those data. PMID:25211549

  15. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  16. SAR11 bacteria linked to ocean anoxia and nitrogen loss.

    PubMed

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M; Burns, Andrew S; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R; Padilla, Cory C; Stone, Benjamin K; Bristow, Laura A; Larsen, Morten; Glass, Jennifer B; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T; Stewart, Frank J

    2016-08-11

    Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world's largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth's most abundant organismal group. PMID:27487207

  17. Forest stand structure from airborne polarimetric InSAR

    NASA Astrophysics Data System (ADS)

    Balzter, H.; Saich, P.; Luckman, A. J.; Skinner, L.; Grant, J.

    2002-01-01

    Interferometric SAR at short wavelengths can be used to retrieve stand height of forests. We evaluate the precision of tree height estimation from airborne single-pass interferometric E-SAR data at X-band VV polarisation and repeat-pass L-band polarimetric data. General yield class curves were used to estimate tree height from planting year, tree species and yield class data provided by the Forest Enterprise. The data were compared to tree height estimates from X-VV single-pass InSAR and repeat-pass polarimetric InSAR at L-band acquired by DLR's E-SAR during the SHAC campaign 2000. The effect of gap structure and incidence angle on retrieval precision of tree height from interferometric SAR is analysed. Appropriate correction methods to improve tree height retrieval are proposed. The coherent microwave model CASM is used with a Lindenmayer system tree model to simulate the observed underestimation of stand height in the presence of gaps.

  18. (abstract) The EOS SAR Mission: A New Approach

    NASA Technical Reports Server (NTRS)

    Way, JoBea

    1993-01-01

    The goal of the Earth Orbiting System Synthetic Aperture Radar (EOS SAR) program is to help develop the modeling and observational capabilities to predict and monitor terrestrial and oceanic processes that are either causing global change or resulting from global change. Specifically, the EOS SAR will provide important geophysical products to the EOS data set to improve our understanding of the state and functioning of the Earth system. The strategy for the EOS SAR program is to define the instrument requirements based on required input to geophysical algorithms, provide the processing capability and algorithms to generate such products on the required spatial (global) and temporal (3-5 days) scales, and to provide the spaceborne instrumentation with international partnerships. Initially this partnership has been with Germany; currently we are exploring broader international partnerships. A MultiSAR approach to the EOS SAR which includes a number of SARs provided by Japan, ESA, Germany, Canada, and the US in synergistic orbits could be used to attain a truly global monitoring capability using multifrequency polarimetric signatures. These concepts and several options for mission scenarios will be presented.

  19. ISRO's dual frequency airborne SAR pre-cursor to NISAR

    NASA Astrophysics Data System (ADS)

    Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh

    2016-05-01

    The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.

  20. Rapid Urban Mapping Using SAR/Optical Imagery Synergy

    PubMed Central

    Corbane, Christina; Faure, Jean-François; Baghdadi, Nicolas; Villeneuve, Nicolas; Petit, Michel

    2008-01-01

    This paper highlights the potential of combining Synthetic Aperture Radar (SAR) and optical data for operational rapid urban mapping. An algorithm consisting of a completely unsupervised procedure for processing pairs of co-registered SAR/optical images is proposed. In a first stage, a texture analysis is conducted independently on the two images using eight different chain-based Gaussian models. In a second stage, the resulting texture images are partitioned by an unsupervised fuzzy K-means approach. Finally, a fuzzy decision rule is used to aggregate the results provided by the classification of texture images obtained from the pair of SAR and optical images. The method was tested and validated on images of Bucharest (Romania) and Cayenne (French Guiana). These two study areas are of different terrain relief, urban settlement structure and land cover complexity. The data set included Radarsat-1/ENVISAT and SPOT-4/5 images. The developed SAR/optical information fusion scheme improved the capabilities of urban areas extraction when compared with the separate use of SAR and optical sensors. It also proved to be suitable for monitoring urbanization development. The encouraging results thus confirm the potential of combining information from SAR and optical sensors for timely urban area analysis, as required in cases of disaster management and planning in urban sprawl areas.

  1. From Maxwell's Equations to Polarimetric SAR Images: A Simulation Approach

    PubMed Central

    Sant'Anna, Sidnei J. S.; da S. Lacava, J. C.; Fernandes, David

    2008-01-01

    A new electromagnetic approach for the simulation of polarimetric SAR images is proposed. It starts from Maxwell's equations, employs the spectral domain full-wave technique, the moment method, and the stationary phase method to compute the far electromagnetic fields scattered by multilayer structures. A multilayer structure is located at each selected position of a regular rectangular grid of coordinates, which defines the scene area under imaging. The grid is determined taking into account the elementary scatter size and SAR operational parameters, such as spatial resolution, pixel spacing, look angle and platform altitude. A two-dimensional separable “sinc” function to represent the SAR spread point function is also considered. Multifrequency sets of single-look polarimetric SAR images are generated, in L-, C- and X-bands and the images are evaluated using several measurements commonly employed in SAR data analysis. The evaluation shows that the proposed simulation process is working properly, since the obtained results are in accordance with those presented in the literature. Therefore, this new approach becomes suitable for carrying out theoretical and practical studies using polarimetric SAR images.

  2. TEC retrieval from spaceborne SAR data and its applications

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Zhang, Min; Xu, Zheng-Wen; Zhao, Hai-Sheng

    2014-10-01

    It is well known that the spaceborne synthetic aperture radar (SAR) at VHF-UHF band can be seriously affected by the ionosphere. Thus, the geophysical information of the ionosphere will be embedded in the low-frequency SAR echoes after they transverse the ionosphere. Correspondingly, the total electron content (TEC), a typical ionospheric information parameter, can be retrieved from the spaceborne SAR data. However, the existing dual-band techniques for TEC retrieval usually do not include consideration of multiple scattering effects caused by turbulent ionosphere, which plays an important role in the total path delay of signal under the strong fluctuation regimes. The result of TEC retrieval is therefore inaccurate and not applicable. Aiming at this issue, first, this paper analyzes the effects of regular background and the irregularity of electron density on SAR at L-band, and the theoretical formulation is given. Then, a triband path delay technique of TEC retrieval based on the SAR data is proposed. By using three path delays corresponding to three specific frequencies within the signal bandwidth, this technique can remove the errors of multiple scattering due to the irregularity, and a high accuracy resolution of TEC value therefore can be obtained. Meanwhile, the sensitivity of this technique is analyzed. Finally, compared with traditional dual-band technique, the numerical simulations show that the correction of SAR imaging based on triband technique is improved significantly. In addition, the resolution of reconstruction imaging using computerized ionospheric tomography performs significantly better based on the triband technique.

  3. Surface displacement studies using differential SAR interferometry: an overview

    NASA Astrophysics Data System (ADS)

    Gupta, Sonal; Sajith V., K.; Arora, Manoj K.; Sharma, Mukut L.

    2006-12-01

    The differential SAR interferometry (DInSAR) has been increasing used to monitor ground surface displacements, which may be caused by various natural disasters such as earthquakes, landslides, mining activities, avalanches etc. Conventionally, these displacements were being estimated through field measurements, which are time consuming, hazardous and with data collected over few point locations. Since all the development and rehabilitation works after a natural disaster strikes is carried out on regional basis, any information at spatial level is advantageous in planning, management and monitoring activities. In recent years, the application of Differential SAR interferometry is gaining momentum to estimate the surface displacements at millimeter level accuracy. The displacement maps produced via this technique provide information at spatial level in the region thereby assisting in judicious developmental and planning works in an efficient and cost-effective manner. The aim of this paper is provide an overview of the use of Differential SAR Interferometry (DinSAR) technology for the study of surface displacements. As a case study, land subsidence occurred due to coal mining in Jharia coal fields, Jharkhand, have been estimated through this technique. All the procedural steps in implementing the approach based on DinSAR have been explained in a simplified manner.

  4. Assessment of Crop Discrimination using Polarimetric C-band SAR Data

    NASA Astrophysics Data System (ADS)

    Gonzalez-Sampedro, M.; Le Toan, T.; Gomez-Dans, J. L.; Quegan, S.; Skriver, H.; Hoekman, D.

    2003-04-01

    In the frame of the POLSAR project, multi-temporal C-band polarimetric SAR data over Flevoland (NL) have been analysed, aiming at selecting optimum parameters for crop classification. The dataset, held in the European ERA-ORA database, contains a large amount of measurements derived from AIRSAR data, acquired on June 15, and July 3, 12 and 28, 1991. The data analysis shows very strong temporal variation in the intensity and polarimetric measurements during June and July. Relatively invariant features for different dates in July appear to be the RR/RL ratio to discriminate crops with vertical from those with random structure, the correlation between HH and VV to separate structure in sugarbeet and potatoes, HV to separate crops with different biomass levels, and the HH/HV ratio to separate vegetation from bare soil (or harvested fields). Different classification schemes have been applied to the filtered image data, in particular hierarchical classification using the optimum features, ISODATA clustering followed by classification, and WISHART classification. The results are compared and interpreted, and conclusions are given on the most effective use of polarimetric SAR data for crop classification.

  5. Characteristics of Forests in Western Sayani Mountains, Siberia from SAR Data

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Sun, Guoqing; Kharuk, V. I.; Kovacs, Katalin

    1998-01-01

    This paper investigated the possibility of using spaceborne radar data to map forest types and logging in the mountainous Western Sayani area in Siberia. L and C band HH, HV, and VV polarized images from the Shuttle Imaging Radar-C instrument were used in the study. Techniques to reduce topographic effects in the radar images were investigated. These included radiometric correction using illumination angle inferred from a digital elevation model, and reducing apparent effects of topography through band ratios. Forest classification was performed after terrain correction utilizing typical supervised techniques and principal component analyses. An ancillary data set of local elevations was also used to improve the forest classification. Map accuracy for each technique was estimated for training sites based on Russian forestry maps, satellite imagery and field measurements. The results indicate that it is necessary to correct for topography when attempting to classify forests in mountainous terrain. Radiometric correction based on a DEM (Digital Elevation Model) improved classification results but required reducing the SAR (Synthetic Aperture Radar) resolution to match the DEM. Using ratios of SAR channels that include cross-polarization improved classification and

  6. Velocity estimation of slow moving targets in AT-InSAR systems

    NASA Astrophysics Data System (ADS)

    Budillon, A.; Pascazio, V.; Schirinzi, G.

    2007-10-01

    Along Track Interferometric Synthetic Aperture Radar (AT-InSAR) systems use more than one SAR antennas (typically two), mounted on the same platform and displaced along the platform moving direction, to detect slow ground moving targets. The phase of the ATI signal is related to the target motion parameters and may thus be used to estimate the radial velocity. In this paper we approach the velocity estimation problem using statistical techniques based on the statistical distribution of the measured interferometric phases. We analyze the radial velocity estimation with respect to ATI system parameters, such as velocity values, the signal to clutter ratio (SCR), the clutter to noise ratio (CNR), considering a deterministic target whose velocity is estimated using a Gaussian model. This model allows to take into account the lack of knowledge of the target radar cross section (RCS) values and provides an analytical form for the interferometric phase probability density function. Simulations results show that the adoption of Maximum Likelihood (ML) techniques, to perform a joint estimation of velocity and SCR, and multi-channel configurations, to overcome ambiguities problems, provide very good velocity estimation accuracy.

  7. SAR backscatter from coniferous forest gaps

    NASA Technical Reports Server (NTRS)

    Day, John L.; Davis, Frank W.

    1992-01-01

    A study is in progress comparing Airborne Synthetic Aperture Radar (AIRSAR) backscatter from coniferous forest plots containing gaps to backscatter from adjacent gap-free plots. Issues discussed are how do gaps in the range of 400 to 1600 sq m (approximately 4-14 pixels at intermediate incidence angles) affect forest backscatter statistics and what incidence angles, wavelengths, and polarizations are most sensitive to forest gaps. In order to visualize the slant-range imaging of forest and gaps, a simple conceptual model is used. This strictly qualitative model has led us to hypothesize that forest radar returns at short wavelengths (eg., C-band) and large incidence angles (e.g., 50 deg) should be most affected by the presence of gaps, whereas returns at long wavelengths and small angles should be least affected. Preliminary analysis of 1989 AIRSAR data from forest near Mt. Shasta supports the hypothesis. Current forest backscatter models such as MIMICS and Santa Barbara Discontinuous Canopy Backscatter Model have in several cases correctly predicted backscatter from forest stands based on inputs of measured or estimated forest parameters. These models do not, however, predict within-stand SAR scene texture, or 'intrinsic scene variability' as Ulaby et al. has referred to it. For instance, the Santa Barbara model, which may be the most spatially coupled of the existing models, is not truly spatial. Tree locations within a simulated pixel are distributed according to a Poisson process, as they are in many natural forests, but tree size is unrelated to location, which is not the case in nature. Furthermore, since pixels of a simulated stand are generated independently in the Santa Barbara model, spatial processes larger than one pixel are not modeled. Using a different approach, Oliver modeled scene texture based on an hypothetical forest geometry. His simulated scenes do not agree well with SAR data, perhaps due to the simple geometric model used. Insofar as texture

  8. InSAR Scientific Computing Environment

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Sacco, Gian Franco; Gurrola, Eric M.; Zabker, Howard A.

    2011-01-01

    This computing environment is the next generation of geodetic image processing technology for repeat-pass Interferometric Synthetic Aperture (InSAR) sensors, identified by the community as a needed capability to provide flexibility and extensibility in reducing measurements from radar satellites and aircraft to new geophysical products. This software allows users of interferometric radar data the flexibility to process from Level 0 to Level 4 products using a variety of algorithms and for a range of available sensors. There are many radar satellites in orbit today delivering to the science community data of unprecedented quantity and quality, making possible large-scale studies in climate research, natural hazards, and the Earth's ecosystem. The proposed DESDynI mission, now under consideration by NASA for launch later in this decade, would provide time series and multiimage measurements that permit 4D models of Earth surface processes so that, for example, climate-induced changes over time would become apparent and quantifiable. This advanced data processing technology, applied to a global data set such as from the proposed DESDynI mission, enables a new class of analyses at time and spatial scales unavailable using current approaches. This software implements an accurate, extensible, and modular processing system designed to realize the full potential of InSAR data from future missions such as the proposed DESDynI, existing radar satellite data, as well as data from the NASA UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar), and other airborne platforms. The processing approach has been re-thought in order to enable multi-scene analysis by adding new algorithms and data interfaces, to permit user-reconfigurable operation and extensibility, and to capitalize on codes already developed by NASA and the science community. The framework incorporates modern programming methods based on recent research, including object-oriented scripts controlling legacy and

  9. VOLInSAR-PF, the InSAR Volcano Observatory Service at Piton de la Fournaise Volcano (La Reunion Island).

    NASA Astrophysics Data System (ADS)

    Froger, Jean-Luc; Cayol, Valérie; Augier, Aurélien; Souriot, Thierry

    2010-05-01

    Since 2003, we carry out a systematic InSAR survey of the Piton de la Fournaise volcano, Reunion Island, in the framework of an AO-ENVISAT project. Since 2005 this activity gets the status of Observatory Service of the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC). From 375 ASAR images acquired between 2003 and 2010, we have produced more than 2100 interferograms that allowed us to map the deformations related to 21 eruptions and thus to better understand the internal processes acting during each eruption. In the same time, we have developed an automatic procedure to provide full resolution interferograms, trough a dedicated WEB site, to the Volcano Observatory of Piton de la Fournaise (OVPF), and our other partners, within a few hours after receiving the ASAR images. In this way, our work is a first step toward an operational system of InSAR monitoring of volcanic activity. Since the beginning of 2010, the VOLInSAR-PF database is also open to the entire community, trough an anonymous login that gives access to slightly reduced resolution interferograms. We will present the VOLInSAR-PF database, the main results it provides concerning the way Piton de la Fournaise is deforming, and the main perspectives for monitoring provided by the new InSAR data (PALSAR-ALOS, TerraSAR-X, RADARSAT-2, COSMO-Skymed) we are beginning to integrate in the database.

  10. Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite.

    PubMed

    Bulut, Emrah; Ozacar, Mahmut; Sengil, I Ayhan

    2008-06-15

    The adsorption of Congo Red onto bentonite in a batch adsorber has been studied. Four kinetic models, the pseudo first- and second-order equations, the Elovich equation and the intraparticle diffusion equation, were selected to follow the adsorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and correlation coefficients, for each kinetic equation were calculated and discussed. It was shown that the adsorption of Congo Red onto bentonite could be described by the pseudo second-order equation. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. Adsorption of Congo Red onto bentonite followed the Langmuir isotherm. A single stage batch adsorber was designed for different adsorbent mass/treated effluent volume ratios using the Langmuir isotherm. PMID:18055111

  11. Generalized energy-aperture product limit for multi-beam and spotlight SARs

    SciTech Connect

    Karr, T.J.

    1995-12-21

    The SAR energy-aperture product limit is extended to multi-beam SARS, Spotlight and moving spotlight SARS. This fundamental limit bounds the tradeoff between energy and antenna size. The kinematic relations between design variables such as platform speed, pulse repetition frequency, beam width and area rate are analyzed in a unified framework applicable to a wide variety of SARs including strip maps, spotlights, vermer arrays and multi-beam SARS, both scanning and swept-beam. Then the energy-aperture product limit is derived from the signal-to noise requirement and the kinematic constraints. The derivation clarifies impact of multiple beams and spotlighting on SAR performance.

  12. Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern

    SciTech Connect

    Doerry, Armin W.

    2013-04-30

    Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.

  13. Geodetic imaging of tectonic deformation with InSAR

    NASA Astrophysics Data System (ADS)

    Fattahi, Heresh

    Precise measurements of ground deformation across the plate boundaries are crucial observations to evaluate the location of strain localization and to understand the pattern of strain accumulation at depth. Such information can be used to evaluate the possible location and magnitude of future earthquakes. Interferometric Synthetic Aperture Radar (InSAR) potentially can deliver small-scale (few mm/yr) ground displacement over long distances (hundreds of kilometers) across the plate boundaries and over continents. However, Given the ground displacement as our signal of interest, the InSAR observations of ground deformation are usually affected by several sources of systematic and random noises. In this dissertation I identify several sources of systematic and random noise, develop new methods to model and mitigate the systematic noise and to evaluate the uncertainty of the ground displacement measured with InSAR. I use the developed approach to characterize the tectonic deformation and evaluate the rate of strain accumulation along the Chaman fault system, the western boundary of the India with Eurasia tectonic plates. I evaluate the bias due to the topographic residuals in the InSAR range-change time-series and develope a new method to estimate the topographic residuals and mitigate the effect from the InSAR range-change time-series (Chapter 2). I develop a new method to evaluate the uncertainty of the InSAR velocity field due to the uncertainty of the satellite orbits (Chapter 3) and a new algorithm to automatically detect and correct the phase unwrapping errors in a dense network of interferograms (Chapter 4). I develop a new approach to evaluate the impact of systematic and stochastic components of the tropospheric delay on the InSAR displacement time-series and its uncertainty (Chapter 5). Using the new InSAR time-series approach developed in the previous chapters, I study the tectonic deformation across the western boundary of the India plate with Eurasia and

  14. Adsorption of lanthanum to goethite in the presence of gluconate

    SciTech Connect

    Hull, Laurence C.; Sarah Pepper; Sue Clark

    2005-05-01

    Adsorption of Lanthanum to Goethite in the Presence of Gluconic Acid L. C. HULL,1 S. E. PEPPER2 AND S. B. CLARK2 1Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (hulllc@inel.gov) 2Washington State University, Pullman, WA (spepper@wsu.edu), (s_clark@wsu.edu) Lanthanide and trivalent-actinide elements in radioactive waste can pose risks to humans and ecological systems for many years. Organic complexing agents, from natural organic matter or the degradation of waste package components, can alter the mobility of these elements. We studied the effect of gluconic acid, as an analogue for cellulose degradation products, on the adsorption of lanthanum, representing lanthanide and trivalent-actinide elments, to goethite, representing natural iron minearals and degradation products of waste packages. Batch pH adsorption edge experiments were conducted with lanthanum alone, and with lanthanum and gluconate at a 1:1 mole ratio. Lanthanum concentrations studied were 0.1, 1, and 10 mM, covering a range from 10% to 1000% of the calculated available adsorption sites on goethite. In the absence of gluconate, lanthanum was primarily present in solution as free lanthanum ion. With gluconate present, free lanthanum concentration in solution decreased with increasing pH as step-wise deprotonation of the gluconate molecule increased the fraction lanthanum complexed with gluconate. Adsorption to the goethite surface was represented with the diffuse double-layer model. The number of adsorption sites and the intrinsic binding constants for the surface complexes were estimated from the pH adsorption edge data using the computer code FITEQL 4.0. Two surface reactions were used to fit the adsorption data in the absence of gluconate. A strong binding site with no proton release and a much higher concentration of weak binding sites with release of two protons per lanthanum adsorbed. The adsorption of lanthanum was not measurably affected by the presence of gluconate

  15. Applying target shadow models for SAR ATR

    NASA Astrophysics Data System (ADS)

    Papson, Scott; Narayanan, Ram M.

    2007-04-01

    Recent work has suggested that target shadows in synthetic aperture radar (SAR) images can be used effectively to aid in target classification. The method outlined in this paper has four steps - segmentation, representation, modeling, and selection. Segmentation is the process by which a smooth, background-free representation of the target's shadow is extracted from an image chip. A chain code technique is then used to represent the shadow boundary. Hidden Markov modeling is applied to sets of chain codes for multiple targets to create a suitable bank of target representations. Finally, an ensemble framework is proposed for classification. The proposed model selection process searches for an optimal ensemble of models based on various target model configurations. A five target subset of the MSTAR database is used for testing. Since the shadow is a back-projection of the target profile, some aspect angles will contain more discriminatory information then others. Therefore, performance is investigated as a function of aspect angle. Additionally, the case of multiple target looks is considered. The capability of the shadow-only classifier to enhance more traditional classification techniques is examined.

  16. Robust SAR ATR by hedging against uncertainty

    NASA Astrophysics Data System (ADS)

    Hoffman, John R.; Mahler, Ronald P. S.; Ravichandran, Ravi B.; Huff, Melvyn; Musick, Stanton

    2002-07-01

    For the past two years in this conference, we have described techniques for robust identification of motionless ground targets using single-frame Synthetic Aperture Radar (SAR) data. By robust identification, we mean the problem of determining target ID despite the existence of confounding statistically uncharacterizable signature variations. Such variations can be caused by effects such as mud, dents, attachment of nonstandard equipment, nonstandard attachment of standard equipment, turret articulations, etc. When faced with such variations, optimal approaches can often behave badly-e.g., by mis-identifying a target type with high confidence. A basic element of our approach has been to hedge against unknowable uncertainties in the sensor likelihood function by specifying a random error bar (random interval) for each value of the likelihood function corresponding to any given value of the input data. Int his paper, we will summarize our recent results. This will include a description of the fuzzy maximum a posteriori (MAP) estimator. The fuzzy MAP estiamte is essentially the set of conventional MAP estimates that are plausible, given the assumed uncertainty in the problem. Despite its name, the fuzzy MAP is derived rigorously from first probabilistic principles based on random interval theory.

  17. Bandwidth requirements for fine resolution squinted SAR

    SciTech Connect

    DOERRY,ARMIN W.

    2000-03-01

    The conventional rule-of-thumb for Synthetic Aperture Radar is that an RF bandwidth of c/(2{rho}{sub r}) is required to image a scene at the desired slant-range resolution {rho}{sub r}, and perhaps a little more to account for window functions and sidelobe control. This formulation is based on the notion that the total bandwidth required is the same bandwidth that is required for a single pulse. What is neglected is that efficient processing of an entire synthetic aperture of pulses will often require different frequency content for each of the different pulses that makeup a synthetic aperture. Consequently, the total RF bandwidth required of a Synthetic Aperture Radar may then be substantially wider than the bandwidth of any single pulse. The actual RF bandwidth required depends strongly on flight geometry, owing to the desire for a radar to maintain a constant projection of the Fourier space collection surface onto the {omega}{sub y} axis. Long apertures required for fine azimuth resolution, and severe squint angles with steep depression angles may require total RF bandwidths well beyond the minimum bandwidth required of any single transmitted pulse, perhaps even by a factor of two or more. Accounting for this is crucial to designing efficient versatile high-performance imaging radars. This paper addresses how a data set conducive to efficient processing might increase the total RF bandwidth, and presents examples of how a fixed RF bandwidth might then limit SAR geometries.

  18. [SARS, avian influenza, and human metapneumovirus infection].

    PubMed

    Casas, Inmaculada; Pozo, Francisco

    2005-01-01

    Beginning in the 1950s respiratory viruses have been gradually discovered by isolation in cell cultures The last were the coronaviruses in the 1960s. No new respiratory viruses were discovered until 2001 when human metapneumovirus was found in respiratory specimens from children with bronchiolitis. A year later, in November 2002, severe acute respiratory syndrome (SARS) suddenly appeared as atypical pneumonia. A novel virus belonging to the Coronaviridae family was found to be a cause of this infection. In 2004, a second coronavirus was discovered (CoV-NL63) and in 2005 a third new coronavirus was described (CoV-HKU1). In addition, several subtypes of the influenza A virus, previously known to infect only poultry and wild birds, were recently found to have been directly transmitted to humans. Respiratory infection has been a considerable problem for humans for centuries. Now, in the 21st century, with new associated viruses continuously emerging, it remains an important field for work. PMID:16159544

  19. Anisotropic model-based SAR processing

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Gunther, Jake; Moon, Todd

    2013-05-01

    Synthetic aperture radar (SAR) collections that integrate over a wide range of aspect angles hold the potentional for improved resolution and fosters improved scene interpretability and target detection. However, in practice it is difficult to realize the potential due to the anisotropic scattering of objects in the scene. The radar cross section (RCS) of most objects changes as a function of aspect angle. The isotropic assumption is tacitly made for most common image formation algorithms (IFA). For wide aspect scenarios one way to account for anistropy would be to employ a piecewise linear model. This paper focuses on such a model but it incorporates aspect and spatial magnitude filters in the image formation process. This is advantageous when prior knowledge is available regarding the desired targets' RCS signature spatially and in aspect. The appropriate filters can be incorporated into the image formation processing so that specific targets are emphasized while other targets are suppressed. This is demonstrated on the Air Force Research Laboratory (AFRL) GOTCHA1 data set to demonstrate the utility of the proposed approach.

  20. Measuring Thermokarst Subsidence Using InSAR: Potential and Pitfalls

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K. M.; Chen, A. C.; Gusmeroli, A.; Zebker, H. A.; Zhang, T.

    2014-12-01

    Thawing of ice-rich permafrost results in irregular, depressed landforms known as thermokarst terrain. The significant subsidence leading to thermokarst features can expand lakes, drain lakes, accelerate thaw, disturb the soil column, and promote erosion. Consequently, it affects many permafrost-region processes including vegetation succession, hydrology, and carbon storage and cycling. Many remote sensing studies identify thermokarst landforms and catalog their ever-changing areas. Yet the intrinsic dynamic thermokarst process, namely surface subsidence, remains a challenge to map and is seldom examined using remote sensing methods. Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique that uses a time-series of satellite SAR images to measure cm-level land surface deformation. We demonstrate the capabilities and limitations of space-borne InSAR data to map thermokarst subsidence at a site located near Prudhoe Bay, on the North Slope of Alaska. A pipeline access road was constructed at this site in the 1970s, and is likely to have triggered the thawing of the region's permafrost, causing subsequent expansion of thermokarst-landform terrain. Our InSAR analysis using ALOS PALSAR images reveals that the thermokarst landforms in this region have undergone up to 10 cm of surface subsidence each summer from 2007 to 2010. This pilot study demonstrates the application of InSAR to map localized mass movement in permafrost terrain. We also illustrate how the effectiveness and accuracy of InSAR measurements are limited by several factors such as loss of interferometric coherence due to fast changes of ground surface conditions, spatial and temporal resolutions of InSAR data, and difficulty separating long-term and seasonal deformation signals.

  1. SARS plague: duty of care or medical heroism?

    PubMed

    Tai, Dessmon Y H

    2006-05-01

    Severe acute respiratory syndrome (SARS) is a new infectious disease that emerged in mid- November 2002 in Guangdong, southern China. The global pandemic began in late February 2003 in Hong Kong. By the time SARS was declared contained on 5 July 2003 by the World Health Organization (WHO), it had afflicted 8096 patients in 29 countries. No other disease had had such a phenomenal impact on healthcare workers (HCWs), who formed about 21% of SARS patients. In Vietnam, Canada and Singapore, HCWs accounted for 57%, 43% and 41% of SAR patients, respectively. At the beginning of the outbreak, there was practically no information on this disease, which did not even have a name until 16 March 2003, except that it was infectious and could result in potentially fatal respiratory failure. Indeed, HCWs had lost their lives to SARS. Understandably, some HCWs refused to look after SARS patients or even resigned. Initially, much negative publicity was given to such HCWs. It was a very trying time for HCWs as many were also ostracised by the society which they served. They were perceived to be a potential source of infection in the community because of their contact with SARS patients, whom they risked their lives looking after. Subsequently, as we learnt more about the disease and educated the public about the plight of the frontline HCWs, the public gave the frontline HCWs tremendous support and even honoured them as heroes. Being in the medical profession, caring for patients is one of our expected responsibilities. On the other hand, as public citizens, HCWs have the right to resign when they feel that their responsibility to their families should take priority over that to their patients. As a result of this scourge, each HCW learnt to decide if caring for patients is their chosen profession and vocation. Many chose to live up the Hippocratic oath. PMID:16830007

  2. UAVSAR and TerraSAR-X Based InSAR Detection of Localized Subsidence in the New Orleans Area

    NASA Astrophysics Data System (ADS)

    Blom, R. G.; An, K.; Jones, C. E.; Latini, D.

    2014-12-01

    Vulnerability of the US Gulf coast to inundation has received increased attention since hurricanes Katrina and Rita. Compounding effects of sea level rise, wetland loss, and regional and local subsidence makes flood protection a difficult challenge, and particularly for the New Orleans area. Key to flood protection is precise knowledge of elevations and elevation changes. Analysis of historical and continuing geodetic measurements show surprising complexity, including locations subsiding more rapidly than considered during planning of hurricane protection and coastal restoration projects. Combining traditional, precise geodetic data with interferometric synthetic aperture radar (InSAR) observations can provide geographically dense constraints on surface deformation. The Gulf Coast environment is challenging for InSAR techniques, especially with systems not designed for interferometry. We use two InSAR capable systems, the L- band (24 cm wavelength) airborne JPL/NASA UAVSAR, and the DLR/EADS Astrium spaceborne TerraSAR X-band (3 cm wavelength), and compare results. First, we are applying pair-wise InSAR to the longer wavelength UAVSAR data to detect localized elevation changes potentially impacting flood protection infrastructure from 2009 - 2014. We focus on areas on and near flood protection infrastructure to identify changes indicative of subsidence, structural deformation, and/or seepage. The Spaceborne TerraSAR X-band SAR system has relatively frequent observations, and dense persistent scatterers in urban areas, enabling measurement of very small displacements. We compare L-band UAVSAR results with permanent scatterer (PS-InSAR) and Short Baseline Subsets (SBAS) interferometric analyses of a stack composed by 28 TerraSAR X-band images acquired over the same period. Thus we can evaluate results from the different radar frequencies and analyses techniques. Preliminary results indicate subsidence features potentially of a variety of causes, including ground water

  3. Host receptors for bacteriophage adsorption.

    PubMed

    Bertozzi Silva, Juliano; Storms, Zachary; Sauvageau, Dominic

    2016-02-01

    The adsorption of bacteriophages (phages) onto host cells is, in all but a few rare cases, a sine qua non condition for the onset of the infection process. Understanding the mechanisms involved and the factors affecting it is, thus, crucial for the investigation of host-phage interactions. This review provides a survey of the phage host receptors involved in recognition and adsorption and their interactions during attachment. Comprehension of the whole infection process, starting with the adsorption step, can enable and accelerate our understanding of phage ecology and the development of phage-based technologies. To assist in this effort, we have established an open-access resource--the Phage Receptor Database (PhReD)--to serve as a repository for information on known and newly identified phage receptors. PMID:26755501

  4. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection.

    PubMed

    Ng, Oi-Wing; Chia, Adeline; Tan, Anthony T; Jadi, Ramesh S; Leong, Hoe Nam; Bertoletti, Antonio; Tan, Yee-Joo

    2016-04-12

    Severe acute respiratory syndrome (SARS) is a highly contagious infectious disease which first emerged in late 2002, caused by a then novel human coronavirus, SARS coronavirus (SARS-CoV). The virus is believed to have originated from bats and transmitted to human through intermediate animals such as civet cats. The re-emergence of SARS-CoV remains a valid concern due to the continual persistence of zoonotic SARS-CoVs and SARS-like CoVs (SL-CoVs) in bat reservoirs. In this study, the screening for the presence of SARS-specific T cells in a cohort of three SARS-recovered individuals at 9 and 11 years post-infection was carried out, and all memory T cell responses detected target the SARS-CoV structural proteins. Two CD8(+) T cell responses targeting the SARS-CoV membrane (M) and nucleocapsid (N) proteins were characterized by determining their HLA restriction and minimal T cell epitope regions. Furthermore, these responses were found to persist up to 11 years post-infection. An absence of cross-reactivity of these CD8(+) T cell responses against the newly-emerged Middle East respiratory syndrome coronavirus (MERS-CoV) was also demonstrated. The knowledge of the persistence of SARS-specific celullar immunity targeting the viral structural proteins in SARS-recovered individuals is important in the design and development of SARS vaccines, which are currently unavailable. PMID:26954467

  5. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    P. Somasundaran

    2004-10-30

    Significant surfactant loss by adsorption or precipitation on reservoir minerals can cause chemical flooding processes to be less than satisfactory for enhanced oil recovery. This project is aimed towards an understanding of the role of reservoir minerals and their dissolved species in chemical loss by precipitation or adsorption of surfactants/polymers in enhanced oil recovery. Emphasis will be on the type and nature of different minerals in the oil reservoirs. Macroscopic adsorption, precipitation, wettability and nanoscopic orientation/conformation studies for aggregates of various surfactant/polymer mixtures on reservoir rocks systems is planned for exploring the cause of chemical loss by means of precipitation or adsorption, and the effect of rock mineralogy on the chemical loss. During this reporting period, the minerals proposed in this study: sandstone, limestone, gypsum, kaolinite and pyrite, have been characterized to obtain their particle size distribution and surface area, which will be used in the analysis of adsorption and wettability data. The effect of surfactant mixing ratio on the adsorption of mixture of C{sub 12}-C{sub 4}-C{sub 12} Gemini surfactant (synthesized during last period) and sugar-based nonionic surfactant n-dodecyl-{beta}-D-maltoside (DM) has been studied. It was discovered that even trace amounts of Gemini in the mixture is sufficient to force significant adsorption of DM. DM adsorption on silica increased from relatively negligible levels to very high levels. It is clear form analysis of the results that desired adsorption of either surfactant component in the mixtures can be obtained by controlling the mixing ratio, the total mixture concentration, pH etc. Along with these adsorption studies, changes in mineral wettability due to the adsorption of Gemini/DM mixtures were determined under relevant conditions to identify the nano-structure of the adsorbed layers. With increasing total surfactant adsorption, the silica mineral

  6. Biosynthesis of bifunctional iron oxyhydrosulfate by Acidithiobacillus ferroxidans and their application to coagulation and adsorption.

    PubMed

    Gan, Min; Song, Zibo; Jie, Shiqi; Zhu, Jianyu; Zhu, Yaowu; Liu, Xinxing

    2016-02-01

    Coagulation and adsorption are important environmental technologies, which were widely applied in water treatment. In this study, a type of villous iron oxyhydrosulfate with low crystallinity, high content iron, sulfate and hydroxyl was synthesized by Acidithiobacillus ferrooxidans, which possessed coagulation and heavy metal adsorption ability simultaneously. The results showed that the Cu(II) adsorption capacity increased within a small range over the pH range of 3.0-5.0 but increased evidently over the range of 6.0-8.0. The maximal Cu(II) adsorption capacity of sample Af and Gf reached 50.97 and 46.08mg/g respectively. The optimum pH for Cr(VI) adsorption was 6.0, and the maximal adsorption capacity reached 51.32 and 59.57mg/g. The Langmuir isotherm can better describe the adsorption behavior of Cr(VI). Coagulation performance of the iron oxyhydrosulfate (Sh) has been significantly enhanced by polysilicic acid (PSA), which was mainly determined by PSA/Sh ratio, pH and coagulant dosage. Coagulation efficiency maintained approximately at 98% when the PSA/Sh ratio ranged from 0.4/0.1 to 1.0/0.1. Polysilicic acid worked efficiently in wide pH range extending, from 2 to 3.5. Coagulation performance improved significantly with the increasing of the coagulant dosage at lower dosage range, while, at higher dosage range, the improvement was not evident even with more coagulant addition. PMID:26652457

  7. Effects of reactor decontamination complexing agents on soil adsorption-column studies

    SciTech Connect

    Serne, R. Jeffrey; Lindenmeier, Clark W.; Cantrell, Kirk J.; Owen, Antionette T.

    1999-12-01

    The effects of picolinate, an organic ligand used to decontaminate nuclear reactor cooling systems, in leachates generated from shallow-land burial (SLB) of low-level nuclear wastes (LLW) on soil adsorption was determined. Using batch adsorption tests and varying the concentration of picolinate, the adsorption tendencies of two metals [Ni(II) and U(VI)] and the ligand were measured as a function of solution pH. We found that when total metal concentrations were fixed at 10^-5 M, picolinate at ligand-to-metal [L:M] ratios $10 did significantly reduce adsorption of Ni but even at a L:M ratio of 100 there was no effect on U(VI) adsorption. These results are compared with data on other metals in the presence of picolinate and for metal adsorption in the presence of EDTA. We conclude that picolinic acid is less of a threat than EDTA in waste leachates to reduce metal adsorption (increase mobility) and that picolinate concentrations must reach or exceed 10^-4 M for the most impacted metals (i.e., those that form the very strongest complexes with picolinate). There are no leachate data on these decontamination agents for the common burial technique (disposal of de-watered resins in high integrity containers) that can be used to evaluate potential hazards of these organo-radionuclide complexes.

  8. Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes.

    PubMed

    Wu, Wenhao; Yang, Kun; Chen, Wei; Wang, Wendi; Zhang, Jie; Lin, Daohui; Xing, Baoshan

    2016-01-01

    Adsorption of 22 nonpolar and polar aromatic compounds on 10 carbon nanotubes (CNTs) with various diameters, lengths and surface oxygen-containing group contents was investigated to develop predictive correlations for adsorption, using the isotherm fitting of Polanyi theory-based Dubinin-Ashtakhov (DA) model. Adsorption capacity of aromatic compounds on CNTs is negatively correlated with melting points of aromatic compounds, and surface oxygen-containing group contents and surface area ratios of mesopores to total pores of CNTs, but positively correlated with total surface area of CNTs. Adsorption affinity is positively correlated with solvatochromic parameters of aromatic compounds, independent of tube lengths and surface oxygen-containing group contents of CNTs, but negatively correlated with surface area ratios of mesopores to total pores of CNTs. The correlations of adsorption capacity and adsorption affinity with properties of both aromatic compounds and CNTs clearly have physical significance, can be used successfully with DA model to predict adsorption of aromatic compounds on CNTs from the well-known physiochemical properties of aromatic compounds (i.e., solvatochromic parameters, melting points) and CNTs (i.e., surface area and total acidic group contents), and thus can facilitate the environmental application of CNTs as sorbents and environmental risk assessment of both aromatic contaminants and CNTs. PMID:26521219

  9. Separation of soybean saponins from soybean meal by a technology of foam fractionation and resin adsorption.

    PubMed

    Jiang, Jianxing; Wu, Zhaoliang; Liu, Wei; Gao, Yanfei; Guo, Shenghao; Kang, Shufang

    2016-05-18

    Foam fractionation and resin adsorption were used to recover soybean saponins from the industrial residue of soybean meal. First, a two-stage foam fractionation technology was studied for concentrating soybean saponins from the leaching liquor. Subsequently, resin adsorption was used to purify soybean saponins from the foamate in foam fractionation. The results showed that the enrichment ratio, the recovery percentage, and the purity of soybean saponins by using the two-stage foam fractionation technology could reach 4.45, 74%, and 67%, respectively. After resin adsorption and desorption, the purity of soybean saponins in the freeze-dried powder from the desorption solution was 88.4%. PMID:26030807

  10. Adsorption characteristics of metal ions on chitosan chemically modified by D-galactose

    SciTech Connect

    Kondo, Kazuo; Sumi, Hisaharu; Matsumoto, Michiaki

    1996-07-01

    The adsorption characteristics of metal ions on chitosan chemically modified by D-galactose were examined. The pH dependency on the distribution ratio was found to be affected by the valency of the metal ion, and the apparent adsorption equilibrium constants of the metal ions were determined. The order of adsorption of the metal ions is Ga > In > Nd > Eu for the trivalent metal ions and Cu > Ni > Co for the divalent metal ions. It is believed that amino and hydroxyl groups in the chitosan act as a chelating ligand.

  11. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    SciTech Connect

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  12. Adsorption on a stepped substrate

    NASA Astrophysics Data System (ADS)

    Merikoski, J.; Timonen, J.; Kaski, K.

    1994-09-01

    The effect of substrate steps on the adsorption of particles is considered. The problem is formulated as a lattice-gas model with nearest neighbor interactions and it is studied by a numerical transfer-matrix method. In particular, the influence of the substrate-induced row potential on adsorbed monolayers is discussed. It is found that strong row-transition-like features appear in the presence of a row potential and it is suggested that these may be seen in adsorption on vicinal faces.

  13. Adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA

    SciTech Connect

    Satik, Cengiz; Walters, Mark; Horne, Roland N.

    1996-01-24

    This paper reports on a continuing experimental effort to characterize the adsorption behavior of rocks from The Geysers steam field in California. We show adsorption results obtained for 36 rock samples. All of the adsorption isotherms plotted on the same graph exhibit an envelope of isotherms. The minimum and the maximum values of the slope (or rate of adsorption) and of the magnitude within this envelope of isotherms belonged to the UOC-1 (felsite) and NCPA B-5 (serpentine) samples. The values of surface area and porosity, and pore size distribution for 19 of the samples indicated a very weak correlation with adsorption. An interpretation of the pore size distributions and the liquid saturation isotherms suggests that the change in the slope and the magnitude of the adsorption isotherms within the envelope is controlled primarily by the physical adsorption mechanism instead of capillary condensation. Grain-size and framework grain to matrix ratio are found to be insufficient to characterize this adsorption behavior. An accurate identification of the mineralogy of the samples will be essential to complete this analysis.

  14. Multitemporal observations of sugarcane by TerraSAR-X images.

    PubMed

    Baghdadi, Nicolas; Cresson, Rémi; Todoroff, Pierre; Moinet, Soizic

    2010-01-01

    The objective of this study is to investigate the potential of TerraSAR-X (X-band) in monitoring sugarcane growth on Reunion Island (located in the Indian Ocean). Multi-temporal TerraSAR data acquired at various incidence angles (17°, 31°, 37°, 47°, 58°) and polarizations (HH, HV, VV) were analyzed in order to study the behaviour of SAR (synthetic aperture radar) signal as a function of sugarcane height and NDVI (Normalized Difference Vegetation Index). The potential of TerraSAR for mapping the sugarcane harvest was also studied. Radar signal increased quickly with crop height until a threshold height, which depended on polarization and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is slightly higher with cross polarization and higher incidence angles (47° in comparison with 17° and 31°). Results also showed that the co-polarizations channels (HH and VV) were well correlated. High correlation between SAR signal and NDVI calculated from SPOT-4/5 images was observed. TerraSAR data showed that after strong rains the soil contribution to the backscattering of sugarcane fields can be important for canes with heights of terminal visible dewlap (htvd) less than 50 cm (total cane heights around 155 cm). This increase in radar signal after strong rains could involve an ambiguity between young and mature canes. Indeed, the radar signal on TerraSAR images acquired in wet soil conditions could be of the same order for fields recently harvested and mature sugarcane fields, making difficult the detection of cuts. Finally, TerraSAR data at high spatial resolution were shown to be useful for monitoring sugarcane harvest when the fields are of small size or when the cut is spread out in time. The comparison between incidence angles of 17°, 37° and 58° shows that 37° is more suitable to monitor the sugarcane harvest. The cut is easily detectable on TerraSAR images for data acquired

  15. Multitemporal Observations of Sugarcane by TerraSAR-X Images

    PubMed Central

    Baghdadi, Nicolas; Cresson, Rémi; Todoroff, Pierre; Moinet, Soizic

    2010-01-01

    The objective of this study is to investigate the potential of TerraSAR-X (X-band) in monitoring sugarcane growth on Reunion Island (located in the Indian Ocean). Multi-temporal TerraSAR data acquired at various incidence angles (17°, 31°, 37°, 47°, 58°) and polarizations (HH, HV, VV) were analyzed in order to study the behaviour of SAR (synthetic aperture radar) signal as a function of sugarcane height and NDVI (Normalized Difference Vegetation Index). The potential of TerraSAR for mapping the sugarcane harvest was also studied. Radar signal increased quickly with crop height until a threshold height, which depended on polarization and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is slightly higher with cross polarization and higher incidence angles (47° in comparison with 17° and 31°). Results also showed that the co-polarizations channels (HH and VV) were well correlated. High correlation between SAR signal and NDVI calculated from SPOT-4/5 images was observed. TerraSAR data showed that after strong rains the soil contribution to the backscattering of sugarcane fields can be important for canes with heights of terminal visible dewlap (htvd) less than 50 cm (total cane heights around 155 cm). This increase in radar signal after strong rains could involve an ambiguity between young and mature canes. Indeed, the radar signal on TerraSAR images acquired in wet soil conditions could be of the same order for fields recently harvested and mature sugarcane fields, making difficult the detection of cuts. Finally, TerraSAR data at high spatial resolution were shown to be useful for monitoring sugarcane harvest when the fields are of small size or when the cut is spread out in time. The comparison between incidence angles of 17°, 37° and 58° shows that 37° is more suitable to monitor the sugarcane harvest. The cut is easily detectable on TerraSAR images for data acquired

  16. Detecting and monitoring UCG subsidence with InSAR

    SciTech Connect

    Mellors, R J; Foxall, W; Yang, X

    2012-03-23

    The use of interferometric synthetic aperture radar (InSAR) to measure surface subsidence caused by Underground Coal Gasification (UCG) is tested. InSAR is a remote sensing technique that uses Synthetic Aperture Radar images to make spatial images of surface deformation and may be deployed from satellite or an airplane. With current commercial satellite data, the technique works best in areas with little vegetation or farming activity. UCG subsidence is generally caused by roof collapse, which adversely affects UCG operations due to gas loss and is therefore important to monitor. Previous studies have demonstrated the usefulness of InSAR in measuring surface subsidence related to coal mining and surface deformation caused by a coal mining roof collapse in Crandall Canyon, Utah is imaged as a proof-of-concept. InSAR data is collected and processed over three known UCG operations including two pilot plants (Majuba, South Africa and Wulanchabu, China) and an operational plant (Angren, Uzbekistan). A clear f eature showing approximately 7 cm of subsidence is observed in the UCG field in Angren. Subsidence is not observed in the other two areas, which produce from deeper coal seams and processed a smaller volume. The results show that in some cases, InSAR is a useful tool to image UCG related subsidence. Data from newer satellites and improved algorithms will improve effectiveness.

  17. A new method for SAR measurement in MRI

    NASA Astrophysics Data System (ADS)

    Romano, Rocco; Acernese, Fausto; Indovina, Pietro Luigi; Barone, Fabrizio

    2008-03-01

    During an MR procedure, the patient absorbs a portion of the transmitted RF energy, which may result in tissue heating and other adverse effects, such as alterations in visual, auditory and neural functions. The Specific Absorption Rate (SAR), in W/kg, is the RF power absorbed per unit mass of tissue and is one of the most important parameters related with thermal effects and acts as a guideline for MRI safety. Strict limits to the SAR levels are imposed by patient safety international regulations (CEI - EN 60601 - 2 - 33) and SAR measurements are required in order to verify its respect. The recommended methods for mean SAR measurement are quite problematic and often require a maintenance man intervention and long stop machine. For example, in the CEI recommended pulse energy method, the presence of a maintenance man is required in order to correctly connect the required instrumentation; furthermore, the procedure is complex and requires remarkable processing and calculus. Simpler are the calorimetric methods, also if in this case long acquisition times are required in order to have significant temperature variations and accurate heat capacity knowledge (CEI - EN 60601 - 2 - 33). The phase transition method is a new method to measure SAR in MRI which has the advantages to be very simple and to overcome all the typical calorimetric method problems. It does not require in gantry temperature measurements, any specific heat or heat capacity knowledge, but only mass and time measurement.

  18. Modified Polar-Format Software for Processing SAR Data

    NASA Technical Reports Server (NTRS)

    Chen, Curtis

    2003-01-01

    HMPF is a computer program that implements a modified polar-format algorithm for processing data from spaceborne synthetic-aperture radar (SAR) systems. Unlike prior polar-format processing algorithms, this algorithm is based on the assumption that the radar signal wavefronts are spherical rather than planar. The algorithm provides for resampling of SAR pulse data from slant range to radial distance from the center of a reference sphere that is nominally the local Earth surface. Then, invoking the projection-slice theorem, the resampled pulse data are Fourier-transformed over radial distance, arranged in the wavenumber domain according to the acquisition geometry, resampled to a Cartesian grid, and inverse-Fourier-transformed. The result of this process is the focused SAR image. HMPF, and perhaps other programs that implement variants of the algorithm, may give better accuracy than do prior algorithms for processing strip-map SAR data from high altitudes and may give better phase preservation relative to prior polar-format algorithms for processing spotlight-mode SAR data.

  19. Advanced fractal approach for unsupervised classification of SAR images

    NASA Astrophysics Data System (ADS)

    Pant, Triloki; Singh, Dharmendra; Srivastava, Tanuja

    2010-06-01

    Unsupervised classification of Synthetic Aperture Radar (SAR) images is the alternative approach when no or minimum apriori information about the image is available. Therefore, an attempt has been made to develop an unsupervised classification scheme for SAR images based on textural information in present paper. For extraction of textural features two properties are used viz. fractal dimension D and Moran's I. Using these indices an algorithm is proposed for contextual classification of SAR images. The novelty of the algorithm is that it implements the textural information available in SAR image with the help of two texture measures viz. D and I. For estimation of D, the Two Dimensional Variation Method (2DVM) has been revised and implemented whose performance is compared with another method, i.e., Triangular Prism Surface Area Method (TPSAM). It is also necessary to check the classification accuracy for various window sizes and optimize the window size for best classification. This exercise has been carried out to know the effect of window size on classification accuracy. The algorithm is applied on four SAR images of Hardwar region, India and classification accuracy has been computed. A comparison of the proposed algorithm using both fractal dimension estimation methods with the K-Means algorithm is discussed. The maximum overall classification accuracy with K-Means comes to be 53.26% whereas overall classification accuracy with proposed algorithm is 66.16% for TPSAM and 61.26% for 2DVM.

  20. Developing an interactive teleradiology system for SARS diagnosis

    NASA Astrophysics Data System (ADS)

    Sun, Jianyong; Zhang, Jianguo; Zhuang, Jun; Chen, Xiaomeng; Yong, Yuanyuan; Tan, Yongqiang; Chen, Liu; Lian, Ping; Meng, Lili; Huang, H. K.

    2004-04-01

    Severe acute respiratory syndrome (SARS) is a respiratory illness that had been reported in Asia, North America, and Europe in last spring. Most of the China cases of SARS have occurred by infection in hospitals or among travelers. To protect the physicians, experts and nurses from the SARS during the diagnosis and treatment procedures, the infection control mechanisms were built in SARS hospitals. We built a Web-based interactive teleradiology system to assist the radiologists and physicians both in side and out side control area to make image diagnosis. The system consists of three major components: DICOM gateway (GW), Web-based image repository server (Server), and Web-based DICOM viewer (Viewer). This system was installed and integrated with CR, CT and the hospital information system (HIS) in Shanghai Xinhua hospital to provide image-based ePR functions for SARS consultation between the radiologists, physicians and experts inside and out side control area. The both users inside and out side the control area can use the system to process and manipulate the DICOM images interactively, and the system provide the remote control mechanism to synchronize their operations on images and display.

  1. A Localization Method for Multistatic SAR Based on Convex Optimization

    PubMed Central

    2015-01-01

    In traditional localization methods for Synthetic Aperture Radar (SAR), the bistatic range sum (BRS) estimation and Doppler centroid estimation (DCE) are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R) pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function’s maximum is on the circumference of the ellipse which is the iso-range for its model function’s T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment. PMID:26566031

  2. Gb-Sar Interferometry for Structure Monitoring during Infrastructure Projects

    NASA Astrophysics Data System (ADS)

    Serrano Juan, A.; Vázquez-Suñé, E.; Monserrat, O.; Crosetto, M.; Hoffman, C.; Ledesma, A.; Criollo, R.; Pujades, E.; Velasco, V.; García, A.

    2015-12-01

    Monitoring is a necessary task for infrastructure projects. Ground-based synthetic aperture radar (GB-SAR) has been used in a large variety of displacement measurements. However, it has not yet been applied as a monitoring tool during construction projects. This paper aims to demonstrate that GB-SAR can be very helpful for understanding the mechanisms that control structure deformations and for identifying unexpected events and sensitive areas during construction projects. This could be done in a cost-effective way, which complements the traditional displacement measurements. An experiment was performed in the future railway station of La Sagrera, Barcelona (Spain) to demonstrate the utility of GB-SAR on structure monitoring during construction projects. In this experiment, GB-SAR precisely quantified wall displacements induced by dewatering. Manual data and numerical models have been used to confirm the measurements with a correlation analysis and by comparing measurements and deformation patterns, which have produced similar results. These results validate the use of the GB-SAR technique as a monitoring tool during construction projects.

  3. MAX-91: Polarimetric SAR results on Montespertoli site

    NASA Technical Reports Server (NTRS)

    Baronti, S.; Luciani, S.; Moretti, S.; Paloscia, S.; Schiavon, G.; Sigismondi, S.

    1993-01-01

    The polarimetric Synthetic Aperture Radar (SAR) is a powerful sensor for high resolution ocean and land mapping and particularly for monitoring hydrological parameters in large watersheds. There is currently much research in progress to assess the SAR operational capability as well as to estimate the accuracy achievable in the measurements of geophysical parameters with the presently available airborne and spaceborne sensors. An important goal of this research is to improve our understanding of the basic mechanisms that control the interaction of electro-magnetic waves with soil and vegetation. This can be done both by developing electromagnetic models and by analyzing statistical relations between backscattering and ground truth data. A systematic investigation, which aims at a better understanding of the information obtainable from the multi-frequency polarimetric SAR to be used in agro-hydrology, is in progress by our groups within the framework of SIR-C/X-SAR Project and has achieved a most significant milestone with the NASA/JPL Aircraft Campaign named MAC-91. Indeed this experiment allowed us to collect a large and meaningful data set including multi-temporal multi-frequency polarimetric SAR measurements and ground truth. This paper presents some significant results obtained over an agricultural flat area within the Montespertoli site, where intensive ground measurements were carried out. The results are critically discussed with special regard to the information associated with polarimetric data.

  4. A Localization Method for Multistatic SAR Based on Convex Optimization.

    PubMed

    Zhong, Xuqi; Wu, Junjie; Yang, Jianyu; Sun, Zhichao; Huang, Yuling; Li, Zhongyu

    2015-01-01

    In traditional localization methods for Synthetic Aperture Radar (SAR), the bistatic range sum (BRS) estimation and Doppler centroid estimation (DCE) are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R) pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function's maximum is on the circumference of the ellipse which is the iso-range for its model function's T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment. PMID:26566031

  5. An automatic coastline detector for use with SAR images

    SciTech Connect

    Erteza, Ireena A.

    1998-09-01

    SAR imagery for coastline detection has many potential advantages over conventional optical stereoscopic techniques. For example, SAR does not have restrictions on being collected during daylight or when there is no cloud cover. In addition, the techniques for coastline detection witth SAR images can be automated. In this paper, we present the algorithmic development of an automatic coastline detector for use with SAR imagery. Three main algorithms comprise the automatic coastline detection algorithm, The first algorithm considers the image pre-processing steps that must occur on the original image in order to accentuate the land/water boundary. The second algorithm automatically follows along the accentuated land/water boundary and produces a single-pixel-wide coastline. The third algorithm identifies islands and marks them. This report describes in detail the development of these three algorithms. Examples of imagery are used throughout the paper to illustrate the various steps in algorithms. Actual code is included in appendices. The algorithms presented are preliminary versions that can be applied to automatic coastline detection in SAR imagery. There are many variations and additions to the algorithms that can be made to improve robustness and automation, as required by a particular application.

  6. Integration of SAR and DEM data: Geometrical considerations

    NASA Technical Reports Server (NTRS)

    Kropatsch, Walter G.

    1991-01-01

    General principles for integrating data from different sources are derived from the experience of registration of SAR images with digital elevation models (DEM) data. The integration consists of establishing geometrical relations between the data sets that allow us to accumulate information from both data sets for any given object point (e.g., elevation, slope, backscatter of ground cover, etc.). Since the geometries of the two data are completely different they cannot be compared on a pixel by pixel basis. The presented approach detects instances of higher level features in both data sets independently and performs the matching at the high level. Besides the efficiency of this general strategy it further allows the integration of additional knowledge sources: world knowledge and sensor characteristics are also useful sources of information. The SAR features layover and shadow can be detected easily in SAR images. An analytical method to find such regions also in a DEM needs in addition the parameters of the flight path of the SAR sensor and the range projection model. The generation of the SAR layover and shadow maps is summarized and new extensions to this method are proposed.

  7. Atmospheric Effects on InSAR Measurements and Their Mitigation

    PubMed Central

    Ding, Xiao-li; Li, Zhi-wei; Zhu, Jian-jun; Feng, Guang-cai; Long, Jiang-ping

    2008-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is a powerful technology for observing the Earth surface, especially for mapping the Earth's topography and deformations. InSAR measurements are however often significantly affected by the atmosphere as the radar signals propagate through the atmosphere whose state varies both in space and in time. Great efforts have been made in recent years to better understand the properties of the atmospheric effects and to develop methods for mitigating the effects. This paper provides a systematic review of the work carried out in this area. The basic principles of atmospheric effects on repeat-pass InSAR are first introduced. The studies on the properties of the atmospheric effects, including the magnitudes of the effects determined in the various parts of the world, the spectra of the atmospheric effects, the isotropic properties and the statistical distributions of the effects, are then discussed. The various methods developed for mitigating the atmospheric effects are then reviewed, including the methods that are based on PSInSAR processing, the methods that are based on interferogram modeling, and those that are based on external data such as GPS observations, ground meteorological data, and satellite data including those from the MODIS and MERIS. Two examples that use MODIS and MERIS data respectively to calibrate atmospheric effects on InSAR are also given.

  8. Determining Titan surface topography from Cassini SAR data

    USGS Publications Warehouse

    Stiles, Bryan W.; Hensley, Scott; Gim, Yonggyu; Bates, David M.; Kirk, Randolph L.; Hayes, Alex; Radebaugh, Jani; Lorenz, Ralph D.; Mitchell, Karl L.; Callahan, Philip S.; Zebker, Howard; Johnson, William T.K.; Wall, Stephen D.; Lunine, Jonathan I.; Wood, Charles A.; Janssen, Michael; Pelletier, Frederic; West, Richard D.; Veeramacheneni, Chandini

    2009-01-01

    A technique, referred to as SARTopo, has been developed for obtaining surface height estimates with 10 km horizontal resolution and 75 m vertical resolution of the surface of Titan along each Cassini Synthetic Aperture Radar (SAR) swath. We describe the technique and present maps of the co-located data sets. A global map and regional maps of Xanadu and the northern hemisphere hydrocarbon lakes district are included in the results. A strength of the technique is that it provides topographic information co-located with SAR imagery. Having a topographic context vastly improves the interpretability of the SAR imagery and is essential for understanding Titan. SARTopo is capable of estimating surface heights for most of the SAR-imaged surface of Titan. Currently nearly 30% of the surface is within 100 km of a SARTopo height profile. Other competing techniques provide orders of magnitude less coverage. We validate the SARTopo technique through comparison with known geomorphological features such as mountain ranges and craters, and by comparison with co-located nadir altimetry, including a 3000 km strip that had been observed by SAR a month earlier. In this area, the SARTopo and nadir altimetry data sets are co-located tightly (within 5-10 km for one 500 km section), have similar resolution, and as expected agree closely in surface height. Furthermore the region contains prominent high spatial resolution topography, so it provides an excellent test of the resolution and precision of both techniques.

  9. Numerical Analysis of Orbital Perturbation Effects on Inclined Geosynchronous SAR.

    PubMed

    Dong, Xichao; Hu, Cheng; Long, Teng; Li, Yuanhao

    2016-01-01

    The geosynchronous synthetic aperture radar (GEO SAR) is susceptible to orbit perturbations, leading to orbit drifts and variations. The influences behave very differently from those in low Earth orbit (LEO) SAR. In this paper, the impacts of perturbations on GEO SAR orbital elements are modelled based on the perturbed dynamic equations, and then, the focusing is analyzed theoretically and numerically by using the Systems Tool Kit (STK) software. The accurate GEO SAR slant range histories can be calculated according to the perturbed orbit positions in STK. The perturbed slant range errors are mainly the first and second derivatives, leading to image drifts and defocusing. Simulations of the point target imaging are performed to validate the aforementioned analysis. In the GEO SAR with an inclination of 53° and an argument of perigee of 90°, the Doppler parameters and the integration time are different and dependent on the geometry configurations. Thus, the influences are varying at different orbit positions: at the equator, the first-order phase errors should be mainly considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at other positions, first-order and second-order exist simultaneously. PMID:27598168

  10. Camouflage effectiveness of static nets in SAR images

    NASA Astrophysics Data System (ADS)

    Jersblad, Johan; Larsson, Christer

    2015-10-01

    We present a methodology to determine the camouflage effectiveness of static nets in a SAR image. There is currently no common recognized methodology within the signature management community in this research topic. One step towards establishing a common methodology is to use a standardized target to be camouflaged. We use the STANdard Decoy for CAmouflage Materials (STANDCAM) target developed by the German Army, WTD 52, Oberjettenberg. An ISAR measurement of the STANDCAM with a camouflage configuration is acquired as the first step of the method. The ISAR data is then blended with SAR data acquired in field trials. In the final SAR image a contrast metric between the target and background is extracted. The contrast measure is then the measure of the camouflage effectiveness. As an example of result we present ISAR measurements and determine the camouflage effectiveness in a SAR image using SAR blending for static nets with different electrical conductivity and design. This methodology presents a measure to determine the effectiveness of a static net on the STANDCAM target.

  11. Targeted Radiosensitization by the Chk1 Inhibitor SAR-020106

    SciTech Connect

    Borst, Gerben R.; McLaughlin, Martin; Kyula, Joan N.; Neijenhuis, Sari; Khan, Aadil; Good, James; Zaidi, Shane; Powell, Ned G.; Meier, Pascal; Collins, Ian; Garrett, Michelle D.; Verheij, Marcel; Harrington, Kevin J.

    2013-03-15

    Purpose: To explore the activity of a potent Chk1 inhibitor (SAR-020106) in combination with radiation. Methods and Materials: Colony and mechanistic in vitro assays and a xenograft in vivo model. Results: SAR-020106 suppressed-radiation-induced G{sub 2}/M arrest and reduced clonogenic survival only in p53-deficient tumor cells. SAR-020106 promoted mitotic entry following irradiation in all cell lines, but p53-deficient cells were likely to undergo apoptosis or become aneuploid, while p53 wild-type cells underwent a postmitotic G{sub 1} arrest followed by subsequent normal cell cycle re-entry. Following combined treatment with SAR-020106 and radiation, homologous-recombination-mediated DNA damage repair was inhibited in all cell lines. A significant increase in the number of pan-γH2AX-staining apoptotic cells was observed only in p53-deficient cell lines. Efficacy was confirmed in vivo in a clinically relevant human head-and-neck cell carcinoma xenograft model. Conclusion: The Chk1 inhibitor SAR-020106 is a potent radiosensitizer in tumor cell lines defective in p53 signaling.

  12. The Golden Ratio

    ERIC Educational Resources Information Center

    Hyde, Hartley

    2004-01-01

    The Golden Ratio is sometimes called the "Golden Section" or the "Divine Proportion", in which three points: A, B, and C, divide a line in this proportion if AC/AB = AB/BC. "Donald in Mathmagicland" includes a section about the Golden Ratio and the ratios within a five-pointed star or pentagram. This article presents two computing exercises that…

  13. Non-contact analysis of the adsorptive ink capacity of nano silica pigments on a printing coating base.

    PubMed

    Jiang, Bo; Huang, Yu Dong

    2014-01-01

    Near infrared spectra combined with partial least squares were proposed as a means of non-contact analysis of the adsorptive ink capacity of recording coating materials in ink jet printing. First, the recording coating materials were prepared based on nano silica pigments. 80 samples of the recording coating materials were selected to develop the calibration of adsorptive ink capacity against ink adsorption (g/m2). The model developed predicted samples in the validation set with r2  = 0.80 and SEP = 1.108, analytical results showed that near infrared spectra had significant potential for the adsorption of ink capacity on the recording coating. The influence of factors such as recording coating thickness, mass ratio silica: binder-polyvinyl alcohol and the solution concentration on the adsorptive ink capacity were studied. With the help of the near infrared spectra, the adsorptive ink capacity of a recording coating material can be rapidly controlled. PMID:25329464

  14. Non-Contact Analysis of the Adsorptive Ink Capacity of Nano Silica Pigments on a Printing Coating Base

    PubMed Central

    Jiang, Bo; Huang, Yu Dong

    2014-01-01

    Near infrared spectra combined with partial least squares were proposed as a means of non-contact analysis of the adsorptive ink capacity of recording coating materials in ink jet printing. First, the recording coating materials were prepared based on nano silica pigments. 80 samples of the recording coating materials were selected to develop the calibration of adsorptive ink capacity against ink adsorption (g/m2). The model developed predicted samples in the validation set with r2  = 0.80 and SEP  = 1.108, analytical results showed that near infrared spectra had significant potential for the adsorption of ink capacity on the recording coating. The influence of factors such as recording coating thickness, mass ratio silica: binder-polyvinyl alcohol and the solution concentration on the adsorptive ink capacity were studied. With the help of the near infrared spectra, the adsorptive ink capacity of a recording coating material can be rapidly controlled. PMID:25329464

  15. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption

    NASA Astrophysics Data System (ADS)

    Mikutta, Robert; Lorenz, Dennis; Guggenberger, Georg; Haumaier, Ludwig; Freund, Anja

    2014-11-01

    Ferric oxyhydroxides play an important role in controlling the bioavailability of oxyanions such as arsenate and phosphate in soil. Despite this, little is known about the properties and reactivity of Fe(III)-organic matter phases derived from adsorption (reaction of organic matter (OM) to post-synthesis Fe oxide) versus coprecipitation (formation of Fe oxides in presence of OM). Coprecipitates and adsorption complexes were synthesized at pH 4 using two natural organic matter (NOM) types extracted from forest floor layers (Oi and Oa horizon) of a Haplic Podzol. Iron(III) coprecipitates were formed at initial molar metal-to-carbon (M/C) ratios of 1.0 and 0.1 and an aluminum (Al)-to-Fe(III) ratio of 0.2. Sample properties were studied by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, dynamic light scattering, and electrophoretic mobility measurements. Arsenic [As(V)] adsorption to Fe-OM phases was studied in batch experiments (168 h, pH 4, 100 μM As). The organic carbon (OC) contents of the coprecipitates (82-339 mg g-1) were higher than those of adsorption complexes (31 and 36 mg g-1), leading to pronounced variations in specific surface area (9-300 m2 g-1), average pore radii (1-9 nm), and total pore volumes (11-374 mm3 g-1) but being independent of the NOM type or the presence of Al. The occlusion of Fe solids by OM (XPS surface concentrations: 60-82 atom% C) caused comparable pHPZC (1.5-2) of adsorption complexes and coprecipitates. The synthesis conditions resulted in different Fe-OM association modes: Fe oxide particles in 'M/C 0.1' coprecipitates covered to a larger extent the outermost aggregate surfaces, for some 'M/C 1.0' coprecipitates OM effectively enveloped the Fe oxides, while OM in the adsorption complexes primarily covered the outer aggregate surfaces. Despite of their larger OC contents, adsorption of As(V) was fastest to coprecipitates formed at low Fe availability (M/C 0.1) and facilitated by desorption of weakly

  16. 1. RUINED PORTION OF SANTA ANA CANAL INTAKE ALONGSIDE SAR3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. RUINED PORTION OF SANTA ANA CANAL INTAKE ALONGSIDE SAR-3 SYSTEM TUNNEL, JUST TO SOUTH OF SAR-2. VIEW TO SOUTHEAST. - Santa Ana River Hydroelectric System, Abandoned Tunnel, Redlands, San Bernardino County, CA

  17. 1. SAR1, SOUTHEAST AND SOUTHWEST ELEVATIONS, WITH SWITCH RACK AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SAR-1, SOUTHEAST AND SOUTHWEST ELEVATIONS, WITH SWITCH RACK AT LEFT, AND SANTA ANA WELL #1 AND STONE RETAINING WALLS AT RIGHT. VIEW TO NORTH. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  18. SAR image registration in absolute coordinates using GPS carrier phase position and velocity information

    SciTech Connect

    Burgett, S.; Meindl, M.

    1994-09-01

    It is useful in a variety of military and commercial application to accurately register the position of synthetic aperture radar (SAR) imagery in absolute coordinates. The two basic SAR measurements, range and doppler, can be used to solve for the position of the SAR image. Imprecise knowledge of the SAR collection platform`s position and velocity vectors introduce errors in the range and doppler measurements and can cause the apparent location of the SAR image on the ground to be in error by tens of meters. Recent advances in carrier phase GPS techniques can provide an accurate description of the collection vehicle`s trajectory during the image formation process. In this paper, highly accurate carrier phase GPS trajectory information is used in conjunction with SAR imagery to demonstrate a technique for accurate registration of SAR images in WGS-84 coordinates. Flight test data will be presented that demonstrates SAR image registration errors of less than 4 meters.

  19. 12. OVERVIEW FROM FORMER RESIDENTIAL AREA NORTH OF SAR2, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. OVERVIEW FROM FORMER RESIDENTIAL AREA NORTH OF SAR-2, SHOWING TRAIL UP TO FOREBAY, RETAINING WALL, PEPPER TREES, AND SAR-2 IN DISTANCE. VIEW TO SOUTH-SOUTHEAST. - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  20. 29. SAR2, VIEW TO NORTH WITH EXCITERS AT LEFT. SCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SAR-2, VIEW TO NORTH WITH EXCITERS AT LEFT. SCE negative no. 1043, photographed June 6, 1912. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA