Science.gov

Sample records for adsorption reaction probing

  1. Communication: Reactions and adsorption at the surface of silver nanoparticles probed by second harmonic generation.

    PubMed

    Gan, Wei; Gonella, Grazia; Zhang, Min; Dai, Hai-Lung

    2011-01-28

    Even though nanoparticles have dimensions much smaller than the optical wavelength and shapes commonly with inversion symmetry, we show, for the first time, direct experimental evidence that second harmonic generation (SHG) can be detected from the surface layer of metallic nanoparticles, in this case 40 nm radius Ag particles. The SH intensity detected is shown to substantially decrease upon chemical bonding of thiol molecules to the Ag particle surface. The surface generated SH intensity can be used for probing properties and processes at the nanoparticle surface.

  2. Adsorption Isotherms and Surface Reaction Kinetics

    ERIC Educational Resources Information Center

    Lobo, L. S.; Bernardo, C. A.

    1974-01-01

    Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)

  3. CONTAMINANT ADSORPTION AND OXIDATION VIA FENTON REACTION

    EPA Science Inventory

    A ground water treatment process is proposed involving two cgemical processes: adsorption and oxidation. Adsorption of an organic compound onto granulated activated carbon (GAC) containing iron conveniently results in immobilizing and concentrating contaminants from the ground w...

  4. Catalytic reaction processes revealed by scanning probe microscopy. [corrected].

    PubMed

    Jiang, Peng; Bao, Xinhe; Salmeron, Miquel

    2015-05-19

    Heterogeneous catalysis is of great importance for modern society. About 80% of the chemicals are produced by catalytic reactions. Green energy production and utilization as well as environmental protection also need efficient catalysts. Understanding the reaction mechanisms is crucial to improve the existing catalysts and develop new ones with better activity, selectivity, and stability. Three components are involved in one catalytic reaction: reactant, product, and catalyst. The catalytic reaction process consists of a series of elementary steps: adsorption, diffusion, reaction, and desorption. During reaction, the catalyst surface can change at the atomic level, with roughening, sintering, and segregation processes occurring dynamically in response to the reaction conditions. Therefore, it is imperative to obtain atomic-scale information for understanding catalytic reactions. Scanning probe microscopy (SPM) is a very appropriate tool for catalytic research at the atomic scale because of its unique atomic-resolution capability. A distinguishing feature of SPM, compared to other surface characterization techniques, such as X-ray photoelectron spectroscopy, is that there is no intrinsic limitation for SPM to work under realistic reaction conditions (usually high temperature and high pressure). Therefore, since it was introduced in 1981, scanning tunneling microscopy (STM) has been widely used to investigate the adsorption, diffusion, reaction, and desorption processes on solid catalyst surfaces at the atomic level. STM can also monitor dynamic changes of catalyst surfaces during reactions. These invaluable microscopic insights have not only deepened the understanding of catalytic processes, but also provided important guidance for the development of new catalysts. This Account will focus on elementary reaction processes revealed by SPM. First, we will demonstrate the power of SPM to investigate the adsorption and diffusion process of reactants on catalyst surfaces

  5. Study of char gasification in a reaction/adsorption apparatus

    SciTech Connect

    Sotirchos, S.V.; Crowley, J.A.

    1987-09-01

    The reaction of an activated carbon (coconut char) with CO/sub 2/ was studied in a reaction/adsorption apparatus which allows successive reactivity and physical adsorption measurements to be made on the same solid sample. Reaction and surface area evolution data were obtained in the temperature range from 800 to 900/sup 0/C. All reaction rate trajectories obtained in this study showed a maximum in the reaction rate, 2-3 times higher than the initial rate, at about 85% conversion. There was no correlation between these results and the evolution of the internal surface area although the reaction appeared to take place initially in the kinetically controlled regime.

  6. Probing Electrochemical Reactions at a Plasma-Liquid Interface

    DTIC Science & Technology

    2015-03-16

    SECURITY CLASSIFICATION OF: The goal of this ARO STIR was to conduct preliminary investigations toward understanding electrochemical reactions...Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: STIR: Probing Electrochemical Reactions at a Plasma-Liquid Interface (7.2...in peer-reviewed journals: Final Report: STIR: Probing Electrochemical Reactions at a Plasma-Liquid Interface (7.2 Electrochemistry) Report Title The

  7. Colloidally prepared Pt nanowires versus impregnated Pt nanoparticles: comparison of adsorption and reaction properties.

    PubMed

    Haghofer, Andreas; Sonström, Patrick; Fenske, Daniela; Föttinger, Karin; Schwarz, Sabine; Bernardi, Johannes; Al-Shamery, Katharina; Bäumer, Marcus; Rupprechter, Günther

    2010-11-02

    Ligand-capped Pt nanowires, prepared by colloidal synthesis and deposited on a high surface area γ-Al(2)O(3) support, were subjected to surface characterization by electron microscopy and FTIR spectroscopy using CO as a probe molecule. The structural, adsorption, and catalytic reaction properties of the colloidal Pt nanowires were compared to those of conventional, impregnated Pt nanoparticles on the same Al(2)O(3) support. In situ FTIR spectroscopy indicated ligand effects on the CO resonance frequency, irreversible CO-induced surface roughening upon CO adsorption, and a higher resistance of colloidal catalysts toward oxidation (both in oxygen and during CO oxidation), suggesting that the organic ligands might protect the Pt surface. Elevated temperature induced a transformation of Pt nanowires to faceted Pt nanoparticles. The colloidal catalyst was active for hydrodechlorination of trichloroethylene (TCE), but no ligand effect on selectivity was obtained.

  8. Surface sampling concentration and reaction probe

    DOEpatents

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  9. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    DOE PAGES

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partialmore » pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.« less

  10. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    SciTech Connect

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partial pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.

  11. Probing the mechanism of water adsorption in carbon micropores with multitemperature isotherms and water preadsorption experiments.

    PubMed

    Rutherford, S W

    2006-11-21

    The phenomenon of water adsorption in carbon micropores is examined through the study of water adsorption equilibrium in molecular sieving carbon. Adsorption and desorption isotherms are obtained over a wide range of concentrations from less than 0.1% to beyond 80% of the vapor pressure. Evidence is provided in support of a proposed bimodal water adsorption mechanism that involves the interaction of water molecules with functional groups at low relative pressures and the adsorption of water molecules between graphene layers at higher pressures. Decomposition of the equilibrium isotherm data through application of the extended cooperative multimolecular sorption theory, together with favorable quantitative comparison, provides support for the proposed adsorption mechanism. Additional support is obtained from a multitemperature study of water equilibrium. Temperatures of 20, 50, and 60 degrees C were probed in this investigation in order to provide isosteric heat of adsorption data for water interaction with the carbon molecular sieve. At low loading, the derived isosteric heat of adsorption is estimated to be 69 kJ/mol. This value is indicative of the adsorption of water to functional groups. At higher loading, the isosteric heat of adsorption decreases with increasing loading and approaches the heat of condensation, indicative of adsorption between graphene layers. Further support for the proposed adsorption mechanism is derived from carbon dioxide adsorption experiments on carbon molecular sieve that is preadsorbed with various amounts of water. Significant exclusion of carbon dioxide occurs, and a quantitative analysis that is based on the proposed bimodal water adsorption mechanism is employed in this investigation.

  12. Adsorption of probe molecules in pillared interlayered clays: Experiment and computer simulation

    SciTech Connect

    Gallardo, A. Guil, J. M.; Lomba, E.; Almarza, N. G.; Khatib, S. J.; Cabrillo, C.; Sanz, A.; Pires, J.

    2014-06-14

    In this paper we investigate the adsorption of various probe molecules in order to characterize the porous structure of a series of pillared interlayered clays (PILC). To that aim, volumetric and microcalorimetric adsorption experiments were performed on various Zr PILC samples using nitrogen, toluene, and mesitylene as probe molecules. For one of the samples, neutron scattering experiments were also performed using toluene as adsorbate. Various structural models are proposed and tested by means of a comprehensive computer simulation study, using both geometric and percolation analysis in combination with Grand Canonical Monte Carlo simulations in order to model the volumetric and microcalorimetric isotherms. On the basis of this analysis, we propose a series of structural models that aim at accounting for the adsorption experimental behavior, and make possible a microscopic interpretation of the role played by the different interactions and steric effects in the adsorption processes in these rather complex disordered microporous systems.

  13. Plasmonic smart dust for probing local chemical reactions.

    PubMed

    Tittl, Andreas; Yin, Xinghui; Giessen, Harald; Tian, Xiang-Dong; Tian, Zhong-Qun; Kremers, Christian; Chigrin, Dmitry N; Liu, Na

    2013-04-10

    Locally probing chemical reactions or catalytic processes on surfaces under realistic reaction conditions has remained one of the main challenges in materials science and heterogeneous catalysis. Where conventional surface interrogation techniques usually require high-vacuum conditions or ensemble average measurements, plasmonic nanoparticles excel in extreme light focusing and can produce highly confined electromagnetic fields in subwavelength volumes without the need for complex near-field microscopes. Here, we demonstrate an all-optical probing technique based on plasmonic smart dust for monitoring local chemical reactions in real time. The silica shell-isolated gold nanoparticles that form the smart dust can work as strong light concentrators and optically report subtle environmental changes at their pinning sites on the probed surface during reaction processes. As a model system, we investigate the hydrogen dissociation and subsequent uptake trajectory in palladium with both "dust-on-film" and "film-on-dust" platforms. Using time-resolved single particle measurements, we demonstrate that our technique can in situ encode chemical reaction information as optical signals for a variety of surface morphologies. The presented technique offers a unique scheme for real-time, label-free, and high-resolution probing of local reaction kinetics in a plethora of important chemical reactions on surfaces, paving the way toward the development of inexpensive and high-output reaction sensors for real-world applications.

  14. Deformed halo nuclei probed by breakup reactions

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    2013-07-01

    Breakup reactions play important roles in elucidating the structures near the drip lines, such as nuclear halo. The recent experimental results using the Coulomb and nuclear breakup reactions for the neutron-drip-line nuclei at the new-generation RI beam facility, RIBF at RIKEN, are presented. Focuses are put on the results on the newly found halo nucleus 31Ne, which is intriguing also in that this nucleus is in the island-of-inversion and thus could be strongly deformed. The results on other Ne/Mg/Si neutron rich isotopes ranging from N=20 towards N=28 are also briefly reported. The first breakup experiments using SAMURAI facility at RIBF and future perspectives are also presented.

  15. Immobilization of ɛ-polylysine onto the probe surface for molecular adsorption type endotoxin detection system

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Tsuji, Akihito; Nishishita, Naoki; Hirano, Yoshiaki

    2007-04-01

    adsorption reaction between ɛ-polylysine and endotoxin. ɛ-polylysine has the structure of straight chain molecule composed by 25-30 residues made by lysine, and it is used as an antimicrobial agent, moreover, cellulose beads with immobilized ɛ-polylysine is used as the barrier filter for endotoxin removal. Therefore, it is expected that the endotoxin be adsorbed to the immobilized ɛ-polylysine onto the probe. As the result of this reaction, the mass of the probe is increased, and endotoxin can be detected by using of Quartz Crystal Microbalance (QCM). In our previous research, we have already acquired the proteins immobilization technique onto Au and Si surface. In this report, the proposal of molecular adsorption type endotoxin detection system, and the immobilization of ɛ-polylysine onto the probe are described. We use X-ray Photoelectron Spectroscopy (XPS) to confirm the ɛ-polylysine immobilization, and the adsorptive activity of immobilized ɛ-polylysine is measured by XPS and AFM. The purpose of this study is to bring about the realization of "Real-time endotoxin detection system".

  16. Modeling Adsorption and Reactions of Organic Molecules at Metal Surfaces

    PubMed Central

    2014-01-01

    Conspectus The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdWsurf method that accurately accounts for the collective electronic

  17. Modeling adsorption and reactions of organic molecules at metal surfaces.

    PubMed

    Liu, Wei; Tkatchenko, Alexandre; Scheffler, Matthias

    2014-11-18

    CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic

  18. Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms

    SciTech Connect

    Suh, Dong-Myung; Sun, Xin

    2013-09-01

    In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, caused by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.

  19. Adsorption, Mobility and Organisation of Organic Molecules at Clay Surfaces Probed by Photophysics and Photochemistry

    DTIC Science & Technology

    1989-06-15

    unambiguous. The time-dependent fluorescence of the organo - clay systems, has also been studied. Several functions have been used to describe the...ADSORPTION, MOBILITY AND ORGANISATION OF ORGANIC MOLECULES AT CLAY SURFACES PROBED BY PHOTOPHYSICS AND Lfl PHOTOCHEMISTRY C~%I SIXTH INTERIM REPORT...CONTENTS A.-iluster formation of detergents on the clay surface. B. kdsorption of aromatic compounds on colloidal silica C.-ttudy of the fluorescence decay

  20. Mechanism of cis-prenyltransferase reaction probed by substrate analogues.

    PubMed

    Lu, Yen-Pin; Liu, Hon-Ge; Teng, Kuo-Hsun; Liang, Po-Huang

    2010-10-01

    Undecaprenyl pyrophosphate synthase (UPPS) is a cis-type prenyltransferases which catalyzes condensation reactions of farnesyl diphosphate (FPP) with eight isopentenyl pyrophosphate (IPP) units to generate C(55) product. In this study, we used two analogues of FPP, 2-fluoro-FPP and [1,1-(2)H(2)]FPP, to probe the reaction mechanism of Escherichia coli UPPS. The reaction rate of 2-fluoro-FPP with IPP under single-turnover condition is similar to that of FPP, consistent with the mechanism without forming a farnesyl carbocation intermediate. Moreover, the deuterium secondary KIE of 0.985±0.022 measured for UPPS reaction using [1,1-(2)H(2)]FPP supports the associative transition state. Unlike the sequential mechanism used by trans-prenyltransferases, our data demonstrate E. coli UPPS utilizes the concerted mechanism.

  1. Strontium Adsorption and Desorption Reactions in Model Drinking Water Distribution Systems

    DTIC Science & Technology

    2014-02-04

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 11-04-2014 Journal Article Strontium adsorption and desorption reactions in model... strontium (Sr2+) adsorption to and desorption from iron corrosion products were examined in two model drinking water distribution systems (DWDS...used to control Sr2; desorption. calcium carbonate; drinking water distribution system; α-FeOOH; iron; strontium ; XANES Unclassified

  2. Mechanism of cis-prenyltransferase reaction probed by substrate analogues

    SciTech Connect

    Lu, Yen-Pin; Liu, Hon-Ge; Teng, Kuo-Hsun; Liang, Po-Huang

    2010-10-01

    Research highlights: {yields} The extremely slow trans-OPPS reaction using 2-Fluoro-FPP supports the sequential mechanism with the carbocation intermediate. {yields} The similar UPPS reaction rate under single turnover supports the concerted mechanism, without the carbocation intermediate. {yields} The secondary kinetic isotope effect also supports associate transition state for UPPS reaction, without the carbocation intermediate. -- Abstract: Undecaprenyl pyrophosphate synthase (UPPS) is a cis-type prenyltransferases which catalyzes condensation reactions of farnesyl diphosphate (FPP) with eight isopentenyl pyrophosphate (IPP) units to generate C{sub 55} product. In this study, we used two analogues of FPP, 2-fluoro-FPP and [1,1-{sup 2}H{sub 2}]FPP, to probe the reaction mechanism of Escherichia coli UPPS. The reaction rate of 2-fluoro-FPP with IPP under single-turnover condition is similar to that of FPP, consistent with the mechanism without forming a farnesyl carbocation intermediate. Moreover, the deuterium secondary KIE of 0.985 {+-} 0.022 measured for UPPS reaction using [1,1-{sup 2}H{sub 2}]FPP supports the associative transition state. Unlike the sequential mechanism used by trans-prenyltransferases, our data demonstrate E. coli UPPS utilizes the concerted mechanism.

  3. The adsorption and reaction of adenine nucleotides on montmorillonite

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hagan, William J., Jr.

    1986-01-01

    The binding of AMP to Zn(2+)-montmorillonite is investigated in the presence of salts and Good's zwitterion buffers, PIPES and MES. The initial concentrations of nucleotide and the percent adsorbtion are used to calculate the adsorption isotherms, and the Langmuir adsorption equation is used for the analysis of data. The adsorption coefficient was found to be three times greater in the presence of 0.2 M PIPES than in its absence. In addition, basal spacings measured by X-ray diffraction were increased by the buffer. These results are interpreted in terms of a model in which the adsorption of AMP is mediated by a Zn(2+) complex of PIPES in different orientations in the interlamellar region of the montmorillonite. Mixed ligand complexes of this type are reminiscent of the complexes observed between metal ions and biological molecules in living systems.

  4. An improved single crystal adsorption calorimeter for determining gas adsorption and reaction energies on complex model catalysts

    NASA Astrophysics Data System (ADS)

    Fischer-Wolfarth, Jan-Henrik; Hartmann, Jens; Farmer, Jason A.; Flores-Camacho, J. Manuel; Campbell, Charles T.; Schauermann, Swetlana; Freund, Hans-Joachim

    2011-02-01

    A new ultrahigh vacuum microcalorimeter for measuring heats of adsorption and adsorption-induced surface reactions on complex single crystal-based model surfaces is described. It has been specifically designed to study the interaction of gaseous molecules with well-defined model catalysts consisting of metal nanoparticles supported on single crystal surfaces or epitaxial thin oxide films grown on single crystals. The detection principle is based on the previously described measurement of the temperature rise upon adsorption of gaseous molecules by use of a pyroelectric polymer ribbon, which is brought into mechanical/thermal contact with the back side of the thin single crystal. The instrument includes (i) a preparation chamber providing the required equipment to prepare supported model catalysts involving well-defined nanoparticles on clean single crystal surfaces and to characterize them using surface analysis techniques and in situ reflectivity measurements and (ii) the adsorption/reaction chamber containing a molecular beam, a pyroelectric heat detector, and calibration tools for determining the absolute reactant fluxes and adsorption heats. The molecular beam is produced by a differentially pumped source based on a multichannel array capable of providing variable fluxes of both high and low vapor pressure gaseous molecules in the range of 0.005-1.5 × 1015 molecules cm-2 s-1 and is modulated by means of the computer-controlled chopper with the shortest pulse length of 150 ms. The calorimetric measurements of adsorption and reaction heats can be performed in a broad temperature range from 100 to 300 K. A novel vibrational isolation method for the pyroelectric detector is introduced for the reduction of acoustic noise. The detector shows a pulse-to-pulse standard deviation ≤15 nJ when heat pulses in the range of 190-3600 nJ are applied to the sample surface with a chopped laser. Particularly for CO adsorption on Pt(111), the energy input of 15 nJ (or 120 nJ cm

  5. Hypersensitive radical probe studies of chloroperoxidase-catalyzed hydroxylation reactions.

    PubMed

    Toy, P H; Newcomb, M; Hager, L P

    1998-07-01

    The oxidation of hypersensitive radical probes by chloroperoxidase from Caldariomyces fumago (CPO) was studied in an attempt to "time" a putative radical intermediate. Oxidation of (trans-2-phenylcyclopropyl)methane, previously studied by Zaks and Dodds [Zaks, A., and Dodds, D. R. (1995) J. Am. Chem. Soc. 115, 10419-10424] was reinvestigated. Unrearranged oxidation products were found as previously reported, and control experiments demonstrated that the cyclic alcohol from oxidation at the cyclopropylcarbinyl position, while subject to further oxidation, survives CPO oxidation as detectable species. However, in contrast to the report by Zaks and Dodds, the rearranged alcohol product expected from ring opening of a cyclopropylcarbinyl radical intermediate was shown to be unstable toward the enzyme oxidation reaction. Because of this instability, two new hypersensitive radical probes, (trans-2-phenylcyclopropyl)ethane and 2-(trans-2-phenylcyclopropyl)propane, and their potential cyclic and acyclic products from oxidation at the cyclopropylcarbinyl position were synthesized and tested. Oxidation of both of these probes at the cyclopropylcarbinyl position by CPO gave unrearranged alcohol products only, but control experiments again demonstrated that the rearranged alcohol products were unstable toward CPO oxidation conditions. From the combination of the probe and control studies, the lifetime of a putative radical intermediate must be less than 3 ps. Whereas the results are consistent with an insertion mechanism for production of alcohol product, they do not exclude a very short-lived intermediate.

  6. Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

    PubMed Central

    Zajac, Lukasz; Olszowski, Piotr; Jöhr, Res; Hinaut, Antoine; Glatzel, Thilo; Such, Bartosz; Meyer, Ernst; Szymonski, Marek

    2016-01-01

    Titanium dioxide, or titania, sensitized with organic dyes is a very attractive platform for photovoltaic applications. In this context, the knowledge of properties of the titania–sensitizer junction is essential for designing efficient devices. Consequently, studies on the adsorption of organic dyes on titania surfaces and on the influence of the adsorption geometry on the energy level alignment between the substrate and an organic adsorbate are necessary. The method of choice for investigating the local environment of a single dye molecule is high-resolution scanning probe microscopy. Microscopic results combined with the outcome of common spectroscopic methods provide a better understanding of the mechanism taking place at the titania–sensitizer interface. In the following paper, we review the recent scanning probe microscopic research of a certain group of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications. We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well. PMID:28144513

  7. Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania.

    PubMed

    Prauzner-Bechcicki, Jakub S; Zajac, Lukasz; Olszowski, Piotr; Jöhr, Res; Hinaut, Antoine; Glatzel, Thilo; Such, Bartosz; Meyer, Ernst; Szymonski, Marek

    2016-01-01

    Titanium dioxide, or titania, sensitized with organic dyes is a very attractive platform for photovoltaic applications. In this context, the knowledge of properties of the titania-sensitizer junction is essential for designing efficient devices. Consequently, studies on the adsorption of organic dyes on titania surfaces and on the influence of the adsorption geometry on the energy level alignment between the substrate and an organic adsorbate are necessary. The method of choice for investigating the local environment of a single dye molecule is high-resolution scanning probe microscopy. Microscopic results combined with the outcome of common spectroscopic methods provide a better understanding of the mechanism taking place at the titania-sensitizer interface. In the following paper, we review the recent scanning probe microscopic research of a certain group of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications. We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well.

  8. DNA probe and PCR-specific reaction for Lactobacillus plantarum.

    PubMed

    Quere, F; Deschamps, A; Urdaci, M C

    1997-06-01

    A 300 bp DNA fragment of Lactobacillus plantarum isolated by randomly amplified polymorphic DNA (RAPD) analysis was cloned and sequenced. This fragment was tested using a dot-blot DNA hybridization to technique for its ability to identify Lact. plantarum strains. This probe hybridized with all Lact. plantarum strains tested and with some strains of Lact. pentosus, albeit more weakly. Two internal primers of this probe were selected (LbP11 and LbP12) and polymerase chain reaction (PCR) was carried out. All Lact. plantarum strains tested amplified a 250 bp fragment contrary to the other LAB species tested. This specific PCR for Lact. plantarum was also performed from colonies grown on MRS medium with similar results. These methods enabled the rapid and specific detection and identification of Lact. plantarum.

  9. Catalytic reaction energetics by single crystal adsorption calorimetry: hydrocarbons on Pt(111).

    PubMed

    Lytken, Ole; Lew, Wanda; Campbell, Charles T

    2008-10-01

    Single crystal adsorption calorimetry provides essential information about the energetics of surface reactions on well-defined surfaces where the adsorbed reaction products can be clearly identified. In this tutorial review, we cover the essentials of that technique, with emphasis on our lab's recent advances in sensitivity and temperature range, and demonstrate what can be achieved through a review of selected example studies concerning adsorption and dehydrogenation of hydrocarbons on Pt(111). A fairly complete reaction enthalpy diagram is presented for the dehydrogenation of cyclohexane to benzene on Pt(111).

  10. Adsorption, partition, ion exchange and chemical reaction in batch reactors or in columns — A review

    NASA Astrophysics Data System (ADS)

    Schweich, D.; Sardin, M.

    The role of linear or non-linear adsorption, mass transfer kinetics, chemical reactions and ion exchange in column tracer experiments is qualitatively dealt with. The similarity of elution curves is emphasized even for very different phenomena. Some experimental procedures are proposed to point out the principal physico-chemical phenomenon which is responsible for the shape of the adsorption isotherm deduced from batch or column experiments.

  11. The adsorption and reaction of adenine nucleotides on montmorillonite

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Hagan, William J.

    1986-03-01

    The binding of AMP to Zn2+-montmorillonite was investigated in the presence of buffers and salts. Good's buffers, piperazine-N,N'-bis(2-ethanesulfonate) [PIPES] and morpholine-N-2-ethanesulfonate [MES], perturbed the exchangeable cations to a lesser extent (only 9% of Zn2+ displaced by 0.2 M buffer) than was observed with imidazole and lutidine buffers or NaCl and KCl salts (up to 80% of Zn2+ displaced). AMP adsorption isotherms measured in the presence of 0.2 M PIPES, MES or Na2SO4 exhibited normal Langmuir-type behavior. The adsorption coefficient, KL, is 3-fold greater in the presence of HEPES or PIPES than it is in the absence of buffers. Basal spacings measured by X-ray diffraction for Zn2+-montmorillonite are 13 and 15 Å in the presence of PIPES, while a value of 12.8 Å was determined in the absence of PIPES. These data are interpreted in a model in which the adsorption of AMP is mediated by a Zn2+ complex of PIPES in different orientations in the interlamellar region of the montmorillonite. The type of exchangeable cation does not affect the ability of the lattice-bound Fe3+ in the montmorillonite to oxidize diaminomaleonitrile (DAMN). Exchangeable Cu2+ oxidizes DAMN, but exchangeable Fe3+ is nearly ineffective as an oxidant. The addition if DISN to 3'-AMP bound to Zn2+-montmorillonite in the presence of 0.2 M PIPES resulted in a higher yield of 2', 3'-cAMP than is observed with a comparable concentration of Zn2+, a result which implicates surface catalystis by the montmorillonite.

  12. Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration

    PubMed Central

    Mira, Sara; Hill, Lisa M.; González-Benito, M. Elena; Ibáñez, Miguel Angel; Walters, Christina

    2016-01-01

    The nature and kinetics of reactions in dry seeds determines how long the seeds survive. We used gas chromatography to assay volatile organic compounds (VOCs) emitted from seeds of three unrelated species as a means to non-invasively probe chemical changes during very dry, dry, and humid storage (seeds were dried to 5.5, 33, and 75% relative humidity at room temperature). VOCs emitted from seeds stored in humid conditions reflected fermentation-type reactions, with methanol and ethanol being predominant in Lactuca sativa and Carum carvi, and acetaldehyde and acetone being predominant in Eruca vesicaria. Dried C. carvi seeds continued to emit fermentation-type products, although at slower rates than the seeds stored in humid conditions. In contrast, drying caused a switch in VOC emission in L. sativa and E. vesicaria seeds towards higher emission of pentane and hexanal, molecules considered to be byproducts from the peroxidation of polyunsaturated fatty acids. Longevity correlated best with the rate of fermentation-type reactions and appeared unrelated to the rate of lipid peroxidation. Emission of VOCs decreased when seed species were mixed together, indicating that seeds adsorbed VOCs. Adsorption of VOCs did not appear to damage seeds, as longevity was not affected in seed mixtures. Collectively, the study shows similarity among species in the types of reactions that occur in dry seeds, but high diversity in the substrates, and hence the byproducts, of the reactions. Moreover, the study suggests that the most abundant VOCs arise from degradation of storage reserves within seed cells, and that these reactions and their byproducts are not, in themselves, damaging. PMID:26956506

  13. Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration.

    PubMed

    Mira, Sara; Hill, Lisa M; González-Benito, M Elena; Ibáñez, Miguel Angel; Walters, Christina

    2016-03-01

    The nature and kinetics of reactions in dry seeds determines how long the seeds survive. We used gas chromatography to assay volatile organic compounds (VOCs) emitted from seeds of three unrelated species as a means to non-invasively probe chemical changes during very dry, dry, and humid storage (seeds were dried to 5.5, 33, and 75% relative humidity at room temperature). VOCs emitted from seeds stored in humid conditions reflected fermentation-type reactions, with methanol and ethanol being predominant in Lactuca sativa and Carum carvi, and acetaldehyde and acetone being predominant in Eruca vesicaria. Dried C. carvi seeds continued to emit fermentation-type products, although at slower rates than the seeds stored in humid conditions. In contrast, drying caused a switch in VOC emission in L. sativa and E. vesicaria seeds towards higher emission of pentane and hexanal, molecules considered to be byproducts from the peroxidation of polyunsaturated fatty acids. Longevity correlated best with the rate of fermentation-type reactions and appeared unrelated to the rate of lipid peroxidation. Emission of VOCs decreased when seed species were mixed together, indicating that seeds adsorbed VOCs. Adsorption of VOCs did not appear to damage seeds, as longevity was not affected in seed mixtures. Collectively, the study shows similarity among species in the types of reactions that occur in dry seeds, but high diversity in the substrates, and hence the byproducts, of the reactions. Moreover, the study suggests that the most abundant VOCs arise from degradation of storage reserves within seed cells, and that these reactions and their byproducts are not, in themselves, damaging.

  14. Correlations probed in direct two-nucleon removal reactions

    SciTech Connect

    Simpson, E. C.; Tostevin, J. A.

    2010-10-15

    Final-state-exclusive momentum distributions of fast, forward-traveling residual nuclei, following two-nucleon removal from fast secondary radioactive beams of projectile nuclei, can and have now been measured. Assuming that the most important reaction mechanism is the sudden direct removal of a pair of nucleons from a set of relatively simple, active shell-model orbital configurations, such distributions were predicted to depend strongly on the total angular momentum I carried by the two nucleons--the final-state spin for spin 0{sup +} projectiles. The sensitivity of these now-accessible observables to specific details of the (correlated) two-nucleon wave functions is of importance. We clarify that it is the total orbital angular momentum L of the two nucleons that is the primary factor in determining the shapes and widths of the calculated momentum distributions. It follows that, with accurate measurements, this dependence upon the L makeup of the two-nucleon wave functions could be used to assess the accuracy of (shell- or many-body-) model predictions of these two-nucleon configurations. By using several tailored examples, with specific combinations of active two-nucleon orbitals, we demonstrate that more-subtle structure aspects may be observed, allowing such reactions to probe and/or confirm the details of theoretical model wave functions.

  15. The immediate effects of keyboard-based music therapy on probe reaction time

    PubMed Central

    Zhang, Xiaoying; Zhou, Yue; Liu, Songhuai

    2016-01-01

    [Purpose] This study examined the immediate effects of keyboard-based music therapy on Probe Reaction Time. [Subjects and Methods] Probe Reaction Time was determined in 10 subjects by self-evaluation before and after music therapy intervention. The Probe Reaction Time was separately measured 4 times. [Results] After completion of music therapy intervention, the Probe Reaction Time in the 10 subjects was significantly decreased. [Conclusion] The results suggest that keyboard-based music therapy is an effective and novel treatment, and should be applied in clinical practice. PMID:27512274

  16. Probing protein adsorption on a nanoparticle surface using second harmonic light scattering.

    PubMed

    Das, A; Chakrabarti, A; Das, P K

    2016-09-21

    A new application of second harmonic light scattering to probe protein physisorption on a gold nanoparticle surface in aqueous buffer is reported. The free energies of adsorption, the number of protein molecules adsorbed on the surface and the binding affinity of a moderate size protein, alcohol dehydrogenase (ADH), and a small protein, insulin, have been determined using the change in the second harmonic scattered light signal as a function of binding. Four different size gold nanoparticles from 15 to 60 nm were used to determine the effect of size on the free energy change, the affinity constant and the number of protein molecules adsorbed on the surface. All were shown to increase with an increase in size. The binding can be reversed by centrifugation, and the protein molecules can be desorbed quantitatively. The application of this method for studying thermodynamic parameters of weakly interacting biomolecules with nanoparticles for nanoparticle based diagnostic and therapeutic formulations is important.

  17. Adsorption-desorption reactions of selenium (VI) in tropical cultivated and uncultivated soils under Cerrado biome.

    PubMed

    Lessa, J H L; Araujo, A M; Silva, G N T; Guilherme, L R G; Lopes, G

    2016-12-01

    Soil management may affect selenium (Se) adsorption capacity. This study investigated adsorption and desorption of Se (VI) in selected Brazilian soils from the Cerrado biome, an area of ever increasing importance for agriculture expansion in Brazil. Soil samples were collected from cultivated and uncultivated soils, comprising clayed and sandy soils. Following chemical and mineralogical characterization, soil samples were subjected to Se adsorption and desorption tests. Adsorption was evaluated after a 72-h reaction with increasing concentrations of Se (0-2000 μg L(-1)) added as Na2SeO4 in a NaCl electrolyte solution (pH 5.5; ionic strength 15 mmol L(-1)). Desorption, as well as distribution coefficients (Kd) for selenate were also assessed. Soil management affected Se adsorption capacity, i.e., Se adsorbed amounts were higher for uncultivated soils, when compared to cultivated ones. Such results were also supported by data of Kd and maximum adsorption capacity of Se. This fact was attributed mainly to the presence of greater amounts of competing anions, especially phosphate, in cultivated soils, due to fertilizer application. Phosphate may compete with selenate for adsorption sites, decreasing Se retention. For the same group of soils (cultivated and uncultivated), Se adsorption was greater in the clayed soils compared to sandy ones. Our results support the idea that adding Se (VI) to the soil is a good strategy to increase Se levels in food crops (agronomic biofortification), especially when crops are grown in soils that have been cultivated over the time due to their low Se adsorption capacity (high Se availability).

  18. Probing titanate nanowire surface acidity through methylene blue adsorption in colloidal suspension and on thin films.

    PubMed

    Horváth, Endre; Szilágyi, István; Forró, László; Magrez, Arnaud

    2014-02-15

    The interaction of the cationic dye methylene blue (MB) with titanate nanowires (TiONWs) was investigated in different pH environments using visible spectroscopy and electrophoresis on thin films as well as in aqueous suspension. The surface charge of the TiONWs depends on the pH and ionic strength leading to positive charge under acidic and negative under alkaline conditions. The TiONWs have the same adsorption capacity on films and in suspensions at neutral pH while under alkaline conditions they are able to adsorb significantly more MB in suspension due to their higher surface area. Detailed adsorption studies in water revealed that dye cations form monomers, dimers and larger aggregates of H-type (face-to-face) on the TiONW films. The results indicate that below pH = 4.0 the TiONWs' external surface consists of Brøntsted acid sites capable of protonating MB. It was suggested that reversible indicator role of MB molecule dimers probes the TiONW surface acidity (Brøntsted sites).

  19. Adsorption and reaction of methanethiol on Pt(1 1 1)

    NASA Astrophysics Data System (ADS)

    Lin, T. H.; Huang, T. P.; Liu, Y. L.; Yeh, C. C.; Lai, Y. H.; Hung, W. H.

    2005-03-01

    Adsorption and thermal decomposition of H 3CSH on Pt(1 1 1) is studied with temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) with synchrotron radiation. A H 3CSH molecule undergoes dehydrogenation via formation of H xCS ( x ⩽ 3) intermediates. The catalytic reactivity of Pt for dehydrogenation, which depends on interaction between the surface and the CH x moiety of H xCS, varies with coverage. At large coverage, H 3CSH decomposes through desorbing hydrogen via stepwise dehydrogenation (H 3CS → H 2CS → HCS → S + C). H 2CS is proposed to be an intermediate for dehydrogenation of H 3CS below 240 K, and subsequently undergoes disproportionation to form HCS with desorption of CH 4 at 400 K. The HCS species further decomposes to desorb hydrogen at 475 K and to form C and S adatoms; these adatoms show a mixed (√{3}×√{3})R30° and dim c(2 × 2) LEED pattern at saturation exposure. At small coverage, surface Pt exhibits a catalytic effect on dehydrogenation of H xCS via interaction of the CH x moiety with surface Pt atoms. Dehydrogenation of H 3CSH is completed below 370 K and is proposed to form a surface C sbnd S species; this species entirely decomposes to form C and S adatoms at 570 K.

  20. Adsorption and reaction of methanethiol on Ru(0001)

    SciTech Connect

    Mullins, D.R.; Lyman, P.F. )

    1993-11-18

    Methanethiol (CH[sub 3]SH) adsorbs dissociatively on Ru(0001) at 100 K forming two molecular intermediates. These species have been identified by S 2p soft X-ray photoelectron spectroscopy (SXPS) as methylthiolate moieties adsorbed in different bonding sites. At low coverages only a high coordination adsorption site is occupied. The high coordination site is saturated at about 0.20 monolayer of CH[sub 3]SH, and then a low coordination site is populated. Upon heating, the thiolates totally decompose into atomic C, S, and gaseous H[sub 2] with a competing pathway producing atomic S and gaseous CH[sub 4] at high coverage. The methylthiolate in the low coordination site decomposes more readily than the methylthiolate in the high coordination site. Some surface hydrocarbon fragments are formed following C-S bond scission which totally decompose at higher temperatures. Isotopic labeling indicates that the desorption of the sulfhydryl hydrogen precedes the decomposition of the thiolate at high coverage and that there is exchange of hydrogen between the surface and the methyl group. 32 refs., 5 figs.

  1. Adsorption and reaction of CO2 and SO2 at a water surface.

    PubMed

    Tarbuck, Teresa L; Richmond, Geraldine L

    2006-03-15

    The orientation and hydrogen bonding of water molecules in the vapor/water interfacial region in the presence of SO2 and CO2 gas are examined using vibrational sum-frequency spectroscopy (VSFS) to gain insight into the adsorption and reactions of these gases in atmospheric aerosols. The results show that an SO2 surface complex forms when the water surface is exposed to an atmosphere of SO2 gas. Reaction of SO2 with interfacial water leads to other spectral changes that are examined by studying the VSF spectra and surface tension isotherms of several salts added to the aqueous phase, specifically NaHSO3, NaHCO3, Na2SO3, Na2CO3, Na2SO4, and NaHSO4. The results are compared with similar studies of CO2 adsorption and reaction at the surface. A weakly bound surface complex is not observed with CO2.

  2. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption.

    PubMed

    Strmcnik, Dusan; Uchimura, Masanobu; Wang, Chao; Subbaraman, Ram; Danilovic, Nemanja; van der Vliet, Dennis; Paulikas, Arvydas P; Stamenkovic, Vojislav R; Markovic, Nenad M

    2013-04-01

    The development of hydrogen-based energy sources as viable alternatives to fossil-fuel technologies has revolutionized clean energy production using fuel cells. However, to date, the slow rate of the hydrogen oxidation reaction (HOR) in alkaline environments has hindered advances in alkaline fuel cell systems. Here, we address this by studying the trends in the activity of the HOR in alkaline environments. We demonstrate that it can be enhanced more than fivefold compared to state-of-the-art platinum catalysts. The maximum activity is found for materials (Ir and Pt₀.₁Ru₀.₉) with an optimal balance between the active sites that are required for the adsorption/dissociation of H₂ and for the adsorption of hydroxyl species (OHad). We propose that the more oxophilic sites on Ir (defects) and PtRu material (Ru atoms) electrodes facilitate the adsorption of OHad species. Those then react with the hydrogen intermediates (Had) that are adsorbed on more noble surface sites.

  3. Adsorption and reaction of WF 6 on W(100)

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Roberts, Jeffrey T.

    1995-02-01

    The decomposition of tungsten hexafluoride (WF 6) on the W(100) surface is described. Reactions were studied using temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). From TPD measurements on clean and deuterium-precovered W(100), it is concluded that WF 6 is the sole desorption product below 1200 K. Desorption occurs in two temperature regions, near 150 K, in a process assigned to multilayer sublimation, and near 350 K, from two states designated β1- and β2-WF 6. The W(4f) and F(1s) photoelectron spectra imply that WF 6 dissociates on W(100) at or below 150 K to form WF 5(a). The adsorbed subfluoride does not desorb directly, but instead disproportionates to gaseous WF 6, metallic W, and atomically adsorbed F. Between 400 and 700 K, fluorine migrates from the surface into the bulk. Upon additional heating, fluorine evolves into the gas phase as a subfluoride, i.e. as WF x(g) ( x < 6). Because WF 6(g) is partly converted on W(100) to WF x(g) ( x < 6), WF 6 must be regarded as a UHV etchant.

  4. Direct coupling between stress, strain and adsorption reactions - A study on coal-CO2 systems

    NASA Astrophysics Data System (ADS)

    Hol, S.; Peach, C. J.; Spiers, C. J.

    2012-12-01

    Though it is well-known that adsorption reactions frequently assist deformation of porous rocks, very little understanding exists on the direct coupling with stress state and strain. One of the materials in which adsorption plays a large role is coal, as is observed in the particular case of Enhanced Coalbed Methane Production (ECBM), which involves the geological storage of CO2 and the recovery of CH4. In this case, adsorption and the associated swelling cause significant injectivity problems, which is experienced in almost all pilot field projects to date. This suggests that indeed a strong fundamental coupling exists between CO2 sorption, changes in the mechanical state of the coal matrix and changes in the transport properties of the system, and illustrates the need to understand coupled stress-strain-sorption behaviour. In this contribution, we describe several important observations made on coal-CO2 systems that can learn us about many other natural, stressed adsorbate-adsorbent systems. In our experiments, first of all, the adsorption of CO2 in the coal matrix gave rise to swelling. Although this is well-known, we found that the total volumetric strain occurring under unconfined conditions can be realistically modelled (up to at least 100 MPa) as the sum of an adsorption-related expansion term and an elastic compression term. Second, effective in situ stresses will directly reduce the sorption capacity, and associated swelling of the coal matrix significantly. Our general thermodynamic model for the effect of a 3D stress state on adsorbed CO2 concentration supports this observation, and also shows that "self-stressing", as a result of CO2 adsorption occurring under conditions of restricted or zero strain (i.e. fully constrained conditions), will more than double the expected in situ stresses. A constitutive equation was developed to describe the full coupling between stress state, total strain (i.e. combined strain of adsorption processes and poroelasticity

  5. Adsorption and reaction of H2S on Cu(110) studied using scanning tunneling microscopy.

    PubMed

    Shiotari, Akitoshi; Okuyama, Hiroshi; Hatta, Shinichiro; Aruga, Tetsuya; Hamada, Ikutaro

    2016-02-14

    Using low-temperature scanning tunneling microscopy (STM), the adsorption and reaction of hydrogen sulfide (H2S) and its fragments (SH and S) on Cu(110) are investigated at 5 K. H2S adsorbs molecularly on the surface on top of a Cu atom. With voltage pulses of STM, it is possible to induce sequential dehydrogenation of H2S to SH and S. We found two kinds of adsorption structures of SH. The short-bridge site is the most stable site for SH, while the long-bridge site is the second. Density functional theory calculations show that the S-H axis is inclined from the surface normal for both species. The reaction of H2S with OH and O was directly observed to yield SH and S, respectively, providing a molecular-level insight into catalyst poisoning.

  6. Photoluminescence Probing of Complex H2O Adsorption on InGaN/GaN Nanowires.

    PubMed

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Teubert, Jörg; Eickhoff, Martin

    2017-02-08

    We demonstrate that the complex adsorption behavior of H2O on InGaN/GaN nanowire arrays is directly revealed by their ambient-dependent photoluminescence properties. Under low-humidity, ambient-temperature, and low-excitation-light conditions, H2O adsorbates cause a quenching of the photoluminescence. In contrast, for high humidity levels, elevated temperature, and high excitation intensity, H2O adsorbates act as efficient photoluminescence enhancers. We show that this behavior, which can only be detected due to the low operation temperature of the InGaN/GaN nanowires, can be explained on the basis of single H2O adsorbates forming surface recombination centers and multiple H2O adsorbates forming surface passivation layers. Reversible creation of such passivation layers is induced by the photoelectrochemical splitting of adsorbed water molecules and by the interaction of reactive H3O(+) and OH(-) ions with photoactivated InGaN surfaces. Due to electronic coupling of adsorbing molecules with photoactivated surfaces, InGaN/GaN nanowires act as sensitive nanooptical probes for the analysis of photoelectrochemical surface processes.

  7. Long-Term Implanted cOFM Probe Causes Minimal Tissue Reaction in the Brain

    PubMed Central

    Hochmeister, Sonja; Asslaber, Martin; Kroath, Thomas; Pieber, Thomas R.; Sinner, Frank

    2014-01-01

    This study investigated the histological tissue reaction to long-term implanted cerebral open flow microperfusion (cOFM) probes in the frontal lobe of the rat brain. Most probe-based cerebral fluid sampling techniques are limited in application time due to the formation of a glial scar that hinders substance exchange between brain tissue and the probe. A glial scar not only functions as a diffusion barrier but also alters metabolism and signaling in extracellular brain fluid. cOFM is a recently developed probe-based technique to continuously sample extracellular brain fluid with an intact blood-brain barrier. After probe implantation, a 2 week healing period is needed for blood-brain barrier reestablishment. Therefore, cOFM probes need to stay in place and functional for at least 15 days after implantation to ensure functionality. Probe design and probe materials are optimized to evoke minimal tissue reaction even after a long implantation period. Qualitative and quantitative histological tissue analysis revealed no continuous glial scar formation around the cOFM probe 30 days after implantation and only a minor tissue reaction regardless of perfusion of the probe. PMID:24621608

  8. Reaction-based two-photon probes for mercury ions: fluorescence imaging with dual optical windows.

    PubMed

    Rao, Alla Sreenivasa; Kim, Dokyoung; Wang, Taejun; Kim, Ki Hean; Hwang, Sekyu; Ahn, Kyo Han

    2012-05-18

    For fluorescent imaging of mercury ions in living species, two-photon probes with dual optical windows are in high demand but remain unexplored. Several dithioacetals were evaluated, and a probe was found, which, upon reaction with mercury species, yielded a two-photon dye; this conversion accompanies ratiometric emission changes with a 97-nm shift, enabling fluorescent imaging of both the probe and mercury ions in cells by one- and two-photon microscopy for the first time.

  9. Probing effects of polymer adsorption in colloidal particle suspensions by light scattering as relevant for the aquatic environment: An overview.

    PubMed

    Tiraferri, Alberto; Borkovec, Michal

    2015-12-01

    Modification of particle surfaces by adsorption of polymers is a process that governs particle behavior in aqueous environmental systems. The present article briefly reviews the current understanding of the adsorption mechanisms and the properties of the resulting layers, and it discusses two environmentally relevant cases of particle modification by polymers. In particular, the discussion focuses on the usefulness of methods based on light scattering to probe such adsorbed layers together with the resulting properties of the particle suspensions, and it highlights advantages and disadvantages of these techniques. Measurement of the electrophoretic mobility allows to follow the development of the adsorption layer and to characterize the charge of the modified particles. At saturation, the surface charge is governed by the charge of the adsorbed film. Dynamic light scattering provides information on the film thickness and on the behavior of the modified suspensions. The charge and the structure of the adsorbed layer influence the stability of the particles, as well as the applicability of the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). This fundamental knowledge is presented in the light of environmental systems and its significance for applied systems is underlined. In particular, the article discusses two examples of environmental processes involving adsorption of polymers, namely, the modification of particles by natural adsorption of humic substances and the tailoring of surface properties of iron-based particles used to remediate contaminated aquifers.

  10. Adsorption mechanisms and surface heterogeneity in the oxidation reaction of CO

    NASA Astrophysics Data System (ADS)

    Cortés, Joaquín; Valencia, Eliana; Araya, Paulo

    1998-10-01

    A Monte Carlo simulation study is made of the sensitivity of the CO oxidation reaction to changes in the characteristics of the catalyst's surface on which the type of oxygen adsorption mechanism is dependent. Infinite rate models of the Ziff, Gulari, and Barshad (ZGB) type, and mechanisms having kinetics parameters of actual experiments from the literature are studied. It is shown that, if linear adsorption is assumed, the structural insensitivity becomes apparent in the phase diagram but not in the production of CO2. In the case of structural sensitivity it is seen that surface heterogeneity leads to a change in the character of the phase transition curve, and also allows information about the surface to be obtained from the shape of the transition curve.

  11. The adsorption and reaction of vinyl acetate on Au/Pd(100) alloy surfaces

    SciTech Connect

    Li, Zhenjun; Calaza, Florencia C; Tysoe, Wilfred

    2012-01-01

    The surface chemistry of vinyl acetate monomer (VAM) is studied on Au/Pd(100) alloys as a function of alloy composition using temperature-programmed desorption and reflection adsorption infrared spectroscopy. VAM adsorbs weakly on isolated palladium sites on the alloy with a heat of adsorption of ~55 kJ/mol, with the plane of the VAM adsorbed close to parallel to the surface. The majority of the VAM adsorbed on isolated sites desorbs molecularly with only a small portion decomposing. At lower gold coverages (below ~0.5 ML of gold), where palladium palladium bridge sites are present, VAM binds to the surface in a distorted geometry via a rehybridized vinyl group. A larger proportion of this VAM decomposes and this reaction is initiated by C\\O bond scission in the VAM to form adsorbed acetate and vinyl species. The implication of this surface chemistry for VAM synthesis on Au/Pd(100) alloys is discussed.

  12. Space and time-resolved probing of heterogeneous catalysis reactions using lab-on-a-chip.

    PubMed

    Navin, Chelliah V; Krishna, Katla Sai; Theegala, Chandra S; Kumar, Challa S S R

    2016-03-14

    Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors.

  13. Adsorption and Reaction of Methanethiol on Thin-Film Cerium Oxide

    SciTech Connect

    Mullins, David R; McDonald, Tom S

    2008-01-01

    The adsorption and reaction of methanethiol, CH{sub 3}SH, have been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The behavior of the CH{sub 3}SH was examined as a function of the Ce oxidation state. CH{sub 3}SH weakly interacts with fully oxidized CeO{sub 2}(1 1 1) forming both chemisorbed CH{sub 3}SH and CH{sub 3}S + OH. OH forms through the reaction of the sulfhydrol H with the surface O. These species recombine and desorb near 180 K leaving the surface virtually clean. When the ceria is ca. 50% reduced, the chemisorbed CH{sub 3}SH desorbs near 150 K while the CH{sub 3}S + OH are stable to 400 K. These species react above 450 K to produce predominantly CH{sub 4} and CH{sub 3}SH. A small amount of CH{sub 2}O and water are also formed through reaction with the O in the ceria. Atomic S is left on the surface. S 2p, C 1s and O 1s soft X-ray photoelectron spectroscopy were used to identify the nature of the chemisorbed species and the adsorption site of the CH{sub 3}S or S.

  14. Adsorption and reaction of methanethiol on thin-film cerium oxide

    NASA Astrophysics Data System (ADS)

    Mullins, D. R.; McDonald, T. S.

    2008-03-01

    The adsorption and reaction of methanethiol, CH 3SH, have been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The behavior of the CH 3SH was examined as a function of the Ce oxidation state. CH 3SH weakly interacts with fully oxidized CeO 2(1 1 1) forming both chemisorbed CH 3SH and CH 3S + OH. OH forms through the reaction of the sulfhydrol H with the surface O. These species recombine and desorb near 180 K leaving the surface virtually clean. When the ceria is ca. 50% reduced, the chemisorbed CH 3SH desorbs near 150 K while the CH 3S + OH are stable to 400 K. These species react above 450 K to produce predominantly CH 4 and CH 3SH. A small amount of CH 2O and water are also formed through reaction with the O in the ceria. Atomic S is left on the surface. S 2p, C 1s and O 1s soft X-ray photoelectron spectroscopy were used to identify the nature of the chemisorbed species and the adsorption site of the CH 3S or S.

  15. Some studies on successive ionic layer adsorption and reaction (SILAR) grown indium sulphide thin films

    SciTech Connect

    Pathan, H.M.; Lokhande, C.D. . E-mail: l_chandrakant@yahoo.com; Kulkarni, S.S.; Amalnerkar, D.P.; Seth, T.; Han, Sung-Hwan . E-mail: shhan@hanyang.ac.kr

    2005-06-15

    Indium sulphide (In{sub 2}S{sub 3}) thin films were grown on amorphous glass substrate by the successive ionic layer adsorption and reaction (SILAR) method. X-ray diffraction, optical absorption, scanning electron microscopy (SEM) and Rutherford back scattering (RBS) were applied to study the structural, optical, surface morphological and compositional properties of the indium sulphide thin films. Utilization of triethanolamine and hydrazine hydrate complexed indium sulphate and sodium sulphide as precursors resulted in nanocrystalline In{sub 2}S{sub 3} thin film. The optical band gap was found to be 2.7 eV. The film appeared to be smooth and homogeneous from SEM study.

  16. Chiral picolylamines for Michael and aldol reactions: probing substrate boundaries.

    PubMed

    Nugent, Thomas C; Bibi, Ahtaram; Sadiq, Abdul; Shoaib, Mohammad; Umar, M Naveed; Tehrani, Foad N

    2012-12-14

    Here we report on inroads concerning increased substrate breadth via the picolylamine organocatalyst template, a vicinal chiral diamine based on a pyridine-primary amine motif. The addition of cyclohexanone to β-nitrostyrene has many catalyst solutions, but cyclopentanone and isobutyraldehyde additions continue to be challenging. PicAm-3 (10 mol%) readily allows the Michael addition of cyclopentanone or isobutyraldehyde (5.0 equiv.) to β-nitrostyrene derivatives. By contrast, PicAm-1 (7.0 mol%) is optimal for catalyzing the aldol reaction of cyclohexanone or cycloheptanone (3.3 equiv.) with aromatic aldehydes. Eighteen products are reported and for each reaction type new products are reported (4b-d, 9c). Very good yields and stereoselectivities are generally noted. The reactions, which require an acid additive, proceed via a transient chiral enamine and a mechanistic case is put forth for a bifunctional catalysis model.

  17. Effect of UV and electrochemical surface treatments on the adsorption and reaction of linear alcohols on non-porous carbon fibre

    NASA Astrophysics Data System (ADS)

    Osbeck, S.; Ward, S.; Idriss, H.

    2013-04-01

    The adsorption properties of untreated, electrochemically treated and ultra-violet/ozone treated polyacrylonitrile based carbon fibres were investigated using temperature programmed desorption (TPD) on a series of linear alcohols as probes in order to understand its surface properties. Surface uptake was found to be sensitive to both the surface treatment and the nature of the adsorbates. Surface coverage increased with increasing alcohol chain due to the increase in their polarizability. It also increased with the level of surface oxygen of the fibres most likely because it facilitates the Osbnd H bond dissociation of the alcohol functional group. In addition, the desorption temperature (during TPD) tracked the surface oxygen levels (as determined from XPS O1s signal) suggesting increasing in the adsorption energy. The reactions of C1-C4 linear alcohols were also investigated on the surface of the fibre carbon. The main reaction was dehydrogenation to the corresponding aldehydes; the dehydration reaction to olefins was not observed. The dehydrogenation reaction was sensitive to the length of the alky chain. It was highest for methanol (to formaldehyde) and decreased with increasing the carbon number. Overall TPD of linear alcohols was shown to be a promising method for quantifying the level and strength of bonding occurring on carbon fibre surfaces.

  18. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption

    NASA Astrophysics Data System (ADS)

    Strmcnik, Dusan; Uchimura, Masanobu; Wang, Chao; Subbaraman, Ram; Danilovic, Nemanja; van der Vliet, Dennis; Paulikas, Arvydas P.; Stamenkovic, Vojislav R.; Markovic, Nenad M.

    2013-04-01

    The development of hydrogen-based energy sources as viable alternatives to fossil-fuel technologies has revolutionized clean energy production using fuel cells. However, to date, the slow rate of the hydrogen oxidation reaction (HOR) in alkaline environments has hindered advances in alkaline fuel cell systems. Here, we address this by studying the trends in the activity of the HOR in alkaline environments. We demonstrate that it can be enhanced more than fivefold compared to state-of-the-art platinum catalysts. The maximum activity is found for materials (Ir and Pt0.1Ru0.9) with an optimal balance between the active sites that are required for the adsorption/dissociation of H2 and for the adsorption of hydroxyl species (OHad). We propose that the more oxophilic sites on Ir (defects) and PtRu material (Ru atoms) electrodes facilitate the adsorption of OHad species. Those then react with the hydrogen intermediates (Had) that are adsorbed on more noble surface sites.

  19. Probing the nuclear structure with heavy-ion reactions

    SciTech Connect

    Broglia, R.A.

    1982-01-01

    Nuclei display distortions in both ordinary space and in gauge space. It is suggested that it is possible to learn about the spatial distribution of the Nilsson orbitals and about the change of the pairing gap with the rotational frequency through the analysis of one- and two-nucleon transfer reactions induced in heavy-ion collisions.

  20. Probing the Tetrahymena group I ribozyme reaction in both directions.

    PubMed

    Karbstein, Katrin; Carroll, Kate S; Herschlag, Daniel

    2002-09-17

    The Tetrahymena L-21 ScaI ribozyme derived from the self-splicing group I intron catalyzes a reversible reaction analogous to the first step of self-splicing: CCCUCUA (S) + [UC]G right harpoon over left harpoon CCCUCU (P) + [UC]GA. To relate our understanding of the ribozyme to the self-splicing reaction and to further the mechanistic dissection of the ribozyme reaction, we have established a quantitative kinetic and thermodynamic framework for the forward and reverse reaction of the L-21 ScaI ribozyme under identical conditions. Examination of the framework shows that binding of products is cooperative with binding enhanced 5-fold, as was observed previously for binding of the substrates. Further, binding of UCGA is 12-fold weaker than binding of the unphosphorylated UCG, analogous to the 20-fold weaker binding of phosphorylated S relative to P; the molecular interactions underlying the stronger binding of UCG were traced to the 3'-hydroxyl group of UCG. The symmetrical effects on binding of substrates and products result in the equilibrium between ribozyme-bound species, K(int), that is essentially unperturbed from the solution equilibrium, K(ext) (K(int) = [E.P.UCGA]/[E.S.UCG] = 4.6 and K(ext) = [P][UCGA]/[S][UCG] = 1.9). Last, we show that the pK(a) values of the nucleophiles in the forward and reverse reactions are >/=10. This observation suggests that metal ion activation of the nucleophile and stabilization of the leaving group can only account for a portion of the rate enhancement of this ribozyme. These and prior results suggest that the Tetrahymena group I ribozyme, analogous to protein enzymes, uses multiple catalytic strategies to achieve its large rate enhancement.

  1. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    PubMed

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs.

  2. Acetaldehyde Adsorption and Reaction onCeO2(100) Thin Films

    SciTech Connect

    Mullins, David R; Albrecht, Peter M

    2013-01-01

    This study reports and compares the adsorption and dissociation of acetaldehyde on oxidized and reduced CeOX(100) thin films. Acetaldehyde reacts and decomposes on fully oxidized CeO2(100) whereas it desorbs molecularly at low temperature on CeO2(111). The primary products are CO, CO2 and water along with trace amounts of crotonaldehyde and acetylene. The acetaldehyde adsorbs as the 2-acetaldehyde species, dioxyethylene. Decomposition proceeds by dehydrogenation through acetate and enolate intermediates. The reaction pathway is similar on the reduced CeO2-X(100) surface however the inability to react with surface O on the reduced surface results in H2 rather than H2O desorption and C is left on the surface rather than producing CO and CO2. C-O bond cleavage in the enolate intermediate followed by reaction with surface H results in ethylene desorption.

  3. Clickable periodic mesoporous organosilicas: synthesis, click reactions, and adsorption of antibiotics.

    PubMed

    Gao, Jinsuo; Zhang, Xueying; Xu, Shutao; Tan, Feng; Li, Xinyong; Zhang, Yaobin; Qu, Zhenping; Quan, Xie; Liu, Jian

    2014-02-10

    Pharmaceutical antibiotics are not easily removed from water by conventional water-treatment technologies and have been recognized as new emerging pollutants. Herein, we report the synthesis of clickable azido periodic mesoporous organosilicas (PMOs) and their use as adsorbents for the adsorption of antibiotics. Ethane-bridged PMOs, functionalized with azido groups at different densities, were synthesized by the co-condensation of 1,2-bis(trimethoxysilyl)ethane (BTME) and 3-azidopropyltrimethoxysilane (AzPTMS), in the presence of nonionic-surfactant triblock-copolymer P123, in an acidic medium. Four different alkynes were conjugated to azide-terminated PMOs by means of an efficient click reaction. The clicked PMOs showed improved adsorption capacity (241 μg g(-1)) for antibiotics (ciprofloxacin hydrochloride) compared with azido-functionalized PMOs because of the enhanced π-π stacking interactions. These results indicate that click reactions can introduce multifunctional groups onto PMOs, thus demonstrating the great potential of PMOs for environmental applications.

  4. Low Energy Electrons as Probing Tool for Astrochemical Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Hendrik Bredehöft, Jan; Swiderek, Petra; Hamann, Thorben

    The complexity of molecules found in space varies widely. On one end of the scale of molecular complexity is the hydrogen molecule H2 . Its formation from H atoms is if not understood than at least thoroughly investigated[1]. On the other side of said spectrum the precursors to biopolymers can be found, such as amino acids[2,3], sugars[4], lipids, cofactors[5], etc, and the kerogen-like organic polymer material in carbonaceous meteorites called "black stuff" [6]. These have also received broad attention in the last decades. Sitting in the middle between these two extremes are simple molecules that are observed by radio astronomy throughout the Universe. These are molecules like methane (CH4 ), methanol (CH3 OH), formaldehyde (CH2 O), hydrogen cyanide (HCN), and many many others. So far more than 40 such species have been identified.[7] They are often used in laboratory experiments to create larger complex molecules on the surface of simulated interstellar dust grains.[2,8] The mechanisms of formation of these observed starting materials for prebiotic chemistry is however not always clear. Also the exact mechanisms of formation of larger molecules in photochemical experiments are largely unclear. This is mostly due to the very complex chemistry going on which involves many different radicals and ions. The creation of radicals and ions can be studied in detail in laboratory simulations. They can be created in a setup mimicking interstellar grain chemistry using slow electrons. There is no free electron radiation in space. What can be found though is a lot of radiation of different sorts. There is electromagnetic radiation (UV light, X-Rays, rays, etc.) and there is particulate radiation as well in the form of high energy ions. This radiation can provide energy that drives chemical reactions in the ice mantles of interstellar dust grains. And while the multitude of different kinds of radiation might be a little confusing, they all have one thing in common: Upon

  5. Adsorption and reactions of atmospheric constituents and pollutants on ice particles: an FTIR study

    NASA Astrophysics Data System (ADS)

    Rudakova, A. V.; Marinov, I. L.; Poretskiy, M. S.; Tsyganenko, A. A.

    2009-04-01

    Processes on icy particles attract much attention due to their importance for atmospheric science, ecology and astrophysics. In this work, adsorption and ecologically important reactions of some molecules on pure and mixed water icy films by means of FTIR spectroscopy have been investigated. The cell for spectral studies of adsorbed molecules at variable temperatures (55-370 K), described elsewhere1, enables one to run the spectra in the presence of gaseous adsorbate, and even to perform adsorption from the solution in some cryogenic solvents. For the studies of ice films, it was equipped with a device for water vapour sputtering from the heated capillaries and deposition onto the inner BaF2 or ZnSe windows of the cell, cooled by liquid nitrogen. Lower temperatures were obtained by pumping off evaporating nitrogen from the coolant volume. The estimated specific surface area of freshly deposited at 77 K water ice film was about 160 m2/g and decreases on raising the temperature together with the diminishing intensity of the bands of dangling OH (OD) groups at 3696 (2727) cm-1 until the latter disappear at 130 - 160 K when the changes of bulk absorption provide evidence for a phase transition from amorphous to polycrystalline ice. CO adsorption at 77 K results in two bands at 2153 and 2137 cm-1 assigned to molecules forming weak H-bond with the dangling hydroxyl groups and bound to unsaturated surface oxygen atoms, respectively2. The band of dangling hydroxyl groups moves to lower wavenumbers on adsorption of different molecules (hydrogen, nitrogen, methane, ozone, NO, ethane or chlorinated ethenes, etc.). The shift value depends on the nature of adsorbate. Besides this shift, spectra of adsorbed nitrogen and methane registered at 55 K reveal the adsorption intensity decrease at ~ 2650 cm-1 at the high-frequency slope of bulk adsorption, and increase at about 25 cm-1 below. We interpret this perturbation as a strengthening of H-bonds between surface water molecules

  6. Thermostatted micro-reactor NMR probe head for monitoring fast reactions.

    PubMed

    Brächer, A; Hoch, S; Albert, K; Kost, H J; Werner, B; von Harbou, E; Hasse, H

    2014-05-01

    A novel nuclear magnetic resonance (NMR) probe head for monitoring fast chemical reactions is described. It combines micro-reaction technology with capillary flow NMR spectroscopy. Two reactants are fed separately into the probe head where they are effectively mixed in a micro-mixer. The mixed reactants then pass through a capillary NMR flow cell that is equipped with a solenoidal radiofrequency coil where the NMR signal is acquired. The whole flow path of the reactants is thermostatted using the liquid FC-43 (perfluorotributylamine) so that exothermic and endothermic reactions can be studied under almost isothermal conditions. The set-up enables kinetic investigation of reactions with time constants of only a few seconds. Non-reactive mixing experiments carried out with the new probe head demonstrate that it facilitates the acquisition of constant highly resolved NMR signals suitable for quantification of different species in technical mixtures. Reaction kinetic measurements on a test system are presented that prove the applicability of the novel NMR probe head for monitoring fast reactions.

  7. Polymerase Chain Reaction-based Suppression of Repetitive Sequences in Whole Chromosome Painting Probes for FISH

    SciTech Connect

    Dugan, L C; Pattee, M; Williams, J; Eklund, M; Bedford, J S; Christian, A T

    2004-04-21

    We have developed a method to suppress the PCR amplification of repetitive sequences in whole chromosome painting probes by adding Cot-1 DNA to the amplification mixture. The repetitive sequences in the Cot-1 DNA bind to their homologous sequences in the probe library, prevent the binding of primers, and interfere with extension of the probe sequences, greatly decreasing PCR efficiency selectively across these blocked regions. A second labeling reaction is then done and this product is resuspended in FISH hybridization mixture without further addition of blocking DNA. The hybridization produces little if any non-specific binding on any other chromosomes. We have been able to successfully use this procedure with both human and rat chromosome probes. This technique should be applicable in producing probes for CGH, M-FISH and SKY, as well as reducing the presence of repetitive DNA in genomic libraries.

  8. Reaction Fields in the Environment of Fluorescent Probes: Polarity Profiles in Membranes

    PubMed Central

    Marsh, Derek

    2009-01-01

    Fluorescent probes in biological systems are sensitive to environmental polarity by virtue of their response to the reaction field created by polarization of the dielectric medium. Classically, fluorophore solvatochromism is analyzed in terms of the Lippert equation and later variants, all of which rely upon the original reaction field of Onsager. A recent survey of the solvent dependence of EPR spin-label probes, which are responsive solely to the reaction field in the ground state without the complication of excited states, shows that the reaction field of Block and Walker performs best in describing the polarity dependence. In this model, the step-function transition to the bulk dielectric medium used by Onsager is replaced by a graded transition. Analysis of the Stokes shifts for representative fluorescent membrane probes, such as PRODAN, DANSYL, and anthroyl fatty acid, reveals that, of several different reaction fields (including that of Onsager), the Block-Walker model best describes the dependence on solvent dielectric constant and refractive index for the different probes simultaneously. This is after full allowance is made for all contributions involving polarizability of the fluorophore, a point that is frequently neglected or treated incorrectly in studies using biological fluorescent probes. By using the full range of polar and apolar solvents, it is then possible to establish a common reference for the polarity dependence of different fluorophores and to relate this also to the polarity dependence of biologically relevant spin-label EPR probes. An important application is calibration of the transmembrane polarity profile recorded by fluorescent probes in terms of the high-resolution profile obtained from site-specifically spin-labeled lipid chains. PMID:19348740

  9. Reaction fields in the environment of fluorescent probes: polarity profiles in membranes.

    PubMed

    Marsh, Derek

    2009-04-08

    Fluorescent probes in biological systems are sensitive to environmental polarity by virtue of their response to the reaction field created by polarization of the dielectric medium. Classically, fluorophore solvatochromism is analyzed in terms of the Lippert equation and later variants, all of which rely upon the original reaction field of Onsager. A recent survey of the solvent dependence of EPR spin-label probes, which are responsive solely to the reaction field in the ground state without the complication of excited states, shows that the reaction field of Block and Walker performs best in describing the polarity dependence. In this model, the step-function transition to the bulk dielectric medium used by Onsager is replaced by a graded transition. Analysis of the Stokes shifts for representative fluorescent membrane probes, such as PRODAN, DANSYL, and anthroyl fatty acid, reveals that, of several different reaction fields (including that of Onsager), the Block-Walker model best describes the dependence on solvent dielectric constant and refractive index for the different probes simultaneously. This is after full allowance is made for all contributions involving polarizability of the fluorophore, a point that is frequently neglected or treated incorrectly in studies using biological fluorescent probes. By using the full range of polar and apolar solvents, it is then possible to establish a common reference for the polarity dependence of different fluorophores and to relate this also to the polarity dependence of biologically relevant spin-label EPR probes. An important application is calibration of the transmembrane polarity profile recorded by fluorescent probes in terms of the high-resolution profile obtained from site-specifically spin-labeled lipid chains.

  10. Spatially resolved probing of electrochemical reactions via energy discovery platforms

    SciTech Connect

    Ding, Jilai; Strelcov, Evgheni; Kalinin, Sergei V.; Bassiri-Gharb, Nazanin

    2015-06-01

    The electrochemical reactivity of solid surfaces underpins functionality of a broad spectrum of materials and devices ranging from energy storage and conversion, to sensors and catalytic devices. The surface electrochemistry is, however, a complex process, controlled by the interplay of charge generation, field-controlled and diffusion-controlled transport. Here we explore the fundamental mechanisms of electrochemical reactivity on nanocrystalline ceria, using the synergy of nanofabricated devices and time-resolved Kelvin probe force microscopy (tr-KPFM), an approach we refer to as energy discovery platform. Through tr-KPFM, the surface potential mapping in both the space and time domains and current variation over time are obtained, enabling analysis of local ionic and electronic transport and their dynamic behavior on the 10 ms to 10 s scale. Based on their different responses in the time domain, conduction mechanisms can be separated and identified in a variety of environmental conditions, such as humidity and temperature. The theoretical modeling of ion transport through finite element method allows for creation of a minimal model consistent with observed phenomena, and establishing of the dynamic characteristics of the process, including mobility and diffusivity of charged species. Furthermore, the future potential of the energy discovery platforms is also discussed.

  11. Adsorption, Ordering, and Local Environments of Surfactant-Encapsulated Polyoxometalate Ions Probed at the Air–Water Interface

    DOE PAGES

    Doughty, Benjamin; Yin, Panchao; Ma, Ying-Zhong

    2016-07-23

    The continued development and application of surfactant-encapsulated polyoxometalates (SEPs) relies on understanding the ordering and organization of species at their interface and how these are impacted by the various local environments to which they are exposed. In this paper, we report on the equilibrium properties of two common SEPs adsorbed to the air–water interface and probed with surface-specific vibrational sum-frequency generation (SFG) spectroscopy. These results reveal clear shifts in vibrational band positions, the magnitude of which scales with the charge of the SEP core, which is indicative of a static field effect on the surfactant coating and the associated localmore » chemical environment. This static field also induces ordering in surrounding water molecules that is mediated by charge screening via the surface-bound surfactants. From these SFG measurements, we are able to show that Mo132-based SEPs are more polar than Mo72V30 SEPs. Disorder in the surfactant chain packing at the highly curved SEP surfaces is attributed to large conic volumes that can be sampled without interactions with neighboring chains. Measurements of adsorption isotherms yield free energies of adsorption to the air–water interface of -46.8 ± 0.4 and -44.8 ± 1.2 kJ/mol for the Mo132 and Mo72V30 SEPs, respectively, indicating a strong propensity for the fluid surface. Finally, the influence of intermolecular interactions on the surface adsorption energies is discussed.« less

  12. Probing gas adsorption in MOFs using an efficient ab initio widom insertion Monte Carlo method.

    PubMed

    Lee, Youhan; Poloni, Roberta; Kim, Jihan

    2016-12-15

    We propose a novel biased Widom insertion method that can efficiently compute the Henry coefficient, KH , of gas molecules inside porous materials exhibiting strong adsorption sites by employing purely DFT calculations. This is achieved by partitioning the simulation volume into strongly and weakly adsorbing regions and selectively biasing the Widom insertion moves into the former region. We show that only few thousands of single point energy calculations are necessary to achieve accurate statistics compared to many hundreds of thousands or millions of such calculations in conventional random insertions. The methodology is used to compute the Henry coefficient for CO2 , N2 , CH4 , and C2 H2 in M-MOF-74(M = Zn and Mg), yielding good agreement with published experimental data. Our results demonstrate that the DFT binding energy and the heat of adsorption are not accurate enough indicators to rank the guest adsorption properties at the Henry regime. © 2016 Wiley Periodicals, Inc.

  13. Adsorption and reactions of NO on NiAl(111) at 75 K

    NASA Astrophysics Data System (ADS)

    Schmitz, G.; Bartolucci, F.; Gassmann, P.; Masuch, J.; Franchy, R.

    1997-11-01

    The adsorption and reactions of NO on NiAl(111) at 75 K were studied by high resolution electron energy loss spectroscopy, temperature programmed desorption, Auger electron spectroscopy, and low energy electron diffraction. At low exposure (⩽1 L), NO mainly adsorbs molecularly on top in an upright geometry on Ni atoms. Simultaneously, a small amount of NO dissociates. Higher exposures (⩾2 L up to saturation) lead to the formation of a thin amorphous Al-oxynitride (am-ALON) film. In the presence of am-ALON, a molecular adsorption of NO on am-ALON sites and/or in the neighborhood of ALON islands is observed. Besides the upright geometry, NO molecules are adsorbed in disarranged (bent or tilted) configurations. The growing am-ALON film acts as a catalyst for the reduction of NO to N2O. Substantial amounts of N2O are formed for NO exposures higher than 5 L, and are coadsorbed molecularly. The main thermal desorption products are N2O, N2, and NO. For an exposure of 20 L NO, the ratios of the amounts of desorbing molecules are: N2O:N2:NO=1:0.43:0.36. It could be shown that the N2 signal is due to a recombinative desorption of adsorbed nitrogen atoms.

  14. Passivation effects on quantum dots prepared by successive ionic layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Dai, Qilin; Maloney, Scott; Chen, Weimin; Poudyal, Uma; Wang, Wenyong

    2016-06-01

    ZnS is typically used to passivate semiconductor quantum dots (QDs) prepared by the successive ionic layer adsorption and reaction (SILAR) method for solar cell applications, while for colloidal QDs, organic ligands are usually used for this passivation purpose. In this study we utilized oleylamine and oleic acid ligands, besides ZnS, to passivate QDs prepared by the SILAR approach, and investigated their effects on the incident photon-to-current efficiency (IPCE) performance of the solar cells. It was observed that oleylamine passivation decreased device performance, while oleic acid passivation improved the IPCE of the cells. Redshift of the IPCE onset wavelength was also observed after oleic acid coating, which was attributed to the delocalization of excitons in the CdS QDs.

  15. Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nature and kinetics of reactions in dry seeds determines how long they survive. We used gas chromatography to assay volatile organic compounds (VOC) emitted from seeds of three unrelated species as a means to non-invasively probe chemical changes during very dry, dry and humid (15, 33 and 75% RH...

  16. Probing Intramolecular versus Intermolecular CO2 Adsorption on Amine-Grafted SBA-15.

    PubMed

    Yoo, Chun-Jae; Lee, Li-Chen; Jones, Christopher W

    2015-12-15

    A mesoporous silica SBA-15 is modified with an array of amine-containing organosilanes including (i) propylamine, SiCH2CH2CH2NH2 (MONO), (ii) propylethylenediamine, SiCH2CH2CH2NHCH2CH2NH2 (DI), (iii) propyldiethylenetriamine, SiCH2CH2CH2NHCH2CH2NHCH2CH2NH2 (TRI), and (iv) propyltriethylenetetramine, SiCH2CH2CH2NHCH2CH2N(CH2CH2NH2)2 (TREN) and the low loading silane adsorbents (∼0.45 mmol silane/g) are evaluated for their CO2 adsorption properties, with a focus on gaining insight into the propensity for intramolecular vs intermolecular CO2 adsorption. Adsorption isotherms at low CO2 coverages are measured while simultaneously recording the heat evolved via a Tian-Calvet calorimeter. The results are compared on a silane molecule efficiency basis (mol CO2 adsorbed/mol silane) to assess the potential for intramolecular CO2 adsorption, employing two amine groups in a single silane molecule. As the number of amines in the silane molecule increases (MONO < DI < TREN ∼ TRI), the silane molecule efficiency is enhanced owing to the ability to intramolecularly capture CO2. Analysis of the CO2 uptake for samples with the surface silanols removed by capping demonstrates that cooperative uptake due to amine-CO2-silanol interactions is also possible over these adsorbents and is the primary mode of sorption for the MONO material at the studied low silane loading. As the propensity for intramolecular CO2 capture increases due to the presence of multiple amines in a single silane molecule (MONO < DI < TREN ∼ TRI), the measured heat of adsorption also increases. This study of various amine-containing silanes at low coverage is the first to provide significant, direct evidence for intramolecular CO2 capture in a single silane molecule. Furthermore, it provides evidence for the relative heats of adsorption for physisorption on a silanol laden surface (ca. 37 kJ/mol), a silanol-capped surface (ca. 25 kJ/mol), via amine-CO2-silanol interactions (ca. 46 kJ/mol), and via amine-CO2

  17. Probing reaction dynamics with the {sup 196}Pt(n,xn{gamma}) reactions for x{le}15

    SciTech Connect

    Bernstein, L.A.; Becker, J.A.; Younes, W.; Archer, D.E.; Hauschild, K.; Nelson, R.O.; Wilburn, W.S. Drake, D.M.

    1998-06-01

    Discrete {gamma}-ray spectra have been measured as a function of incident neutron energy for nuclei produced in the {sup 196}Pt(n,xn{gamma}) reactions. Spectroscopy was done using the large-scale Compton suppressed Ge {gamma}-ray spectrometer GEANIE. The {open_quotes}white{close_quotes} source neutron beam was produced at the Los Alamos Neutron Science WNR facility. Reaction neutron energy was determined using the time-of-flight technique. Reaction-channel yields were inferred from the measured intensity sum of the 2{sub 1}{sup +}{r_arrow}0{sub 1}{sup +} and the 2{sub 2}{sup +}{r_arrow}0{sub 1}{sup +} transitions for the {sup 196}Pt(n,xn) reactions for x{le}15. Weisskopf-Ewing calculations (including precompound) done with the HMS-ALICE code correctly predict the bulk of the (n,xn) reaction products for low multiplicity. However, they do not accurately predict yield ratios of the different (n,xn) reactions for x{ge}9. In addition, there is no consistent experimental indication of charged-particle reaction channels (n,pxn) for incident neutron energies above 60 MeV where they are predicted to account for approximately 1/3 of the total reaction cross section. Several possible causes are discussed for these discrepancies. Finally, the region of E-J phase space populated in this reaction is probed for several of the strongest reaction channels through the observation of relative yields for different yrast and off-yrast states. {copyright} {ital 1998} {ital The American Physical Society}

  18. CdS/TiO2-fluorescein isothiocyanate nanoparticles as fluorescence resonance energy transfer probe for the determination of trace alkaline phosphatase based on affinity adsorption assay.

    PubMed

    Liu, Jia-Ming; Lin, Li-ping; Jiao, Li; Cui, Ma-Lin; Wang, Xin-Xing; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-08-30

    The CdS/TiO(2)-fluorescein isothiocyanate (FITC) luminescent nanoparticles (CdS/TiO(2)-FITC) with the particle size of 20 nm have been synthesized by sol-gel method. CdS/TiO(2)-FITC could emit the fluorescence of both FITC and CdS/TiO(2). The fluorescence resonance energy transfer (FRET) occurred between the donor CdS/TiO(2) and the acceptor FITC in the CdS/TiO(2)-FITC. Taking advantages of the excellent characteristics of FRET, a new CdS/TiO(2)-FITC FRET labeling reagent and a CdS/TiO(2)-FITC-wheat germ agglutinin (CdS/TiO(2)-FITC-WGA) fluorescent probe have been developed. The FRET occurring between the donor CdS/TiO(2) and the acceptor FITC in the labelled product CdS/TiO(2)-FITC-WGA-AP, formed in the affinity adsorption reaction between the WGA in this CdS/TiO(2)-FITC-WGA fluorescent probe and alkaline phosphatase (AP), sharply enhanced the fluorescence signal of FITC and quench the fluorescence signal of CdS/TiO(2). Moreover, the ΔF (the change of the fluorescence signal) of FITC and CdS/TiO(2) were proportional to the content of AP, respectively. Thus, a new method that CdS/TiO(2)-fluorescein isothiocyanate nanoparticles for the determination of trace AP based on FRET-affinity adsorption assay has been established. The limit of quantification (LOQ) of the method was 1.3×10(-17) g AP mL(-1) for CdS/TiO(2) and 1.1×10(-17) g AP mL(-1) for FITC, respectively. This sensitive, rapid, high selective and precise method has been applied to the determination of AP in human serum and the prediction of human disease with the results agreed well with enzyme-linked immunosorbent assay (ELISA) in Zhangzhou Municipal Hospital of Fujian Province. Simultaneously, the reaction mechanism for the determination of AP was also discussed.

  19. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

    SciTech Connect

    Medford, Andrew

    2012-02-16

    Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

  20. Adsorption structure, thermal reaction and initial pathways of 1,2-benzyne on Cu(100)

    NASA Astrophysics Data System (ADS)

    Lin, Jong-Liang; Lin, Yi-Shiue; Lin, Bo-Chiuan; Liao, Yuan-Hsuan; Chen, Yi-Ting; Chen, Shang-Wei; Jhuang, Jyun-Yi; Lee, Yarong; Lin, Jiing-Chyuan

    2016-10-01

    1,2-C6H4I2 is used as precursor to generate 1,2-C6H4 (ortho-C6H4) on Cu(100). The reflection-absorption infrared spectroscopy (RAIRS) confirms the vertical adsorption geometry of 1,2-C6H4 on Cu(100), which agrees with that predicted theoretically. H2 evolving between 620 K and 870 K is the only reaction product detected from the 1,2-C6H4 decomposition in temperature-programmed reaction/desorption (TPR/D). Our calculations indicate that the 1,2-C6H4 primarily undergoes C3-H bond scission, forming 1,2,3-C6H3, with distorted C6 ring, and H atom on the surface without ring rupture (C1-C2 bond dissociation) prior to H loss. Furthermore, isomerization of the 1,2-C6H4, if it does occur, may proceed via dehydrogenation-hydrogenation, instead of H-shift.

  1. Entropy-enthalpy compensation in chemical reactions and adsorption: an exactly solvable model.

    PubMed

    Freed, Karl F

    2011-02-24

    The free energies of reaction or activation for many systems respond in a common fashion to a perturbing parameter, such as the concentration of an "inert" additive. Arrhenius plots as a function of the perturbing parameter display a "'compensation temperature" at which the free energy appears to be independent of the perturber, an entropy-enthalpy compensation process. Thus, as the perturber's concentration varies, Arrhenius plots of the rate constant or equilibrium constant exhibit a rotation about the fixed compensation temperature. While this (isokinetic/isoequilibrium) component of the phenomenon of entropy-enthalpy compensation appears in a huge number of situations of relevance to chemistry, biology, and materials science, statistical mechanical descriptions have been almost completely lacking. We provide the general statistical mechanical basis for solvent induced isokinetic/isoequilibrium entropy-enthalpy compensation in chemical reactions and adsorption, understanding that can be used to control of rate processes and binding constants in diverse applications. The general behavior is illustrated with an analytical solution for the dilute gas limit.

  2. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution. 2: Polycondensations

    NASA Technical Reports Server (NTRS)

    Kolb, Vera; Orgel, Leslie E.

    1995-01-01

    We have prepared a (P-32)-labeled oligonucleotide probe carrying a ureido (-NH-CO-NH2) function at its 3'-terminus. This labeled oligomer was used to study polycondensations of urea and formaldehyde and of various phenols and formaldehyde in aqueous solution. The formation of formaldehyde copolymers attached to the amido-function of the probe was monitored by gel electrophoresis. Our results are generally in agreement with those obtained using conventional techniques. Our method is suitable for monitoring potentially prebiotic polycondensation reactions involving formaldehyde.

  3. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution: II. Polycondensations

    NASA Technical Reports Server (NTRS)

    Kolb, V.; Orgel, L. E.

    1995-01-01

    We have prepared a [32P]-labeled oligonucleotide probe carrying a ureido (-NH-CO-NH2) function at its 3'-terminus. This labeled oligomer was used to study polycondensations of urea and formaldehyde and of various phenols and formaldehyde in aqueous solution. The formation of formaldehyde copolymers attached to the amido-function of the probe was monitored by gel electrophoresis. Our results are generally in agreement with those obtained using conventional techniques. Our method is suitable for monitoring potentially prebiotic polycondensation reactions involving formaldehyde.

  4. Adsorption, Ordering, and Local Environments of Surfactant-Encapsulated Polyoxometalate Ions Probed at the Air–Water Interface

    SciTech Connect

    Doughty, Benjamin; Yin, Panchao; Ma, Ying-Zhong

    2016-07-23

    The continued development and application of surfactant-encapsulated polyoxometalates (SEPs) relies on understanding the ordering and organization of species at their interface and how these are impacted by the various local environments to which they are exposed. In this paper, we report on the equilibrium properties of two common SEPs adsorbed to the air–water interface and probed with surface-specific vibrational sum-frequency generation (SFG) spectroscopy. These results reveal clear shifts in vibrational band positions, the magnitude of which scales with the charge of the SEP core, which is indicative of a static field effect on the surfactant coating and the associated local chemical environment. This static field also induces ordering in surrounding water molecules that is mediated by charge screening via the surface-bound surfactants. From these SFG measurements, we are able to show that Mo132-based SEPs are more polar than Mo72V30 SEPs. Disorder in the surfactant chain packing at the highly curved SEP surfaces is attributed to large conic volumes that can be sampled without interactions with neighboring chains. Measurements of adsorption isotherms yield free energies of adsorption to the air–water interface of -46.8 ± 0.4 and -44.8 ± 1.2 kJ/mol for the Mo132 and Mo72V30 SEPs, respectively, indicating a strong propensity for the fluid surface. Finally, the influence of intermolecular interactions on the surface adsorption energies is discussed.

  5. Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles

    PubMed Central

    Benkoula, Safia; Sublemontier, Olivier; Patanen, Minna; Nicolas, Christophe; Sirotti, Fausto; Naitabdi, Ahmed; Gaie-Levrel, François; Antonsson, Egill; Aureau, Damien; Ouf, François-Xavier; Wada, Shin-Ichi; Etcheberry, Arnaud; Ueda, Kiyoshi; Miron, Catalin

    2015-01-01

    We describe an experimental method to probe the adsorption of water at the surface of isolated, substrate-free TiO2 nanoparticles (NPs) based on soft X-ray spectroscopy in the gas phase using synchrotron radiation. To understand the interfacial properties between water and TiO2 surface, a water shell was adsorbed at the surface of TiO2 NPs. We used two different ways to control the hydration level of the NPs: in the first scheme, initially solvated NPs were dried and in the second one, dry NPs generated thanks to a commercial aerosol generator were exposed to water vapor. XPS was used to identify the signature of the water layer shell on the surface of the free TiO2 NPs and made it possible to follow the evolution of their hydration state. The results obtained allow the establishment of a qualitative determination of isolated NPs’ surface states, as well as to unravel water adsorption mechanisms. This method appears to be a unique approach to investigate the interface between an isolated nano-object and a solvent over-layer, paving the way towards new investigation methods in heterogeneous catalysis on nanomaterials. PMID:26462615

  6. Adsorption and coadsorption of CO and H 2 on Fe(111) probed by TEAS

    NASA Astrophysics Data System (ADS)

    Bernasek, Steven L.; Zappone, Marianne; Ping Jiang

    Thermal energy atom scattering (TEAS), as developed by Comsa and coworkers, has been widely used to study a variety of processes on smooth, close packed metal surfaces such as Pt(111). The He beam specular reflectivity of these surfaces is very high, and absorbates or defects usually have a relatively large scattering cross section. For TEAS to have a wider applicability, studies on more corrugated surfaces should be undertaken. We report here studies of CO and H 2 adsorption and coadsorption on the open Fe(111) surface. The He specular intensity drops rapidly and smoothly with CO exposure on the Fe(111) surface. In contrast to CO/Pt(111), the diffuse scattering of He from CO on Fe(111) is not a negligible fraction of the intensity. The surface exhibits a finite reflectivity even at high CO coverages. An effective scattering cross section of 56Å 2 was derived from a fit of the reflectivity data to a model taking this diffuse scattering into account. For H 2 exposure to the Fe(111) surface, the He specular reflectivity decreases less abruptly, with distinct slope changes as coverage increases. Angular and temperature dependent measurements suggest distinct adsorption sites for the dissociatively adsorbed hydrogen. When CO and H 2 are coadsorbed, the order of adsorption affects the final composition and coverage in the overlayer. If the surface is first saturated with CO, H 2 will not adsorb, as evidenced by constant TEAS signal. When H 2 is adsorbed first, even to saturation coverage, CO will adsorb, displacing H 2 from the surface. Evidence is obtained for CO and H 2 segregation on the surface at intermediate coverages.

  7. Surface adsorption and hopping cause probe-size-dependent microrheology of actin networks

    NASA Astrophysics Data System (ADS)

    He, Jun; Tang, Jay X.

    2011-04-01

    A network of filaments formed primarily by the abundant cytoskeletal protein actin gives animal cells their shape and elasticity. The rheological properties of reconstituted actin networks have been studied by tracking micron-sized probe beads embedded within the networks. We investigate how microrheology depends on surface properties of probe particles by varying the stickiness of their surface. For this purpose, we chose carboxylate polystyrene (PS) beads, silica beads, bovine serum albumin (BSA) -coated PS beads, and polyethylene glycol (PEG) -grafted PS beads, which show descending stickiness to actin filaments, characterized by confocal imaging and microrheology. Probe size dependence of microrheology is observed for all four types of beads. For the slippery PEG beads, particle-tracking microrheology detects weaker networks using smaller beads, which tend to diffuse through the network by hopping from one confinement “cage” to another. This trend is reversed for the other three types of beads, for which microrheology measures stiffer networks for smaller beads due to physisorption of nearby filaments to the bead surface. We explain the probe size dependence with two simple models. We also evaluate depletion effect near nonadsorption bead surface using quantitative image analysis and discuss the possible impact of depletion on microrheology. Analysis of these effects is necessary in order to accurately define the actin network rheology both in vitro and in vivo.

  8. Probing thyroglobulin in undiluted human serum based on pattern recognition and competitive adsorption of proteins

    NASA Astrophysics Data System (ADS)

    Wang, Ran; Huang, Shuai; Li, Jing; Chae, Junseok

    2014-10-01

    Thyroglobulin (Tg) is a sensitive indicator of persistent or recurrent differentiated thyroid cancer of follicular cell origin. Detection of Tg in human serum is challenging as bio-receptors, such as anti-Tg, used in immunoassay have relatively weak binding affinity. We engineer sensing surfaces using the competitive adsorption of proteins, termed the Vroman Effect. Coupled with Surface Plasmon Resonance, the "cross-responsive" interactions of Tg on the engineered surfaces produce uniquely distinguishable multiple signature patterns, which are discriminated using Linear Discriminant Analysis. Tg-spiked samples, down to 2 ng/ml Tg in undiluted human serum, are sensitively and selectively discriminated from the control (undiluted human serum).

  9. Adsorption of acridine on silver electrode: SERS spectra potential dependence as a probe of adsorbate state

    NASA Astrophysics Data System (ADS)

    Solovyeva, Elena V.; Myund, Liubov A.; Dem'yanchuk, Evgeniya M.; Makarov, Artiom A.; Denisova, Anna S.

    2013-02-01

    This work investigates acridine adsorption on the silver electrode surface. The dependence of the acridine SERS spectra on the electrode potential proved to be quite different for azaheterocycle molecules, while the pH effect as expected. The changes in the acridine SERS spectrum caused by the double electric layer (DEL) rearrangement can be explained by sorption/desorption rather than the adsorbate molecule reorientation. The presence of chloride anions close to the silver surface is important not only for the SERS-active properties but for the formation of the stabilised surface complexes of the protonated acridine as well.

  10. Probing environmentally significant surface radicals: Crystallographic and temperature dependent adsorption of phenol on ZnO

    NASA Astrophysics Data System (ADS)

    Thibodeaux, Chad A.; Poliakoff, E. D.; Kizilkaya, Orhan; Patterson, Matthew C.; DiTusa, Mark F.; Kurtz, Richard L.; Sprunger, P. T.

    2015-10-01

    Environmentally persistent free radicals (EPFRs) are toxic organic/metal oxide composite particles that have been discovered to form from substituted benzenes chemisorbed to metal oxides. Here, we perform photoelectron spectroscopy, electron energy loss spectroscopy, and low energy electron diffraction of phenol chemisorbed to ZnO(1 0 1 _ 0) and (0 0 0 1 _)-Zn to observe electronic structure changes and charge transfer as a function adsorption temperature. We show direct evidence of charge transfer from the ZnO surfaces to the phenol. This evidence can help gain a better understanding of EPFRs and be used to develop possible future remediation strategies.

  11. Probing environmentally significant surface radicals: Crystallographic and temperature dependent adsorption of phenol on ZnO

    PubMed Central

    Thibodeaux, Chad A.; Poliakoff, E.D.; Kizilkaya, Orhan; Patterson, Matthew C.; DiTusa, Mark F.; Kurtz, Richard L.

    2015-01-01

    Environmentally persistent free radicals (EPFRs) are toxic organic/metal oxide composite particles that have been discovered to form from substituted benzenes chemisorbed to metal oxides. Here, we perform photoelectron spectroscopy, electron energy loss spectroscopy, and low energy electron diffraction of phenol chemisorbed to ZnO(1 0 1̱ 0) and (0 0 0 1̱)-Zn to observe electronic structure changes and charge transfer as a function adsorption temperature. We show direct evidence of charge transfer from the ZnO surfaces to the phenol. This evidence can help gain a better understanding of EPFRs and be used to develop possible future remediation strategies. PMID:26388650

  12. Probing the contribution of different intermolecular forces to the adsorption of spheroproteins onto hydrophilic surfaces.

    PubMed

    Borges, João; Campiña, José M; Silva, A Fernando

    2013-12-27

    Protein adsorption is a delicate process, which results from the balance between the properties of proteins and their solid supports. Although the relevance of some of these parameters has been already unveiled, the precise involvement of electrostatics and other weaker intermolecular forces requires further comprehension. Aiming to contribute to this task, this work explores the attachment, rearrangement, and surface aggregation of a model spheroprotein, such as bovine β-lactoglobulin (β-LG), onto hydrophilic substrates prefunctionalized with different alkylthiol films. Thereby, a variety of electrostatic scenarios for the adsorption of β-LG could be recreated through the variation of the pH and the functional chemistry of the surfaces. The changes in surface mass density (plus associated water) and film flexibility were followed in situ with quartz crystal microbalance with dissipation monitoring. Film packing and aggregation were assessed by faradaic electrochemical measurements and ex situ atomic force microscopy and field effect scanning electron microscopy. In contrast to previous hypotheses arguing that electrostatic interactions between charged substrates and proteins would be the only driving force, a complex interplay between Coulombic and non-Coulombic intermolecular forces (which would depend upon the experimental conditions) has been suggested to explain the results.

  13. Combining ligation reaction and capillary gel electrophoresis to obtain reliable long DNA probes.

    PubMed

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2011-05-01

    New DNA amplification methods are continuously developed for sensitive detection and quantification of specific DNA target sequences for, e.g. clinical, environmental or food applications. These new applications often require the use of long DNA oligonucleotides as probes for target sequences hybridization. Depending on the molecular technique, the length of DNA probes ranges from 40 to 450 nucleotides, solid-phase chemical synthesis being the strategy generally used for their production. However, the fidelity of chemical synthesis of DNA decreases for larger DNA probes. Defects in the oligonucleotide sequence result in the loss of hybridization efficiency, affecting the sensitivity and selectivity of the amplification method. In this work, an enzymatic procedure has been developed as an alternative to solid-phase chemical synthesis for the production of long oligonucleotides. The enzymatic procedure for probe production was based on ligation of short DNA sequences. Long DNA probes were obtained from smaller oligonucleotides together with a short sequence that acts as bridge stabilizing the molecular complex for DNA ligation. The ligation reactions were monitored by capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) using a bare fused-silica capillary. The capillary gel electrophoresis-LIF method demonstrated to be very useful and informative for the characterization of the ligation reaction, providing important information about the nature of some impurities, as well as for the fine optimization of the ligation conditions (i.e. ligation cycles, oligonucleotide and enzyme concentration). As a result, the yield and quality of the ligation product were highly improved. The in-lab prepared DNA probes were used in a novel multiplex ligation-dependent genome amplification (MLGA) method for the detection of genetically modified maize in samples. The great possibilities of the whole approach were demonstrated by the specific and sensitive

  14. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution

    NASA Technical Reports Server (NTRS)

    Kolb, V.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1994-01-01

    We have prepared a [32P]-labled oligonucleotide probe carrying a free primary amine at its 3'-terminus. This probe is used to initiate polymerization of aziridine (ethyleneimine) in aqueous solution. The nature of the oligomeric products and the kinetics of their formation are then monitored by gel electrophoresis. Our results are generally consistent with those obtained using conventional techniques. We have also investigated the effect of polyanionic templates on the rate of oligomerization of aziridine. We find that water-soluble polyanions generally accelerate the polymerization. The sodium salt of polymethacrylic acid is the most effective of the templates that we studied. The methods introduced in this paper should be applicable to a variety of polymerization reactions in aqueous solution. They should greatly simplify the screening of potentially prebiotic polymerization reactions.

  15. Chemical Probes Allow Structural Insight into the Condensation Reaction of Nonribosomal Peptide Synthetases.

    PubMed

    Bloudoff, Kristjan; Alonzo, Diego A; Schmeing, T Martin

    2016-03-17

    Nonribosomal peptide synthetases (NRPSs) synthesize a vast variety of small molecules, including antibiotics, antitumors, and immunosuppressants. The NRPS condensation (C) domain catalyzes amide bond formation, the central chemical step in nonribosomal peptide synthesis. The catalytic mechanism and substrate determinants of the reaction are under debate. We developed chemical probes to structurally study the NRPS condensation reaction. These substrate analogs become covalently tethered to a cysteine introduced near the active site, to mimic covalent substrate delivery by carrier domains. They are competent substrates in the condensation reaction and behave similarly to native substrates. Co-crystal structures show C domain-substrate interactions, and suggest that the catalytic histidine's principle role is to position the α-amino group for nucleophilic attack. Structural insight provided by these co-complexes also allowed us to alter the substrate specificity profile of the reaction with a single point mutation.

  16. Multifragment azimuthal correlation functions: Probes for reaction dynamics in collisions of intermediate energy heavy ions

    SciTech Connect

    Lacey, R.A.; Elmaani, A.; Lauret, J.; Li, T.; Bauer, W.; Craig, D.; Cronqvist, M.; Gualtieri, E.; Hannuschke, S.; Reposeur, T.; Vander Molen, A.; Westfall, G.D.; Wilson, W.K.; Winfield, J.S.; Yee, J.; Yennello, S.; Nadasen, A.; Tickle, R.S.; Norbeck, E. National Superconducting Cyclotron Laboratory Department of Physics, Michigan State University, East Lansing, Michigan 48824-1321 Department of Physics, University of Michigan at Dearborn, Dearborn, Michigan 48128 Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120 Department of Physics, University of Iowa, Iowa City, Iowa 52242 )

    1993-03-01

    Multifragment azimuthal correlation functions have been measured as a function of beam energy and impact parameter for the Ar+Sc system ([ital E]/[ital A]=35 to 115 MeV). The observed azimuthal correlation functions---which do not require corrections for dispersion of the reaction plane---exhibit strong asymmetries which are dependent on impact parameter and beam energy. Rotational collective motion and flow seem to dominate the correlation functions at low beam energies. It is proposed that multifragment azimuthal correlation functions can provide a useful probe for intermediate energy heavy ion reaction dynamics.

  17. Probing Redox Reactions at the Nanoscale with Electrochemical Tip-Enhanced Raman Spectroscopy

    DTIC Science & Technology

    2015-11-18

    Probing Redox Reactions at the Nanoscale with Electrochemical Tip- Enhanced Raman Spectroscopy Dmitry Kurouski,† Michael Mattei,† and Richard P. Van...Information ABSTRACT: A fundamental understanding of electrochem - ical processes at the nanoscale is crucial to solving problems in research areas as...TERS) uniquely offers subnanometer spatial resolution and single-molecule sensitivity, making it the ideal tool for studying nanoscale electrochemical

  18. Facile Synthesis of Prussian Blue Derivate-Modified Mesoporous Material via Photoinitiated Thiol-Ene Click Reaction for Cesium Adsorption.

    PubMed

    Qian, Jun; Ma, Jiaqi; He, Weiwei; Hua, Daoben

    2015-08-01

    A novel strategy to synthesize a functional mesoporous material for efficient removal of cesium is reported. Specifically, Prussian blue derivate-modified SBA-15 (SBA-15@FC) was prepared by photoinitiated thiol-ene reaction between thiol-modified SBA-15 and pentacyano(4-vinyl pyridine)ferrate complex. The effects of weight percentage of the Prussian blue derivate, pH, adsorbent dose, co-existing ions, and initial concentration were evaluated on the adsorption of cesium ions. The adsorption kinetically follows a pseudo-second-order model and reaches equilibrium within 2 h with a high adsorption capacity of about 13.90 mg Cs g(-1) , which indicates that SBA-15@FC is a promising adsorbent to effectively remove cesium from aqueous solutions.

  19. Monitoring Chemical and Biological Electron Transfer Reactions with a Fluorogenic Vitamin K Analogue Probe.

    PubMed

    Belzile, Mei-Ni; Godin, Robert; Durantini, Andrés M; Cosa, Gonzalo

    2016-12-21

    We report herein the design, synthesis, and characterization of a two-segment fluorogenic analogue of vitamin K, B-VKQ, prepared by coupling vitamin K3, also known as menadione (a quinone redox center), to a boron-dipyrromethene (BODIPY) fluorophore (a lipophilic reporter segment). Oxidation-reduction reactions, spectroelectrochemical studies, and enzymatic assays conducted in the presence of DT-diaphorase illustrate that the new probe shows reversible redox behavior on par with that of vitamin K, provides a high-sensitivity fluorescence signal, and is compatible with biological conditions, opening the door to monitor remotely (i.e., via imaging) redox processes in real time. In its oxidized form, B-VKQ is non-emissive, while upon reduction to the hydroquinone form, B-VKQH2, BODIPY fluorescence is restored, with emission quantum yield values of ca. 0.54 in toluene. Density functional theory studies validate a photoinduced electron transfer intramolecular switching mechanism, active in the non-emissive quinone form and deactivated upon reduction to the emissive dihydroquinone form. Our results highlight the potential of B-VKQ as a fluorogenic probe to study electron transfer and transport in model systems and biological structures with optimal sensitivity and desirable chemical specificity. Use of such a probe may enable a better understanding of the role that vitamin K plays in biological redox reactions ubiquitous in key cellular processes, and help elucidate the mechanism and pathological significance of these reactions in biological systems.

  20. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul

    2016-04-01

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  1. Probing the resonance potential in the F atom reaction with hydrogen deuteride with spectroscopic accuracy

    PubMed Central

    Ren, Zefeng; Che, Li; Qiu, Minghui; Wang, Xingan; Dong, Wenrui; Dai, Dongxu; Wang, Xiuyan; Yang, Xueming; Sun, Zhigang; Fu, Bina; Lee, Soo-Y.; Xu, Xin; Zhang, Dong H.

    2008-01-01

    Reaction resonances are transiently trapped quantum states along the reaction coordinate in the transition state region of a chemical reaction that could have profound effects on the dynamics of the reaction. Obtaining an accurate reaction potential that holds these reaction resonance states and eventually modeling quantitatively the reaction resonance dynamics is still a great challenge. Up to now, the only viable way to obtain a resonance potential is through high-level ab initio calculations. Through highly accurate crossed-beam reactive scattering studies on isotope-substituted reactions, the accuracy of the resonance potential could be rigorously tested. Here we report a combined experimental and theoretical study on the resonance-mediated F + HD → HF + D reaction at the full quantum state resolved level, to probe the resonance potential in this benchmark system. The experimental result shows that isotope substitution has a dramatic effect on the resonance picture of this important system. Theoretical analyses suggest that the full-dimensional FH2 ground potential surface, which was believed to be accurate in describing the resonance picture of the F + H2 reaction, is found to be insufficiently accurate in predicting quantitatively the resonance picture for the F + HD → HF + D reaction. We constructed a global potential energy surface by using the CCSD(T) method that could predict the correct resonance peak positions as well as the dynamics for both F + H2 → HF + H and F + HD → HF + D, providing an accurate resonance potential for this benchmark system with spectroscopic accuracy. PMID:18687888

  2. Adsorption of biological molecules to a solid support for scanning probe microscopy.

    PubMed

    Müller, D J; Amrein, M; Engel, A

    1997-07-01

    Scanning probe microscopes are now established tools to study the surface structure of biological macromolecules under physiological conditions. Sample preparation methods for this microscopy all have the objective to attach the specimen firmly to a support. Here we analyse the commonly used method of adsorbing biological specimens to freshly cleaved mica. This is facilitated by adjusting the electrolyte concentration and the pH of the buffer solution. Native macromolecular systems absorbed to mica in this way can be reproducibly imaged at submolecular resolution.

  3. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    NASA Astrophysics Data System (ADS)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on

  4. Low energy electron induced reactions in fluorinated acetamide - probing negative ions and neutral stable counterparts*

    NASA Astrophysics Data System (ADS)

    Kopyra, Janina; König-Lehmann, Constanze; Illenberger, Eugen; Warneke, Jonas; Swiderek, Petra

    2016-06-01

    Electron impact to trifluoroacetamide (CF3CONH2, TFAA) in the energy range 0-12 eV leads to a variety of negative fragment ions which are formed via dissociative electron attachment (DEA). The underlying reactions range from single bond cleavages to remarkably complex reactions that lead to loss of the neutral units HF, H2O and HNCO as deduced from their directly observed ionic counterparts (M - H2O)-, (M - HF)- and (M - HNCO)-. Also formed are the pseudo-halogen ions CN- and OCN-. All these reactions proceed dominantly via a resonance located near 1 eV, i.e., electrons at subexcitation energies trigger reactions involving multiple bond cleavages. The electron induced generation of the neutral molecules HF, H2O and HNCO in condensed TFAA films is probed by temperature controlled thermal desorption spectrometry (TDS) which can be viewed as a complementary techniques to gas-phase experiments in DEA to directly probe the neutral counterparts. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  5. Photonuclear reaction as a probe for α -clustering nuclei in the quasi-deuteron region

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Ma, Y. G.; He, W. B.

    2017-03-01

    Photon-nuclear reaction in a transport model frame, namely an extended quantum molecular dynamics model, has been realized at the photon energy of 70-140 MeV in the quasi-deuteron regime. For an important application, we pay a special focus on photonuclear reactions of 12C(γ ,n p )10B where 12C is considered as different configurations including α clustering. Obvious differences for some observables have been observed among different configurations, which can be attributed to spatial-momentum correlation of a neutron-proton pair inside nucleus, and therefore it gives us a sensitive probe to distinguish the different configurations including α clustering with the help of the photonuclear reaction mechanism.

  6. Probing Reactions in Monolayers Using Normal Incidence Cavity Ring-down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Murray, Alissa C.

    This dissertation describes a study that was conducted on a two-dimensional (2-D) polymer system to help characterize the formation and dissociation of the polymer. Normal incidence cavity ring-down spectroscopy (NICRDS) was used to probe the monolayer system. Cavity ring-down spectroscopy (CRDS) is an ultra-sensitive absorption technique which has been extensively used for detection of gas-phase species and has recently been extended to studies in condensed phases. To date, this technique had not been used to study reactions in monolayers and, more specifically, 2D polymers. The newly emerging field of 2D polymers is predicted to impact several areas of technological importance, one of which includes membrane separations. These materials are rationally synthesized and are crystalline in two dimensions forming a covalently linked sheet of molecules. This new class of materials has yet to be fully understood since characterization is difficult due to their delicacy and size. The carboxy fantrip 2D polymer system is an anthracene-based analog and was used in our studies since it is known to be photo and thermally activated. Photo polymerization and depolymerization and thermal depolymerization were monitored using NICRDS to help characterize the poly(carboxy fantrip) 2-D polymer. Relative absorbance values occurring from changes in the CRDS signal during the polymer formation or dissociation reactions are in good agreement with known absorbance values and the predicted monolayer film thickness. In addition to using NICRDS, we developed a new method of CRDS which is comprised of a dual cavity where two wavelengths of light are simultaneously used as probes. A probe at normal incidence geometry and a probe at the Brewster angle for fused silica overlap on the sample of interest. For our experiments, the Brewster angle probe served as an indicator for changes in the ring-down times for the thin film/optical flat system unrelated to the photochemistry of the 2-D polymer

  7. Proposed experimental probes of chemical reaction molecular dynamics in solution: ICN photodissociation

    NASA Astrophysics Data System (ADS)

    Benjamin, I.; Wilson, Kent R.

    1989-04-01

    Knowledge of how translational and rotational motions are influenced by the solvent during the course of a photodissociation ``half-collision'' reaction in solution is of interest in itself and can also help our understanding of how thermally activated reactions take place in solution by means of fluctuations in translational and rotational motion. With this goal, the molecular dynamics of the photodissociation of the triatomic molecule ICN are compared in the gas phase and in Xe solution. The time evolution of the trajectories (particularly with respect to interfragment distance and CN orientation) and of the energy partitioning (particularly into fragment translational recoil and into rotation of the CN) are displayed. Two types of solution experiments are proposed and simulated, both closely related to recent gas phase studies by Dantus, Rosker, and Zewail. These experiments are designed to probe the detailed dynamics of chemical reactions in solution during the time period the reaction is in progress, in particular to reveal the dramatic effects of the solvent on translational motions and energies. Both are pump-probe experiments in which the first photon dissociates the ICN and the second induces fluorescence in the CN fragment. In the first type of experiment, which is particularly sensitive to fragment translational motion, the fluorescence intensity is measured as a function of photon energy and of time delay. In the second type of experiment, which is particularly sensitive to fragment rotation, in addition the angle between the polarizations of the pump and probe photons is varied. In the calculations presented here, the effect of the absorption of the photodissociation photon is treated using the classical Frank-Condon principle. The coupling between the assumed two upper electronic surfaces is taken into account semiclassically using a generalization to the condensed phase of the classical electron model of Miller and Meyer, which was applied to ICN

  8. A fluorescent probe for the efficient discrimination of Cys, Hcy and GSH based on different cascade reactions.

    PubMed

    Li, Ying; Liu, Weimin; Zhang, Panpan; Zhang, Hongyan; Wu, Jiasheng; Ge, Jiechao; Wang, Pengfei

    2017-04-15

    A fluorescent probe (1) for distinguishing amongst biothiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), is developed based on different cascade reactions. The key design feature of fluorescent probe 1 is the integration of two potential reaction groups for the thiol and amino groups of biothiols in one molecule. By reacting with the halogen atom and α, β-unsaturated malonitrile in probe 1, Cys, Hcy and GSH can generate a total of three main products with distinct photophysical properties. Probe 1 shows a strong fluorescence turn-on response to Cys with blue-green emission by using an excitation wavelength of 390nm. At an excitation wavelength of 500nm, probe 1 responds to GSH over Cys and Hcy and emits strong orange fluorescence. The discrimination of biothiols can be demonstrated by cell imaging experiments, indicating that probe 1 can be a useful tool for the selective imaging of Cys and GSH in living cells.

  9. Effect of silicate and aluminate ion adsorption on the reaction of quartz and alumina with caustic solution

    SciTech Connect

    Thornton, S.D.

    1986-05-01

    Caustic consumption is recognized as a problem in enhanced oil recovery by alkaline flooding. Chemical reactions which cause caustic consumption are governed by equilibria between reservoir minerals and alkaline solution. Identification of the individual dissolving and precipitating minerals in a given brine and rock system is a critical step in predicting caustic consumption and scale formation in oil recovery by alkaline flooding. This work demonstrates that ion adsorption may have a significant effect on mineral/alkali equilibria. Powdered quartz and alumina were mixed with alkaline solutions containing 0.01 to 0.1 molar hydroxide ion and added silicate or aluminate ion. Each suspension was sealed in a Teflon bottle and shaken continuously for approximately 1 week at 24/sup 0/ or 70/sup 0/C. Samples of the supernatant were removed periodically and analyzed for the elements silicon and aluminum. The solubilities of quartz and alumina in caustic solutions were found to be reduced significantly by added aluminate and silicate ion, respectively. Adsorption of these ions onto the minerals was also measured. It is postulated that these ions form a protective aluminosilicate layer when they are adsorbed onto the mineral surface. Such an aluminosilicate layer will reduce mineral reactions during alkaline flooding. Two major conclusions result from this work. Adsorbed aluminate and silicate ions can reduce the solubilities of quartz and alumina, respectively. The effect of adsorption on mineral equilibria should be included in a mineral reaction model for alkaline flooding. 18 refs., 5 figs., 8 tabs.

  10. Probing molecular adsorption and mechanics at the atomic scale: The Nanocar family of molecules

    NASA Astrophysics Data System (ADS)

    Osgood, Andrew J.

    Molecular machines, typically thought to be only the fanciful imaginings of speculative fiction, have taken great strides in recent years towards real-world viability and usefulness. Under variable temperature scanning tunneling microscopy, (STM) one family of these nascent devices is characterized with atomic resolution, and probed and manipulated with sub-angstrom precision, adding to the growing body of knowledge of how molecular devices behave and react at nanometer scales. Evidence of temperature-dependent rolling of wheel-like fullerene constituents on the Nanocar is discussed in light of newly developed image analysis techniques. Additionally, charge-transfer mediated behavior at step edges, both static and dynamic, is investigated on a Au(111) surface for a more complete understanding of translation and surface diffusion. Molecular flexibility is thought to aid in this three-dimensional atomic-step-crossing diffusion, and is explored and discussed across many species in the Nanocar family of molecules. In all, many similar molecules have been characterized and explored via STM with an eye towards their dynamic capabilities and surface behaviors, in the hopes that future, more complex versions can build on the nascent knowledge base beginning to be established here.

  11. Rapid detection of waterborne viruses using the polymerase chain reaction and a gene probe.

    PubMed

    Jothikumar, N; Khanna, P; Kamatchiammal, S; Murugan, R P

    1992-01-01

    We describe a membrane-filter-based urea-arginine phosphate buffer method for concentrating waterborne viruses from large volumes of water to microlitre volumes, and their subsequent detection by the polymerase chain reaction (PCR). The detection step involves the extraction of RNA, synthesis of complementary DNA, amplification by PCR of target DNA with specific primers, and confirmation through nucleic acid hybridization with a radiolabelled oligonucleotide probe. The PCR technique detected the presence of enteroviruses in spiked as well as in contaminated water samples. The technique is sensitive and detects as few as 120 waterborne viral particles. PCR is simple, rapid, sensitive, specific and adaptable for water quality surveillance in less developed countries.

  12. Differentiation of Giardia duodenalis from other Giardia spp. by using polymerase chain reaction and gene probes.

    PubMed Central

    Mahbubani, M H; Bej, A K; Perlin, M H; Schaefer, F W; Jakubowski, W; Atlas, R M

    1992-01-01

    Giardia spp. are waterborne organisms that are the most commonly identified pathogenic intestinal protozoans in the United States. Current detection techniques for Giardia species in water include microscopy and immunofluorescence techniques. Species of the genus Giardia are classified on the basis of taxonomic criteria, such as cell morphology, and on host specificity. We have developed a polymerase chain reaction- and gene probe-based detection system specific for Giardia spp., which can discriminate between the relevant species of the G. duodenalis type pathogenic to humans and other Giardia species that are not human pathogens. This method can detect a single Giardia cyst and is therefore sensitive enough for environmental monitoring. Images PMID:1734070

  13. Probing Neutron-Skin Thickness of Unstable Nuclei with Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, Wataru; Suzuki, Yasuyuki; Inakura, Tsunenori

    We present our recent analysis of the total reaction cross sections, σR, of unstable nuclei and discuss their sensitivity to the neutron-skin thickness. The σR is calculated with the Glauber model using projectile densities obtained with the Skyrme-Hartree-Fock method on the three-dimensional coordinate space. We cover 91 nuclei of O, Ne, Mg, Si, S, Ca, and Ni isotopes. Defining a reaction radius, aR = √{σ R/π } , to characterize the nuclear size and target (proton or 12C) dependence, we see the 12C target probes the matter radius while the proton target is sensitive to the skin-thickness. We find an empirical formula for expressing aR with the point matter radius and the skin thickness, which can be used to determine the skin thickness.

  14. Probing the bioactivity-relevant chemical space of robust reactions and common molecular building blocks.

    PubMed

    Hartenfeller, Markus; Eberle, Martin; Meier, Peter; Nieto-Oberhuber, Cristina; Altmann, Karl-Heinz; Schneider, Gisbert; Jacoby, Edgar; Renner, Steffen

    2012-05-25

    In the search for new bioactive compounds, there is a trend toward increasingly complex compound libraries aiming to target the demanding targets of the future. In contrast, medicinal chemistry and traditional library design rely mainly on a small set of highly established and robust reactions. Here, we probe a set of 58 such reactions for their ability to sample the chemical space of known bioactive molecules, and the potential to create new scaffolds. Combined with ~26,000 common available building blocks, the reactions retrieve around 9% of a scaffold-diverse set of compounds active on human target proteins covering all major pharmaceutical target classes. Almost 80% of generated scaffolds from virtual one-step synthesis products are not present in a large set of known bioactive molecules for human targets, indicating potential for new discoveries. The results suggest that established synthesis resources are well suited to cover the known bioactivity-relevant chemical space and that there are plenty of unexplored regions accessible by these reactions, possibly providing valuable "low-hanging fruit" for hit discovery.

  15. Ratiometric fluorescent probe for rapid detection of bisulfite through 1,4-addition reaction in aqueous solution.

    PubMed

    Sun, Yue; Zhao, Dong; Fan, Shanwei; Duan, Lian; Li, Ruifeng

    2014-04-16

    A ratiometric fluorescent probe based on a positively charged benzo[e]indolium moiety for bisulfite is reported. The bisulfite underwent a 1,4-addition reaction with the C-4 atom in the ethylene group. This reaction resulted in a large emission wavelength shift (Δλ = 106 nm) and an observable fluorescent color change from orange to cyan. The reaction could be completed in 90 s in a PBS buffer solution and displayed high selectivity and sensitivity for bisulfite. A simple paper test strip system was developed to detect bisulfite rapidly. Probe 1 was used to detect bisulfite in real samples with good recovery.

  16. Chemical Reaction and Adsorption Structure on Metal Surfaces of the Platinum Group

    NASA Astrophysics Data System (ADS)

    Murata, Yoshitada

    Professor Ertl was awarded the chemistry Nobel Prize. One of his remarkable works is imaging of surface non-linear processes for CO oxidation on Pt(110). The mechanism for this pattern formation is briefly discussed. We studied previously laser-induced desorption (LID) from NO on Pt(111) extensively. However, the experimental results could not be explained until the adsorption structure of Pt(111)-NO was elucidated consistently in 2002 by the experimental and the theoretical investigation. For Pt(111)-CO at low coverage, on the other hand, the most stable adsorption structure obtained from the ab initio calculations is in contradiction to that confirmed by the experimental studies.

  17. Use of extremely short Förster resonance energy transfer probes in real-time polymerase chain reaction

    PubMed Central

    Kutyavin, Igor V.

    2013-01-01

    Described in the article is a new approach for the sequence-specific detection of nucleic acids in real-time polymerase chain reaction (PCR) using fluorescently labeled oligonucleotide probes. The method is based on the production of PCR amplicons, which fold into dumbbell-like secondary structures carrying a specially designed ‘probe-luring’ sequence at their 5′ ends. Hybridization of this sequence to a complementary ‘anchoring’ tail introduced at the 3′ end of a fluorescent probe enables the probe to bind to its target during PCR, and the subsequent probe cleavage results in the florescence signal. As it has been shown in the study, this amplicon-endorsed and guided formation of the probe-target duplex allows the use of extremely short oligonucleotide probes, up to tetranucleotides in length. In particular, the short length of the fluorescent probes makes possible the development of a ‘universal’ probe inventory that is relatively small in size but represents all possible sequence variations. The unparalleled cost-effectiveness of the inventory approach is discussed. Despite the short length of the probes, this new method, named Angler real-time PCR, remains highly sequence specific, and the results of the study indicate that it can be effectively used for quantitative PCR and the detection of polymorphic variations. PMID:24013564

  18. Unravelling RNA-substrate interactions in a ribozyme-catalysed reaction using fluorescent turn-on probes.

    PubMed

    Gaffarogullari, Ece Cazibe; Greulich, Peter; Kobitski, Andrei Yu; Nierth, Alexander; Nienhaus, G Ulrich; Jäschke, Andres

    2015-04-07

    The Diels-Alder reaction is one of the most important C-C bond-forming reactions in organic chemistry, and much effort has been devoted to controlling its enantio- and diastereoselectivity. The Diels-Alderase ribozyme (DAse) catalyses the reaction between anthracene dienes and maleimide dienophiles with multiple-turnover, stereoselectivity, and up to 1100-fold rate acceleration. Here, a new generation of anthracene-BODIPY-based fluorescent probes was developed to monitor catalysis by the DAse. The brightness of these probes increases up to 93-fold upon reaction with N-pentylmaleimide (NPM), making these useful tools for investigating the stereochemistry of the ribozyme-catalysed reaction. With these probes, we observed that the DAse catalyses the reaction with >91% de and >99% ee. The stereochemistry of the major product was determined unambiguously by rotating-frame nuclear Overhauser NMR spectroscopy (ROESY-NMR) and is in agreement with crystallographic structure information. The pronounced fluorescence change of the probes furthermore allowed a complete kinetic analysis, which revealed an ordered bi uni type reaction mechanism, with the dienophile binding first.

  19. Probing the transition state with negative ion photodetachment: The Cl + HCl and Br + HBr reactions

    SciTech Connect

    Metz, R.B.; Weaver, A.; Bradforth, S.E.; Kitsopoulos, T.N.; Deumark, D.M. )

    1990-02-22

    The transition-state region for neutral hydrogen-transfer reactions can be probed by photodetaching the appropriate stable, hydrogen-bonded negative ion. This paper presents a detailed account of this method, in which the Cl + HCl and Br + HBr reactions are investigated by photoelectron spectroscopy of ClHCl{sup {minus}}, BrHBr{sup {minus}}, and the corresponding deuterated species. The photoelectron spectra exhibit resolved vibrational structure attributed to the unstable neutral (ClHCl) or (BrHBr) complex. The BrHBr{sup {minus}} and BrDBr{sup {minus}} spectra exhibit narrow (15-20 meV) peaks that are likely to result from reactive resonance states supported by the Br + HBr potential energy surface, as well as peaks that appear to be from an electronically excited state of the (BrHBr) complex. The BrHBr{sup {minus}} and BrDBr{sup {minus}} results have been analyzed to yield an effective collinear potential energy surface for the Br + HBr reaction.

  20. Probing Surface Sites of TiO2: Reactions with [HRe(CO)5] and [CH3Re(CO)5

    SciTech Connect

    Lobo-Lapidus, R.; Gates, B

    2010-01-01

    Two carbonyl complexes of rhenium, [HRe(CO){sub 5}] and [CH{sub 3}Re(CO){sub 5}], were used to probe surface sites of TiO{sub 2} (anatase). These complexes were adsorbed from the gas phase onto anatase powder that had been treated in flowing O{sub 2} or under vacuum to vary the density of surface OH sites. Infrared (IR) spectra demonstrate the variation in the number of sites, including Ti{sup +3} {double_bond} OH and Ti{sup +4} {double_bond} OH. IR and extended X-ray absorption fine structure (EXAFS) spectra show that chemisorption of the rhenium complexes led to their decarbonylation, with formation of surface-bound rhenium tricarbonyls, when [HRe(CO){sub 5}] was adsorbed, or rhenium tetracarbonyls, when [CH{sub 3}Re(CO){sub 5}] was adsorbed. These reactions were accompanied by the formation of water and surface carbonates and removal of terminal hydroxyl groups associated with Ti{sup +3} and Ti{sup +4} ions on the anatase. Data characterizing the samples after adsorption of [HRe(CO){sub 5}] or [CH{sub 3}Re(CO){sub 5}] determined a ranking of the reactivity of the surface OH sites, with the Ti{sup +3}OH groups being the more reactive towards the rhenium complexes but the less likely to be dehydroxylated. The two rhenium pentacarbonyl probes provided complementary information, suggesting that the carbonate species originate from carbonyl ligands initially bonded to the rhenium and from hydroxyl groups of the titania surface, with the reaction leading to the formation of water and bridging hydroxyl groups on the titania. The results illustrate the value of using a family of organometallic complexes as probes of oxide surface sites.

  1. [Influence of reaction time of urea hydrolysis-based co-precipitation on the structure of ZnAl layered double hydroxides and the phosphate adsorption].

    PubMed

    Lu, Ying; Cheng, Xiang; Xing, Bo; Sun, Zhong-en; Sun, De-zhi

    2012-08-01

    A series of ZnAl layered double hydroxides (LDHs) were prepared by urea hydrolysis-based homogeneous co-precipitation for studying their structure and phosphate adsorption capacities. The results show that all the samples exhibited a typical layered structure as the reaction time extended from 12 h to 96 h, whereas Zn/Al molar ratio in the ZnAls decreased from 2.06 to 0.70 and the specific surface area markedly increased to be 7.6-fold higher than that of ZnAl-12. Phosphate adsorption capacity of the ZnAl was in general increased gradually with the reaction time extension, which can be attributed to the surface area rising as well as the increased positive charge of LDHs layer caused by a higher proportion of Al. This reveals that physicochemical adsorption on LDHs surface would have played an important role during the phosphate adsorption. With a reaction time of 24 h, a high amount of exchangeable interlayer anions was observed, giving rise to a highest phosphate uptake of 34.1 mg x g(-1) by the ZnAl-24. It indicates the ion exchange was another major pathway for the phosphate removal. For all the ZnAls with different reaction times, the phosphate adsorption isotherms fit well with Langmuir-type equations; the adsorption kinetics followed pseudo-second-order models.

  2. Insight into chemoselectivity of nitroarene hydrogenation: A DFT-D3 study of nitroarene adsorption on metal surfaces under the realistic reaction conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Lidong; Cao, Xiao-Ming; Hu, P.

    2017-01-01

    The adsorption of nitrobenzene and 4-nitrostyrene on the Pt(111) and the Au(111) surfaces under the general reaction condition of nitroarene catalytic hydrogenation is investigated utilizing periodic density functional theory calculations with the Grimme's empirical three-body dispersion correction to understand the influence of adsorption configurations on chemoselectivity of nitroarene compound hydrogenation. It is found that at the low coverage both nitrobenzene and 4-nitrostyrene tend to adsorb paralleling to the Pt(111) and the Au(111) surfaces. Based on the crystal orbital Hamilton population analysis, it is found that the chemical bonding between nitro group and Pt(111) surface is weak. The adsorption configurations of nitrobenzene and 4-nitrostyrene are determined by the chemisorption strength of phenyl group and vinyl group. Under the reaction condition, the 1/9 ML nitrobenzene and 4/9 ML hydrogen atom can be coadsorbed while the 1/6 ML 4-nitrostyrene and 1/3 ML hydrogen atom can be coadsorbed on Pt(111). With the increase of the coverage, nitrobenzene still remains its paralleled adsorption configuration while the adsorption configuration of 4-nitrostyrene is switched to the tilted adsorption configuration through vinyl group without the chemisorption of phenyl and nitro group on Pt(111). In addition, the competitive adsorption with hydrogen will not change the adsorption configuration of nitrobenzene and 4-nitrostyrene under the reaction condition. On Au(111), the physical adsorption strength determines the adsorption configuration. The paralleled adsorption with the shortest average distance between the adsorbate and Au(111) surface is preferred. At the paralleled adsorption configuration, the chemoselectivities of the hydrogenation on these functional groups are similar if only in terms of geometric configuration. However, the hydrogenation on nitro group encounters the problem of steric hindrance at the tilted adsorption configuration through vinyl

  3. Dual control cell reaction ensemble molecular dynamics: A method for simulations of reactions and adsorption in porous materials

    NASA Astrophysics Data System (ADS)

    Lísal, Martin; Brennan, John K.; Smith, William R.; Siperstein, Flor R.

    2004-09-01

    We present a simulation tool to study fluid mixtures that are simultaneously chemically reacting and adsorbing in a porous material. The method is a combination of the reaction ensemble Monte Carlo method and the dual control volume grand canonical molecular dynamics technique. The method, termed the dual control cell reaction ensemble molecular dynamics method, allows for the calculation of both equilibrium and nonequilibrium transport properties in porous materials such as diffusion coefficients, permeability, and mass flux. Control cells, which are in direct physical contact with the porous solid, are used to maintain the desired reaction and flow conditions for the system. The simulation setup closely mimics an actual experimental system in which the thermodynamic and flow parameters are precisely controlled. We present an application of the method to the dry reforming of methane reaction within a nanoscale reactor model in the presence of a semipermeable membrane that was modeled as a porous material similar to silicalite. We studied the effects of the membrane structure and porosity on the reaction species permeability by considering three different membrane models. We also studied the effects of an imposed pressure gradient across the membrane on the mass flux of the reaction species. Conversion of syngas (H2/CO) increased significantly in all the nanoscale membrane reactor models considered. A brief discussion of further potential applications is also presented.

  4. Dual control cell reaction ensemble molecular dynamics: a method for simulations of reactions and adsorption in porous materials.

    PubMed

    Lisal, Martin; Brennan, John K; Smith, William R; Siperstein, Flor R

    2004-09-08

    We present a simulation tool to study fluid mixtures that are simultaneously chemically reacting and adsorbing in a porous material. The method is a combination of the reaction ensemble Monte Carlo method and the dual control volume grand canonical molecular dynamics technique. The method, termed the dual control cell reaction ensemble molecular dynamics method, allows for the calculation of both equilibrium and nonequilibrium transport properties in porous materials such as diffusion coefficients, permeability, and mass flux. Control cells, which are in direct physical contact with the porous solid, are used to maintain the desired reaction and flow conditions for the system. The simulation setup closely mimics an actual experimental system in which the thermodynamic and flow parameters are precisely controlled. We present an application of the method to the dry reforming of methane reaction within a nanoscale reactor model in the presence of a semipermeable membrane that was modeled as a porous material similar to silicalite. We studied the effects of the membrane structure and porosity on the reaction species permeability by considering three different membrane models. We also studied the effects of an imposed pressure gradient across the membrane on the mass flux of the reaction species. Conversion of syngas (H2/CO) increased significantly in all the nanoscale membrane reactor models considered. A brief discussion of further potential applications is also presented.

  5. Isotope Effects as Probes for Enzyme Catalyzed Hydrogen-Transfer Reactions

    PubMed Central

    Roston, Daniel; Islam, Zahidul; Kohen, Amnon

    2015-01-01

    Kinetic Isotope effects (KIEs) have long served as a probe for the mechanisms of both enzymatic and solution reactions. Here, we discuss various models for the physical sources of KIEs, how experimentalists can use those models to interpret their data, and how the focus of traditional models has grown to a model that includes motion of the enzyme and quantum mechanical nuclear tunneling. We then present two case studies of enzymes, thymidylate synthase and alcohol dehydrogenase, and discuss how KIEs have shed light on the C-H bond cleavages those enzymes catalyze. We will show how the combination of both experimental and computational studieshas changed our notion of how these enzymes exert their catalytic powers. PMID:23673528

  6. Probing the charge transfer reaction coordinate of 4-(dimethylamino)benzonitrile with femtosecond stimulated Raman spectroscopy.

    PubMed

    Rhinehart, Justin M; Mehlenbacher, Randy D; McCamant, David

    2010-11-18

    Femtosecond stimulated Raman spectroscopy (FSRS) and femtosecond transient absorption have been used to probe the photoinduced charge transfer (CT) dynamics of 4-(dimethylamino)benzonitrile in methanol and n-hexane. Through a combined analysis of temporal changes in the Raman modes and transient absorption kinetics, a more complete picture of the reaction coordinate of the intramolecular charge transfer process has been established. FSRS spectra of the phenyl C═C stretching mode (Wilson mode 8a) at 1607 cm(-1), which shifts to 1581 cm(-1) in the CT state, and transient absorption measurements ranging from 360 to 700 nm support internal conversion from the locally excited to the charge transfer state in 4-5 ps and then a subsequent vibrational relaxation within the CT state manifold on a 6-8 ps time scale. Dramatic shifting and narrowing of the 1581 cm(-1) quinoidal C═C stretch (ν(8a)) on the ∼7 ps time scale indicates that the quinoidal distortion is an important probe of the CT reaction dynamics. The cause of the spectral shifts is determined by comparing the observed shifts in the vibrational spectrum to anharmonic couplings computed for the benzonitrile radical anion by density functional theory (DFT) and with quantitative theoretical models of the solvent induced vibrational peak shifts. The DFT calculations indicate that the 10 cm(-1) downshift of the C═C stretch is most likely attributable to significant vibrational excitation in nontotally symmetric modes that are strongly anharmonically coupled to the C═C stretch.

  7. Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential "click" reaction and adsorption.

    PubMed

    Filpponen, Ilari; Kontturi, Eero; Nummelin, Sami; Rosilo, Henna; Kolehmainen, Erkki; Ikkala, Olli; Laine, Janne

    2012-03-12

    A generic approach for heterogeneous surface modification of cellulosic materials in aqueous medium, applicable for a wide range of functionalizations, is presented. In the first step, carboxymethyl cellulose (CMC) modified with azide or alkyne functionality, was adsorbed on a cellulosic substrate, thus, providing reactive sites for azide-alkyne cycloaddition click reactions. In the second step, functional units with complementary click units were reacted on the cellulose surface, coated by the click-modified CMC. Selected model functionalizations on diverse cellulosic substrates are shown to demonstrate the generality of the approach. The concept by sequentially combining the robust physical adsorption ("physical click") and robust chemical reaction ("chemical click") allows versatile, simple, and environmentally friendly modification of a cellulosic substrate with virtually any azide- or alkyne-modified molecule and even functionalization with several types of units.

  8. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  9. In situ probing of the active site geometry of ultrathin nanowires for the oxygen reduction reaction

    SciTech Connect

    Liu, Haiqing; Wong, Stanislaus S.; An, Wei; Li, Yuanyuan; Frenkel, Anatoly I.; Sasaki, Kotaro; Koenigsmann, Christopher; Su, Dong; Anderson, Rachel M.; Crooks, Richard M.; Adzic, Radoslav R.; Liu, Ping

    2015-09-24

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (~2 nm) core–shell Pt~Pd9Au nanowires, which have been previously shown to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu~Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Thus, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.

  10. In Situ Probing of the Active Site Geometry of Ultrathin Nanowires for the Oxygen Reduction Reaction.

    PubMed

    Liu, Haiqing; An, Wei; Li, Yuanyuan; Frenkel, Anatoly I; Sasaki, Kotaro; Koenigsmann, Christopher; Su, Dong; Anderson, Rachel M; Crooks, Richard M; Adzic, Radoslav R; Liu, Ping; Wong, Stanislaus S

    2015-10-07

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (∼2 nm) core-shell Pt∼Pd9Au nanowires, which have been previously shown to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu∼Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Hence, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.

  11. In situ probing of the active site geometry of ultrathin nanowires for the oxygen reduction reaction

    DOE PAGES

    Liu, Haiqing; Wong, Stanislaus S.; An, Wei; ...

    2015-09-24

    To create truly effective electrocatalysts for the cathodic reaction governing proton exchange membrane fuel cells (PEMFC), namely the oxygen reduction reaction (ORR), necessitates an accurate and detailed structural understanding of these electrocatalysts, especially at the nanoscale, and to precisely correlate that structure with demonstrable performance enhancement. To address this key issue, we have combined and interwoven theoretical calculations with experimental, spectroscopic observations in order to acquire useful structural insights into the active site geometry with implications for designing optimized nanoscale electrocatalysts with rationally predicted properties. Specifically, we have probed ultrathin (~2 nm) core–shell Pt~Pd9Au nanowires, which have been previously shownmore » to be excellent candidates for ORR in terms of both activity and long-term stability, from the complementary perspectives of both DFT calculations and X-ray absorption spectroscopy (XAS). The combination and correlation of data from both experimental and theoretical studies has revealed for the first time that the catalytically active structure of our ternary nanowires can actually be ascribed to a PtAu~Pd configuration, comprising a PtAu binary shell and a pure inner Pd core. Moreover, we have plausibly attributed the resulting structure to a specific synthesis step, namely the Cu underpotential deposition (UPD) followed by galvanic replacement with Pt. Thus, the fundamental insights gained into the performance of our ultrathin nanowires from our demonstrated approach will likely guide future directed efforts aimed at broadly improving upon the durability and stability of nanoscale electrocatalysts in general.« less

  12. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

    PubMed

    Liu, Yacui; Zhang, Jiangyan; Tian, Jingxiao; Fan, Xiaofei; Geng, Hao; Cheng, Yongqiang

    2017-01-01

    A simple, highly sensitive, and specific assay was developed for the homogeneous and multiplex detection of microRNAs (miRNAs) by combining molecular beacon (MB) probes and T7 exonuclease-assisted cyclic amplification. An MB probe with five base pairs in the stem region without special modification can effectively prevent the digestion by T7 exonuclease. Only in the presence of target miRNA is the MB probe hybridized with the target miRNA, and then digested by T7 exonuclease in the 5' to 3' direction. At the same time, the target miRNA is released and subsequently initiates the nuclease-assisted cyclic digestion process, generating enhanced fluorescence signal significantly. The results show that the combination of T7 exonuclease-assisted cyclic amplification reaction and MB probe possesses higher sensitivity for miRNA detection. Moreover, multiplex detection of miRNAs was successfully achieved by designing two MB probes labeled with FAM and Cy3, respectively. As a result, the method opens a new pathway for the sensitive and multiplex detection of miRNAs as well as clinical diagnosis. Graphical Abstract A simple, highly sensitive, and specific assay was developed for the detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction.

  13. Differential diagnosis of Taenia saginata and Taenia solium infections: from DNA probes to polymerase chain reaction.

    PubMed

    González, Luis Miguel; Montero, Estrella; Sciutto, Edda; Harrison, Leslie J S; Parkhouse, R Michael E; Garate, Teresa

    2002-04-01

    The objective of this work was the rapid and easy differential diagnosis of Taenia saginata and T. solium. First, a T. saginata size-selected genomic deoxyribonucleic acid (gDNA) library was constructed in the vector lambda gt10 using the 2-4 kb fraction from the parasite DNA digested with EcoR1, under 'star' conditions. After differential screening of the library and hybridization analysis with DNA from T. saginata, T. solium, T. taeniaeformis, T. crassiceps, and Echinococcus granulosus (bovine, porcine, and human), 2 recombinant phages were selected. They were designated HDP1 and HDP2. HDP1 reacted specifically with T. saginata DNA, and HDP2 recognized DNA from both T. saginata and T. solium. The 2 DNA probes were then sequenced and further characterized. HDP1 was a repetitive sequence with a 53 bp monomeric unit repeated 24 times in direct tandem along the 1272 bp fragment, while the 3954 bp HDP2 was not a repetitive sequence. Using the sequencing data, oligonucleotides were designed and used in a polymerase chain reaction (PCR). The 2 selected oligonucleotides from probe HDP1 (PTs4F1 and PTs4R1) specifically amplified gDNA from T. saginata, but not T. solium or other related cestodes, with a sensitivity of < 10 pg of T. saginata gDNA, about the quantity of DNA in one taeniid egg. The 3 oligonucleotides selected from the HDP2 sequence (PTs7S35F1, PTs7S35F2, and PTs7S35R1) allowed the differential amplification of gDNA from T. saginata, T. solium and E. granulosus in a multiplex PCR, again with a sensitivity of < 10 pg. These diagnostic tools have immediate application in the differential diagnosis of T. solium and T. saginata in humans and in the diagnosis of dubious cysts in the slaughterhouse. We also hope to apply them to epidemiological surveys of, for example, soil and water in endemic areas.

  14. Adsorption and Reactions of Carbon Monoxide and Oxygen on Bare and Au-Decorated Carburized W(110)

    PubMed Central

    2013-01-01

    Adsorption and coadsorption of carbon monoxide and oxygen on different types of Au clusters on R(15 × 3)C/W(110) and R(15 × 12)C/W(110), respectively, are studied with respect to the catalytic behavior for oxidation of CO as well as of surface carbon. Carburization of the W(110) surface results in a weakening of the adsorption bond for molecularly adsorbed CO. Dissociation of carbon monoxide, which occurs on W(110), is reduced on the low-carbon coverage R(15 × 12) surface and completely suppressed on the carbon-saturated R(15 × 3) phase. Deposition of gold results in a blocking of adsorption sites for molecularly adsorbed CO and reopening of the dissociation channel. Probably the latter is associated with the existence of double-layer gold clusters and islands. At room temperature the gold clusters on both carburized templates are stable in CO atmosphere as shown by in-situ STM measurements. In contrast, exposure to oxygen alters the clusters on the R(15 × 12) surface, implying dissociation of oxygen not only on the substrate but also on or in immediate vicinity of the gold clusters. On the Au-free carburized templates oxygen adsorbs dissociatively and is released as CO at temperatures beyond 800 K due to reaction with carbon atoms from the templates. Deposition of gold enhances the desorption rate of the formed CO at the low-temperature end of the recombinative CO desorption range, indicating a promoting effect of gold for oxidation of surface carbon. In contrast, low-temperature CO oxidation catalyzed by the deposited Au clusters is not observed. Two reasons could be identified: (1) weakly bound CO with desorption temperatures between 100 and 200 K (as reported for other related systems) is not observed, and (2) oxygen atoms are bonded too strongly to the templates. PMID:23991229

  15. Room temperature deposition of ZnSe thin films by successive ionic layer adsorption and reaction (SILAR) method

    SciTech Connect

    Kale, R.B.; Lokhande, C.D. . E-mail: rb_kale@yahoo.co.in

    2004-10-04

    The zinc selenide (ZnSe) thin films are deposited onto glass substrate using relatively simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method. The films are deposited using zinc acetate sodium selenosulphate precursors. The concentration, pH, immersion and rinsing times and number of immersion cycles have been optimized to obtain good quality ZnSe thin films. The X-ray diffraction (XRD) study and scanning electron microscopy (SEM) studies reveals nanocrystalline nature alongwith some amorphous phase present in ZnSe thin films. Energy dispersive X-ray (EDAX) analysis shows that the films are Se deficient. From optical absorption data, the optical band gap 'E{sub g}' for as-deposited thin film was found to be 2.8 eV and electrical resistivity in the order of 10{sup 7} {omega} cm.

  16. A physical adsorption model of the dependence of ClONO2 heterogeneous reactions on relative humidity

    NASA Astrophysics Data System (ADS)

    Henson, Bryan F.; Wilson, Kevin R.; Robinson, Jeanne M.

    We present a model of heterogeneous reactivity based on physical adsorption that describes the observed relative humidity dependence of the ClONO2 reaction probability with H2O and HCl on sulfuric acid tetrahydrate ice surfaces (SAT) and with H2O on nitric acid trihydrate (NAT). The laboratory data are modeled using only two parameters for a given system, the measured reaction probability on a neat H2O ice surface, and a constant from the BET theory which describes the fraction of an acid hydrate surface covered by H2O as a function of relative humidity. The model indicates that ClONO2 reactivity with both HCl and H2O on SAT and with H2 O on NAT is controlled by the surface coverage of H2O. In contrast, the reaction of ClONO2 +HCl on NAT is better described by an alternative model based on reactivity in solutions formed within a porous ice by capillary liquid absorption.

  17. [The surface adsorption and selective catalytic reaction of NO on Cu-ZSM-5 using in situ DRIFTS].

    PubMed

    Zhang, Ping; Wang, Le-Fu; Chen, Yong-Heng

    2007-06-01

    The prepared Cu-ZSM-5 catalyst presents higher activity at low temperature during the selective catalytic reduction (SCR) of NO, and the conversion from NO to N2 is 70.6% at 613 K. The in situ diffuse reflectance FTIR spectroscopy (in situ DRIFTS) is an important method for studying surface adsorption of catalyst and mechanism of catalytic reaction, and was used to study the surface adsorbed species and the selective catalytic reduction reaction of NO on Cu-ZSM-5 catalyst in the presence of propene as reductant, with excess O2 and at 298-773 K. Based on the in-situ DRIFTS, a reaction mechanism is proposed that on Cu-ZSM-5, NO is first transformed to a series of NO(x) surface adsorbates, then these species react with the activating species of propene (C(x)H(y) or C(x)H(y)O(x)) to form organo-intermediates, including a process from organo-NH to organo-CN again to organo-NO(x) (organo-nitro or organo-nitrito), and finally these key intermediates react to form nitrogen. The role of Cu is to promote NO(x) content. Propene is easily activated on Cu-ZSM-5 with oxygen, and furthermore, the presence of oxygen is necessary to form organo-NO(x) intermediates.

  18. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    NASA Astrophysics Data System (ADS)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  19. Effects of Zeolite Structural Confinement on Adsorption Thermodynamics and Reaction Kinetics for Monomolecular Cracking and Dehydrogenation of n-Butane.

    PubMed

    Janda, Amber; Vlaisavljevich, Bess; Lin, Li-Chiang; Smit, Berend; Bell, Alexis T

    2016-04-13

    The effects of zeolite structure on the kinetics of n-butane monomolecular cracking and dehydrogenation are investigated for eight zeolites differing in the topology of channels and cages. Monte Carlo simulations are used to calculate enthalpy and entropy changes for adsorption (ΔHads-H+ and ΔSads-H+) of gas-phase alkanes onto Brønsted protons. These parameters are used to extract intrinsic activation enthalpies (ΔHint‡), entropies (ΔSint‡), and rate coefficients (kint) from measured data. As ΔSads-H+ decreases (i.e., as confinement increases), ΔHint‡ and ΔSint‡ for terminal cracking and dehydrogenation decrease for a given channel topology. These results, together with positive values observed for ΔSint‡, indicate that the transition states for these reactions resemble products. For central cracking (an earlier transition state), ΔHint‡ is relatively constant, while ΔSint‡ increases as ΔSads-H+ decreases because less entropy is lost upon protonation of the alkane. Concurrently, selectivities to terminal cracking and dehydrogenation decrease relative to central cracking because ΔSint‡ decreases for the former reactions. Depending on channel topology, changes in the measured rate coefficients (kapp) with confinement are driven by changes in kint or by changes in the adsorption equilibrium constant (Kads-H+). Values of ΔSint‡ and ΔHint‡ are positively correlated, consistent with weaker interactions between the zeolite and transition state and with the greater freedom of movement of product fragments within more spacious pores. These results differ from earlier reports that ΔHint‡ and ΔSint‡ are structure-insensitive and that kapp is dominated by Kads-H+. They also suggest that ΔSads-H+ is a meaningful descriptor of confinement for zeolites having similar channel topologies.

  20. Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.

    PubMed

    Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B

    2011-02-10

    The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.

  1. Local traps as nanoscale reaction-diffusion probes: B clustering in c-Si

    SciTech Connect

    Pawlak, B. J.; Cowern, N. E. B.; Ahn, C.; Vandervorst, W.; Gwilliam, R.; Berkum, J. G. M. van

    2014-12-01

    A series of B implantation experiments into initially amorphized and not fully recrystallized Si, i.e., into an existing a/c-Si bi-layer material, have been conducted. We varied B dose, energy, and temperature during implantation process itself. Significant B migration has been observed within c-Si part near the a/c-interface and near the end-of-range region before any activation annealing. We propose a general concept of local trapping sites as experimental probes of nanoscale reaction-diffusion processes. Here, the a/c-Si interface acts as a trap, and the process itself is explored as the migration and clustering of mobile BI point defects in nearby c-Si during implantation at temperatures from 77 to 573 K. We find that at room temperature—even at B concentrations as high as 1.6 atomic %, the key B-B pairing step requires diffusion lengths of several nm owing to a small, ∼0.1 eV, pairing energy barrier. Thus, in nanostructures doped by ion implantation, the implant distribution can be strongly influenced by thermal migration to nearby impurities, defects, and interfaces.

  2. Probing systematic model dependence of complete fusion for reactions with the weakly bound projectiles Li,76

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Santra, S.; Pal, A.; Chattopadhyay, D.; Nayak, B. K.; Saxena, A.; Kailas, S.

    2016-07-01

    Background: Complete fusion cross section measurements involving weakly bound projectiles show suppression at above-barrier energies compared to coupled-channels (CC) calculations, but no definite conclusion could be drawn for sub-barrier energies. Different CC models often lead to contrasting results. Purpose: We aim to investigate the differences in the fusion cross sections predicted by commonly used CC calculations, using codes such as fresco and ccfull, when compared to experimental data. Methods: The fusion cross sections are normalized to a dimensionless form by isolating the effect of only dynamic channel couplings calculated by both fresco and ccfull, by the method of fusion functions, and compared to a universal fusion function. This acts as a probe for obtaining the model dependence of fusion. Results: A difference is observed between the predictions of fresco and ccfull for all the reactions involving Li,76 as projectiles, and it is noticeably more for systems involving 7Li. Conclusions: With the theoretical foundations of the two CC models being different, their calculation of fusion is different even for the same system. The conclusion about the enhancement or suppression of fusion cross sections is model dependent.

  3. Local traps as nanoscale reaction-diffusion probes: B clustering in c-Si

    NASA Astrophysics Data System (ADS)

    Pawlak, B. J.; Cowern, N. E. B.; Ahn, C.; Vandervorst, W.; Gwilliam, R.; van Berkum, J. G. M.

    2014-12-01

    A series of B implantation experiments into initially amorphized and not fully recrystallized Si, i.e., into an existing a/c-Si bi-layer material, have been conducted. We varied B dose, energy, and temperature during implantation process itself. Significant B migration has been observed within c-Si part near the a/c-interface and near the end-of-range region before any activation annealing. We propose a general concept of local trapping sites as experimental probes of nanoscale reaction-diffusion processes. Here, the a/c-Si interface acts as a trap, and the process itself is explored as the migration and clustering of mobile BI point defects in nearby c-Si during implantation at temperatures from 77 to 573 K. We find that at room temperature—even at B concentrations as high as 1.6 atomic %, the key B-B pairing step requires diffusion lengths of several nm owing to a small, ˜0.1 eV, pairing energy barrier. Thus, in nanostructures doped by ion implantation, the implant distribution can be strongly influenced by thermal migration to nearby impurities, defects, and interfaces.

  4. Adsorption and reactions of methanethiol on clean and modified Ni(110)

    SciTech Connect

    Huntley, D.R. )

    1989-08-10

    The reactions of methanethiol on clean and modified Ni(110) have been studied under ultrahigh-vacuum conditions by temperature-programmed reactions (TPR), including deuterium incorporation studies. Surface bound molecular fragments were identified by X-ray photoelectron spectroscopy (XPS) and high-resolution electron energy loss spectroscopy (HREELS). The TPR data indicate that the major products of the reactions of methanethiol with clean Ni(110) surfaces are methane and hydrogen. Methane desorbs in a reaction-limited peak at 276 K, which does not shift with methanethiol exposure. Hydrogen desorption occurs in several peaks depending on the exposure. The coverage dependence of the methane yield indicates a competition between decomposition and reaction to form methane. At low coverages, decomposition is the major pathway while at higher coverages methane formation dominates. Vibrational spectroscopy (HREELS) indicates the presence of the methyl thiolate intermediate at temperatures less than 200 K. X-ray photoelectron spectroscopy and deuterium incorporation experiments confirm this assignment. A mechanism has been proposed based on hydrogenolysis of the methyl thiolate species and is consistent with all of the data. The appropriate rate equations associated with this mechanism have been solved numerically to predict the TPR data, and qualitative agreement was achieved. Methanethiol reacts with sulfur- and oxygen-modified Ni(110) surfaces to produce methane, hydrogen, and, in the case of the oxidized surfaces, water. The major effect of the modifier was to enhance the formation of methane relative to decomposition. These observations can be explained by either electronic or structural effects.

  5. Cantilevered probe detector with piezoelectric element

    SciTech Connect

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  6. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2010-04-06

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  7. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  8. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D [Reno, NV; Sulchek, Todd A [Oakland, CA; Feigin, Stuart C [Reno, NV

    2012-07-10

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  9. The fabrication of highly uniform ZnO/CdS core/shell structures using a spin-coating-based successive ion layer adsorption and reaction method.

    PubMed

    Joo, Jinmyoung; Kim, Darae; Yun, Dong-Jin; Jun, Hwichan; Rhee, Shi-Woo; Lee, Jae Sung; Yong, Kijung; Kim, Sungjee; Jeon, Sangmin

    2010-08-13

    We developed a successive ion layer adsorption and reaction method based on spin-coating (spin-SILAR) and applied the method to the fabrication of highly uniform ZnO/CdS core/shell nanowire arrays. Because the adsorption, reaction, and rinsing steps occur simultaneously during spin-coating, the spin-SILAR method does not require rinsing steps between the alternating ion adsorption steps, making the growth process simpler and faster than conventional SILAR methods based on dip-coating (dip-SILAR). The ZnO/CdS core/shell nanowire arrays prepared by spin-SILAR had a denser and more uniform structure than those prepared by dip-SILAR, resulting in the higher power efficiency for use in photoelectrochemical cells.

  10. Fluorescent labelling of in situ hybridisation probes through the copper-catalysed azide-alkyne cycloaddition reaction.

    PubMed

    Hesse, Susann; Manetto, Antonio; Cassinelli, Valentina; Fuchs, Jörg; Ma, Lu; Raddaoui, Nada; Houben, Andreas

    2016-09-01

    In situ hybridisation is a powerful tool to investigate the genome and chromosome architecture. Nick translation (NT) is widely used to label DNA probes for fluorescence in situ hybridisation (FISH). However, NT is limited to the use of long double-stranded DNA and does not allow the labelling of single-stranded and short DNA, e.g. oligonucleotides. An alternative technique is the copper(I)-catalysed azide-alkyne cycloaddition (CuAAC), at which azide and alkyne functional groups react in a multistep process catalysed by copper(I) ions to give 1,4-distributed 1,2,3-triazoles at a high yield (also called 'click reaction'). We successfully applied this technique to label short single-stranded DNA probes as well as long PCR-derived double-stranded probes and tested them by FISH on plant chromosomes and nuclei. The hybridisation efficiency of differently labelled probes was compared to those obtained by conventional labelling techniques. We show that copper(I)-catalysed azide-alkyne cycloaddition-labelled probes are reliable tools to detect different types of repetitive sequences on chromosomes opening new promising routes for the detection of single copy gene. Moreover, a combination of FISH using such probes with other techniques, e.g. immunohistochemistry (IHC) and cell proliferation assays using 5-ethynyl-deoxyuridine, is herein shown to be easily feasible.

  11. Enhancement of selective decomposition. Adsorption and reaction of methanethiol on carbon-covered W(001)

    SciTech Connect

    Mullins, D.R.; Lyman, P.F.

    1995-04-13

    Selective decomposition of methanethiol (CH{sub 3}SH) on carbon-covered W(001) to produce methane is enhanced by 75% compared to the clean surface. The maximum enhancement requires only 0.25 monolayers (ML) of preadsorbed C. On a surface percovered with 0.8 ML of C, the methane desorbs in peaks at 460 and 550 K compared to 360 K on the clean surface, suggesting a greater stability in the C-S and C-H bonds. Increased intramolecular bond stability is confirmed by the temperature dependence of the S 2p and C 1s soft X-ray photoemission. Methyl thiolate, CH{sub 3}S, forms upon adsorption at 100 K. Chemisorbed methanethiol, which is not stable on the clean surface, is also observed between 100 and 300 K. The chemisorbed thiol decomposes to form additional thiolate. The thiolate reacts along three competing pathways. It undergoes rehydrogenation and desorbs as methanethiol, it selectively decomposes to form desorbed methane and adsorbed S, or it totally decomposes to form S, C, and desorbed H{sub 2}. 23 refs., 11 figs., 1 tab.

  12. An Adsorptive Transfer Technique Coupled with Brdicka Reaction to Reveal the Importance of Metallothionein in Chemotherapy with Platinum Based Cytostatics

    PubMed Central

    Krizkova, Sona; Fabrik, Ivo; Huska, Dalibor; Adam, Vojtech; Babula, Petr; Hrabeta, Jan; Eckschlager, Tomas; Pochop, Pavel; Darsova, Denisa; Kukacka, Jiri; Prusa, Richard; Trnkova, Libuse; Kizek, Rene

    2010-01-01

    The drugs based on platinum metals represent one of the oldest, but also one of the most effective groups of chemotherapeutic agents. Thanks to many clinical studies it is known that resistance of tumor cells to drugs is a frequent cause of chemotherapy failure. With regard to platinum based drugs, multidrug resistance can also be connected with increased expression of low-molecular weight protein metallothionein (MT). This study aimed at investigating the interactions of MT with cisplatin or carboplatin, using the adsorptive transfer technique coupled with differential pulse voltammetry Brdicka reaction (AdTS DPV Brdicka reaction), and a comparison of in vitro results with results obtained in vivo. The results obtained from the in vitro study show a strong affinity between platinum based drugs and MT. Further, we analyzed extracts of neuroblastoma cell lines treated with cisplatin or carboplatin. It is clear that neuroblastoma UKF-NB-4 cisplatin-resistant and cisplatin-sensitive cell lines unlikely respond to the presence of the platinum-based cytostatics cisplatin and carboplatin. Finally, we determined the level of MT in samples from rabbits treated with carboplatin and patients with retinoblastoma treated with the same drug. PMID:21614176

  13. Adsorption equilibrium and transport kinetics for a range of probe gases in Takeda 3A carbon molecular sieve.

    PubMed

    Rutherford, S W; Coons, J E

    2005-04-15

    Measurements of adsorption equilibria and transport kinetics for argon, oxygen and nitrogen at 20, 50, and 80 degrees C on commercially derived Takeda carbon molecular sieve (CMS) employed for air separation have been undertaken in an effort to elucidate fundamental mechanisms of transport. Results indicate that micropore diffusion which is modeled by a Fickian diffusion process, governs the transport of oxygen molecules and the pore mouth barrier controls argon and nitrogen transport which is characterized by a linear driving force (LDF) model. For the three temperatures studied, the pressure dependence of the diffusivity and the LDF rate constant appear to be well characterized by a formulation based on the chemical potential as the driving force for transport. Isosteric heat of adsorption at zero loading and activation energy measurements are compared with predictions made from a previously proposed molecular model for characterizing CMS.

  14. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay.

  15. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    SciTech Connect

    T Chen; D Mullins

    2011-12-31

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water results in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.

  16. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    SciTech Connect

    Mullins, David R; Chen, Tsung-Liang

    2011-01-01

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water results in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.

  17. A Fluorescent Molecular Probe for the Detection of Hydrogen Based on Oxidative Addition Reactions with Crabtree-Type Hydrogenation Catalysts.

    PubMed

    Kos, Pavlo; Plenio, Herbert

    2015-11-02

    A Crabtree-type Ir(I) complex tagged with a fluorescent dye (bodipy) was synthesized. The oxidative addition of H2 converts the weakly fluorescent Ir(I) complex (Φ=0.038) into a highly fluorescent Ir(III) species (Φ=0.51). This fluorogenic reaction can be utilized for the detection of H2 and to probe the oxidative addition step in the catalytic hydrogenation of olefins.

  18. Produced water re-injection in a non-fresh water aquifer with geochemical reaction, hydrodynamic molecular dispersion and adsorption kinetics controlling: model development and numerical simulation

    NASA Astrophysics Data System (ADS)

    Obe, Ibidapo; Fashanu, T. A.; Idialu, Peter O.; Akintola, Tope O.; Abhulimen, Kingsley E.

    2016-12-01

    An improved produced water reinjection (PWRI) model that incorporates filtration, geochemical reaction, molecular transport, and mass adsorption kinetics was developed to predict cake deposition and injectivity performance in hydrocarbon aquifers in Nigeria oil fields. Thus, the improved PWRI model considered contributions of geochemical reaction, adsorption kinetics, and hydrodynamic molecular dispersion mechanism to alter the injectivity and deposition of suspended solids on aquifer wall resulting in cake formation in pores during PWRI and transport of active constituents in hydrocarbon reservoirs. The injectivity decline and cake deposition for specific case studies of hydrocarbon aquifers in Nigeria oil fields were characterized with respect to its well geometry, lithology, and calibrations data and simulated in COMSOL multiphysics software environment. The PWRI model was validated by comparisons to assessments of previous field studies based on data and results supplied by operator and regulator. The results of simulation showed that PWRI performance was altered because of temporal variations and declinations of permeability, injectivity, and cake precipitation, which were observed to be dependent on active adsorption and geochemical reaction kinetics coupled with filtration scheme and molecular dispersion. From the observed results and findings, transition time t r to cake nucleation and growth were dependent on aquifer constituents, well capacity, filtration coefficients, particle-to-grain size ratio, water quality, and more importantly, particle-to-grain adsorption kinetics. Thus, the results showed that injectivity decline and permeability damage were direct contributions of geochemical reaction, hydrodynamic molecular diffusion, and adsorption kinetics to the internal filtration mechanism, which are largely dependent on the initial conditions of concentration of active constituents of produced water and aquifer capacity.

  19. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging

    NASA Astrophysics Data System (ADS)

    Chan, Jefferson; Dodani, Sheel C.; Chang, Christopher J.

    2012-12-01

    The dynamic chemical diversity of elements, ions and molecules that form the basis of life offers both a challenge and an opportunity for study. Small-molecule fluorescent probes can make use of selective, bioorthogonal chemistries to report on specific analytes in cells and in more complex biological specimens. These probes offer powerful reagents to interrogate the physiology and pathology of reactive chemical species in their native environments with minimal perturbation to living systems. This Review presents a survey of tools and tactics for using such probes to detect biologically important chemical analytes. We highlight design criteria for effective chemical tools for use in biological applications as well as gaps for future exploration.

  20. Quantum-mechanical parameters for the risk assessment of multi-walled carbon-nanotubes: A study using adsorption of probe compounds and its application to biomolecules.

    PubMed

    Chayawan; Vikas

    2016-11-01

    This work forwards new insights into the risk-assessment of multi-walled carbon-nanotubes (MWCNTs) while analysing the role of quantum-mechanical interactions between the electrons in the adsorption of probe compounds and biomolecules by MWCNTs. For this, the quantitative models are developed using quantum-chemical descriptors and their electron-correlation contribution. The major quantum-chemical factors contributing to the adsorption are found to be mean polarizability, electron-correlation energy, and electron-correlation contribution to the absolute electronegativity and LUMO energy. The proposed models, based on only three quantum-chemical factors, are found to be even more robust and predictive than the previously known five or four factors based linear free-energy and solvation-energy relationships. The proposed models are employed to predict the adsorption of biomolecules including steroid hormones and DNA bases. The steroid hormones are predicted to be strongly adsorbed by the MWCNTs, with the order: hydrocortisone > aldosterone > progesterone > ethinyl-oestradiol > testosterone > oestradiol, whereas the DNA bases are found to be relatively less adsorbed but follow the order as: guanine > adenine > thymine > cytosine > uracil. Besides these, the developed electron-correlation based models predict several insecticides, pesticides, herbicides, fungicides, plasticizers and antimicrobial agents in cosmetics, to be strongly adsorbed by the carbon-nanotubes. The present study proposes that the instantaneous inter-electronic interactions may be quite significant in various physico-chemical processes involving MWCNTs, and can be used as a reliable predictor for their risk assessment.

  1. Stigmatellin probes the electrostatic potential in the QB site of the photosynthetic reaction center.

    PubMed

    Gerencsér, László; Boros, Bogáta; Derrien, Valerie; Hanson, Deborah K; Wraight, Colin A; Sebban, Pierre; Maróti, Péter

    2015-01-20

    The electrostatic potential in the secondary quinone (QB) binding site of the reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides determines the rate and free energy change (driving force) of electron transfer to QB. It is controlled by the ionization states of residues in a strongly interacting cluster around the QB site. Reduction of the QB induces change of the ionization states of residues and binding of protons from the bulk. Stigmatellin, an inhibitor of the mitochondrial and photosynthetic respiratory chain, has been proven to be a unique voltage probe of the QB binding pocket. It binds to the QB site with high affinity, and the pK value of its phenolic group monitors the local electrostatic potential with high sensitivity. Investigations with different types of detergent as a model system of isolated RC revealed that the pK of stigmatellin was controlled overwhelmingly by electrostatic and slightly by hydrophobic interactions. Measurements showed a high pK value (>11) of stigmatellin in the QB pocket of the dark-state wild-type RC, indicating substantial negative potential. When the local electrostatics of the QB site was modulated by a single mutation, L213Asp → Ala, or double mutations, L213Asp-L212Glu → Ala-Ala (AA), the pK of stigmatellin dropped to 7.5 and 7.4, respectively, which corresponds to a >210 mV increase in the electrostatic potential relative to the wild-type RC. This significant pK drop (ΔpK > 3.5) decreased dramatically to (ΔpK > 0.75) in the RC of the compensatory mutant (AA+M44Asn → AA+M44Asp). Our results indicate that the L213Asp is the most important actor in the control of the electrostatic potential in the QB site of the dark-state wild-type RC, in good accordance with conclusions of former studies using theoretical calculations or light-induced charge recombination assay.

  2. Surface sampling concentration and reaction probe with controller to adjust sampling position

    SciTech Connect

    Van Berkel, Gary J.; ElNaggar, Mariam S.

    2016-07-19

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  3. Cation location in microporous zeolite, SSZ-13, probed with xenon adsorption measurement and 129Xe NMR spectrum.

    PubMed

    Shin, Na Ra; Kim, Su Hyun; Shin, Hye Sun; Jang, Ik Jun; Cho, Sung June

    2013-06-01

    The location of metal ion, Ag2+, Ca2+, Cu2+ and Y3+ in the SSZ-13 has been investigated with xenon adsorption measurement and 129Xe NMR spectrum. It was referred that the location of the metal ion varies depending on the corresponding charge. The ion-exchanged Ag ion was located in the alpha-cage to interact directly with xenon. Others multivalent cation contributed little with xenon because these were present near the six membered rings where xenon cannot access.

  4. Probing the adsorption mechanism in thiamazole bound to the silver surface with Surface-enhanced Raman Scattering and DFT

    NASA Astrophysics Data System (ADS)

    Biswas, Nandita; Thomas, Susy; Sarkar, Anjana; Mukherjee, Tulsi; Kapoor, Sudhir

    2009-09-01

    Surface-enhanced Raman scattering (SERS) of thiamazole have been investigated in aqueous solution. Thiamazole is an important anti-thyroid drug that is used in the treatment of hyperthyroidism (over activity of the thyroid gland). Due to its medicinal importance, the surface adsorption properties of thiamazole have been studied. The experimental Raman and SERS data are supported with DFT calculations using B3LYP functional with LANL2DZ basis set. From the SERS spectra as well as theoretical calculations, it has been inferred that thiamazole is chemisorbed to the silver surface directly through the sulphur atom and the ring N atom, with a tilted orientation.

  5. SpiroZin1: a reversible and pH-Insensitive, reaction-based, red-fluorescent probe for imaging biological mobile zinc.

    PubMed

    Rivera-Fuentes, Pablo; Lippard, Stephen J

    2014-06-01

    A reversible, reaction-based sensor for biological mobile zinc was designed, prepared, and characterized. The sensing mechanism of this probe is based on the zinc-induced, ring-opening reaction of spirobenzopyran to give a cyanine fluorophore that emits in the deep-red region of the electromagnetic spectrum. This probe is not activated by protons and operates efficiently in aqueous solution at pH 7 and high ionic strength. The mechanism of this reaction was studied by using a combination of kinetics experiments and DFT calculations. The biocompatibility of the probe was demonstrated in live HeLa cells.

  6. Applicability of fiber-optic-based Raman probes for on-line reaction monitoring of high-pressure catalytic hydrogenation reactions.

    PubMed

    Hamminga, Gerben M; Mul, Guido; Moulijn, Jacob A

    2007-05-01

    This study evaluates the applicability of fiber-optic-based Raman probes for on-line reaction monitoring of high-pressure catalytic hydrogenation reactions in batch autoclaves. First, based on trends in the strong intensity of the 945 cm(-1) C-O-C vibration of 1,3-dioxolane, the effect of various experimental parameters on sensitivity was evaluated and can be summarized as follows: (1) above 500 rpm a linear increase in stirring speed induces a linear decrease in Raman intensity; (2) a linear increase in hydrogen pressure also leads to a linear decrease of the Raman signal; (3) linear temperature elevation exponentially decreases the Raman intensity; and (4) increasing the catalyst particle concentration results in a steep nonlinear decrease of the Raman signal. Light scattering by gas bubbles, or combined scattering and absorption by (black) catalyst particles, reducing the amount of light collected by the optical fiber probe, explain the observed experimental trends. Second, the sensitivity of Raman spectroscopy was directly compared with attenuated total reflection-Fourier transform infrared (ATR-FT-IR) spectroscopy in the analysis of three different hydrogenation reactions over a Cu-ZnO catalyst. From the applied target molecules, diethyl maleate hydrogenation could be very well analyzed by Raman spectroscopy due to the high Raman scattering efficiency of the C=C bond, while for analysis of the hydrogenation of gamma-butyrolactone or 1-butanal, ATR-FT-IR is the technique of choice.

  7. Utilizing of Adsorptive Transfer Stripping Technique Brdicka Reaction for Determination of Metallothioneins Level in Melanoma Cells, Blood Serum and Tissues.

    PubMed

    Krizkova, Sona; Fabrik, Ivo; Adam, Vojtech; Kukacka, Jiri; Prusa, Richard; Chavis, Grace J; Trnkova, Libuse; Strnadel, Jan; Horak, Vratislav; Kizek, Rene

    2008-05-10

    In the paper we utilized the adsorptive transfer stripping differential pulse voltammetry Brdicka reaction for the determination of metallothioneins (MT) in melanoma cells, animal melanoma tissues (MeLiM miniature pig) and blood serum of patients with malignant melanoma. Primarily we attempted to investigate the influence of dilution of real sample on MT electrochemical response. Dilution of samples of 1 000 times was chosen the most suitable for determination of MT level in biological samples. Then we quantified the MT level in the melanoma cells, the animal melanoma tissues and the blood serum samples. The MT content in the cells varied within the range from 4.2 to 11.2 μM. At animal melanoma tissues (melanomas localized on abdomen, back limb and dorsum) the highest content of MT was determined in the tumour sampled on the back of the animal and was nearly 500 μg of MTs per gram of a tissue. We also quantified content of MT in metastases, which was found in liver, spleen and lymph nodes. Moreover the average MT level in the blood serum samples from patients with melanoma was 3.0 ± 0.8 μM. MT levels determined at melanoma samples were significantly (p < 0.05) higher compared to control ones at cells, tissues and blood serum.

  8. Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction.

    PubMed

    Abbas, Muhammad A; Basit, Muhammad A; Park, Tae Joo; Bang, Jin Ho

    2015-04-21

    Despite the potential of PbS quantum dots (QDs) as sensitizers for quantum-dot-sensitized solar cells (QDSSCs), achieving a high photocurrent density over 30 mA cm(-2) remains a challenging task in PbS-sensitized solar cells. In contrast to previous attempts, where Hg(2+)-doping or multi-step post-treatment is necessary, we are capable of achieving a high photocurrent exceeding 30 mA cm(-2) simply by manipulating the successive ionic layer adsorption and reaction (SILAR) method. We show that controlling temperature at which SILAR is performed is critical to obtain a higher and more uniform coverage of PbS QDs over a mesoporous TiO2 film. The deposition of a CdS inter-layer between TiO2 and PbS is found to be an effective means of ensuring high photocurrent and stability. Not only does this modification improve the light absorption capability of the photoanode, but it also has a significant effect on charge recombination and electron injection efficiency at the PbS/TiO2 interface according to our in-depth study using electrochemical impedance spectroscopy (EIS). The implication of subtle changes in the interfacial events via modified SILAR conditions for PbS-sensitized solar cells is discussed.

  9. Utilizing of Adsorptive Transfer Stripping Technique Brdicka Reaction for Determination of Metallothioneins Level in Melanoma Cells, Blood Serum and Tissues

    PubMed Central

    Krizkova, Sona; Fabrik, Ivo; Adam, Vojtech; Kukacka, Jiri; Prusa, Richard; Chavis, Grace J.; Trnkova, Libuse; Strnadel, Jan; Horak, Vratislav; Kizek, Rene

    2008-01-01

    In the paper we utilized the adsorptive transfer stripping differential pulse voltammetry Brdicka reaction for the determination of metallothioneins (MT) in melanoma cells, animal melanoma tissues (MeLiM miniature pig) and blood serum of patients with malignant melanoma. Primarily we attempted to investigate the influence of dilution of real sample on MT electrochemical response. Dilution of samples of 1 000 times was chosen the most suitable for determination of MT level in biological samples. Then we quantified the MT level in the melanoma cells, the animal melanoma tissues and the blood serum samples. The MT content in the cells varied within the range from 4.2 to 11.2 μM. At animal melanoma tissues (melanomas localized on abdomen, back limb and dorsum) the highest content of MT was determined in the tumour sampled on the back of the animal and was nearly 500 μg of MTs per gram of a tissue. We also quantified content of MT in metastases, which was found in liver, spleen and lymph nodes. Moreover the average MT level in the blood serum samples from patients with melanoma was 3.0 ± 0.8 μM. MT levels determined at melanoma samples were significantly (p < 0.05) higher compared to control ones at cells, tissues and blood serum. PMID:27879868

  10. Intermediate Q from soluble methane monooxygenase hydroxylates the mechanistic substrate probe norcarane: evidence for a stepwise reaction.

    PubMed

    Brazeau, B J; Austin, R N; Tarr, C; Groves, J T; Lipscomb, J D

    2001-12-05

    Norcarane is a valuable mechanistic probe for enzyme-catalyzed hydrocarbon oxidation reactions because different products or product distributions result from concerted, radical, and cation based reactions. Soluble methane monooxygenase (sMMO) from Methylosinus trichosporium OB3b catalyzes the oxidation of norcarane to afford 3-hydroxymethylcyclohexene and 3-cycloheptenol, compounds characteristic of radical and cationic intermediates, respectively, in addition to 2- and 3-norcaranols. Past single turnover transient kinetic studies have identified several optically distinct intermediates from the catalytic cycle of the hydroxylase component of sMMO. Thus, the reaction between norcarane and key reaction intermediates can be directly monitored. The presence of norcarane increases the rate of decay of only one intermediate, the high-valent bis-mu-oxo Fe(IV)(2) cluster-containing species compound Q, showing that it is responsible for the majority of the oxidation chemistry. The observation of products from both radical and cationic intermediates from norcarane oxidation catalyzed by sMMO is consistent with a mechanism in which an initial substrate radical intermediate is formed by hydrogen atom abstraction. This intermediate then undergoes either oxygen rebound, intramolecular rearrangement followed by oxygen rebound, or loss of a second electron to yield a cationic intermediate to which OH(-) is transferred. The estimated lower limit of 20 ps for the lifetime of the putative radical intermediate is in accord with values determined from previous studies of sterically hindered sMMO probes.

  11. The Effect of Simulated Microgravity Environment of RWV Bioreactors on Surface Reactions and Adsorption of Serum Proteins on Bone-bioactive Microcarriers

    NASA Technical Reports Server (NTRS)

    Radin, Shula; Ducheyne, P.; Ayyaswamy, P. S.

    2003-01-01

    Biomimetically modified bioactive materials with bone-like surface properties are attractive candidates for use as microcarriers for 3-D bone-like tissue engineering under simulated microgravity conditions of NASA designed rotating wall vessel (RWV) bioreactors. The simulated microgravity environment is attainable under suitable parametric conditions of the RWV bioreactors. Ca-P containing bioactive glass (BG), whose stimulatory effect on bone cell function had been previously demonstrated, was used in the present study. BG surface modification via reactions in solution, resulting formation of bone-like minerals at the surface and adsorption of serum proteins is critical for obtaining the stimulatory effect. In this paper, we report on the major effects of simulated microgravity conditions of the RWV on the BG reactions surface reactions and protein adsorption in physiological solutions. Control tests at normal gravity were conducted at static and dynamic conditions. The study revealed that simulated microgravity remarkably enhanced reactions involved in the BG surface modification, including BG dissolution, formation of bone-like minerals at the surface and adsorption of serum proteins. Simultaneously, numerical models were developed to simulate the mass transport of chemical species to and from the BG surface under normal gravity and simulated microgravity conditions. The numerical results showed an excellent agreement with the experimental data at both testing conditions.

  12. Adsorption and Reaction of Acetaldehyde on Shape-Controlled CeO2 Nanocrystals: Elucidation of Structure-function Relationships

    SciTech Connect

    Mann, Amanda K; Wu, Zili; Calaza, Florencia; Overbury, Steven {Steve} H

    2014-01-01

    CeO2 cubes with {100} facets, octahedra with {111} facets, and wires with highly defective structures were utilized to probe the structure-dependent reactivity of acetaldehyde. Using temperature-programmed desorption (TPD), temperature-programmed surface reactions (TPSR), and in situ infrared spectroscopy it was found that acetaldehyde desorbs unreacted or undergoes reduction, coupling, or C-C bond scission reactions depending on the surface structure of CeO2. Room temperature FTIR indicates that acetaldehyde binds primarily as 1-acetaldehyde on the octahedra, in a variety of conformations on the cubes, including coupling products and acetate and enolate species, and primarily as coupling products on the wires. The percent consumption of acetaldehyde follows the order of wires > cubes > octahedra. All the nanoshapes produce the coupling product crotonaldehyde; however, the selectivity to produce ethanol follows the order wires cubes >> octahedra. The selectivity and other differences can be attributed to the variation in the basicity of the surfaces, defects densities, coordination numbers of surface atoms, and the reducibility of the nanoshapes.

  13. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    PubMed

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  14. Resonance scattering detection of trace microalbumin using immunonanogold probe as the catalyst of Fehling reagent-glucose reaction.

    PubMed

    Jiang, Zhiliang; Huang, Yujuan; Liang, Aihui; Pan, Hongchen; Liu, Qingye

    2009-02-15

    A novel and sensitive resonance scattering (RS) spectral immunoassay for the determination of microalbumin (Malb) was developed, based on the catalytic effect of immunonanogold (ING) probe on Fehling reagent-glucose reaction, and resonance scattering effect of Cu(2)O particles. Nanogold particles in size of 10nm were used to label goat anti-human microalbumin (GMalb) to obtain an ING probe (AuGMalb) for Malb. The probe produced unspecific aggregation in pH 5.0 citric acid-Na(2)HPO(4) buffer solutions. Upon addition of Malb, the dispersed ING complex formed. The ING complex in supernatant was obtained by centrifuging and was used as catalyst for the reaction between Fehling reagent and glucose to form the Cu(2)O particles to amplify the resonance scattering signal at 610 nm. With addition of Malb, the ING complex in the supernatant increased and the RS intensity at 610 nm (I(610 nm)) enhanced linearly. The enhanced intensity DeltaI(610 nm) was proportional to the Malb concentration in the range of 0.014-0.43 ng ml(-1), with a detection limit of 7.2 pg ml(-1). The proposed method was applied to detect Malb in human urine sample with satisfactory results.

  15. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging

    PubMed Central

    Chan, Jefferson; Dodani, Sheel C.; Chang, Christopher J.

    2014-01-01

    The dynamic chemical diversity of elements, ions and molecules that form the basis of life offers both a challenge and an opportunity for study. Small-molecule fluorescent probes can make use of selective, bioorthogonal chemistries to report on specific analytes in cells and in more complex biological specimens. These probes offer powerful reagents to interrogate the physiology and pathology of reactive chemical species in their native environments with minimal perturbation to living systems. This Review presents a survey of tools and tactics for using such probes to detect biologically important chemical analytes. We highlight design criteria for effective chemical tools for use in biological applications as well as gaps for future exploration. PMID:23174976

  16. Gas sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of trichloroethylene adsorption and reactions on SnO2 films

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxin; Huang, Kaijin; Yuan, Fangli; Xie, Changsheng

    2014-05-01

    The detection of trichloroethylene has attracted much attention because it has an important effect on human health. The sensitivity of the SnO2 flat-type coplanar gas sensor arrays to 100 ppm trichloroethylene in air was investigated. The adsorption and surface reactions of trichloroethylene were investigated at 100-200 °C by in-situ diffuse reflection Fourier transform infrared spectroscopy (DIRFTS) on SnO2 films. Molecularly adsorbed trichloroethylene, dichloroacetyl chloride (DCAC), phosgene, HCl, CO, H2O, CHCl3, Cl2 and CO2 surface species are formed during trichloroethylene adsorption at 100-200 °C. A possible mechanism of the reaction process is discussed.

  17. Carbon-13 Labeling Used to Probe Cure and Degradation Reactions of High- Temperature Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnston, J. Christopher

    1998-01-01

    High-temperature, crosslinked polyimides are typically insoluble, intractible materials. Consequently, in these systems it has been difficult to follow high-temperature curing or long-term degradation reactions on a molecular level. Selective labeling of the polymers with carbon-13, coupled with solid nuclear magnetic resonance spectrometry (NMR), enables these reactions to be followed. We successfully employed this technique to provide insight into both curing and degradation reactions of PMR-15, a polymer matrix resin used extensively in aircraft engine applications.

  18. Modulation of the Foreign Body Reaction for Implants in the Subcutaneous Space: Microdialysis Probes as Localized Drug Delivery/Sampling Devices

    PubMed Central

    Mou, Xiaodun; Lennartz, Michelle R; Loegering, Daniel J; Stenken, Julie A

    2011-01-01

    Modulation of the foreign body reaction is considered to be an important step toward creation of implanted sensors with reliable long-term performance. In this work, microdialysis probes were implanted into the subcutaneous space of Sprague-Dawley rats. The probe performance was evaluated by comparing collected endogenous glucose concentrations with internal standard calibration (2-deoxyglucose, antipyrine, and vitamin B12). Probes were tested until failure, which for this work was defined as loss of fluid flow. In order to determine the effect of fibrous capsule formation on probe function, monocyte chemoattractant protein-1/CC chemokine ligand 2 (MCP-1/CCL2) was delivered locally via the probe to increase capsule thickness and dexamethasone 21-phosphate was delivered to reduce capsule thickness. Probes delivering MCP-1 had a capsule that was twice the thickness (500–600 μm) of control probes (200–225 μm) and typically failed 2 days earlier than control probes. Probes delivering dexamethasone 21-phosphate had more fragile capsules and the probes typically failed 2 days later than controls. Unexpectedly, extraction efficiency and collected glucose concentrations exhibited minor differences between groups. This is an interesting result in that the foreign body capsule formation was related to the duration of probe function but did not consistently relate to probe calibration. PMID:21722577

  19. Diode laser probes of tert-butyl radical reaction kinetics: Reaction of C(CH sub 3 ) sub 3 with HBr, DBr, and HI

    SciTech Connect

    Richards, P.D.; Ryther, R.J.; Weitz, E. )

    1990-05-03

    The rate constants for reaction of tert-butyl radical with HBr, DBr, and HI have been measured by use of a tunable infrared diode laser probe. The measured rate constants at room temperature are 1.0 {times} 10{sup {minus}11}, 8 {times} 10{sup {minus}12}, and 2.5 {times} 10{sup {minus}11} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}, respectively. The reaction with HI exhibits a negative activation energy of 1.5 kcal mol{sup {minus}1}. The reaction rates of HBr and DBr with tert-butyl radical at elevated temperatures are also slower than the corresponding rates at room temperature. The rate constant for reaction of tert-butyl radicals with HBr is in excellent agreement with the faster of the two conflicting previously reported measurements for the tert-butyl-HBr system. From this study the heat of formation of the tert-butyl radical has been calculated to be 11.5 {plus minus} 0.8 kcal mol{sup {minus}1}.

  20. The Adsorption and Reactions of the Amino Acid Proline on Rutile TiO2(110) Surfaces

    SciTech Connect

    Fleming,G.; Adib, K.; Rodriquez, J.; Barteau, M.; White, J.; Idriss, H.

    2008-01-01

    The reaction of the amino acid dl-proline is studied over stoichiometric and Ar-ions sputtered (reduced) TiO2(1 1 0) single crystal surfaces by synchrotron High Resolution X-ray Photoelectron Spectroscopy (HRXPS). On the stoichiometric surface proline gives two different species at 300 K: dissociated and zwitterionic. Upon heating the zwitterionic structure is removed first from the surface followed by the dissociated form. The C1s signal for the COO function is found close to 288.5 eV for both forms while the N 1s for the dissociated form is found at 400.0 eV and that of the zwitterionic from close to 401.8 eV. From the attenuation of the Ti 2p signal the surface coverage was estimated less than 1/2 (about 0.35). This smaller coverage than dissociatively adsorbed carboxylic acids on this surface (usually close to 1/2), is attributed to lateral repulsion caused by the ring of adjacent proline molecules adsorbed on five-fold coordinated Ti cations along the [0 0 1] direction. On the reduced surface the amount of zwitterion structure is found two times higher than that on the stoichiometric surface, at 300 K, most likely due to the considerable decrease of the amount of surface oxygen available. The stability of the zwitterionic structure on this surface is however found similar to that found on the stoichiometric surface. In addition, evidence of oxidation of reduced Ti cations upon adsorption at 300 K is noticed and explained as breaking of the carbon-oxygen bond of a fraction of adsorbed proline. Variable temperature HRXPS has been collected and results indicated that proline is more stable on the reduced surface compared to the stoichiometric surface.

  1. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    SciTech Connect

    Chen Li; Ueta, Hirokazu; Beck, Rainer D.; Bisson, Regis

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  2. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy.

    PubMed

    Chen, Li; Ueta, Hirokazu; Bisson, Régis; Beck, Rainer D

    2013-05-01

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S(θ). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  3. Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption

    SciTech Connect

    Wu, Zili; Li, Meijun; Howe, Jane Y; Meyer III, Harry M; Overbury, Steven {Steve} H

    2010-01-01

    Defect sites play an essential role in ceria catalysis. In this study, ceria nanocrystals with well defined surface planes have been synthesized and utilized for studying defect sites with both Raman spectroscopy and O2 adsorption. Ceria nanorods ({110} + {100}), nanocubes ({100}), and nano-octahedrons ({111}) are employed to analyze the quantity and quality of defect sites on different ceria surfaces. On oxidized surface, nanorods have the most abundant intrinsic defect sites, followed by nanocubes and nano-octahedrons. When reduced, the induced defect sites are more clustered on nanorods than on nanocubes although similar amount (based on surface area) of such defect sites are produced on the two surfaces. Very few defect sites can be generated on the nano-octahedrons due to the least reducibility. These differences can be rationalized by the crystallographic surface terminations of the ceria nanocrystals. The different defect sites on these nanocrystals lead to the adsorption of different surface dioxygen species. Superoxide on one-electron defect sites and peroxide on two-electron defect sites with different clustering degree are identified on the ceria nanocrystals depending on their morphology. Furthermore, the stability and reactivity of these oxygen species are also found to be surface-dependent, which is of significance for ceria-catalyzed oxidation reactions.

  4. Probing the neutron-skin thickness by photon production from reactions induced by intermediate-energy protons

    NASA Astrophysics Data System (ADS)

    Wei, Gao-Feng

    2015-07-01

    The photon from neutron-proton bremsstrahlung in p +Pb reactions is examined as a potential probe of the neutron-skin thickness in different centralities and at different proton incident energies. It is shown that the best choice of reaction environment is about 140 MeV for the incident proton and the 95%-100% centrality for the reaction system since the incident proton mainly interacts with neutrons inside the skin of the target and thus leads to different photon production to a maximal extent. Moreover, considering two main uncertainties from both photon production probability and nucleon-nucleon cross section in the reaction, I propose to use the ratio of photon production from two reactions to measure the neutron-skin thickness because of its cancellation effects on these uncertainties simultaneously, but preserved about 13%-15% sensitivities on the varied neutron-skin thickness from 0.1 to 0.3 fm within the current experimental uncertainty range of the neutron-skin size in 208Pb.

  5. Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system.

    PubMed

    Lage, Flávia A P; Bassi, Jaquelinne J; Corradini, Maria C C; Todero, Larissa M; Luiz, Jaine H H; Mendes, Adriano A

    2016-03-01

    Lipase from Thermomyces lanuginosus (TLL) was immobilized on mesoporous hydrophobic poly-methacrylate (PMA) particles via physical adsorption (interfacial activation of the enzyme on the support). The influence of initial protein loading (5-200mg/g of support) on the catalytic properties of the biocatalysts was determined in the hydrolysis of olive oil emulsion and synthesis of isoamyl oleate (biolubricant) by esterification reaction. Maximum adsorbed protein loading and hydrolytic activity were respectively ≈100mg/g and ≈650 IU/g using protein loading of 150mg/g of support. The adsorption process followed the Langmuir isotherm model (R(2)=0.9743). Maximum ester conversion around 85% was reached after 30min of reaction under continuous agitation (200rpm) using 2500mM of each reactant in a solvent-free system, 45°C, 20%m/v of the biocatalyst prepared using 100mg of protein/g of support. Apparent thermodynamic parameters of the esterification reaction were also determined. Under optimal experimental conditions, reusability tests of the biocatalyst (TLL-PMA) after thirty successive cycles of reaction were performed. TLL-PMA fully retained its initial activity up to twenty two cycles of reaction, followed by a slight decrease around 8.6%. The nature of the product (isoamyl oleate) was confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR), proton ((1)H NMR) and carbon ((13)C NMR) nuclear magnetic resonance spectroscopy analyses.

  6. Reaction-Based Probes for Imaging Mobile Zinc in Live Cells and Tissues

    PubMed Central

    2015-01-01

    Chelatable, or mobile, forms of zinc play critical signaling roles in numerous biological processes. Elucidating the action of mobile Zn(II) in complex biological environments requires sensitive tools for visualizing, tracking, and manipulating Zn(II) ions. A large toolbox of synthetic photoinduced electron transfer (PET)-based fluorescent Zn(II) sensors are available, but the applicability of many of these probes is limited by poor zinc sensitivity and low dynamic ranges owing to proton interference. We present here a general approach for acetylating PET-based probes containing a variety of fluorophores and zinc-binding units. The new sensors provide substantially improved zinc sensitivity and allow for incubation of live cells and tissue slices with nM probe concentrations, a significant improvement compared to the μM concentrations that are typically required for a measurable fluorescence signal. Acetylation effectively reduces or completely quenches background fluorescence in the metal-free sensor. Binding of Zn(II) selectively and quickly mediates hydrolytic cleavage of the acetyl groups, providing a large fluorescence response. An acetylated blue coumarin-based sensor was used to carry out detailed analyses of metal binding and metal-promoted acetyl hydrolysis. Acetylated benzoresorufin-based red-emitting probes with different zinc-binding sites are effective for sensing Zn(II) ions in live cells when applied at low concentrations (∼50–100 nM). We used green diacetylated Zinpyr1 (DA-ZP1) to image endogenous mobile Zn(II) in the molecular layer of mouse dorsal cochlear nucleus (DCN), confirming that acetylation is a suitable approach for preparing sensors that are highly specific and sensitive to mobile zinc in biological systems. PMID:26878065

  7. Scanning probe microscopy in catalysis.

    PubMed

    Yeung, King Lun; Yao, Nan

    2004-09-01

    This review discusses the recent progress in the application of scanning probe microscopy (SPM) in catalysis. SPM proves to be an invaluable technique for imaging catalytic surfaces and interfaces. Most SPM research is related to the structural and morphological transformation associated with catalyst preparation and use. Real-time SPM observation of surface dynamics including adsorption, diffusion and reaction, provides invaluable insights to the mechanism of catalysis. SPM is also used to shape and manipulate surfaces and surface processes. Fabrication of nanostructured catalysts, direct manipulation of adsorbed atoms and molecules and tip-mediated reactions are some examples of new SPM approach in catalyst research.

  8. Excited State Dynamics Can Be Used to Probe Donor-Acceptor Distances for H-Tunneling Reactions Catalyzed by Flavoproteins

    PubMed Central

    Hardman, Samantha J.O.; Pudney, Christopher R.; Hay, Sam; Scrutton, Nigel S.

    2013-01-01

    In enzyme systems where fast motions are thought to contribute to H-transfer efficiency, the distance between hydrogen donor and acceptor is a very important factor. Sub-ångstrom changes in donor-acceptor distance can have a large effect on the rate of reaction, so a sensitive probe of these changes is a vital tool in our understanding of enzyme function. In this study we use ultrafast transient absorption spectroscopy to investigate the photoinduced electron transfer rates, which are also very sensitive to small changes in distance, between coenzyme analog, NAD(P)H4, and the isoalloxazine center in the model flavoenzymes morphinone reductase (wild-type and selected variants) and pentaerythritol tetranitrate reductase (wild-type). It is shown that upon addition of coenzyme to the protein the rate of photoinduced electron transfer is increased. By comparing the magnitude of this increase with existing values for NAD(P)H4-FMN distances, based on charge-transfer complex absorbance and experimental kinetic isotope effect reaction data, we show that this method can be used as a sensitive probe of donor-acceptor distance in a range of enzyme systems. PMID:24314085

  9. Kinetics of intercalation of fluorescent probes in magnesium-aluminium layered double hydroxide within a multiscale reaction-diffusion framework

    NASA Astrophysics Data System (ADS)

    Saliba, Daniel; Al-Ghoul, Mazen

    2016-11-01

    We report the synthesis of magnesium-aluminium layered double hydroxide (LDH) using a reaction-diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium-aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  10. A Partially Fluorinated, Water-Stable Cu(II)-MOF Derived via Transmetalation: Significant Gas Adsorption with High CO2 Selectivity and Catalysis of Biginelli Reactions.

    PubMed

    Pal, Tapan K; De, Dinesh; Senthilkumar, S; Neogi, Subhadip; Bharadwaj, Parimal K

    2016-08-15

    A partially fluorinated, angular tetracarboxylic acid linker (H4L) incorporating a pendant amine moiety forms a three-dimensional Zn(II) framework, 1. The structure consists of paddle-wheel Zn2(CO2)4 secondary building units (SBUs) and Zn12(CO2)24 supramolecular building blocks (SBBs). Thermal stability of 1 is found to be low. However, it undergoes transmetalation reaction with Cu(II) at room temperature without losing crystallinity affording an isostructural framework, 1Cu. Framework 1Cu is thermally robust and allows generation of the solvent-free porous framework 1Cu' upon activation with coordinatively unsaturated metal centers. Framework 1Cu' exhibits water stability and at 77 K, adsorbs 2.56 wt % of H2 up to 1 bar that significantly increases to 4.01 wt % at 13 bar. Also, this framework gives a high adsorption of 164.70 cc/g of CH4 (11.7 wt %) at 303 K and 60 bar. The channel surfaces decorated with -NH2 group and unsaturated metal centers in 1Cu' allow a promising 36.4 wt % of CO2 adsorption at 1 bar and 273 K. Moreover, it exhibits pronounced selectivity of CO2 adsorption over N2 and H2 at 273 K. Finally, the versatility of 1Cu' is shown by its excellent heterogeneous catalytic activity in the Biginelli coupling reactions involving an aldehyde, urea, and ethylacetoacetate to afford dihydroprimidinones.

  11. Probing fast ribozyme reactions under biological conditions with rapid quench-flow kinetics.

    PubMed

    Bingaman, Jamie L; Messina, Kyle J; Bevilacqua, Philip C

    2017-03-14

    Reaction kinetics on the millisecond timescale pervade the protein and RNA fields. To study such reactions, investigators often perturb the system with abiological solution conditions or substrates in order to slow the rate to timescales accessible by hand mixing; however, such perturbations can change the rate-limiting step and obscure key folding and chemical steps that are found under biological conditions. Mechanical methods for collecting data on the millisecond timescale, which allow these perturbations to be avoided, have been developed over the last few decades. These methods are relatively simple and can be conducted on affordable and commercially available instruments. Here, we focus on using the rapid quench-flow technique to study the fast reaction kinetics of RNA enzymes, or ribozymes, which often react on the millisecond timescale under biological conditions. Rapid quench of ribozymes is completely parallel to the familiar hand-mixing approach, including the use of radiolabeled RNAs and fractionation of reactions on polyacrylamide gels. We provide tips on addressing and preventing common problems that can arise with the rapid-quench technique. Guidance is also offered on ensuring the ribozyme is properly folded and fast-reacting. We hope that this article will facilitate the broader use of rapid-quench instrumentation to study fast-reacting ribozymes under biological reaction conditions.

  12. Use of an osmium complex as a universal luminescent probe for enzymatic reactions.

    PubMed

    Virel, Ana; Sanchez-Lopez, Jose; Saa, Laura; García, Ana Carla; Pavlov, Valeri

    2009-06-15

    The water-soluble bis(bipyridine)chloro(4-picolinic acid) osmium complex, [Os(III)(bpy)2Cl(PyCOOH)]2+ (bpy=2,2'-bipyridine, Py=pyridine), is fluorescent in aqueous solution, whereas the reduced form of the complex, [Os(II)(bpy)2Cl(PyCOOH)]+, shows no significant fluorescence under the same conditions. Such reversible redox control of the fluorescence of the complex can be easily adapted to follow any enzymatic reaction to yield oxidising or reducing products that are capable of interacting with [Os(III)(bpy)2Cl(PyCOOH)]2+ or [Os(II)(bpy)2Cl(PyCOOH)]+. Based on the redox reaction between products of biocatalytic reactions and the osmium complex, we have designed a simple bioanalytical assay for the detection of nerve gases, alpha-ketoglutarate, hydrogen peroxide and glucose.

  13. Selective photo-deposition of Cu onto the surface of monodisperse oleic acid capped TiO2 nanorods probed by FT-IR CO-adsorption studies.

    PubMed

    Hikov, Todor; Schroeter, Marie-Katrin; Khodeir, Lamma; Chemseddine, Abdelkrim; Muhler, Martin; Fischer, Roland A

    2006-04-07

    A novel, non-aqueous, organometallic route to nanocomposite Cu@TiO2 materials is presented. TiO2 nanorods stabilized with oleic acid (OLA) were used as support for the photo-assisted deposition of Cu using the organometallic Cu(II) precursor [Cu(OCH(CH3)CH2N(CH3)2)2] (1). The copper precursor penetrates through the shell of OLA and is photo reduced to deposit Cu0 directly at the surface of the TiO2 rods. The obtained Cu decorated nanorods were still soluble in nonpolar organic solvents without change of the morphology of nanorods. The Cu@TiO2 colloid was characterized by means of UV-VIS, XRD, AAS, and HRTEM. FTIR CO adsorption studies provide evidence for Cu0 anchored at the titania surface by a characteristic absorption at 2084 cm-1. Comparative studies of Cu-deposition were performed using CuCl2 as simple Cu source which proved that the concept of organometallic disguise of the metal centre results in a higher reaction rate and the circumvention of non-selective reduction, parasitic side reactions and undesired agglomeration of the OLA stabilized titania nanorods.

  14. Characterization of non-specific protein adsorption induced by triazole groups on the chromatography media using Cu (I)-catalyzed alkyne-azide cycloaddition reaction for ligand immobilization.

    PubMed

    Gao, Ming; Ren, Jun; Tian, Kaikai; Jia, Lingyun

    2016-12-09

    As an efficient and facile reaction, click chemistry has been growingly used in the preparation of chromatography media for immobilizing varying types of ligands. For the widely used Cu (I)-catalyzed alkyne-azide click reaction, a 1, 2, 3-triazole group will be inevitably introduced in the molecular linkage, which could give rise to unexpected non-specific adsorption especially for the media employing small compound ligands or high ligand density. Triazole-induced non-specific protein adsorption on sepharose resins was evaluated systematically in this work, by considering the effects of triazole content, length of spacer arm, and solution conditions. We found that triazole content of a resin played the key role. Protein adsorption became significant when the media was coupled with triazole at a medium density (about 60μmol/mL gel), and the binding amount further increased with triazole density. The resin with triazole content of about 100μmol/mL gel could adsorb human IgG, bovine serum albumin and lysozyme at the amount of 13.6, 30.0, and 5.1mg/mL respectively. Proteins tended to be adsorbed at higher amount as the pH of solution approached their isoelectric points, and increasing salt concentration could reduce triazole-induced adsorption but only within limited extent. This study can facilitate reasonable application of click chemistry in the synthesis of chromatography media, by providing some basic principles for optimizing structural properties of separation media and choosing suitable solution conditions.

  15. Probing the Rate-Determining Step of the Claisen-Schmidt Condensation by Competition Reactions

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung

    2007-01-01

    Competition experiments are a useful tool for preliminary study of the linear free energy relationship of organic reactions. This article describes a physical organic experiment for upper-level undergraduates to identify the rate-determining step of the Claisen-Schmidt condensation of benzaldehyde and acetophenone by studying the linear free…

  16. Ultrafast chemical reactions in shocked nitromethane probed with dynamic ellipsometry and transient absorption spectroscopy.

    PubMed

    Brown, Kathryn E; McGrane, Shawn D; Bolme, Cynthia A; Moore, David S

    2014-04-10

    Initiation of the shock driven chemical reactions and detonation of nitromethane (NM) can be sensitized by the addition of a weak base; however, the chemical mechanism by which sensitization occurs remains unclear. We investigated the shock driven chemical reaction in NM and in NM sensitized with diethylenetriamine (DETA), using a sustained 300 ps shock driven by a chirped Ti:sapphire laser. We measured the solutions' visible transient absorption spectra and measured interface particle and shock velocities of the nitromethane solutions using ultrafast dynamic ellipsometry. We found there to be a volume-increasing reaction that takes place around interface particle velocity up = 2.4 km/s and up = 2.2 km/s for neat NM and NM with 5% DETA, respectively. The rate at which transient absorption increases is similar in all mixtures, but with decreasing induction times for solutions with increasing DETA concentrations. This result supports the hypothesis that the chemical reaction mechanisms for shocked NM and NM with DETA are the same. Data from shocked NM are compared to literature experimental and theoretical data.

  17. Partial reactions and chemical rescue of site-directed mutants of Rubisco as mechanistic probes

    SciTech Connect

    Harpel, M.R.; Larimer, F.W.; Lee, E.H.; Mural, R.J.; Smith, H.B.; Soper, T.S.; Hartman, F.C.

    1991-01-01

    Given the current state of knowledge of the reaction pathways catalyzed by D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the elucidation of the three-dimensional structure of several different forms of the enzyme, sit-directed mutagenesis offers the potential to decipher catalytic roles of active-site residues and to unravel the functional significance of various structural elements. Especially intriguing are intersubunit, electrostatic interactions at the active site between Glu48 and Lys168 of the nonactivated (noncarbamylated) enzyme and between Glu48 and Lys329 of the activated (carbamylated) enzyme. In this paper, we describe two approaches to address the roles of electrostatic interactions at the active site and the roles of the participant residues: (1) characterization of pertinent site-directed mutants, including their abilities to catalyze partial reactions and (2) subtle alteration of the active-site microenvironment by manipulation of these proteins with exogenous reagents.

  18. Partial reactions and chemical rescue of site-directed mutants of Rubisco as mechanistic probes

    SciTech Connect

    Harpel, M.R.; Larimer, F.W.; Lee, E.H.; Mural, R.J.; Smith, H.B.; Soper, T.S.; Hartman, F.C.

    1991-12-31

    Given the current state of knowledge of the reaction pathways catalyzed by D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the elucidation of the three-dimensional structure of several different forms of the enzyme, sit-directed mutagenesis offers the potential to decipher catalytic roles of active-site residues and to unravel the functional significance of various structural elements. Especially intriguing are intersubunit, electrostatic interactions at the active site between Glu48 and Lys168 of the nonactivated (noncarbamylated) enzyme and between Glu48 and Lys329 of the activated (carbamylated) enzyme. In this paper, we describe two approaches to address the roles of electrostatic interactions at the active site and the roles of the participant residues: (1) characterization of pertinent site-directed mutants, including their abilities to catalyze partial reactions and (2) subtle alteration of the active-site microenvironment by manipulation of these proteins with exogenous reagents.

  19. Probing the CH_3SH + N_2O_3 Reaction by Automated Microwave Double Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Martin-Drumel, Marie-Aline; Nava, Matthew; Thorwirth, Sven

    2016-06-01

    Because HSNO is formed abundantly and selectively from H_2S and N_2O_3 in the presence of metallic surfaces, it may be feasible to synthesize larger RSNOs in analogous reactions using RSH precursors. To critically explore this possibility, products of the CH_3SH + N_2O_3 reaction have been studied using a combination of chirped-pulse microwave spectroscopy and automated double resonance techniques. As with HSNO, we find that anti-CH_3SNO is formed in high abundance under similar experimental conditions, suggesting that this production method might be extended to study still larger S-nitrothiols in the gas-phase. This talk will provide a status report of our analysis, high-level quantum chemical calculations of minima on the CH_3SNO potential energy surface, and searches for secondary products.

  20. Probing Complex Free-Radical Reaction Pathways of Fuel Model Compounds

    SciTech Connect

    Buchanan III, A C; Kidder, Michelle; Beste, Ariana; Britt, Phillip F

    2012-01-01

    Fossil (e.g. coal) and renewable (e.g. woody biomass) organic energy resources have received considerable attention as possible sources of liquid transportation fuels and commodity chemicals. Knowledge of the reactivity of these complex materials has been advanced through fundamental studies of organic compounds that model constituent substructures. In particular, an improved understanding of thermochemical reaction pathways involving free-radical intermediates has arisen from detailed experimental kinetic studies and, more recently, advanced computational investigations. In this presentation, we will discuss our recent investigations of the fundamental pyrolysis pathways of model compounds that represent key substructures in the lignin component of woody biomass with a focus on molecules representative of the dominant beta-O-4 aryl ether linkages. Additional mechanistic insights gleaned from DFT calculations on the kinetics of key elementary reaction steps will also be presented, as well as a few thoughts on the significant contributions of Jim Franz to this area of free radical chemistry.

  1. Generation of polymerase chain reaction-specific probes for library screening using single degenerate primers.

    PubMed

    Hommes, N G; Arp, D J; Sayavedra-Soto, L A

    1995-03-01

    Degenerate oligonucleotide primers were made to peptide sequences from hydroxylamine oxidoreductase (HAO) from Nitrosomonas europaea. The primers were used singly in PCR reactions to amplify portions of the gene for HAO from genomic DNA. Southern hybridizations using fragments amplified with each primer showed that they labeled the same genomic DNA fragments. The PCR-amplified fragments were successfully used to screen a gene library for clones containing the HAO gene. The method of isolating genes by PCR with single primers has general utility.

  2. Transition state models for probing stereoinduction in Evans chiral auxiliary-based asymmetric aldol reactions.

    PubMed

    Shinisha, C B; Sunoj, Raghavan B

    2010-09-08

    The use of chiral auxiliaries is one of the most fundamental protocols employed in asymmetric synthesis. In the present study, stereoselectivity-determining factors in a chiral auxiliary-based asymmetric aldol reaction promoted by TiCl(4) are investigated by using density functional theory methods. The aldol reaction between chiral titanium enolate [derived from Evans propionyl oxazolidinone (1a) and its variants oxazolidinethione (1b) and thiazolidinethione (1c)] and benzaldehyde is examined by using transition-state modeling. Different stereochemical possibilities for the addition of titanium enolates to aldehyde are compared. On the basis of the coordination of the carbonyl/thiocarbonyl group of the chiral auxiliary with titanium, both pathways involving nonchelated and chelated transition states (TSs) are considered. The computed relative energies of the stereoselectivity-determining C-C bond formation TSs in the nonchelated pathway, for both 1a and 1c, indicate a preference toward Evans syn aldol product. The presence of a ring carbonyl or thiocarbonyl group in the chiral auxiliary renders the formation of neutral TiCl(3)-enolate, which otherwise is energetically less favored as compared to the anionic TiCl(4)-enolate. Hence, under suitable conditions, the reaction between titanium enolate and aldehyde is expected to be viable through chelated TSs leading to the selective formation of non-Evans syn aldol product. Experimentally known high stereoselectivity toward Evans syn aldol product is effectively rationalized by using the larger energy differences between the corresponding diastereomeric TSs. In both chelated and nonchelated pathways, the attack by the less hindered face of the enolate on aldehyde through a chair-like TS with an equatorial disposition of the aldehydic substituent is identified as the preferred mode. The steric hindrance offered by the isopropyl group and the possible chelation are identified as the key reasons behind the interesting

  3. The influence of CO adsorption on the surface composition of cobalt/palladium alloys

    NASA Astrophysics Data System (ADS)

    Murdoch, A.; Trant, A. G.; Gustafson, J.; Jones, T. E.; Noakes, T. C. Q.; Bailey, P.; Baddeley, C. J.

    2016-04-01

    Segregation induced by the adsorption of gas phase species can strongly influence the composition of bimetallic surfaces and can therefore play an important role in influencing heterogeneous catalytic reactions. The addition of palladium to cobalt catalysts has been shown to promote Fischer Tropsch catalysis. We investigate the adsorption of CO onto bimetallic CoPd surfaces on Pd{111} using a combination of reflection absorption infrared spectroscopy and medium energy ion scattering. The vibrational frequency of adsorbed CO provides crucial information on the adsorption sites adopted by CO and medium energy ion scattering probes the surface composition before and after CO exposure. We show that cobalt segregation is induced by CO adsorption and rationalise these observations in terms of the strength of adsorption of CO in various surface adsorption sites.

  4. Synthesis, Characterization And Optoelectrical Properties of Cd Doped ZnO Poly Crystalline Nano Thin Films Deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) Method

    NASA Astrophysics Data System (ADS)

    Bindal, Nitin; Sharma, Manisha; Kumar, H.; Sharma, S.; Upadhaya, S. C.

    2011-12-01

    Cadmium doped zinc oxide polycrystalline nano thin films were deposited on microscopic glass substrates following a modified chemical bath technique called Successive Ionic Layer Adsorption and Reaction (SILAR). Cadmium doping was found to increase the film grown rate. The X-ray diffraction pattern showed that films have polycrystalline nature. The SEM image revealed growth of large crystallites perpendicular to the substrates. The optical transmittance spectra indicate that these thin films have the direct energy band gap. The resistivity of these films decreased with increase in the temperature for all compositions, which confirmed the semiconducting nature of films.

  5. Morphological variations of Mn-doped ZnO dilute magnetic semiconductors thin films grown by succesive ionic layer by adsorption reaction method.

    PubMed

    Balamurali, Subramanian; Chandramohan, Rathinam; Karunakaran, Marimuthu; Mahalingam, Thayan; Parameswaran, Padmanaban; Suryamurthy, Nagamani; Sukumar, Arcod Anandhakrishnan

    2013-07-01

    Transparent conducting Mn-doped ZnO thin films have been prepared by successive ionic layer by adsorption reaction (SILAR) method. The deposition conditions have been optimized based on their structure and on the formation of smoothness, adherence, and stoichiometry. The results of the studies by X-ray diffraction, scanning electron microscope (SEM), reveal the varieties of structural and morphological modifications feasible with SILAR method. The X-ray diffraction patterns confirm that the ZnO:Mn has wurtzite structure. The interesting morphological variations with dopant concentration are observed and discussed. The films' quality is comparable with those grown with physical methods and is suitable for spintronic applications.

  6. Coke formation in a zeolite crystal during the methanol-to-hydrocarbons reaction as studied with atom probe tomography

    DOE PAGES

    Schmidt, Joel E.; Poplawsky, Jonathan D.; Mazumder, Baishakhi; ...

    2016-08-03

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using 13C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30–60 13C atoms. These clusters correlate with local increases in Brønsted acid sitemore » density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. Here, this nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.« less

  7. Coke formation in a zeolite crystal during the methanol-to-hydrocarbons reaction as studied with atom probe tomography

    SciTech Connect

    Schmidt, Joel E.; Poplawsky, Jonathan D.; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D. A. Matthijs; Meirer, Florian; Bare, Simon R.; Weckhuysen, Bert M.

    2016-08-03

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using 13C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30–60 13C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. Here, this nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.

  8. Short-range plasmonic nanofocusing within submicron regimes facilitates in situ probing and promoting of interfacial reactions

    NASA Astrophysics Data System (ADS)

    Yu, Chen-Chieh; Lin, Keng-Te; Su, Pao-Yun; Wang, En-Yun; Yen, Yu-Ting; Chen, Hsuen-Li

    2016-02-01

    In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this system performs various functions. For example, the nanofocusing of submicron-short-range SPPs is used to enhance the Raman signals of gas molecules adsorbed on the dielectric NPs. In addition, the presence of the local strong electromagnetic field accelerates the rates of interfacial reactions on the surfaces of the dielectric NPs. Therefore, the proposed nanofocusing configuration can both promote and probe interfacial reactions simultaneously. Herein, the promotion and probing of the desorption of EtOH vapor are described, as well as the photodegradation of methylene blue. Moreover, the nanofocusing of SPPs is demonstrated on an aluminum surface in both the visible and UV regimes, a process that has not been achieved using conventional tapered waveguide nanofocusing structures. Therefore, the nanofocusing of submicron-short-range SPPs by dielectric NPs on plasmonic nanostructures is not limited to low-loss noble metals. Accordingly, this system has potential for use in light management and on-chip green devices and sensors.In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this

  9. TaqMan probe real-time polymerase chain reaction assay for the quantification of canine DNA in chicken nugget.

    PubMed

    Rahman, Md Mahfujur; Hamid, Sharifah Bee Abd; Basirun, Wan Jefrey; Bhassu, Subha; Rashid, Nur Raifana Abdul; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Ali, Md Eaqub

    2016-01-01

    This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.

  10. Modeling and In-situ Probing of Surface Reactions in Atomic Layer Deposition.

    PubMed

    Zheng, Yuanxia; Hong, Sungwook; Psofogiannakis, George M; Rayner, G Bruce; Datta, Suman; van Duin, Adri C T; Engel-Herbert, Roman

    2017-04-05

    Atomic layer deposition (ALD) has matured into a preeminent and highly scalable thin film deposition technique, offering an economic route to integrate chemically dissimilar materials with excellent thickness control down to the sub-nanometer regime. Contrary to its extensive applications, a quantitative and comprehensive understanding of the reaction processes seems intangible. Complex and manifold reaction pathways are possible which are strongly affected by the surface chemical state. Here we report a combined modeling and experimental approach utilizing ReaxFF reactive force field simulation and in-situ real-time spectroscopic ellipsome-try to gain insights into the ALD process of Al2O3 from trimethylaluminum and water on hy-drogenated and oxidized Ge(100) surfaces. We deciphered the origin for the different peculiari-ties during initial ALD cycles for the deposition on both surfaces. While simulations predicted a nucleation delay for hydrogenated Ge(100), a self-cleaning effect was discovered on oxidized Ge(100) surfaces, forming an intermixed Al2O3/GeOx layer that effectively suppressed oxygen diffusion into Ge. In-situ spectroscopic ellipsometry in tandem with ex-situ atomic force mi-croscopy and X-ray photoelectron spectroscopy confirmed these simulation results. Electrical impedance characterizations evidenced the critical role of the intermixed Al2O3/GeOx layer to achieve electrically well behaved dielectric/Ge interfaces with low interface trap density. The combined approach can be generalized to comprehend the deposition and reaction kinetics of other ALD precursor and surface chemistry, offering a path towards a theory-aided rational de-sign of ALD processes at a molecular level.

  11. Mirrored Fragmentation Reactions--A New Technique for Probing Isospin Symmetry in Exotic Nuclei

    SciTech Connect

    Brown, J. R.; Bentley, M. A.; Taylor, M. J.; Aldrich, P.; Bazin, D.; Cook, J. M.; Diget, C. A.; Gade, A.; Glasmacher, T.; McDaniel, S. M.; Ratkiewicz, A.; Siwek, K.; Weisshaar, D.; Pritychenko, B.

    2008-05-12

    Gamma decays have been observed for the first time in the T{sub z} = -3/2 nucleus {sup 53}Ni. This represents the first gamma-spectroscopy of a T{sub z} = -3/2 nucleus heavier than A = 33. The nucleus was produced via a two-step fragmentation process, along with its mirror {sup 53}Mn. Differences in excitation energy between isobaric analogue states have been calculated and a preliminary interpretation attempted; shell model calculations are required to further understand these results. This work represents the first study of isobaric analogue states via mirrored fragmentation reactions and demonstrates the power of this new technique.

  12. Reaction-in-Flight Neutrons as a Probe of Hydrodynamical Mixing at NIF

    NASA Astrophysics Data System (ADS)

    Hayes, Anna; Grim, Gary; Jungman, Jerry

    2009-10-01

    At the National Ignition Facility (NIF) reaction-in-flight (RIF) neutrons above the main 14 MeV peak make up about 0.5% of the neutrons production. In this talk we present calculations that show the sensitivity of the RIF neutron production to hydrodynamical mixing of the outer shell of the NIF capsule into the main dt fuel. This mixing generally quenches the dt burn and could be a serious mode of ignition failure. These calculations suggest that a time-of-flight measurement or radiochemical measurement of the RIF neutrons could be used as a robust indicator of the degree o mix taking place in an imploded NIF capsule.

  13. Neutron Halo Structure at the Limit of Stability Probed by Breakup Reactions

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    2013-08-01

    Atomic nuclei along the neutron drip line are investigated experimentally by breakup reactions of the rare isotope beams. Such exotic nuclei often show the neutron halo structure, which is the main focus of this paper. Characteristic features of the Coulomb and nuclear breakup at intermediate to high incident energies are described. Then, recent experimental results on halo nuclei, mainly on 31Ne, obtained at the new-generation RI-beam facility, RIBF (RI Beam factory) at RIKEN, are presented. Perspectives for the breakup experiments using the new facility SAMURAI at RIBF ara also discussed.

  14. Ultrafast Pump-Probe Study of Halide Dependence in Primary Reaction Dynamics of Halorhodopsin

    NASA Astrophysics Data System (ADS)

    Nakamura, Takumi; Takeuchi, Satoshi; Shibata, Mikihiro; Kandori, Hideki; Tahara, Tahei

    2007-03-01

    Halorhodopsin is a retinal protein in Haloarchaeal cell membrane. The light-induced all-trans to 13-cis isomerization of the retinal chromophore triggers unidirectional chloride-ion pump in millisecond timescale. Here, we present pump-probe study of the primary ultrafast dynamics of Natronobacterium pharaonis halorhodopsin that contains Cl^-, Br^- or I^-. All the temporal behaviors of the S1 absorption, ground-state bleaching, and stimulated emission consisted of three components, and their time constants showed halide-ion dependency. The ˜50-fs component corresponds to the spectral shift of the S1 absorption and stimulated emission bands, which is due to the wavepacket motion from the Franck-Condon region, forming the reactive and nonreactive S1 states. Referring to previous reports, the ˜2-ps component is assignable to the isomerization process from the reactive S1 state to the ground-state 13-cis form via the conical intersection, while the ˜5-ps component to the internal conversion of the nonreactive S1 state. Quantitative analysis indicated that the isomerization quantum yield increased in order of Cl^-, Br^- and I^-. On the basis of the halide-ion dependence observed, we discuss the relation between the initial halide-ion pump process and the isomerization mechanism.

  15. A computational study on the adsorption configurations and reactions of SiHx(x = 1-4) on clean and H-covered Si(100) surfaces

    NASA Astrophysics Data System (ADS)

    Le, Thong N.-M.; Raghunath, P.; Huynh, Lam K.; Lin, M. C.

    2016-11-01

    Possible adsorption configurations of H and SiHx (x = 1 - 4) on clean and H-covered Si(100) surfaces are determined by using spin-polarized DFT calculations. The results show that, on the clean surface, the gas-phase hydrogen atom and SiH3 radicals effectively adsorb on the top sites, while SiH and SiH2 prefer the bridge sites of the first layer. Another possibility for SiH is to reside on the hollow sites with a triple-bond configuration. For a partially H-coverd Si(100) surface, the mechanism is similar but with higher adsorption energies in most cases. This suggests that the surface species become more stable in the presence of surface hydrogens. The minimum energy paths for the adsorption/migration and reactions of H/SiHx species on the surfaces are explored using the climbing image-nudged elastic band method. The competitive surface processes for Si thin-film formation from SiHx precursors are also predicted. The study reveals that the migration of hydrogen adatom is unimportant with respect to leaving open surface sites because of its high barriers (>29.0 kcal/mol). Alternatively, the abstraction of hydrogen adatoms by H/SiHx radicals is more favorable. Moreover, the removal of hydrogen atoms from adsorbed SiHx, an essential step for forming Si layers, is dominated by abstraction rather than the decomposition processes.

  16. F-18 Labeled RGD Probes Based on Bioorthogonal Strain-Promoted Click Reaction for PET Imaging.

    PubMed

    Kim, Hye Lan; Sachin, Kalme; Jeong, Hyeon Jin; Choi, Wonsil; Lee, Hyun Soo; Kim, Dong Wook

    2015-04-09

    A series of fluorine-substituted monomeric and dimeric cRGD peptide derivatives, such as cRGD-ADIBOT-F (ADIBOT = azadibenzocyclooctatriazole), di-cRGD-ADIBOT-F, cRGD-PEG5-ADIBOT-F, and di-cRGD-PEG5-ADIBOT-F, were prepared by strain-promoted alkyne azide cycloaddition (SPAAC) reaction of the corresponding aza-dibenzocyclooctyne (ADIBO) substituted peptides with a fluorinated azide 3. Among these cRGD derivatives, di-cRGD-PEG5-ADIBOT-F had the highest binding affinity in a competitive binding assay compared to other derivatives and even the original cRGDyk. On the basis of the in vitro study results, di-cRGD-PEG5-ADIBOT-(18)F was prepared from a SPAAC reaction with (18)F-labeled azide and subsequent chemo-orthogonal scavenger-assisted separation without high performance liquid chromatography (HPLC) purification in 92% decay-corrected radiochemical yield (dcRCY) with high specific activity for further in vivo positron emission tomography (PET) imaging study. In vivo PET imaging study and biodistribution data showed that this radiotracer allowed successful visualization of tumors with good tumor-to-background contrast and significantly higher tumor uptake compared to other major organs.

  17. Glutathiolactaldehyde as a probe of the overall stereochemical course of glyoxalase-I catalyzed reactions

    SciTech Connect

    Brush, E.J.; Kozarich, J.W.

    1986-05-01

    The overall stereochemical course of the reactions catalyzed by glyoxalase-I (GX-I) has remained elusive as the substrates are equilibrium mixtures of rapidly interconverting diastereomeric thiohemiacetals. However, with the discovery of inverse substrate processing by Kozarich and coworkers, it is possible to design GX-I substrate analogs that are intrinsically more stable than the thiohemiacetals. Hence, Chari and Kozarich reported that glutathiohydroxyacetone (GHA, GSCH/sub 2/COCH/sub 2/OH) undergoes GX-I catalyzed exchange of the pro-S hydroxymethyl proton with solvent deuterium. Their data suggest that GX-I processes a single diastereomeric thiohemiacetal, and are consistent with a cis-enediol intermediate. To test this hypothesis and to follow the overall stereochemistry on a single substrate, they have prepared glutathiolactaldehyde (GLA, GSCH/sub 2/CHOHCHO) as a potential inverse substrate. Human erythrocyte GX-I catalyzes the isomerization of GLA to GHA as evidenced by UV and NMR spectra of the product. Solvent deuterium is incorporated into the hydroxymethyl position, and NMR data suggest that incorporation is stereospecific. Furthermore, 50% of the expected amount of GHA is produced indicating that only one diastereomer of GLA is processed by GX-I. Identification of the absolute stereochemistry of the substrate diastereomer will lead to a clarification of the overall stereochemical and mechanistic course of GX-I catalyzed reactions.

  18. Probing Nonadiabaticity in the Proton-Coupled Electron Transfer Reaction Catalyzed by Soybean Lipoxygenase

    PubMed Central

    2014-01-01

    Proton-coupled electron transfer (PCET) plays a vital role in many biological and chemical processes. PCET rate constant expressions are available for various well-defined regimes, and determining which expression is appropriate for a given system is essential for reliable modeling. Quantitative diagnostics have been devised to characterize the vibronic nonadiabaticity between the electron–proton quantum subsystem and the classical nuclei, as well as the electron–proton nonadiabaticity between the electrons and proton(s) within the quantum subsystem. Herein these diagnostics are applied to a model of the active site of the enzyme soybean lipoxygenase, which catalyzes a PCET reaction that exhibits unusually high deuterium kinetic isotope effects at room temperature. Both semiclassical and electronic charge density diagnostics illustrate vibronic and electron–proton nonadiabaticity for this PCET reaction, supporting the use of the Golden rule nonadiabatic rate constant expression with a specific form of the vibronic coupling. This type of characterization will be useful for theoretical modeling of a broad range of PCET processes. PMID:25258676

  19. Probing Quark-Gluon Structure of Matter with e-p and e-A Reactions

    SciTech Connect

    Jian-Ping Chen

    2011-11-01

    Understanding the strong interaction (QCD) in the truly strong ('non-perturbative') region remains a major challenge in modern physics. Nucleon and nuclei provide natural laboratories to study the strong interaction. The quark-gluon structure of the nucleon and nuclei are important by themselves since they are the main (>99%) part of the visible world. With electroweak interaction well-understood, e-p and e-A are clean means to probe the nucleon and nuclear structure and to study the strong interaction (QCD). Inclusive Deep-Inelastic Scattering (DIS) experiments have provided us with the most extensive information on the unpolarized and longitudinally-polarized parton (quark and gluon) distributions (PDFs). It has becoming clear that transverse spin and transverse structure (both transverse spatial structure via generalized parton distributions (GPDs) and transverse momentum structure via transverse- momentum-dependent distributions (TMDs)) study are crucial for a more complete understanding of the nucleon structure and the dynamics of the strong interaction(QCD). The transverse spin, GPDs and TMDs have been the subjects of increasingly intense theoretical and experimental study recently. With 12 GeV energy upgrade, Jefferson Lab (JLab) will provide the most precise multi-dimensional map of the TMDs and GPDs in the valence quark region through Semi-Inclusive DIS (SIDIS) and Deep-Exclusive experiments, providing a 3-d partonic picture of the nucleon in momentum and spatial spaces. The precision information on TMDs and GPDs will provide access to the quark orbital angular momentum and its correlation with the quark and the nucleon spins. The planned future Electron-Ion Collider (EIC) will enable a precision study of the TMDs and GPDs of the sea quarks and gluons, in addition to completing the study in the valence region. The EIC will also open a new window to study the role of gluons in nuclei.

  20. Multi-Isotope Analysis as a Natural Reaction Probe of Biodegradation Mechanisms of 1,2- Dichloroethane

    NASA Astrophysics Data System (ADS)

    Hirschorn, S. K.; Dinglasan-Panlilio, M.; Edwards, E. A.; Lacrampe-Couloume, G.; Sherwood Lollar, B.

    2006-12-01

    1,2-Dichloroethane (1,2-DCA), a chlorinated aliphatic hydrocarbon, is an EPA priority pollutant and a widespread groundwater contaminant. Stable isotope fractionation during biodegradation of 1,2-DCA occurs due to differences in the reaction rates of heavy versus light atoms present at a reacting bond in the 1,2-DCA molecule. In general, light isotopic bonds react more quickly, producing a relative enrichment in the heavy isotope in the remaining contaminant pool. Compound specific isotope analysis has the potential to demonstrate the occurrence and extent of biodegradation at chlorinated solvent contaminated groundwater sites. In this study, stable carbon isotope fractionation was used as a novel reaction probe to provide information about the mechanism of 1,2-DCA biodegradation. Isotopic fractionation was measured during 1,2-DCA degradation by a microbial culture capable of degrading 1,2-DCA under O2-reducing and NO3-reducing conditions. The microbial culture produced isotopic enrichment values that are not only large and reproducible, but are the same whether O2 or NO3 was used as an electron acceptor. The mean isotopic enrichment value of -25.8 permil measured for the microbial culture during 1,2-DCA degradation under both O2 and NO3- reducing conditions can be converted into a kinetic isotope effect (KIE) value to relate the observed isotopic fractionation to the mechanism of degradation. This KIE value (1.05) is consistent with degradation via a hydrolysis (SN2) reaction under both electron-accepting conditions. Isotope analysis was able to provide a first line of evidence for the reaction mechanism of 1,2-DCA biodegradation by the microbial culture. Using a multi-isotope approach incorporating both carbon and hydrogen isotopic data, compound specific isotope analysis also has the potential to determine degradation mechanisms for 1,2-DCA under aerobic conditions where 1,2-DCA is known to be degraded by two distinct enzymatic pathways. Biodegradation of 1

  1. Surface sites on Pt-CeO2 mixed oxide catalysts probed by CO adsorption: a synchrotron radiation photoelectron spectroscopy study.

    PubMed

    Neitzel, Armin; Lykhach, Yaroslava; Skála, Tomáš; Tsud, Nataliya; Vorokhta, Mykhailo; Mazur, Daniel; Prince, Kevin C; Matolín, Vladimír; Libuda, Jörg

    2014-12-07

    By means of synchrotron radiation photoemission spectroscopy, we have investigated Pt-CeO2 mixed oxide films prepared on CeO2(111)/Cu(111). Using CO molecules as a probe, we associate the corresponding surface species with specific surface sites. This allows us to identify the changes in the composition and morphology of Pt-CeO2 mixed oxide films caused by annealing in an ultrahigh vacuum. Specifically, two peaks in C 1s spectra at 289.4 and 291.2 eV, associated with tridentate and bidentate carbonate species, are formed on the nanostructured stoichiometric CeO2 film. The peak at 290.5-291.0 eV in the C 1s spectra indicates the onset of restructuring, i.e. coarsening, of the Pt-CeO2 film. This peak is associated with a carbonate species formed near an oxygen vacancy. The onset of cerium oxide reduction is indicated by the peak at 287.8-288.0 eV associated with carbonite species formed near Ce(3+) cations. The development of surface species on the Pt-CeO2 mixed oxides suggests that restructuring of the films occurs above 300 K irrespective of Pt loadings. We do not find any adsorbed CO species associated with Pt(4+) or Pt(2+). The onset of Pt(2+) reduction is indicated by the peak at 286.9 eV in the C 1s spectra due to CO adsorption on metallic Pt particles. The thermal stability of Pt(2+) in Pt-CeO2 mixed oxide depends on Pt loading. We find excellent stability of Pt(2+) for 12% Pt content in the CeO2 film, whereas at a Pt concentration of 25% in the CeO2 film, a large fraction of the Pt(2+) is converted into metallic Pt particles above 300 K.

  2. Microfluidic technology platforms for synthesizing, labeling and measuring the kinetics of transport and biochemical reactions for developing molecular imaging probes

    SciTech Connect

    Phelps, Michael E.

    2009-09-01

    Radiotracer techniques are used in environmental sciences, geology, biology and medicine. Radiotracers with Positron Emission Tomography (PET) provided biological examinations of ~3 million patients 2008. Despite the success of positron labeled tracers in many sciences, there is limited access in an affordable and convenient manner to develop and use new tracers. Integrated microfluidic chips are a new technology well matched to the concentrations of tracers. Our goal is to develop microfluidic chips and new synthesis approaches to enable wide dissemination of diverse types of tracers at low cost, and to produce new generations of radiochemists for which there are many unfilled jobs. The program objectives are to: 1. Develop an integrated microfluidic platform technology for synthesizing and 18F-labeling diverse arrays of different classes of molecules. 2. Incorporate microfluidic chips into small PC controlled devices (“Synthesizer”) with a platform interfaced to PC for electronic and fluid input/out control. 3. Establish a de-centralized model with Synthesizers for discovering and producing molecular imaging probes, only requiring delivery of inexpensive [18F]fluoride ion from commercial PET radiopharmacies vs the centralized approach of cyclotron facilities synthesizing and shipping a few different types of 18F-probes. 4. Develop a position sensitive avalanche photo diode (PSAPD) camera for beta particles embedded in a microfluidic chip for imaging and measuring transport and biochemical reaction rates to valid new 18F-labeled probes in an array of cell cultures. These objectives are met within a research and educational program integrating radio-chemistry, synthetic chemistry, biochemistry, engineering and biology in the Crump Institute for Molecular Imaging. The Radiochemistry Training Program exposes PhD and post doctoral students to molecular imaging in vitro in cells and microorganisms in microfluidic chips and in vivo with PET, from new technologies

  3. Beyond the Protein Matrix: Probing Cofactor Variants in a Baeyer-Villiger Oxygenation Reaction

    PubMed Central

    Martinoli, Christian; Dudek, Hanna M.; Orru, Roberto; Edmondson, Dale E.; Fraaije, Marco W.; Mattevi, Andrea

    2014-01-01

    A general question in biochemistry is the interplay between the chemical properties of cofactors and the surrounding protein matrix. Here, the functions of NADP+ and FAD are explored by investigation of a representative monooxygenase reconstituted with chemically-modified cofactor analogues. Like pieces of a jigsaw puzzle, the enzyme active site juxtaposes the flavin and nicotinamide rings, harnessing their H-bonding and steric properties to finely construct an oxygen-reacting center that restrains the flavin-peroxide intermediate in a catalytically-competent orientation. Strikingly, the regio- and stereoselectivities of the reaction are essentially unaffected by cofactor modifications. These observations indicate a remarkable robustness of this complex multi-cofactor active site, which has implications for enzyme design based on cofactor engineering approaches. PMID:24443704

  4. Developing Activity Localization Fluorescence Peptide Probe Using Thiol-Ene Click Reaction for Spatially Resolved Imaging of Caspase-8 in Live Cells.

    PubMed

    Liu, Wei; Liu, Si-Jia; Kuang, Yong-Qing; Luo, Feng-Yan; Jiang, Jian-Hui

    2016-08-02

    Small molecule probes suitable for high-resolution fluorescence imaging of enzyme activity pose a challenge in chemical biology. We developed a novel design of activity localization fluorescence (ALF) peptide probe, which enables spatially resolved, highly sensitive imaging of peptidase in live cells. The ALF probe was synthesized by a facile thiol-ene click reaction of a cysteine-appended peptide with an acryloylated fluorophore. Upon cleavage by peptidase, the probe undergoes a seven-membered intramolecular cyclization and releases the fluorophore with the excited-state intramolecular photon transfer (ESIPT) effect. A highly fluorescent, insoluble aggregate was formed around the enzyme, which facilitates high-sensitivity and high-resolution imaging. This design is demonstrated for detection of caspase-8 activation. The results show that our design allows easy, high-yield synthesis of the probe, and the probe affords high sensitivity for caspase-8 detection. Live cell imaging reveals that the probe is able to render highly localized and high-contrast fluorescence signal for caspase-8. Our design holds the potential as a generally applicable strategy for developing high-sensitivity and high-resolution imaging peptide probes in cell biology and diagnostics.

  5. Power spectra as a diagnostic tool in probing statistical/nonstatistical behavior in unimolecular reactions

    NASA Astrophysics Data System (ADS)

    Chang, Xiaoyen Y.; Sewell, Thomas D.; Raff, Lionel M.; Thompson, Donald L.

    1992-11-01

    The possibility of utilizing different types of power spectra obtained from classical trajectories as a diagnostic tool to identify the presence of nonstatistical dynamics is explored by using the unimolecular bond-fission reactions of 1,2-difluoroethane and the 2-chloroethyl radical as test cases. In previous studies, the reaction rates for these systems were calculated by using a variational transition-state theory and classical trajectory methods. A comparison of the results showed that 1,2-difluoroethane is a nonstatistical system, while the 2-chloroethyl radical behaves statistically. Power spectra for these two systems have been generated under various conditions. The characteristics of these spectra are as follows: (1) The spectra for the 2-chloroethyl radical are always broader and more coupled to other modes than is the case for 1,2-difluoroethane. This is true even at very low levels of excitation. (2) When an internal energy near or above the dissociation threshold is initially partitioned into a local C-H stretching mode, the power spectra for 1,2-difluoroethane broaden somewhat, but discrete and somewhat isolated bands are still clearly evident. In contrast, the analogous power spectra for the 2-chloroethyl radical exhibit a near complete absence of isolated bands. The general appearance of the spectrum suggests a very high level of mode-to-mode coupling, large intramolecular vibrational energy redistribution (IVR) rates, and global statistical behavior. (3) The appearance of the power spectrum for the 2-chloroethyl radical is unaltered regardless of whether the initial C-H excitation is in the CH2 or the CH2Cl group. This result also suggests statistical behavior. These results are interpreted to mean that power spectra may be used as a diagnostic tool to assess the statistical character of a system. The presence of a diffuse spectrum exhibiting a nearly complete loss of isolated structures indicates that the dissociation dynamics of the molecule will

  6. Adsorption and reactions of dimethyl and diethyl ethers on Mo 2C/Mo(1 0 0)

    NASA Astrophysics Data System (ADS)

    Farkas, A. P.; Solymosi, F.

    2008-04-01

    The adsorption, desorption and dissociation of dimethyl ether and diethyl ether on Mo 2C/Mo(1 0 0) have been investigated by work function, thermal desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The adsorption of both molecules at 100 K caused a significant decrease in the work function of the Mo 2C/Mo(1 0 0) surface. In the case of dimethyl ether almost 90% of the adsorbed monolayer desorbed intact with a Tp = 286 K. Another part decomposed to CO ( Tp = 330 and 960 K) and H 2 ( Tp = 330 and 400 K). The desorption of diethyl ether at monolayer occurred with Tp = 256 and 340 K. Another fraction underwent decomposition as indicated by the release of CO ( Tp = 336 and 436 K) and H 2 ( Tp = 400 K). In addition, the formation of ethylene ( Tp = 342 K) and a very small amount of methane ( Tp = 380 K) was also observed. HREEL spectra of both ethers confirmed their molecular adsorption at 100 K. From the spectral changes occurred upon increasing the exposures and in off-specular direction some conclusions were drawn on the bonding of the adsorbed molecules. Analysis of the HREEL spectra of the annealed layers suggested that in the primary steps the adsorbed ethers dissociate to methyl and methoxy (dimethyl ether), and to ethyl and ethoxy (diethyl ether) species, which react further to yield the desorption products.

  7. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction

    SciTech Connect

    Weiss, P.M.; Urbauer, J.L.; Cleland, W.W. ); Gavva, S.R.; Harris, B.G.; Cook, P.F. )

    1991-06-11

    Deuterium isotope effects and {sup 13}C isotope effects with deuterium- and protium-labeled malate have been obtained for both NAD- and NADP-malic enzymes by using a variety of alternative dinucleotide substrates. With nicotinamide-containing dinucleotides as the oxidizing substrate, the {sup 13}C effect decreases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data are consistent with a stepwise chemical mechanism in which hydride transfer precedes decarboxylation of the oxalacetate intermediate as previously proposed. When dinucleotide substrates such as thio-NAD, 3-nicotinamide rings are used, the {sup 13}C effect increases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data, at face value, are consistent with a change in mechanism from stepwise to concerted for the oxidative decarboxylation portion of the mechanism. However, the increase in the deuterium isotope effect from 1.5 to 3 with a concomitant decrease in the {sup 13}C isotope effect from 1.034 to 1.003 as the dinucleotide substrate is changed suggests that the reaction may still be stepwise with the non-nicotinamide dinucleotides. A more likely explanation is that a {beta}-secondary {sup 13}C isotope effect accompanies hydride transfer as a result of hyperconjugation of the {beta}-carboxyl of malate as the transition state for the hydride transfer step is approached.

  8. Reaction of psoralen with RNA: specificity and use as a probe for secondary-structure analysis

    SciTech Connect

    Thompson, J.F.

    1982-09-01

    A variety of techniques has been used to study how psoralen and its derivatives react with RNA. This information has then been used to analyze the secondary structure of different ribosomal RNAs. Paper electrophoresis at pH 3.5 and 8.8 and HPLC has been used to get high-resolution separation of RNA-psoralen adducts. The separated adducts have been analyzed and shown to be primarily uridine adducts with the psoralen reacted at the furan end. The stereochemistry of the major adducts was determined by NMR. The effect of structural transitions on the number and type of adducts was found for several polymers. The effect of psoralen structure on cross linking ability was analyzed. Charged derivatives formed monoadducts very efficiently but did not produce the level of crosslinking obtainable with lower levels of reaction with uncharged derivatives. Secondary structure analysis of D. melanogaster 5S RNA yielded two definite and two tentative crosslinks which support the generally accepted models for 5S structure. Analysis of E. coli 16S RNA by gel techniques yielded 13 cross-links. Evidence is also presented for an interaction between eukaryotic mRNA (5' cap structure) and 18S RNA (hypermodified base am psi) which serves a function analogous to the Shine-Dalgarno sequence in pro karyotes.

  9. The ({sup 18}O, {sup 16}O) reaction as a probe for nuclear spectroscopy

    SciTech Connect

    Cappuzzello, F.; Bondì, M.; Nicolosi, D.; Tropea, S.; Agodi, A.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; Borello-Lewin, T.; Rodrigues, M. R. D.; De Napoli, M.; Linares, R.

    2014-11-11

    The response of nuclei to the ({sup 18}O, {sup 16}O) two-neutron transfer reaction at 84 MeV incident energy has been systematically studied at the Catania INFN-LNS laboratory. The experiments were performed using several solid targets from light ({sup 9}Be, {sup 11}B, {sup 12,13}C, {sup 16}O, {sup 28}Si) to heavy ones ({sup 58,64}Ni, {sup 120}Sn, {sup 208}Pb). The {sup 16}O ejectiles were detected at forward angles by the MAGNEX magnetic spectrometer. Exploiting the large momentum acceptance (−10%, +14%) and solid angle (50 msr) of the spectrometer, energy spectra were obtained with a relevant yield up to about 20 MeV excitation energy. The application of the powerful trajectory reconstruction technique did allow to get energy spectra with energy resolution of about 150 keV and angular distributions with angular resolution better than 0.3°. A common feature observed with light nuclei is the appearance of unknown resonant structures at high excitation energy. The strong population of these latter together with the measured width can reveal the excitation of a collective mode connected with the transfer of a pair.

  10. Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES.

    PubMed

    Doubaji, Siham; Philippe, Bertrand; Saadoune, Ismael; Gorgoi, Mihaela; Gustafsson, Torbjorn; Solhy, Abderrahim; Valvo, Mario; Rensmo, Håkan; Edström, Kristina

    2016-01-08

    The cathode material P2-Nax Co2/3 Mn2/9 Ni1/9 O2, which could be used in Na-ion batteries, was investigated through synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). Nondestructive analysis was made through the electrode/electrolyte interface of the first electrochemical cycle to ensure access to information not only on the active material, but also on the passivation layer formed at the electrode surface and referred to as the solid permeable interface (SPI). This investigation clearly shows the role of the SPI and the complexity of the redox reactions. Cobalt, nickel, and manganese are all electrochemically active upon cycling between 4.5 and 2.0 V; all are in the 4+ state at the end of charging. Reduction to Co(3+), Ni(3+), and Mn(3+) occurs upon discharging and, at low potential, there is partial reversible reduction to Co(2+) and Ni(2+). A thin layer of Na2 CO3 and NaF covers the pristine electrode and reversible dissolution/reformation of these compounds is observed during the first cycle. The salt degradation products in the SPI show a dependence on potential. Phosphates mainly form at the end of the charging cycle (4.5 V), whereas fluorophosphates are produced at the end of discharging (2.0 V).

  11. Thermochemical properties of the ammonia-water ionized dimer probed by ion-molecule reactions.

    PubMed

    Abdel Azeim, Safwat; van der Rest, Guillaume

    2005-03-24

    The thermochemical properties of some small clusters such as the (H2O)2*+ dimer have already been investigated by both experimental and theoretical methods. The recent method to selectively prepare the ammonia-water ionized dimer [NH3, H2O]*+ (and not its proton transfer isomer [NH4+, OH*]) allowed us to study its chemical reactivity. This study focuses on the charge and proton transfer pathways: Ion-molecule reactions in the cell of an FT-ICR mass spectrometer were carried out with a range of organic compounds. Examination of the reactivity of the [NH3, H2O]*+ ionized dimer versus ionization energy and proton affinity of the neutral reagents shows a threshold in the reactivity in both instances. This leads to a bracketing of thermochemical properties related to the dimer. From these experiments and in agreement with ab initio calculations, the adiabatic recombination energy of the [NH3, H2O]*+ dimer was evaluated at -9.38 +/- 0.04 eV. The proton affinity bracketing required the reevaluation of two reference gas-phase basicity values. The results, in good agreement with the calculation, lead to an evaluation of the proton affinity of the [NH2*, H2O] dimer at 204.4 +/- 0.9 kcal mol(-1). These two experimental values are respectively related to the ionization energy of NH3*+ and to the proton affinity of NH2* by the difference in single water molecule solvation energies of ionized ammonia, of neutral ammonia, and of the NH2* radical.

  12. Modification of 1,2,4,5-tetrazine with cationic rhenium(I) polypyridine units to afford phosphorogenic bioorthogonal probes with enhanced reaction kinetics.

    PubMed

    Choi, Alex Wing-Tat; Tso, Karson Ka-Shun; Yim, Vicki Man-Wai; Liu, Hua-Wei; Lo, Kenneth Kam-Wing

    2015-02-25

    New phosphorogenic bioorthogonal probes derived from mononuclear and binuclear rhenium(I) polypyridine complexes containing a 1,2,4,5-tetrazine moiety were designed; these complexes displayed substantial dienophile-induced emission enhancement, and accelerated reaction kinetics and could target a protein conjugate in living cells.

  13. Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses.

    PubMed

    Li, Qian; Batchelor-McAuley, Christopher; Compton, Richard G

    2010-06-03

    The electrochemical oxidation of guanine is studied in aqueous media at various carbon electrodes. Specifically edge plane pyrolytic graphite (EPPG), basal plane pyrolytic graphite (BPPG), and highly ordered pyrolytic graphite (HOPG) were used, and the voltammetry was found to vary significantly. In all cases, signals characteristic of adsorbed guanine were seen and the total charge passed varied from surface to surface in the order roughened BPPG > EPPG > BPPG > HOPG. It is of note that the peak height for the EPPG electrode is less than that found for roughened BPPG; furthermore, across the series of electrodes, there is a significant decrease in peak potential with increasing density of edge plane sites present at the electrode surface. This leads us to conclude that there are two dominating and controlling factors present: (i) the density of basal plane sites on which guanine can adsorb and (ii) the density of edge plane sites necessary for the electro-oxidation of the analyte. This conclusion is corroborated through further experiments with multi- and single-walled carbon nanotubes. Adsorption was seen to be enhanced by modification of the EPPG surface with alumina particles, and as such, increased peak signals were observed in their presence. It is further reported that via the pre-adsorption of acetone onto the graphite surface that the adsorption of guanine may be blocked, resulting in a diffusional voltammetric signal. This diffusional response has been successfully modeled and gives insight into the complex -4e(-), -4H(+) oxidation mechanism; specifically, it enables explanation of the observed change in rate-determining step with scan rate. The oxidation of guanine first proceeds via a two-electron oxidation followed by a chemical step to form 8-oxoguanine, then 8-oxoguanine is then further oxidized to form nonelectroactive products. The change is mechanism is attributed to the variation in potential of the first and second electron transfer with scan

  14. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  15. Hybrid adsorptive membrane reactor

    SciTech Connect

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  16. Reaction-Based Off-On Near-infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice.

    PubMed

    Tan, Yi; Zhang, Ling; Man, Ka Ho; Peltier, Raoul; Chen, Ganchao; Zhang, Huatang; Zhou, Liyi; Wang, Feng; Ho, Derek; Yao, Shao Q; Hu, Yi; Sun, Hongyan

    2017-03-01

    Alkaline phosphatases are a group of enzymes that play important roles in regulating diverse cellular functions and disease pathogenesis. Hence, developing fluorescent probes for in vivo detection of alkaline phosphatase activity is highly desirable for studying the dynamic phosphorylation in living organisms. Here, we developed the very first reaction-based near-infrared (NIR) probe (DHXP) for sensitive detection of alkaline phosphatase activity both in vitro and in vivo. Our studies demonstrated that the probe displayed an up to 66-fold fluorescence increment upon incubation with alkaline phosphatases, and the detection limit of our probe was determined to be 0.07 U/L, which is lower than that of most of alkaline phosphatase probes reported in literature. Furthermore, we demonstrated that the probe can be applied to detecting alkaline phosphatase activity in cells and mice. In addition, our probe possesses excellent biocompatibility and rapid cell-internalization ability. In light of these prominent properties, we envision that DHXP will add useful tools for investigating alkaline phosphatase activity in biomedical research.

  17. Hydrogen Surface Reactions and Adsorption Studied on Y2O3, YSZ, and ZrO2

    PubMed Central

    2014-01-01

    The surface reactivity of Y2O3, YSZ, and ZrO2 polycrystalline powder samples toward H2 has been comparatively studied by a pool of complementary experimental techniques, comprising volumetric methods (temperature-programmed volumetric adsorption/oxidation and thermal desorption spectrometry), spectroscopic techniques (in situ electric impedance and in situ Fourier-transform infrared spectroscopy), and eventually structural characterization methods (X-ray diffraction and scanning electron microscopy). Reduction has been observed on all three oxides to most likely follow a surface or near-surface-limited mechanism involving removal of surface OH-groups and associated formation of water without formation of a significant number of anionic oxygen vacancies. Partly reversible adsorption of H2 was proven on the basis of molecular H2 desorption. Dictated by the specific hydrophilicity of the oxide, readsorption of water eventually takes place. The inference of this surface-restricted mechanism is further corroborated by the fact that no bulk structural and/or morphological changes were observed upon reduction even at the highest reduction temperatures (1173 K). We anticipate relevant implications for the use of especially YSZ in fuel cell research, since in particular the chemical state and structure of the surface under typical reducing high-temperature conditions affects the operation of the entire cell. PMID:24791182

  18. Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface-Enhanced Raman Spectroscopy

    DOE PAGES

    Wu, Yiren; Su, Dong; Qin, Dong

    2017-02-22

    Here, we report the synthesis of bifunctional Ag@SiO2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl4 solution into an aqueous suspension of Ag@SiO2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO2 sea. Furthermore, by controlling the amount of HAuCl4 titrated into the reaction system, themore » Au islands can be made to pass through and protrude from the SiO2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O2 from air in the same reaction system.« less

  19. Theoretical and Experimental Investigation of Thermodynamics and Kinetics of Thiol-Michael Addition Reactions: A Case Study of Reversible Fluorescent Probes for Glutathione Imaging in Single Cells.

    PubMed

    Chen, Jianwei; Jiang, Xiqian; Carroll, Shaina L; Huang, Jia; Wang, Jin

    2015-12-18

    Density functional theory (DFT) was applied to study the thermodynamics and kinetics of reversible thiol-Michael addition reactions. M06-2X/6-31G(d) with the SMD solvation model can reliably predict the Gibbs free energy changes (ΔG) of thiol-Michael addition reactions with an error of less than 1 kcal·mol(-1) compared with the experimental benchmarks. Taking advantage of this computational model, the first reversible reaction-based fluorescent probe was developed that can monitor the changes in glutathione levels in single living cells.

  20. Different Adsorption Behavior of Rare Earth and Metallic Ion Complexes on Langmuir Mono layers Probed by Sum-Frequency Generation Spectroscopy

    SciTech Connect

    Song, Woongmo; Vaknin, David; Kim, Doseok

    2013-02-25

    Adsorption behavior of counterions under a Langmuir monolayer was investigated by sum-frequency generation (SFG) spectroscopy. By comparing SFG spectra of arachidic acid (AA) Langmuir monolayer/water interface with and without added salt, it was found that the simple trivalent cation La3+ adsorbed on AA monolayer only when the carboxylic headgroups are charged (deprotonated), implying that counterion adsorption is induced by Coulomb interaction. On the other hand, metal hydroxide complex Fe(OH)3 adsorbed even on a charge-neutral AA monolayer, indicating that the adsorption of iron hydroxide is due to chemical interaction such as covalent or hydrogen bonding to the headgroup of the molecules at the monolayer.

  1. Infrared spectroscopic and thermodynamic assessment of extraframework cationic adsorption sites in the zeolite K-L by using CO as probe molecule

    NASA Astrophysics Data System (ADS)

    Delgado, Montserrat R.; de Yuso, Alicia Martínez; Bulánek, Roman; Arean, Carlos O.

    2015-10-01

    Zeolites are often used as the host material for holding and organizing adsorbed molecules and supramolecular species inside their void channels and cages, in order to exploit space confinement and host-guest interaction for engineering composite materials having novel electronic and optical properties. That endeavour would benefit from improved knowledge about the type and strength of the zeolite adsorption sites. To this end, variable temperature infrared spectroscopy (a technique capable of giving simultaneous information on the type and strength of gas-adsorption complexes) was used herein to characterize the zeolite K-L by means of adsorbed CO. Two types of cationic adsorption sites (termed D‧ and D″) were found on the wall of the zeolite main channel; formation of the corresponding CO adsorption complexes was found to involve a standard enthalpy change of -23.4 and -26.7 kJ mol-1, respectively.

  2. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    SciTech Connect

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z. )

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies.

  3. Enhanced Colloidal Stability of CeO2 Nanoparticles by Ferrous Ions: Adsorption, Redox Reaction, and Surface Precipitation.

    PubMed

    Liu, Xuyang; Ray, Jessica R; Neil, Chelsea W; Li, Qingyun; Jun, Young-Shin

    2015-05-05

    Due to the toxicity of cerium oxide (CeO2) nanoparticles (NPs), a better understanding of the redox reaction-induced surface property changes of CeO2 NPs and their transport in natural and engineered aqueous systems is needed. This study investigates the impact of redox reactions with ferrous ions (Fe2+) on the colloidal stability of CeO2 NPs. We demonstrated that under anaerobic conditions, suspended CeO2 NPs in a 3 mM FeCl2 solution at pH 4.8 were much more stable against sedimentation than those in the absence of Fe2+. Redox reactions between CeO2 NPs and Fe2+ lead to the formation of 6-line ferrihydrite on the CeO2 surfaces, which enhanced the colloidal stability by increasing the zeta potential and hydrophilicity of CeO2 NPs. These redox reactions can affect the toxicity of CeO2 NPs by increasing cerium dissolution, and by creating new Fe(III) (hydr)oxide reactive surface layers. Thus, these findings have significant implications for elucidating the phase transformation and transport of redox reactive NPs in the environment.

  4. Asphaltene adsorption mechanisms on the local scale probed by neutron reflectivity: transition from monolayer to multilayer growth above the flocculation threshold.

    PubMed

    Jouault, Nicolas; Corvis, Yohann; Cousin, Fabrice; Jestin, Jacques; Barré, Loïc

    2009-04-07

    We present here a study of the adsorption of asphaltenes on hydrophilic and hydrophobic solid surfaces by coupling measurements of adsorption isotherms on the macroscopic scale on silica powder with measurements of the structure of the adsorbed asphaltene layer on the microscopic scale obtained by neutron reflectivity on flat silicon wafers. Under good-solvent conditions, if adsorption isotherms reveal that the interaction potential between asphaltenes and the surface is slightly higher for the hydrophilic surface than for the hydrophobic one, then the mechanism of adsorption is similar in both cases because all samples exhibit the same local structure of the adsorbed asphaltene layer: it is a solvated monolayer with thickness of the same order of magnitude as the size of the asphaltene aggregates in the bulk. The surface excess, gamma, is thus always of the same order (approximately 3 mg/m2). The adsorption process induces a densification of the aggregates at the interface because the adsorbed monolayer is much less solvated than aggregates in bulk solution. When a bad solvent is progressively added, the asphaltene adsorbed layer keeps its monolayer structure as long as the bulk flocculation threshold is not reached. Above the threshold, the size of the asphaltene adsorbed layer grows and forms a multilayer structure.

  5. Free radicals: how do we stand them? Anaerobic and aerobic free radical (chain) reactions involved in the use of fluorogenic probes and in biological systems.

    PubMed

    Liochev, Stefan I

    2014-01-01

    Biologically significant conclusions have been based on the use of fluorogenic and luminogenic probes for the detection of reactive species. The basic mechanisms of the processes involved have not been satisfactorily elucidated. In the present work, the mechanism of the enzyme and photosensitized oxidation of NAD(P)H by resorufin is analyzed and appears to involve both aerobic and anaerobic free radical chain reactions. There are two major fallouts of this analysis. Many of the conclusions about the participation of radicals based on the use of probes such as resorufin and Amplex red need reevaluation. It is also concluded that anaerobic free radical reactions may be biologically significant, and the possible existence of enzymatic systems to eliminate certain free radicals is discussed.

  6. Identification of region-specific yeast artificial chromosomes using pools of Alu element-mediated polymerase chain reaction probes labeled via linear amplification.

    PubMed

    Cole, C G; Patel, K; Shipley, J; Sheer, D; Bobrow, M; Bentley, D R; Dunham, I

    1992-12-01

    The ability to identify large numbers of yeast artificial chromosomes (YACs) specific to any given genomic region rapidly and efficiently enhances both the construction of clone maps and the isolation of region-specific landmarks (e.g., polymorphic markers). We describe a method of preparing region-specific single-stranded hybridization probes from Alu element-mediated polymerase chain reaction (Alu-PCR) products of somatic cell hybrids for YAC library screening. Pools of up to 50 cloned Alu-PCR products from an irradiation-reduced hybrid containing 22q11.2-q13.1 were labeled to high specific activity by linear amplification using a single vector primer. The resulting single-stranded probes were extensively competed to remove repetitive sequences, while retaining the full complexity of the probe. Extensive coverage of the region by YACs using multiple probe pools was demonstrated as many YACs were detected more than once. In situ analysis using chosen YACs confirmed that the clones were specific for the region. Thus, this pooled probe approach constitutes a rapid method to identify large numbers of YACs relevant to a large chromosomal region.

  7. A DFT study of the acid-base properties of anatase TiO2 and tetragonal ZrO2 by adsorption of CO and CO2 probe molecules

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yi Tiffany; Tosoni, Sergio; Pacchioni, Gianfranco

    2016-10-01

    We have performed a comparative study of the acid-base characteristics of the surfaces of anatase TiO2 and tetragonal ZrO2. To this end we performed DFT + U calculations on CO and CO2 probe molecules adsorbed both on terraces and steps of the two oxides. For titania, CO adsorption results in a moderate adsorption energy (about - 0.3 eV) and in a positive shift of the Csbnd O stretching frequency (about + 40 cm- 1), typical of Lewis acid sites, with no clear difference in the acidity between terraces or steps. For zirconia we found a similar CO binding energy as for titania, and a CO vibrational shift that depends on the location of the Zr cation: negligible on terraces, similar to TiO2 on steps. We conclude that the acidic properties are similar in the two oxide surfaces. Things are different for CO2 adsorption. On titania the interaction is weak and surface carbonates compete with physisorbed CO2, indicating a weak basic character. On the contrary, on zirconia three types of stable carbonates have been identified. Their vibrational frequencies are consistent with IR measurements reported in the literature. The most stable species forms on steps of the t-ZrO2 surface and consists of a CO32 - unit which lies flat on the surface with the O atoms pointing towards three Zr ions. The species forms spontaneously by extraction of a lattice oxygen by an incoming CO2 molecule. The different reactivity points towards a much more pronounced basic character of zirconia compared to titania, at least if measured by CO2 adsorption.

  8. Ozone adsorption on carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis

    2014-05-01

    Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles < 50 nm), under magnetic stirring. The aerosol was then mixed with ozone in an aerosol flow tube. Ozone uptake experiments were performed with different particles concentrations with a fixed ozone concentration. The influence of several factors on kinetics was examined: initial ozone concentration, particle size (50 nm ≤ Dp ≤ 200 nm) and competitive adsorption (with probe molecule and water). The effect of initial ozone concentration was first studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were

  9. Recycling of CO2: Probing the Chemical State of the Ni(111) Surface during the Methanation Reaction with Ambient-Pressure X-Ray Photoelectron Spectroscopy.

    PubMed

    Heine, Christian; Lechner, Barbara A J; Bluhm, Hendrik; Salmeron, Miquel

    2016-10-12

    Using ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), we studied the adsorption and reactions of CO2 and CO2 + H2 on the Ni(111) surface to identify the surface chemical state and the nature of the adsorbed species during the methanation reaction. In 200 mTorr CO2, we found that NiO is formed from CO2 dissociation into CO and atomic oxygen. Additionally, carbonate (CO3(2-)) is present on the surface from further reaction of CO2 with NiO. The addition of H2 into the reaction environment leads to reduction of NiO and the disappearance of CO3(2-). At temperatures >160 °C, CO adsorbed on hollow sites, and atomic carbon and OH species are present on the surface. We conclude that the methanation reaction proceeds via dissociation of CO2, followed by reduction of CO to atomic carbon and its hydrogenation to methane.

  10. Adsorption and reaction of methanol on supported palladium catalysts: microscopic-level studies from ultrahigh vacuum to ambient pressure conditions.

    PubMed

    Bäumer, Marcus; Libuda, Jörg; Neyman, Konstantin M; Rösch, Notker; Rupprechter, Günther; Freund, Hans-Joachim

    2007-07-21

    We investigated the decomposition and (partial) oxidation of methanol on Pd based catalysts in an integrated attempt, simultaneously bridging both the pressure and the materials gap. Combined studies were performed on well-defined Pd model catalysts based on ordered Al(2)O(3) and Fe(3)O(4) thin films, on well-defined particles supported on powders and on Pd single crystals. The interaction of Pd nanoparticles and Pd(111) with CH(3)OH and CH(3)OH/O(2) mixtures was examined from ultrahigh vacuum conditions up to ambient pressures, utilizing a broad range of surface specific vibrational spectroscopies which included IRAS, TR-IRAS, PM-IRAS, SFG, and DRIFTS. Detailed kinetic studies in the low pressure region were performed by molecular beam methods, providing comprehensive insights into the microkinetics of the reaction system. The underlying microscopic processes were studied theoretically on the basis of specially designed 3-D nanocluster models containing approximately 10(2) metal atoms. The efficiency of this novel modelling approach was demonstrated by rationalizing and complementing pertinent experimental results. In order to connect these results to the behavior under ambient conditions, kinetic and spectroscopic investigations were performed in reaction cells and lab reactors. Specifically, we focused on (1) particle size and structure dependent effects in methanol oxidation and decomposition, (2) support effects and their relation to activity and selectivity, (3) the influence of poisons such as carbon, and (4) the role of oxide and surface oxide formation on Pd nanoparticles.

  11. The adsorption and reaction of ethylene glycol and 1,2-propanediol on Pd(111): A TPD and HREELS study

    NASA Astrophysics Data System (ADS)

    Griffin, Michael B.; Jorgensen, Erica L.; Medlin, J. Will

    2010-09-01

    The reactions of ethylene glycol and 1,2-propanediol have been studied on Pd(111) using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). Both molecules initially decompose through O-H activation, forming ethylenedioxy (-OCH 2CH 2O-) and 1,2-propanedioxy (-OCH 2CH(CH 3)O-) surface intermediates. For ethylene glycol, increases in thermal energy lead to dehydrogenation and formation of carbonyl species at both oxygen atoms. The resulting glyoxal (O═CHCH═O) either desorbs molecularly or reacts through one of two competing pathways. The favored pathway proceeds via C-C bond scission, dehydrogenation, and decarbonylation to form carbon monoxide and hydrogen. In a minor pathway, small amounts of glyoxal undergo C-O bond scission and recombination with surface hydrogen to form ethylene and water. The same reaction mechanism occurs for 1,2-propanediol after methyl elimination and formation of glyoxal. However, this is accompanied by a minor pathway involving a methylglyoxal (O=CHC(CH 3)=O) intermediate. The prevalence of the dehydrogenation/decarbonylation pathway in the current work is consistent with the high selectivity for C-C scission in the aqueous phase reforming of polyols on supported Pd catalysts.

  12. Size, adsorption site, and spin effects in the reaction of Al clusters with water molecules: Al17 and Al28 as examples.

    PubMed

    Álvarez-Barcia, Sonia; Flores, Jesús R

    2012-08-02

    The first step of the reaction of two relatively large Alm clusters (m = 17, 28) with a few water molecules has been studied by electronic structure methods. The complexes Alm·(H2O)n (n = 1-2) have been characterized, and the saddle points corresponding to the first step in the reaction, namely, formation of HAlmOH·(H2O)n-1 systems, have been located. The Al28 cluster is special in the sense it has two electronic states, singlet and triplet, which are very close in energy and also have quite similar equilibrium structures. The preferred adsorption and reaction sites have been determined. We find quite clear preferences toward some sites, the effect of cluster distortion being moderately significant in the stability of the complexes. The interaction with water does not appear, in general, to bring the triplet state of the Al28·(H2O)2 adducts below the singlet; not even the corresponding saddle points appear to be lower in energy. The rate coefficients, tunneling transmission factors, and activation free energies have been computed and compared with those of the Al13 and Al3 clusters, even with those of the Al atom. It turns out the rates are quite close to those of Al3 and much larger than those of Al and Al13. There is no dramatic difference between the reactivity of the singlet and triplet state of Al28; however, there are very significant differences between different sites. Finally, we studied the interaction between the lowest-lying singlet and triplet states of Al28 through multireference configuration interaction (MRCI) spin-orbit computations. The vertical excitation energies corresponding to a number of low-lying singlet and triplet states are also determined by MRCI computations. It turns out that the spin-orbit interaction is very weak, which suggests that both states, the lowest-lying singlet and triplet, could evolve somehow independently, at least when interacting with closed-shell molecules. It is suggested that the situation could be quite

  13. Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution--immersion successive ionic layer adsorption and reaction process.

    PubMed

    Suresh Kumar, P; Sundaramurthy, J; Mangalaraj, D; Nataraj, D; Rajarathnam, D; Srinivasan, M P

    2011-11-01

    A simple and cost-effective successive ionic layer adsorption and reaction (SILAR) method was adopted to fabricate hydrophobic ZnO nanostructured surfaces on transparent indium-tin oxide (ITO), glass and polyethylene terephthalate (PET) substrates. ZnO films deposited on different substrates show hierarchical structures like spindle, flower and spherical shape with diameters ranging from 30 to 300 nm. The photo-induced switching behaviors of ZnO film surfaces between hydrophobic and hydrophilic states were examined by water contact angle and X-ray photoelectron spectroscopy (XPS) analysis. ZnO nanostructured films had contact angles of ~140° and 160°±2 on glass and PET substrates, respectively, exhibiting hydrophobic behavior without any surface modification or treatment. Upon exposure to ultraviolet (UV) illumination, the films showed hydrophilic behavior (contact angle: 15°±2), which upon low thermal stimuli revert back to its original hydrophobic nature. Such reversible and repeatable switching behaviors were observed upon cyclical exposure to ultraviolet radiation. These biomimetic ZnO surfaces exhibit good anti-reflective properties with lower reflectance of 9% for PET substrates. Thus, the present work is significant in terms of its potential application in switching devices, solar coatings and self-cleaning smart windows.

  14. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process.

    PubMed

    Lee, Hyojoong; Wang, Mingkui; Chen, Peter; Gamelin, Daniel R; Zakeeruddin, Shaik M; Grätzel, Michael; Nazeeruddin, Md K

    2009-12-01

    In pursuit of efficient quantum dot (QD)-sensitized solar cells based on mesoporous TiO(2) photoanodes, a new procedure for preparing selenide (Se(2-)) was developed and used for depositing CdSe QDs in situ over TiO(2) mesopores by the successive ionic layer adsorption and reaction (SILAR) process in ethanol. The sizes and density of CdSe QDs over TiO(2) were controlled by the number of SILAR cycles applied. After some optimization of these QD-sensitized TiO(2) films in regenerative photoelectrochemical cells using a cobalt redox couple [Co(o-phen)(3)(2+/3+)], including addition of a final layer of CdTe, over 4% overall efficiencies were achieved at 100 W/m(2) with about 50% IPCE at its maximum. Light-harvesting properties and transient voltage decay/impedance measurements confirmed that CdTe-terminated CdSe QD cells gave better charge-collection efficiencies and kinetic parameters than corresponding CdSe QD cells. In a preliminary study, a CdSe(Te) QD-sensitized TiO(2) film was combined with an organic hole conductor, spiro-OMeTAD, and shown to exhibit a promising efficiency of 1.6% at 100 W/m(2) in inorganic/organic hybrid all-solid-state cells.

  15. Adsorption and reactions on a surface alloy: CO, NO, O 2 and CO 2 on Pd(100)-Mn-c(2×2)

    NASA Astrophysics Data System (ADS)

    Sandell, A.; Jaworowski, A. J.; Beutler, A.; Wiklund, M.

    1999-02-01

    The adsorption properties of the Pd(100)-Mn-c(2×2) surface alloy have been investigated using photoemission of both core and valence levels. CO adsorbs in a molecular form without affecting the alloy structure. Two CO species were found, one bonded to Pd, which desorbs upon heating to 270 K , and one bonded to Mn, which desorbs when heating to 400 K. O 2 destroys the alloy, leading to a disordered surface with MnO x complexes. The MnO x aggregates stabilize adsorbed CO 2 and act as active sites for the following oxidation reactions at 110 K: CO+O→CO 2, CO+2O→CO 3δ- and CO 2+O→CO 3δ-. The CO 2 species desorbs upon heating to 170 K , whereas the CO 3δ- species is stable up to temperatures between 300 and 500 K. When exposed to low amounts of NO at 110 K, the major part of the molecules dissociates in order to form MnO x, thereby destroying the alloy. Larger NO doses yield an increasing amount of molecular NO, which dissociate upon heating to 300 K. CO can react with the dissociated NO to form CO 2 and another species with a C 1s binding energy and thermal stability similar to that of CO 3δ-. This species was tentatively identified as -NCO or -NCO 2.

  16. Reactivity of a Thick BaO Film Supported on Pt(111): Adsorption and Reaction of NO2, H2O and CO2

    SciTech Connect

    Mudiyanselage, Kumudu; Yi, Cheol-Woo W.; Szanyi, Janos

    2009-09-15

    Reactions of NO2, H2O, and CO2 with a thick (> 20 MLE) BaO film supported on Pt(111) were studied with temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). NO2 reacts with a thick BaO to form surface nitrite-nitrate ion pairs at 300 K, while only nitrates form at 600 K. In the thermal decomposition process of nitrite–nitrate ion pairs, first nitrites decompose and desorb as NO. Then nitrates decompose in two steps : at lower temperature with the release of NO2 and at higher temperature, nitrates dissociate to NO + O2. The thick BaO layer converts completely to Ba(OH)2 following the adsorption of H2O at 300 K. Dehydration/dehydroxylation of this hydroxide layer can be fully achieved by annealing to 550 K. CO2 also reacts with BaO to form BaCO3 that completely decomposes to regenerate BaO upon annealing to 825 K. However, the thick BaO film cannot be converted completely to Ba(NOx)2 or BaCO3 under the experimental conditions employed in this study.

  17. Effect of sodium acetate additive in successive ionic layer adsorption and reaction on the performance of CdS quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, I.-Ping; Chen, Liang-Yih; Lee, Yuh-Lang

    2016-09-01

    Sodium acetate (NaAc) is utilized as an additive in cationic precursors of the successive ionic layer adsorption and reaction (SILAR) process to fabricate CdS quantum-dot (QD)-sensitized photoelectrodes. The effects of the NaAc concentration on the deposition rate and distribution of QDs in mesoporous TiO2 films, as well as on the performance of CdS-sensitized solar cells are studied. The experimental results show that the presence of NaAc can significantly accelerate the deposition of CdS, improve the QD distribution across photoelectrodes, and thereby, increase the performance of solar cells. These results are mainly attributed to the pH-elevation effect of NaAc to the cationic precursors which increases the electrostatic interaction of the TiO2 film to cadmium ions. The light-to-energy conversion efficiency of the CdS-sensitized solar cell increases with increasing concentration of the NaAc and approaches a maximum value (3.11%) at 0.05 M NaAc. Additionally, an ionic exchange is carried out on the photoelectrode to transform the deposited CdS into CdS1-xSex ternary QDs. The light-absorption range of the photoelectrode is extended and an exceptional power conversion efficiency of 4.51% is achieved due to this treatment.

  18. Successive ionic layer adsorption and reaction deposited kesterite Cu{sub 2}ZnSnS{sub 4} nanoflakes counter electrodes for efficient dye-sensitized solar cells

    SciTech Connect

    Mali, Sawanta S.; Shim, Chang Su; Hong, Chang Kook

    2014-11-15

    Highlights: • Cu{sub 2}ZnSnS{sub 4} nanoflakes by SILAR technique. • Hydrothermal synthesis of TiO{sub 2}. • Counter electrode for DSSC application. • 4.48% conversion efficiency. - Abstract: In this investigation, we have successfully synthesized Cu{sub 2}ZnSnS{sub 4} (CZTS) nanoflakes by successive ionic layer adsorption and reaction (SILAR) method and used as a counter electrode in the hydrothermally grown TiO{sub 2} based dye sensitized solar cells (DSSCs). The prepared CZTS nanoflakes were characterized using X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), micro Raman spectroscopy and energy dispersive analysis. Our DSSCs results revealed that, compared with conventional Pt/FTO counter electrode DSSCs, nanoflakes of p-type CZTS as the photocathode and n-type TiO{sub 2} thin films as the photoanode shows an increased short circuit current (13.35 mA/cm{sup 2}) with 4.84% power conversion efficiency. The detailed interface properties of were analyzed by electrochemical impedance spectroscopy (EIS) measurements.

  19. Probe-free real-time reverse transcription polymerase chain reaction assays for the detection and typing of porcine reproductive and respiratory syndrome virus in Canada.

    PubMed

    Eschbaumer, Michael; Li, Wansi May; Wernike, Kerstin; Marshall, Frank; Czub, Markus

    2015-07-01

    Porcine reproductive and respiratory syndrome (PRRS) has tremendous impact on the pork industry in North America. The molecular diagnosis of infection with PRRS virus (PRRSV) is hampered by its considerable strain diversity. In this study, 43 previously published or newly developed primers for probe-free real-time reverse transcription polymerase chain reaction (RT-PCR) were evaluated on their sensitivity, specificity, reproducibility, and repeatability, using a diverse panel of 36 PRRSV strains as well as other arteriviruses and unrelated porcine viruses. Three primer pairs had excellent diagnostic and analytical sensitivity on par with a probe-based reference assay, absolute specificity to virus genotype and species, as well as over 95% reproducibility and repeatability across a wide dynamic range.

  20. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    PubMed

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer.

  1. Protein Adsorption to Titanium and Zirconia Using a Quartz Crystal Microbalance Method.

    PubMed

    Kusakawa, You; Yoshida, Eiji; Hayakawa, Tohru

    2017-01-01

    Protein adsorption onto titanium (Ti) or zirconia (ZrO2) was evaluated using a 27 MHz quartz crystal microbalance (QCM). As proteins, fibronectin (Fn), a cell adhesive protein, and albumin (Alb), a cell adhesion-inhibiting protein, were evaluated. The Ti and ZrO2 sensors for QCM were characterized by atomic force microscopy and electron probe microanalysis observation, measurement of contact angle against water, and surface roughness. The amounts of Fn and Alb adsorbed onto the Ti and ZrO2 sensors and apparent reaction rate were obtained using QCM measurements. Ti sensor showed greater adsorption of Fn and Alb than the ZrO2 sensor. In addition, amount of Fn adsorbed onto the Ti or ZrO2 sensors was higher than that of Alb. The surface roughness and hydrophilicity of Ti or ZrO2 may influence the adsorption of Fn or Alb. With regard to the adsorption rate, Alb adsorbed more rapidly than Fn onto Ti. Comparing Ti and ZrO2, Alb adsorption rate to Ti was faster than that to ZrO2. Fn adsorption will be effective for cell activities, but Alb adsorption will not. QCM method could simulate in vivo Fn and Alb adsorption to Ti or ZrO2.

  2. Protein Adsorption to Titanium and Zirconia Using a Quartz Crystal Microbalance Method

    PubMed Central

    Kusakawa, You

    2017-01-01

    Protein adsorption onto titanium (Ti) or zirconia (ZrO2) was evaluated using a 27 MHz quartz crystal microbalance (QCM). As proteins, fibronectin (Fn), a cell adhesive protein, and albumin (Alb), a cell adhesion-inhibiting protein, were evaluated. The Ti and ZrO2 sensors for QCM were characterized by atomic force microscopy and electron probe microanalysis observation, measurement of contact angle against water, and surface roughness. The amounts of Fn and Alb adsorbed onto the Ti and ZrO2 sensors and apparent reaction rate were obtained using QCM measurements. Ti sensor showed greater adsorption of Fn and Alb than the ZrO2 sensor. In addition, amount of Fn adsorbed onto the Ti or ZrO2 sensors was higher than that of Alb. The surface roughness and hydrophilicity of Ti or ZrO2 may influence the adsorption of Fn or Alb. With regard to the adsorption rate, Alb adsorbed more rapidly than Fn onto Ti. Comparing Ti and ZrO2, Alb adsorption rate to Ti was faster than that to ZrO2. Fn adsorption will be effective for cell activities, but Alb adsorption will not. QCM method could simulate in vivo Fn and Alb adsorption to Ti or ZrO2. PMID:28246591

  3. A Nitro-Functionalized Metal-Organic Framework as a Reaction-Based Fluorescence Turn-On Probe for Rapid and Selective H2 S Detection.

    PubMed

    Nagarkar, Sanjog S; Desai, Aamod V; Ghosh, Sujit K

    2015-07-06

    The toxic gas H2 S has recently emerged as one of the important signaling molecules in biological systems. Thus understanding the production, distribution, and mode of action of H2 S in biological system is important, but the fleeting and reactive nature of H2 S makes it a daunting task. Herein we report a biocompatible, nitro-functionalized metal-organic framework as reaction-based fluorescence turn-on probe for fast and selective H2 S detection. The selective turn-on performance of MOF remains unaffected even in presence of competing biomolecules.

  4. Probing the redox chemistry of titanium silicalite-1: formation of tetrahedral Ti3+ centers by reaction with triethylaluminum.

    PubMed

    Morra, Elena; Giamello, Elio; Chiesa, Mario

    2014-06-10

    Transition-metal ions with open-shell configurations hold promise in the development of novel coordination chemistry and potentially unprecedented redox catalysis. Framework-substituted Ti(3+) ions with tetrahedral coordination are generated by reductive activation of titanium silicalite-1 with triethylaluminum, an indispensable co-catalyst for heterogeneous Ziegler-Natta polymerization catalysts. Continuous-wave and pulse electron paramagnetic resonance methods are applied to unravel details on the local environment of the reduced transition metal-ions, which are shown to be part of the silica framework by detection of (29)Si hyperfine interactions. The chemical accessibility of the reduced sites is probed using ammonia as probe molecule. Evidence is found for the coordination of a single ammonia molecule. Comparison to similar systems, such as TiAlPO-5, reveals clear differences in the coordination chemistry of the reduced Ti sites in the two solids, which may be understood considering the different electronic properties of the solid frameworks.

  5. Use of the Polymerase Chain Reaction and Complementary DNA Probes in the Detection of Duchenne Muscular Dystrophy Carriers

    DTIC Science & Technology

    1990-01-01

    provided by linkage analyses in which certain probes mapping to the short arm of the X chromosome (OTC [ ornithine transcarbamylase ] and L1.28...the additional X-linked disorders associated with DMD were glycerol kinase deficiency , adrenal hypoplasia, retinitis pigmentosa, the McLeod phenotype...deletion in patient T. M., who has multiple disorders including DMD, glycerol kinase deficiency and adrenal hypoplasia. There have been a number of reports

  6. Study of the adsorption reactions of thiophene on Cu(I)/HY-Al2O3 by Fourier transform infrared and temperature-programmed desorption: adsorption, desorption, and sorbent regeneration mechanisms.

    PubMed

    Tang, Xiao-Lin; Shi, Li

    2011-10-04

    This work mainly involved the investigation of the adsorption of thiophene on Cu(I)-supported HY-Al(2)O(3). It demonstrated a high sulfur capacity of 10 mg sulfur/g sorbent when the HY/Al(2)O(3) mass ratio was 3, loaded with 12% copper, calcined at 550 °C, and tested at ambient temperature. In situ Fourier transform infrared (FTIR) and temperature-programmed desorption (TPD) results indicated that the adsorption mechanisms on Cu(I)/HY-Al(2)O(3) primarily were π-complexation and sulfur-adsorbent (S-M; σ) bonds. Pyridine-FTIR showed the total weak Lewis acid contribution to the Cu(I)/HY-Al(2)O(3) adsorption desulfurization performance.

  7. Fabrication of In2S3 nanoparticle decorated TiO2 nanotube arrays by successive ionic layer adsorption and reaction technique and their photocatalytic application.

    PubMed

    Zhang, Zhenrong; Tang, Yanhong; Liu, Chengbin; Wan, Long

    2014-06-01

    In2S3 nanoparticle (NP) decorated self-organized TiO2 nanotube array (In2S3/TiO2 NT) hybrids were fabricated via simple successive ionic layer adsorption and reaction (SILAR) technique. The In2S3 NPs in a size of about 15 nm were found to deposit on the top surface of the highly oriented TiO2 NT while without clogging the tube entrances. The loading amount of In2S3 NPs on the TiO2 NT was controlled by the cycle number of SILAR deposition. Compared with the bare TiO2 NT, the In2S3/TiO2 NT hybrids showed stronger absorption in the visible light region and significantly enhanced photocurrent density. The photocatalytic activity of the In2S3/TiO2 NT photocatalyst far exceeds that of bare TiO2 NT in the degradation of typical herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) under simulated solar light. After 160-min irradiation, almost 100% 2,4-D removal is obtained on the 7-In2S3/TiO2 NT prepared through seven SILAR deposition cycles, much higher than 26% on the bare TiO2 NT. After 10 successive cycles of photocatalytic process with total 1,600 min of irradiation, In2S3/TiO2 NT maintained as high 2,4-D removal efficiency as 95.1% with good stability and easy recovery, which justifies the potential of the photocatalytic system in application for the photocatalytic removal of organic pollutants such as herbicides or pesticides from water.

  8. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans.

    PubMed Central

    Meyer, W; Mitchell, T G; Freedman, E Z; Vilgalys, R

    1993-01-01

    In conventional DNA fingerprinting, hypervariable and repetitive sequences (minisatellite or microsatellite DNA) are detected with hybridization probes. As demonstrated here, these probes can be used as single primers in the polymerase chain reaction (PCR) to generate individual fingerprints. Several conventional DNA fingerprinting probes were used to prime the PCR, yielding distinctive, hypervariable multifragment profiles for different strains of Cryptococcus neoformans. PCR fingerprinting with the oligonucleotide primers (GTG)5, (GACA)4, and the phage M13 core sequence (GAGGGTGGXGGXTCT), but not with (CA)8 or (CT)8, generated DNA polymorphisms with all 42 strains of C. neoformans investigated. PCR fingerprints produced by priming with (GTG)5, (GACA)4, or the M13 core sequence differentiated the two varieties of C. neoformans, C. neoformans var. neoformans (serotypes A and D) and C. neoformans var. gattii (serotypes B and C). Furthermore, strains of serotypes A, D, and B or C could be distinguished from each other by specific PCR fingerprint patterns. These primers, which also successfully amplified hypervariable DNA segments from other species, provide a convenient method of identification at the species or individual level. Amplification of polymorphic DNA patterns by PCR with these primers offers several advantages over classical DNA fingerprinting techniques, appears to be more reliable than other PCR-based methods for detecting polymorphic DNA, such as analysis of random-amplified polymorphic DNA, and should be applicable to many other organisms. Images PMID:8408543

  9. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    PubMed

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.

  10. Self-healable and reversible liposome leakage by citrate-capped gold nanoparticles: probing the initial adsorption/desorption induced lipid phase transition

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Liu, Juewen

    2015-09-01

    We herein report that the adsorption/desorption of citrate-capped gold nanoparticles (AuNPs) transiently causes leakage in fluid phase DOPC liposomes, while the liposomes do not leak with AuNPs capped with mercaptopropionic acid (MPA). Leakage also fails to occur for gel phase DPPC liposomes. Citrate-capped (but not MPA-capped) AuNPs raise the phase transition temperature of DPPC. We conclude that citrate-capped AuNPs interact with the PC liposomes very strongly, inducing a local fluid-to-gel lipid phase transition for DOPC. Leakage takes place during this transition, and the membrane integrity is resumed after the transition. Citrate-capped AuNPs allow stronger van der Waals forces than MPA-capped AuNPs with PC liposomes, since the latter are separated from the liposome surface by the ~0.3 nm MPA layer.We herein report that the adsorption/desorption of citrate-capped gold nanoparticles (AuNPs) transiently causes leakage in fluid phase DOPC liposomes, while the liposomes do not leak with AuNPs capped with mercaptopropionic acid (MPA). Leakage also fails to occur for gel phase DPPC liposomes. Citrate-capped (but not MPA-capped) AuNPs raise the phase transition temperature of DPPC. We conclude that citrate-capped AuNPs interact with the PC liposomes very strongly, inducing a local fluid-to-gel lipid phase transition for DOPC. Leakage takes place during this transition, and the membrane integrity is resumed after the transition. Citrate-capped AuNPs allow stronger van der Waals forces than MPA-capped AuNPs with PC liposomes, since the latter are separated from the liposome surface by the ~0.3 nm MPA layer. Electronic supplementary information (ESI) available: Methods, TEM, UV-vis and DLS data. See DOI: 10.1039/c5nr04805b

  11. Probing the Properties of the Molecular Adlayers on Metal Substrates: Scanning Tunneling Microscopy Study of Amine Adsorption on Gold(111) and Graphene Nanoislands on Cobalt(0001)

    NASA Astrophysics Data System (ADS)

    Zhou, Hui

    In this thesis, we present our findings on two major topics, both of which are studies of molecules on metal surfaces by scanning tunneling microscopy (STM). The first topic is on adsorption of a model amine compound, 1,4-benzenediamine (BDA), on the reconstructed Au(111) surface, chosen for its potential application as a molecular electronic device. The molecules were deposited in the gas phase onto the substrate in the vacuum chamber. Five different patterns of BDA molecules on the surface at different coverages, and the preferred adsorption sites of BDA molecules on reconstructed Au(111) surface, were observed. In addition, BDA molecules were susceptible to tip-induced movement, suggesting that BDA molecules on metal surfaces can be a potential candidate in STM molecular manipulations. We also studied graphene nanoislands on Co(0001) in the hope of understanding interaction of expitaxially grown graphene and metal substrates. This topic can shed a light on the potential application of graphene as an electronic device, especially in spintronics. The graphene nanoislands were formed by annealing contorted hexabenzocoronene (HBC) on the Co(0001) surface. In our experiments, we have determined atop registry of graphene atoms with respect to the underlying Co surface. We also investigated the low-energy electronic structures of graphene nanoislands by scanning tunneling spectroscopy. The result was compared with a first-principle calculation using density functional theory (DFT) which suggested strong coupling between graphene pi-bands and cobalt d-electrons. We also observed that the islands exhibit zigzag edges, which exhibits unique electronic structures compared with the center areas of the islands.

  12. Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH2OO and isoprene.

    PubMed

    Decker, Z C J; Au, K; Vereecken, L; Sheps, L

    2017-03-13

    Recent advances in the spectroscopy of Criegee intermediates (CI) have enabled direct kinetic studies of these highly reactive chemical species. The impact of CI chemistry is currently being incorporated into atmospheric models, including their reactions with trace organic and inorganic compounds. Isoprene, C5H8, is a doubly-unsaturated hydrocarbon that accounts for the largest share of all biogenic emissions around the globe and is also a building block of larger volatile organic compounds. We report direct measurements of the reaction of the simplest CI (CH2OO) with isoprene, using time-resolved cavity-enhanced UV absorption spectroscopy. We find the reaction to be pressure-independent between 15-100 Torr, with a rate coefficient that varies from (1.5 ± 0.1) × 10(-15) cm(3) molecule(-1) s(-1) at room temperature to (23 ± 2) × 10(-15) cm(3) molecule(-1) s(-1) at 540 K. Quantum chemical and transition-state theory calculations of 16 unique channels for CH2OO + isoprene somewhat underpredict the observed T-dependence of the total reaction rate coefficient, but are overall in good agreement with the experimental measurements. This reaction is broadly similar to those with smaller alkenes, proceeding by 1,3-dipolar cycloaddition to one of the two conjugated double bonds of isoprene.

  13. Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH 2 OO and isoprene

    DOE PAGES

    Decker, Z. C. J.; Au, K.; Vereecken, L.; ...

    2017-01-01

    Recent advances in the spectroscopy of Criegee intermediates (CI) have enabled direct kinetic studies of these highly reactive chemical species. The impact of CI chemistry is currently being incorporated into atmospheric models, including their reactions with trace organic and inorganic compounds. Isoprene, C5H8, is a doubly-unsaturated hydrocarbon that accounts for the largest share of all biogenic emissions around the globe and is also a building block of larger volatile organic compounds. We report direct measurements of the reaction of the simplest CI (CH2OO) with isoprene, using time-resolved cavity-enhanced UV absorption spectroscopy. We find the reaction to be pressure-independent between 15–100more » Torr, with a rate coefficient that varies from (1.5 ± 0.1) × 10–15 cm3 molecule–1 s–1 at room temperature to (23 ± 2) × 10–15 cm3 molecule–1 s–1 at 540 K. Quantum chemical and transition-state theory calculations of 16 unique channels for CH2OO + isoprene somewhat underpredict the observed T-dependence of the total reaction rate coefficient, but are overall in good agreement with the experimental measurements. Finally, this reaction is broadly similar to those with smaller alkenes, proceeding by 1,3-dipolar cycloaddition to one of the two conjugated double bonds of isoprene.« less

  14. Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH2OO and isoprene

    DOE PAGES

    Decker, Z. C. J.; Au, K.; Vereecken, L.; ...

    2017-03-07

    Recent advances in the spectroscopy of Criegee intermediates (CI) have enabled direct kinetic studies of these highly reactive chemical species. The impact of CI chemistry is currently being incorporated into atmospheric models, including their reactions with trace organic and inorganic compounds. Isoprene, C5H8, is a doubly-unsaturated hydrocarbon that accounts for the largest share of all biogenic emissions around the globe and is also a building block of larger volatile organic compounds. We report direct measurements of the reaction of the simplest CI (CH2OO) with isoprene, using time-resolved cavity-enhanced UV absorption spectroscopy. We find the reaction to be pressure-independent between 15–100more » Torr, with a rate coefficient that varies from (1.5 ± 0.1) × 10–15 cm3 molecule–1 s–1 at room temperature to (23 ± 2) × 10–15 cm3 molecule–1 s–1 at 540 K. Quantum chemical and transition-state theory calculations of 16 unique channels for CH2OO + isoprene somewhat underpredict the observed T-dependence of the total reaction rate coefficient, but are overall in good agreement with the experimental measurements. Finally, this reaction is broadly similar to those with smaller alkenes, proceeding by 1,3-dipolar cycloaddition to one of the two conjugated double bonds of isoprene.« less

  15. Nanofabrication technique based on localized photocatalytic reactions using a TiO2-coated atomic force microscopy probe

    NASA Astrophysics Data System (ADS)

    Shibata, Takayuki; Iio, Naohiro; Furukawa, Hiromi; Nagai, Moeto

    2017-02-01

    We performed a fundamental study on the photocatalytic degradation of fluorescently labeled DNA molecules immobilized on titanium dioxide (TiO2) thin films under ultraviolet irradiation. The films were prepared by the electrochemical anodization of Ti thin films sputtered on silicon substrates. We also confirmed that the photocurrent arising from the photocatalytic oxidation of DNA molecules can be detected during this process. We then demonstrated an atomic force microscopy (AFM)-based nanofabrication technique by employing TiO2-coated AFM probes to penetrate living cell membranes under near-physiological conditions for minimally invasive intracellular delivery.

  16. Comparative study on the effect of H2 pre-adsorption on CO oxidation in O2-poor atmosphere over Au/TiO2 and TiO2: Temperature programmed surface reaction by a multiplexed mass spectrometer testing

    NASA Astrophysics Data System (ADS)

    Si, Ruiru; Liu, Junfeng; Zhang, Yujuan; Chen, Xun; Dai, Wenxin; Fu, Xianzhi

    2016-11-01

    The behaviors of H2 pre-adsorption on CO oxidation in an O2-poor stream containing a trace H2O over Au/TiO2 and TiO2 have been investigated by a temperature programmed surface reaction testing, respectively. It was found that the H2 pre-adsorption could keep CO oxidation without H2O consumption over Au/TiO2, but suppress CO oxidation over TiO2. The chemisorption testing showed that the H2 adsorption at Au/TiO2 could benefit to the formation of Ti-bonded hydroxyl species (Ti4+-OH), while the H2 adsorption at TiO2 would consume the Ti-bonded hydroxyl species and form the bridge hydroxyl species (Ti4+-OH-Ti4+). These results show that only the Ti-bonded hydroxyl species (not all kinds of hydroxyl species) could act as the active species of oxidizing CO. Furthermore, it is suggested that the dissociative hydrogen adsorbed at Au sites could activate the lattice oxygen of TiO2 to form the active Ti-bonded hydroxyl species (hydrogen spillover from Au to TiO2), which exhibit a strong reducibility than the H directly adsorbed at TiO2.

  17. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.

    PubMed

    Catrina, Irina; O'Brien, Patrick J; Purcell, Jamie; Nikolic-Hughes, Ivana; Zalatan, Jesse G; Hengge, Alvan C; Herschlag, Daniel

    2007-05-02

    The catalytic promiscuity of E. coli alkaline phosphatase (AP) and many other enzymes provides a unique opportunity to dissect the origin of enzymatic rate enhancements via a comparative approach. Here, we use kinetic isotope effects (KIEs) to explore the origin of the 109-fold greater catalytic proficiency by AP for phosphate monoester hydrolysis relative to sulfate monoester hydrolysis. The primary 18O KIEs for the leaving group oxygen atoms in the AP-catalyzed hydrolysis of p-nitrophenyl phosphate (pNPP) and p-nitrophenylsulfate (pNPS) decrease relative to the values observed for nonenzymatic hydrolysis reactions. Prior linear free energy relationship results suggest that the transition states for AP-catalyzed reactions of phosphate and sulfate esters are "loose" and indistinguishable from that in solution, suggesting that the decreased primary KIEs do not reflect a change in the nature of the transition state but rather a strong interaction of the leaving group oxygen atom with an active site Zn2+ ion. Furthermore, the primary KIEs for the two reactions are identical within error, suggesting that the differential catalysis of these reactions cannot be attributed to differential stabilization of the leaving group. In contrast, AP perturbs the KIE for the nonbridging oxygen atoms in the reaction of pNPP but not pNPS, suggesting a differential interaction with the transferred group in the transition state. These and prior results are consistent with a strong electrostatic interaction between the active site bimetallo Zn2+ cluster and one of the nonbridging oxygen atoms on the transferred group. We suggest that the lower charge density of this oxygen atom on a transferred sulfuryl group accounts for a large fraction of the decreased stabilization of the transition state for its reaction relative to phosphoryl transfer.

  18. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.

    PubMed

    Choudhary, Nandlal; Wei, G; Govindarajulu, A; Roy, Avijit; Li, Wenbin; Picton, Deric D; Nakhla, M K; Levy, L; Brlansky, R H

    2015-11-01

    Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence.

  19. Probing the Energy Transfer Dynamics of Photosynthetic Reaction Center Complexes Through Hole-Burning and Single-Complex Spectroscopy

    SciTech Connect

    Riley, Kerry Joseph

    2007-01-01

    Photosynthesis is the process by which light energy is used to drive reactions that generate sugars to supply energy for cellular processes. It is one of the most important fundamental biological reactions and occurs in both prokaryotic (e.g. bacteria) and eukaryotic (e.g. plants and algae) organisms. Photosynthesis is also remarkably intricate, requiring the coordination of many different steps and reactions in order to successfully transform absorbed solar energy into a biochemical usable form of energy. However, the net reaction for all photosynthetic organisms can be reduced to the following, deceptively general, equation developed by Van Niel[1] H2 - D + Aimplieshv A - H2 + D where H2-D is the electron donor, e.g. H2O, H2S. A is the electron acceptor, e.g. CO2, and A-H2 is the synthesized sugar. Amazingly, this simple net equation is responsible for creating the oxidizing atmosphere of Earth and the recycling of CO2, both of which are necessary for the sustainment of the global ecosystem.

  20. Probing kinetic and multi-ion-fluid effects in ICF implosions using DT and D He reaction histories on OMEGA

    NASA Astrophysics Data System (ADS)

    Sio, H. W.; Frenje, J. A.; Gatu Johnson, M.; Li, C. K.; Petrasso, R. D.; Katz, J.; Stoeckl, C.; Kwan, T.; Le, A.; Bellei, C.

    2016-10-01

    To explore kinetic and multi-ion-fluid effects in D3He-gas-filled shock-driven implosions (with a trace amount of T2) , D3He and DT reaction histories were measured using the upgraded Particle X-ray Temporal Diagnostic (PXTD) on OMEGA. The relative timing between the D3He and DT reaction histories was measured with 10-ps precision. The initial gas-fill density of the thin-glass targets was varied from 0.3 - 2.2 mg/cc, spanning highly-kinetic to more hydrodynamic-like plasma conditions during shock burn. Multi-ion-fluid simulations of similar implosions show reaction histories that are quantitatively different than those from average-ion-fluid simulations, including differences in burn onset, burn width, and relative bang-time. The measured differences between the reaction histories will be contrasted to average-ion-fluid hydrodynamic simulations, as well as multi-ion-fluid and kinetic-ion simulations, using LSP. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  1. Utilizing the dynamic stark shift as a probe for dielectric relaxation in photosynthetic reaction centers during charge separation.

    PubMed

    Guo, Zhi; Lin, Su; Woodbury, Neal W

    2013-09-26

    In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the

  2. PROBING REACTIVITY OF DISSOLVED ORGANIC MATTER FOR DISINFECTION BY-PRODUCT FORMATION USING XAD-8 RESIN ADSORPTION AND ULTRAFILTRATION FRACTIONATION. (R828045)

    EPA Science Inventory

    The disinfection by-product (DBP) reactivity (yield and speciation upon reaction with chlorine) of dissolved organic matter (DOM) isolated from two surface waters was investigated. The source waters, each having significantly different specific ultraviolet absorbance (SUVA

  3. The cellular uptake and localization of non-emissive iridium(III) complexes as cellular reaction-based luminescence probes.

    PubMed

    Li, Chunyan; Liu, Yi; Wu, Yongquan; Sun, Yun; Li, Fuyou

    2013-01-01

    Improvement of cellular uptake and subcellular resolution remains a major obstacle in the successful and broad application of cellular optical probes. In this context, we design and synthesize seven non-emissive cyclometalated iridium(III) solvent complexes [Ir(CˆN)(2)(solv)(2)](+)L(-) (LIr2-LIr8, in which CˆN = 2-phenylpyridine (ppy) or its derivative; solv = DMSO, H(2)O or CH(3)CN; L(-) = PF(6)(-) or OTf(-)) applicable in live cell imaging to facilitate selective visualization of cellular structures. Based on the above variations (including different counter ions, solvent ligands, and CˆN ligands), structure-activity relationship analyses reveal a number of clear correlations: (1) variations in counter anions and solvent ligands of iridium(III) complexes do not affect cellular imaging behavior, and (2) length of the side carbon chain in CˆN ligands has significant effects on cellular uptake and localization/accumulation of iridium complexes in living cells. Moreover, investigation of the uptake mechanism via low-temperature and metabolism inhibitor assays reveal that [Ir(4-Meppy)(2)(CH(3)CN)(2)](+)OTf(-) (LIr5) with 2-phenylpyridine derivative with side-chain of methyl group at the 4-position as CˆN ligand permeates the outer and nuclear membranes of living cells through an energy-dependent, non-endocytic entry pathway, and translocation of the complex from the cell periphery towards the perinuclear region possibly occurs through a microtubule-dependent transport pathway. Nuclear pore complexes (NPCs) appear to selectively control the transport of iridium(III) complexes between the cytoplasm and nucleus. A generalization of trends in behavior and structure-activity relationships is presented, which should provide further insights into the design and optimization of future probes.

  4. Gas-phase reactions of doubly charged actinide cations with alkanes and alkenes--probing the chemical activity of 5f electrons from Th to Cm.

    PubMed

    Marçalo, Joaquim; Santos, Marta; Gibson, John K

    2011-11-07

    Small alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) were used to probe the gas-phase reactivity of doubly charged actinide cations, An(2+) (An = Th, Pa, U, Np, Pu, Am, Cm), by means of Fourier transform ion cyclotron resonance mass spectrometry. Different combinations of doubly and singly charged ions were observed as reaction products, comprising species formed via metal-ion induced eliminations of small molecules, simple adducts and ions resulting from electron, hydride or methide transfer channels. Th(2+), Pa(2+), U(2+) and Np(2+) preferentially yielded doubly charged products of hydrocarbon activation, while Pu(2+), Am(2+) and Cm(2+) reacted mainly through transfer channels. Cm(2+) was also capable of forming doubly charged products with some of the hydrocarbons whereas Pu(2+) and Am(2+) were not, these latter two ions conversely being the only for which adduct formation was observed. The product distributions and the reaction efficiencies are discussed in relation to the electronic configurations of the metal ions, the energetics of the reactions and similar studies previously performed with doubly charged lanthanide and transition metal cations. The conditions for hydrocarbon activation to occur as related to the accessibility of electronic configurations with one or two 5f and/or 6d unpaired electrons are examined and the possible chemical activity of the 5f electrons in these early actinide ions, particularly Pa(2+), is considered.

  5. Probing ‘Spin-Forbidden’ Oxygen Atom Transfer: Gas-Phase Reactions of Chromium-Porphyrin Complexes

    PubMed Central

    Fornarini, Simonetta; Lanucara, Francesco; Warren, Jeffrey J.

    2010-01-01

    Oxygen-atom transfer reactions of metalloporphyrin species play an important role in biochemical and synthetic oxidation reactions. An emerging theme in this chemistry is that spin-state changes can play important roles, and a ‘two-state’ reactivity model has been extensively applied especially in iron-porphyrin systems. Herein we explore the gas phase oxygen-atom transfer chemistry of meso-tetrakis(pentafluorophenyl)porphyrin (TPFPP) chromium complexes, as well as some other tetradentate macrocyclic ligands. Electrospray ionization in concert with Fourier transform ion cyclotron resonance (FT-ICR) spectrometry has been used to characterize and observe reactivity of the ionic species [(TPFPP)CrIII]+ (1) and [(TPFPP)CrVO]+ (2). These are an attractive system to examine the effects of spin state change on oxygen atom transfer because the d1 CrV species are doublets while the CrIII complexes have quartet ground states with high-lying doublet excited states. In the gas phase, [(TPFPP)CrIII]+ forms adducts with a variety of neutral donors but O-atom transfer is only observed for NO2. Pyridine N-oxide adducts of 1 do yield 2 upon collision induced dissociation (CID), but the ethylene oxide, DMSO, and TEMPO analogs do not. [(TPFPP)CrVO]+ is shown by its reactivity and by CID experiments to be a terminal metal-oxo with a single vacant coordination site. It also displays limited reaction chemistry, being deoxygenated only by the very potent reductant P(OMe)3. In general, [(TPFPP)CrVO]+ species are much less reactive than the Fe and Mn analogs. Thermochemical analysis of the reactions points towards the involvement of spin issues in the lower observed reactivity of the chromium complexes. PMID:20218631

  6. Spectrometric study of AOT-hydrolysis reaction in water/AOT/isooctane microemulsions using phenolphthalein as a chemical probe.

    PubMed

    Mao, Shiyan; Chen, Zhiyun; Fan, Dashuang; An, Xueqin; Shen, Weiguo

    2012-01-12

    The kinetics of the alkaline hydrolysis of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in water/AOT/isooctane microemulsions has been studied by monitoring the absorbance change of the phenolphthalein in the system with time. The apparent first-order rate constant k(obs) has been obtained and found to be dependent on both the molar ratio of water to AOT ω and the temperature. The dependences of k(obs) on ω have been analyzed by a pseudophase model which gives the true rate constants k(i) of the AOT-hydrolysis reaction on the interface and the partition coefficients K(wi) for the distribution of OH(-) between aqueous and interface pseudophases at various temperatures; the latter is almost independent of the temperature and ω. The temperature dependences of the reaction rate constants k(obs) and k(i) have been analyzed to obtain enthalpy ΔH(≠), entropy ΔS(≠), and energy E(a) of activation, which indicate that the distribution of OH(-) between aqueous and interface pseudophases increases ΔS(≠) but makes no contribution to E(a) and ΔH(≠). The influence of the overall concentration of AOT in the system on the rate constant has been examined and found to be negligible. It contradicts with what was reported by García-Río et al. (1) but confirms that the first-order reaction of the AOT-hydrolysis takes place on the surfactant interface. The study of the influence of AOT-hydrolysis on the kinetics of the alkaline fading of crystal violet or phenolphthalein in the water/AOT/isooctane microemulsions suggests that corrections for the AOT-hydrolysis in these reactions are required.

  7. Probing the Statistical Decay and α-clustering effects in 12C + 12C and 14N + 10B reactions

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Baiocco, G.; D'Agostino, M.; Bruno, M.; Gulminelli, F.; Cinausero, M.; Degerlier, M.; Fabris, D.; Gramegna, F.; Marchi, T.; Barlini, S.; Bini, M.; Casini, G.; Gelli, N.; Lopez, A.; Pasquali, G.; Piantelli, S.; Valdrè, S.

    2014-03-01

    An experimental campaign has been undertaken at Laboratori Nazionali di Legnaro (LNL INFN), Italy, in order to progress in our understanding of the statistical properties of light nuclei at excitation energies above particle emission threshold, by measuring exclusive data from fusion-evaporation reactions. On the experimental side, a first reaction: 12C+12C at 95 MeV beam energy has been measured, using the GARFIELD + Ring Counter (RCo) apparatuses. Fusion-evaporation events have been exclusively selected out of the entire data set. The comparison to a dedicated Hauser-Feshbach calculation allows us to give constraints on the nuclear level density at high excitation energy for light systems ranging from C up to Mg. Out-of-equilibrium aα emission has been evidenced and attributed both to an entrance channel effect (favoured by the cluster nature of reaction partners), and, in more dissipative events, to the persistence of cluster correlations well above the 24Mg threshold for 6 α's decay. In order to study the same 24Mg compound nucleus at similar excitation energy with respect to this first reaction a new measurement, 14N + 10B at 5.7 A.MeV, was performed at LNL laboratories with the same experimental setup. The comparison between the two systems would allow us to further constrain the level density of light nuclei in the mass-excitation energy range of interest. In this perspective, deviations from a statistical behaviour can be used as a tool to get information on nuclear clustering, both in the ground-state for projectile and target and in the hot source formed in the collision.

  8. Genetic probes of structure/function relationships in the Q{sub B} binding site of the photosynthetic reaction center

    SciTech Connect

    Hanson, D.K.; Tiede, D.M.; Nance, S.L.; Chang, Chong-Hwan; Schiffer, M.

    1991-06-25

    In photosynthetic reaction centers, a quinone molecule, Q{sub B}, is the terminal acceptor in light-induced electron transfer. The crystal structure of the reaction center implicates the protonatable amiho acid residues L212Glu and L213Asp in the binding of Q{sub B} to the reaction center and in proton transfer to the anionic forms of Q{sub B} generated by electron transfer from Q{sub A}. Here we report the construction of the double mutant L212Ala-L213Ala by site-specific mutagenesis, and the isolation and preliminary biophysical characterization of revertant and suppressor strains that have regained the ability to grow under photosynthetic conditions. Our results show that neither L212Glu nor L213Asp is essential for efficient light-induced electron or proton transfer in Rhodobacter capsulatus and that second-site mutations, located within the QB binding pocket or at a more distant site, can compensate for mutations at L212 and L213. Acquisition of a single negatively charged residue (at position L213, or on the other side of the binding pocket at position L225) or loss of a positively charged residue (at position M231) is sufficient to restore activity to the complex.

  9. Probing the Role of Zr Addition versus Textural Properties in Enhancement of CO 2 Adsorption Performance in Silica/PEI Composite Sorbents

    DOE PAGES

    Sakwa-Novak, Miles A.; Holewinski, Adam; Hoyt, Caroline B.; ...

    2015-08-08

    Polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides are promising candidate adsorbents for CO2 capture processes. One important aspect to the design and optimization of these materials is a fundamental understanding of how the properties of the oxide support such as pore structure, particle morphology, and surface properties affect the efficiency of the guest polymer in its interactions with CO2. Previously, the efficiency of impregnated PEI to adsorb CO2 was shown to increase upon the addition of Zr as a surface modifier in SBA-15. But, the efficacy of this method to tune the adsorption performance has not beenmore » explored in materials of differing textural and morphological nature. These issues are directly addressed via the preparation of an array of SBA-15 support materials with varying textural and morphological properties, as well as varying content of zirconium doped into the material. Zirconium is incorporated into the SBA-15 either during the synthesis of the SBA-15, or postsynthetically via deposition of Zr species onto pure-silica SBA-15. The method of Zr incorporation alters the textural and morphological properties of the parent SBA-15 in different ways. Importantly, the CO2 capacity of SBA-15 impregnated with PEI increases by a maximum of ~60% with the quantity of doped Zr for a “standard” SBA-15 containing significant microporosity, while no increase in the CO2 capacity is observed upon Zr incorporation for an SBA-15 with reduced microporosity and a larger pore size, pore volume, and particle size. Finally, adsorbents supported on SBA-15 with controlled particle morphology show only modest increases in CO2 capacity upon inclusion of Zr to the silica framework. The data demonstrate that the textural and morphological properties of the support have a more significant impact on the ability of PEI to capture CO2 than the support surface composition.« less

  10. Spatially resolved characterization of catalyst-coated membranes by distance-controlled scanning mass spectrometry utilizing catalytic methanol oxidation as gas-solid probe reaction.

    PubMed

    Li, Nan; Assmann, Jens; Schuhmann, Wolfgang; Muhler, Martin

    2007-08-01

    The spatially resolved catalytic activity of a catalyst-coated membrane (CCM), which is the essential part of PEM fuel cells, was visualized rapidly without any damage by a distance-controlled scanning mass spectrometer with an improved resolution of 250 microm. Methanol oxidation was identified as a suitable gas-solid probe reaction for the characterization of local catalytic activity. In addition, defects were manually generated in the CCM to simulate inhomogeneous coating and pinholes. The measurements successfully demonstrated that catalytically active and less active regions can be clearly distinguished. Simultaneously, the local topography was recorded, providing additional information on the location of the scratches and pinholes. The catalytic results were highly reproducible due to the constant-distance feedback loop rendering scanning mass spectrometry a promising tool for the quantitative quality control of CCMs.

  11. Synthesis of 19-oxygenated 4beta,5beta-epoxy derivatives of 16alpha-hydroxyandrostenedione as mechanistic and catalytic probes for aromatase reaction.

    PubMed

    Numazawa, M; Yoshimura, A

    2000-09-01

    4Beta,5beta-epoxy derivatives of 16alpha-hydroxyandrostenedione (2), one of the natural substrates for aromatase, and its 19-oxygenated compounds 4 and 5 were synthesized as mechanistic and catalytic probes for the enzyme reaction. Treatment of 16alpha-bromoandrostenedione (13) or its 19-hydroxy analog 19 which was prepared from 3beta-hydroxy-19-(tert-butyldimethylsiloxy)androst-5-en-17-one (16) in three steps, with H2O2 and NaOH followed by controlled alkaline hydrolysis with NaOH in aqueous pyridine stereospecifically yielded 4beta,5beta-epoxy-16alpha-ol 15 or 4beta,5beta-epoxy-16alpha,19-diol 22, respectively. Oxidation of 16beta-bromo-4beta,5beta-epoxy-19-ol 21 with pyridinium dichromate followed by controlled alkaline hydrolysis produced 4beta,5beta-epoxy-16alpha-hydroxy-19-al 24.

  12. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris).

    PubMed

    Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M

    2014-12-10

    A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.

  13. Development and validation of a novel hydrolysis probe real-time polymerase chain reaction for agamid adenovirus 1 in the central bearded dragon (Pogona vitticeps).

    PubMed

    Fredholm, Daniel V; Coleman, James K; Childress, April L; Wellehan, James F X

    2015-03-01

    Agamid adenovirus 1 (AgAdv-1) is a significant cause of disease in bearded dragons (Pogona sp.). Clinical manifestations of AgAdv-1 infection are variable and often nonspecific; the manifestations range from lethargy, weight loss, and inappetence, to severe enteritis, hepatitis, and sudden death. Currently, diagnosis of AgAdv-1 infection is achieved through a single published method: standard nested polymerase chain reaction (nPCR) and sequencing. Standard nPCR with sequencing provides reliable sensitivity, specificity, and validation of PCR products. However, this process is comparatively expensive, laborious, and slow. Probe hybridization, as used in a TaqMan assay, represents the best option for validating PCR products aside from the time-consuming process of sequencing. This study developed a real-time PCR (qPCR) assay using a TaqMan probe-based assay, targeting a highly conserved region of the AgAdv-1 genome. Standard curves were generated, detection results were compared with the gold standard conventional PCR and sequencing assay, and limits of detection were determined. Additionally, the qPCR assay was run on samples known to be positive for AgAdv-1 and samples known to be positive for other adenoviruses. Based on the results of these evaluations, this assay allows for a less expensive, rapid, quantitative detection of AgAdv-1 in bearded dragons.

  14. Probing quantum and dynamic effects in concerted proton-electron transfer reactions of phenol-base compounds.

    PubMed

    Markle, Todd F; Tenderholt, Adam L; Mayer, James M

    2012-01-12

    The oxidation of three phenols, which contain an intramolecular hydrogen bond to a pendent pyridine or amine group, has been shown, in a previous experimental study, to undergo concerted proton-electron transfer (CPET). In this reaction, the electron is transferred to an outer-sphere oxidant, and the proton is transferred from the oxygen to nitrogen atom. In the present study, this reaction is studied computationally using a version of Hammes-Schiffer's multistate continuum theory where CPET is formulated as a transmission frequency between neutral and cation vibrational-electronic states. The neutral and cation proton vibrational wave functions are computed from one-dimensional potential energy surfaces (PESs) for the transferring proton in a fixed heavy atom framework. The overlap integrals for these neutral/cation wave functions, considering several initial (i.e., neutral) and final (i.e., cation) vibrational states, are used to evaluate the relative rates of oxidation. The analysis is extended to heavy atom configurations with various proton donor-acceptor (i.e., O-N) distances to assess the importance of heavy atom "gating". Such changes in d(ON) dramatically affect the nature of the proton PESs and wave functions. Surprisingly, the most reactive configurations have similar donor-acceptor distances despite the large (~0.2 Å) differences in the optimized structures. These theoretical results qualitatively reproduce the experimental faster reactivity of the reaction of the pyridyl derivative 1 versus the CH(2)-pyridyl 2, but the computed factor of 5 is smaller than the experimental 10(2). The amine derivative is calculated to react similarly to 1, which does not agree with the experiments, likely due to some of the simplifying assumptions made in applying the theory. The computed kinetic isotope effects (KIEs) and their temperature dependence are in agreement with experimental results.

  15. Light-particle emission as a probe of the rotational degrees of freedom in deep-inelastic reactions

    SciTech Connect

    Sobotka, L.G.

    1982-05-01

    The emission of alpha particles in coincidence with the most deeply inelastic heavy-ion reactions has been studied for /sup 181/Ta/sup +/ /sup 165/Ho at 1354 MeV laboratory energy and /sup nat/Ag + /sup 84/Kr at 664 MeV. Alpha particle energy spectra and angular distributions, in coincidence with a projectile-like fragment, were acquired both in the reaction plane and out of the reaction plane at a fixed in-plane angle. The in-plane data for both systems are employed to show that the bulk of the alpha particles in coincidence with the deep-inelastic exit channel can be explained by evaporation from the fully accelerated fragments. Average velocity diagrams, ..cap alpha..-particle energy spectra as a function of angle in several rest frames, and ..cap alpha..-particle angular distributions are presented. The out-of-plane alpha particle angular distributions and the gamma-ray multiplicities are used to study the transfer and partitioning of angular momentum between the two fragments. For the /sup nat/Ag + /sup 84/Kr system, individual fragment spins are extracted form the alpha particle angular distributions as a function of mass asymmetry while the sum of the fragment spins is derived from the gamma-ray multiplicities. These data, together with the fragment kinetic energies, are consistent with rigid rotation of an intermediate complex consisting of two substantially deformed spheroids in near proximity. These data also indicate that some angular momentum fractionation exists at the largest asymmetries examined. Out-of-plane alpha particle distributions, gamma-ray multiplicities, fragment spins as well as the formalism for the spin evaluation at various levels of sophistication are presented.

  16. Reactions between vanadium ions and biogenic reductants of tunicates: Spectroscopic probing for complexation and redox products in vitro

    SciTech Connect

    Ryan, D.E.; Grant, K.B.; Nakanishi, K.

    1996-07-02

    Several species of marine tunicates store oxygen-sensitive V{sup III} in blood cells. A sensitive colorimetric V{sup III} assay was used t survey the leading candidates for the native reducing agent of vanadate in tunicates (i.e., An-type tunichromes, glutathione, NADPH, and H{sub 2}S) in reactions with V{sup V} or V{sup IV} ions under anaerobic, aqueous conditions at acidic or neutral pH. Except for the case of An-1 and V{sup V} ions in pH 7 buffer, the assay results for the biogenic reducing agents clearly showed that appreciable quantities of V{sup III} products were not generated under the conditions tested. Therefore, the assay results place new limits on hypothetical mechanisms of V{sup III} formation in vivo. For reactions between An-1 and V{sup V} ions in pH 7 buffer, low levels of V{sup III} products could not be ruled out because of an interfering peak in the colorimetric assays. For similar reactions between V{sup V} ions and An-1, or an An-1,2 mixture, in mildly to moderately basic media, the product mixtures precipitated as greenish black solids. Analyses of the precipitated V/An mixtures using vanadium K-edge X-ray absorption spectroscopy (XAS) showed that the major products were tris(catecholate)-type V{sup IV} complexes (65 {plus_minus} 6%) and bis(catecholate)-type V{sup IV}O complexes (20 {plus_minus} 4%). XAS analysis of the V/An-1 product mixture also provided evidence of a minor V{sup III} component (9 {plus_minus} 5% of total V), notable for possible relevance to tunicate biochemistry. The combined results of XAS studies, spectrophotometric studies, and EPR studies consistently establish that reactions between tunichromes (Mm-1 or An-1) and V{sup V} ions generate predominantly V{sup IV}-tunichrome complexes in neutral to moderately basic aqueous media. 53 refs., 4 figs., 3 tabs.

  17. Utilization of Microwave Spectroscopy to Identify and Probe Reaction Dynamics of Hsno, a Crucial Biological Signaling Molecule

    NASA Astrophysics Data System (ADS)

    Nava, Matthew; Martin-Drumel, Marie-Aline; Stanton, John F.; Cummins, Christopher; McCarthy, Michael C.

    2016-06-01

    Thionitrous acid (HSNO), a potential key intermediate in biological signaling pathways, has been proposed to link NO and H2S biochemistries. Its existence and stability in vivo, however, remain controversial. By means of Fourier-transform microwave spectroscopy, we establish that HSNO is spontaneously formed in high concentration when NO and H2S gases are simply mixed at room temperature in the presence of metallic surfaces. Our measurements reveal that HSNO is formed with high efficiency by the reaction H2S and N2O3 to produce HSNO and HNO2, where N2O3 is a product of NO disproportionation. These studies also suggest that further reaction of HSNO with H2S may form HNO and HSSH. The length of the S--N bond has been derived to high precision from isotopic studies, and is found to be unusually long, 1.84 Å -- the longest S--N bond reported to date for an SNO compound. The present structural and reactivity investigations of this elusive molecule provide a firm fundation to better understand its physiological chemistry and propensity to undergo S--N bond homolysis in vivo.

  18. Molecular beam studies of unimolecular and bimolecular chemical reaction dynamics using VUV synchrotron radiation as a product probe

    SciTech Connect

    Blank, David Andrew

    1997-08-01

    This dissertation describes the use of a new molecular beam apparatus designed to use tunable VUV synchrotron radiation for photoionization of the products from scattering experiments. The apparatus was built at the recently constructed Advanced Light Source at Lawrence Berkeley National Laboratory, a third generation 1-2 GeV synchrotron radiation source. The new apparatus is applied to investigations of the dynamics of unimolecular reactions, photodissociation experiments, and bimolecular reactions, crossed molecular beam experiments. The first chapter describes the new apparatus and the VUV radiation used for photoionization. This is followed by a number of examples of the many advantages provided by using VUV photoionization in comparison with the traditional technique of electron bombardment ionization. At the end of the chapter there is a discussion of the data analysis employed in these scattering experiments. The remaining four chapters are complete investigations of the dynamics of four chemical systems using the new apparatus and provide numerous additional examples of the advantages provided by VUV photoionizaiton of the products. Chapters 2-4 are photofragment translational spectroscopy studies of the photodissociation dynamics of dimethyl sulfoxide, acrylonitrile, and vinyl chloride following absorption at 193 mn. All of these systems have multiple dissociation channels and provide good examples of the ability of the new apparatus to unravel the complex UV photodissociation dynamics that can arise in small polyatomic molecules.

  19. Optically probing Al—O and O—H vibrations to characterize water adsorption and surface reconstruction on α-alumina: An experimental and theoretical study

    SciTech Connect

    Tong, Yujin Kirsch, Harald; Wolf, Martin; Campen, R. Kramer; Wirth, Jonas; Saalfrank, Peter

    2015-02-07

    Oxide/water interfaces are ubiquitous in a wide variety of applications and the environment. Despite this ubiquity, and attendant decades of study, gaining molecular level insight into water/oxide interaction has proven challenging. In part, this challenge springs from a lack of tools to concurrently characterize changes in surface structure (i.e., water/oxide interaction from the perspective of the solid) and O—H population and local environment (i.e., water/oxide interaction from the water perspective). Here, we demonstrate the application of surface specific vibrational spectroscopy to the characterization of the interaction of the paradigmatic α-Al{sub 2}O{sub 3}(0001) surface and water. By probing both the interfacial Al—O (surface phonon) and O—H spectral response, we characterize this interaction from both perspectives. Through electronic structure calculation, we assign the interfacial Al—O response and rationalize its changes on surface dehydroxylation and reconstruction. Because our technique is all-optical and interface specific, it is equally applicable to oxide surfaces in vacuum, ambient atmospheres and at the solid/liquid interface. Application of this approach to additional alumina surfaces and other oxides thus seems likely to significantly expand our understanding of how water meets oxide surfaces and thus the wide variety of phenomena this interaction controls.

  20. Quantitation of bacteria through adsorption of intracellular biomolecules on carbon paste and screen-printed carbon electrodes and voltammetry of redox-active probes.

    PubMed

    Obuchowska, Agnes

    2008-03-01

    A new electrochemical method for the quantitation of bacteria that is rapid, inexpensive, and amenable to miniaturization is reported. Cyclic voltammetry was used to quantitate M. luteus, C. sporogenes, and E. coli JM105 in exponential and stationary phases, following exposure of screen-printed carbon working electrodes (SPCEs) to lysed culture samples. Ferricyanide was used as a probe. The detection limits (3s) were calculated and the dynamic ranges for E. coli (exponential and stationary phases), M. luteus (exponential and stationary phases), and C. sporogenes (exponential phase) lysed by lysozyme were 3 x 10(4) to 5 x 10(6) colony-forming units (CFU) mL(-1), 5 x 10(6) to 2 x 10(8) CFU mL(-1) and 3 x 10(3) to 3 x 10(5) CFU mL(-1), respectively. Good overlap was obtained between the calibration curves when the electrochemical signal was plotted against the dry bacterial weight, or between the protein concentration in the bacterial lysate. In contrast, unlysed bacteria did not change the electrochemical signal of ferricyanide. The results indicate that the reduction of the electrochemical signal in the presence of the lysate is mainly due to the fouling of the electrode by proteins. Similar results were obtained with carbon-paste electrodes although detection limits were better with SPCEs. The method described herein was applied to quantitation of bacteria in a cooling tower water sample.

  1. Probing the Role of Zr Addition versus Textural Properties in Enhancement of CO 2 Adsorption Performance in Silica/PEI Composite Sorbents

    SciTech Connect

    Sakwa-Novak, Miles A.; Holewinski, Adam; Hoyt, Caroline B.; Yoo, Chun-Jae; Chai, Song-Hai; Dai, Sheng; Jones, Christopher W.

    2015-08-08

    Polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides are promising candidate adsorbents for CO2 capture processes. One important aspect to the design and optimization of these materials is a fundamental understanding of how the properties of the oxide support such as pore structure, particle morphology, and surface properties affect the efficiency of the guest polymer in its interactions with CO2. Previously, the efficiency of impregnated PEI to adsorb CO2 was shown to increase upon the addition of Zr as a surface modifier in SBA-15. But, the efficacy of this method to tune the adsorption performance has not been explored in materials of differing textural and morphological nature. These issues are directly addressed via the preparation of an array of SBA-15 support materials with varying textural and morphological properties, as well as varying content of zirconium doped into the material. Zirconium is incorporated into the SBA-15 either during the synthesis of the SBA-15, or postsynthetically via deposition of Zr species onto pure-silica SBA-15. The method of Zr incorporation alters the textural and morphological properties of the parent SBA-15 in different ways. Importantly, the CO2 capacity of SBA-15 impregnated with PEI increases by a maximum of ~60% with the quantity of doped Zr for a “standard” SBA-15 containing significant microporosity, while no increase in the CO2 capacity is observed upon Zr incorporation for an SBA-15 with reduced microporosity and a larger pore size, pore volume, and particle size. Finally, adsorbents supported on SBA-15 with controlled particle morphology show only modest increases in CO2 capacity upon inclusion of Zr to the silica framework. The data demonstrate that the textural and morphological properties of the support have a more significant impact on the ability of PEI to capture CO2 than the support surface composition.

  2. Probing the Time Scale of FPOP (Fast Photochemical Oxidation of Proteins): Radical Reactions Extend Over Tens of Milliseconds

    NASA Astrophysics Data System (ADS)

    Vahidi, Siavash; Konermann, Lars

    2016-07-01

    Hydroxyl radical (ṡOH) labeling with mass spectrometry detection reports on protein conformations and interactions. Fast photochemical oxidation of proteins (FPOP) involves ṡOH production via H2O2 photolysis by UV laser pulses inside a flow tube. The experiments are conducted in the presence of a scavenger (usually glutamine) that shortens the ṡOH lifetime. The literature claims that FPOP takes place within 1 μs. This ultrafast time scale implies that FPOP should be immune to labeling-induced artifacts that may be encountered with other techniques. Surprisingly, the FPOP time scale has never been validated in direct kinetic measurements. Here we employ flash photolysis for probing oxidation processes under typical FPOP conditions. Bleaching of the reporter dye cyanine-5 (Cy5) served as readout of the time-dependent radical milieu. Surprisingly, Cy5 oxidation extends over tens of milliseconds. This time range is four orders of magnitude longer than expected from the FPOP literature. We demonstrate that the glutamine scavenger generates metastable secondary radicals in the FPOP solution, and that these radicals lengthen the time frame of Cy5 oxidation. Cy5 and similar dyes are widely used for monitoring the radical dose experienced by proteins in solution. The measured Cy5 kinetics thus strongly suggest that protein oxidation in FPOP extends over a much longer time window than previously thought (i.e., many milliseconds instead of one microsecond). The optical approach developed here should be suitable for assessing the performance of future FPOP-like techniques with improved temporal labeling characteristics.

  3. Development of a DNA probe for the myxosporean parasite, Ceratomyxa shasta, using the polymerase chain reaction with arbitrary primers

    USGS Publications Warehouse

    Bartholomew, Jerri L; Rodriguez, Rusty J.; Arakawa, Cindy K.

    1995-01-01

    The arbitrarily primed polymerase chain reaction (PCR) was used to generate a DNA marker specific for the myxosporean parasite Ceratomyxa shasta. The [32~]-labeled marker hybridized to purified C. shasta DNA and to parasite DNA combined with salmonid DNA in a dot blot assay, demonstrating its potential as a diagnostic tool. The amplified DNA segment was cloned and sequenced, and primers specific for the marker were designed. When these primers were used in a standard PCR assay, DNA was amplified from C. shasta and from infected fish tissues, but not from uninfected fish tissues or from 2 other myxosporean parasites. The sensitivity of the PCR assay will permit detection of low levels of C. shasta from infected fish or oligochaetes and will be useful in defining the parasite's life cycle as well as examining its impact on salmonid populatiosn

  4. Tailoring bifunctional hybrid organic–inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu2+ ions

    PubMed Central

    Tomina, Veronika V; Melnyk, Inna V; Zub, Yuriy L; Kareiva, Aivaras; Vaclavikova, Miroslava; Kessler, Vadim G

    2017-01-01

    Spherical silica particles with bifunctional (≡Si(CH2)3NH2/≡SiCH3, ≡Si(CH2)3NH2/≡Si(CH2)2(CF2)5CF3) surface layers were produced by a one-step approach using a modified Stöber method in three-component alkoxysilane systems, resulting in greatly increased contents of functional components. The content of functional groups and thermal stability of the surface layers were analyzed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and 13C and 29Si solid-state NMR spectroscopy revealing their composition and organization. The fine chemical structure of the surface in the produced hybrid adsorbent particles and the ligand distribution were further investigated by electron paramagnetic resonance (EPR) and electron spectroscopy of diffuse reflectance (ESDR) spectroscopy using Cu2+ ion coordination as a probe. The composition and structure of the emerging surface complexes were determined and used to provide an insight into the molecular structure of the surfaces. It was demonstrated that the introduction of short hydrophobic (methyl) groups improves the kinetic characteristics of the samples during the sorption of copper(II) ions and promotes fixation of aminopropyl groups on the surface of silica microspheres. The introduction of long hydrophobic (perfluoroctyl) groups changes the nature of the surface, where they are arranged in alternately hydrophobic/hydrophilic patches. This makes the aminopropyl groups huddled and less active in the sorption of metal cations. The size and aggregation/morphology of obtained particles was optimized controlling the synthesis conditions, such as concentrations of reactants, basicity of the medium, and the process temperature. PMID:28243572

  5. Time- and angle-resolved x-ray diffraction to probe structural and chemical evolution during Al-Ni intermetallic reactions.

    PubMed

    Yoo, Choong-Shik; Wei, Haoyan; Chen, Jing-Yin; Shen, Guoyin; Chow, Paul; Xiao, Yuming

    2011-11-01

    We present novel time- and angle-resolved x-ray diffraction (TARXD) capable of probing structural and chemical evolutions during rapidly propagating exothermic intermetallic reactions between Ni-Al multilayers. The system utilizes monochromatic synchrotron x-rays and a two-dimensional (2D) pixel array x-ray detector in combination of a fast-rotating diffraction beam chopper, providing a time (in azimuth) and angle (in distance) resolved x-ray diffraction image continuously recorded at a time resolution of ~30 μs over a time period of 3 ms. Multiple frames of the TARXD images can also be obtained with time resolutions between 30 and 300 μs over three to several hundreds of milliseconds. The present method is coupled with a high-speed camera and a six-channel optical pyrometer to determine the reaction characteristics including the propagation speed of 7.6 m/s, adiabatic heating rate of 4.0 × 10(6) K/s, and conductive cooling rate of 4.5 × 10(4) K/s. These time-dependent structural and temperature data provide evidences for the rapid formation of intermetallic NiAl alloy within 45 μs, thermal expansion coefficient of 1.1 × 10(-6) K for NiAl, and crystallization of V and Ag(3)In in later time.

  6. Rare Earth Elemental Signatures in Fungal Fruiting Bodies as Probes into Mineral Breakdown Reactions in Post-glacial Landscapes

    NASA Astrophysics Data System (ADS)

    Bryce, J. G.; Hobbie, E. A.

    2008-12-01

    The application of rare earth element (REE) abundances in low temperature geochemistry and biogeochemistry has improved our understanding of the cycling of various micro- and macronutrients from the bedrock into terrestrial ecosystems. In many continental rocks, REEs are concentrated in accessory phases such as apatite and monazite. These phosphate mineral phases break down readily and may be especially important nutrient sources, particularly for P and Ca, in recently glaciated terrains. Several studies (e.g., 1-3) have suggested that the presence of ectomycorrhizal (ECM) fungi, due to the organic acids they secrete, may play an especially important role in this weathering process. A field-based experiment implementing mesh bags doped with specific mineral compositions confirmed that ECM fungal tissues do record the REE signatures of the minerals they break down (4). In an effort to understand the relative role different ECM fungi may play in mineral breakdown reactions, we have measured REE abundances in tissues of several ECM fruiting bodies. Our preliminary data include Russula, Suillus Americana, Leccinum and Lactarius ECM fungi from three postglacial landscapes. At a given site, the relative abundance of REEs varies between the different ECM fungi. Interestingly, we found distinctions in tissue La/Ce values at two of the sites. Leccinum, a deep rooter, shows much lower La/Ce than the companion Russula and Lactarius samples from the same site. Similarly Suillus tissues demonstrated lower La/Ce when compared to Russula growing nearby. Lower La/Ce is consistent with enhanced dissolution of the mineral apatite, a common accessory phase. While the influence of symbiotic host (beech vs. oak vs. pine) may play some role in the distinctive REE signatures recorded by the fruiting bodies, we attribute the observed differences to organic acid production and tendency to colonize in different horizons of the soil profile. (1) Wallander, Plant and Soil, 2000; (2) Blum et

  7. Nitrogenases from Klebsiella pneumoniae and Clostridium pasteurianum. Kinetic investigations of cross-reactions as a probe of the enzyme mechanism.

    PubMed Central

    Smith, B E; Thorneley, R N; Eady, R R; Mortenson, L E

    1976-01-01

    In combination with the Mo-Fe protein of nitrogenase from Klebsiella pneumoniae, the Fe protein of nitrogenase from Clostridium pasteurianum forms an active enzyme with novel properties different from those of either of the homologous nitrogenases. The steady-state rates of reduction of acetylene and H+ are 12% of those of the homologous system from C.pasteurianim. Acetylene reductase activity exhibited an approx. 10min lag at 30 degrees C before the rate of reduction became linear, consistent with a once-only activation step being necessary for acetylene reduction to occur. No such lag was observed for H2 evolution. The activity with N2 as a reducible substrate was very low, implying that acetylene reductase activity is not necessarily an accurate indication of nitrogen-fixing ability. This is of particular relevance to studies on mutant and agronomically important organisms. Stopped-flow spectrophotometric studies showed unimolecular electron transfer from the Fe protein to the Mo-Fe protein to occur at the same rate (k2 = 2.5 X 10(2)s-1) and with the same dependence on ATP concentration (apparent KD = 400 muM) as with the homologous Klebsiella nitrogenase. However, an ATP/2e ratio of 50 was obtained for H2 evolution, indicating that ATP hydrolysis had been uncoupled from electron transfer to substrate. These data indicate that ATP has at least two roles in the mechanism of nitrogenase action. The combination of the Mo-Fe protein of nitrogenase of C.pasteurianim and the Fe protein of K.pneumoniae were inactive in all the above reactions, except for a weak adenosine triphosphatase activity, 0.5% of that of the homologous K.pneumoniae system. Images Fig. 3. PMID:134700

  8. Lowest Q2 Measurement of the γ*p→ Δ Reaction: Probing the Pionic Contribution

    SciTech Connect

    Stave, Sean C.

    2006-06-01

    The first excited state of the proton, the Delat, can be reached through a magnetic dipole spin flip of one of the quarks (M1) or through electric and Coulomb quadrupole terms (E2 and C2) which indicate a deviation from spherical symmetry. The quark models using the color hyperfine interaction underestimate the size of the quadrupole terms by more than an order of magnitude. Models using the pion cloud do a much better job of describing the data. This is expected due to the spontaneous breaking of chiral symmetry which leads to a cloud of virtual p wave pions which introduce the non-spherical amplitudes. The data presented in this work fill gaps in the low Q², long distance region where the pion cloud is expected to dominate and to produce significant Q2 variation. The p(e¯, ép)π° reaction was measured in the Δ region at Q² = 0.060 (GeV/c)², the lowest Q² to date for pion electroproduction, utilizing out-of-plane magnetic spectrometers at the Mainz Microtron in Germany. This work reports results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios obtained from fitting the new data with models using a three parameter, resonant multipole fit: M³/²1+ = (40.33 +- 0.63stat+syst +-model)(10-³/mπ+), E2/M1=Re(E³/²1+M³/²1+) = (-2.28+- 0.29stat+syst +- 0.20model)%, and C2/M1 =Re(S³/²1+/M³/²1+) poles disagree with predictions of the quark models but are in reasonable agreement with a chiral extrapolation of lattice QCD, chiral effective field theory and dynamical model results confirming the dominance and general Q² variation of the long range pionic contribution. While there is qualitative agreement with the models, there is no quantitative agreement thus indicating the need for further improvement of the models.

  9. IMPACT OF OXYGEN MEDIATED OXIDATIVE COUPLING ON ADSORPTION KINETICS

    EPA Science Inventory

    The presence of molecular oxygen in the test environment promotes oxidative coupling (polymer formation) of phenolic compounds on the surface of granular activated carbon (GAC). Both adsorption equilibria and adsorption kinetics are affected by these chemical reactions. Lack of...

  10. Visualized detection of single-base difference in multiplexed loop-mediated isothermal amplification amplicons by invasive reaction coupled with oligonucleotide probe-modified gold nanoparticles.

    PubMed

    Lu, Yan; Ma, Xueping; Wang, Jianping; Sheng, Nan; Dong, Tianhui; Song, Qinxin; Rui, Jianzhong; Zou, Bingjie; Zhou, Guohua

    2017-04-15

    Loop-mediated isothermal amplification (LAMP) is a well-developed DNA amplification method with an ultra-high sensitivity, but it is difficult to recognize a single-base difference (like genotyping) in target-specific amplicons by conventional detection ways, such as the intercalation of dyes into dsDNA amplicons or the increase of solution turbidity along with the polymerization process. To allow genotyping based on LAMP suitable for POCT (point-of-care testing) or on-site testing, here we proposed a highly specific and cost-effective method for detecting a single-base difference in LAMP amplicons. The method includes three key steps, sequence amplifier to amplify multiple fragments containing the single nucleotide polymorphisms (SNPs) of interest, allele identifier to recognize a targeted base in the amplicons by invasive reaction, and signal generator to yield signals by hybridization-induced assembly of oligonucleotide probe-modified gold nanoparticles. Because the allele identifier is sensitive to one base difference, it is possible to use multiplexed LAMP (mLAMP) to generate amplicon mixtures for multiple SNP typing. Genotyping of 3 different SNPs (CYP2C19*2, CYP2C19*3 and MDR1-C3435T) for guiding the dosage of clopidogrel is successfully carried out in a 3-plex LAMP on real clinical samples. As our method relies on the naked-eye detection and constant-temperature reaction, no expensive instrument is required for both target amplification and sequence identification, thus much suitable for inexpensive gene-guided personalized medicine in source-limited regions.

  11. Development of a TaqMan Probe-Based Insulated Isothermal Polymerase Chain Reaction (iiPCR) Assay for Detection of Fusarium oxysporum f. sp. cubense Race 4

    PubMed Central

    Lin, Yi-Jia; Chang, Tsai-De; Hong, Li-Ling; Chen, Tzu-Yu; Chang, Pi-Fang Linda

    2016-01-01

    This study developed a novel and inexpensive detection method based on a TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR) method for the rapid detection of Panama disease caused by Fusarium oxysporum f. sp. cubense (Foc) race 4, which is currently among the most serious fungal vascular diseases worldwide. By using the portable POCKIT™ device with the novel primer set iiFoc-1/iiFoc-2, the Foc race 4 iiPCR assay (including DNA amplification and signal monitoring) could be completed within one hour. The developed Foc race 4 iiPCR assay is thus a user-friendly and efficient platform designed specifically for the detection of Foc race 4. The detection limit of this optimized Foc iiPCR system was estimated to be 1 copy of the target standard DNA as well as 1 fg of the Foc genomic DNA. This approach can serve as a rapid detection method for in planta detection of Foc race 4 in field-infected banana. It was concluded that this molecular detection procedure based on iiPCR has good potential for use as an efficient detection method. PMID:27448242

  12. Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the He4(e ,e'pN) Triple-Coincidence Reaction

    NASA Astrophysics Data System (ADS)

    Korover, I.; Muangma, N.; Hen, O.; Shneor, R.; Sulkosky, V.; Kelleher, A.; Gilad, S.; Higinbotham, D. W.; Piasetzky, E.; Watson, J. W.; Wood, S. A.; Aguilera, P.; Ahmed, Z.; Albataineh, H.; Allada, K.; Anderson, B.; Anez, D.; Aniol, K.; Annand, J.; Armstrong, W.; Arrington, J.; Averett, T.; Badman, T.; Baghdasaryan, H.; Bai, X.; Beck, A.; Beck, S.; Bellini, V.; Benmokhtar, F.; Bertozzi, W.; Bittner, J.; Boeglin, W.; Camsonne, A.; Chen, C.; Chen, J.-P.; Chirapatpimol, K.; Cisbani, E.; Dalton, M. M.; Daniel, A.; Day, D.; de Jager, C. W.; De Leo, R.; Deconinck, W.; Defurne, M.; Flay, D.; Fomin, N.; Friend, M.; Frullani, S.; Fuchey, E.; Garibaldi, F.; Gaskell, D.; Gilman, R.; Glamazdin, O.; Gu, C.; Gueye, P.; Hamilton, D.; Hanretty, C.; Hansen, J.-O.; Hashemi Shabestari, M.; Holmstrom, T.; Huang, M.; Iqbal, S.; Jin, G.; Kalantarians, N.; Kang, H.; Khandaker, M.; LeRose, J.; Leckey, J.; Lindgren, R.; Long, E.; Mammei, J.; Margaziotis, D. J.; Markowitz, P.; Marti Jimenez-Arguello, A.; Meekins, D.; Meziani, Z.; Michaels, R.; Mihovilovic, M.; Monaghan, P.; Munoz Camacho, C.; Norum, B.; Nuruzzaman, Pan, K.; Phillips, S.; Pomerantz, I.; Posik, M.; Punjabi, V.; Qian, X.; Qiang, Y.; Qiu, X.; Rakhman, A.; Reimer, P. E.; Riordan, S.; Ron, G.; Rondon-Aramayo, O.; Saha, A.; Schulte, E.; Selvy, L.; Shahinyan, A.; Sirca, S.; Sjoegren, J.; Slifer, K.; Solvignon, P.; Sparveris, N.; Subedi, R.; Tireman, W.; Wang, D.; Weinstein, L. B.; Wojtsekhowski, B.; Yan, W.; Yaron, I.; Ye, Z.; Zhan, X.; Zhang, J.; Zhang, Y.; Zhao, B.; Zhao, Z.; Zheng, X.; Zhu, P.; Zielinski, R.; Jefferson Lab Hall A Collaboration

    2014-07-01

    We studied simultaneously the He4(e ,e'p), He4(e ,e'pp), and He4(e ,e'pn) reactions at Q2=2(GeV/c)2 and xB>1, for an (e ,e'p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A =2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum, in a region where the nucleon-nucleon (NN) force is expected to change from predominantly tensor to repulsive. The abundance of neutron-proton pairs is reduced as the nucleon momentum increases beyond ˜500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum. Our data are compared with calculations of two-nucleon momentum distributions in He4 and discussed in the context of probing the elusive repulsive component of the NN force.

  13. Signal enhancement for gene detection based on a redox reaction of [Fe(CN)(6)](4-) mediated by ferrocene at the terminal of a peptide nucleic acid as a probe with hybridization-amenable conformational flexibility.

    PubMed

    Aoki, Hiroshi; Tao, Hiroaki

    2008-07-01

    Electrochemically enhanced DNA detection was demonstrated by utilizing the couple of a synthesized ferrocene-terminated peptide nucleic acid (PNA) with a cysteine anchor and a sacrificial electron donor [Fe(CN)(6)](4-). DNA detection sensors were prepared by modifying a gold electrode surface with a mixed monolayer of the probe PNA and 11-hydroxy-1-undecanethiol (11-HUT), protecting [Fe(CN)(6)](4-) from any unexpected redox reaction. Before hybridization, the terminal ferrocene moiety of the probe was subject to a redox reaction due to the flexible probe structure and, in the presence of [Fe(CN)(6)](4-), the observed current was amplified based on regeneration of the ferrocene moiety. Hybridization decreased the redox current of the ferrocene. This occurred because hybridization rigidified the probe structure: the ferrocene moiety was then removed from the electrode surface, and the redox reaction of [Fe(CN)(6)](4-) was again prevented. The change in the anodic current before and after hybridization was enhanced 1.75-fold by using the electron donor [Fe(CN)(6)](4-). Sequence-specific detection of the complementary target DNA was also demonstrated.

  14. A comprehensive comparative DFT study on adsorption and reactions involved in vinyl acetate synthesis from acetoxylation of ethylene on pure Pd(100) and Pd-Au(100): Elucidating the role of Au

    NASA Astrophysics Data System (ADS)

    Huang, Yanping; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua

    2016-11-01

    Firstly, with DFT, electronic properties of Pd(100) and Pd-Au(100) were examined and it was found that addition of Au into Pd increases the electron density of Pd d-band. Besides, adsorption of relevant species involved in Samanos mechanism and Moiseev mechanism on Pd(100) and Pd-Au(100) was investigated and it was discovered that addition of Au impairs adsorption of species on metal surfaces. Finally, activation energies of all the reactions on Pd(100) and Pd-Au(100) were compared. Our calculations suggested that the rate-limiting step of the Samanos pathway on Pd(100) and Pd-Au(100) is the dehydrogenation of hydrogenated vinyl acetate. The rate-limiting step of the Moiseev pathway on Pd(100) is the coupling of vinyl with acetate, while that on Pd-Au(100) is the dehydrogenation of ethylene. The activation energies that are only involved in the Samanos mechanism become higher on Pd-Au(100) than on pure Pd(100), suggesting that alloying of Au is kinetically unfavorable for Samonos mechanism. Alloying of Au changes the rate-limiting step of Moiseev pathway, and Moiseev mechanism is preferred on Pd-Au(100).

  15. A fluorogenic probe for the copper(I)-catalyzed azide-alkyne ligation reaction: modulation of the fluorescence emission via 3(n,pi)-1(pi,pi) inversion.

    PubMed

    Zhou, Zhen; Fahrni, Christoph J

    2004-07-28

    Chemoselective ligation reactions represent a powerful approach for labeling of proteins or small molecules in a biological environment. We report here a fluorogenic probe that is activated by click chemistry, a highly versatile bio-orthogonal and chemoselective ligation reaction which is based on the azide moiety as the functional group. The electron-donating properties of the triazole ring that is formed in the course of the coupling reaction was effectively utilized to modulate the fluorescence output of an electronically coupled coumarin fluorophore. Under physiological conditions the probe is essentially nonfluorescent and undergoes a bright emission enhancement upon ligation with an azide. Time-resolved emission spectroscopy and semiempirical quantum-mechanical calculations suggest that the fluorescence switching is due to an inversion of the energy ordering of the emissive 1(pi,pi*) and nonemissive 3(n,pi*) excited states. The rapid kinetics of the ligation reaction render the probe attractive for a wide range of applications in biology, analytical chemistry, or material science.

  16. Growth of Cu2ZnSnS4 Nanocrystallites on TiO2 Nanorod Arrays as Novel Extremely Thin Absorber Solar Cell Structure via the Successive-Ion-Layer-Adsorption-Reaction Method.

    PubMed

    Wang, Zhuoran; Demopoulos, George P

    2015-10-21

    Cu2ZnSnS4 (CZTS) is an environmentally benign semiconductor with excellent optoelectronic properties that attracts a lot of interest in thin film photovoltaics. In departure from that conventional configuration, we fabricate and test a novel absorber-conductor structure featuring in situ successive-ion-layer-adsorption-reaction (SILAR)-deposited CZTS nanocrystallites as a light absorber on one-dimensional TiO2 (rutile) nanorods as an electron conductor. The effectiveness of the nanoscale heterostructure in visible light harvesting and photoelectron generation is demonstrated with an initial short circuit current density of 3.22 mA/cm(2) and an internal quantum efficiency of ∼60% at the blue light region, revealing great potential in developing CZTS extremely thin absorber (ETA) solar cells.

  17. Determination of glyphosate and aminomethylphosphonic acid in aqueous soil matrices: a critical analysis of the 9-fluorenylmethyl chloroformate derivatization reaction and application to adsorption studies.

    PubMed

    Báez, María E; Fuentes, Edwar; Espina, María José; Espinoza, Jeannette

    2014-11-01

    The assessment of the environmental fate of glyphosate and its degradation product (aminomethylphosphonic acid) is of great interest given the widespread use of the herbicide. Studies of adsorption-desorption and transport processes in soils require analytical methods with sensitivity, accuracy, and precision suitable for determining the analytes in aqueous equilibrium solutions of varied complexity. In this work, the effect of factors on the yield of the derivatization of both compounds with 9-fluorenylmethyl chloroformate for applying in aqueous solutions derived from soils was evaluated through factorial experimental designs. Interference effects coming from background electrolytes and soil matrices were established. The whole method had a linear response up to 640 ng/mL (R(2) > 0.999) under optimized conditions for high-performance liquid chromatography with fluorescence detection. Limits of detection were 0.6 and 0.4 ng/mL for glyphosate and aminomethylphosphonic acid, respectively. The relative standard deviation was 4.4% for glyphosate (20 ng/mL) and 5.9% for aminomethylphosphonic acid (10 ng/mL). Adsorption of compounds on four different soils was assessed. Isotherm data fitted well the Freundlich model (R(2) > 0.97). Kf constants varied between 93 ± 3.1 and 2045 ± 157 for glyphosate and between 99 ± 4.1 and 1517 ± 56 (μg(1-1/) (n)  mL(1/) (n) ( ) g(-1) ) for aminomethylphosphonic acid, showing the broad range of applicability of the proposed method.

  18. Rapid and reliable genotyping technique for GM1 gangliosidosis in Shiba dogs by real-time polymerase chain reaction with TaqMan minor groove binder probes.

    PubMed

    Chang, Hye-Sook; Arai, Toshiro; Yabuki, Akira; Hossain, Mohammad A; Rahman, Mohammad M; Mizukami, Keijiro; Yamato, Osamu

    2010-03-01

    Real-time polymerase chain reaction (PCR) with TaqMan minor groove binder (MGB) probes was examined to establish a rapid and reliable genotyping technique for GM1 gangliosidosis in Shiba dogs. This technique was applied to DNA samples extracted from the blood, umbilical cord, or postmortem liver tissue specimens, and to DNA-containing solutions prepared from blood and saliva that had been applied to Flinders Technology Associates filter papers (FTA cards). The amplification of the targeted sequence in all the samples was sufficient to determine the genotypes of GM1 gangliosidosis. Forty-seven DNA samples that had previously been obtained from blood or tissue specimens of Shiba dogs were examined using this real-time PCR technique, and the findings were consistent with the data obtained by the earlier PCR-restriction fragment length polymorphism (RFLP) assay. In addition, the use of this new technique in combination with FTA cards for sampling could markedly shorten the time required for genotyping, as well as simplify the procedure. Furthermore, in the present study, the results of a previous epidemiological screening of 96 Shiba dogs in the Czech Republic were rechecked by this real-time PCR technique using stored crude buccal cell DNA-containing solutions directly as DNA templates. The results provided clear-cut genotyping in all the samples although the earlier PCR-RFLP assay could not determine the genotype in all cases. In conclusion, this new real-time PCR technique is a simple, rapid, and reliable choice for large-scale screening to detect an abnormal allele indicating GM1 gangliosidosis in Shiba dogs.

  19. Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR spectroscopy.

    PubMed

    Malferrari, Marco; Mezzetti, Alberto; Francia, Francesco; Venturoli, Giovanni

    2013-03-01

    Following light-induced electron transfer between the primary donor (P) and quinone acceptor (Q(A)) the bacterial photosynthetic reaction center (RC) undergoes conformational relaxations which stabilize the primary charge separated state P(+)Q(A)(-). Dehydration of RCs from Rhodobacter sphaeroides hinders these conformational dynamics, leading to acceleration of P(+)Q(A)(-) recombination kinetics [Malferrari et al., J. Phys. Chem. B 115 (2011) 14732-14750]. To clarify the structural basis of the conformational relaxations and the involvement of bound water molecules, we analyzed light-induced P(+)Q(A)(-)/PQ(A) difference FTIR spectra of RC films at two hydration levels (relative humidity r=76% and r=11%). Dehydration reduced the amplitude of bands in the 3700-3550cm(-1) region, attributed to water molecules hydrogen bonded to the RC, previously proposed to stabilize the charge separation by dielectric screening [Iwata et al., Biochemistry 48 (2009) 1220-1229]. Other features of the FTIR difference spectrum were affected by partial depletion of the hydration shell (r=11%), including contributions from modes of P (9-keto groups), and from NH or OH stretching modes of amino acidic residues, absorbing in the 3550-3150cm(-1) range, a region so far not examined in detail for bacterial RCs. To probe in parallel the effects of dehydration on the RC conformational relaxations, we analyzed by optical absorption spectroscopy the kinetics of P(+)Q(A)(-) recombination following the same photoexcitation used in FTIR measurements (20s continuous illumination). The results suggest a correlation between the observed FTIR spectral changes and the conformational rearrangements which, in the hydrated system, strongly stabilize the P(+)Q(A)(-) charge separated state over the second time scale.

  20. Sensitive detection of Fusarium circinatum in pine seed by combining an enrichment procedure with a real-time polymerase chain reaction using dual-labeled probe chemistry.

    PubMed

    Ioos, Renaud; Fourrier, Céline; Iancu, Gabriela; Gordon, Thomas R

    2009-05-01

    Fusarium circinatum is the causal agent of pitch canker disease on numerous Pinus spp. This aggressive fungus may infect pine seed cryptically and, therefore, can easily be spread long distances by the seed trade. F. circinatum has recently been listed as a quarantine organism in numerous countries throughout the world, which prompted the development of a specific and sensitive tool for the detection of this pathogen in conifer seed. A new detection protocol for F. circinatum based on a biological enrichment step followed by a real-time polymerase chain reaction (PCR) assay was developed. Several enrichment protocols were compared and a 72-h incubation of the seed with potato dextrose broth was the most efficient technique to increase F. circinatum biomass before DNA extraction. The relative accuracy, specificity, and sensitivity of the real-time PCR assay was evaluated in comparison with a previously published conventional PCR test on 420 seed DNA extracts. The real-time PCR described here proved to be highly specific and significantly more sensitive than the conventional PCR, and enabled the detection of F. circinatum in samples artificially contaminated with less than 1/1,000 infected seed, as well as in naturally infected samples. Last, in order to routinely check the quality of the seed DNA extracts, a primer-probe combination that targets a highly conserved region within the 18S ribosomal DNA in plants or fungi was successfully developed. This assay allows for quick and reliable detection of F. circinatum in seed, which can help to prevent long-distance spread of the pathogen via contaminated seed lots.

  1. Efficient reaction based colorimetric probe for sensitive detection, quantification, and on-site analysis of nitrite ions in natural water resources.

    PubMed

    Adarsh, Nagappanpillai; Shanmugasundaram, Madhesh; Ramaiah, Danaboyina

    2013-11-05

    We have developed a novel aza-BODIPY probe for the sensitive colorimetric detection of the nitrite ions in the aqueous medium by a simple and direct method. This probe selectively recognizes the nitrite ions through a distinct visual color change from bright blue to intense green with a sensitivity of 20 ppb. Uniquely, this probe can be coated on a glass surface to fabricate a simple solid-state dipstick device that can be used for the visual detection of the nitrite ions in the presence of other competing anions in distilled as well as natural water resources like a sea, lake, and river. Furthermore, this probe can be used for the sensitive detection of the nitrate ions when coupled to a reduction step. Our results demonstrate that this probe not only can be used for the on-site analysis and quantification but also can replace the conventional spot test carried out for the nitrite ions in the laboratory practical experiments.

  2. Investigation of the electrochemical reactions at a limited-contact La1-xSrxMnO3/Y-doped ZrO2 interface with a rod-type ionic-probe

    NASA Astrophysics Data System (ADS)

    Ji, Ho-Il; Hong, Jongsup; Yoon, Kyung Joong; Son, Ji-Won; Kim, Byung-Kook; Lee, Hae-Weon; Lee, Jong-Ho

    2016-10-01

    A more quantitatively controllable triple phase boundary (TPB) of a lanthanum strontium manganite/yttria-stabilized zirconia (LSM/YSZ) interface was constructed by using an YSZ ionic probe with well-defined dimensions. A bar-shaped, dense YSZ sintered body was employed as an ionic probe and embedded in the pellet-shaped, dense LSM bulk. The TPB length of the LSM/YSZ interface can be simply determined from the circumference of the YSZ bars. To identify the reaction mechanism of the oxygen reduction reaction (ORR) at the TPB of the LSM/YSZ interface, limited-contact AC impedance spectroscopy was used; this distinguished the LSM/YSZ interface related polarization from other polarizations present in the Pt/LSM/YSZ/Pt electrochemical cell. By analyzing the electrode-related polarizations in the electrochemical cell with the geometrically quantified YSZ ionic probe, the rate determining step of the ORR was the diffusion of adsorbed oxygen along the LSM bulk surface. In this paper, emphasis is placed on the experimental versatility and the limitations of our designed electrochemical analysis with bar-shaped ionic probes.

  3. Chelating σ-Aryl Post-Metallocenes: Probing Intramolecular [C-H···F-C] Interactions and Unusual Reaction Pathways.

    PubMed

    Liu, Cham-Chuen; Chan, Michael C W

    2015-06-16

    Our interest in chelating σ-aryl ancillary ligands was motivated by their potential to impart unusual reactivity, since we envisioned that σ-donors with minimal π-donation would create a catalytic center with enhanced electrophilicity. We developed a family of Group 4 post-metallocene catalysts supported by pyridine-2-phenolate-6-(σ-aryl) [O,N,C] ligands bearing a fluorinated moiety in the vicinity of the metal. Notable features of these meta-substituted tris(hetero)aryl frameworks include their coordination geometry and inherent rigidity. For the first time, the elusive C-H···F-C interaction was manifested as NMR-discernible (1)H-(19)F coupling in solution and characterized by a neutron diffraction study. Their existence carries implications for catalyst design and in the context of weak attractive ligand-polymer interactions (WALPI), since they substantiate the practical viability of the ortho-F···H(β) ligand-polymer interactions proposed for living Group 4 fluorinated bis(phenoxyimine) catalysts. In metal-catalyzed olefin polymerization reactions, the notion of noncovalent interactions between an active ancillary ligand and the growing polymer chain is new. These interactions must be fragile and transient in nature, otherwise the intrinsic chain propagation process would be disrupted, and inherently tunable attractive forces such as hydrogen bonds are ideally suited to this role. The nature, relevance, and usability of extremely weak hydrogen bonds such as C-H···F-C has been a topical yet controversial area of research. We subsequently prepared a series of Group 4 complexes supported by fluorinated (σ-aryl)-2-phenolate-6-pyridyl [O,C,N] ligands. [(1)H,(19)F]-HMBC NMR experiments were conducted to probe the observed (1)H-(19)F coupling, and specifically separate contributions from scalar (J) coupling and cross-correlation (CR) interference. For the first time, a significant scalar component was confirmed for the (1)H-(19)F coupling in Ti

  4. An investigation of the surface chemistry of crown ethers: the adsorption and reaction of 12-crown-4 on palladium ( 1 1 1 )

    NASA Astrophysics Data System (ADS)

    Azad, S.; Laack, B.; Tysoe, W. T.

    2002-01-01

    The adsorption of 12-crown-4 on Pd(1 1 1) is investigated using reflection-absorption infrared spectroscopy and temperature-programmed desorption. Analysis of the infrared spectrum of 12-crown-4 suggests that it adsorbs in a flat-lying geometry with C 4v symmetry with a saturation coverage of 0.073±0.008 monolayers. This implies that the crown ether bonds to the surface via the lone pair orbitals on the ether oxygen atoms. Estimating the saturation coverage for this geometry using Van der Waals' radii yields a value of 0.088 monolayers in good agreement with the measured value. 12-crown-4 thermally decomposes to leave predominantly CO and ethylidyne species on the surface where the desorbing CO removes three of the four crown ether oxygen atoms, the fourth remaining on the surface. Small amounts of ethylene are also found to desorb along with a high molecular weight product which is tentatively assigned to the formation of C 2H 5OCH 2CHO.

  5. Diffusion Influenced Adsorption Kinetics.

    PubMed

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  6. Degradation of methyl bromide and methyl chloride in soil microcosms: Use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms

    USGS Publications Warehouse

    Miller, L.G.; Warner, K.L.; Baesman, S.M.; Oremland, R.S.; McDonald, I.R.; Radajewski, S.; Murrell, J.C.

    2004-01-01

    Bacteria in soil microcosm experiments oxidized elevated levels of methyl chloride (MeCl) and methyl bromide (MeBr), the former compound more rapidly than the latter. MeBr was also removed by chemical reactions while MeCl was not. Chemical degradation dominated the early removal of MeBr and accounted for more than half of its total loss. Fractionation of stable carbon isotopes during chemical degradation of MeBr resulted in a kinetic isotope effect (KIE) of 59 ?? 7???. Soil bacterial oxidation dominated the later removal of MeBr and MeCl and was characterized by different KIEs for each compound. The KIE for MeBr oxidation was 69 ?? 9??? and the KIE for MeCl oxidation was 49 ?? 3???. Stable isotope probing revealed that different populations of soil bacteria assimilated added 13C-labeled MeBr and MeCl. The identity of the active MeBr and MeCl degrading bacteria in soil was determined by analysis of 16S rRNA gene sequences amplified from 13C-DNA fractions, which identified a number of sequences from organisms not previously thought to be involved in methyl halide degradation. These included Burkholderia , the major clone type in the 13C-MeBr fraction, and Rhodobacter, Lysobacter and Nocardioides the major clone types in the 13C-MeCl fraction. None of the 16S rRNA gene sequences for methyl halide oxidizing bacteria currently in culture (including Aminobacter strain IMB-1 isolated from fumigated soil) were identified. Functional gene clone types closely related to Aminobacter spp. were identified in libraries containing the sequences for the cmuA gene, which codes for the enzyme known to catalyze the initial step in the oxidation of MeBr and MeCl. The cmuA gene was limited to members of the alpha-Proteobacteria whereas the greater diversity demonstrated by the 16S rRNA gene may indicate that other enzymes catalyze methyl halide oxidation in different groups of bacteria. Copyright ?? 2004 Elsevier Ltd.

  7. Dissociative adsorption of H2 on Cu(100): A four-dimensional study of the effect of rotational motion on the reaction dynamics

    NASA Astrophysics Data System (ADS)

    Mowrey, R. C.; Kroes, G. J.; Wiesenekker, G.; Baerends, E. J.

    1997-03-01

    The reaction of H2 on Cu(100) is investigated using a four-dimensional (4D) quantum dynamical fixed-site model to assess the influence of molecular rotation on dissociation over the most reactive (the bridge) site. The potential energy surface (PES) is a fit to the results of density functional calculations performed using a generalized gradient approximation treating a Cu slab with a periodic overlayer of H2. Dissociation probabilities for molecules with "helicoptering'' (mj=j) and "cartwheeling'' (mj=0) rotational motions are here found to be comparable because of the strong corrugation in the azimuthal coordinate. The calculations indicate that reaction is accompanied by significant rotationally inelastic scattering. Surprisingly, vibrational excitation is also found to be an efficient process in collisions with the reactive bridge site. In these collisions, the molecular axis is tilted away from the orientation parallel from the surface. Considering the approximate nature of the 4D model used, the calculated reaction probabilities are in good agreement with experiment, indicating that the PES that was used is accurate.

  8. Adsorption of phenolic compound by aged-refuse.

    PubMed

    Xiaoli, Chai; Youcai, Zhao

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  9. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  10. Micro-Cu4I4-MOF: reversible iodine adsorption and catalytic properties for tandem reaction of Friedel-Crafts alkylation of indoles with acetals.

    PubMed

    Zhu, Neng-Xiu; Zhao, Chao-Wei; Wang, Jian-Cheng; Li, Yan-An; Dong, Yu-Bin

    2016-10-20

    We report a convenient approach, the first of its kind, to construct a microscale non-metal@MOF composite catalytic host-guest system for an organic tandem reaction. The reported porous Cu4I4-MOF is able to reversibly adsorb molecular iodine at room temperature. The obtained I2@Cu4I4-MOF host-guest system can be a highly heterogeneous catalyst to promote the Friedel-Crafts alkylation of indoles with acetals in a one-pot two-step fashion under solvent-free conditions at room temperature.

  11. Mechanism of the reaction, CH4+O(1D2)→CH3+OH, studied by ultrafast and state-resolved photolysis/probe spectroscopy of the CH4ṡO3 van der Waals complex

    NASA Astrophysics Data System (ADS)

    Miller, C. Cameron; van Zee, Roger D.; Stephenson, John C.

    2001-01-01

    The mechanism of the reaction CH4+O(1D2)→CH3+OH was investigated by ultrafast, time-resolved and state-resolved experiments. In the ultrafast experiments, short ultraviolet pulses photolyzed ozone in the CH4ṡO3 van der Waals complex to produce O(1D2). The ensuing reaction with CH4 was monitored by measuring the appearance rate of OH(v=0,1;J,Ω,Λ) by laser-induced fluorescence, through the OH A←X transition, using short probe pulses. These spectrally broad pulses, centered between 307 and 316 nm, probe many different OH rovibrational states simultaneously. At each probe wavelength, both a fast and a slow rise time were evident in the fluorescence signal, and the ratio of the fast-to-slow signal varied with probe wavelength. The distribution of OH(v,J,Ω,Λ) states, Pobs(v,J,Ω,Λ), was determined by laser-induced fluorescence using a high-resolution, tunable dye laser. The Pobs(v,J,Ω,Λ) data and the time-resolved data were analyzed under the assumption that different formation times represent different reaction mechanisms and that each mechanism produces a characteristic rovibrational distribution. The state-resolved and the time-resolved data can be fit independently using a two-mechanism model: Pobs(v,J,Ω,Λ) can be decomposed into two components, and the appearance of OH can be fit by two exponential rise times. However, these independent analyses are not mutually consistent. The time-resolved and state-resolved data can be consistently fit using a three-mechanism model. The OH appearance signals, at all probe wavelengths, were fit with times τfast≈0.2 ps, τinter≈0.5 ps and τslow≈5.4 ps. The slowest of these three is the rate for dissociation of a vibrationally excited methanol intermediate (CH3OH*) predicted by statistical theory after complete intramolecular energy redistribution following insertion of O(1D2) into CH4. The Pobs(v,J,Ω,Λ) was decomposed into three components, each with a linear surprisal, under the assumption that the

  12. The adsorption of NO and reaction of NO with O{sub 2} on H-, NaH-, CuH-, and Cu-ZSM-5: An in situ FTIR investigation

    SciTech Connect

    Szanyi, J.; Paffett, M.T.

    1996-11-01

    The adsorption of NO and the reaction of NO with O{sub 2} on H-, NaH-, CuH-, and Cu-ZSM-5 zeolites were studied at 300 K using in situ Fourier transform infrared spectroscopy (FTIR). At this temperature, NO readily adsorbs on the Cu{sup +} sites of CuH- and Cu-ZSM-5 catalysts and decomposition of NO is observed for all catalysts, although the rate of decomposition is vastly different on these materials. In comparison, this reaction is negligible over the H- and NaH-ZSM-5 samples. The time evolution of several nitrogen-containing molecules after controlled O{sub 2} exposure to the NO/ZSM-5 systems has allowed the spectral correlation of these species. These nitrogen-containing species can interact with either the protonic sites of bridging hydroxyls forming hydrogen bonding complexes or the metal cations producing primarily surface nitrates and nitrites. The hydrogen bonded N{sub x}O{sub y} complexes were characterized with their IR absorption features: (1) NO{sub 2}, 2133 cm{sup {minus}1}; (b) N{sub 2}O{sub 3}, 1875 and 1587 cm{sup {minus}1}; and (c) N{sub 2}O{sub 4}, 2185 and 1745 cm{sup {minus}1}. The stretching vibrational frequency of the acidic OH groups of ZSM-5 red-shifts due to the interaction with nitrogen-containing molecules and forms {open_quotes}ABC{close_quotes} band structures characteristic of medium and strong hydrogen bonding complexes. Although the adsorbed N{sub x}O{sub y} species (N{sub 2}O{sub 3}, N{sub 2}O{sub 4}) interacting with the Bronsted protons exhibit characteristics of a strong Lewis base, adsorption enthalpies are sufficiently weak that their existence is not observed even after brief evacuation. Nitric oxide, oxygen coadsorption produces metal cation (Na{sup +} and Cu{sup n+}) bonded surface species possessing IR absorption bands between 1400 and 1650 cm{sup {minus}1} characteristic of nitrite and nitrate species. 46 refs., 9 figs.

  13. Universal tight binding model for chemical reactions in solution and at surfaces. III. Stoichiometric and reduced surfaces of titania and the adsorption of water

    SciTech Connect

    Lozovoi, A. Y.; Sheppard, T. J.; Kohanoff, J. J.; Pashov, D. L.; Paxton, A. T.

    2014-07-28

    We demonstrate a model for stoichiometric and reduced titanium dioxide intended for use in molecular dynamics and other atomistic simulations and based in the polarizable ion tight binding theory. This extends the model introduced in two previous papers from molecular and liquid applications into the solid state, thus completing the task of providing a comprehensive and unified scheme for studying chemical reactions, particularly aimed at problems in catalysis and electrochemistry. As before, experimental results are given priority over theoretical ones in selecting targets for model fitting, for which we used crystal parameters and band gaps of titania bulk polymorphs, rutile and anatase. The model is applied to six low index titania surfaces, with and without oxygen vacancies and adsorbed water molecules, both in dissociated and non-dissociated states. Finally, we present the results of molecular dynamics simulation of an anatase cluster with a number of adsorbed water molecules and discuss the role of edge and corner atoms of the cluster.

  14. A successive ionic layer adsorption and reaction (SILAR) method to fabricate a layer-by-layer (LbL) MnO2-reduced graphene oxide assembly for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2017-02-01

    A facile, cost effective and additive-free successive ionic layer adsorption and reaction (SILAR) technique is demonstrated to develop layer-by-layer (LbL) assembly of reduced graphene oxide (RGO) and MnO2 (MnO2-RGOSILAR) on a stainless steel current collector, for designing light-weight and small size supercapacitor electrode. The transmission electron microscopy and field emission scanning electron microscopy images shows uniform distribution of RGO and MnO2 in the MnO2-RGOSILAR. The LbL (MnO2-RGOSILAR) demonstrates improved physical and electrochemical properties over the hydrothermally prepared MnO2-RGO (MnO2-RGOHydro). The electrochemical environment of MnO2-RGOSILAR is explained by constant phase element in the high frequency region, and a Warburg element in the low frequency region in the Z-View fitted Nyquist plot. The equivalent circuit of the MnO2-RGOHydro, displays the co-existence of EDL and constant phase element, indicating inhomogeneous distribution of MnO2 and RGO by the hydrothermal technique. An asymmetric supercapacitor device is designed with MnO2-RGOSILAR as positive electrode, and thermally reduced GO (TRGO) as negative electrode. The designed cell exhibits high energy density of ∼88 Wh kg-1, elevated power density of ∼23,200 W kg-1, and ∼79% retention in capacitance after 10,000 charge-discharge cycles.

  15. Adsorption of cellulase on cellulose: effect of physicochemical properties of cellulose on adsorption and rate of hydrolysis

    SciTech Connect

    Lee, S.B.; Shin, H.S.; Ryu, D.D.Y.

    1982-11-01

    In the cellulase-cellulose reaction system, the adsorption of cellulase on the solid cellulose substrate was found to be one of the important parameters that govern the enzymatic hydrolysis rate of cellulose. The adsorption of cellulase usually parallels the rate of hydrolysis of cellulose. The affinity for cellulase varies depending on the structural properties of cellulose. Adsorption parameters such as the half-saturation constant, the maximum adsorption constant, and the distribution coefficient for both the cellulase and cellulose have been experimentally determined for several substrates. These adsorption parameters vary with the source of cellulose and the pretreatment methods and are correlated with the crystallinity and the specific surface area of cellulose substrates. The changing pattern of adsorption profile of cellulase during the hydrolysis reaction has also been elucidated. For practical utilization of cellulosic materials, the cellulose structural properties and their effects on cellulase adsorption, and the rate of hydrolysis must be taken into consideration. (Refs. 24).

  16. Adsorption of thorium from aqueous solutions by perlite.

    PubMed

    Talip, Z; Eral, M; Hiçsönmez, U

    2009-02-01

    The use of expanded perlite for the adsorption of thorium from aqueous solution by batch technique is presented. The effects of particle size, pH of the solution, initial thorium concentration, shaking time, V/m ratio and temperature were determined. It was found that the adsorption capacity increases by the increase in the pH of the suspensions. The rate of thorium adsorption on expanded perlite was observed to be fast in the first hour of the reaction time. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models and the adsorption experiments conducted at 30 +/- 1 degrees C showed that the adsorption isotherms correlated well with the Langmuir model. From the adsorption data, thermodynamic parameters such as DeltaG(o), DeltaH(o) and DeltaS(o) were calculated as a function of temperature.

  17. Practical Prediction of Ten Common Streptococcus pneumoniae Serotypes/Serogroups in One PCR Reaction by Multiplex Ligation-Dependent Probe Amplification and Melting Curve (MLPA-MC) Assay in Shenzhen, China

    PubMed Central

    Zheng, Lei; Zou, Jianhua; Jin, Ping; Hu, Yanwei; Kudinha, Timothy; Kong, Fanrong; Chen, Xu; Wang, Qian

    2015-01-01

    Background Streptococcus pneumoniae has more than 95 distinct serotypes described to date. However, only certain serotypes are more likely to cause pneumococcal diseases. Thus serotype surveillance is important for vaccine formula design as well as in post-vaccine serotype shift monitor. The goal of this study was to develop a practical screening assay for ten Shenzhen China common pneumococcal serotypes/serogroups in one molecular reaction. Methods A molecular assay, based on multiplex ligation-dependent probe amplification (MLPA) and melting curve (MC) analysis, was developed in an integrated approach (MLPA-MC) for the detection of ten capsular serotypes/serogroups 4, 6 (6A/6B/6C/6D), 9V/9A, 14, 15F/15A, 15B/15C, 18 (18F/18A/18B/18C), 19F, 19A and 23F. We designed serotype/serogroup-specific MLPA probes and fluorescent detection probes to discriminate the different serotypes/serogroups in one molecular reaction. The three steps of MLPA-MC assay are continuous reactions in one well detected by LightCycler 480. A total of 210 S. pneumoniae isolates from our local Maternity and Child Health Hospital were randomly chosen to evaluate the assay against published multiplex PCR assays. Results Our results showed that 198 (94.3%) of S. pneumoniae isolates were type-able by our assays and the results were in complete concordance with the published multiplex PCRs. Using the MLPA-MC assay, 96 S. pneumoniae isolates could be typed within 3 hours with limited hands-on time. This serotype/serogroup-screening assay can be easily modified or extended by modification of the serotype/serogroup-specific MLPA probes combinations according to the needs of different laboratories. Conclusions We recommend use of this assay as a starting point for screening serotype/serogroup frequencies. There is a need for this assay to be combined with other molecular typing assays, like published serotype specific PCRs, or even the Quellung reaction for serotype confirmation. PMID:26151828

  18. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  19. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  20. Adsorption of basic dyes from aqueous solution onto pumice powder.

    PubMed

    Akbal, Feryal

    2005-06-15

    The adsorption of methylene blue and crystal violet on pumice powder samples of varying compositions was investigated using a batch adsorption technique. The effects of various experimental parameters, such as adsorbent dosage, initial dye concentration, and contact time, were also investigated. The extent of dye removal increased with decreased initial concentration of the dye and also increased with increased contact time and amount of adsorbent used. Adsorption data were modeled using the Freundlich adsorption isotherm. The adsorption kinetic of methylene blue and crystal violet could be described by the pseudo-second-order reaction model.

  1. Use of the nitrile oxide cycloaddition (NOC) reaction for molecular probe generation: a new class of enzyme selective histone deacetylase inhibitors (HDACIs) showing picomolar activity at HDAC6.

    PubMed

    Kozikowski, Alan P; Tapadar, Subhasish; Luchini, Doris N; Kim, Ki Hwan; Billadeau, Daniel D

    2008-08-14

    A series of hydroxamate based HDAC inhibitors containing a phenylisoxazole as the CAP group has been synthesized using nitrile oxide cycloaddition chemistry. An HDAC6 selective inhibitor having a potency of approximately 2 picomolar was identified. Some of the compounds were examined for their ability to block pancreatic cancer cell growth and found to be about 10-fold more potent than SAHA. This research provides valuable, new molecular probes for use in exploring HDAC biology.

  2. Multi-platform comparison of ten commercial master mixes for probe-based real-time polymerase chain reaction detection of bioterrorism threat agents for surge preparedness.

    PubMed

    Buzard, Gregory S; Baker, Daniel; Wolcott, Mark J; Norwood, David A; Dauphin, Leslie A

    2012-11-30

    The Centers for Disease Control and Prevention and United States Army Research Institute for Infectious Diseases have developed real-time PCR assays for the detection of bioterrorism threat agents. These assays all rely on a limited number of approved real-time PCR master mixes. Because the availability of these reagents is a critical element of bioterrorism preparedness, we undertook a joint national preparedness exercise to address the potential surge needs resulting from a large-scale bio-emergency. We identified 9 commercially-available potential alternatives to an existing approved master mix (LightCycler FastStart DNA Master HybProbes): the TaqMan Fast Universal PCR master mix, OmniMix HS, FAST qPCR master mix, EXPRESS qPCR SuperMix kit, QuantiFast Probe PCR kit, LightCycler FastStart DNA Master(PLUS) HybProbe, Brilliant II FAST qPCR master mix, ABsolute Fast QPCR Mix and the HotStart IT Taq master mix. The performances of these kits were evaluated by the use of real-time PCR assays for four bioterrorism threat agents: Bacillus anthracis, Brucella melitensis, Burkholderia mallei and Francisella tularensis. The master mixes were compared for target-specific detection levels, as well as consistency of results among three different real-time PCR platforms (LightCycler, SmartCycler and 7500 Fast Dx). Real-time PCR analysis revealed that all ten kits performed well for agent detection on the 7500 Fast Dx instrument; however, the QuantiFast Probe PCR kit yielded the most consistently positive results across multiple real-time PCR platforms. We report that certain combinations of commonly used master mixes and instruments are not as reliable as others at detecting low concentrations of target DNA. Furthermore, our study provides laboratories the option to select from the commercial kits we evaluated to suit their preparedness needs.

  3. Differentiation of toxigenic Staphylococcus aureus in staphylococcal isolates from prepared and frozen foods by combined arbitrarily primed polymerase chain reaction and DNA probe.

    PubMed

    Córdoba, Maria G; Jordano, Rafael; Aranda, Emilio; Benito, Maria J; Córdoba, Juan J

    2003-06-01

    In prepared and frozen flamenquín and hake fish fingers Staphylococcus aureus as sanitary hazards have been detected. In the present work, a combined method that includes an arbitrarily primed PCR (AP-PCR) and a mixed DNA probe hybridisation designed for the enterotoxigenic genes sea, seb, sec, and sed will be assayed to differentiate enterotoxigenic S. aureus from other staphylococcal species isolated during the processing of prepared and frozen foods. From the protocols tested for the AP-PCR, the highest number of amplification bands showing the best resolution was achieved at 30 degrees C annealing and 35 degrees C extension temperatures. Several staphylococci identified by a biochemical test as S. aureus showed in the AP-PCR analysis different banding patterns to the references S. aureus. The isolates, were investigated by slot blot hybridisation for genes encoding A, B, C, and D staphylococcal enterotoxins to determine their enterotoxigenic potential. Several isolates characterised by the AP-PCR analysis as S. aureus hybridised with the DNA probe mixture. The combined AP-PCR and DNA probe hybridisation assayed was able to differentiate toxigenic S. aureus from other staphylococcal species from prepared and frozen foods. This method could be considered as microbial quality assurance in these products.

  4. Alpha'-hydroxyenones as mechanistic probes and scope-expanding surrogates for alpha,beta-unsaturated aldehydes in N-heterocyclic carbene-catalyzed reactions.

    PubMed

    Chiang, Pei-Chen; Rommel, Michael; Bode, Jeffrey W

    2009-06-24

    N-heterocyclic carbene-catalyzed reactions of alpha,beta-unsaturated aldehydes and a variety of electrophiles allow the facile preparation of a diverse array of annulation products including trisubstituted cyclopentenes, gamma-lactams, and bicyclic beta-lactams. The substrate scope of these reactions, however, is limited by the difficulties of preparing the starting alpha,beta-unsaturated aldehydes. We now report that alpha'-hydroxyenones, which can be prepared in a single convenient step from aromatic and heteroaromatic aldehydes, can serve as efficient surrogates for enals in the annulation reactions. This protocol allows the facile preparation and use of substrates bearing nitrogen heterocycles. These reagents have also allowed us to demonstrate that, in contrast to other classes of aldehydes, the formation of the Breslow intermediate from enals and N-heterocyclic carbenes is irreversible under the reaction conditions.

  5. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  6. A first-principles study of Pt-Ni bimetallic cluster adsorption on the anatase TiO2 (1 0 1) surface: Probing electron effect of Ni in TiO2 (1 0 1)-bimetallic cluster (Pt-Ni) on the adsorption and dissociation of methanol

    NASA Astrophysics Data System (ADS)

    Liu, Feila; Xiao, Peng; Uchaker, Evan; He, Huichao; Zhou, Ming; Zhou, Xin; Zhang, Yunhuai

    2014-10-01

    A density functional theory (DFT) based method in conjunction with the projector augmented wave and pseudopotential methods have been applied to investigate the adsorption of Pt4 and Pt3Ni on the anatase TiO2 (1 0 1) surface. Two stable Pt3Ni adsorptions with considerable adsorption energies on the anatase TiO2 (1 0 1) surface were identified. Analysis of the partial density (PDOS) of states and Bader charge suggest that the electronic structure of Pt is modified by Ni due to the electron transfer from Ni to Pt atoms in the Pt3Ni clusters. The 2cO (3cO)-PtNi-5cTi conformation of the adsorbed Pt3Ni on the anatase TiO2 (1 0 1) surface provides a more feasible model for electron injection through the Pt3Ni/TiO2 interface. The reactivity of Pt3Ni/TiO2 is superior to Pt4/TiO2 and effectively manifests itself in the eased decomposition of Osbnd H bonds derived by methanol and alleviative CO adsorption.

  7. Probing Metal Carbonation Reactions of CO2 in a Model System Containing Forsterite and H2O Using Si-29, C-13 Magic Angle Sample Spinning NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, J.; Kwak, J.; Hoyt, D. W.; Sears, J. A.; Rosso, K. M.; Felmy, A. R.

    2009-12-01

    Ex situ solid state NMR have been used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration using a model silicate mineral forsterite (Mg2SiO4)+scCO2 with and without H2O. Run conditions were 80C and 96 bar. Si-29 NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce Mg2+, and mono- and oligomeric hydroxylated silica species. The surface hydrolysis products contain only Q0 (Si(OH)4) and Q1 (Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to less than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. Si-29 NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. C-13 MAS NMR identified a possible reaction intermediates as (MgCO3)4*Mg(OH)2*5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed. This research is part of a broader effort at PNNL to develop experimental tools and fundamental insights into chemical transformations affecting subsurface CO2 reactive transport. Si-29 (left) and C-13 (right) MAS NMR spectra of Mg2SiO4 under various reaction conditions. Si-29 NMR reveals that in scCO2 without H2O, no reaction is

  8. Predicting Adsorption in Natural Systems: Are We There Yet? (Invited)

    NASA Astrophysics Data System (ADS)

    Koretsky, C. M.

    2010-12-01

    Anthropogenic release of potentially toxic contaminants into near surface environmental systems has led to a pressing need for quantitative models that can accurately predict contaminant speciation under a variety of chemical conditions. Adsorption of solutes can play an important role in determining contaminant speciation, mobility and bioavailability. Thermodynamically-based surface complexation models (SCMs) offer an attractive, theoretically-sound option for describing such reactions. Unlike many empirical models used to describe adsorption, SCMs explicitly include reaction stoichiometries and typically also account for the presence of electrical double layers on sorbent surfaces. In theory, SCMs should be able to correctly describe changes in solute adsorption as a result of variations in pH, electrolyte composition, ionic strength, sorbate/sorbent ratios and in the presence of competing sorbates and sorbents or other chemical reactions (e.g. aqueous complexation, precipitation, dissolution). In spite of these advantageous features of the SCM approach, significant challenges remain in applying such models to natural sediments and soils. These include a lack of: (1) consistent thermodynamic data for a large suite of geologically-relevant sorbates and sorbents, (2) robust thermodynamic data derived using a broad range of solution conditions, (3) data describing solid-solid interactions, and (4) information regarding the role of natural organic matter in promoting or inhibiting adsorption. Difficulties also remain with respect to characterization of complex natural sediments and soils, including straightforward and accurate methods to assess constituent composition, surface areas of solids, solute flow paths and solute residence times. In spite of such challenges, recent work suggests that developing accurate predictive models of adsorption in natural systems is a reasonable and achievable goal. To do so, more thorough, internally-consistent thermodynamic

  9. Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method.

    PubMed

    Malashchonak, Mikalai V; Mazanik, Alexander V; Korolik, Olga V; Streltsov, Еugene А; Kulak, Anatoly I

    2015-01-01

    The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3) and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR) method have been studied as a function of the CdS deposition cycle number (N). The incident photon-to-current conversion efficiency (IPCE) passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (E U), spectral width of the CdS longitudinal optical (LO) phonon band and the relative intensity of the surface optical (SO) phonon band in the Raman spectra. Maximal values of E U (100-120 meV) correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles), indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles.

  10. A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease

    SciTech Connect

    Zhang, Qibin; Ames, Jennifer M.; Smith, Richard D.; Baynes, John; Metz, Thomas O.

    2008-12-18

    The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide on overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression.

  11. Integrated microcantilevers for high-resolution sensing and probing

    NASA Astrophysics Data System (ADS)

    Li, Xinxin; Lee, Dong-Weon

    2012-02-01

    This topical review is focused on microcantilever-based sensing and probing functions that are realized by integrating a mechanically compliant cantilever with self-sensing and self-actuating elements, specific sensing materials as well as functionalized nano-tips. Such integrated cantilever devices have shown great promise in ultra-sensitive applications such as on-the-spot portable bio/chemical detection and in situ micro/nanoscale surface analysis and manipulation. The technical details of this review will be given in a sequence of cantilever sensors and, then, cantilever-tip probes. For the integrated cantilever sensors, the frequency-output style dynamic cantilevers are described first, with the contents including optimized resonance modes, sensing-group-modified nanostructures for specific bio/chemical mass adsorption and nanoscale sensing effects, etc. Thereafter, the static cantilever sensors for surface-stress detection are described in the sequence of the sensing mechanism, surface modification of the sensitive molecule layer and the model of specific reaction-induced surface-energy variation. After technical description of the cantilever sensors, the emphasis of the review moves to functionalized nano-tip equipped cantilever-tip probing devices. The probing functions are not only integrated on the cantilever but also integrated at the sharp apex of the tip. After description of single integrated cantilever probes and their applications in surface scanning and imaging, arrayed cantilever-tip devices and their simultaneous parallel operation for high throughput imaging and nanomechanical data storage are also addressed. With cantilever-tip probes as key elements, micro-analysis instruments are introduced that can be widely used for macro/nanoscale characterizations.

  12. Probing the role of P dbnd O stretching mode enhancement in nerve-agent sensors: Simulation of the adsorption of diisopropylfluorophosphate on the model MgO and CaO surfaces

    NASA Astrophysics Data System (ADS)

    Kolodziejczyk, Wojciech; Majumdar, D.; Roszak, Szczepan; Leszczynski, Jerzy

    2007-12-01

    The interactions of diisopropylfluorophosphate (DFP) with model MgO and CaO surfaces have been investigated using density functional (DFT) and Møller-Plesset second order perturbation techniques. The geometries were fully optimized at the DFT level. The calculated interaction energies and the corresponding thermodynamic properties show that DFP is physisorbed on these two model oxide surfaces and adsorption on the MgO surface is stronger. Analyses of the calculated IR and Raman spectra point to the enhancement of the P dbnd O stretching mode with respect to the isolated DFP and this property could be used to detect nerve-agents using surface-enhanced Raman spectroscopy.

  13. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    PubMed

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  14. STM CONTROL OF CHEMICAL REACTIONS: Single-Molecule Synthesis

    NASA Astrophysics Data System (ADS)

    Hla, Saw-Wai; Rieder, Karl-Heinz

    2003-10-01

    The fascinating advances in single atom/molecule manipulation with a scanning tunneling microscope (STM) tip allow scientists to fabricate atomic-scale structures or to probe chemical and physical properties of matters at an atomic level. Owing to these advances, it has become possible for the basic chemical reaction steps, such as dissociation, diffusion, adsorption, readsorption, and bond-formation processes, to be performed by using the STM tip. Complete sequences of chemical reactions are able to induce at a single-molecule level. New molecules can be constructed from the basic molecular building blocks on a one-molecule-at-a-time basis by using a variety of STM manipulation schemes in a systematic step-by-step manner. These achievements open up entirely new opportunities in nanochemistry and nanochemical technology. In this review, various STM manipulation techniques useful in the single-molecule reaction process are reviewed, and their impact on the future of nanoscience and technology are discussed.

  15. A comparison of two real-time polymerase chain reaction assays using hybridization probes targeting either 16S ribosomal RNA or a subsurface lipoprotein gene for detecting leptospires in canine urine.

    PubMed

    Gentilini, Fabio; Zanoni, Renato Giulio; Zambon, Elisa; Turba, Maria Elena

    2015-11-01

    Leptospires are excreted in the urine of infected animals, and the prompt detection of leptospiral DNA using polymerase chain reaction (PCR) is increasingly being used. However, contradictory data has emerged concerning the diagnostic accuracy of the most popular PCR assays that target either the 16S ribosomal RNA (rrs) or the subsurface lipoprotein (LipL32) genes. In order to clarify the effect of the gene target, a novel hydrolysis probe-based, quantitative real-time PCR (qPCR) assay targeting the LipL32 gene was developed, validated, and then compared directly to the previously described rrs hydrolysis probe-based qPCR using a convenience collection of canine urine samples. The novel LipL32 qPCR assay was linear from 5.9 × 10(6) to 59 genome equivalents per reaction. Both the LipL32 and the rrs qPCR assays showed a limit of detection of 10 target copies per reaction indicating an approximately equivalent analytical sensitivity. Both assays amplified all 20 pathogenic leptospiral strains tested but did not amplify a representative collection of bacteria commonly found in voided canine urine. When the field samples were assayed, 1 and 5 out of 184 samples yielded an amplification signal in the LipL32 and rrs assays, respectively. Nevertheless, when the limit of detection was considered as the cutoff for interpreting findings, the 4 discordant cases were judged as negative. In conclusion, our study confirmed that both LipL32 and rrs are suitable targets for qPCR for the detection of leptospiral DNA in canine urine. However, the rrs target requires the mandatory use of a cutoff value in order to correctly interpret spurious amplifications.

  16. A label-free fluorescence DNA probe based on ligation reaction with quadruplex formation for highly sensitive and selective detection of nicotinamide adenine dinucleotide.

    PubMed

    Zhao, Jingjin; Zhang, Liangliang; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin

    2012-05-11

    A simple label-free fluorescent sensing scheme for sensitive and selective detection of nicotinamide adenine dinucleotide (NAD(+)) has been developed based on DNA ligation reaction with ligand-responsive quadruplex formation. This approach can detect 0.5 nM NAD(+) with high selectivity against other NAD(+) analogs.

  17. Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH 2 OO and isoprene

    SciTech Connect

    Decker, Z. C. J.; Au, K.; Vereecken, L.; Sheps, L.

    2017-01-01

    Recent advances in the spectroscopy of Criegee intermediates (CI) have enabled direct kinetic studies of these highly reactive chemical species. The impact of CI chemistry is currently being incorporated into atmospheric models, including their reactions with trace organic and inorganic compounds. Isoprene, C5H8, is a doubly-unsaturated hydrocarbon that accounts for the largest share of all biogenic emissions around the globe and is also a building block of larger volatile organic compounds. We report direct measurements of the reaction of the simplest CI (CH2OO) with isoprene, using time-resolved cavity-enhanced UV absorption spectroscopy. We find the reaction to be pressure-independent between 15–100 Torr, with a rate coefficient that varies from (1.5 ± 0.1) × 10–15 cm3 molecule–1 s–1 at room temperature to (23 ± 2) × 10–15 cm3 molecule–1 s–1 at 540 K. Quantum chemical and transition-state theory calculations of 16 unique channels for CH2OO + isoprene somewhat underpredict the observed T-dependence of the total reaction rate coefficient, but are overall in good agreement with the experimental measurements. Finally, this reaction is broadly similar to those with smaller alkenes, proceeding by 1,3-dipolar cycloaddition to one of the two conjugated double bonds of isoprene.

  18. The dissociative adsorption of hydrogen on defect-'free' Pt(111)

    NASA Astrophysics Data System (ADS)

    Poelsema, Bene; Lenz, Klaus; Comsa, George

    2010-08-01

    The interaction of hydrogen with an (almost) defect-free Pt(111) surface (step density ~ 0.1%) is revisited in a combined thermal energy atom scattering/thermal desorption spectroscopy (TEAS/TDS) study. We propose a novel kinetic precursor-mediated adsorption/desorption model for hydrogen/Pt(111) to reconcile seemingly conflicting results, such as extremely different dissociative adsorption kinetics at 25 and 155 K. Up to a perpendicular energy of (at least) 60 meV, highly relevant for hydrogenation reactions, the initial sticking probability scales with perpendicular energy to the power 1.9. This atypical behaviour is attributed to probing larger corrugation amplitudes at higher normal energy, leading to scattering of hydrogen into a dynamic precursor prior to dissociation and thus to increased trapping. Scrutiny of the data demonstrates that only a small minority of the surface sites (most probably steps) is active in dissociation. The observed decay of the heat of adsorption with coverage indicates strong repulsion between hydrogen atoms. The TDS-spectra of hydrogen from the defect-'free' Pt(111) consist definitively of a single (β2-)peak in contrast to the frequently measured double (β1, β2-)peak structure and at variance with the yet widely accepted conjecture that repulsive interactions lead to double (β1, β2-)peak structures in TDS-spectra. TDS-spectra simulated by applying the micro-reversibility principle and using TEAS-data are in agreement with the experimental ones. The TEAS-data, probing hydrogen whilst on the surface, are thus consistent with TDS-data, probing hydrogen after leaving the surface.

  19. Use of H2S to Probe the Active Sites in FeNC Catalysts for the Oxygen Reduction Reaction (ORR) in Acidic Media

    SciTech Connect

    Singh, Deepika; Mamtani, Kuldeep; Bruening, Christopher R.; Miller, Jeffrey T.; Ozkan, Umit S.

    2014-10-01

    H2S has been used as a probe molecule both in an “in situ” poisoning experiment and in intermediate-temperature heat-treatment steps during and after the preparation of FeNC catalysts in an attempt to analyze its effect on their ORR activity. The heat treatments were employed either on the ball-milled precursor of FeNC or after the Ar-NH3 high temperature heat treatments. ORR activity of the H2S-treated catalysts was seen to be significantly lower than the sulfur-free catalysts, whether the sulfur exposure was during a half-cell testing, or as an intermediate-temperature exposure to H2S. The incorporation of sulfur species and interaction of Fe with sulfur were confirmed by characterization using XPS, EXAFS, TPO, and TPD. This study provides crucial evidence regarding differences in active sites in FeNC versus nitrogen-containing carbon nanostructured (CNx) catalysts.

  20. Monitoring of an esterification reaction by on-line direct liquid sampling mass spectrometry and in-line mid infrared spectrometry with an attenuated total reflectance probe.

    PubMed

    Owen, Andrew W; McAulay, Edith A J; Nordon, Alison; Littlejohn, David; Lynch, Thomas P; Lancaster, J Steven; Wright, Robert G

    2014-11-07

    A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mLmin(-1), respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40°C and 20°C, respectively, at the 1L scale. Reactions in the 1L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to generate concentration profiles for all the components in the reaction. Also, it was possible to detect the presence of a simulated impurity of ethanol (at levels of 2.6 and 9.1% mol/mol) in butan-1-ol, and the resulting production of ethyl acetate, by DLSMS, but not by in-line MIR spectrometry.

  1. Communication: Probing the entrance channels of the X + CH{sub 4}{yields} HX + CH{sub 3} (X = F, Cl, Br, I) reactions via photodetachment of X{sup -}-CH{sub 4}

    SciTech Connect

    Cheng Min; Feng Yuan; Du Yikui; Zhu Qihe; Zheng Weijun; Czako, Gabor; Bowman, Joel M.

    2011-05-21

    The entrance channel potentials of the prototypical polyatomic reaction family X + CH{sub 4}{yields} HX + CH{sub 3} (X = F, Cl, Br, I) are investigated using anion photoelectron spectroscopy and high-level ab initio electronic structure computations. The pre-reactive van der Waals (vdW) wells of these reactions are probed for X = Cl, Br, I by photodetachment spectra of the corresponding X{sup -}-CH{sub 4} anion complex. For F-CH{sub 4}, a spin-orbit splitting ({approx}1310 cm{sup -1}) much larger than that of the F atom (404 cm{sup -1}) was observed, in good agreement with theory. This showed that in the case of the F-CH{sub 4} system the vertical transition from the anion ground state to the neutral potentials accesses a region between the vdW valley and transition state of the early-barrier F + CH{sub 4} reaction. The doublet splittings observed in the other halogen complexes are close to the isolated atomic spin-orbit splittings, also in agreement with theory.

  2. Probing the 12C - 12C and 12C - 16O Molecular States by Radiative Capture Reactions:. Present Status and Future

    NASA Astrophysics Data System (ADS)

    Lebhertz, D.; Courtin, S.; Haas, F.; Jenkins, D. G.; Ciemala, M.; Goasduff, A.; Hutcheon, D. A.; Labiche, M.; Michalon, A.; Roberts, O.; Salsac, M.-D.; Stezowski, O.

    Complete γ-decay in the 12C(12C,γ)24Mg and 12C(16O,γ)28Si reactions has been measured at energies close to the Coulomb Barrier using the DRAGON spectrometer and its associated BGO γ-array at the TRIUMF facility. The experimental data show an important feeding of doorway states around 10-11 MeV in both reactions. Comparisons with simulations allow to extract the full capture cross section and the main spin involved in the process. Different models are confronted to the results : completely statistical, semi-statistical with an unique entrance spin and cluster. The resolution of the BGO enables to eliminate a fully statistical scenario but is not enough to disentangle the two remaining scenarii. It is shown that the future PARIS array composed of the recently developed LaBr3 scintillators will have capabilities to distinguish between these two scenarii.

  3. Probing the weakly-bound neutron orbit of {sup 31}Ne with total reaction and one-neutron removal cross sections

    SciTech Connect

    Horiuchi, W.; Suzuki, Y.; Capel, P.; Baye, D.

    2010-02-15

    A candidate of a neutron-halo nucleus, {sup 31}Ne, contains a single neutron in the pf shell. Within the Glauber and eikonal models, we analyze reactions used to study {sup 31}Ne. We show in a {sup 30}Ne+n model that the magnitudes of the total reaction and above all of the one-neutron removal cross sections of {sup 31}Ne on {sup 12}C and {sup 208}Pb targets strongly depend on the orbital angular momentum of the neutron, thereby providing us with efficient ways to determine both the spin-parity and structure of the ground state of {sup 31}Ne. Besides these inclusive observables, we also calculate energy and parallel-momentum distributions for the breakup of {sup 31}Ne and show their strong dependence on the orbital of the valence neutron in the bound state of {sup 31}Ne.

  4. Adsorption mechanism of chloroacetanilide herbicides to modified montmorillonite.

    PubMed

    El-Nahhal, Yasser

    2003-09-01

    This study was undertaken to characterize the adsorption mechanism of alachlor and metolachlor on montmorillonite modified with cationic surfactants. Adsorbed amounts of cationic surfactant on montmorillonite surfaces were determined by CNHSO analyzer. Equilibrium concentrations of alachlor and metolachlor were determined by GC and adsorption results were fit to a linear regression equation. The slope of the isotherms (Kd) was normalized to the fraction of organic carbon on montmorillonite complexes to produce corresponding Koc. Adsorption of surfactants fit very well to Langmuir equation. Increased basal spacing indicates that surfactant molecules could penetrate through the interlayer spacing and arrange themselves in different ways. Equilibrium data of alachlor and metolachlor suggest that adsorption may occur via physical or chemical bonds. Koc values of alachlor or metolachlor decreased as the fraction of the organic carbon increased in montmorillonite complexes indicating independent adsorption process. Changes of the molar free energy of the adsorption reactions were in the range of physical adsorption, indicating that adsorption reactions are spontaneous and the molecules either adsorb on the surface or penetrate into the inter-layers of montmorillonite-surfactant complex. Careful investigation of the adsorption data suggests that interaction may occur via the active groups such as carbonyl group (-C=O), anilidic (C-N) group and/or phenyl rings. This information may provide better understanding on adsorption mechanism and be useful in designing ecologically acceptable herbicide formulations.

  5. Derivation of the Freundlich Adsorption Isotherm from Kinetics

    ERIC Educational Resources Information Center

    Skopp, Joseph

    2009-01-01

    The Freundlich adsorption isotherm is a useful description of adsorption phenomena. It is frequently presented as an empirical equation with little theoretical basis. In fact, a variety of derivations exist. Here a new derivation is presented using the concepts of fractal reaction kinetics. This derivation provides an alternative basis for…

  6. Enhancing the sensitivity of immunoassay procedures by use of antibodies directed to the product of a reaction between probe labels and assay substrates

    DOEpatents

    Erlanger, Bernard F.; Chen, Bi-Xing

    1997-01-01

    The subject invention provides an antibody which specifically binds to the product of a reaction between a labeling substance and a substrate. The subject invention also provides a method of making an immunogen used to produce the antibody of the subject invention. The invention further provides methods of using the subject antibody for detecting an antigen of interest in a sample, for example detecting a protein comprising an amino acid sequence of interest and detecting a nucleic acid molecule comprising a nucleic acid sequence of interest.

  7. Enhancing the sensitivity of immunoassay procedures by use of antibodies directed to the product of a reaction between probe labels and assay substrates

    DOEpatents

    Erlanger, B.F.; Chen, B.X.

    1997-07-22

    The subject invention provides an antibody which specifically binds to the product of a reaction between a labeling substance and a substrate. The subject invention also provides a method of making an immunogen used to produce the antibody of the subject invention. The invention further provides methods of using the subject antibody for detecting an antigen of interest in a sample, for example detecting a protein comprising an amino acid sequence of interest and detecting a nucleic acid molecule comprising a nucleic acid sequence of interest. 8 figs.

  8. Chiroptical Probing of Lanthanide-Directed Self-Assembly Formation Using btp Ligands Formed in One-Pot Diazo-Transfer/Deprotection Click Reaction from Chiral Amines.

    PubMed

    Byrne, Joseph P; Martínez-Calvo, Miguel; Peacock, Robert D; Gunnlaugsson, Thorfinnur

    2016-01-11

    A series of enantiomeric 2,6-bis(1,2,3-triazol-4-yl)pyridines (btp)-containing ligands was synthesized by a one-pot two-step copper-catalyzed amine/alkyne click reaction. The Eu(III) - and Tb(III) -directed self-assembly formation of these ligands was studied in CH3 CN by monitoring their various photophysical properties, including their emerging circular dichroism and circularly polarized luminescence. The global analysis of the former enabled the determination of both the stoichiometry and the stability constants of the various chiral supramolecular species in solution.

  9. Enhancing the sensitivity of immunoassay procedures by use of antibodies directed to the product of a reaction between probe labels and assay substrates

    DOEpatents

    Erlanger, Bernard F.; Chen, Bi-Xing

    1999-01-01

    The subject invention provides an antibody which specifically binds to the product of a reaction between a labeling substance and a substrate. The subject invention also provides a method of making an immunogen used to produce the antibody of the subject invention. The invention further provides methods of using the subject antibody for detecting an antigen of interest in a sample, for example, detecting a protein comprising an amino acid sequence of interest and detecting a nucleic acid molecule comprising a nucleic acid sequence of interest, detecting a polypeptide such as those expressed by infectious agents, fungi or parasites.

  10. Enhancing the sensitivity of immunoassay procedures by use of antibodies directed to the product of a reaction between probe labels and assay substrates

    DOEpatents

    Erlanger, B.F.; Chen, B.

    1999-07-20

    The subject invention provides an antibody which specifically binds to the product of a reaction between a labeling substance and a substrate. The subject invention also provides a method of making an immunogen used to produce the antibody of the subject invention. The invention further provides methods of using the subject antibody for detecting an antigen of interest in a sample, for example, detecting a protein comprising an amino acid sequence of interest and detecting a nucleic acid molecule comprising a nucleic acid sequence of interest, detecting a polypeptide such as those expressed by infectious agents, fungi or parasites. 25 figs.

  11. [Adsorption dynamics and breakthrough characteristics based on the fluidization condition].

    PubMed

    Wang, Jun; Wang, Yao; Huang, Xing; Yuan, Yi-Long; Chen, Rui-Hui; Zhou, Hang; Zhou, Dan-Dan

    2014-02-01

    Few studies on the adsorption dynamics and breakthrough characteristics based on the fluidization condition have been reported. In a fluidized bed adsorption reactor with phenol as the adsorbate and granular activated carbon as the adsorbent, the adsorption efficiency, adsorption dynamic characteristics, adsorption breakthrough curves and adsorption capacities were studied and compared with those of a fixed bed operated under the same conditions. The results showed that the adsorption efficiencies exceeded 93% in 5 min in both the fluidized conditions and fixed conditions at the superficial velocities of 8 mm x s(-1) and 13 mm x s(-1). Meanwhile, the above adsorption reactions fitted to Pseudo-second-order with linear correlation coefficients greater than 0.999. The adsorption capacity of fluidized conditions was 8.77 mg x g(-1) and 24.70 mg x g(-1) at the superficial velocities of 6 mm x s(-1) and 8 mm x s(-1). Generally, the fluidized bed reactor showed a higher adsorption efficiency and greater adsorption capacity than the fixed bed reactor.

  12. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  13. INFLUENCE OF THE KRAMER EFFECT ON ADSORPTION ON METALS.

    DTIC Science & Technology

    ADSORPTION, *ALLOYS, *FILMS, *METALS, *PROCESSING, ACIDS, ALCOHOLS , CYCLOHEXANES, EXCHANGE REACTIONS , FATTY ACIDS, HEAT TREATMENT , LEAD ALLOYS...LINOLENIC ACID, MACHINING , MEASUREMENT, MONOMOLECULAR FILMS, OLEIC ACID, SURFACES, TIN ALLOYS, WATER

  14. Immobilised histidine tagged β2-adrenoceptor oriented by a diazonium salt reaction and its application in exploring drug-protein interaction using ephedrine and pseudoephedrine as probes.

    PubMed

    Li, Qian; Bian, Liujiao; Zhao, Xinfeng; Gao, Xiaokang; Zheng, Jianbin; Li, Zijian; Zhang, Youyi; Jiang, Ru; Zheng, Xiaohui

    2014-01-01

    A new oriented method using a diazonium salt reaction was developed for linking β2-adrenoceptor (β2-AR) on the surface of macroporous silica gel. Stationary phase containing the immobilised receptor was used to investigate the interaction between β2-AR and ephedrine plus pseudoephedrine by zonal elution. The isotherms of the two drugs best fit the Langmuir model. Only one type of binding site was found for ephedrine and pseudoephedrine targeting β2-AR. At 37 °C, the association constants during the binding were (5.94±0.05)×103/M for ephedrine and (3.80±0.02) ×103/M for pseudoephedrine, with the binding sites of (8.92±0.06) ×10-4 M. Thermodynamic studies showed that the binding of the two compounds to β2-AR was a spontaneous reaction with exothermal processes. The ΔGθ, ΔHθ and ΔSθ for the interaction between ephedrine and β2-AR were -(22.33±0.04) kJ/mol, -(6.51±0.69) kJ/mol and 50.94±0.31 J/mol·K, respectively. For the binding of pseudoephedrine to the receptor, these values were -(21.17±0.02) kJ/mol, -(7.48±0.56) kJ/mol and 44.13±0.01 J/mol·K. Electrostatic interaction proved to be the driving force during the binding of the two drugs to β2-AR. The proposed immobilised method will have great potential for attaching protein to solid substrates and realizing the interactions between proteins and drugs.

  15. Design Strategies for Bioorthogonal Smart Probes

    PubMed Central

    Shieh, Peyton; Bertozzi, Carolyn R.

    2014-01-01

    Bioorthogonal chemistry has enabled the selective labeling and detection of biomolecules in living systems. Bioorthogonal smart probes, which become fluorescent or deliver imaging or therapeutic agents upon reaction, allow for the visualization of biomolecules or targeted delivery even in the presence of excess unreacted probe. This review discusses the strategies used in the development of bioorthogonal smart probes and highlights the potential of these probes to further our understanding of biology. PMID:25315039

  16. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  17. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe.

    PubMed

    Li, Chongning; Ouyang, Huixiang; Tang, Xueping; Wen, Guiqing; Liang, Aihui; Jiang, Zhiliang

    2017-01-15

    With development of economy and society, there is an urgent need to develop convenient and sensitive methods for detection of Cu(2+) pollution in water. In this article, a simple and sensitive SERS sensor was proposed to quantitative analysis of trace Cu(2+) in water. The SERS sensor platform was prepared a common gold nanoparticle (AuNP)-SiO2 sol substrate platform by adsorbing HSA, coupling with the catalytic reaction of Cu(2+)-ascorbic acid (H2A)-dissolved oxygen, and using label-free Victoria blue B (VBB) as SERS molecular probes. The SERS sensor platform response to the AuNP aggregations by hydroxyl radicals (•OH) oxidizing from the Cu(2+) catalytic reaction, which caused the SERS signal enhancement. Therefore, by monitoring the increase of SERS signal, Cu(2+) in water can be determined accurately. The results show that the SERS sensor platforms owns a linear response with a range from 0.025 to 25μmol/L Cu(2+), and with a detection limit of 0.008μmol/L. In addition, the SERS method demonstrated good specificity for Cu(2+), which can determined accurately trace Cu(2+) in water samples, and good recovery and accuracy are obtained for the water samples. With its high selectivity and good accuracy, the sensitive SERS quantitative analysis method is expected to be a promising candidate for determining copper ions in environmental monitoring and food safety.

  18. Detection of subgenomic mRNA of feline coronavirus by real-time polymerase chain reaction based on primer-probe energy transfer (P-sg-QPCR).

    PubMed

    Hornyák, Akos; Bálint, Adám; Farsang, Attila; Balka, Gyula; Hakhverdyan, Mikhayil; Rasmussen, Thomas Bruun; Blomberg, Jonas; Belák, Sándor

    2012-05-01

    Feline infectious peritonitis is one of the most severe devastating diseases of the Felidae. Upon the appearance of clinical signs, a cure for the infected animal is impossible. Therefore rapid and proper diagnosis for both the presence of the causative agent, feline coronavirus (FCoV) and the manifestation of feline infectious peritonitis is of paramount importance. In the present work, a novel real-time RT-PCR method is described which is able to detect FCoV and to determine simultaneously the quantity of the viral RNA. The new assay combines the M gene subgenomic messenger RNA (sg-mRNA) detection and the quantitation of the genome copies of FCoV. In order to detect the broadest spectrum of potential FCoV variants and to achieve the most accurate results in the detection ability the new assay is applying the primer-probe energy transfer (PriProET) principle. This technology was chosen since PriProET is very robust to tolerate the nucleotide substitutions in the target area. Therefore, this technology provides a very broad-range system, which is able to detect simultaneously many variants of the virus(es) even if the target genomic regions show large scale of variations. The detection specificity of the new assay was proven by positive amplification from a set of nine different FCoV strains and negative from the tested non-coronaviral targets. Examination of faecal samples of healthy young cats, organ samples of perished animals, which suffered from feline infectious peritonitis, and cat leukocytes from uncertain clinical cases were also subjected to the assay. The sensitivity of the P-sg-QPCR method was high, since as few as 10 genome copies of FCoV were detected. The quantitative sg-mRNA detection method revealed more than 10-50,000 times increase of the M gene sg-mRNA in organ materials of feline infectious peritonitis cases, compared to those of the enteric FCoV variants present in the faeces of normal, healthy cats. These results indicate the applicability of

  19. Effect of grain size on uranium(VI) surface complexation kinetics and adsorption additivity.

    PubMed

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M

    2011-07-15

    The contribution of variable grain sizes to uranium adsorption/desorption was studied using a sediment from the US DOE Hanford site. The sediment was wet sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.053-0.2 mm), and clay/silt fraction (<0.053 mm). For each size fraction and their composite (sediment), batch and flow-cell experiments were performed to determine uranium adsorption isotherms and kinetic uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. One important implication of this study is that grain-size distribution may be used to estimate uranium adsorption site and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  20. Adsorption Refrigeration System

    SciTech Connect

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  1. Isotope Probing of the UDP‐Apiose/UDP‐Xylose Synthase Reaction: Evidence of a Mechanism via a Coupled Oxidation and Aldol Cleavage

    PubMed Central

    Eixelsberger, Thomas; Horvat, Doroteja; Gutmann, Alexander; Weber, Hansjörg

    2017-01-01

    Abstract The C‐branched sugar d‐apiose (Api) is essential for plant cell‐wall development. An enzyme‐catalyzed decarboxylation/pyranoside ring‐contraction reaction leads from UDP‐α‐d‐glucuronic acid (UDP‐GlcA) to the Api precursor UDP‐α‐d‐apiose (UDP‐Api). We examined the mechanism of UDP‐Api/UDP‐α‐d‐xylose synthase (UAXS) with site‐selectively 2H‐labeled and deoxygenated substrates. The analogue UDP‐2‐deoxy‐GlcA, which prevents C‐2/C‐3 aldol cleavage as the plausible initiating step of pyranoside‐to‐furanoside conversion, did not give the corresponding Api product. Kinetic isotope effects (KIEs) support an UAXS mechanism in which substrate oxidation by enzyme‐NAD+ and retro‐aldol sugar ring‐opening occur coupled in a single rate‐limiting step leading to decarboxylation. Rearrangement and ring‐contracting aldol addition in an open‐chain intermediate then give the UDP‐Api aldehyde, which is intercepted via reduction by enzyme‐NADH. PMID:28102965

  2. Atomically resolved studies of reactions at industrial settings - novel design of an ultra high pressure, high temperature scanning tunneling microscope system for probing catalytic conversions

    NASA Astrophysics Data System (ADS)

    Tang, David; Somorjai, Gabor

    2005-03-01

    In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature, a modified version of the Pan-style STM motor has been designed and constructed in-house. The new design features a much reduced size and a rigid coupling to the sample, and has been tested to show much higher resonant frequency than conventional Beetle-style STM designs, providing the ability to image faster and yielding lower susceptibility to noise. A small flow reactor cell (˜10 mL) has been constructed to house the new STM, whose samples and tips are accessible through a bayonet-sealed access port by the use of a wobble stick and a transfer arm. The reactor cell can be placed inside an UHV system to allow cleaning and characterization of sample before and after experiments, as well as continuous monitoring by mass spectrometry or gas chromatography through a leak valve. The new system also allows in vacuo sample and tip exchange without exposing the system to impurities in air. As such, the new ultrahigh pressure scanning tunneling microscope is designed to allow successive STM experiments performed with precise control of temperatures between 300 K and 600 K and pressures between <10-9 torr and 30 bars.

  3. Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the 4He(e,e`pN) Triple-Coincidence Reaction

    SciTech Connect

    Korover, Igor; Muangma, Navaphon; Hen, Or; Shneor, Ran; Sulkosky, Vincent; Kelleher, Aidan; Gilad, Shalev; Higinbotham, Douglas; Piasetzky, Eliazer; Wood, Stephen; Rakhman, Abdurahim; Aguilera, Paula; Ahmed, Zafar; Albataineh, Hisham; Allada, Kalyan; Anderson, Bryon; Anez, David; Aniol, Konrad; Annand, John; Armstrong, Whitney; Arrington, John; Averett, Todd; Badman, Toby; Baghdasaryan, Hovhannes; Bai, Xinzhan; Beck, Arie; Beck, Sharon; Bellini, Vincenzo; Benmokhtar, Fatiha; Bertozzi, William; Bittner, James; Boeglin, Werner; Camsonne, Alexandre; Chen, Chunhua; Chen, Jian -Ping; Chirapatpimol, Khem; Cisbani, Evaristo; Dalton, Mark; Daniel, Aji; Day, Donal; De, Cornelis; de Jager, C. W.; De, Raffaele; Leo, R. De; Deconinck, Wouter; Defurne, Maxime; Flay, David; Fomin, Nadia; Friend, Megan; Frullani, Salvatore; Fuchey, Eric; Garibaldi, Franco; Gaskell, David; Gilman, Ronald; Glamazdin, Oleksandr; Gu, Chao; Gueye, Paul; Hamilton, David; Hanretty, Charles; Hansen, Jens-Ole; Shabestari, Mitra Hashemi; Holmstrom, Timothy; Huang, Min; Iqbal, Sophia; Jin, Ge; Kalantarians, Narbe; Kang, Hoyoung; Khandaker, Mahbubul; LeRose, John; Leckey, John; Lindgren, Richard; Long, Elena; Mammei, Juliette; Margaziotis, Demetrius; Markowitz, Pete; Meekins, David; Meziani, Zein -Eddine; Michaels, Robert; Mihovilovic, Miha; Monaghan, Peter; Munoz, Carlos; Camacho, C. Munoz; Norum, Blaine; Nuruzzaman, nfn; Pan, Kai; Phillips, Sarah; Pomerantz, Ishay; Posik, Matthew; Punjabi, Vina; Qian, Xin; Qiang, Yi; Qiu, Xiyu; Reimer, Paul; Riordan, Seamus; Ron, Guy; Rondon-Aramayo, Oscar; Saha, Arunava; Schulte, Elaine; Selvy, Lawrence; Shahinyan, Albert; Sirca, Simon; Sjoegren, Johan; Slifer, Karl; Solvignon-Slifer, Patricia; Sparveris, Nikolaos; Subedi, Ramesh; Tireman, William; Wang, Diancheng; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Yan, Wenbiao; Yaron, Israel; Ye, Zhihong; Zhan, X.; Zhang, J.; Zhang, Yawei; Zhao, Bo; Zhao, Zhiwen; Zheng, Xiaochao; Zhu, Pengjia; Zielinski, Ryan; Watson, John

    2014-07-01

    We studied simultaneously the 4He(e,e'p), 4He(e,e'pp), and 4He(e,e'pn) reactions at Q2=2 [GeV/c]2 and xB >1, for a (e,e'p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A=2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum in a region where the nucleon-nucleon force is expected to change from predominantly tensor to repulsive. Neutron-proton pairs dominate the high-momentum tail of the nucleon momentum distributions, but their abundance is reduced as the nucleon momentum increases beyond ~500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum in the range we studied. Our data are compared with ab-initio calculations of two-nucleon momentum distributions in 4He.

  4. Probing the Repulsive Core of the Nucleon-Nucleon Interaction via the 4He(e,e`pN) Triple-Coincidence Reaction

    DOE PAGES

    Korover, Igor; Muangma, Navaphon; Hen, Or; ...

    2014-07-01

    We studied simultaneously the 4He(e,e'p), 4He(e,e'pp), and 4He(e,e'pn) reactions at Q2=2 [GeV/c]2 and xB >1, for a (e,e'p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A=2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum in a region where the nucleon-nucleon force is expected to change from predominantly tensor to repulsive. Neutron-proton pairs dominate the high-momentum tail ofmore » the nucleon momentum distributions, but their abundance is reduced as the nucleon momentum increases beyond ~500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum in the range we studied. Our data are compared with ab-initio calculations of two-nucleon momentum distributions in 4He.« less

  5. [Infrared study on adsorption of O3 at SnO2 surface].

    PubMed

    Zeng, Yu-Feng; Liu, Zi-Li; Qin, Zu-Zeng; Liu, Hong-Wei

    2008-05-01

    SnO2 was prepared by precipitation method and mental oxides modified SnO2 catalysts were prepared by coprecipitation method. High concentration molasses fermentation wastewater degradation by SnO2 catalyzed ozonation was used as a probe reaction and IR spectra were used to study the adsorption of O3 at SnO2 and different metal oxides modification SnO2 surface. The results showed, that in the infrared absorption spectra of adsorption of O3 prepared by pure O2 at SnO2 catalyst surface, two obvious bidentate absorption double peaks were found at 1 027 and 1 055 cm(-1), and 2 099 and 2 122 cm(-1), respectively. However, there was competitive adsorption between O3 prepared by air, and CO and CO2. Then the O3 adsorption decreased, leading to the decrease in the degradation of molasses fermentation wastewater by SnO2 catalytic ozonation, and after 60 min reaction, the degradation rate by pure oxygen as oxygen source was 79.2%. It was 33.1% more by air as oxygen source. Similar strength adsorption peaks in the infrared spectra were found at 2 236, 2213 cm(-1) and 1 628, 1 599 cm (-1) with Fe2O3, NiO, CuO, ZnO, MgO, SrO and BaO modified SnO2. But the adsorption of CO2 and CO was different on modifier-SnO2, There was a wide absorption peak at 1 580-1 070 cm(-1) in the infrared spectra of transition metal modified SnO2, and two new peaks at 1 298 and 1 274 cm(-1) were found between 1 580 and 1 070 cm(-1) in the infrared spectra of alkaline-earth metals modified SnO2 catalysts. These changes leaded to a different catalytic ozonation activity of modifier-SnO2, the results of molasses fermentation wastewater degradation by ozone combined with alkaline-earth metal modified SnO2 was obviously better than ozone combined with transition metal modified SnO2. And among them, the ozonation catalytic activity of BaO-SnO2 was the best.

  6. Adsorption of ammonium on biochar prepared from giant reed.

    PubMed

    Hou, Jie; Huang, Lei; Yang, Zhimin; Zhao, Yaqi; Deng, Chaoren; Chen, Yucheng; Li, Xin

    2016-10-01

    Giant reed was used as precursor for making biochar in order for the adsorption of NH4 (+)-N from aqueous solution. And the adsorption of the product to NH4 (+)-N was examined. The surface features of biochar were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), and X-ray diffraction (XRD). XRD patterns showed several peaks and correspond to the high amount of crystalline material. The crystals contain KCl, K2O, CaO, MgO, and SiO and possess high surface area which enhances adsorption. The influence of different parameters such as initial concentration, adsorption time, pH, and ionic strength has been carried out. The adsorption could reach equilibrium through 24 h reaction and had the best adsorption amount at the solution pH values from 7 to 9. The cation has great influence on the adsorption of NH4 (+)-N, whereas the anion exerted a weaker effect. The adsorption followed pseudo-first-order and pseudo-second-order models. And the intraparticle diffusion and desorption studies further elucidated that the mechanism of adsorption on the product was ion exchange. The product equilibrium data was well described by the Langmuir and Freundlich model. The maximum adsorption capacities were 1.490 mg/g. Biochar derived from giant reed at 500 °C was suggested as a promising adsorbent for the removal of NH4 (+)-N from slightly polluted wastewater.

  7. Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements.

    PubMed

    Luengo, Carina; Brigante, Maximiliano; Antelo, Juan; Avena, Marcelo

    2006-08-15

    The adsorption kinetics of phosphate on goethite has been studied by batch adsorption experiments and by in situ ATR-IR spectroscopy at different pH, initial phosphate concentrations and stirring rates. Batch adsorption results are very similar to those reported by several authors, and show a rather fast initial adsorption taking place in a few minutes followed by a slower process taking place in days or weeks. The adsorption kinetics could be also monitored by integrating the phosphate signals obtained in ATR-IR experiments, and a very good agreement between both techniques was found. At pH 4.5 two surface complexes, the bidentate nonprotonated (FeO)(2)PO(2) and the bidentate protonated (FeO)(2)(OH)PO complexes, are formed at the surface. There are small changes in the relative concentrations of these species as the reaction proceeds, and they seem to evolve in time rather independently. At pH 7.5 and 9 the dominating surface species is (FeO)(2)PO(2), which is accompanied by an extra unidentified species at low concentration. They also seem to evolve independently as the reaction proceeds. The results are consistent with a mechanism that involve a fast adsorption followed by a slow diffusion into pores, and are not consistent with surface precipitation of iron phosphate.

  8. Molecular Imaging Probe Development using Microfluidics

    PubMed Central

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  9. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, Tuan

    1995-01-01

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.

  10. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, T.

    1995-03-21

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devices, in probe array devices. 10 figures.

  11. A Simple Adsorption Experiment

    ERIC Educational Resources Information Center

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  12. Determination of the surface area and sizes of supported copper nanoparticles through organothiol adsorption-Chemisorption

    NASA Astrophysics Data System (ADS)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2016-12-01

    The mechanisms involving the nanoparticle surfaces in catalytic reactions are more difficult to elucidate due to the nanoparticle surface unevenness, size distributions, and morphological irregularity. True surface area and particle sizes determination are key aspects of the activity of metal nanoparticle catalysts. Here we report on the organothiol adsorption-based technique for the determination of specific surface area of Cu nanoparticles, and their resultant sizes on γ-Al2O3 supports. Quantification of ligand packing density on copper nanoparticles is also reported. The concentration of the probe ligand, 2-mercaptobenzimidazole (2-MBI) before and after immersion of supported copper catalysts was determined by ultraviolet-visible spectrometry (UV-vis). The amount of ligand adsorbed was found to be proportional to the copper nanoparticles surface area. Atomic absorption spectrometry (AAS), N2-physisorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were used for the characterization of the catalysts. A fair agreement was found between particle sizes obtained from ligand adsorption and TEM methods. The catalytic activity of the copper nanoparticles related to their inherent surface area was evaluated using the model reaction of the oxidation of morin by hydrogen peroxide.

  13. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  14. Evaluation of the adsorption capacity of alkali-treated waste materials for the adsorption of sulphamethoxazole.

    PubMed

    Kurup, Lisha

    2012-01-01

    The present work is to develop potential adsorbents from waste material and employ them for the removal of a hazardous antibacterial, sulphamethoxazole, from the wastewater by the Adsorption technique. The Adsorption technique was used to impound the dangerous antibiotics from wastewater using Deoiled Soya (DOS), an agricultural waste, and Water Hyacinth (WH), a prolific colonizer. The adsorption capacity of these adsorbents was further enhanced by treating them with sodium hydroxide solution and it was seen that the adsorption capacity increases by 10 to 25%. Hence a comparative account of the adsorption studies of all the four adsorbents, i.e. DOS, Alkali-treated DOS, WH and Alkali-treated Water Hyacinth has been discussed in this paper. Different isotherms like Freundlich, Langmuir and Dubinin-Radushkevich were also deduced from the adsorption data. Isotherm studies were in turn used in estimating the thermodynamic parameters. DOS showed sorption capacity of 0.0007 mol g(-1) while Alkali-treated Deoiled Soya exhibited 0.0011 mol g(-1) of sorption capacity, which reveals that the adsorption is higher in case of alkali-treated adsorbent. The mean sorption energy (E) was obtained between 9 and 12 kJ mol, which shows that the reaction proceeds by ion exchange reaction. Kinetic study reveals that the reaction follows pseudo-second-order rate equation. Moreover, mass transfer studies performed for the ongoing processes show that the mass transfer coefficient obtained for alkali-treated moieties was higher than the parent moieties. The breakthrough curves plotted from the column studies show percentage saturation of 90-98%. About 87-97% of sulphamethoxazole was recovered from column by desorption.

  15. Adsorption and desorption characteristics of arsenic onto ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Feng, Qinzhong; Zhang, Zhiyong; Ma, Yuhui; He, Xiao; Zhao, Yuliang; Chai, Zhifang

    2012-01-01

    The rapid increase in the use of engineered nanoparticles [ENPs] has resulted in an increasing concern over the potential impacts of ENPs on the environmental and human health. ENPs tend to adsorb a large variety of toxic chemicals when they are emitted into the environment, which may enhance the toxicity of ENPs and/or adsorbed chemicals. The study was aimed to investigate the adsorption and desorption behaviors of arsenic on ceria NPs in aqueous solution using batch technique. Results show that the adsorption behavior of arsenic on ceria NPs was strongly dependent on pH and independent of ionic strength, indicating that the electrostatic effect on the adsorption of these elements was relatively not important compared to surface chemical reactions. The adsorption isotherms fitted very well to both the Langmuir and Freundlich models. The thermodynamic parameters (Δ H 0 , Δ S 0 , and Δ G 0 ) for the adsorption of arsenic were determined at three different temperatures of 283, 303, and 323 K. The adsorption reaction was endothermic, and the process of adsorption was favored at high temperature. The desorption data showed that desorption hysteresis occurred at the initial concentration studied. High adsorption capacity of arsenic on ceria NPs suggests that the synergistic effects of ceria NPs and arsenic on the environmental systems may exist when they are released into the environment.

  16. A DNA-stabilized silver nanoclusters/graphene oxide-based platform for the sensitive detection of DNA through hybridization chain reaction.

    PubMed

    Zhang, Siqi; Wang, Kun; Li, Kai-Bin; Shi, Wei; Jia, Wen-Ping; Chen, Xiaoying; Sun, Ting; Han, De-Man

    2017-05-15

    A silver nanoclusters (AgNCs)/graphene oxide (GO)-based fluorescence sensor was developed for label-free DNA detection through hybridization chain reaction (HCR). A DNA sequence associated with the human immunodeficiency virus (HIV) was selected as a model target. Two DNA probes, hairpin probe 1 (H1) and hairpin probe 2 (H2), were partially complementary. GO was used as an adsorption material to capture the hairpin probes and a selective fluorescence quencher was used to reduce the background signal. Upon addition of AgNO3 and NaBH4, the AgNCs were synthesized at the terminals of the H1 and H2 probes. In the absence of target DNA (THIV), hybridization chain reaction (HCR) could not be triggered due to the stability of H1 and H2 probes. The hairpin probe-protected AgNCs attached to the GO surface, efficiently quenching fluorescence of the AgNCs. Therefore, the system showed very low background. In presence of THIV, the target triggered the chain-like assembly of H1 and H2 through HCR, generating a long chain of H1 and H2 complexes. The HCR product (AgNCs nanowires) could not be adsorbed on the surface of GO; hence, it generated a strong fluorescent signal based on the concentration of the target. Under the optimized conditions, the detection limit of the fluorescence sensor was 1.18nM, and hence it can be applied to clinical samples.

  17. Mediation of the nanotribological properties of cellulose by chitosan adsorption.

    PubMed

    Nordgren, Niklas; Eronen, Paula; Osterberg, Monika; Laine, Janne; Rutland, Mark W

    2009-03-09

    Cellulosic model surfaces functionalized with chitosan, a naturally occurring cationic biomacromolecule, by in situ adsorption have been studied with an atomic force microscope (AFM) in colloidal probe configuration. The interaction forces on approach and separation, as well as the nanotribological properties, were shown to be highly pH-dependent, and a significant difference in the behavior was seen before and after chitosan adsorption. In general, all forces on approach showed a highly repulsive interaction at shorter distances due to deformation of the probe. At high pH, before chitosan adsorption, a long-range electrostatic repulsion was observed, consistent with DLVO theory. However, at low pH no electrostatic contribution was found before adsorption, probably due to charge neutralization of carboxyl groups. After chitosan adsorption, repulsive forces acting over a much longer distance than predicted by DLVO theory were present at low pH. This effect was ascribed to chain extension of the chitosan species of which the magnitude and the range of the force increased dramatically with higher charge at low pH. In all cases, a typical saw-tooth patterned adhesion was present, with pull-off events occurring at different separations. The frequency of these events after chitosan adsorption was greatly increased at longer distances. Additionally, the adsorbed chitosan markedly reduced the friction, where the largest effect was a 7-fold decrease of the friction coefficient observed at low pH.

  18. DNA adsorption by indium tin oxide nanoparticles.

    PubMed

    Liu, Biwu; Liu, Juewen

    2015-01-01

    The high conductivity and optical transparency of indium tin oxide (ITO) has made it a popular material in the electronic industry. Recently, its application in biosensors is also explored. To understand its biointerface chemistry, we herein investigate its interaction with fluorescently labeled single-stranded oligonucleotides using ITO nanoparticles (NPs). The fluorescence of DNA is efficiently quenched after adsorption, and the interaction between DNA and ITO NPs is strongly dependent on the surface charge of ITO. At low pH, the ITO surface is positively charged to afford a high DNA adsorption capacity. Adsorption is also influenced by the sequence and length of DNA. For its components, In2O3 adsorbs DNA more strongly while SnO2 repels DNA at neutral pH. The DNA adsorption property of ITO is an averaging result from both components. DNA adsorption is confirmed to be mainly by the phosphate backbone via displacement experiments using free phosphate or DNA bases. Last, DNA-induced DNA desorption by forming duplex DNA is demonstrated on ITO, while the same reaction is more difficult to achieve on other metal oxides including CeO2, TiO2, and Fe3O4 because these particles adsorb DNA more tightly.

  19. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue.

    PubMed

    Chen, Suhong; Yue, Qinyan; Gao, Baoyu; Xu, Xing

    2010-09-01

    A new adsorbent modified from wheat residue was synthesized after reaction with epichlorohydrin and triethylamine by using the modifying agents of diethylenetriamine in the presence of organic medium of N,N-dimethylformamide. The performance of the modified wheat straw (MWS) was characterized by Fourier transform infrared spectroscopy and point of zero charge analysis. The adsorption was investigated in a batch adsorption system, including both equilibrium adsorption isotherms and kinetics. Results showed that MWR had great anion-adsorbing capacity, due to the existence of a large number of introduced amino groups, and the value of pH(PZC) was around 5.0. Equilibrium data were analyzed using the Langmuir, Freundlich, and Temkin isotherm models and were found to be best represented by the Freundlich isotherm model. Evaluation of the adsorption process identified its endothermic nature. The maximum adsorption capacity of MWS for the removal of Cr(VI) was 322.58mg/g at 328K, indicating that MWS has high chromium removal efficiency, compared to other adsorbents reported. The kinetics of adsorption followed the pseudo-second-order kinetic equation. The mechanism of adsorption was investigated using the intraparticle diffusion model. Thermodynamic parameters (free energy change, enthalpy change, and entropy change) revealed that the adsorption of Cr(VI) onto MWS was endothermic and spontaneous; additionally, the adsorption can be characterized as an ion-exchange process. The results suggest that MWS is an inexpensive and efficient adsorbent for removing Cr(VI) ions from aqueous solution.

  20. Effects of adsorption and confinement on nanoporous electrochemistry.

    PubMed

    Bae, Je Hyun; Han, Ji-Hyung; Han, Donghyeop; Chung, Taek Dong

    2013-01-01

    Characteristic molecular dynamics of reactant molecules confined in the space of the nanometer scale augments the frequency of collisions with the electrified surface so that a given faradaic reaction can be enhanced at nanoporous electrodes, the so-called nano-confinement effect. Since this effect is grounded on diffusion inside nanopores, it is predicted that adsorption onto the surface will seriously affect the enhancement by nano-confinement. We experimentally explored the correlation between adsorption and the confinement effect by examining the oxidation of butanol isomers at platinum and gold nanoporous electrodes. The results showed that electrooxidation of 2-butanol, which is a non-adsorption reaction, was enhanced more than that of 1-butanol, which is an adsorption reaction, at nanoporous platinum in acidic media. In contrast, the nanoporous gold electrode, on which 1-butanol is less adsorptive than it is on platinum, enhanced the electrooxidation of 1-butanol greatly. Furthermore, the electrocatalytic activity of nanoporous gold for oxygen reduction reaction was improved so much as to be comparable with that of flat Pt. These findings show that the nano-confinement effect can be appreciable for electrocatalytic oxygen reduction as well as alcohol oxidation unless the adsorption is extensive, and suggests a new strategy in terms of material design for innovative non-noble metal electrocatalysts.

  1. The Kemp elimination in membrane mimetic reaction media. Probing catalytic properties of cationic vesicles formed from a double-tailed amphiphile and linear long-tailed alcohols or alkyl pyranosides.

    PubMed

    Klijn, Jaap E; Engberts, Jan B F N

    2004-06-21

    Vesicles formed from synthetic, double-tailed amphiphiles are often used as mimics for biological membranes. However, biological membranes are a complex mixture of various compounds. In the present paper we describe a first attempt to study the importance of additives on vesicular catalysis. The rate-determining deprotonation of 5-nitrobenzisoxazole (Kemp elimination) by hydroxide ion is efficiently catalysed by vesicles formed from dimethyldi-n-octadecylammonium chloride (C(18)C(18)(+)) as a result of (partial) dehydration of the reactants (especially the hydroxide ion) at the vesicular binding sites. Gradual addition of linear alcohols, such as n-decanol (C(10)OH), n-octadecanol (C(18)OH) and batyl alcohol (C(18)GlyOH) leads to a decrease in the observed catalysis. By contrast, gradual addition of oleyl alcohol, n-dodecyl-beta-glucoside (C(12)Glu) and n-dodecyl-beta-maltoside (C(12)Mal) leads to an increase in the observed catalysis. A detailed kinetic analysis, taking into account substrate binding site polarities, counterion binding percentages and binding affinity of the kinetic probe, suggests that the catalytic changes depend strongly on subtle changes in the structure of the additive. Whereas the C(12)Glu-induced effect can be explained by an increase in the vesicular rate constant, the effect of C(12)Mal can only be explained by an increase in the binding constant of the kinetic probe. However, for these pyranoside-containing vesicles others factors, such as a more extensive dehydration of the hydroxide ion, and micelle formation have to be considered. For the linear alcohols, besides a decrease in the counterion binding, changes in the vesicular rate constant and the binding constant should be taken into account. These two parameters change to a different extent for the different alcohols. The kinetic analysis is supported by differential scanning calorimetry (DSC), E(T)(30) absorbance data and Nile Red, Laurdan, ANS and pyrene fluorescence measurements

  2. Generalized random sequential adsorption

    NASA Astrophysics Data System (ADS)

    Tarjus, G.; Schaaf, P.; Talbot, J.

    1990-12-01

    Adsorption of hard spherical particles onto a flat uniform surface is analyzed by using generalized random sequential adsorption (RSA) models. These models are defined by releasing the condition of immobility present in the usual RSA rules to allow for desorption or surface diffusion. Contrary to the simple RSA case, generalized RSA processes are no longer irreversible and the system formed by the adsorbed particles on the surface may reach an equilibrium state. We show by using a distribution function approach that the kinetics of such processes can be described by means of an exact infinite hierarchy of equations reminiscent of the Kirkwood-Salsburg hierarchy for systems at equilibrium. We illustrate the way in which the systems produced by adsorption/desorption and by adsorption/diffusion evolve between the two limits represented by ``simple RSA'' and ``equilibrium'' by considering approximate solutions in terms of truncated density expansions.

  3. Adsorption of 2,4,6-trinitrotoluene on carboxylated porous polystyrene microspheres

    NASA Astrophysics Data System (ADS)

    Ye, Zhengfang; Meng, Qingqiang; Lu, Shengtao

    2012-02-01

    Large-pore-size (150 nm) polystyrene (PSt) microspheres were carboxylated with phthalic anhydride (PA) through Friedel-Crafts acetylation to study the adsorption of 2,4,6-trinitrotoluene (TNT) on this material from aqueous solution. The scanning electron microscope (SEM) images and mercury porosimetry measurements (MPM) of the microspheres showed that the pore structure was unchanged during the reaction. High adsorption capacity (11.2 mg g-1 of suction-dried adsorbent) and adsorption rate (33.9 mg g-1 h-1) for TNT were observed during the study. As shown by the adsorption isotherm, the adsorption of TNT on PA-PSt can be described by the Freundlich adsorption equation, indicating heterogeneous adsorption process. On-column adsorption of TNT on PA-PSt and elution indicated that TNT can be completely removed from aqueous solution and condensed into acetone.

  4. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  5. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity

    SciTech Connect

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M.

    2011-07-27

    Laboratory experiments were performed to investigate the contribution of variable grain sizes to uranium adsorption/desorption in a sediment collected from the US DOE Hanford site. The sediment was wet-sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.05-0.2 mm), and clay/silt fraction (< 0.05mm). For each size fraction and their composite (sediment), batch experiments were performed to determine uranium adsorption isotherms, and stirred flow-cell experiments were conducted to derive kinetic data of uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size-specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment, but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. Our analysis also showed that uranium adsorption site concentration estimated from the adsorption isotherms was 3 orders of magnitude less than a site concentration estimated from sediment surface area and generic site density. One important implication of this study is that grain size distribution may be used to estimate uranium adsorption site, and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  6. Accuracy of marker analysis, quantitative real-time polymerase chain reaction, and multiple ligation-dependent probe amplification to determine SMN2 copy number in patients with spinal muscular atrophy.

    PubMed

    Alías, Laura; Bernal, Sara; Barceló, Maria J; Also-Rallo, Eva; Martínez-Hernández, Rebeca; Rodríguez-Alvarez, Francisco J; Hernández-Chico, Concepción; Baiget, Montserrat; Tizzano, Eduardo F

    2011-09-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by absence of or mutations in the survival motor neuron1 gene (SMN1). All SMA patients have a highly homologous copy of SMN1, the SMN2 gene. Severe (type I) SMA patients present one or two SMN2 copies, whereas milder chronic forms (type II-III) usually have three or four SMN2 copies. SMN2 dosage is important to stratify patients for motor function tests and clinical trials. Our aim was to compare three methods, marker analysis, real-time quantitative polymerase chain reaction using the LightCycler instrument, and multiple ligation-dependent probe amplification (MLPA), to characterize their accuracy in quantifying SMN2 genes. We studied a group of 62 genetically confirmed SMA patients, 54 with homozygous absence of exons 7 and 8 of SMN1 and 8 with SMN2-SMN1 hybrid genes. A complete correlation using the three methods was observed in 32 patients (51.6%). In the remaining 30 patients, discordances between the three methods were found, including under or overestimation of SMN2 copies by marker analysis with respect to the quantitative methods (LightCycler and MLPA) because of lack of informativeness of markers, 3' deletions of SMN genes, and breakpoints in SMN2-SMN1 hybrid genes. The technical limitations and advantages and disadvantages of these methods are discussed. We conclude that the three methods complement each other in estimating the SMN2 copy number in most cases. However, MLPA offers additional information to characterize SMA cases with particular rearrangements such as partial deletions and hybrid genes.

  7. Coulometric Study of Ethanol Adsorption at a Polycrystalline Platinum Electrode

    DTIC Science & Technology

    2011-07-01

    value of the ratio Ian/Icalc: 1. The minimal ratio would be 1, corresponding to a one- electron oxidation of one-site attached CH3CH2O surface...Coulometric Study of Ethanol Adsorption at a Polycrystalline Platinum Electrode Sol Gilman Sensors and Electron Devices Directorate, ARL...noble metals and noble metal alloys that can provide what amounts to an adsorbed oxygen “valve” for initiating adsorption/reaction on a clean and

  8. Neptunium(V) adsorption to calcite.

    PubMed

    Heberling, Frank; Brendebach, Boris; Bosbach, Dirk

    2008-12-12

    The migration behavior of the actinyl ions U(VI)O2(2+), Np(V)O2+ and Pu(V,VI)O2(+,2+) in the geosphere is to a large extend controlled by sorption reactions (inner- or outer-sphere adsorption, ion-exchange, coprecipitation/structural incorporation) with minerals. Here NpO2+ adsorption onto calcite is studied in batch type experiments over a wide range of pH (6.0-9.4) and concentration (0.4 microM-40 microM) conditions. pH is adjusted by variation of CO2 partial pressure. Adsorption is found to be pH dependent with maximal adsorption at pH 8.3 decreasing with increasing and decreasing pH. pH dependence of adsorption decreases with increasing Np(V) concentration. EXAFS data of neptunyl adsorbed to calcite and neptunyl in the supernatant shows differences in the Np(V)-O-yl distance, 1.85+/-0.01 angstroms for the adsorbed and 1.82+/-0.01 angstroms for the solution species. The equatorial environment of the neptunyl in solution shows about 5 oxygen neighbours at 2.45+/-0.02 angstroms. For adsorbed neptunyl there are also about 5 oxygen neighbours at 2.46+/-0.01 angstroms. An additional feature in the adsorbed species' R-space spectrum can be related to carbonate neighbours, 3 to 6 carbon backscatterers (C-eq) at 3.05+/-0.03 angstroms and 3 to 6 oxygen backscatterers (O-eq2) at 3.31+/-0.02 angstroms. The differences in the Np(V)-O-yl distance and the C-eq and O-eq2 backscatterers which are only present for the adsorbed species indicate inner-sphere bonding of the adsorbed neptunyl species to the calcite surface. Experiments on adsorption kinetics indicate that after a fast surface adsorption process a continuous slow uptake occurs which may be explained by incorporation via surface dissolution and reprecipitation processes. This is also indicated by the part irreversibility of the adsorption as shown by increased KD values after desorption compared to adsorption.

  9. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    PubMed

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  10. Adsorption of reactive dyes on to carbonate substituted nanohydroxyapatite

    NASA Astrophysics Data System (ADS)

    Vasugi, G.; Kumar, G. Suresh; Girija, E. K.

    2014-04-01

    Carbonate substituted nanohydroxyapatite (CHA) was synthesized and utilized for the removal of reactive red and reactive blue dye from aqueous solution, as it mimics the composition of conventional adsorbent animal bone charcoal. Also ionic substitution seems to alter the surface nature of the apatite structure. Physicochemical nature of adsorbent was characterized by XRD, FT-IR and SEM analysis. Adsorption as a function of contact time, adsorbent dosage and pH were studied by batch mode adsorption technique. Kinetic studies were performed to correlate the experimental kinetic data with theoretical models in order to understand the adsorption mechanism and the reaction rate.

  11. Adsorption of mercury on laterite from Guizhou Province, China.

    PubMed

    Yu, Xiaohong; Zhu, Lijun; Guo, Baiwei; He, Shouyang

    2008-01-01

    The adsorption behaviors of Hg(II) on laterite from Guizhou Province, China, were studied and the adsorption mechanism was discussed. The results showed that different mineral compositons in the laterite will cause differences in the adsorption capacity of laterite to Hg(II). Illite and non-crystalloids are the main contributors to enhancing the adsorption capacity of laterite to Hg(II). The pH of the solution is an important factor affecting the adsorption of Hg(II) on laterite. The alkalescent environment (pH 7-9) is favorable to the adsorption of Hg(II). The amount of adsorbed Hg(II) increases with increasing pH. When the pH reaches a certain value, the amount of the adsorbed Hg(II) will reach the maximum level. The amount of adsorbed Hg(II) decreases with increasing pH. The optimal pHs of laterite and kaolinite are 9 and 8, respectively. The optimal initial concentrations of Hg(II) on laterite and kaolinite are 250 and 200 microg/ml, respectively. The adsorption isotherms were described by the Langmuir model. The adsorption of Hg(II) on laterite is a quick process while that of Hg(II) on kaolinite is a slow reaction. Laterite from Guizhou Province is a promising environmental material which can be used in the removal of Hg(II) from wastewater.

  12. Adsorptive removal of PPCPs by biomorphic HAP templated from cotton.

    PubMed

    Huang, Bin; Xiong, Dan; Zhao, Tingting; He, Huan; Pan, Xuejun

    2016-01-01

    Biomorphic nano-hydroxyapatite (HAP) was fabricated by a co-precipitation method using cotton as bio-templates and employed in adsorptive removal of ofloxacin (OFL) and triclosan (TCS) that are two representative pharmaceuticals and personal care products (PPCPs). The surface area and porosity, crystal phase, functional group, morphology and micro-structure of the synthesized HAP were characterized by Brunauer-Emmett-Teller isotherm, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron macroscopic and transmission electron microscopy. The effects of initial pH, ionic strength, initial concentration, contact time and temperature on the removal of PPCPs were studied in a batch experiment. The adsorption of OFL and TCS was rapid and almost accomplished within 50 min. Kinetic studies indicated that the adsorption process of OFL and TCS followed the pseudo-first-order and pseudo-second-order models, respectively. The Freundlich isotherm described the OFL adsorption process well but the adsorption of TCS fitted the Langmuir isotherm better. Thermodynamics and isotherm parameters suggested that both OFL and TCS adsorption were feasible and spontaneous. Hydrogen bond and Lewis acid-base reaction may be the dominating adsorption mechanism of OFL and TCS, respectively. Compared to other adsorbents, biomorphic HAP is environmentally friendly and has the advantages of high adsorption capacity, exhibiting potential application for PPCPs removal.

  13. Adsorption behavior of some radionuclides on the Chinese weathered coal.

    PubMed

    Wu, Jianfeng; Xu, Qichu; Bai, Tao

    2007-08-01

    The equilibrium and kinetic properties of Am(III), Eu(III) and Cs(I) ions adsorption by three weathered coals (WCs) from China, have been investigated in batch stirred-tank experiments. The effects of contact time, solution acidity and initial sorbate concentration on the adsorption of Am(III), Eu(III) and Cs(I) by Yuxian(YX) Tongchuan (TC) and Pingxiang (PX) WC were evaluated. The radionuclide ions are able to form complex compounds with carboxylic and phenolic groups of WCs and they are also bounded with phenolic groups even at high acidity reaction solution (>0.1 mol/L). Mechanisms including ion exchange, complexation and adsorption to the coal surface are possible in the sorption process. The acidity of the solution played an important role in the adsorption. Even acidity as high as 0.1 mol/L, 60% of Am(III) or Eu(III), 40% of Cs(I) were found to be sorbed on the YX WC, which had the best adsorption capacity for Am(III) and Eu(III). Our batch adsorption studies showed the equilibrium adsorption data fit the linear Langmuir and Freundlich adsorption isotherm. The maximum equilibrium uptake of Eu(III) were 0.412, 3.701, 5.446 mmol/g for JXWC, TCWC and YXWC, respectively.

  14. Adsorption of star polymers

    NASA Astrophysics Data System (ADS)

    Halperin, A.; Joanny, J. F.

    1991-06-01

    The adsorption of star polymers on a flat solid surface is analyzed by means of scalling arguments based on the Daoud-Cotton blob model. For the adsorption of a single star, consisting of f arms comprising each N monomers, we distinguish three regimes determined by the adsorption energy of a monomer at the surface, δ kT. 1) Strong adsorption characterized by the full adsorption of all arms occurs for δ > (f/N)^{3/5}. 2) A “Sombrero” like structure comprising f_ads fully adsorbed arms and f{-}f_ads free arms is obtained for (f/N)^{3/5}> δ > f^{9/20}/N^{3/5}. 3) Weakly adsorbed stars retain, essentially, the structure of a free star. This regime occurs for δ < f^{9/20}/N^{3/5}. The weakly adsorbed structure may also exist as a metastable state if δ > f^{9/5}/N^{3/5}. Nous étudions l'adsorption de polymères en étoile sur une surface solide en utilisant une approche de lois d'échelles basée sur le modèle de blobs de Daoud et Cotton. Pour une étoile formée de f bras contenant chacun N monomères, nous distinguons trois régimes suivant la valeur de l'énergie d'adsorption d'un monomère sur la surface δ kT. 1) L'adsorption forte caractérisée par une adsorption complète de tous les bras se produit lorsque δ > (f/N)^{3/5}. 2) Une structure en “sombrero” avec f_ads bras adsorbés et f{-}f_ads bras libres est obtenue si f^{9/20}/N^{3/5}δ < (f/N)^{3/5}. 3) Les étoiles faiblement adsorbées gardent une structure très similaire à celle des étoiles libres en solution. Ce régime existe si δ < f^{9/20}/N^{3/5}. La structure correspondant aux étoiles faiblement adsorbées peut aussi exister comme un état métastable si δ > f^{9/5}/N^{3/5}.

  15. [Characteristics of DNA adsorption on different sizes red soil colloidal particles].

    PubMed

    Liao, Min; Xie, Xiao-Mei; Fang, Shu; Qiu, Xiao-Bai; Chen, Na; Xu, Ya-Qian; Jiang, Chun-Yan; Chen, Xue-fang

    2013-03-01

    By using balance reaction method, this paper studied the adsorption characteristics and thermodynamic properties of DNA on four kinds of red soil colloids (organic matter-contained coarse clay, organic matter-removed coarse clay, organic matter-contained fine clay, and organic matter-removed fine clay). The DNA adsorption on the four red soil colloids was a process of fast reaction, and the adsorption isotherms were conformed to the Langmuir equation, with the corresponding correlation coefficient (r2) being 0.974, 0. 991, 0. 958, and 0. 975, respectively. The maximum adsorption amount of DNA on the colloidal particles followed the order of organic matter-contained fine clay > organic matter-removed fine clay > organic matter-contained coarse clay > organic matter-removed coarse clay, implying that the size and organic matter content of colloidal particles played an important role in DNA adsorption. Electrolyte concentration and type and adsorption system pH were the main factors affecting the DNA adsorption on the four soil colloids. Within a definite electrolyte concentration range (NaCl < 60 mmol . L-1 and CaCl2 <10 mmol L-1) , the adsorption amount of DNA on the red soil colloids increased significantly with the increase of electrolyte concentration. As compared with sodium ion, calcium ion had a greater promotion effect on the DNA adsorption, but the effect decreased significantly with the increase of adsorption system pH. The DNA adsorption on the organic matter-contained red soil colloids was an endothermic reaction, while the DNA adsorption on the organic matter-removed red soil colloids was an exothermic reaction. The DNA adsorption on the red soil colloids was a process of entropy increase.

  16. [Adsorption-desorption Characteristics of Fermented Rice Husk for Ferrous and Sulfur Ions].

    PubMed

    Xie, Xiao-mei; Liao, Min; Hua, Jia-yuan; Chen, Na; Zhang, Nan; Xu, Pei-zhi; Xie Kai-zhi; XU, Chang-xu; Liu, Guang-rong

    2015-10-01

    To understand the potential of rice husk to fix Fe2+ and S2- ions, the sorption of Fe2+ and S2- by fermented rice husk was studied by using batch incubation experiments in the present study. The effects of adsorption time, Fe2+ and S2- concentration, pH, the temperature and ionic strength in adsorption reaction solution on the sorption were investigated. Therefore, the stability of Fe2+ and S2- adsorbed by fermented rice husk was further validated by desorption experiments performed under similar conditions as adsorption. The results showed that, the adsorption kinetics of Fe2+ (r = 0.912 1) and S2- (r = 0.901 1) by fermented rice husk fits the Elovich kinetics equation, and Freundlich isotherm model could simulate the isotherm adsorption processes of Fe2+ (R2 = 0.965 1) and S2- (R2 = 0.936 6) on fermented rice husk was better than other models. The adsorption processes on fermented rice husk were non- preferential adsorption for Fe2+ and S2, while the adsorption process of Fe2+ on fermented rice husk was spontaneous reaction and the adsorption process of S2- was non-spontaneous reaction. The adsorption processes of Fe2+ and S2- on fermented rice husk were endothermic process since high temperature could benefit to the adsorption. The adsorption mechanism of Fe2+ on fermented rice husk was mainly controlled by coordination adsorption, the adsorption mechanism of S2- on fermented rice husk was mainly controlled by ligand exchange adsorption. The adsorption processes of Fe2+ and S2- on fermented rice husk showed greater pH adaptability which ranged from 1.50 to 11.50. With the increasing of ionic strength, the amount of adsorbed Fe2+ on fermented rice husk wasincreased in some extent, the amount of adsorbed S2- on fermented rice husk was slightly decreased, which further proved the adsorption of Fe2+ was major in inner sphere complexation and the adsorption of S2- was major in outer complexation. The desorption rates of Fe2+ and S2- which was adsorbed by fermented

  17. The effect of chemical and physiological factors on the kinetics for product formation as it relates to enzyme activity and concentration, reaction time and to substrate adsorption and affinity.

    PubMed

    Chrastil, J; Wilson, J T

    1982-01-01

    1. The dependency of product formation on reaction time and on enzyme concentration was studied with certain purified enzymes and liver microsomal mixed-function oxidase system. 2. The product-formation-time relation was estimated with different enzyme and/or substrate concentrations for the reactions limited by diffusion. 3. The kinetic constants of the product-time relations in these diffusion systems have been verified experimentally to give a more specific and detailed characterization of an enzyme system under a variety of physiologic and reaction conditions. 4. The influence of inhibitors and activators in vitro, the effect of enzyme preparation technic, aging, starvation, pretreatment with somatotropic hormone, phenobarbital or 3-methylcholanthrene, and the effect of a tumor were studied. 5. The influence of vitamin C deficiency in guinea pig was also studied.

  18. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene

    SciTech Connect

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Jiao, Yuqin; Xia, Yanzhi; Xia, Linhua; Wang, Zonghua; Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-08-15

    Graphical abstract: The effect of temperature on phenol adsorbed by graphene shows that the equilibrium adsorption capacity of phenol increases with the increase in temperature from 285 to 333 K. Increasing adsorption capacities with temperature indicates that the adsorption of phenol is controlled by an endothermic reaction. Highlights: ► The graphene has high phenol adsorption capacity. ► The graphene has a high specific surface area of 305 m{sup 2}/g. ► The adsorption capacity is high at acidic pH range. ► The graphene has rapid phenol adsorption rate. ► Phenol adsorption is a spontaneous and endothermic process. -- Abstract: Graphene, a new member of carbon family, has been prepared, characterized and used as adsorbent to remove phenol from aqueous solution. The effect parameters including pH, dosage, contact time, and temperature on the adsorption properties of phenol onto graphene were investigated. The results showed that the maximum adsorption capacity can reach 28.26 mg/g at the conditions of initial phenol concentration of 50 mg/L, pH 6.3 and 285 K. Adsorption data were well described by both Freundlich and Langmuir models. The kinetic study illustrated that the adsorption of phenol onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of phenol onto graphene was endothermic and spontaneous.

  19. Modeling of surface reactions

    SciTech Connect

    Ray, T.R.

    1993-01-01

    Mathematical models are used to elucidate properties of the monomer-monomer and monomer-dimer type chemical reactions on a two-dimensional surface. The authors use mean-field and lattice gas models, detailing similarities and differences due to correlations in the lattice gas model. The monomer-monomer, or AB surface reaction model, with no diffusion, is investigated for various reaction rates k. Study of the exact rate equations reveals that poisoning always occurs if the adsorption rates of the reactants are unequal. If the adsorption rates of the reactants are equal, simulations show slow poisoning, associated with clustering of reactants. This behavior is also shown for the two-dimensional voter model. The authors analyze precisely the slow poisoning kinetics by an analytic treatment for the AB reaction with infinitesimal reaction rate, and by direct comparison with the voter model. They extend the results to incorporate the effects of place-exchange diffusion, and they compare the AB reaction with infinitesimal reaction rate and no diffusion to the voter model with diffusion at rate 1/2. They also consider the relationship of the voter model to the monomer-dimer model, and investigate the latter model for small reaction rates. The monomer-dimer, or AB[sub 2] surface reaction model is also investigated. Specifically, they consider the ZGB-model for CO-oxidation, and in generalizations of this model which include adspecies diffusion. A theory of nucleation to describe properties of non-equilibrium first-order transitions, specifically the evolution between [open quote]reactive[close quote] steady states and trivial adsorbing states, is derived. The behavior of the [open quote]epidemic[close quote] survival probability, P[sub s], for a non-poisoned patch surrounded by a poisoned background is determined below the poisoning transition.

  20. Enhanced adsorptive removal of toxic dyes using SiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Batool, S. S.; Imran, Z.; Hassan, Safia; Rasool, Kamran; Ahmad, Mushtaq; Rafiq, M. A.

    2016-05-01

    Electrospinning method was used to synthesize porous SiO2 nanofibers. The adsorption of Methyl Orange and Safranin O by porous SiO2 nanofibers was carried out by varying the parameters such as pH, contact time, adsorbent dose, dye concentration, and temperature. Equilibrium adsorption data followed Langmuir isotherms. Kinetic adsorption followed second-order rate kinetics model. The maximum adsorption capacity for Methyl Orange and Safranin O was found to be 730.9 mg/g and 960.4 mg/g, respectively. Acidic pH was favorable for the adsorption of Methyl Orange while basic pH was favorable for the adsorptions of Safranin O. Modeling study suggested the major mode of adsorption, while thermodynamic study showed the endothermic reactions. This effort has pronounced impact on environmental applications of SiO2 nanofibers as auspicious adsorbent nanofibers for organic material from aqueous solution.

  1. Soft X-ray spectroscopy studies of adsorption and reaction of CO in the presence of H2 over 6 nm MnO nanoparticles supported on mesoporous Co3O4

    NASA Astrophysics Data System (ADS)

    Ralston, Walter T.; Musselwhite, Nathan; Kennedy, Griffin; An, Kwangjin; Horowitz, Yonatan; Cordones, Amy A.; Rude, Bruce; Ahmed, Musahid; Melaet, Gerome; Alayoglu, Selim

    2016-06-01

    MnO nanoparticles (6 nm) were supported on mesoporous spinel Co3O4 and studied using ambient pressure X-ray photoelectron spectroscopy (APXPS) and in situ X-ray absorption spectroscopy (XAS) during hydrogenation of CO. The nature and evolution of surface adsorbed species as well as the oxidation states of the metal oxide surfaces were evaluated under oxidizing, reducing, and H2 + CO (2:1) reaction atmospheres. From APXPS, MnO nanoparticle surfaces were found to be progressively reduced in H2 atmospheres with increasing temperature. Surface adsorbed CO was found to be formed at the expense of lattice O under H2 + CO reaction conditions. In situ XAS indicated that the dominant oxide species were Co(OH)2, Co (II) oxides, MnO, and Mn3O4 under reaction conditions. In situ XAS also indicated the formation of gas phase CO2, the disappearance of lattice O, and the further reduction of Mn3O4 to MnO upon prolonged reaction in H2 + CO. Mass spectroscopy measurements showed the formation of CO2 and hydrocarbons. The spent catalyst was investigated using scanning transmission X-ray microscopy and (scanning) transmission electron microscopy; the catalyst grains were found to be homogeneous.

  2. New Adsorption Methods.

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    1984-01-01

    Discusses a simple method for following the movement of a solute in an adsorption or ion exchange system. This movement is used to study a variety of operational methods, including continuous flow and pulsed flow counter-current operations and simulated counter-current systems. Effect of changing thermodynamic variables is also considered. (JM)

  3. SEPARATION BY ADSORPTION

    DOEpatents

    Lowe, C.S.

    1959-06-16

    Separation of Pu from fission products by adsorption on hydrous aluminum silicate is described. The Pu in a HNO/sub 3/ solution is oxidized to the hexavalent state and contacted with the silicate which adsorbs fission products. (T.R.H.)

  4. Application of the Finite Compartment Model of Carbon Adsorption to Binary Systems.

    DTIC Science & Technology

    1984-05-01

    particle pore structure. . . . 5 2. Schematic drawing of activated carbon systems. . ..... 8 3. The adsorption wave ....... .................... ... 13 4...chemical and food industries have continued to use activated carbon adsorption for the removal of color, odor and other impurities. Since 1970 there has...Assuming a first order irreversible reaction for the adsorption of the solute onto the activated carbon a material balance for the solute

  5. Problems affecting the fidelity of pressure measuring instruments for planetary probes

    NASA Technical Reports Server (NTRS)

    Hudson, J. B.

    1972-01-01

    Determination is made of the nature and magnitude of surface-related effects that cause errors in pressure measuring instruments, with special reference being made to instruments intended for use in planetary probes. The interaction of gases with clean surfaces of metals likely to be used as gage construction materials was studied. Special emphasis was placed on the adsorption, chemical reaction, and electron-induced desorption processes. The results indicated that all metals tested were subject to surface processes which would degrade gage fidelity. It was also found, however, that the formation of inert adsorbed layers on these metal surfaces, such as carbon on platinum, greatly reduced or eliminated these effects. This process, combined with a system design which avoids contact between reactive gases and hot filaments, appears to offer the most promising solution to the gage fidelity problem.

  6. Probing the transition state region in catalytic CO oxidation on Ru

    SciTech Connect

    Ostrom, H.; Oberg, H.; Xin, H.; LaRue, J.; Beye, M.; Dell'Angela, M.; Gladh, J.; Ng, M. L.; Sellberg, J. A.; Kaya, S.; Mercurio, G.; Nordlund, D.; Hantschmann, M.; Hieke, F.; Kuhn, D.; Schlotter, W. F.; Dakovski, G. L.; Turner, J. J.; Minitti, M. P.; Mitra, A.; Moeller, S. P.; Fohlisch, A.; Wolf, M.; Wurth, W.; Persson, M.; Norskov, J. K.; Abild-Pedersen, F.; Ogasawara, H.; Pettersson, L. G. M.; Nilsson, A.

    2015-02-12

    Femtosecond x-ray laser pulses are used to probe the CO oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and O on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC–O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.

  7. Surface chemistry. Probing the transition state region in catalytic CO oxidation on Ru.

    PubMed

    Öström, H; Öberg, H; Xin, H; LaRue, J; Beye, M; Dell'Angela, M; Gladh, J; Ng, M L; Sellberg, J A; Kaya, S; Mercurio, G; Nordlund, D; Hantschmann, M; Hieke, F; Kühn, D; Schlotter, W F; Dakovski, G L; Turner, J J; Minitti, M P; Mitra, A; Moeller, S P; Föhlisch, A; Wolf, M; Wurth, W; Persson, M; Nørskov, J K; Abild-Pedersen, F; Ogasawara, H; Pettersson, L G M; Nilsson, A

    2015-02-27

    Femtosecond x-ray laser pulses are used to probe the carbon monoxide (CO) oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and oxygen (O) on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC-O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.

  8. Investigation of the dynamics of the O 2/Si(001) adsorption system by small-angle ion-surface scattering

    NASA Astrophysics Data System (ADS)

    Rechtien, J. H.; Imke, U.; Snowdon, K. J.; Reijnen, P. H. F.; van den Hoek, P. J.; Kleyn, A. W.; Namiki, A.

    1990-03-01

    The small non-adiabaticity associated with the slow collision of a 450 eV to 3 keV O2+ beam incident at 5° to a carefully flattened Si(001) surface was used to probe the adiabatic potential energy surface for the O2/Si(001) adsorption/reaction system in the limit of low coverage. The scattering products include O2- and O-. From the observation of efficient O2- formation and th dependence of the negative-ion yields on beam energy, we infer that O23- is an intermediate or precursor in the dissociative chemisorption of O2 on Si(001). The total yield of negative ions (O2- and O-) is high in comparison with similar experiments on th O2/Ag(111) system. This may be explained by a reduced reneutralisation probability on the exit trajectory due to the band gap of Si.

  9. Adsorption of Atmospheric Gases on Pu Surfaces

    SciTech Connect

    Nelson, A J; Holliday, K S; Stanford, J A; Grant, W K; Erler, R G; Allen, P G; McLean, W; Roussel, P

    2012-03-29

    Surface adsorption represents a competition between collision and scattering processes that depend on surface energy, surface structure and temperature. The surface reactivity of the actinides can add additional complexity due to radiological dissociation of the gas and electronic structure. Here we elucidate the chemical bonding of gas molecules adsorbed on Pu metal and oxide surfaces. Atmospheric gas reactions were studied at 190 and 300 K using x-ray photoelectron spectroscopy. Evolution of the Pu 4f and O 1s core-level states were studied as a function of gas dose rates to generate a set of Langmuir isotherms. Results show that the initial gas dose forms Pu{sub 2}O{sub 3} on the Pu metal surface followed by the formation of PuO{sub 2} resulting in a layered oxide structure. This work represents the first steps in determining the activation energy for adsorption of various atmospheric gases on Pu.

  10. Adsorption of Cadmium, Nickel and Zinc in a Brazilian Oxisoil

    NASA Astrophysics Data System (ADS)

    Casagrande, José Carlos; Martins, Susian Christian; Soares, Marcio Roberto

    2010-05-01

    The adsorption reactions mechanisms provide the understanding of the pollutant fate metals and often control the bioavailability and transport of heavy metals ions in soil, indicating the preventive environmental control. The cadmium, nickel and zinc behavior in the soils are explained by the reactions of adsorption, influenced by pH and ionic strength. The objective of this work was to study the influence of those factors on cadmium, nickel and zinc adsorption in an oxisol. It was studied the Cd, Ni and Zn adsorption in soil samples of the State of São Paulo (Anionic "Xanthic" Acrudox), collected in surface and in depth and submitted to solutions of Ca(NO3)2 1,0; 0,1 and 0,01 mol L-1. The pH of the samples from 3,0 to 10,0 was varied adding NaOH or HCl 4 mol L-1 not surpassing 2% of the electrolyte volume. The soil samples received 5,0 mg dm-3 of cadmium, nickel and zinc, ratio 1:10 (2,0 g of soil: 20 solution ml) and were shacked for 24 hours. The cadmium, nickel and zinc adsorption increased with pH, reaching it picks at pH 7,0 for cadmium and approximately at pH 6,0 for nickel and zinc. This indicates that zinc and nickel have higher affinity than cadmium with the soil colloids, because it reached the maximum adsorption in a small pH value. In other words, the amount of negative charges necessary to promote the maximum adsorption was small for zinc. The influence of ionic strengths was small for cadmium, nickel and zinc adsorption, being similar from pH 3,0 to 10,0, in surface soil layer and in depth, demonstrating that competition with Ca2+ for the retention colloid sites of the soils didn't interfere in the adsorption. In that way, it is supposed that cadmium, nickel and zinc binding energy is high in a soil rich in Fe and Al oxides. Adsorption of cadmium, nickel and zinc was similar for the ionic strengths, not depending on PZSE. The cadmium, nickel and zinc adsorption increased with pH elevation, with small ionic strength influence. Nickel and zinc have

  11. Methylene blue adsorption on graphene oxide/calcium alginate composites.

    PubMed

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Wang, Yonghao; Wu, Shaoling; Wang, Zonghua; Xia, Yanzhi; Xia, Linhua

    2013-06-05

    Graphene oxide has been used as an adsorbent in wastewater treatment. However, the dispersibility in aqueous solution and the biotoxicity to human cells of graphene oxide limits its practical application in environmental protection. In this research, a novel environmental friendly adsorbent, calcium alginate immobilized graphene oxide composites was prepared. The effects of pH, contact time, temperature and dosage on the adsorption properties of methylene blue onto calcium alginate immobilized graphene oxide composites were investigated. The equilibrium adsorption data were described by the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 181.81 mg/g. The pseudo-first order, pseudo-second order, and intraparticle diffusion equation were used to evaluate the kinetic data. Thermodynamic analysis of equilibriums indicated that the adsorption reaction of methylene blue onto calcium alginate immobilized graphene oxide composites was exothermic and spontaneous in nature.

  12. Irreversible adsorption/desorption of PAHs in sediment/water

    SciTech Connect

    Fu, G.; Kan, A.T.; Tomson, M.B.

    1996-10-01

    Successive adsorption isotherm of phenanthrene on soil corresponds to a constant partition of phenanthrene between the bulk solution and solid phase. This shows that the hydrophobic reaction is a dominant mechanism in adsorption process. However, desorption of PAHs appears irreversibility. Cyclic and multiple adsorption and desorption experiments indicated that there is an irreversibly adsorbed intrinsic capacity in the interaction of PAHs (naphthalene and phenanthrene) and soil in aqueous solution. This irreversible fraction for PAHs (naphthalene and phenanthrene) is about 1000-5000 {mu}g/g normalized on the basis of soil organic carbon. The desorption of PAHs from soil appears biphasic when the total adsorbed capacity is greater than the intrinsic irreversibly adsorbed value. In phase, the partitioning coefficient of desorption of PAHs is similar to that of adsorption. However, the other mechanism may be responsible to control the release of PAHs in phase 2.

  13. Application of surface complexation models to anion adsorption by natural materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various chemical models of ion adsorption will be presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model w...

  14. Role of organic matter on boron adsorption-desorption hysteresis of soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we evaluated the boron (B) adsorption/desorption reaction in six soils and examined the extent to which organic matter content, as well as incubation time affected B release. Six soils varying in initial pH, clay content, and were selected for the study. Adsorption experiments were c...

  15. Adsorption edge study about cadmium, copper, nickel and zinc adsorption by variable charge soils

    NASA Astrophysics Data System (ADS)

    Casagrande, J. C.; Mouta, E. R.; Soares, M. R.

    2009-04-01

    The improper discharge of industrial and urban residues and the inadvertent use of fertilizers and pesticides can result in soil and water pollution and improve the potential of trace metals to enter in the human food chain. Adsorption reactions occur at the solid/liquid interface and are the most important mechanisms for controlling the activity of metal ions in soil solution. In a complex system with amphoteric behavior, the comprehension of the mobility, availability and fate of pollutants in the soil system is crucial for the prediction of the environmental consequences and for development of prevention/remediation strategies. A comparative study of cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) adsorption by highly weathered soils was carried out. Surface (0-0.2m) and subsoil (B horizon) samples were taken from a Rhodic Kandiudalf (RH), an Anionic "Xanthic" Acrudox (XA) and an Anionic "Rhodic" Acrudox (RA), located in brazilian humid tropical area. As the pH and the ionic strength are important environmental factors influencing the solution chemistry of heavy metals in variable charge systems, adsorption envelopes, in a batch adsorption experiment, were elaborated by reacting, for 24 h, soil samples with individual 0.01, 0.1 and 1.0 mol L-1 Ca(NO3)2 aqueous solutions containing nitrate salts of the adsorptive heavy metal (Cd, Cu, Ni and Zn) at the initial concentration of 5 mg L-1, with an increasing pH value from 3.0 to 8.0. pH50-100%, the difference between the pH of 100 and 50 percent metal adsorption was determined. A sharp increase of adsorption density (adsorption edge) was observed within a very narrow pH range, usually less than two pH units. Commonly, the relative affinity of a soil for a metal cation increases with the tendency of the cation to form inner-sphere surface complexes. This may be caused by differences in extent of hydrolysis of Cu ions and in affinity of adsorption sites for Cu. In general, subsurface samples showed low pH50

  16. Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon

    NASA Astrophysics Data System (ADS)

    Chang, Shenteng; Lu, Chungsying; Lin, Kun-Yi Andrew

    2015-01-01

    Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.

  17. Structural characteristics of modified activated carbons and adsorption of explosives.

    PubMed

    Tomaszewski, W; Gun'ko, V M; Skubiszewska-Zieba, J; Leboda, R

    2003-10-15

    Several series of activated carbons prepared by catalytic and noncatalytic gasification and subsequent deposition of pyrocarbon by pyrolysis of methylene chloride or n-amyl alcohol were studied by FTIR, chromatography, and adsorption methods using nitrogen and probe organics (explosives). The relationships between the textural characteristics of carbon samples and the recovery rates (eta) of explosives on solid-phase extraction (SPE) using different solvents for their elution after adsorption were analyzed using experimental and quantum chemical calculation results. The eta values for nitrate esters, cyclic nitroamines, and nitroaromatics only partially correlate with different adsorbent parameters (characterizing microporosity, mesoporosity, pore size distributions, etc.), polarity of eluting solvents, or characteristics of probe molecules, since there are many factors strongly affecting the recovery rates. Some of the synthesized carbons provide higher eta values than those for such commercial adsorbents as Hypercarb and Envicarb.

  18. Study of the adsorption of aromatic hydrocarbons by marine sediments. Final report

    SciTech Connect

    Henrichs, S.M.; Luoma, M.; Smith, S.

    1997-08-01

    Three aromatic hydrocarbons--benzene, naphthalene, and phenanthrene--were rapidly and strongly adsorbed by intertidal sediments from Jakolof Bay, lower Cook Inlet. Adsorption of phenanthrene was more than twice that of naphthalene and benzene. Adsorption was not completely, rapidly reversible by suspension of the sediment in clean seawater. Longer adsorption reaction times led to decreased desorption, except for benzene. All sites for adsorption on the sediment surface appeared to be equivalent, and availability of adsorption sites did not limit adsorption over the concentration range studied. Adsorption coefficients for phenanthrene varied among sediment samples by as much as a factor of 3. This variability was not correlated with sediment organic carbon content, indicating that organic matter was not solely responsible for the adsorption properties of these sediments. The bioavailability of phenanthrene was decreased by adsorption to sediment. Combined with the finding that adsorption is not completely reversible, these results indicate that adsorption could contribute to the persistence of aromatic hydrocarbons in lower Cook Inlet sediments.

  19. Lattice Boltzmann simulation of gas-solid adsorption processes at pore scale level

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Qu, Z. G.; Chen, L.; Tao, W. Q.

    2015-11-01

    A two-dimensional lattice Boltzmann (LB) approach was established to implement kinetic concentration boundary conditions in interfacial mass-transfer processes and to simulate the adsorption process in porous media at pore scale and mesoscopic levels. A general treatment was applied to conduct three types of concentration boundary conditions effectively and accurately. Applicability for adsorption was verified by two benchmark examples, which were representative of the interparticle mass transport and intraparticle mass transport in the adsorption system, respectively. The gas-solid adsorption process in reconstructed porous media at the pore scale level was numerically investigated. Mass-transfer processes of the adsorption reaction were simulated by executing Langmuir adsorption kinetics on surfaces of adsorbent particles. Meanwhile, the homogeneous solid diffusion model (HSDM) was used for mass transport in interior particles. The transient adsorbed amount was obtained in detail, and the impact of flow condition, porosity, and adsorbent particle size on the entire dynamic adsorption performance was investigated. The time needed to approach steady state decreased with increased fluid velocity. Transient adsorption capability and time consumption to equilibrium were nearly independent of porosity, whereas increasing pore size led to a moderating adsorption rate and more time was consumed to approach the saturation adsorption. Benefiting from the advantages of the LB method, both bulk and intraparticle mass transfer performances during adsorption can be obtained using the present pore scale approach. Thus, interparticle mass transfer and intraparticle mass transfer are the two primary segments, and intraparticle diffusion has the dominant role.

  20. Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid.

    PubMed

    Shaker, Medhat A; albishri, Hassan M

    2014-09-01

    Humic acids, HA represent a large portion of natural organic matter in soils, sediments and waters. They are environmentally important materials due to their extensive ubiquity and strong complexation ability, which can influence heavy metal removal and transportation in waters. The thermodynamics and kinetics of the adsorption of Cd(II) and Cr(VI) onto solid soil-derived HA have been investigated at optimum conditions of pH (5.5±0.1), metal concentration (10-100mmolL(-1)) and different temperatures (293-323K). The suitability of adsorption models such as Freundlich and Langmuir to equilibrium data was investigated. The adsorption was well described by Langmuir isotherm model in multi-detectable steps. Adsorption sites, i (i=A, B, C) with different capacities, νi are characterized. The stoichiometric site capacity is independent of temperature and equilibrium constant, Ki. Adsorption sites A and B are selectively occupied by Cr(VI) cations while sites A and C are selectively occupied by Cd(II) cations. The thermodynamic parameters of adsorption systems are correlated for each adsorption step. The adsorption is endothermic, spontaneous and favorable. Different kinetic models are applied and the adsorption of these heavy metals onto HA follows pseudo-second-order kinetics and equilibrium is achieved within 24h. The adsorption reaction is controlled by diffusion processes and the type of the adsorption is physical.

  1. Regenerable adsorption system

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Perry, Jay (Inventor); Walsh, Dennis (Inventor)

    2006-01-01

    A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent.

  2. Methods of producing adsorption media including a metal oxide

    DOEpatents

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  3. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  4. Probe tip heating assembly

    SciTech Connect

    Schmitz, Roger William; Oh, Yunje

    2016-10-25

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably received and clamped within the socket.

  5. On the physical adsorption of vapors by microporous carbons

    SciTech Connect

    Bradley, R.H. . Inst. of Surface Science and Technology); Rand, B. . Division of Ceramics)

    1995-01-01

    The physical adsorption of nonpolar and polar vapors by active carbons is discussed in relation to pore structure and pore wall chemistry. For nonpolar vapors the Dubinin-Radushkevich equation is used to derive micropore volumes (W[sub 0]), average adsorption energies (E[sub 0]), and micropore widths (L) for a number of systems. These parameters are used to interpret the adsorption behavior of nitrogen which, because it is a relatively small molecule, is frequently used at 77 K to probe porosity and surface area. Results are presented for three carbons from differing precursors, namely, coal, coconut shells, and polyvinylidene chloride (PVDC) to illustrate the applicability of the technique. For the latter carbon increases in micropore size, induced by activation in carbon dioxide, and reductions in accessible pore volume caused by heat treatment in argon are also characterized and related to structural changes. The approach is then extended to the adsorption of larger hydrogen vapors, where the resulting W[sub 0] values may require correction for molecular packing effects which occur in the lower relative pressure regions of the isotherms, i.e., during the filling of ultramicropores. These packing effects are shown to limit the use of the Polanyi characteristic curve for correlating isotherm data for several vapors, of differing molecular size, by one adsorbent. Data for the adsorption of water, which is a strongly polar liquid, have been interpreted using the Dubinin-Serpinsky equation.

  6. Numerical estimation of adsorption energy distributions from adsorption isotherm data with the expectation-maximization method

    SciTech Connect

    Stanley, B.J.; Guiochon, G. |

    1993-08-01

    The expectation-maximization (EM) method of parameter estimation is used to calculate adsorption energy distributions of molecular probes from their adsorption isotherms. EM does not require prior knowledge of the distribution function or the isotherm, requires no smoothing of the isotherm data, and converges with high stability towards the maximum-likelihood estimate. The method is therefore robust and accurate at high iteration numbers. The EM algorithm is tested with simulated energy distributions corresponding to unimodal Gaussian, bimodal Gaussian, Poisson distributions, and the distributions resulting from Misra isotherms. Theoretical isotherms are generated from these distributions using the Langmuir model, and then chromatographic band profiles are computed using the ideal model of chromatography. Noise is then introduced in the theoretical band profiles comparable to those observed experimentally. The isotherm is then calculated using the elution-by-characteristic points method. The energy distribution given by the EM method is compared to the original one. Results are contrasted to those obtained with the House and Jaycock algorithm HILDA, and shown to be superior in terms of robustness, accuracy, and information theory. The effect of undersampling of the high-pressure/low-energy region of the adsorption is reported and discussed for the EM algorithm, as well as the effect of signal-to-noise ratio on the degree of heterogeneity that may be estimated experimentally.

  7. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal.

    PubMed

    Madadrang, Clemonne J; Kim, Hyun Yun; Gao, Guihua; Wang, Ning; Zhu, Jun; Feng, Huan; Gorring, Matthew; Kasner, Marc L; Hou, Shifeng

    2012-03-01

    Chelating groups are successfully linked to graphene oxide (GO) surfaces through a silanization reaction between N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (EDTA-silane) and hydroxyl groups on GO surface. EDTA-GO was found to be an ideal adsorbent for Pb(II) removal with a higher adsorption capacity. EDTA-modification enhances the adsorption capacity of GO because of the chelating ability of ethylene diamine triacetic acid. This study investigates the adsorption and desorption behaviors of heavy metal cations and the effects of solution conditions such as pH on Pb(II) removal. The adsorption capacity for Pb(II) removal was found to be 479 ± 46) mg/g at pH 6.8, and the adsorption process was completed within 20 min. The Langmuir adsorption model agrees well with the experimental data. The experimental results suggest that EDTA-GO can be reused after washed with HCl, suggesting potential applications in the environmental cleanup.

  8. Batch adsorption of phenol onto physiochemical-activated coconut shell.

    PubMed

    Mohd Din, Azam T; Hameed, B H; Ahmad, Abdul L

    2009-01-30

    The liquid-phase adsorption of phenol onto coconut shell-based activated carbon, CS850A was investigated for its equilibrium studies and kinetic modeling. Coconut shell was converted into high quality activated carbon through physiochemical activation at 850 degrees C under the influence of CO(2) flow. Beforehand, the coconut shell was carbonized at 700 degrees C and the resulted char was impregnated with KOH at 1:1 weight ratio. In order to evaluate the performance of CS850A, a series of batch adsorption experiments were conducted with initial phenol concentrations ranging from 100 to 500 mg l(-1), adsorbent loading of 0.2g and the adsorption process was maintained at 30+/-1 degrees C. The adsorption isotherms were in conformation to both Langmuir and Freundlich isotherm models. Chemical reaction was found to be a rate-controlling parameter to this phenol-CS850A batch adsorption system due to strong agreement with the pseudo-second-order kinetic model. Adsorption capacity for CS850A was found to be 205.8 mg g(-1).

  9. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  10. Functional nucleic acid probes and uses thereof

    DOEpatents

    Nilsen-Hamilton, Marit

    2006-10-03

    The present invention provides functional nucleic acid probes, and methods of using functional nucleic acid probes, for binding a target to carry out a desired function. The probes have at least one functional nucleic acid, at least one regulating nucleic acid, and at least one attenuator. The functional nucleic acid is maintained in an inactive state by the attenuator and activated by the regulating nucleic acid only in the presence of a regulating nucleic acid target. In its activated state the functional nucleic acid can bind to its target to carry out a desired function, such as generating a signal, cleaving a nucleic acid, or catalyzing a reaction.

  11. Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite.

    PubMed

    Liu, Jing; Zhu, Runliang; Xu, Tianyuan; Xu, Yin; Ge, Fei; Xi, Yunfei; Zhu, Jianxi; He, Hongping

    2016-02-01

    Ferrihydrite (Fh) is of great importance in affecting the migration and transformation of heavy-metal cations and oxyanions. To advance the understanding of co-adsorption reactions on Fh surface, the co-adsorption of phosphate and Zn(II) from aqueous solution to a synthesized Fh was determined. The batch experiments demonstrated a synergistic adsorption of phosphate and Zn(II) on Fh. In the pH range of 3.5-6, the adsorption of the two contaminants showed strong pH dependence in the single solute adsorption systems, but the dependence alleviated in the simultaneous adsorption system. X-ray photoelectron spectroscopy (XPS) revealed that the chemical shifts of Zn 2p1/2 and Zn 2p3/2 binding energies were more significant than that of P 2p in the single and simultaneous adsorption systems. On the other side, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) observed increased formation of outer- and inner-sphere complexes of phosphate in the simultaneous system. Thus, the synergistic adsorption of the two contaminants could be attributed to the formation of ternary complexes as well as electrostatic interactions, while surface precipitation could not be completely ruled out. On the basis of the results from both the batch adsorption experiments and structural characterization, these two contaminants were likely to form phosphate-bridged ternary complexes (≡Fe-P-Zn) in the simultaneous adsorption system.

  12. Novel three-stage kinetic model for aqueous benzene adsorption on activated carbon.

    PubMed

    Choi, Jae-Woo; Choi, Nag-Choul; Lee, Soon-Jae; Kim, Dong-Ju

    2007-10-15

    We propose a novel kinetic model for adsorption of aqueous benzene onto both granular activated carbon (GAC) and powdered activated carbon (PAC). The model is based on mass conservation of benzene coupled with three-stage adsorption: (1) the first portion for an instantaneous stage or external surface adsorption, (2) the second portion for a gradual stage with rate-limiting intraparticle diffusion, and (3) the third portion for a constant stage in which the aqueous phase no longer interacts with activated carbon. An analytical solution of the kinetic model was validated with the kinetic data obtained from aqueous benzene adsorption onto GAC and PAC in batch experiments with two different solution concentrations (C(0)=300 mg L(-1), 600 mg L(-1)). Experimental results revealed that benzene adsorption for the two concentrations followed three distinct stages for PAC but two stages for GAC. The analytical solution could successfully describe the kinetic adsorption of aqueous benzene in the batch reaction system, showing a fast instantaneous adsorption followed by a slow rate-limiting adsorption and a final long constant adsorption. Use of the two-stage model gave incorrect values of adsorption coefficients in the analytical solution due to inability to describe the third stage.

  13. Characteristics of simultaneous ammonium and phosphate adsorption from hydrolysis urine onto natural loess.

    PubMed

    Jiang, Shanqing; Wang, Xiaochang; Yang, Shengjiong; Shi, Honglei

    2016-02-01

    Nutrient recovery from human urine is a promising pretreatment of domestic wastewater and provides a sustainable recyclability of N and P. In this study, batch experiments were conducted to identify the characteristics of natural loess (NL) for the adsorption and recovery of ammonium and phosphate from hydrolysis urine (HU). The adsorption mechanisms, the adsorption kinetics and isotherms, as well as the major influencing factors, such as pH and temperature, were investigated. Results revealed that adsorption of ammonium occurred by means of ion exchange and molecule adsorption with the ≡ Si-OH groups, while phosphate adsorption was based on the calcium phosphate precipitation reaction and formation of inner-sphere complexes with ≡ M-OH groups. The adsorption processes of ammonium and phosphate were well described by the pseudo-second-order kinetic model and the Freundlich isotherm model. Adsorption of phosphate was endothermic, while ammonium adsorption was exothermic. Furthermore, the maximum ammonium and phosphate adsorption capacities of NL was 23.24 mg N g(-1) and 4.01 mg P g(-1) at an initial pH of 9 and 10, respectively. Results demonstrated that nutrient-adsorbed NL used as compound fertilizer or conventional fertilizer superaddition was feasible for its high contents of N and P as well as its environmental friendliness.

  14. Atrazine adsorption removal with nylon6/polypyrrole core-shell nanofibers mat: possible mechanism and characteristics

    NASA Astrophysics Data System (ADS)

    Yang, Bi-Yi; Cao, Yang; Qi, Fei-Fei; Li, Xiao-Qing; Xu, Qian

    2015-05-01

    A functionalized nylon6/polypyrrole core-shell nanofibers mat (PA6/PPy NFM) was prepared via situ polymerization on nylon6 electrospun nanofibers mat (PA6 NFM) template and used as an adsorbent to remove atrazine from aqueous solutions. The core-shell structure of PA6/PPy NFM can be clearly proved under scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The effects of initial solution pH and ionic strength, as well as the comparison of the adsorption capacity of functionalized (PA6/PPy NFM) and non-functionalized (PA6 NFM) adsorbent, were examined to reveal the possible adsorption mechanism. The results indicated that π-π interaction and electrostatic interaction should play a key role in the adsorption process. The kinetics and thermodynamics studies also further elucidated the detailed adsorption characteristics of atrazine removal by PA6/PPy NFM. The adsorption of atrazine could be well described by the pseudo-second-order equation. The adsorption equilibrium data was well fitted with the Freundlich isotherm model with a maximum adsorption capacity value of 14.8 mg/g. In addition, the increase of adsorption rate caused by a temperature increase could be felicitously explained by the endothermic reaction. The desorption results showed that the adsorption capacity remained almost unchanged after six adsorption/desorption cycles. These results suggest that PA6/PPy NFM could be employed as an efficient adsorbent for removing atrazine from contaminated water sources.

  15. Investigating the thermodynamic stability of Bacillus subtilis spore-uranium(VI) adsorption though surface complexation modeling

    NASA Astrophysics Data System (ADS)

    Harrold, Z.; Hertel, M.; Gorman-Lewis, D.

    2012-12-01

    Dissolved uranium speciation, mobility, and remediation are increasingly important topics given continued and potential uranium (U) release from mining operations and nuclear waste. Vegetative bacterial cell surfaces are known to adsorb uranium and may influence uranium speciation in the environment. Previous investigations regarding U(VI) adsorption to bacterial spores, a differentiated and dormant cell type with a tough proteinaceous coat, include U adsorption affinity and XAFS data. We investigated the thermodynamic stability of aerobic, pH dependent uranium adsorption to bacterial spore surfaces using purified Bacillus subtilis spores in solution with 5ppm uranium. Adsorption reversibility and kinetic experiments indicate that uranium does not precipitate over the duration of the experiments and equilibrium is reached within 20 minutes. Uranium-spore adsorption edges exhibited adsorption at all pH measured between 2 and 10. Maximum adsorption was achieved around pH 7 and decreased as pH increased above 7. We used surface complexation modeling (SCM) to quantify uranium adsorption based on balanced chemical equations and derive thermodynamic stability constants for discrete uranium-spore adsorption reactions. Site specific thermodynamic stability constants provide insight on interactions occurring between aqueous uranium species and spore surface ligands. The uranium adsorption data and SCM parameters described herein, also provide a basis for predicting the influence of bacterial spores on uranium speciation in natural systems and investigating their potential as biosorption agents in engineered systems.

  16. Insights into tetracycline adsorption onto kaolinite and montmorillonite: experiments and modeling.

    PubMed

    Zhao, Yanping; Gu, Xueyuan; Li, Shiyin; Han, Ruiming; Wang, Guoxiang

    2015-11-01

    Adsorption of tetracycline (TC) on kaolinite and montmorillonite was investigated using batch adsorption experiments with different pH, ionic strength, and surface coverage. As a result, pH and ionic strength-dependent adsorption of TC was observed for the two clay minerals. The adsorption of TC decreased with the increase of pH and ionic strength, and high initial TC concentration had high adsorption. In addition, a triple-layer model was used to predict the adsorption and surface speciation of TC on the two minerals. As a result, four complex species on kaolinite (≡X(-)∙H3TC(+), ≡X(-)∙H2TC(±), ≡SOH(0)∙H2TC(±), and ≡SOH(0)∙HTC(-)) and three species on montmorillonite (≡X(-)∙H3TC(+), ≡X(-)∙H2TC(±), and ≡SOH(0)∙HTC(-)) were structurally constrained by spectroscopy, and these species were also successfully fitted to the adsorption edges of TC. Three functional groups of TC were involved in these adsorption reactions, including the positively charged dimethylamino group, the C=O amide I group, and the C=O group at the C ring. Combining adsorption experiments and model in this study, the adsorption of TC on kaolinite and montmorillonite was mainly attributed to cation exchange on the surface sites (≡X(-)) compared to surface complexation on the edge sites (≡SOH) at natural soil pH condition. Moreover, the surface adsorption species, the corresponding adsorption modes, and the binding constants for the surface reactions were also estimated.

  17. Thin layer joining by gas adsorption

    NASA Astrophysics Data System (ADS)

    Taga, Yasunori; Fukumura, Toshio

    2014-10-01

    Attempt has been made to join borosilicate glass and cycloolefin (COP) polymer film by using gas adsorption method. After corona plasma treat, COP was exposed to (3-glycidoxypropyl) trimethoxysilane (GPS) and glass to (3-aminopropyl) triethoxysilane (APS) both in air atmosphere, resulting in co-adsorption of water vapor in the atmosphere and organosilane gases. Surface characterization of plasma treated and gas adsorbed surfaces was carried out by X-ray photoelectron spectroscopy (XPS) using Mg Kα X-ray source. Joining was carried out by a roll laminator after contact of both surfaces at room temperature, followed by annealing at 130 °C for 10 min. Adhesion strength was evaluated by 180 degree peel test based on ASTM D-903 and durability was examined under the conditions of 60 °C and 95% RH. It was found that after plasma treatment, complex functional groups such as Csbnd H, Csbnd O, Cdbnd O, Osbnd Cdbnd O and CO3 were found on COP and Osbnd H on glass. Thickness of GPS gas adsorption layer on COP was evaluated by the XPS to be at least 1.1 nm by taking inelastic mean free path of Si2p photoelectron into consideration. Joining force was found to be more than 5 N/25 mm corresponding to almost equal to COP bulk tensile strength. In addition, durability of this adhesion strength remained unchanged over 2000 h even after exposure to the durability test conditions of 60 °C and 95% RH. The results can be explained in terms of formation of Hsbnd H hydrogen bonding and Sisbnd O covalent bonding via silanols will be made at the interface as a result of lamination and annealing processes. In conclusion, ultrathin joining method by gas adsorption was established by the formation of hydrogen and covalent bonds at the interface by low temperature reaction process.

  18. Adsorption of small molecules on the [Zn-Zn]2+ linkage in zeolite. A DFT study of ferrierite

    NASA Astrophysics Data System (ADS)

    Benco, Lubomir

    2017-02-01

    In zeolites monovalent Zn(I) forms a sub-nano particles [Zn-Zn]2+ stabilized in rings of the zeolite framework, which exhibit interesting catalytic properties. This work reports on adsorption properties of [Zn-Zn]2+ particles in zeolite ferrierite investigated for a set of probing diatomic (N2, O2, H2, CO, NO) and triatomic (CO2, N2O, NO2, H2O) molecules using dispersion-corrected DFT. Three [Zn-Zn]2+ sites are compared differing in the location and stability. On all sites molecules form physisorbed clusters with the molecule connected on-top of the Zn-Zn linkage. In physisorbed clusters adsorption induces only slight change of bonding and the geometry of the Zn-Zn linkage. Some molecules can form stable chemisorbed clusters in which the molecule is integrated between two Zn+ cations. The sandwich-like chemisorption causes pronounced changes of bonding and can lead to the transfer of the electron density between two Zn+ cations and to a change of the oxidation state. The knowledge of bonding of small molecules can help understanding of the mechanism of conversion reactions catalyzed by sub-nano [Zn-Zn] particles.

  19. Adsorption Device Based on a Langatate Crystal Microbalance for High Temperature High Pressure Gas Adsorption in Zeolite H-ZSM-5

    PubMed Central

    Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland

    2016-01-01

    We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example. PMID:27585356

  20. Adsorption Device Based on a Langatate Crystal Microbalance for High Temperature High Pressure Gas Adsorption in Zeolite H-ZSM-5.

    PubMed

    Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland

    2016-08-25

    We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example.

  1. Arsenate adsorption mechanisms at the allophane - Water interface

    USGS Publications Warehouse

    Arai, Y.; Sparks, D.L.; Davis, J.A.

    2005-01-01

    We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As(V)]0 from 50 to 1000 ??M (i.e., Langmuir type adsorption isotherm) and that the total As adsorption slightly decreased with increasing NaCl concentrations from 0.01 to 0.1 M. Arsenate adsorption was initially (0-10 h) rapid followed by a slow continuum uptake, and the adsorption processes reached the steady state after 720 h. X-ray absorption spectroscopic analyses suggest that As(V) predominantly forms bidentate binuclear surface species on aluminum octahedral structures, and these species are stable up to 11 months. Solubility calculations and powder XRD analyses indicate no evidence of crystalline AI-As(V) precipitates in the experimental systems. Overall, macroscopic and spectroscopic evidence suggest that the As(V) adsorption mechanisms at the allophane-water interface are attributable to ligand exchange reactions between As(V) and surface-coordinated water molecules and hydroxyl and silicate ions. The research findings imply that dissolved tetrahedral oxyanions (e.g., H2PO42- and H2AsO42-) are readily retained on amorphous aluminosilicate minerals in aquifer and soils at near neutral pH. The innersphere adsorption mechanisms might be important in controlling dissolved arsenate and phosphate in amorphous aluminosilicate-rich low-temperature geochemical environments. ?? 2005 American Chemical Society.

  2. Basicity, Catalytic and Adsorptive Properties of Hydrotalcites

    NASA Astrophysics Data System (ADS)

    Figueras, Francois

    Solid bases have numerous potential applications, not only as catalyst for the manufacture of fine chemicals, in refining and petrochemistry, but also for adsorption and anion exchange. The present processes use liquid bases, typically alcoholic potash, and require neutralisation of the reaction medium at the end of the reaction, with production of salts. The substitution of these liquid bases by solids would provide cleaner and safer processes, due to the reduction of salts, and facilitate separation of the products and recycling of the catalyst. This chapter reviews the recent ideas on the modification of the basic properties of hydrotalcites by anion exchange and on the catalytic properties of solid bases as catalysts. Many examples of successful applications are given, with emphasis to industrial processes recently presented such as isomerisation of olefins. The basic properties of hydrotalcites can also be used to carry the exchange of toxic anions, humic acids or dyes, and have driven recent developments proposing HDT as drug carriers.

  3. Simulation of nuclear quadrupole resonance for sensor probe optimization.

    PubMed

    Shinohara, Junichiro; Sato-Akaba, Hideo; Itozaki, Hideo

    2012-01-01

    A simulation method to estimate the detection efficiency of nuclear quadrupole resonance (NQR) was proposed for optimizing a sensing probe operating at radio frequencies (RFs). It first calculates the transmitted magnetic field from the probe coil to the target sample. The nuclei make quadrupole resonance by it. We considered this nonlinear reaction to estimate NQR emission by the nuclei. Then the received NQR signal intensity from the sample at the probe coil. We calculated the efficiency by testing two different probe types (solenoid and gradiometer) and by changing the relative positions of the probe and sample. The simulation results were in good agreement with the experimental results.

  4. Liquid-Phase Adsorption Fundamentals.

    ERIC Educational Resources Information Center

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  5. Fluorescent hybridization probes for nucleic acid detection.

    PubMed

    Guo, Jia; Ju, Jingyue; Turro, Nicholas J

    2012-04-01

    Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.

  6. Hot-wire probe

    NASA Technical Reports Server (NTRS)

    Mikulla, V.

    1976-01-01

    High-temperature platinum probe measures turbulence and Reynolds shear stresses in high-temperature compressible flows. Probe does not vibrate at high velocities and does not react like strain gage on warmup.

  7. Infant Defensive Reactions to Visual Occlusion.

    ERIC Educational Resources Information Center

    Adamson, Lauren; Tronick, Edward

    This paper describes the initial organization of the infant's reaction to having his vision occluded by an opaque cloth; traces the development of this reaction over the first six months; and probes the role the occlusion of vision plays in provoking the reaction. Fifty videotaped sessions of infants during two conditions - eyes covered with an…

  8. Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions.

    PubMed

    Lu, Xincheng; Jiang, Jianchun; Sun, Kang; Wang, Jinbiao; Zhang, Yanping

    2014-01-15

    Reactivation and chemical modification were used to obtain modified activated carbons with different pore structure and surface chemical properties. The samples were characterized by nitrogen absorption-desorption, Fourier transform infrared spectroscopy and the Bothem method. Using mercury chloride as the target pollutant, the Hg(2+) adsorption ability of samples was investigated. The results show that the Hg(2+) adsorption capacity of samples increased significantly with increases in micropores and acidic functional groups and that the adsorption process was exothermic. Different models and thermodynamic parameters were evaluated to establish the mechanisms. It was concluded that the adsorption occurred through a monolayer mechanism by a two-speed process involving both rapid adsorption and slow adsorption. The adsorption rate was determined by chemical reaction.

  9. Probing the kinetic energy-release dynamics of H-atom products from the gas-phase reaction of O(3P) with vinyl radical C2H3.

    PubMed

    Jang, Su-Chan; Choi, Jong-Ho

    2014-11-21

    The gas-phase radical-radical reaction dynamics of ground-state atomic oxygen O((3)P) with vinyl radicals C2H3 has been studied by combining the results of vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed beam configuration with ab initio calculations. The two radical reactants O((3)P) and C2H3 were produced by photolysis of NO2 and supersonic flash pyrolysis of C2H3I, respectively. Doppler profile analysis of the kinetic energy release of the nascent H-atom products from the title reaction O((3)P) + C2H3→ H((2)S) + CH2CO (ketene) revealed that the average translational energy of the products and the average fraction of the total available energy were 7.03 ± 0.30 kcal mol(-1) and 7.2%. The empirical data combined with CBS-QB3 level ab initio theory and statistical calculations demonstrated that the title oxygen-hydrogen exchange reaction is a major reaction channel, through an addition-elimination mechanism involving the formation of a short-lived, dynamical complex on the doublet potential energy surface. On the basis of systematic comparison with several exchange reactions of hydrocarbon radicals, the observed kinetic energy release can be explained in terms of the weak impulse at the moment of decomposition in the loose transition state with a product-like geometry and a small reverse barrier along the exit channel.

  10. Selective Filter Effect Induced by Cu(2+) Adsorption on the Fluorescence of a GdVO4:Eu Nanoprobe.

    PubMed

    Kim, Hyunsub; Jeong, Heejin; Byeon, Song-Ho

    2016-06-22

    Human blood contains substantial amounts of metal ions such as Mg(2+), Ca(2+), Fe(2+), Cu(2+), Zn(2+), Cd(2+), Pb(2+), and Al(3+). Most biomedical applications of nanoparticles require understanding the influence of these metal ions because adsorbed metal ions can affect the function of nanoparticles to limit their sensitivity, performance, stability, and/or resolution in applications. In the present work, the adsorption of various metal ions at the surface of GdVO4:Eu nanoparticles was studied to assess their spectral filter effect on the fluorescence of GdVO4:Eu. Due to the negative surface potential, the electrostatic attraction caused an intensive adsorption reaction of GdVO4:Eu nanoparticles with metal cations. Compared to the adsorption of other common metal ions in human blood, the distinct fluorescence quenching of GdVO4:Eu was induced in the presence of Cu(2+) ions. On the basis of the UV-vis absorption spectrum of an aqueous CuCl2 solution and reflectance spectrum of Cu(OH)2, in which the surroundings of Cu(2+) ions are supposedly similar to the hydroxylated surface of GdVO4:Eu nanoparticles, it is proposed that the complementary overlap of the emission band of GdVO4:Eu with the absorption band of Cu(2+) results in the effective filter effect to quench the red emission. Because GdVO4:Eu nanoparticles are attractive candidates for applications as magnetic/fluorescent multimodal nanoprobes, it is important to recognize that the average amount of Cu(2+) ion in human blood is sufficient to interfere with or limit the fluorescence probe function of GdVO4:Eu nanoparticles.

  11. Galileo Probe Battery System

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Taenaka, R. K.; Stofel, E. J.

    1997-01-01

    The conclusions of the Galileo probe battery system are: the battery performance met mission requirements with margin; extensive ground-based and flight tests of batteries prior to probe separation from orbiter provided good prediction of actual entry performance at Jupiter; and the Li-SO2 battery was an important choice for the probe's main power.

  12. A Magnetoresistance Measuring Probe.

    DTIC Science & Technology

    The in line four point probe, commonly used for measuring the sheet resistance in a conductor, cannot measure the anisotropic ferromagnetic magnetoresistance. However, the addition of two contact points that are not collinear with the current contacts give the probe the ability to non-destructively measure the anistropic magnetoresistance. Keywords: Magnetoresistance; Anisotropic; Thin-Film; Permalloy; Four Point Probe; Anisotropic Resistance.

  13. Chromium adsorption by lignin

    SciTech Connect

    Lalvani, S.B.; Huebner, A.; Wiltowski, T.S.

    2000-01-01

    Hexavalent chromium is a known carcinogen, and its maximum contamination level in drinking water is determined by the US Environmental Protection Agency (EPA). Chromium in the wastewaters from plating and metal finishing, tanning, and photographic industries poses environmental problems. A commercially available lignin was used for the removal of hexavalent as well as trivalent chromium from aqueous solution. It is known that hexavalent chromium is present as an anionic species in the solution. It was found that lignin can remove up to 63% hexavalent and 100% trivalent chromium from aqueous solutions. The removal of chromium ions was also investigated using a commercially available activated carbon. This absorbent facilitated very little hexavalent and almost complete trivalent chromium removal. Adsorption isotherms and kinetics data on the metal removal by lignin and activated carbon are presented and discussed.

  14. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  15. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  16. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite.

    PubMed

    Karaca, S; Gürses, A; Ejder, M; Açikyildiz, M

    2004-09-15

    The adsorption of phosphate from aqueous solution on dolomite was investigated at 20 and 40 degrees C in terms of pseudo-second-order mechanism for chemical adsorption as well as an intraparticle diffusion mechanism process. Adsorption was changed with increased contact time, initial phosphate concentration, temperature, solution pH. A pseudo-second-order model and intraparticle diffusion model have been developed to predict the rate constants of adsorption and equilibrium capacities. The activation energy of adsorption can be evaluated using the pseudo-second-order rate constants. The adsorption of phosphate onto dolomite are an exothermically activated process. A relatively low activation energy and a model highly fitting to intraparticle diffusion suggest that the adsorption of phosphate by dolomite may involve not only physical but also chemisorption. This was likely due to its combined control of chemisorption and intraparticle diffusion. However, for phosphate/dolomite system chemical reaction is important and significant in the rate-controlling step, and for the adsorption of phosphate onto dolomite the pseudo-second-order chemical reaction kinetics provides the best correlation of the experimental data.

  17. Zip nucleic acids are potent hydrolysis probes for quantitative PCR

    PubMed Central

    Paris, Clément; Moreau, Valérie; Deglane, Gaëlle; Voirin, Emilie; Erbacher, Patrick; Lenne-Samuel, Nathalie

    2010-01-01

    Zip nucleic acids (ZNAs) are oligonucleotides conjugated with cationic spermine units that increase affinity for their target. ZNAs were recently shown to enable specific and sensitive reactions when used as primers for polymerase chain reaction (PCR) and reverse-transcription. Here, we report their use as quantitative PCR hydrolysis probes. Ultraviolet duplex melting data demonstrate that attachment of cationic residues to the 3′ end of an oligonucleotide does not alter its ability to discriminate nucleotides nor the destabilization pattern relative to mismatch location in the oligonucleotide sequence. The stability increase provided by the cationic charges allows the use of short dual-labeled probes that significantly improve single-nucleotide polymorphism genotyping. Longer ZNA probes were shown to display reduced background fluorescence, therefore, generating greater sensitivity and signal level as compared to standard probes. ZNA probes thus provide broad flexibility in assay design and also represent an effective alternative to minor groove binder- and locked nucleic-acid-containing probes. PMID:20071749

  18. Simultaneous adsorption of Cd²⁺ and BPA on amphoteric surfactant activated montmorillonite.

    PubMed

    Liu, Chongmin; Wu, Pingxiao; Zhu, Yajie; Tran, Lytuong

    2016-02-01

    The study mainly investigated the simultaneous adsorption of bisphenol A (BPA) and Cd(2+) from aqueous solution on octadecane-betaine modified montmorillonite (BS-Mt). The characteristics of the obtained materials were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Specific surface area (BET) and Scanning electron microscopy/Energy disperse spectroscopy (SEM/EDS), confirming that BS-18 was successfully introduced into Mt. Also, factors including initial solution pH, initial Cd(2+)/BPA concentration, contact time and adsorbent dosage on the adsorption processes were shown to be crucial for Cd(2+) adsorption, whereas had negligible effects on BPA adsorption. In this study, we found that pseudo-second-order model fitted well with the adsorption kinetic studies for both Cd(2+) and BPA with an equilibrium time of 24 h. The Cd(2+) and BPA adsorption isotherm could be well described by Freundlich model and Langmuir model, respectively. On the basis of kinetic models, the maximum adsorption capacity of Cd(2+) in aqueous solution was slightly enhanced after modification, indicating that Cd(2+) adsorption on BS-Mt was mainly attributed to direct electrostatic attraction and the chelate reaction, while the dramatic enhancement of maximum adsorption capacity for BPA was due to the hydrophobic interaction.

  19. Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Zheng, Yingfu; Zhang, Songping; Miao, Shida; Su, Zhiguo; Wang, Ping

    2013-07-10

    Unproductive enzyme adsorption is an important factor in addition to steric hindrance of lignin that limits the enzymatic hydrolysis of lignocellulosic biomass. While both are important factors, enzymatic hydrolysis of pretreated biomass is most likely conducted in the presence of certain amount of lignin residues that may not necessarily present accessibility hindrance, but can competitively absorb the enzyme. This paper presents a study with purified lignin samples to elucidate the role of unproductive enzyme adsorption. It appeared that lignin adsorbed cellulase quickly at 4 °C with adsorption equilibrium reached within 1h, similar to that observed for crystalline cellulose. Increasing temperature to 50 °C (typical hydrolytic reaction condition) facilitated the rate of cellulase adsorption on cellulose with a peak of adsorption reached at 0.25 h; however, adsorption on lignin was surprisingly slower and took over 12h to reach equilibrium, which was accompanied with a 10-fold increase in adsorption capacity. Despite the high adsorption capacity of lignin (which is comparable to that of cellulose) at 50 °C, the presence of added lignin imposed only minimal impact on the enzyme apparent activity, most likely due to the slow adsorption kinetics of lignin.

  20. Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework.

    PubMed

    Wu, Xiaofei; Yuan, Bin; Bao, Zongbi; Deng, Shuguang

    2014-09-15

    An ultramicroporous copper metal-organic framework (Cu-MOF), Cu(hfipbb)(H2hfipbb)0.5 [H2hfipbb=4,4'-(hexafluoro-isopropylidene) bis(benzoic acid)] was successfully synthesized by a microwave-assisted method (1) with a shorter reaction time and higher MOFs yield. The obtained Cu-MOF sample was characterized with scanning electron microscopy for crystal structure, powder X-ray diffraction for phase structure, and carbon dioxide adsorption at 273 K for pore textural properties. Single-component adsorption (adsorption equilibrium and kinetics) of CO2, CH4, and N2 on 1 was measured using a Micromeritics ASAP 2020 adsorption porosimeter at 278, 298 and 318 K, and pressures up to 1 bar. Isosteric heats of adsorption, Henry's constants, and diffusion time constants were calculated and carefully analyzed. Adsorption equilibrium selectivity (α), adsorbent selection parameter for pressure swing adsorption processes (S), kinetic selectivity and combined separation selectivity (β) for CO2/CH4, CO2/N2 and CH4/N2 binary mixtures were estimated based on the single-component adsorption data. The relative high values of the adsorption selectivities suggest that Cu-MOF is a promising adsorbent for separating CO2/CH4, CO2/N2 and CH4/N2 gas pairs.

  1. [Thermodynamics adsorption and its influencing factors of chlorpyrifos and triazophos on the bentonite and humus].

    PubMed

    Zhu, Li-Jun; Zhang, Wei; Zhang, Jin-Chi; Zai, De-Xin; Zhao, Rong

    2010-11-01

    The adsorption of chlorpyrifos and triazophos on bentonite and humus was investigated by using the equilibrium oscillometry. The adsorption capacity of chlorpyrifos and triazophos on humus was great higher than bentonite at the same concentration. Equilibrium data of Langmuir, Freundlich isotherms showed significant relationship to the adsorption of chlorpyrifos and triazophos on humus (chlorpyrifos: R2 0.996 4, 0.996 3; triazophos: R2 0.998 9, 0.992 4). Langmuir isotherm was the best for chlorpyrifos and triazophos on bentonite (chlorpyrifos: R2 = 0.995 7, triazophos: R2 = 0.998 9). The pH value, adsorption equilibrium time and temperature were the main factors affecting adsorption of chlorpyrifos and triazophos on bentonite and humus. The adsorption equilibrium time on mixed adsorbent was 12h for chlorpyrifos and 6h for triazophos respectively. The mass ratio of humus and bentonite was 12% and 14% respectively, the adsorption of chlorpyrifos and triazophos was the stronglest and tended to saturation. At different temperatures by calculating the thermodynamic parameters deltaG, deltaH and deltaS, confirmed that the adsorption reaction was a spontaneous exothermic process theoretically. The adsorption was the best when the pH value was 6.0 and the temperature was 15 degrees C.

  2. Surface complexation modeling of uranyl adsorption on corrensite from the Waste Isolation Pilot Plant Site

    SciTech Connect

    Park, Sang-Won; Leckie, J.O.; Siegel, M.D.

    1995-09-01

    Corrensite is the dominant clay mineral in the Culebra Dolomite at the Waste Isolation Pilot Plant. The surface characteristics of corrensite, a mixed chlorite/smectite clay mineral, have been studied. Zeta potential measurements and titration experiments suggest that the corrensite surface contains a mixture of permanent charge sites on the basal plane and SiOH and AlOH sites with a net pH-dependent charge at the edge of the clay platelets. Triple-layer model parameters were determined by the double extrapolation technique for use in chemical speciation calculations of adsorption reactions using the computer program HYDRAQL. Batch adsorption studies showed that corrensite is an effective adsorbent for uranyl. The pH-dependent adsorption behavior indicates that adsorption occurs at the edge sites. Adsorption studies were also conducted in the presence of competing cations and complexing ligands. The cations did not affect uranyl adsorption in the range studied. This observation lends support to the hypothesis that uranyl adsorption occurs at the edge sites. Uranyl adsorption was significantly hindered by carbonate. It is proposed that the formation of carbonate uranyl complexes inhibits uranyl adsorption and that only the carbonate-free species adsorb to the corrensite surface. The presence of the organic complexing agents EDTA and oxine also inhibits uranyl sorption.

  3. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  4. Traversing probe system

    DOEpatents

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  5. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  6. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    SciTech Connect

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  7. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  8. Random sequential adsorption on fractals.

    PubMed

    Ciesla, Michal; Barbasz, Jakub

    2012-07-28

    Irreversible adsorption of spheres on flat collectors having dimension d < 2 is studied. Molecules are adsorbed on Sierpinski's triangle and carpet-like fractals (1 < d < 2), and on general Cantor set (d < 1). Adsorption process is modeled numerically using random sequential adsorption (RSA) algorithm. The paper concentrates on measurement of fundamental properties of coverages, i.e., maximal random coverage ratio and density autocorrelation function, as well as RSA kinetics. Obtained results allow to improve phenomenological relation between maximal random coverage ratio and collector dimension. Moreover, simulations show that, in general, most of known dimensional properties of adsorbed monolayers are valid for non-integer dimensions.

  9. Galactose adsorption on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Alatalo, Matti; Puisto, Mikko

    2014-03-01

    In order to understand the valorisation of biomass, it is essential to study the behavior of sugar molecules on catalytic surfaces. We have studied the adsorption of galactose molecules on the Ru(0001) surface using first principles calculations. We present results for the fully relaxed configurations of the molecule at different adsorption sites. We also compare the effect of the inclusion of the van der Waals interactions on both the energetics of the free galactose molecule and the adsorption energy of galactose on Ru(0001). We compare our results, obtained using periodically repeated supercells, to those obtained with cluster calculations.

  10. Development of DNA probes for Candida albicans

    SciTech Connect

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.

  11. Effect of tribology processes on adsorption of albumin

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Yang, Hongjuan; Wang, Linghe; Su, Yanjing; Qiao, Lijie

    2016-03-01

    As soon as artificial joint replacements are implanted into patients, the adsorption of proteins can occur. Joint implants operate in a protein-rich and relatively corrosive environment under tribological contact. The contacted area acted as an anodic part and the rest of the surface was more cathodic. Therefore, the adsorption of proteins is different in and outside the wear track. Adsorbed proteins would denature during rubbing and a tribofilm could form. The tribofilm can lubricate the surface and act as a barrier to corrosion damage. However, to observe the adsorption of proteins in situ has always been a challenge. Scanning Kelvin probe force microscope (SKPFM) was used to study the adsorption of albumin on the surface of CoCrMo alloy under simulated tribology movement. Fluorescence microscopy (FM) was employed to reveal the protein molecules in the wear scar. It was found that albumin molecules can decrease the surface potential and accelerate the corrosion process. In the wear track, albumin denatured and changed the surface potential as time progressed.

  12. Evaluation of confinement effects in zeolites under Henry's adsorption regime

    NASA Astrophysics Data System (ADS)

    Pera-Titus, Marc; Llorens, Joan

    2010-06-01

    This paper provides a detailed thermodynamic analysis of gas/vapour adsorption in zeolites at low pressures. At these conditions, we show first that Henry's isotherm can be conveniently rewritten using the thermodynamic isotherm model developed in a previous study [J. Llorens, M. Pera-Titus, Description of gas adsorption on microporous materials: evaluation of energy heterogeneity, J. Colloid Interface Sci. 331, 2009, 302-311], linking the integral free energy of adsorption relative to saturation, Ψ/ RT, expressed as a Kiselev integral, with the variable Z = 1/-ln( Π), being Π the relative pressure. Relevant information about sorbate confinement effects in zeolites can be inferred using strong sorbates under Henry's adsorption regime using the thermodynamic formulation provided here. The confining level of zeolites can be characterized by a parameter ( m1), whose value depends on the zeolite framework, but remains essentially unchanged with the sorbate probe molecule and temperature. We illustrate the application of these concepts using a collection of MFI and MTW-type zeolites as model systems.

  13. Adsorption of copper ion on magnetite-immobilised chitin.

    PubMed

    Wong, K S; Wong, K H; Ng, S; Chung, W K; Wong, P K

    2007-01-01

    The adsorption of Cu2+ from aqueous solution by magnetite-immobilised chitin (MC) was studied in batch mode. Two conventional adsorbents, cation exchange resin (CER) and activated carbon (AC) were used for the comparison. The physicochemical parameters including pH, concentration of adsorbent, temperature and initial Cu2+ concentration were optimised. Under the optimised conditions, the removal efficiencies of Cu2+ for MC, CER and AC were 91.67, 93.36 and 89.16%, respectively. In addition, the removal capacities of Cu2+ for MC, CER and AC were 56.71, 74.84 and 6.55 mg/g, respectively. The adsorption isotherm studies indicated that the adsorptive behaviour of Cu2+ on three adsorbents could be well described by the Langmuir model. The maximum adsorption capacities (qmax) for MC, CER and AC were 53.19, 89.29 and 5.82 mg/g, respectively. The applicability of the kinetic model has been investigated for MC. Experimental results indicated that a pseudo-second-order reaction model provided the best description of the data with a correlation coefficient 0.999 for different initial Cu2+ concentrations. The rate constants were also determined. Various thermodynamic parameters such as standard free energy (DeltaG 0), enthalpy (DeltaH 0) and entropy (DeltaS 0) were calculated for predicting the adsorption nature of MC. The results indicated that this system was a spontaneous and endothermic process.

  14. Study on the electronic properties and molecule adsorption of W18O49 nanowires as a catalyst support in the cathodes of direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Karim, N. A.; Kamarudin, S. K.; Shyuan, L. K.; Yaakob, Z.; Daud, W. R. W.; Kadhum, A. A. H.

    2015-08-01

    Catalyst supports have been used to increase the catalytic activity of reactions in the cathode of Direct Methanol Fuel Cells (DMFCs). The properties of tungsten oxide (W18O49) nanowires were studied, and their adsorption capability was evaluated using density functional theory. The electronic properties of the bulk material and two different diameter nanowires were calculated. Moreover, the molecules involved in adsorption were carbon monoxide, methanol, oxygen and hydrogen peroxide. The results showed that the high adsorption energy produced is primarily the result of the adsorption of methanol, followed by that of hydrogen peroxide, carbon monoxide and oxygen. The negative adsorption energies obtained showed that the adsorption reactions were exothermic, and only oxygen was stable. Therefore, a new surface model was described where cobalt atoms were adsorbed on tungsten atoms on the surface of a 12 Å nanowire. In this new nanowire doped with cobalt atoms, the adsorption energy was reduced.

  15. Interfacing Commodore Microcomputers with a Laboratory Device: A Thermometer Probe.

    ERIC Educational Resources Information Center

    Powers, Michael H.

    1986-01-01

    Describes hardware and software requirements for interfacing a thermometer probe, via an analog and digital converter, to any Commodore PET, VIC-20, or Commodore-64 microcomputer (or other microcomputers with some modifications). Also describes use of the probe in an experiment measuring enthalpies of reaction to determine enthalpy of formation of…

  16. Hyperpolarized NMR Probes for Biological Assays

    PubMed Central

    Meier, Sebastian; Jensen, Pernille R.; Karlsson, Magnus; Lerche, Mathilde H.

    2014-01-01

    During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments. PMID:24441771

  17. Kinetic study of aluminum adsorption by aluminosilicate clay minerals

    SciTech Connect

    Walker, W.J.; Cronan, C.S.; Patterson, H.H.

    1988-01-01

    The adsorption kinetics of Al/sup 3 +/ by montmorillonite, kaolinite, and vermiculite were investigated as a function of the initial Al concentration, the surface area of the clay, and H/sup +/ concentration, at 25/sup 0/, 18/sup 0/, and 10/sup 0/C. In order to minimize complicated side reactions the pH range was kept between 3.0 and 4.1. Results showed that the adsorption rate was f