Science.gov

Sample records for adsorption tests showed

  1. What Do Blood Tests Show?

    MedlinePlus

    ... shows the ranges for blood glucose levels after 8 to 12 hours of fasting (not eating). It shows the normal range and the abnormal ranges that are a sign of prediabetes or diabetes. Plasma Glucose Results (mg/dL)* Diagnosis 70 to 99 ...

  2. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  3. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    SciTech Connect

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  4. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    conducted to ascertain the effects of changing pH showed that at pH values of 6.5 and 7.5, no significant differences existed in Tc-adsorption performance for three of the carbons, but the fourth carbon performed better at pH 7.5. When the pH was increased to 8.5, a slight decline in performance was observed for all carbons. Tests conducted to ascertain the temperature effect on Tc-99 adsorption indicated that at 21 ºC, 27 ºC, and 32 ºC there were no significant differences in Tc-99 adsorption for three of the carbons. The fourth carbon showed a noticeable decline in Tc-99 adsorption performance with increasing temperature. The presence of volatile organic compounds (VOCs) in the source water did not significantly affect Tc-99 adsorption on either of two carbons tested. Technetium-99 adsorption differed by less than 15% with or without VOCs present in the test water, indicating that Tc-99 adsorption would not be significantly affected if VOCs were removed from the water prior to contact with carbon.

  5. 4. VIEW SOUTHWEST COMPONENTS TEST LAB TEST BAY DETAIL SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SOUTHWEST COMPONENTS TEST LAB TEST BAY DETAIL SHOWING EMERGENCY SHOWER, AND EYEWASH, AND OBSERVATION WINDOW. STORAGE TANKS ON ROOF. - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL

  6. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Nick Soelberg; Tony Watson

    2014-08-01

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  7. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    SciTech Connect

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  8. Kinetic Interpretation of Water Vapor Adsorption-Desorption Behavior of a Desiccant Rotor Showing S-shaped Adsorption Isotherm

    NASA Astrophysics Data System (ADS)

    Okamoto, Kumiko; Oshima, Kazunori; Takewaki, Takahiko; Kodama, Akio

    Adsorption / desorption behavior of water vapor in a desiccant rotor containing an iron aluminophosphate type zeolite FAM-Z01 (Functional Adsorbent Material Zeolite 01) was experimentally investigated for humidity swing. This rotor exhibited an S-shaped adsorption isotherm with its temperature dependence. Humidity swing, using a small piece of the rotor, could be usefully applied to interpret adsorption / desorption mechanisms by observing their rates. The most significant finding was that the adsorption / desorption rates in humidity swing could be described by the amount of adsorption, temperature and amplitude of the humidity swing, not by cycle time. Also, using the liner driving force (LDF) model, the overall mass transfer coefficient changed with the elapse of time or with the amount of adsorbed water. This implied that the LDF model, considering constant value of the overall mass transfer coefficient, was probably unable to explain the water adsorption / desorption behavior of FAM-Z01 desiccant rotor.

  9. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    PubMed

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  10. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    PubMed

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane. PMID:23684695

  11. 1. VIEW EAST, COMPONENTS TEST LABORATORY SHOWING CATCH BASINS, TURBINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW EAST, COMPONENTS TEST LABORATORY SHOWING CATCH BASINS, TURBINE TESTING AREA, AND PUMP TESTING TOWER. - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL

  12. Uranium Adsorption on Ion-Exchange Resins - Batch Testing

    SciTech Connect

    Mattigod, Shas V.; Golovich, Elizabeth C.; Wellman, Dawn M.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    The uranium adsorption performance of five resins (Dowex 1, Dowex 21K 16-30 [fresh], Dowex 21K 16-30 [regenerated], Purofine PFA600/4740, and ResinTech SIR-1200) were tested using unspiked, nitrate-spiked, and nitrate-spiked/pH adjusted source water from well 299-W19-36. These batch tests were conducted in support of a resin selection process in which the best resin to use for uranium treatment in the 200-West Area groundwater pump-and-treat system will be identified. The results from these tests are as follows: • The data from the high-nitrate (1331 mg/L) tests indicated that Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 all adsorbed uranium similarly well with Kd values ranging from ~15,000 to 95,000 ml/g. All four resins would be considered suitable for use in the treatment system based on uranium adsorption characteristics. • Lowering the pH of the high nitrate test conditions from 8.2 to 7.5 did not significantly change the uranium adsorption isotherms for the four tested resins. The Kd values for these four resins under high nitrate (1338 mg/L), lower pH (7.5) ranged from ~15,000 to 80,000 ml/g. • Higher nitrate concentrations greatly reduced the uranium adsorption on all four resins. Tests conducted with unspiked (no amendments; nitrate at 337 mg/L and pH at 8.2) source water yielded Kd values for Dowex 1, Dowex 21K 16-30 (fresh), Purofine PFA600/4740, and ResinTech SIR-1200 resins ranging from ~800,000 to >3,000,000 ml/g. These values are about two orders of magnitude higher than the Kd values noted from tests conducted using amended source water. • Compared to the fresh resin, the regenerated Dowex 21K 16-30 resin exhibited significantly lower uranium-adsorption performance under all test conditions. The calculated Kd values for the regenerated resin were typically an order of magnitude lower than the values calculated for the fresh resin. • Additional testing using laboratory columns is recommended to better

  13. 76 FR 82323 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ....'' This guide applies to the design, inspection, and testing of air filtration and iodine adsorption units... the design, inspection, and testing of air filtration and iodine adsorption units of...

  14. Detail of east side of Test Sand 'A' base, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of east side of Test Sand 'A' base, showing flame deflector at bottom of stand. Stairs and handrails were added after test stand was converted to test propellant flow in components as opposed to firing rocket engines. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  15. 17. Building 202, observation room for test cell, showing panel, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Building 202, observation room for test cell, showing panel, abort button, phones, and observation window. View looking northwest. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  16. 7. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH

  17. 5. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH

  18. Detail of north side of Test Stand 'A' base, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of north side of Test Stand 'A' base, showing tanks for distilled water (left), fuel (center), and gaseous nitrogen (right). Other tanks present for tests were removed before this image was taken. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA

  19. 1. Photographic copy of engineering drawing showing structure of Test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photographic copy of engineering drawing showing structure of Test Stand 'B' (4215/E-16), also known as the 'Short Snorter.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Structural Addition - Bldg. E-12, Edwards Test Station,' drawing no. E12/1-1, 8 August 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA

  20. 38. Historic photo of Building 202 test cell interior, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Historic photo of Building 202 test cell interior, showing damage to test stand A and rocket engine after failure and explosion of engine, December 12, 1958. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-49376. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  1. 2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND GARAGE (BUILDING 1930) AT LEFT REAR. Looking to west. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  2. 39. Historic photo of Building 202 test cell exterior, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Historic photo of Building 202 test cell exterior, showing fiberglass cladding blown out by hydrogen fire during rocket engine testing, April 27, 1959. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-50472. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  3. A high surface area Zr(IV)-based metal–organic framework showing stepwise gas adsorption and selective dye uptake

    SciTech Connect

    Lv, Xiu-Liang; Tong, Minman; Huang, Hongliang; Wang, Bin; Gan, Lei; Yang, Qingyuan; Zhong, Chongli; Li, Jian-Rong

    2015-03-15

    Exploitation of new metal–organic framework (MOF) materials with high surface areas has been attracting great attention in related research communities due to their broad potential applications. In this work, a new Zr(IV)-based MOF, [Zr{sub 6}O{sub 4}(OH){sub 4}(eddb){sub 6}] (BUT-30, H{sub 2}eddb=4,4′-(ethyne-1,2-diyl)dibenzoic acid) has been solvothermally synthesized, characterized, and explored for gases and dyes adsorptions. Single-crystal X-ray diffraction analysis demonstrates a three-dimensional cubic framework structure of this MOF, in which each Zr{sub 6}O{sub 4}(OH){sub 4} building unit is linked by 12 linear eddb ligands. BUT-30 has been found stable up to 400 °C and has a Brunauer–Emmett–Teller (BET) surface area as high as 3940.6 m{sup 2} g{sup −1} (based on the N{sub 2} adsorption at 77 K) and total pore volume of 1.55 cm{sup 3} g{sup −1}. It is more interesting that this MOF exhibits stepwise adsorption behaviors for Ar, N{sub 2}, and CO{sub 2} at low temperatures, and selective uptakes towards different ionic dyes. - Graphical abstract: A new Zr(IV)-based MOF with high surface area has been synthesized and structurally characterized, which shows stepwise gas adsorption at low temperature and selective dye uptake from solution. - Highlights: • A new Zr-based MOF was synthesized and structurally characterized. • This MOF shows a higher surface area compared with its analogous UiO-67 and 68. • This MOF shows a rare stepwise adsorption towards light gases at low temperature. • This MOF performs selective uptakes towards cationic dyes over anionic ones. • Using triple-bond spacer is confirmed feasible in enhancing MOF surface areas.

  4. 1. EXTERIOR VIEW, LOOKING SOUTHEAST, SHOWING FLIGHT TEST HANGARS IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW, LOOKING SOUTHEAST, SHOWING FLIGHT TEST HANGARS IN CENTER, BUILDING 7 ON LEFT, AND BUILDING 8 ON RIGHT. - Wright-Patterson Air Force Base, Area B, Building 1/9, Flight Test Hangars, On flightline between Ninth & Tenth Streets, Dayton, Montgomery County, OH

  5. 72. View of test system showing Klystron tube installed in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. View of test system showing Klystron tube installed in test position on first floor of transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. Uranium Adsorption on Granular Activated Carbon – Batch Testing

    SciTech Connect

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2013-09-01

    The uranium adsorption performance of two activated carbon samples (Tusaar Lot B-64, Tusaar ER2-189A) was tested using unadjusted source water from well 299-W19-36. These batch tests support ongoing performance optimization efforts to use the best material for uranium treatment in the Hanford Site 200 West Area groundwater pump-and-treat system. A linear response of uranium loading as a function of the solution-to-solid ratio was observed for both materials. Kd values ranged from ~380,000 to >1,900,000 ml/g for the B-64 material and ~200,000 to >1,900,000 ml/g for the ER2-189A material. Uranium loading values ranged from 10.4 to 41.6 μg/g for the two Tusaar materials.

  7. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  8. 10. EXTERIOR VIEW OF ARVFS TEST FACILITY SHOWING BUNKER, CABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. EXTERIOR VIEW OF ARVFS TEST FACILITY SHOWING BUNKER, CABLE CHASE, FRAME, AND SHIELDING TANK. CAMERA FACING NORTHEAST. INEL PHOTO NUMBER 65-6171, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  9. Detail, Face C (rear), showing Interference Analysis System Linear Test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, Face C (rear), showing Interference Analysis System Linear Test Array mounted at Level 4A - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  10. 18. INTERIOR VIEW INSIDE BUNKER DURING PREPARATIONS FOR TEST. SHOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTERIOR VIEW INSIDE BUNKER DURING PREPARATIONS FOR TEST. SHOWS TWO OPERATORS, INCLUDING ONE AIR FORCE MAN, INSTRUMENT PANEL, EQUIPMENT, MONITORING SCREENS, AND OTHER EQUIPMENT, SOME OF IT NAMED (IE, 'GALVANOMETER,' 'HONEYWELL,' 'KODAC.' INEL PHOTO NUMBER 65-6180, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  11. 12. Exterior view, showing tank and piping associated with Test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Exterior view, showing tank and piping associated with Test Cell 7, Systems Integration Laboratory Building (T-28), looking west. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  12. 29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, CABLE CHASE, SHIELDING TANK AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-1. INEL INDEX CODE NUMBER: 075 0701 851 151970. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  13. 30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF SOUTH SIDE OF FACILITY, INCLUDING BUNKER, CABLE CHASE, SHIELDING TANK, AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-2. INEL INDEX CODE NUMBER: 075 0701 851 151971. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  14. Lithium inclusion in indium metal-organic frameworks showing increased surface area and hydrogen adsorption

    SciTech Connect

    Bosch, Mathieu; Zhang, Muwei; Feng, Dawei; Yuan, Shuai; Wang, Xuan; Chen, Ying-Pin; Zhou, Hong-Cai

    2014-12-01

    Investigation of counterion exchange in two anionic In-Metal-Organic Frameworks (In-MOFs) showed that partial replacement of disordered ammonium cations was achieved through the pre-synthetic addition of LiOH to the reaction mixture. This resulted in a surface area increase of over 1600% in (Li [In(1,3 − BDC){sub 2}]){sub n} and enhancement of the H{sub 2} uptake of approximately 275% at 80 000 Pa at 77 K. This method resulted in frameworks with permanent lithium content after repeated solvent exchange as confirmed by inductively coupled plasma mass spectrometry. Lithium counterion replacement appears to increase porosity after activation through replacement of bulkier, softer counterions and demonstrates tuning of pore size and properties in MOFs.

  15. Coagulation tests show significant differences in patients with breast cancer.

    PubMed

    Tas, Faruk; Kilic, Leyla; Duranyildiz, Derya

    2014-06-01

    Activated coagulation and fibrinolytic system in cancer patients is associated with tumor stroma formation and metastasis in different cancer types. The aim of this study is to explore the correlation of blood coagulation assays for various clinicopathologic factors in breast cancer patients. A total of 123 female breast cancer patients were enrolled into the study. All the patients were treatment naïve. Pretreatment blood coagulation tests including PT, APTT, PTA, INR, D-dimer, fibrinogen levels, and platelet counts were evaluated. Median age of diagnosis was 51 years old (range 26-82). Twenty-two percent of the group consisted of metastatic breast cancer patients. The plasma level of all coagulation tests revealed statistically significant difference between patient and control group except for PT (p<0.001 for all variables except for PT; p=0.08). Elderly age (>50 years) was associated with higher D-dimer levels (p=0.003). Metastatic patients exhibited significantly higher D-dimer values when compared with early breast cancer patients (p=0.049). Advanced tumor stage (T3 and T4) was associated with higher INR (p=0.05) and lower PTA (p=0.025). In conclusion, coagulation tests show significant differences in patients with breast cancer.

  16. 1. TEST STAND 1A ENVIRONS, SHOWING WEST SIDE OF TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. TEST STAND 1-A ENVIRONS, SHOWING WEST SIDE OF TEST STAND 1-A, RP1 COMBINED FUEL STORAGE TANK FARM BELOW WATER TANKS ON HILLSIDE TO LEFT, AND TEST STAND 1-B IN DISTANCE AT RIGHT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  17. Tests show DMSO effective for HDS, HDN catalyst sulfiding

    SciTech Connect

    Christman, R.D.; Plesko, R.W. ); Donahue, M. ); Wilson, R.E. )

    1989-09-18

    This paper describes tests which have shown that dimethyl sulfoxide (DMSO) is an effective agent for sulfiding hydrotreating catalysts. Thus, DMSO can be a suitable replacement for sulfiding agents that have been classified as hazardous substances by the U.S. Environmental Protection Agency (EPA). All of the commonly used sulfur compounds were originally classified by EPA as hazardous chemicals. Gaylord Chemical Corp. has petitioned EPA to remove DMS from the list of hazardous chemicals.

  18. Static and dynamic adsorption of phosphonate and polymeric scale inhibitors onto reservoir core from laboratory tests to field application

    SciTech Connect

    Jordan, M.M.; Sorbie, K.S.; Yuan, M.D.; Taylor, K.; Hourston, K.E.; Ramstad, K.; Griffin, P.

    1995-11-01

    In this paper, results from static tests have been used to establish scale inhibitor adsorption mechanisms and levels in consolidated reservoir cores and to rank inhibitors for their adsorption behavior and, in some cases, squeeze return lifetimes. The purpose of this rapid and simple type of bulk adsorption measurement is to assist in the selection of inhibitors for further coreflooding which should be carried out on a minimum number of inhibitors. A bulk adsorption sensitivity study can be carried out very rapidly compared with carefully carried out reservoir condition core floods. The value of such rapid screening tests is evident although the authors show that it is not always possible for all factors concerning squeeze lifetime to be determined in this way. It is still often necessary to carry out a much smaller number of reservoir condition core floods for a few (usually between 1 and 3) selected inhibitor products. This is necessary if the dynamic adsorption isotherm, {Gamma}(C), is to be derived in order to develop the ``Field Squeeze Strategy`` or for the assessment of formation damage which might occur in the squeeze treatment. A field example of this is presented briefly in this paper although details can be found elsewhere.

  19. Hydrophobic dipeptide crystals: a promising Ag-free class of ultramicroporous materials showing argon/oxygen adsorption selectivity.

    PubMed

    Afonso, R; Mendes, A; Gales, L

    2014-09-28

    The adsorption isotherms of nitrogen, oxygen and argon in four VA-class hydrophobic dipeptides are presented. Isotherms were determined at 5, 20 and 35 °C, for a pressure range of 0-6 bar. Under these conditions, adsorption is still in the Henry region. For all materials and temperatures, the sequence of preferential adsorption is Ar > O2 > N2, a highly abnormal result. At 5 °C, the dipeptide with the smallest pores, VI, has Ar/O2 adsorption equilibrium selectivities up to 1.30, the highest ever measured in Ag-free adsorbents. Gas uptakes, at 1 bar and 20 °C, are ∼0.05 mol kg(-1), very low relative values that are partially explained by the low porosity of the solids (<10%). The significance of these results for the development of new materials for the process of O2 generation by pressure swing adsorption (PSA) is discussed. The results indicate some of the structural and chemical properties that prospective Ag-free adsorbents should have in order to have Ar/O2 selectivity, hydrophobic pores, less than 0.5 nm-wide, and porosity of, at least, 20%.

  20. Flight Tests of an Airplane Showing Dependence of the Maximum Lift Coefficient on the Test Conditions

    NASA Technical Reports Server (NTRS)

    Soule, H A; Hootman, James A

    1937-01-01

    Data are presented to show the extent to which the maximum lift coefficient and consequently the minimum speed of an airplane, determined by flight tests, may vary with test conditions. The data show that cl-max may vary as much as 14 percent, depending on the altitude and wing loading at which the tests were made, the position or motion of the propeller, and the rate at which the angle of attack is changing when the maximum lift coefficient is obtained. The variation of the maximum lift coefficient with these factors, which are under the control of the test engineer, shows the need of standardizing the test procedure. A further variation is shown with wing conditions as affected by weathering and vibration, factors that cannot be completely controlled.

  1. Lab-testing, predicting, and modeling multi-stage activated carbon adsorption of organic micro-pollutants from treated wastewater.

    PubMed

    Zietzschmann, F; Altmann, J; Hannemann, C; Jekel, M

    2015-10-15

    Multi-stage reuse of powdered activated carbon (PAC) is often applied in practice for a more efficient exploitation of the PAC capacity to remove organic micro-pollutants (OMP). However, the adsorption mechanisms in multi-stage PAC reuse are rarely investigated, as large-scale experiments do not allow for systematic tests. In this study, a laboratory method for the separation of PAC/water suspensions and the subsequent reuse of the PAC and the water was developed. The method was tested on wastewater treatment plant (WWTP) effluent in a setup with up to 7 PAC reuse stages. The tests show that the overall OMP removal from WWTP effluent can be increased when reusing PAC. The reason is that a repeated adsorption in multi-stage PAC reuse results in similar equilibrium concentrations as a single-stage adsorption. Thus, a single relationship between solid and liquid phase OMP concentrations appears valid throughout all stages. This also means that the adsorption efficiency of multi-stage PAC reuse setups can be estimated from the data of a single-stage setup. Furthermore, the overall OMP removals in multi-stage setups coincide with the overall UV254 removals, and for each respective OMP one relationship to UV254 removal is valid throughout all stages. The results were modeled by a simple modification of the equivalent background compound model (EBCM) which was also used to simulate the additional OMP removals in multi-stage setups with up to 50 reuse stages. PMID:26117373

  2. Supercritical adsorption testing of porous silicon, activated carbon, and zeolite materials

    NASA Astrophysics Data System (ADS)

    Harvey, Brendan

    The supercritical adsorption of methane gas on porous silicon, activated carbon, and zeolite materials was studied. An apparatus that utilizes the volumetric adsorption measurement technique was designed and constructed to conduct the experiments. Activated carbon materials consisted of Norit RX3 Extra, Zorflex FM30K woven activated carbon cloth, and Zorflex FM10 knitted activated carbon cloth. Zeolite materials consisted of 3A, 4A, 5A, and 13X zeolites. Porous silicon materials consisted of stain etched and electrochemically etched porous films, and stain etched porous powder. All adsorption tests were conducted at room temperature (approximately 298 K) and pressures up to approximately 5 MPa. Overall, the Norit RX3 Extra granulated activated carbon produced the highest excess adsorption and effective storage capacities. Effective storage and delivery capacities of 109 and 90 stpmlml were obtained at a pressure of 3.5 MPa and a temperature of approximately 298 K.

  3. Assessing Arsenic Removal by Metal (Hydr)Oxide Adsorptive Media Using Rapid Small Scale Column Tests

    EPA Science Inventory

    The rapid small scale column test (RSSCT) was use to evaluate the the performance of eight commercially available adsorptive media for the removal of arsenic. Side-by-side tests were conducted using RSSCTs and pilot/full-scale systems either in the field or in the laboratory. ...

  4. Measurement uncertainty of adsorption testing of desiccant materials

    SciTech Connect

    Bingham, C E; Pesaran, A A

    1988-12-01

    The technique of measurement uncertainty analysis as described in the current ANSI/ASME standard is applied to the testing of desiccant materials in SERI`s Sorption Test Facility. This paper estimates the elemental precision and systematic errors in these tests and propagates them separately to obtain the resulting uncertainty of the test parameters, including relative humidity ({plus_minus}.03) and sorption capacity ({plus_minus}.002 g/g). Errors generated by instrument calibration, data acquisition, and data reduction are considered. Measurement parameters that would improve the uncertainty of the results are identified. Using the uncertainty in the moisture capacity of a desiccant, the design engineer can estimate the uncertainty in performance of a dehumidifier for desiccant cooling systems with confidence. 6 refs., 2 figs., 8 tabs.

  5. Final Report on Phase III Testing of Monosodium Titanate Adsorption Kinetics

    SciTech Connect

    Hobbs, D.T.

    1999-09-29

    This study consisted of a statistically designed set of tests to determine the extent and rate of adsorption of strontium, plutonium, uranium, and neptunium as a function of temperature, monosodium titanate (MST) concentration, and concentrations of sodium, strontium, plutonium, uranium, and neptunium.

  6. Deep Bed Adsorption Testing using Silver-Functionalized Aerogel

    SciTech Connect

    Nick Soelberg; Tony Watson

    2012-06-01

    Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing and evolve in gaseous species into the reprocessing facility off-gas systems. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Two Aerogel sorption tests that have been performed this fiscal year. The maximum iodine decontamination factor (DF) was measured to be over 10,000, above the 1,000-10,000 target DF range. The mass transfer zone may be as short as 0.5 inches under the sorption conditions of the first test. Only a small fraction of the iodine sorbed on Bed 1 was desorbed during the purge periods. The silver-functionalized Aerogel appears to have potential to be a very effective and efficient iodine sorbent.

  7. Simple fabrication of carbon/TiO2 composite nanotubes showing dual functions with adsorption and photocatalytic decomposition of Rhodamine B.

    PubMed

    Im, Ji Hyuk; Yang, Seung Jae; Yun, Chang Hun; Park, Chong Rae

    2012-01-27

    Carbon/TiO2 composite nanotubes were fabricated via a very simple electrospinning process and their dual functionalities of adsorptivity and photocatalytic activity were evaluated using Rhodamine B (RhB) as a model organic pollutant. A poly(vinyl alcohol) (PVA) aqueous solution was directly electrospun into a coagulation bath containing titanium (IV) tetraisopropoxide (TTIP) solution so that PVA-core/TiO2-shell composite nanofibers were formed through the in situ sol-gel reaction of TTIP. The carbon/TiO2 composite nanotubes were then fabricated by heat treatment of composite nanofibers under nitrogen atmosphere. By using several characterization methods, we confirmed that the resultant nanotubes consisted of anatase TiO2 nanocrystallites embedded in a carbonaceous matrix. The prepared nanotubes exhibited fast adsorption of RhB with high capacity compared with a commercial porous carbon, and they also showed the photocatalytic decomposition activity for the dye molecules under UV irradiation comparable to the degradation by P-25 and ST-01 (commercial TiO2). Finally, the carbon/TiO2 composite nanotubes exhibited several cycle performances of adsorption-photodegradation for RhB. This indicates that the composite nanotubes can adsorb and photodecompose organic pollutants repeatedly without additional activating processes. PMID:22172680

  8. Simple fabrication of carbon/TiO2 composite nanotubes showing dual functions with adsorption and photocatalytic decomposition of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Im, Ji Hyuk; Yang, Seung Jae; Yun, Chang Hun; Park, Chong Rae

    2012-01-01

    Carbon/TiO2 composite nanotubes were fabricated via a very simple electrospinning process and their dual functionalities of adsorptivity and photocatalytic activity were evaluated using Rhodamine B (RhB) as a model organic pollutant. A poly(vinyl alcohol) (PVA) aqueous solution was directly electrospun into a coagulation bath containing titanium (IV) tetraisopropoxide (TTIP) solution so that PVA-core/TiO2-shell composite nanofibers were formed through the in situ sol-gel reaction of TTIP. The carbon/TiO2 composite nanotubes were then fabricated by heat treatment of composite nanofibers under nitrogen atmosphere. By using several characterization methods, we confirmed that the resultant nanotubes consisted of anatase TiO2 nanocrystallites embedded in a carbonaceous matrix. The prepared nanotubes exhibited fast adsorption of RhB with high capacity compared with a commercial porous carbon, and they also showed the photocatalytic decomposition activity for the dye molecules under UV irradiation comparable to the degradation by P-25 and ST-01 (commercial TiO2). Finally, the carbon/TiO2 composite nanotubes exhibited several cycle performances of adsorption-photodegradation for RhB. This indicates that the composite nanotubes can adsorb and photodecompose organic pollutants repeatedly without additional activating processes.

  9. Simple fabrication of carbon/TiO2 composite nanotubes showing dual functions with adsorption and photocatalytic decomposition of Rhodamine B.

    PubMed

    Im, Ji Hyuk; Yang, Seung Jae; Yun, Chang Hun; Park, Chong Rae

    2012-01-27

    Carbon/TiO2 composite nanotubes were fabricated via a very simple electrospinning process and their dual functionalities of adsorptivity and photocatalytic activity were evaluated using Rhodamine B (RhB) as a model organic pollutant. A poly(vinyl alcohol) (PVA) aqueous solution was directly electrospun into a coagulation bath containing titanium (IV) tetraisopropoxide (TTIP) solution so that PVA-core/TiO2-shell composite nanofibers were formed through the in situ sol-gel reaction of TTIP. The carbon/TiO2 composite nanotubes were then fabricated by heat treatment of composite nanofibers under nitrogen atmosphere. By using several characterization methods, we confirmed that the resultant nanotubes consisted of anatase TiO2 nanocrystallites embedded in a carbonaceous matrix. The prepared nanotubes exhibited fast adsorption of RhB with high capacity compared with a commercial porous carbon, and they also showed the photocatalytic decomposition activity for the dye molecules under UV irradiation comparable to the degradation by P-25 and ST-01 (commercial TiO2). Finally, the carbon/TiO2 composite nanotubes exhibited several cycle performances of adsorption-photodegradation for RhB. This indicates that the composite nanotubes can adsorb and photodecompose organic pollutants repeatedly without additional activating processes.

  10. 8. X15 ENGINE TESTING. A color print showing the engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. X-15 ENGINE TESTING. A color print showing the engine during test firing. View from the rear of the test stand looking northwest. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  11. Laboratory leach tests of phosphate/sulfate waste grout and leachate adsorption tests using Hanford sediment

    SciTech Connect

    Serne, R.J.; Martin, W.J.; McLaurine, S.B.; Airhart, S.P.; LeGore, V.L.; Treat, R.L.

    1987-12-01

    An assessment of the long-term risks posed by grout disposal at Hanford requires data on the ability of grout to resist leaching of waste species contained in the grout via contact with water that percolates through the ground. Additionally, data are needed on the ability of Hanford sediment (soil) surrounding the grout and concrete vault to retard migration of any wastes released from the grout. This report describes specific laboratory experiments that are producing empirical leach rate data and leachate-sediment adsorption data for Phosphate-Sulfate Waste (PSW) grout. The leach rate and adsorption values serve as inputs to computer codes used to forecast potential risk resulting from the use of ground water containing leached species. In addition, the report discusses other chemical analyses and geochemical computer code calculations that were used to identify mechanisms that control leach rates and adsorption potential. Knowledge of the controlling chemical and physical processes provides technical defensibility for using the empirical laboratory data to extrapolate the performance of the actual grout disposal system to the long time periods of interest. 59 refs., 83 figs., 18 tabs.

  12. EPA/NSF ETV Equipment Verification Testing Plan for the Removal of Volatile Organic Chemical Contaminants by Adsorptive Media Processes

    EPA Science Inventory

    This document is the Environmental Technology Verification (ETV) Technology Specific Test Plan (TSTP) for evaluation of drinking water treatment equipment utilizing adsorptive media for synthetic organic chemical (SOC) removal. This TSTP is to be used within the structure provid...

  13. Quantifying the adsorption of ionic silver and functionalized nanoparticles during ecotoxicity testing: Test container effects and recommendations.

    PubMed

    Sekine, Ryo; Khurana, Kanupriya; Vasilev, Krasimir; Lombi, Enzo; Donner, Erica

    2015-01-01

    Silver nanoparticles (Ag-NPs) are used in a wide variety of products, prompting concerns regarding their potential environmental impacts. To accurately determine the toxicity of Ag-NPs it is necessary to differentiate between the toxicity of the nanoparticles themselves and the toxicity of ionic silver (Ag) released from them. This is not a trivial task given the reactive nature of Ag in solution, and its propensity for both adsorption and photoreduction. In the experiments reported here, we quantified the loss of silver from test solutions during standard ecotoxicity testing conducted using a variety of different test container materials and geometries. This sensitive (110m)Ag isotope tracing method revealed a substantial underestimation of the toxicity of dissolved Ag to the green algae Pseudokirchneriella subcapitata when calculated only on the basis of the initial test concentrations. Furthermore, experiments with surface-functionalized Ag-NPs under standard algal growth inhibition test conditions also demonstrated extensive losses of Ag-NPs from the solution due to adsorption to the container walls, and the extent of loss was dependent on Ag-NP surface-functionality. These results hold important messages for researchers engaged in both environmental and human nanotoxicology testing, not only for Ag-NPs but also for other NPs with various tailored surface chemistries, where these phenomena are recognized but are also frequently disregarded in the experimental design and reporting.

  14. 7. BUILDING 604F, INTERIOR OF BULL PEN SHOWING TESTING STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. BUILDING 604-F, INTERIOR OF BULL PEN SHOWING TESTING STAND AND HEAVY WOOD LINING ON CONCRETE WALLS. STEEL PLATE ABOVE TEST STAND DEFLECTS SHRAPNEL, SCREEN FURTHER HELPS TO CONTAIN PARTICLES. ONLY SMALL EXPLOSIVES WERE TESTED HERE (GRENADES, MINES, BOMB FUZES, ETC.). - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ

  15. Testing of candidate materials for their resistance to alkali-vapor adsorption in PFBC and gasification environments. Final report

    SciTech Connect

    Lee, S.H.D.; Natesan, K.; Swift, W.M.

    1995-08-01

    Laboratory-scale studies were performed to identify metallic material(s) having no, or limited, affinity for alkali vapors in an environment of either the off-gas from pressurized fluidized-bed combustion (PFBC) or the fuel gas from coal gasification. Such materials would be potential candidates for use as components in advanced coal-utilization systems. The following materials were tested for adsorption of NaCl vapor at 870--875 C and atmospheric pressure in a simulated PFBC off-gas (oxidizing) doped with 80 ppmW NaCl vapor: iron-based Type 304 stainless steel (304 SS), nickel-based Hastelloy C-276 and Hastelloy X alloys, cobalt-based Haynes No. 188 alloy, noble-metal-coated 304 SS, aluminized 304 SS, and ZrO{sub 2}-coated 304 SS. The Haynes No. 188 alloy and the aluminized 304 SS were also tested for their NaCl-vapor adsorption in a simulated gasification fuel gas (reducing) under the same test conditions as in the PFBC off-gas test. After 100 h of testing, the specimens were analyzed with a SEM equipped with an energy dispersive X-ray analyzer, and by an AES. The aluminized 304 SS had the least tendency to adsorb NaCl vapor, as well as an excellent resistance to corrosion as a result of the formation of a protective layer of Al{sub 2}O{sub 3} on its surface. In the reducing environment, however, the aluminized 304 SS was badly corroded by H{sub 2}S attack. The Haynes No. 188 showed virtually no NaCl-vapor adsorption and only limited H{sub 2}S attack. The authors recommend further long-term parametric studies to quantitate alkali-vapor adsorption as a function of operating variables for (1) the aluminized 304 SS in the PFBC off-gas environment and (2) the Haynes No. 188 in the gasification fuel gas environment.

  16. Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

    NASA Technical Reports Server (NTRS)

    Lacomini, Christine S.; Powers, Aaron; Lewis, Matthew; Linrud, Christopher; Waguespack, Glenn; Conger, Bruce; Paul, Heather L.

    2008-01-01

    Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. In addition, thermal models of the adsorbent during regeneration were modified and calibrated with test data to capture the effect of the CO2 heat of desorption. Finally, MTSA impact on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA s Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.

  17. Testing and Results of Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    NASA Technical Reports Server (NTRS)

    McMillin, Summer D.; Broerman, Craig D.; Swickrath, Michael; Anderson, Molly

    2011-01-01

    A principal concern for extravehicular activity (EVA) spacesuits is the capability to control carbon dioxide (CO2) and humidity (H2O) for the crewmember. The release of CO2 in a confined or unventilated area is dangerous for human health and leads to asphyxiation; therefore, CO2 and H2O control become leading factors in the design and development of the spacesuit. An amine-based CO2 and H2O vapor sorbent for use in pressure-swing regenerable beds has been developed by Hamilton Sundstrand. The application of solidamine materials with vacuum swing adsorption technology has shown the capacity to concurrently manage CO2 and H2O levels through a fully regenerative cycle eliminating mission constraints imposed with nonregenerative technologies. Two prototype solid amine-based systems, known as rapid cycle amine (RCA), were designed to continuously remove CO2 and H2O vapor from a flowing ventilation stream through the use of a two-bed amine based, vacuum-swing adsorption system. The Engineering and Science Contract Group (ESCG) RCA implements radial flow paths, whereas the Hamilton Sundstrand RCA was designed with linear flow paths. Testing was performed in a sea-level pressure environment and a reduced-pressure environment with simulated human metabolic loads in a closed-loop configuration. This paper presents the experimental results of laboratory testing for a full-size and a sub-scale test article. The testing described here characterized and evaluated the performance of each RCA unit at the required Portable Life Support Subsystem (PLSS) operating conditions. The test points simulated a range of crewmember metabolic rates. The experimental results demonstrated the ability of each RCA unit to sufficiently remove CO2 and H2O from a closed loop ambient or sub-ambient atmosphere.

  18. Testing and Results of Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    NASA Technical Reports Server (NTRS)

    McMillin, Summer; Broerman, Craig; Swickrath, Mike; Anderson, Molly

    2010-01-01

    A principal concern for extravehicular activity (EVA) space suits is the capability to control carbon dioxide (CO2) and humidity (H2O) for the crewmember. The release of CO2 in a confined or unventilated area is dangerous for human health and leads to asphyxiation; therefore, CO2 and H2O become leading factors in the design and development of the spacesuit. An amine-based CO2 and H2O vapor sorbent for use in pressure-swing re-generable beds has been developed by Hamilton Sundstrand. The application of solid-amine materials with vacuum swing adsorption technology has shown the capacity to concurrently manage CO2 and H2O levels through a fully regenerative cycle eliminating mission constraints imposed with non-regenerative technologies. Two prototype solid amine-based systems, known as rapid cycle amine (RCA), were designed to continuously remove CO2 and H2O vapor from a flowing ventilation stream through the use of a two-bed amine based, vacuum-swing adsorption system. The Engineering and Science Contract Group (ESCG) RCA is the first RCA unit implementing radial flow paths, whereas the Hamilton Sundstrand RCA was designed with linear flow paths. Testing was performed in a sea-level pressure environment and a reduced-pressure environment with simulated human metabolic loads in a closed-loop configuration. This paper presents the experimental results of laboratory testing for a full-size and a sub-scale test article. The testing described here characterized and evaluated the performance of each RCA unit at the required Portable Life Support Subsystem (PLSS) operating conditions. The test points simulated a range of crewmember metabolic rates. The experimental results demonstrate the ability of each RCA unit to sufficiently remove CO2 and H2O from a closed loop ambient or subambient atmosphere.

  19. 3. INTERIOR VIEW, SHOWING JET ENGINE TEST STAND. WrightPatterson ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR VIEW, SHOWING JET ENGINE TEST STAND. - Wright-Patterson Air Force Base, Area B, Building 71A, Propulsion Research Laboratory, Seventh Street between D & G Streets, Dayton, Montgomery County, OH

  20. 95. ARAIV. Aerial view of ML1. Shows test and control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. ARA-IV. Aerial view of ML-1. Shows test and control buildings, berms, fencing. March 14, 1963. Ineel photo no. 63-1666. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  1. LPT. Shield test facility (TAN645) interior. Boiler room shows one ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645) interior. Boiler room shows one boiler, diesel electric stand unit, and related equipment. Pumice block walls. Photographer: Jack L. Anderson. Date: January 19, 1959. INEEL negative no. 59-286 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.

    2011-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  3. Experimental testing of cooling by low pressure adsorption in a zeolite

    SciTech Connect

    Redman, C.M.

    1985-01-01

    A small scale facility was designed, constructed, and utilized to test the use of zeolite adsorption of water vapor to augment chill storage in ice for conventional space cooling. The facility uses solar-derived energy, for the heat source and evaporatively chilled water for the heat sump. The product cooling uses sublimation of ice instead of melting. The ZCAT facility utilizes a heat pumping technique in which a water vapor adsorbent functions as the compressor and condenser. The design was based on use of 13X zeolite as the adsorber because of its high adsorbence at low pressures. However, it has been determined that other materials such as silica gel should give superior performance. While zeolite 13X holds more water in the pressure and temperature ranges of interest, silica gel cycles more water and has less residue water. Both points are very important in the design of an efficient and cost effective system.

  4. LPT. Shield test facility (TAN645 and 646). Elevations show three ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645 and -646). Elevations show three types of siding: Asbestos cement, pumice block, concrete. Ralph M. Parsons 1229-17 ANP/GE-6-6445-A-3. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-06445/0646-00-693-107349 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  5. LPT. Shield test facility (TAN645 and 646). Sections show relationships ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LPT. Shield test facility (TAN-645 and -646). Sections show relationships among control rooms, coupling station, counting rooms, pools, equipment rooms, data room and other areas. Ralph M. Parsons 1229-17 ANP/GE-6-645-A-4. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-0645/0646-00-693-107350 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  6. Astronomy Diagnostic Test Results Reflect Course Goals and Show Room for Improvement

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2007-01-01

    The results of administering the Astronomy Diagnostic Test (ADT) to introductory astronomy students at Henry Ford Community College over three years have shown gains comparable with national averages. Results have also accurately corresponded to course goals, showing greater gains in topics covered in more detail, and lower gains in topics covered…

  7. SCALE-UP OF RAPID SMALL-SCALE ADSORPTION TESTS TO FIELD-SCALE ADSORBERS: THEORETICAL AND EXPERIMENTAL BASIS

    EPA Science Inventory

    Design of full-scale adsorption systems typically includes expensive and time-consuming pilot studies to simulate full-scale adsorber performance. Accordingly, the rapid small-scale column test (RSSCT) was developed and evaluated experimentally. The RSSCT can simulate months of f...

  8. Guppies Show Behavioural but Not Cognitive Sex Differences in a Novel Object Recognition Test.

    PubMed

    Lucon-Xiccato, Tyrone; Dadda, Marco

    2016-01-01

    The novel object recognition (NOR) test is a widely-used paradigm to study learning and memory in rodents. NOR performance is typically measured as the preference to interact with a novel object over a familiar object based on spontaneous exploratory behaviour. In rats and mice, females usually have greater NOR ability than males. The NOR test is now available for a large number of species, including fish, but sex differences have not been properly tested outside of rodents. We compared male and female guppies (Poecilia reticulata) in a NOR test to study whether sex differences exist also for fish. We focused on sex differences in both performance and behaviour of guppies during the test. In our experiment, adult guppies expressed a preference for the novel object as most rodents and other species do. When we looked at sex differences, we found the two sexes showed a similar preference for the novel object over the familiar object, suggesting that male and female guppies have similar NOR performances. Analysis of behaviour revealed that males were more inclined to swim in the proximity of the two objects than females. Further, males explored the novel object at the beginning of the experiment while females did so afterwards. These two behavioural differences are possibly due to sex differences in exploration. Even though NOR performance is not different between male and female guppies, the behavioural sex differences we found could affect the results of the experiments and should be carefully considered when assessing fish memory with the NOR test. PMID:27305102

  9. Guppies Show Behavioural but Not Cognitive Sex Differences in a Novel Object Recognition Test

    PubMed Central

    Lucon-Xiccato, Tyrone; Dadda, Marco

    2016-01-01

    The novel object recognition (NOR) test is a widely-used paradigm to study learning and memory in rodents. NOR performance is typically measured as the preference to interact with a novel object over a familiar object based on spontaneous exploratory behaviour. In rats and mice, females usually have greater NOR ability than males. The NOR test is now available for a large number of species, including fish, but sex differences have not been properly tested outside of rodents. We compared male and female guppies (Poecilia reticulata) in a NOR test to study whether sex differences exist also for fish. We focused on sex differences in both performance and behaviour of guppies during the test. In our experiment, adult guppies expressed a preference for the novel object as most rodents and other species do. When we looked at sex differences, we found the two sexes showed a similar preference for the novel object over the familiar object, suggesting that male and female guppies have similar NOR performances. Analysis of behaviour revealed that males were more inclined to swim in the proximity of the two objects than females. Further, males explored the novel object at the beginning of the experiment while females did so afterwards. These two behavioural differences are possibly due to sex differences in exploration. Even though NOR performance is not different between male and female guppies, the behavioural sex differences we found could affect the results of the experiments and should be carefully considered when assessing fish memory with the NOR test. PMID:27305102

  10. Experimental results and modeling tests of an adsorptive air-conditioning unit

    SciTech Connect

    Guilleminot, J.J.; Poyelle, F.; Meunier, F.

    1998-10-01

    Experimental tests have been performed on a zeolite-water adsorptive system suitable for air conditioning and consisting of two adsorbers filled with a consolidated composite made of zeolite mixed with a highly conductive matrix. This paper describes the experimental results of such a heat pump unit operating with a heat and mass recovery cycle. An important enhancement of the specific cooling power (SCP) has been achieved. At evaporating temperature T = 4 C, mass transfer resistance controls the process and limits the expected COP. Tests carried out at higher evaporating pressure make it possible to achieve the predicted COP and SCP. A predictive model developed and validated elsewhere in order to describe the temperature evolution of components and the heat and mass transfer in the adsorbers explains the mass transfer resistance in the adsorbent. Last, a new highly conductive adsorbent composite with good mass transfer properties is developed. The model is used to predict the performances of this new material. Very good SCP and COP can be achieved.

  11. Bench Scale Development and Testing of a Novel Adsorption Process for Post-Combustion CO₂ Capture

    SciTech Connect

    Jain, Ravi

    2015-09-01

    A physical sorption process to produce dry CO₂ at high purity (>98%) and high recovery (>90%) from the flue gas taken before or after the FGD was demonstrated both in the lab and in the field (one ton per day scale). A CO₂ recovery of over 94% and a CO₂ purity of over 99% were obtained in the field tests. The process has a moisture, SOX, and Hg removal stage followed by a CO₂ adsorption stage. Evaluations based on field testing, process simulation and detailed engineering studies indicate that the process has the potential for more than 40% reduction in the capital and more than 40% reduction in parasitic power for CO₂ capture compared to MEA. The process has the potential to provide CO₂ at a cost (<$40/tonne) and quality (<1 ppm H₂O, <1 ppm SOX, <10 ppm O₂) suitable for EOR applications which can make CO₂ capture profitable even in the absence of climate legislation. The process is applicable to power plants without SOX, Hg and NOX removal equipment.

  12. [Fluoride adsorption form drinking water by granular lanthanum alginate].

    PubMed

    Huo, Ya-Kun; Ding, Wen-Ming; Huang, Xia

    2010-11-01

    Granular lanthanum alginate was prepared by dripping solved sodium alginate into lanthanum chloride solution. After washed and dried, sorbent with 1-1.5 mm diameter, 25% (mass fraction) La content was made and applied for fluoride removal from drinking test. Adsorption performance such as adsorption rate, adsorption isotherm, pH and disturbing ions effects were tested in batch adsorption. The changes of adsorbent surface and the solution composition before and after adsorption were also studied. Results showed that the adsorption rate was fast, fluoride concentration trend to stable after 2h reaction, and the adsorption rate fit for pseudo second order equation. The adsorption was significantly affected by pH and some disturbing ions, optimum pH = 4, phosphate and carbonate reduced adsorption. Adsorption isotherm fitted Langmuir equation well; the max adsorption capacity was 197.2 mg x g(-1). SEM photographs of sorbent before and after adsorption showed significantly different surface morphology; EDX composition analysis of sorbent surface and solution concentration changes before and after adsorption showed that ion exchange take placed between solution F- and sorbent surface Cl- and OH-.

  13. A Field-Test of Solar Assisted Adsorptive Desiccant Cooling System

    NASA Astrophysics Data System (ADS)

    Ohkura, Masashi; Kodama, Akio; Hirose, Tsutomu

    A field-test of solar assisted desiccant evaporative cooling process has been carried out, which is a quite attractive cooling / dehumidification process considering various environmental problems caused by conventional electricity driven air conditioners. The process performance has been examined by means of temperature drop between outside air and supply air and COPs (COP value based on solar irradiation). This cooling performance was strongly influenced by solar irradiation and ambient air condition. Stable irradiation produced a higher regeneration temperature resulting higher dehumidifying performance. At one day with as table solar irradiation, the cooling process could produce cool supply air of 18.7°C against the ambient air of 30.1°C and averaged COP, was 0.41. On the other hand, unstable irradiation due to some clouds made the dehumidifying performance lower. However, decrease in the cooling performance was small compared to that obtained at the stable irradiation condition. This is due to buffering by thermal storage of the water circulating in solar collectors. Influence of ambient humidity on the cooling performance was rather serious. At higher humidity condition, the amount of dehumidified water became larger due to increase of effective adsorption capacity of the desiccant rotor. However, the temperature drop was decreased to 6.9°C. This behavior was mainly due to simultaneous increase of humidity and temperature in the dehumidified air. In this situation, an effective evaporation in the following water spray evaporative cooler did not occur.

  14. Experimental tests and predictive model of an adsorptive air conditioning unit

    SciTech Connect

    Poyelle, F.; Guilleminot, J.J.; Meunier, F.

    1999-01-01

    An adsorption air conditioning unit has been built operating with a heat nd mass recovery cycle and a zeolite-water pair. A new consolidated adsorbent composite with good heat transfer properties has been developed and implemented in the adsorber. At an evaporating temperature of 4 C, the experimental specific cooling power (SCP) of 97 W/kg achieved represents a real improvement in comparison with those measured with a packed bed technology. At this evaporating pressure, the mass transfer resistance controls the process. Therefore, at higher evaporating temperature a COP of 0.68 and a SCP of 135 W/kg were experimentally achieved. A new model has been developed to take into account the mass transfer limitations. The model has been validated and can predict the average pressure inside the adsorber and the components temperature of the unit. A new high conductive material with enhanced mass transfer properties has been developed. The predictive model shows that a SCP of 600 W/kg and a COP of 0.74 could be achieved with this new material.

  15. Particulate Titanium Matrix Composites Tested--Show Promise for Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Ellis, J. Rodney; Arnold. Steven M.

    2004-01-01

    Uniformly distributed particle-strengthened titanium matrix composites (TMCs) can be manufactured at lower cost than many types of continuous-fiber composites. The innovative manufacturing technology combines cold and hot isostatic pressing procedures to produce near-final-shape components. Material stiffness is increased up to 26-percent greater than that of components made with conventional titanium materials at no significant increase in the weight. The improved mechanical performance and low-cost manufacturing capability motivated an independent review to assess the improved properties of ceramic titanium carbide (TiC) particulate-reinforced titanium at elevated temperature. Researchers at the NASA Glenn Research Center creatively designed and executed deformation and durability tests to reveal operating regimes where these materials could lower the cost and weight of space propulsion systems. The program compares the elevated-temperature performance of titanium alloy Ti-6Al-4V matrix material to an alloy containing 10 wt% of TiC particles. Initial experiments showed that at these relatively low particle concentrations the material stiffness of the TMC was improved 20 percent over that of the plain Ti-6Al-4V alloy when tested at 427 C. The proportional limit and ultimate strength of the composite in tension are 21- and 14-percent greater than those of the plain alloy. Compression tests showed that the proportional limit is about 30 percent greater for TMC than for the plain alloy. The enhanced deformation resistance of the TMC was also evident in a series of tensile and compressive stress relaxation tests that were made. Specimens were subjected to tensile or compressive strain amplitudes of 0.75 percent for 24 hr followed by a return to zero strain imposed for 24 hr. The stress relaxation data were normalized with respect to the maximum stress for each case and plotted as a function of time in the following graph. Tensile stresses relaxed 19 percent for the

  16. Iodine adsorption on ion-exchange resins and activated carbons: batch testing

    SciTech Connect

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2014-09-30

    Iodine sorption onto seven resins and six carbon materials was evaluated using water from well 299-W19-36 on the Hanford Site. These materials were tested using a range of solution-to-solid ratios. The test results are as follows. The efficacy of the resin and granular activated carbon materials was less than predicted based on manufacturers’ performance data. It is hypothesized that this is due to the differences in speciation previously determined for Hanford groundwater. The sorption of iodine is affected by the iodine species in the source water. Iodine loading on resins using source water ranged from 1.47 to 1.70 µg/g with the corresponding Kd values from 189.9 to 227.0 mL/g. The sorption values when the iodine is converted to iodide ranged from 2.75 to 5.90 µg/g with the corresponding Kd values from 536.3 to 2979.6 mL/g. It is recommended that methods to convert iodine to iodide be investigated in fiscal year (FY) 2015. The chemicals used to convert iodine to iodate adversely affected the sorption of iodine onto the carbon materials. Using as-received source water, loading and Kd values ranged from 1.47 to 1.70 µg/g and 189.8 to 226.3 mL/g respectively. After treatment, loading and Kd values could not be calculated because there was little change between the initial and final iodine concentration. It is recommended the cause of the decrease in iodine sorption be investigated in FY15. In direct support of CH2M HILL Plateau Remediation Company, Pacific Northwest National Laboratory has evaluated samples from within the 200W pump and treat bioreactors. As part of this analysis, pictures taken within the bioreactor reveal a precipitate that, based on physical properties and known aqueous chemistry, is hypothesized to be iron pyrite or chalcopyrite, which could affect iodine adsorption. It is recommended these materials be tested at different solution-to-solid ratios in FY15 to determine their effect on iodine

  17. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  18. The hydrophobic adsorption of charged molecules to bilayer membranes: a test of the applicability of the stern equation.

    PubMed

    McLaughlin, S; Harary, H

    1976-05-01

    To describe the hydrophobic adsorption of charged molecules to bilayer membranes, one must recognize that the adsorption produces a change in the electrostatic potential at the surface of the membrane. The surface potential produced by the adsorption of the charged molecules can be described most simply by the Gouy equation from the theory of the diffuse double layer. This potential will tend to lower the concentration of the adsorbing ions in the aqueous phase immediately adjacent to the membrane, a phenomenon which can be described by the Boltzmann relation. The number of adsorbed ions is, in turn, a function of the aqueous concentration of these ions at the membrane solution interface and can be described, in the simplest case, by a Langmuir adsorption isotherm. If the ions are regarded as point charges, the combination of the Gouy, Boltzmann, and Langmuir relations may be considered a simplified Stern equation. To test experimentally the applicability of this equation, one should measure both the charge density and surface potential as a function of the concentration of adsorbing molecules in the bulk aqueous phases. Direct, accurate measurements of one of these parameters, the number of moles of 2, 6-toluidinylnaphthalenesulfonate ions bound to vesicles formed from phosphatidylcholine, are available in the literature (Huang, C., and Charlton, J.P. (1972), Biochemistry 11, 735). We estimated the change in the surface potential in two independent ways; by means of conductance measurements with "probe" molecules on planar black lipid membranes and by means of electrophoresis measurements on multilaminar unsonicated vesicles. The two estimates agreed with one another and all of the data could be adequately described by the Stern equation, assuming, at 25 degrees C, a dissociation constant of 2 X 10(-4) M and a maximum number of binding sites of 1/70 A2.

  19. Determining the Influence of Groundwater Composition on the Performance of Arsenic Adsorption Columns Using Rapid Small-Scale Column Tests

    NASA Astrophysics Data System (ADS)

    Aragon, A. R.; Siegel, M.

    2004-12-01

    The USEPA has established a more stringent drinking water standard for arsenic, reducing the maximum contaminant level (MCL) from 50 μ g/L to 10 μ g/L. This will affect many small communities in the US that lack the appropriate treatment infrastructure and funding to reduce arsenic to such levels. For such communities, adsorption systems are the preferred technology based on ease of operation and relatively lower costs. The performance of adsorption media for the removal of arsenic from drinking water is dependent on site-specific water quality. At certain concentrations, co-occurring solutes will compete effectively with arsenic for sorption sites, potentially reducing the sorption capacity of the media. Due to the site-specific nature of water quality and variations in media properties, pilot scale studies are typically carried out to ensure that a proposed treatment technique is cost effective before installation of a full-scale system. Sandia National Laboratories is currently developing an approach to utilize rapid small-scale columns in lieu of pilot columns to test innovative technologies that could significantly reduce the cost of treatment in small communities. Rapid small-scale column tests (RSSCTs) were developed to predict full-scale treatment of organic contaminants by adsorption onto granular activated carbon (GAC). This process greatly reduced the time and costs required to verify performance of GAC adsorption columns. In this study, the RSSCT methodology is used to predict the removal of inorganic arsenic using mixed metal oxyhydroxide adsorption media. The media are engineered and synthesized from materials that control arsenic behavior in natural and disturbed systems. We describe the underlying theory and application of RSSCTs for the performance evaluation of novel media in several groundwater compositions. Results of small-scale laboratory columns are being used to predict the performance of pilot-scale systems and ultimately to design full

  20. Evaluation of the potassium adsorption capacity of a potassium adsorption filter during rapid blood transfusion.

    PubMed

    Matsuura, H; Akatsuka, Y; Muramatsu, C; Isogai, S; Sugiura, Y; Arakawa, S; Murayama, M; Kurahashi, M; Takasuga, H; Oshige, T; Yuba, T; Mizuta, S; Emi, N

    2015-05-01

    The concentration of extracellular potassium in red blood cell concentrates (RCCs) increases during storage, leading to risk of hyperkalemia. A potassium adsorption filter (PAF) can eliminate the potassium at normal blood transfusion. This study aimed to investigate the potassium adsorption capacity of a PAF during rapid blood transfusion. We tested several different potassium concentrations under a rapid transfusion condition using a pressure bag. The adsorption rates of the 70-mEq/l model were 76·8%. The PAF showed good potassium adsorption capacity, suggesting that this filter may provide a convenient method to prevent hyperkalemia during rapid blood transfusion.

  1. Florida Defeats the Skeptics: Test Scores Show Genuine Progress in the Sunshine State

    ERIC Educational Resources Information Center

    Winters, Marcus

    2012-01-01

    Among the 50 states, Florida's gains on the National Assessment of Educational Progress (NAEP) between 1992 and 2011 ranked second only to Maryland's. Florida's progress has been particularly impressive in the early grades. In 1998, Florida scored about one grade level below the national average on the 4th-grade NAEP reading test, but it was…

  2. First laboratory perforating tests in coal show lower-than-expected penetration

    SciTech Connect

    Snider, P.M.; Walton, I.C.; Skinner, T.K.; Atwood, D.C.; Grove, B.M.; Graham, C.

    2008-06-15

    Worldwide Coal Bed Methane (CBM) resources are huge, estimated at 3,000 to 9,000 Tcf. The production rate from CBM reservoirs is low, perhaps 50-100 mcf/day. Various completion methods are being evaluated and new technologies are being developed with the aim of increasing production rates. Considering this interest and activity level, little attention has been paid to the CBM completion fundamentals. Perforating is a critical part of this process, especially considering the PRB development migration from single-coal, open-hole completions into multi-zone, cased-hole completions. This paper describes the first known laboratory-testing program to investigate shaped charge penetration in coal targets. We describe mechanical properties of the coals tested, and penetration results for different shaped charges (of different designs), shot at various stress conditions. CT scan and cutaway imaging of the perforation tunnels are also discussed. Tests were conducted under dry and saturated conditions. The preliminary experiments reported here indicate that shaped charge penetration in coal is significantly less than expected, considering the target's density and strength. The authors provide insight into what may be the reasons for these unexpected results and recommend a path forward for shaped charge testing, designs, predictive tools, and how to optimize CBM completions.

  3. D.C. Student Test Scores Show Uneven Progress. Data Snapshot

    ERIC Educational Resources Information Center

    DuPre, Mary

    2011-01-01

    Over the past five years, both DC Public Schools (DCPS) and public charter schools (PCS) have seen significant growth in secondary reading and math scores on the state test known as the District of Columbia Comprehensive Assessment System (DC CAS). However, scores have not improved as much at the elementary level. Reading and math scores for DCPS…

  4. Flight tests show potential benefits of data link as primary communication medium

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.; Knox, Charles E.

    1991-01-01

    Message exchange for air traffic control (ATC) purposes via data link offers the potential benefits of increasing the airspace system safety and efficiency. This is accomplished by reducing communication errors and relieving the overloaded ATC radio frequencies, which hamper efficient message exchanges during peak traffic periods in many busy terminal areas. However, the many uses and advantages of data link create additional questions concerning the interface among the human-users and the cockpit and ground systems. A flight test was conducted in the NASA Langley B-737 airplane to contrast flight operations using current voice communications with the use of data link for transmitting both strategic and tactical ATC clearances during a typical commercial airline flight from takeoff to landing. Commercial airplane pilots were used as test subjects.

  5. Physical Stress Echocardiography: Prediction of Mortality and Cardiac Events in Patients with Exercise Test showing Ischemia

    PubMed Central

    de Araujo, Ana Carla Pereira; Santos, Bruno F. de Oliveira; Calasans, Flavia Ricci; Pinto, Ibraim M. Francisco; de Oliveira, Daniel Pio; Melo, Luiza Dantas; Andrade, Stephanie Macedo; Tavares, Irlaneide da Silva; Sousa, Antonio Carlos Sobral; Oliveira, Joselina Luzia Menezes

    2014-01-01

    Background Studies have demonstrated the diagnostic accuracy and prognostic value of physical stress echocardiography in coronary artery disease. However, the prediction of mortality and major cardiac events in patients with exercise test positive for myocardial ischemia is limited. Objective To evaluate the effectiveness of physical stress echocardiography in the prediction of mortality and major cardiac events in patients with exercise test positive for myocardial ischemia. Methods This is a retrospective cohort in which 866 consecutive patients with exercise test positive for myocardial ischemia, and who underwent physical stress echocardiography were studied. Patients were divided into two groups: with physical stress echocardiography negative (G1) or positive (G2) for myocardial ischemia. The endpoints analyzed were all‑cause mortality and major cardiac events, defined as cardiac death and non-fatal acute myocardial infarction. Results G2 comprised 205 patients (23.7%). During the mean 85.6 ± 15.0-month follow-up, there were 26 deaths, of which six were cardiac deaths, and 25 non-fatal myocardial infarction cases. The independent predictors of mortality were: age, diabetes mellitus, and positive physical stress echocardiography (hazard ratio: 2.69; 95% confidence interval: 1.20 – 6.01; p = 0.016). The independent predictors of major cardiac events were: age, previous coronary artery disease, positive physical stress echocardiography (hazard ratio: 2.75; 95% confidence interval: 1.15 – 6.53; p = 0.022) and absence of a 10% increase in ejection fraction. All-cause mortality and the incidence of major cardiac events were significantly higher in G2 (p < 0. 001 and p = 0.001, respectively). Conclusion Physical stress echocardiography provides additional prognostic information in patients with exercise test positive for myocardial ischemia. PMID:25352460

  6. Physical Stress Echocardiography: Prediction of Mortality and Cardiac Events in Patients with Exercise Test showing Ischemia.

    PubMed

    Araujo, Ana Carla Pereira de; Santos, Bruno F de Oliveira; Calasans, Flavia Ricci; Pinto, Ibraim M Francisco; Oliveira, Daniel Pio de; Melo, Luiza Dantas; Andrade, Stephanie Macedo; Tavares, Irlaneide da Silva; Sousa, Antonio Carlos Sobral; Oliveira, Joselina Luzia Menezes

    2014-11-01

    Background: Studies have demonstrated the diagnostic accuracy and prognostic value of physical stress echocardiography in coronary artery disease. However, the prediction of mortality and major cardiac events in patients with exercise test positive for myocardial ischemia is limited. Objective: To evaluate the effectiveness of physical stress echocardiography in the prediction of mortality and major cardiac events in patients with exercise test positive for myocardial ischemia. Methods: This is a retrospective cohort in which 866 consecutive patients with exercise test positive for myocardial ischemia, and who underwent physical stress echocardiography were studied. Patients were divided into two groups: with physical stress echocardiography negative (G1) or positive (G2) for myocardial ischemia. The endpoints analyzed were all-cause mortality and major cardiac events, defined as cardiac death and non-fatal acute myocardial infarction. Results: G2 comprised 205 patients (23.7%). During the mean 85.6 ± 15.0-month follow-up, there were 26 deaths, of which six were cardiac deaths, and 25 non-fatal myocardial infarction cases. The independent predictors of mortality were: age, diabetes mellitus, and positive physical stress echocardiography (hazard ratio: 2.69; 95% confidence interval: 1.20 - 6.01; p = 0.016). The independent predictors of major cardiac events were: age, previous coronary artery disease, positive physical stress echocardiography (hazard ratio: 2.75; 95% confidence interval: 1.15 - 6.53; p = 0.022) and absence of a 10% increase in ejection fraction. All-cause mortality and the incidence of major cardiac events were significantly higher in G2 (p < 0. 001 and p = 0.001, respectively). Conclusion: Physical stress echocardiography provides additional prognostic information in patients with exercise test positive for myocardial ischemia.Fundamento: Estudos têm demonstrado a acurácia diagnóstica e o valor prognóstico da ecocardiografia com estresse f

  7. Physical Stress Echocardiography: Prediction of Mortality and Cardiac Events in Patients with Exercise Test showing Ischemia.

    PubMed

    Araujo, Ana Carla Pereira de; Santos, Bruno F de Oliveira; Calasans, Flavia Ricci; Pinto, Ibraim M Francisco; Oliveira, Daniel Pio de; Melo, Luiza Dantas; Andrade, Stephanie Macedo; Tavares, Irlaneide da Silva; Sousa, Antonio Carlos Sobral; Oliveira, Joselina Luzia Menezes

    2014-11-01

    Background: Studies have demonstrated the diagnostic accuracy and prognostic value of physical stress echocardiography in coronary artery disease. However, the prediction of mortality and major cardiac events in patients with exercise test positive for myocardial ischemia is limited. Objective: To evaluate the effectiveness of physical stress echocardiography in the prediction of mortality and major cardiac events in patients with exercise test positive for myocardial ischemia. Methods: This is a retrospective cohort in which 866 consecutive patients with exercise test positive for myocardial ischemia, and who underwent physical stress echocardiography were studied. Patients were divided into two groups: with physical stress echocardiography negative (G1) or positive (G2) for myocardial ischemia. The endpoints analyzed were all-cause mortality and major cardiac events, defined as cardiac death and non-fatal acute myocardial infarction. Results: G2 comprised 205 patients (23.7%). During the mean 85.6 ± 15.0-month follow-up, there were 26 deaths, of which six were cardiac deaths, and 25 non-fatal myocardial infarction cases. The independent predictors of mortality were: age, diabetes mellitus, and positive physical stress echocardiography (hazard ratio: 2.69; 95% confidence interval: 1.20 - 6.01; p = 0.016). The independent predictors of major cardiac events were: age, previous coronary artery disease, positive physical stress echocardiography (hazard ratio: 2.75; 95% confidence interval: 1.15 - 6.53; p = 0.022) and absence of a 10% increase in ejection fraction. All-cause mortality and the incidence of major cardiac events were significantly higher in G2 (p < 0. 001 and p = 0.001, respectively). Conclusion: Physical stress echocardiography provides additional prognostic information in patients with exercise test positive for myocardial ischemia.Fundamento: Estudos têm demonstrado a acurácia diagnóstica e o valor prognóstico da ecocardiografia com estresse f

  8. High-throughput olfactory conditioning and memory retention test show variation in Nasonia parasitic wasps

    PubMed Central

    Hoedjes, K M; Steidle, J L M; Werren, J H; Vet, L E M; Smid, H M

    2012-01-01

    Most of our knowledge on learning and memory formation results from extensive studies on a small number of animal species. Although features and cellular pathways of learning and memory are highly similar in this diverse group of species, there are also subtle differences. Closely related species of parasitic wasps display substantial variation in memory dynamics and can be instrumental to understanding both the adaptive benefit of and mechanisms underlying this variation. Parasitic wasps of the genus Nasonia offer excellent opportunities for multidisciplinary research on this topic. Genetic and genomic resources available for Nasonia are unrivaled among parasitic wasps, providing tools for genetic dissection of mechanisms that cause differences in learning. This study presents a robust, high-throughput method for olfactory conditioning of Nasonia using a host encounter as reward. A T-maze olfactometer facilitates high-throughput memory retention testing and employs standardized odors of equal detectability, as quantified by electroantennogram recordings. Using this setup, differences in memory retention between Nasonia species were shown. In both Nasonia vitripennis and Nasonia longicornis, memory was observed up to at least 5 days after a single conditioning trial, whereas Nasonia giraulti lost its memory after 2 days. This difference in learning may be an adaptation to species-specific differences in ecological factors, for example, host preference. The high-throughput methods for conditioning and memory retention testing are essential tools to study both ultimate and proximate factors that cause variation in learning and memory formation in Nasonia and other parasitic wasp species. PMID:22804968

  9. Complete Phase I Tests As Described in the Multi-lab Test Plan for the Evaluation of CH3I Adsorption on AgZ

    SciTech Connect

    Bruffey, S. H.; Jubin, R. T.

    2014-09-30

    Silver-exchanged mordenite (AgZ) has been identified as a potential sorbent for iodine present in the off-gas streams of a used nuclear fuel reprocessing facility. In such a facility, both elemental and organic forms of iodine are released from the dissolver in gaseous form. These species of iodine must be captured with high efficiency for a facility to avoid radioactive iodine release above regulatory limits in the gaseous effluent of the plant. Studies completed at Idaho National Laboratory (INL) examined the adsorption of organic iodine in the form of CH3I by AgZ. Upon breakthrough of the feed gas through the sorbent bed, elemental iodine was observed in the effluent stream, despite the fact that the only source of iodine in the system was the CH3I in the feed gas.1 This behavior does not appear to have been reported previously nor has it been independently confirmed. Thus, as a result of these prior studies, multiple knowledge gaps relating to the adsorption of CH3I by AgZ were identified, and a multi-lab test plan, including Oak Ridge National Laboratory (ORNL), INL, Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories, was formulated to address each in a systematic way.2 For this report, the scope of work for ORNL was further narrowed to three thin-bed experiments that would characterize CH3I adsorption onto AgZ in the presence of water, NO, and NO2. Completion of these three-thin bed experiments demonstrated that organic iodine in the form of CH3I was adsorbed by reduced silver mordenite (Ag0Z) to a 50% higher loading than that of I2 when adsorbed from a dry air stream. Adsorption curves suggest different adsorption mechanisms for I2 and CH3I. In the presence of NO and NO2 gas, the loading of CH3I onto Ag0Z is suppressed and may be reversible. Further, the presence of NO and NO2 gas appears to oxidize CH3I to I2; this is indicated by an adsorption curve similar to that of I2 on Ag0Z. Finally, the loss of organic iodine loading

  10. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials.

    PubMed

    Zhou, Yang; Apul, Onur Guven; Karanfil, Tanju

    2015-08-01

    In this study, adsorption of ten environmentally halogenated aliphatic synthetic organic compounds (SOCs) by a pristine graphene nanosheet (GNS) and a reduced graphene oxide (rGO) was examined, and their adsorption behaviors were compared with those of a single-walled carbon nanotube (SWCNT) and a granular activated carbon (GAC). In addition, the impacts of background water components (i.e., natural organic matter (NOM), ionic strength (IS) and pH) on the SOC adsorption behavior were investigated. The results indicated HD3000 and SWCNT with higher microporous volumes exhibited higher adsorption capacities for the selected aliphatic SOCs than graphenes, demonstrating microporosity of carbonaceous adsorbents played an important role in the adsorption. Analysis of adsorption isotherms demonstrated that hydrophobic interactions were the dominant contributor to the adsorption of aliphatic SOCs by graphenes. However, π-π electron donor-acceptor and van der Waals interactions are likely the additional mechanisms contributing to the adsorption of aliphatic SOCs on graphenes. Among the three background solution components examined, NOM showed the most influential effect on adsorption of the selected aliphatic SOCs, while pH and ionic strength had a negligible effects. The NOM competition on aliphatic adsorption was less pronounced on graphenes than SWCNT. Overall, in terms of adsorption capacities, graphenes tested in this study did not exhibit a major advantage over SWCNT and GAC for the adsorption of aliphatic SOCs.

  11. Testing an Emerging Paradigm in Migration Ecology Shows Surprising Differences in Efficiency between Flight Modes

    PubMed Central

    Duerr, Adam E.; Miller, Tricia A.; Lanzone, Michael; Brandes, Dave; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Katzner, Todd

    2012-01-01

    To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors. PMID:22558166

  12. Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes.

    PubMed

    Duerr, Adam E; Miller, Tricia A; Lanzone, Michael; Brandes, Dave; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Katzner, Todd

    2012-01-01

    To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors.

  13. Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes.

    PubMed

    Duerr, Adam E; Miller, Tricia A; Lanzone, Michael; Brandes, Dave; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Katzner, Todd

    2012-01-01

    To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors. PMID:22558166

  14. Comparative ergoespirometric adaptations to a treadmill exercise test in untrained show Andalusian and Arabian horses.

    PubMed

    Castejón-Riber, Cristina; Muñoz, Ana; Trigo, Pablo; Riber, Cristina; Santisteban, Rafael; Castejón, Francisco

    2012-03-01

    Significant differences exist in the respiratory adaptation to exercise in different equine breeds. This research describes the ergoespirometric response to exercise of Andalusian (AN) and Arabian (A) horses, both selected according to morphological criteria. Thirteen untrained male horses (6 AN and 7 A) performed a treadmill exercise test (TET) with a slope of 6%, with workloads starting from 5 m/s and increasing 1 m/s every 3 min until the horses were not able to keep the required velocity. Tidal volume (TV), respiratory rate, minute ventilation (VE), oxygen uptake (VO2), carbon dioxide production, peak oxygen uptake (VO2peak), respiratory exchange ratio (RER), exercise time to fatigue (ETF) and respiratory aerobic threshold (RAT) were determined. AN horses presented higher TV and VE, whereas respiratory rate, VO2 and VCO2 were lower at the same velocities. RER was similar between breeds. ETF was longer in A horses (556.7 ± 66.5 in AN vs. 607.1 ± 71.1 s in A) and no significant differences were found in RAT (5.50 ± 0.50 in AN vs. 5.86 ± 1.07 m/s in A). In summary, despite the more intense ventilatory response to exercise at the same velocity, AN horses had lower VO2. The AN horse develops a more intense ventilatory response to fixed velocities than the A horse and it could be interesting to clarify the role of the locomotion characteristics in this response.

  15. Comparative ergoespirometric adaptations to a treadmill exercise test in untrained show Andalusian and Arabian horses.

    PubMed

    Castejón-Riber, Cristina; Muñoz, Ana; Trigo, Pablo; Riber, Cristina; Santisteban, Rafael; Castejón, Francisco

    2012-03-01

    Significant differences exist in the respiratory adaptation to exercise in different equine breeds. This research describes the ergoespirometric response to exercise of Andalusian (AN) and Arabian (A) horses, both selected according to morphological criteria. Thirteen untrained male horses (6 AN and 7 A) performed a treadmill exercise test (TET) with a slope of 6%, with workloads starting from 5 m/s and increasing 1 m/s every 3 min until the horses were not able to keep the required velocity. Tidal volume (TV), respiratory rate, minute ventilation (VE), oxygen uptake (VO2), carbon dioxide production, peak oxygen uptake (VO2peak), respiratory exchange ratio (RER), exercise time to fatigue (ETF) and respiratory aerobic threshold (RAT) were determined. AN horses presented higher TV and VE, whereas respiratory rate, VO2 and VCO2 were lower at the same velocities. RER was similar between breeds. ETF was longer in A horses (556.7 ± 66.5 in AN vs. 607.1 ± 71.1 s in A) and no significant differences were found in RAT (5.50 ± 0.50 in AN vs. 5.86 ± 1.07 m/s in A). In summary, despite the more intense ventilatory response to exercise at the same velocity, AN horses had lower VO2. The AN horse develops a more intense ventilatory response to fixed velocities than the A horse and it could be interesting to clarify the role of the locomotion characteristics in this response. PMID:22183731

  16. Comparative study on the effect of H2 pre-adsorption on CO oxidation in O2-poor atmosphere over Au/TiO2 and TiO2: Temperature programmed surface reaction by a multiplexed mass spectrometer testing

    NASA Astrophysics Data System (ADS)

    Si, Ruiru; Liu, Junfeng; Zhang, Yujuan; Chen, Xun; Dai, Wenxin; Fu, Xianzhi

    2016-11-01

    The behaviors of H2 pre-adsorption on CO oxidation in an O2-poor stream containing a trace H2O over Au/TiO2 and TiO2 have been investigated by a temperature programmed surface reaction testing, respectively. It was found that the H2 pre-adsorption could keep CO oxidation without H2O consumption over Au/TiO2, but suppress CO oxidation over TiO2. The chemisorption testing showed that the H2 adsorption at Au/TiO2 could benefit to the formation of Ti-bonded hydroxyl species (Ti4+-OH), while the H2 adsorption at TiO2 would consume the Ti-bonded hydroxyl species and form the bridge hydroxyl species (Ti4+-OH-Ti4+). These results show that only the Ti-bonded hydroxyl species (not all kinds of hydroxyl species) could act as the active species of oxidizing CO. Furthermore, it is suggested that the dissociative hydrogen adsorbed at Au sites could activate the lattice oxygen of TiO2 to form the active Ti-bonded hydroxyl species (hydrogen spillover from Au to TiO2), which exhibit a strong reducibility than the H directly adsorbed at TiO2.

  17. SOD1 aggregation in ALS mice shows simplistic test tube behavior

    PubMed Central

    Lang, Lisa; Zetterström, Per; Brännström, Thomas; Marklund, Stefan L.; Danielsson, Jens; Oliveberg, Mikael

    2015-01-01

    A longstanding challenge in studies of neurodegenerative disease has been that the pathologic protein aggregates in live tissue are not amenable to structural and kinetic analysis by conventional methods. The situation is put in focus by the current progress in demarcating protein aggregation in vitro, exposing new mechanistic details that are now calling for quantitative in vivo comparison. In this study, we bridge this gap by presenting a direct comparison of the aggregation kinetics of the ALS-associated protein superoxide dismutase 1 (SOD1) in vitro and in transgenic mice. The results based on tissue sampling by quantitative antibody assays show that the SOD1 fibrillation kinetics in vitro mirror with remarkable accuracy the spinal cord aggregate buildup and disease progression in transgenic mice. This similarity between in vitro and in vivo data suggests that, despite the complexity of live tissue, SOD1 aggregation follows robust and simplistic rules, providing new mechanistic insights into the ALS pathology and organism-level manifestation of protein aggregation phenomena in general. PMID:26221023

  18. Integrated Testing of a 4-Bed Molecular Sieve, Air-Cooled Temperature Swing Adsorption Compressor, and Sabatier Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini

    2006-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.

  19. A 3D MOF showing unprecedented solvent-induced single-crystal-to-single-crystal transformation and excellent CO2 adsorption selectivity at room temperature.

    PubMed

    Qin, Tao; Gong, Jun; Ma, Junhan; Wang, Xin; Wang, Yonghua; Xu, Yan; Shen, Xuan; Zhu, Dunru

    2014-12-28

    A water stable porous 3D metal-organic framework, [Cu3L2(μ3-OH)2(μ2-H2O)]·2DMA (1, mother crystal, H2L = 2,2'-dinitrobiphenyl-4,4'-dicarboxylic acid, DMA = N,N-dimethylacetamide), shows unprecedented irreversible solvent-induced substitutions of bridging aqua ligands and guest-exchanges in single-crystal-to-single-crystal (SCSC) transformations at room temperature (RT), producing quantitatively three daughter crystals, [Cu3L2(μ3-OH)2]·2S (2: 2A, S = acetone; 2B, S = 2-propanol; 2C, S = 2-butanol), which exhibit reversible interconversion by guest-exchanges at RT in SCSC transformations. MOF 1 shows excellent separation selectivity (128) of CO2/N2 at RT and is a better sorbent of micro-solid-phase extraction (μ-SPE) than currently known benchmark ZIF-8.

  20. A case of vasospastic angina showing resolution of coronary vasospasm in acetylcholine provocation test corresponding to regression of coronary atherosclerosis.

    PubMed

    Tani, Shigemasa; Watanabe, Ikuyoshi; Anazawa, Takeo; Kawamata, Hirofumi; Tachibana, Eizo; Fuji, Takeshi; Matsumoto, Michiaki; Onikura, Motoyuki; Sato, Yuichi; Nagao, Ken; Kanmatsuse, Katsuo; Kushiro, Toshio; Hirayama, Atsushi

    2008-03-28

    We experienced a case of vasospastic angina showing resolution of vasospasm in the acetylcholine provocation test corresponding to regression of coronary atherosclerotic plaque following treatment with a combination of benidipine and pravastatin.

  1. Air stripping and emissions control technologies: Field testing of countercurrent packings, rotary air stripping, catalytic oxidation, and adsorption materials. Final report, April 1987-June 1989

    SciTech Connect

    Wilson, J.H.; Counce, R.M.; Lucero, A.J.; Jennings, H.L.; Singh, S.P.

    1992-05-01

    The objective of this activity was to field test innovative air stripping with emissions control technologies. The scale of the various components used in these tests was selected such that results would be useful for better predicting the performance of application-scale equipment. The goal of this effort was to provide managers and engineers with necessary information so that decisions relating to the application of this technology can proceed on a rational basis. Conventional countercurrent air stripping (with 4 different packing materials) were compared to a centrifugal contactor, also known as a rotary air stripper. Emissions control tests showed that the activity of the noble metal catalyst was lost before any useful abatement results were obtained. This loss in activity was attributed to poisoning by sulfur stripped from the groundwater. Control of the emissions by activated carbon was achieved. Significant quantities of lighter hydrocarbons were noted in the stripper effluent that were not effectively adsorbed by the carbon. No generally useful results ere obtained for control of emissions by molecular sieves.... Air stripping, Rotary air stripper, VOCs, Fuel contamination, Catalytic oxidations, Carbon adsorption, Molecular sieves.

  2. Functionalizing the pore wall of chiral porous metal-organic frameworks by distinct -H, -OH, -NH2, -NO2, -COOH shutters showing selective adsorption of CO2, tunable photoluminescence, and direct white-light emission.

    PubMed

    Luo, Feng; Wang, Ming-Sheng; Luo, Ming-Biao; Sun, Gong-Ming; Song, Yu-Mei; Li, Pei-Xin; Guo, Guo-Cong

    2012-06-18

    This work presents a prototype of chiral porous metal-organic framework with the porous wall decorated by different functional groups. The special structure in conjunction with the gas adsorption results reveals some relationship between CO2 adsorption and functional points. Moreover, outstanding tunable photoluminescence and direct white-light emission is observed. PMID:22576457

  3. Preparation of adsorbent with magnesium sulfate and straw pulp black liquor and its phenol adsorption properties

    NASA Astrophysics Data System (ADS)

    Guo, Lugang; Wang, Haizeng

    2009-09-01

    A magnesia adsorbent was prepared from straw pulp black liquor and magnesium sulfate for the first time, and its adsorption of phenol from aqueous solution was examined. The characteristics of the adsorbent were tested through chemical analysis, surface analysis, X-ray diffraction and FT-IR spectroscopy. The effects of various factors, such as dose, adsorption time and adsorption temperature, on phenol adsorption behavior were studied. The results show that the adsorption processes can be fitted to the isotherm Langmuir model very well. It was found that the adsorption process was strongly influenced by temperature and the optimal temperature for phenol removal was 40 °C. The optimum adsorption time was 10 min, and desorption would happen afterwards. Between the models of Langmuir and Freundlich, the adsorption process of phenol onto magnesia fitted the Langmuir equation better.

  4. Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth.

    PubMed

    Tsai, W T; Lai, C W; Hsien, K J

    2004-05-01

    In the present study, the activated bleaching earth was used as adsorbent for the herbicide paraquat adsorption in a batch adsorber. The rate of adsorption has been investigated under the controlled process parameters like agitation speed, initial paraquat concentration, adsorbent dosage and temperature. A batch kinetic model, based on the assumption of a pseudo-second order mechanism, has been tested to predict the rate constant of adsorption, equilibrium adsorption capacity, time of half-adsorption, and equilibrium concentration by the fittings of the experimental data. The results of the kinetic studies show that the adsorption process can be well described with the pseudo-second order equation. Based on the isotherm data obtained from the fittings of the adsorption kinetics, Freundlich model appears to fit the adsorption better than Langmuir model. In addition, the effective diffusion coefficient has also been estimated based on the restrictive diffusion model.

  5. Argon adsorption and the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Bernatowicz, T. J.; Podosek, F. A.

    1991-01-01

    The results of Ar adsorption experiments on a terrestrial labradorite and lunar rock 15415 crushed in vacuo are reported. The experiments were designed to test lunar atmosphere simulation models for the behavior of Ar on the lunar surface, as determined from the Apollo 17 mass spectrometer results. These models (Hodges, 1980, 1982) used a single adsorption potential to characterize the surfaces of lunar soil grains, with the result that high (6-7 kcal/mol) heats of adsorption were inferred. The present experimental results show that very high adsorption potentials are indeed associated with fresh mineral surfaces, but that these energetic surfaces occupy only small fractions of the total surface area. Nonetheless, these small fractions of surface, if they can be maintained in the lunar regolith in steady-state condition, could be sufficient to account for the Apollo 17 mass spectrometer observations.

  6. Development and Testing of a Temperature-swing Adsorption Compressor for Carbon Dioxide in Closed-loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Wang, Yuan

    2005-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby dosing the air-loop. We have developed a temperature-swing adsorption compressor (TSAC) that is energy efficient, quiet, and has no rapidly moving parts for performing these tasks. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low- pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. This paper discusses the design and testing of a TSAC for carbon dioxide that has application in the ISS and future spacecraft for closing the air revitalization loop.

  7. Selenium removal from drinking water by adsorption to chitosan-clay composites and oxides: batch and columns tests.

    PubMed

    Bleiman, Nimrod; Mishael, Yael G

    2010-11-15

    Polymer-clay composites were designed to adsorb selenium from water. The highest adsorption efficiency was obtained for chitosan-montmorillonite composites. These composites were characterized by XRD, zeta potential, and FTIR measurements. Adsorption isotherms of selenate on the composite, on Al-oxide and on Fe-oxide were in good agreement with the Langmuir model, yielding a somewhat higher capacity for the composite, 18.4, 17.2 and 8.2 mg/g, respectively. In addition, adsorption by the composite was not pH dependent while its adsorption by the oxides decreased at high pH. Selenium removal from well water (closed due to high selenium concentrations, 0.1 mg/L) by the composite, brought levels to below the WHO limit (0.01 mg/L) and was selective for selenium even in the presence of sulfur (13 mg/L). Selenium adsorption by the composite was higher than by the Al-oxide due to high adsorption of sulfur by the later. Unlike employment in batch Al-oxide is more suitable for employment in filtration columns due to its high hydraulic conductivity. A semi-pilot columns experiment demonstrated selenium removal from the well water below the recommended limit (first 400 pore volumes) by Al-oxide columns. Regeneration of Al-oxide and of the composite was studied and readsorption of selenium was demonstrated.

  8. How action selection can be embodied: intracranial gamma band recording shows response competition during the Eriksen flankers test

    PubMed Central

    Caruana, Fausto; Uithol, Sebo; Cantalupo, Gaetano; Sartori, Ivana; Lo Russo, Giorgio; Avanzini, Pietro

    2014-01-01

    Recent findings in monkeys suggest that action selection is based on a competition between various action options that are automatically planned by the motor system. Here we discuss data from intracranial EEG recordings in human premotor cortex (PMC) during a bimanual version of the Eriksen flankers test that suggest that the same principles apply to human action decisions. Recording sites in the dorsal PMC show an early but undifferentiated activation, a delayed response that depends on the experimental conditions and, finally, a movement related activation during action execution. Additionally, we found that the medial part of the PMC show a significant increase in response for ipsilateral trials, suggesting a role in inhibiting the wrong response. The ventral PMC seems to be involved in action execution, rather than action selection. Together these findings suggest that the human PMC is part of a network that specifies, selects, and executes actions. PMID:25206328

  9. In Vitro and Ex Vivo Testing of Tenofovir Shows It Is Effective As an HIV-1 Microbicide

    PubMed Central

    Rohan, Lisa C.; Moncla, Bernard J.; Kunjara Na Ayudhya, Ratiya Pamela; Cost, Marilyn; Huang, Yunda; Gai, Fang; Billitto, Nicole; Lynam, J. D.; Pryke, Kara; Graebing, Phillip; Hopkins, Nicole; Rooney, James F.; Friend, David; Dezzutti, Charlene S.

    2010-01-01

    Background Tenofovir gel has entered into clinical trials for use as a topical microbicide to prevent HIV-1 infection but has no published data regarding pre-clinical testing using in vitro and ex vivo models. To validate our findings with on-going clinical trial results, we evaluated topical tenofovir gel for safety and efficacy. We also modeled systemic application of tenofovir for efficacy. Methods and Findings Formulation assessment of tenofovir gel included osmolality, viscosity, in vitro release, and permeability testing. Safety was evaluated by measuring the effect on the viability of vaginal flora, PBMCs, epithelial cells, and ectocervical and colorectal explant tissues. For efficacy testing, PBMCs were cultured with tenofovir or vehicle control gels and HIV-1 representing subtypes A, B, and C. Additionally, polarized ectocervical and colorectal explant cultures were treated apically with either gel. Tenofovir was added basolaterally to simulate systemic application. All tissues were challenged with HIV-1 applied apically. Infection was assessed by measuring p24 by ELISA on collected supernatants and immunohistochemistry for ectocervical explants. Formulation testing showed the tenofovir and vehicle control gels were >10 times isosmolar. Permeability through ectocervical tissue was variable but in all cases the receptor compartment drug concentration reached levels that inhibit HIV-1 infection in vitro. The gels were non-toxic toward vaginal flora, PBMCs, or epithelial cells. A transient reduction in epithelial monolayer integrity and epithelial fracture for ectocervical and colorectal explants was noted and likely due to the hyperosmolar nature of the formulation. Tenofovir gel prevented HIV-1 infection of PBMCs regardless of HIV-1 subtype. Topical and systemic tenofovir were effective at preventing HIV-1 infection of explant cultures. Conclusions These studies provide a mechanism for pre-clinical prediction of safety and efficacy of formulated

  10. Quantitative and Qualitative Responses to Topical Cold in Healthy Caucasians Show Variance between Individuals but High Test-Retest Reliability.

    PubMed

    Moss, Penny; Whitnell, Jasmine; Wright, Anthony

    2016-01-01

    Increased sensitivity to cold may be a predictor of persistent pain, but cold pain threshold is often viewed as unreliable. This study aimed to determine the within-subject reliability and between-subject variance of cold response, measured comprehensively as cold pain threshold plus pain intensity and sensation quality at threshold. A test-retest design was used over three sessions, one day apart. Response to cold was assessed at four sites (thenar eminence, volar forearm, tibialis anterior, plantar foot). Cold pain threshold was measured using a Medoc thermode and standard method of limits. Intensity of pain at threshold was rated using a 10cm visual analogue scale. Quality of sensation at threshold was quantified with indices calculated from subjects' selection of descriptors from a standard McGill Pain Questionnaire. Within-subject reliability for each measure was calculated with intra-class correlation coefficients and between-subject variance was evaluated as group coefficient of variation percentage (CV%). Gender and site comparisons were also made. Forty-five healthy adults participated: 20 male, 25 female; mean age 29 (range 18-56) years. All measures at all four test sites showed high within-subject reliability: cold pain thresholds r = 0.92-0.95; pain rating r = 0.93-0.97; McGill pain quality indices r = 0.87-0.85. In contrast, all measures showed wide between-subject variance (CV% between 51.4% and 92.5%). Upper limb sites were consistently more sensitive than lower limb sites, but equally reliable. Females showed elevated cold pain thresholds, although similar pain intensity and quality to males. Females were also more reliable and showed lower variance for all measures. Thus, although there was clear population variation, response to cold for healthy individuals was found to be highly reliable, whether measured as pain threshold, pain intensity or sensation quality. A comprehensive approach to cold response testing therefore may add validity and

  11. Quantitative and Qualitative Responses to Topical Cold in Healthy Caucasians Show Variance between Individuals but High Test-Retest Reliability

    PubMed Central

    Moss, Penny; Whitnell, Jasmine; Wright, Anthony

    2016-01-01

    Increased sensitivity to cold may be a predictor of persistent pain, but cold pain threshold is often viewed as unreliable. This study aimed to determine the within-subject reliability and between-subject variance of cold response, measured comprehensively as cold pain threshold plus pain intensity and sensation quality at threshold. A test-retest design was used over three sessions, one day apart. Response to cold was assessed at four sites (thenar eminence, volar forearm, tibialis anterior, plantar foot). Cold pain threshold was measured using a Medoc thermode and standard method of limits. Intensity of pain at threshold was rated using a 10cm visual analogue scale. Quality of sensation at threshold was quantified with indices calculated from subjects' selection of descriptors from a standard McGill Pain Questionnaire. Within-subject reliability for each measure was calculated with intra-class correlation coefficients and between-subject variance was evaluated as group coefficient of variation percentage (CV%). Gender and site comparisons were also made. Forty-five healthy adults participated: 20 male, 25 female; mean age 29 (range 18–56) years. All measures at all four test sites showed high within-subject reliability: cold pain thresholds r = 0.92–0.95; pain rating r = 0.93–0.97; McGill pain quality indices r = 0.87–0.85. In contrast, all measures showed wide between-subject variance (CV% between 51.4% and 92.5%). Upper limb sites were consistently more sensitive than lower limb sites, but equally reliable. Females showed elevated cold pain thresholds, although similar pain intensity and quality to males. Females were also more reliable and showed lower variance for all measures. Thus, although there was clear population variation, response to cold for healthy individuals was found to be highly reliable, whether measured as pain threshold, pain intensity or sensation quality. A comprehensive approach to cold response testing therefore may add validity

  12. Critical analysis of adsorption data statistically

    NASA Astrophysics Data System (ADS)

    Kaushal, Achla; Singh, S. K.

    2016-09-01

    Experimental data can be presented, computed, and critically analysed in a different way using statistics. A variety of statistical tests are used to make decisions about the significance and validity of the experimental data. In the present study, adsorption was carried out to remove zinc ions from contaminated aqueous solution using mango leaf powder. The experimental data was analysed statistically by hypothesis testing applying t test, paired t test and Chi-square test to (a) test the optimum value of the process pH, (b) verify the success of experiment and (c) study the effect of adsorbent dose in zinc ion removal from aqueous solutions. Comparison of calculated and tabulated values of t and χ 2 showed the results in favour of the data collected from the experiment and this has been shown on probability charts. K value for Langmuir isotherm was 0.8582 and m value for Freundlich adsorption isotherm obtained was 0.725, both are <1, indicating favourable isotherms. Karl Pearson's correlation coefficient values for Langmuir and Freundlich adsorption isotherms were obtained as 0.99 and 0.95 respectively, which show higher degree of correlation between the variables. This validates the data obtained for adsorption of zinc ions from the contaminated aqueous solution with the help of mango leaf powder.

  13. Carbonaceous materials for adsorptive refrigerators

    NASA Astrophysics Data System (ADS)

    Buczek, B.; Wolak, E.

    2012-06-01

    Carbon monoliths prepared from hard coal precursors were obtained. The porous structure of the monoliths was evaluated on the basis of nitrogen adsorption — desorption equilibrium data. The investigated monoliths have a well-developed microporous structure with significant specific surface area (S BET ). Equilibrium studies of methanol vapour adsorption were used to characterize the methanol adsorptive capacity that was determined using a volumetric method. The heat of wetting by methanol was determined in order to estimate the energetic effects of the adsorption process. The results of the investigations show that all monoliths exhibit high adsorption capacity and high heat of wetting with methanol.

  14. Adsorption of arsenate from aqueous solution by rice husk-based adsorbent

    NASA Astrophysics Data System (ADS)

    Khan, Taimur; Chaudhuri, Malay

    2013-06-01

    Rice husk-based adsorbent (RHBA) was prepared by burning rice husk in a muffle furnace at 400°C for 4 h and adsorption of arsenate by the RHBA from aqueous solution was examined. Batch adsorption test showed that extent of arsenate adsorption depended on contact time and pH. Equilibrium adsorption was attained in 60 min, with maximum adsorption occurring at pH 7. Equilibrium adsorption data were well described by the Freundlich isotherm model. Freundlich constants Kf and 1/n were 3.62 and 2, respectively. The RHBA is effective in the adsorption of arsenate from water and is a potentially suitable filter medium for removing arsenate from groundwater at wells or in households.

  15. Phosphate Adsorption using Modified Iron Oxide-based Sorbents in Lake Water: Kinetics, Equilibrium, and Column Tests

    EPA Science Inventory

    Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese (E33/Mn) and silver (E33/AgI and E33/AgII) nanoparticles. Adso...

  16. Adsorption study of Ammonia Nitrogen by watermelon rind

    NASA Astrophysics Data System (ADS)

    Ibrahim, A.; Yusof, L.; Beddu, N. S.; Galasin, N.; Lee, P. Y.; Lee, R. N. S.; Zahrim, A. Y.

    2016-06-01

    The utilization of fruit waste for low-cost adsorbents as a replacement for costly conventional methods of removing ammonia nitrogen from wastewater has been reviewed. The adsorption studies were conducted as a function of contact time and adsorbent dosage and it were carried out on four different adsorbents; fresh watermelon rind and modified watermelon rind with sodium hydroxide (NaOH), potassium hydroxide (KOH) and sulphuric acid (H2SO4). Adsorbents were tested for characterization by using zeta potential test and all samples shows negative values thus makes it favourable for the adsorption process. The batch experimental result showed that adsorption process is rapid and equilibrium was established within 40 minutes of contact time. The ammonia nitrogen removal rate amounted in range of 96% to 99%, and the adsorption capacities were in range of 1.21 to 1.24 mg/g for all four different types of adsorbents used.

  17. A test of Darwin's naturalization hypothesis in the thistle tribe shows that close relatives make bad neighbors.

    PubMed

    Park, Daniel S; Potter, Daniel

    2013-10-29

    Invasive species have great ecological and economic impacts and are difficult to control once established, making the ability to understand and predict invasive behavior highly desirable. Preemptive measures to prevent potential invasive species from reaching new habitats are the most economically and environmentally efficient form of management. Darwin's naturalization hypothesis predicts that invaders less related to native flora are more likely to be successful than those that are closely related to natives. Here we test this hypothesis, using the weed-rich thistle tribe, Cardueae, in the California Floristic Province, a biodiversity hotspot, as our study system. An exhaustive molecular phylogenetic approach was used, generating and examining more than 100,000 likely phylogenies of the tribe based on nuclear and chloroplast DNA markers, representing the most in-depth reconstruction of the clade to date. Branch lengths separating invasive and noninvasive introduced taxa from native California taxa were used to represent phylogenetic distances between these groups and were compared at multiple biogeographical scales to ascertain whether invasive thistles are more or less closely related to natives than noninvasive introduced thistles are. Patterns within this highly supported clade show that not only are introduced thistles more closely related to natives more likely to be invasive, but these invasive species are also evolutionarily closer to native flora than by chance. This suggests that preadaptive traits are important in determining an invader's success. Such rigorous molecular phylogenetic analyses may prove a fruitful means for furthering our understanding of biological invasions and developing predictive frameworks for screening potential invasive taxa.

  18. A test of Darwin's naturalization hypothesis in the thistle tribe shows that close relatives make bad neighbors

    PubMed Central

    Park, Daniel S.; Potter, Daniel

    2013-01-01

    Invasive species have great ecological and economic impacts and are difficult to control once established, making the ability to understand and predict invasive behavior highly desirable. Preemptive measures to prevent potential invasive species from reaching new habitats are the most economically and environmentally efficient form of management. Darwin’s naturalization hypothesis predicts that invaders less related to native flora are more likely to be successful than those that are closely related to natives. Here we test this hypothesis, using the weed-rich thistle tribe, Cardueae, in the California Floristic Province, a biodiversity hotspot, as our study system. An exhaustive molecular phylogenetic approach was used, generating and examining more than 100,000 likely phylogenies of the tribe based on nuclear and chloroplast DNA markers, representing the most in-depth reconstruction of the clade to date. Branch lengths separating invasive and noninvasive introduced taxa from native California taxa were used to represent phylogenetic distances between these groups and were compared at multiple biogeographical scales to ascertain whether invasive thistles are more or less closely related to natives than noninvasive introduced thistles are. Patterns within this highly supported clade show that not only are introduced thistles more closely related to natives more likely to be invasive, but these invasive species are also evolutionarily closer to native flora than by chance. This suggests that preadaptive traits are important in determining an invader’s success. Such rigorous molecular phylogenetic analyses may prove a fruitful means for furthering our understanding of biological invasions and developing predictive frameworks for screening potential invasive taxa. PMID:24127587

  19. Adding adsorption to a geothermal simulator

    SciTech Connect

    Holt, R.; Pingol, A.

    1992-01-01

    Physical adsorption of steam has increasingly become recognized as an important storage mechanism in vapor dominated geothermal reservoirs. A method has been developed which allows the effects of adsorption to be modeled using TETRAD, a commercially available geothermal simulator. The method consists of replacing the standard steam table with a new steam table which has been derived to include adsorptive effects. The TETRAD simulator, when run with the pseudo steam table, approximately matches the pressure, production, and saturation behavior of a desorbing geothermal system. Adsorption can be described as the existence of an immobile layer of liquid on the surfaces within a porous medium. The presence of an adsorbed liquid water layer in rocks has been shown experimentally to cause the vapor pressure of steam to be lower than its flat surface vapor pressure for a particular The pseudo steam table accounts for this vapor pressure lowering effect. A test run was made with TETRAD using the pseudo steam table and a low porosity, low permeability reservoir matrix. This test run was compared to an equivalent run made with Stanford Geothermal Program's simulator, ADSORB. The program ADSORB is a one dimensional simulator which has adsorption effects built into its difference equations. The comparison of these runs shows that the pseudo steam table allows TETRAD to match the behavior of the ADSORB simulator. Injection was not investigated in this study. A convenient method of modeling adsorption with TETRAD is to use standard steam tables while allowing for the vapor pressure lowering effect of adsorption. This will require modifications of the equations in the code that describe the partial pressure of the steam phase.

  20. Polymer adsorption

    NASA Astrophysics Data System (ADS)

    Joanny, Jean-Francois

    2008-03-01

    The aim of this talk is to review Pierre-Gilles deGennes' work on polymer adsorption and the impact that it has now in our understanding of this problem. We will first present the self-consistent mean-field theory and its applications to adsorption and depletion. De Gennes most important contribution is probably the derivation of the self-similar power law density profile for adsorbed polymer layers that we will present next, emphasizing the differences between the tail sections and the loop sections of the adsorbed polymers. We will then discuss the kinetics of polymer adsorption and the penetration of a new polymer chain in an adsobed layer that DeGennes described very elegantly in analogy with a quantum tunneling problem. Finally, we will discuss the role of polymer adsorption for colloid stabilization.

  1. Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter.

    PubMed

    Gao, Yaohuan; Deshusses, Marc A

    2011-12-01

    The adsorption of two acidic pharmaceutically active compounds (PhACs), clofibric acid and ketoprofen, onto powdered activated carbon (PAC) was investigated with a particular focus on the influence of natural organic matter (NOM) on the adsorption of the PhACs. Suwannee River humic acids (SRHAs) were used as a substitute for NOM. Batch adsorption experiments were conducted to obtain adsorption kinetics and adsorption isotherms with and without SRHAs in the system. The adsorption isotherms and adsorption kinetics showed that the adsorption ofclofibric acid was not significantly affected by the presence of SRHAs at a concentration of 5 mg (as carbon) L(-1). An adsorption capacity of 70 to 140 mg g(-1) was observed and equilibrium was reached within 48 h. In contrast, the adsorption of ketoprofen was markedly decreased (from about 120 mg g(-1) to 70-100 mg g(-1)) in the presence of SRHAs. Higher initial concentrations of clofibric acid than ketoprofen during testing may explain the different behaviours that were observed. Also, the more hydrophobic ketoprofen molecules may have less affinity for PAC when humic acids (which are hydrophilic) are present. The possible intermolecular forces that could account for the different behaviour of clofibric acid and ketoprofen adsorption onto PAC are discussed. In particular, the relevance of electrostatic forces, electron donor-acceptor interaction, hydrogen bonding and London dispersion forces are discussed PMID:22439557

  2. Integrated Testing of a Carbon Dioxide Removal Assembly and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    NASA Technical Reports Server (NTRS)

    Knox, J. C.; Mulloth, Lila; Frederick, Kenneth; Affleck, Dave

    2003-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The carbon dioxide removal assembly (CDRA) of ISS currently operates in an open loop mode without a compressor. This paper describes the integrated test results of a flight-like CDRA and a temperature-swing adsorption compressor (TSAC) for carbon dioxide removal and compression. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  3. Something That Test Scores Do Not Show: Engaging in Community Diversity as a Local Response to Global Education Trends

    ERIC Educational Resources Information Center

    Valdiviezo, Laura A.

    2014-01-01

    At Smith Street Elementary School, the globalizing education trends that English language learner (ELL) teachers face focus on measuring student achievement through testing and the English mainstreaming of non-dominant students as opposed to the cultivation of the students' linguistic and cultural diversity. The ELL teachers at Smith Street…

  4. Simulations Show Diagnostic Testing For Malaria In Young African Children Can Be Cost-Saving Or Cost-Effective

    PubMed Central

    Phillips, Victoria; Njau, Joseph; Li, Shang; Kachur, Patrick

    2015-01-01

    Malaria imposes a substantial global disease burden. It disproportionately affects sub-Saharan Africans, particularly young children. In an effort to improve disease management, the World Health Organization (WHO) recommended in 2010 that countries test children younger than age five who present with suspected malaria fever to confirm the diagnosis instead of treating them presumptively with antimalarial drugs. Costs and concerns about the overall health impact of such diagnostic testing for malaria in children remain barriers to full implementation. Using data from national Malaria Indicator Surveys, we estimated two-stage microsimulation models for Angola, Tanzania, and Uganda to assess the policy’s cost-effectiveness. We found that diagnostic testing for malaria in children younger than five is cost-saving in Angola. In Tanzania and Uganda the cost per life-year gained is $5.54 and $94.28, respectively. The costs projected for Tanzania and Uganda are less than the WHO standard of $150 per life-year gained. Our results were robust under varying assumptions about cost, prevalence of malaria, and behavior, and they strongly suggest the pursuit of policies that facilitate full implementation of testing for malaria in children younger than five. PMID:26153315

  5. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration.

    PubMed

    Han, Fei; Zhang, Guang-Hui; Gu, Ping

    2012-07-30

    Copper ferrocyanide (CuFC) was used as an adsorbent to remove cesium. Jar test results showed that the adsorption capacity of CuFC was better than that of potassium zinc hexacyanoferrate. Lab-scale tests were performed by an adsorption-microfiltration process, and the mean decontamination factor (DF) was 463 when the initial cesium concentration was 101.3μg/L, the dosage of CuFC was 40mg/L and the adsorption time was 20min. The cesium concentration in the effluent continuously decreased with the operation time, which indicated that the used adsorbent retained its adsorption capacity. To use this capacity, experiments on a countercurrent two-stage adsorption (CTA)-microfiltration (MF) process were carried out with CuFC adsorption combined with membrane separation. A calculation method for determining the cesium concentration in the effluent was given, and batch tests in a pressure cup were performed to verify the calculated method. The results showed that the experimental values fitted well with the calculated values in the CTA-MF process. The mean DF was 1123 when the dilution factor was 0.4, the initial cesium concentration was 98.75μg/L and the dosage of CuFC and adsorption time were the same as those used in the lab-scale test. The DF obtained by CTA-MF process was more than three times higher than the single-stage adsorption in the jar test.

  6. Possible Chemical Source of Discrepancy between in Vitro and in Vivo Tests in Nanotoxicology Caused by Strong Adsorption of Buffer Components.

    PubMed

    Marucco, Arianna; Catalano, Federico; Fenoglio, Ivana; Turci, Francesco; Martra, Gianmario; Fubini, Bice

    2015-01-20

    In the course of studies of the interaction of proteins with TiO2 nanoparticles, we have investigated the role of the medium employed in cellular tests, by measuring the variation of ζ-potential vs pH in the range 2-9 and bovine serum albumin adsorption on TiO2 P25 in the presence of either HEPES or PBS as buffers, both mimicking the physiological pH, but with different chemical nature. The two buffers yield remarkably dissimilar surface charges and protein uptake, i.e., they impart different surface characteristics to the particles which could affect the contact with cells or tissues. This may account for dissimilar toxicological outcomes among in vitro tests and particularly between in vitro vs in vivo tests, considering the high amount of phosphate ions present in body fluids.

  7. A simple spatial working memory and attention test on paired symbols shows developmental deficits in schizophrenia patients.

    PubMed

    Song, Wei; Zhang, Kai; Sun, Jinhua; Ma, Lina; Jesse, Forrest Fabian; Teng, Xiaochun; Zhou, Ying; Bao, Hechen; Chen, Shiqing; Wang, Shuai; Yang, Beimeng; Chu, Xixia; Ding, Wenhua; Du, Yasong; Cheng, Zaohuo; Wu, Bin; Chen, Shanguang; He, Guang; He, Lin; Chen, Xiaoping; Li, Weidong

    2013-01-01

    People with neuropsychiatric disorders such as schizophrenia often display deficits in spatial working memory and attention. Evaluating working memory and attention in schizophrenia patients is usually based on traditional tasks and the interviewer's judgment. We developed a simple Spatial Working Memory and Attention Test on Paired Symbols (SWAPS). It takes only several minutes to complete, comprising 101 trials for each subject. In this study, we tested 72 schizophrenia patients and 188 healthy volunteers in China. In a healthy control group with ages ranging from 12 to 60, the efficiency score (accuracy divided by reaction time) reached a peak in the 20-27 age range and then declined with increasing age. Importantly, schizophrenia patients failed to display this developmental trend in the same age range and adults had significant deficits compared to the control group. Our data suggests that this simple Spatial Working Memory and Attention Test on Paired Symbols can be a useful tool for studies of spatial working memory and attention in neuropsychiatric disorders.

  8. Adsorption and desorption kinetics of carbofuran in acid soils.

    PubMed

    Bermúdez-Couso, Alipio; Fernández-Calviño, David; Pateiro-Moure, Miriam; Nóvoa-Muñoz, Juan Carlos; Simal-Gándara, Jesús; Arias-Estévez, Manuel

    2011-06-15

    Carbofuran adsorption and desorption were investigated in batch and stirred flow chamber (SFC) tests. The carbofuran adsorption capacity of the soils was found to be low and strongly dependent on their clay and organic carbon contents. Carbofuran sorption was due mainly (>80%) to fast adsorption processes governed by intraparticle diffusion. The adsorption kinetic constant for the pesticide ranged from 0.047 to 0.195 min(-1) and was highly correlated with constant n in the Freundlich equation (r=0.965, P<0.05). Batch tests showed carbofuran desorption to be highly variable and negatively correlated with eCEC and the clay content. The SFC tests showed that soil organic carbon (C) plays a key role in the irreversibility of carbofuran adsorption. Carbofuran desorption increased rapidly at C contents below 4%. The desorption kinetic constant for the compound (0.086-0.195 min(-1)) was generally higher than its adsorption kinetic constant; therefore, carbofuran is more rapidly desorbed than it is adsorbed in soil.

  9. [Characteristics of Adsorption Leaching and Influencing Factors of Dimethyl Phthalate in Purple Soil].

    PubMed

    Wang, Qiang; Song, Jiao-yan; Zeng, Wei; Wang, Fa

    2016-02-15

    The typical soil-purple soil in Three Gorges Reservoir was the tested soil, the characteristics of adsorption leaching of dimethyl phthalate (DMP) in contaminated water by the soil, and the influencing factors in the process were conducted using soil column leaching experiment. The results showed that the parabolic equation was the best equation describing adsorption kinetics of DMP by soils. The concentration of DMP in the leaching solution had significant effect on the adsorption amounts of DMP. With the increasing concentration of DMP in the leaching solution, the adsorption capacities of DMP by purple soil increased linearly. The ionic strength and pH in leaching solution had significant effects on adsorption of DMP. On the whole, increasing of the ionic strength restrained the adsorption. The adsorption amounts at pH 5.0-7.0 were more than those under other pH condition. The addition of exogenous organic matter (OM) in purple soil increased the adsorption amount of DMP by purple soil. However, the adsorption amount was less than those with other addition amounts of exogenous OM when the addition of exogenous OM was too high (> or = 30 g x kg(-1)). The addition of surfactant sodium dodecylbenzene sulfonic acid (SDBS) in purple soil increased the adsorption amount of DMP by purple soil. The adsorption amount was maximal when the addition amount of SDBS was 50 mg x kg(-1). However, the adsorption amounts decreased with increasing addition amounts of SDBS although the adsorption amounts were still more than that of the control group, and the adsorption amount was almost equal to that of the control group when the addition amount of SDBS was 800 mg x kg(-1). Continuous leaching time affected the vertical distribution of DMP in the soil column. When the leaching time was shorter, the upper soil column adsorbed more DMP, while the DMP concentrations in upper and lower soil columns became similar with the extension of leaching time.

  10. [Characteristics of Adsorption Leaching and Influencing Factors of Dimethyl Phthalate in Purple Soil].

    PubMed

    Wang, Qiang; Song, Jiao-yan; Zeng, Wei; Wang, Fa

    2016-02-15

    The typical soil-purple soil in Three Gorges Reservoir was the tested soil, the characteristics of adsorption leaching of dimethyl phthalate (DMP) in contaminated water by the soil, and the influencing factors in the process were conducted using soil column leaching experiment. The results showed that the parabolic equation was the best equation describing adsorption kinetics of DMP by soils. The concentration of DMP in the leaching solution had significant effect on the adsorption amounts of DMP. With the increasing concentration of DMP in the leaching solution, the adsorption capacities of DMP by purple soil increased linearly. The ionic strength and pH in leaching solution had significant effects on adsorption of DMP. On the whole, increasing of the ionic strength restrained the adsorption. The adsorption amounts at pH 5.0-7.0 were more than those under other pH condition. The addition of exogenous organic matter (OM) in purple soil increased the adsorption amount of DMP by purple soil. However, the adsorption amount was less than those with other addition amounts of exogenous OM when the addition of exogenous OM was too high (> or = 30 g x kg(-1)). The addition of surfactant sodium dodecylbenzene sulfonic acid (SDBS) in purple soil increased the adsorption amount of DMP by purple soil. The adsorption amount was maximal when the addition amount of SDBS was 50 mg x kg(-1). However, the adsorption amounts decreased with increasing addition amounts of SDBS although the adsorption amounts were still more than that of the control group, and the adsorption amount was almost equal to that of the control group when the addition amount of SDBS was 800 mg x kg(-1). Continuous leaching time affected the vertical distribution of DMP in the soil column. When the leaching time was shorter, the upper soil column adsorbed more DMP, while the DMP concentrations in upper and lower soil columns became similar with the extension of leaching time. PMID:27363166

  11. Prolonged ELS test with the marine flatfish sole (Solea solea) shows delayed toxic effects of previous exposure to PCB 126.

    PubMed

    Foekema, Edwin M; Deerenberg, Charlotte M; Murk, Albertinka J

    2008-11-21

    The effect of the dioxin-like PCB 126 (3,3',4,4',5-pentachlorobiphenyl) on the early development of the marine flatfish sole (Solea solea) was tested in a newly developed early life stage (ELS) test that includes the metamorphosis of the symmetric larvae into an asymmetrical flatfish. Early life stages of sole were exposed to a concentration series of PCB 126 in seawater until 4, 8, 10 and 15 days post fertilisation (dpf). Subsequently the development of the larvae was registered under further unexposed conditions. The LC50s at the start of the free-feeding stage (12 dpf) ranged between 39 and 83 ng PCB 126/l depending on exposure duration. After the fish had completed the metamorphosis, the LC50 values ranged between 1.7 and 3.7 ng PCB 126/l for the groups exposed for 4, 8 and 10 dpf, respectively. Thus exposure for only 4 days, covering only the egg stage, was sufficient to cause adverse effects during a critical developmental phase two weeks later. The internal dosages of these larvae, determined by means of an in vitro gene reporter assay as dioxin-equivalent values (TEQ), revealed a LD50 of 1ng TEQ/g lipid, which is within the same order of magnitude as TEQ levels found in fish from highly polluted areas. This study indicates that ELS fish tests that are terminated shortly after the fish becomes free-feeding, underestimate the toxic potential of compounds with low acute toxicity such as PCBs. Our prolonged ELS with this native marine flatfish suggests that reproductive success of fish populations at contaminated sites can be affected by persistent compounds that are accumulated by the female fish and passed on to the eggs.

  12. Comparative Study on the Implication of Three Nanoparticles on the Removal of Trichloroethylene by Adsorption - The Pilot and Rapid Small-Scale Column Tests

    EPA Science Inventory

    The impact of three commercially-available nanoparticles (NPs) on trichloroethylene (TCE) adsorption onto granular activated carbon (GAC) was investigated. TCE Adsorption isotherm and column breakthrough experiments were conducted in the presence and absence of silicon dioxide (S...

  13. A test of the intergenerational conflict model in Indonesia shows no evidence of earlier menopause in female-dispersing groups

    PubMed Central

    Snopkowski, Kristin; Moya, Cristina; Sear, Rebecca

    2014-01-01

    Menopause remains an evolutionary puzzle, as humans are unique among primates in having a long post-fertile lifespan. One model proposes that intergenerational conflict in patrilocal populations favours female reproductive cessation. This model predicts that women should experience menopause earlier in groups with an evolutionary history of patrilocality compared with matrilocal groups. Using data from the Indonesia Family Life Survey, we test this model at multiple timescales: deep historical time, comparing age at menopause in ancestrally patrilocal Chinese Indonesians with ancestrally matrilocal Austronesian Indonesians; more recent historical time, comparing age at menopause in ethnic groups with differing postmarital residence within Indonesia and finally, analysing age at menopause at an individual-level, assuming a woman facultatively adjusts her age at menopause based on her postmarital residence. We find a significant effect only at the intermediate timescale where, contrary to predictions, ethnic groups with a history of multilocal postnuptial residence (where couples choose where to live) have the slowest progression to menopause, whereas matrilocal and patrilocal ethnic groups have similar progression rates. Multilocal residence may reduce intergenerational conflicts between women, thus influencing reproductive behaviour, but our results provide no support for the female-dispersal model of intergenerational conflict as an explanation of menopause. PMID:24966311

  14. A test of the intergenerational conflict model in Indonesia shows no evidence of earlier menopause in female-dispersing groups.

    PubMed

    Snopkowski, Kristin; Moya, Cristina; Sear, Rebecca

    2014-08-01

    Menopause remains an evolutionary puzzle, as humans are unique among primates in having a long post-fertile lifespan. One model proposes that intergenerational conflict in patrilocal populations favours female reproductive cessation. This model predicts that women should experience menopause earlier in groups with an evolutionary history of patrilocality compared with matrilocal groups. Using data from the Indonesia Family Life Survey, we test this model at multiple timescales: deep historical time, comparing age at menopause in ancestrally patrilocal Chinese Indonesians with ancestrally matrilocal Austronesian Indonesians; more recent historical time, comparing age at menopause in ethnic groups with differing postmarital residence within Indonesia and finally, analysing age at menopause at an individual-level, assuming a woman facultatively adjusts her age at menopause based on her postmarital residence. We find a significant effect only at the intermediate timescale where, contrary to predictions, ethnic groups with a history of multilocal postnuptial residence (where couples choose where to live) have the slowest progression to menopause, whereas matrilocal and patrilocal ethnic groups have similar progression rates. Multilocal residence may reduce intergenerational conflicts between women, thus influencing reproductive behaviour, but our results provide no support for the female-dispersal model of intergenerational conflict as an explanation of menopause.

  15. Tank Tests to Show the Effect Rivet Heads on the Water Performance of a Seaplane-Float

    NASA Technical Reports Server (NTRS)

    Parkinson, J B

    1938-01-01

    A 1/3.5 full-sized model of a seaplane float constructed from lines supplied by the Bureau of Aeronautics, Navy Department, was tested first with smooth painted bottom surfaces and then with round-head rivets, plate laps, and keel plates fitted to simulate the actual bottom of a metal float. A percentage increase in water resistance caused by the added roughness was found to be from 5 to 20 percent at the hump speed and from 15 to 40 percent at high speeds. The effect of the roughness of the afterbody was found to be negligible except at high trims. The model data were extrapolated to full size by the usual method that assumes the forces to vary according to Froude's law and, in the case of the smooth model, by a method of separation that takes into account the effect of scale on the frictional resistance. It was concluded that the effect of rivet heads on the take-off performance of a relatively high-powered float seaplane is of little consequence, but it may be of greater importance in the case of more moderately powered flying boats.

  16. The adsorption and mass-transfer process of cationic red X-GRL dye on natural zeolite.

    PubMed

    Tian, Jingjing; Guan, Junfang; Gao, Huimin; Wen, Yafei; Ren, Zijie

    2016-01-01

    The adsorption behavior of natural zeolite was studied in order to determine the adsorption capacity and mass-transfer process of cationic red X-GRL (C(18)H(21)BrN(6)) onto the adsorbent. The adsorption tests to determine both the uptake capacity and the mass-transfer process at equilibrium were performed under batch conditions, which showed rapid uptake in general for the initial 5 min, corresponding to 92% total removal. The equilibrium adsorption capacity value (q(e,cal)) in pseudo-second-order kinetics was 13.51 mg/g at 293 K and the whole adsorption process was governed by physical adsorption with an endothermic, endothermic spontaneous nature. Adsorption tests indicated that the zeolite has great potential as an alternative low-cost material in the treatment of X-GRL drainage. However, the mass-transfer process to determine the rate-controlling steps showed that both film diffusion and pore diffusion were important in controlling the adsorption rate. The adsorption process was governed by film diffusion while pore diffusion was poor because the X-GRL molecules could not penetrate into the zeolite easily. The X-GRL molecules were only adsorbed on the external surface of the zeolite. Hence, to improve the adsorption capacity of natural zeolite further, modification to expand its micropores is necessary.

  17. The adsorption and mass-transfer process of cationic red X-GRL dye on natural zeolite.

    PubMed

    Tian, Jingjing; Guan, Junfang; Gao, Huimin; Wen, Yafei; Ren, Zijie

    2016-01-01

    The adsorption behavior of natural zeolite was studied in order to determine the adsorption capacity and mass-transfer process of cationic red X-GRL (C(18)H(21)BrN(6)) onto the adsorbent. The adsorption tests to determine both the uptake capacity and the mass-transfer process at equilibrium were performed under batch conditions, which showed rapid uptake in general for the initial 5 min, corresponding to 92% total removal. The equilibrium adsorption capacity value (q(e,cal)) in pseudo-second-order kinetics was 13.51 mg/g at 293 K and the whole adsorption process was governed by physical adsorption with an endothermic, endothermic spontaneous nature. Adsorption tests indicated that the zeolite has great potential as an alternative low-cost material in the treatment of X-GRL drainage. However, the mass-transfer process to determine the rate-controlling steps showed that both film diffusion and pore diffusion were important in controlling the adsorption rate. The adsorption process was governed by film diffusion while pore diffusion was poor because the X-GRL molecules could not penetrate into the zeolite easily. The X-GRL molecules were only adsorbed on the external surface of the zeolite. Hence, to improve the adsorption capacity of natural zeolite further, modification to expand its micropores is necessary. PMID:27148713

  18. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    PubMed

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties.

  19. Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon.

    PubMed

    Deng, Baolin; Kim, Eun-Sik

    2016-05-01

    Co-adsorption of trichloroethylene (TCE) and arsenate [As(V)] was investigated using modified granular activated carbons (GAC): untreated, sodium hypochlorite-treated (NaClO-GAC), and NaClO with iron-treated GAC (NaClO/Fe-GAC). Batch experiments of single- [TCE or As(V)] and binary- [TCE and As(V)] components solutions are evaluated through Langmuir and Freundlich isotherm models and adsorption kinetic tests. In the single-component system, the adsorption capacity of As(V) was increased by the NaClO-GAC and the NaClO/Fe-GAC. The untreated GAC showed a low adsorption capacity for As(V). Adsorption of TCE by the NaClO/Fe-GAC was maximized, with an increased Freundlich constant. Removal of TCE in the binary-component system was decreased 15% by the untreated GAC, and NaClO- and NaClO/Fe-GAC showed similar efficiency to the single-component system because of the different chemical status of the GAC surfaces. Results of the adsorption isotherms of As(V) in the binary-component system were similar to adsorption isotherms of the single-component system. The adsorption affinities of single- and binary-component systems corresponded with electron transfer, competitive adsorption, and physicochemical properties. PMID:27131303

  20. "The Show"

    ERIC Educational Resources Information Center

    Gehring, John

    2004-01-01

    For the past 16 years, the blue-collar city of Huntington, West Virginia, has rolled out the red carpet to welcome young wrestlers and their families as old friends. They have come to town chasing the same dream for a spot in what many of them call "The Show". For three days, under the lights of an arena packed with 5,000 fans, the state's best…

  1. Long-Duration Testing of a Temperature-Swing Adsorption Compressor for Carbon Dioxide for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Rosen, Micha; Mulloth, Lila; Varghese, Mini

    2005-01-01

    This paper describes the results of long-duration testing of a temperature-swing adsorption compressor that has application in the International Space Station (ISS) and future spacecraft for closing the air revitalization loop. The air revitalization system of the ISS operates in an open loop mode and relies on the resupply of oxygen and other consumables from Earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. The TSAC was developed and its operation was successfully verified in integration tests with the flight-like Carbon Dioxide Removal Assembly (CDRA) at Marshall Space Flight Center prior to the long-duration tests. Long-duration tests reveal the impacts of repeated thermal cycling on the compressor components and the adsorbent material.

  2. Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, pH, ionic strength, and temperature.

    PubMed

    Shipley, Heather J; Yean, Sujin; Kan, Amy T; Tomson, Mason B

    2009-03-01

    Little work has been conducted on the adsorption of arsenic to the mixed iron [Fe(II)/(III)] oxide magnetite and the effect that environmental parameters, such as pH, ionic strength, and temperature, have on adsorption. Magnetite nanoparticles are unique because of their affinity for both arsenate and arsenite and increased adsorption capacity from their bulk counterparts. This article shows the effect of various magnetite nanoparticle concentrations on arsenic adsorption kinetics. The adsorption data show the ability of the magnetite nanoparticles to remove arsenate and arsenite from solution in both synthetic and natural waters, and the data fit a first-order rate equation. Because of the increased surface area of these particles, less than 1 g/L of magnetite nanoparticles was needed. The results suggest that arsenic adsorption to the nanoparticles was not significantly affected by the pH, ionic strength and temperature in the ranges tested, which are typical of most potable water sources.

  3. Adsorption kinetic and thermodynamic studies of phosphate onto tantalum hydroxide.

    PubMed

    Yu, Shi-Hua; Dong, Xiao-Le; Gong, Hong; Jiang, Heng; Liu, Zhi-Gang

    2012-12-01

    Tantalum hydroxide exhibits the ability for the removal of phosphate from aqueous solution. The kinetic study, adsorption isotherm, thermodynamic study, desorption, and foreign anions effect were examined in batch experiments. The kinetic process was very well described by a pseudo-second-order rate model. The adsorption isotherms showed that phosphate uptake fitted with a Langmuir-type model very well, with an increase of PO4(3-) adsorption capacity from 78.5 to 97.0 mg/g when the temperature increased from 298 to 338 K. The negative values of deltaG(0) and the positive values of deltaH(0) indicated that the phosphate adsorption process was spontaneous and endothermic naturally. While the deltaS(0) values obtained were positive, indicating an increase in randomness at the solid-liquid interface during the adsorption. Foreign anions tests showed that the presence of competitive ions cause minimal interference with the adsorption of phosphate on tantalum hydroxide.

  4. Sulfate adsorption on goethite

    SciTech Connect

    Rietra, R.P.J.J.; Hiemstra, T.; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  5. Contrasting nitrate adsorption in Andisols of two coffee plantations in Costa Rica.

    PubMed

    Ryan, M C; Graham, G R; Rudolph, D L

    2001-01-01

    Fertilizer use in coffee plantations is a suspected cause of rising ground water nitrate concentrations in the ground water-dependent Central Valley of Costa Rica. Nitrate adsorption was evaluated beneath two coffee (Coffea arabica L.) plantations in the Central Valley. Previous work at one site had identified unsaturated zone nitrate retardation relative to a tritium tracer. Differences in nitrate adsorption were assessed in cores to 4 m depth in Andisols at this and one other plantation using differences in KCl- and water-extractable nitrate as an index. Significant adsorption was confirmed at the site of the previous tracer test, but not at the second site. Anion exchange capacity, X-ray diffraction data, extractable Al and Si, and soil pH in NaF corroborated that differences in adsorption characteristics were related to subtle differences in clay mineralogy. Soils at the site with significant nitrate adsorption showed an Al-rich allophane clay content compared with a more weathered, Si-rich allophane and halloysite clay mineral content at the site with negligible adsorption. At the site with significant nitrate adsorption, nitrate occupied less than 10% of the total anion adsorption capacity, suggesting that adsorption may provide long-term potential for mitigation or delay of nitrate leaching. Evaluation of nitrate sorption potential of soil at local and landscape scales would be useful in development of nitrogen management practices to reduce nitrate leaching to ground water. PMID:11577895

  6. Contrasting nitrate adsorption in Andisols of two coffee plantations in Costa Rica.

    PubMed

    Ryan, M C; Graham, G R; Rudolph, D L

    2001-01-01

    Fertilizer use in coffee plantations is a suspected cause of rising ground water nitrate concentrations in the ground water-dependent Central Valley of Costa Rica. Nitrate adsorption was evaluated beneath two coffee (Coffea arabica L.) plantations in the Central Valley. Previous work at one site had identified unsaturated zone nitrate retardation relative to a tritium tracer. Differences in nitrate adsorption were assessed in cores to 4 m depth in Andisols at this and one other plantation using differences in KCl- and water-extractable nitrate as an index. Significant adsorption was confirmed at the site of the previous tracer test, but not at the second site. Anion exchange capacity, X-ray diffraction data, extractable Al and Si, and soil pH in NaF corroborated that differences in adsorption characteristics were related to subtle differences in clay mineralogy. Soils at the site with significant nitrate adsorption showed an Al-rich allophane clay content compared with a more weathered, Si-rich allophane and halloysite clay mineral content at the site with negligible adsorption. At the site with significant nitrate adsorption, nitrate occupied less than 10% of the total anion adsorption capacity, suggesting that adsorption may provide long-term potential for mitigation or delay of nitrate leaching. Evaluation of nitrate sorption potential of soil at local and landscape scales would be useful in development of nitrogen management practices to reduce nitrate leaching to ground water.

  7. [Rapid Synthesis of Metal Organic Framework and Its Adsorption Properties on Anonic Dyes].

    PubMed

    Sun, De-shuai; Liu, Ya-li; Zhang, Xiao-dong; Qin, Ting-ting

    2016-03-15

    The waste water containing dyes is difficult to be biochemically treated because of its deep color. Adsorption becomes an important treatment method for this kind of waste water. The iron organic framework was rapidly synthesized at room temperature, and characterized by IR and XRD. Adsorption properties of the materials were tested using four anonic dyes solutions. It was found that the iron organic framework could be formed rapidly, with higher surface area and pore volumes. The pH value of zero point charge was 3.7. The adsorption experiments showed that the iron organic material could remove more dyes in acid solution. The dye adsorption capacity increased with increasing dye concentration. These adsorption data fitted well with Langmuir thermoadsorption equation. The calculated parameter from Langmuir adsorption indicated that the adsorption process could be performed easily. The second order kinetic equation could describe the adsorption data. In addition, the structure of dyes could affect the adsorption process. The metal complex dyes could be quickly removed. PMID:27337895

  8. Kinetics of Remazol Black B adsorption onto carbon prepared from sugar beet pulp.

    PubMed

    Dursun, Arzu Y; Tepe, Ozlem; Uslu, Gülşad; Dursun, Gülbeyi; Saatci, Yusuf

    2013-04-01

    Dried sugar beet pulp, an agricultural solid waste, was used for the production of carbon. Carbonised beet pulp was tested in the adsorption of Remazol Black B dye, and adsorption studies with real textile wastewater were also performed. Batch kinetic studies showed that an equilibrium time of 180 min was needed for the adsorption. The maximum dye adsorption capacity was obtained as 80.0 mg g(-1) at the temperature of 25 °C at pH = 1.0. The Langmuir and Freundlich adsorption models were used for the mathematical description of the adsorption equilibrium, and it was reported that experimental data fitted very well to the Langmuir model. Mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate-controlling steps. It was found that both external mass transfer and intraparticle diffusion played an important role in the adsorption mechanisms of dye, and adsorption kinetics followed the pseudo-second-order type kinetic model. The thermodynamic analysis indicated that the sorption process was exothermic and spontaneous in nature.

  9. Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon for highly effective adsorption of rhodamine B

    NASA Astrophysics Data System (ADS)

    Tang, Lin; Cai, Ye; Yang, Guide; Liu, Yuanyuan; Zeng, Guangming; Zhou, Yaoyu; Li, Sisi; Wang, Jiajia; Zhang, Sheng; Fang, Yan; He, Yibin

    2014-09-01

    Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC), prepared through a simple method involving infusing and calcination, was used as a highly effective adsorbent for rhodamine B (Rh B) removal. Several techniques, including SEM, HRTEM, nitrogen adsorption-desorption isotherms, XRD, Raman spectra, EDX, zeta potential and VSM measurement, were applied to characterize the adsorbent. Batch tests were conducted to investigate the adsorption performance. The adsorption capacity of the resultant adsorbent was relatively high compared with raw ordered mesoporous carbon (OMC) and reached an equilibrium value of 468 mg/g at 200 mg/L initial Rh B concentration. Removal efficiency even reached 96% within 25 min at 100 mg/L initial Rh B concentration. Besides, the adsorption amount increased with the increase of solution pH, adsorbent dose and initial Rh B concentration. Kinetics study showed that the adsorption agreed well with pseudo-second-order model (R2 = 0.999) and had a significant correlation with intra-particle diffusion model in the both two adsorption periods. Furthermore, thermodynamics research indicated that the adsorption process was endothermic and spontaneous in nature. The adsorption isotherms fitted well with Langmuir model, demonstrating the formation of mono-molecular layer on the surface of Co/OMC during adsorption process. The results confirmed that Co/OMC has the potential superiority in removal of Rh B from aqueous solution.

  10. [Rapid Synthesis of Metal Organic Framework and Its Adsorption Properties on Anonic Dyes].

    PubMed

    Sun, De-shuai; Liu, Ya-li; Zhang, Xiao-dong; Qin, Ting-ting

    2016-03-15

    The waste water containing dyes is difficult to be biochemically treated because of its deep color. Adsorption becomes an important treatment method for this kind of waste water. The iron organic framework was rapidly synthesized at room temperature, and characterized by IR and XRD. Adsorption properties of the materials were tested using four anonic dyes solutions. It was found that the iron organic framework could be formed rapidly, with higher surface area and pore volumes. The pH value of zero point charge was 3.7. The adsorption experiments showed that the iron organic material could remove more dyes in acid solution. The dye adsorption capacity increased with increasing dye concentration. These adsorption data fitted well with Langmuir thermoadsorption equation. The calculated parameter from Langmuir adsorption indicated that the adsorption process could be performed easily. The second order kinetic equation could describe the adsorption data. In addition, the structure of dyes could affect the adsorption process. The metal complex dyes could be quickly removed.

  11. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    SciTech Connect

    Akbarzadeh, Omid Abdullah, Bawadi Subbarao, Duvvuri; Zabidi, Noor Asmawati Mohd

    2015-07-22

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  12. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Omid; Zabidi, Noor Asmawati Mohd; Abdullah, Bawadi; Subbarao, Duvvuri

    2015-07-01

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N2-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N2-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  13. Phosphate adsorption on aluminum-impregnated mesoporous silicates: surface structure and behavior of adsorbents.

    PubMed

    Shin, Eun Woo; Han, James S; Jang, Min; Min, Soo-Hong; Park, Jae Kwang; Rowell, Roger M

    2004-02-01

    Phosphorus from excess fertilizers and detergents ends up washing into lakes, creeks, and rivers. This overabundance of phosphorus causes excessive aquatic plant and algae growth and depletes the dissolved oxygen supply in the water. In this study, aluminum-impregnated mesoporous adsorbents were tested for their ability to remove phosphate from water. The surface structure of the materials was investigated with X-ray diffraction (XRD), a N2 adsorption-desorption technique, Fourier transform-infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) to understand the effect of surface properties on the adsorption behavior of phosphate. The mesoporous materials were loaded with Al components by reaction with surface silanol groups. In the adsorption test, the Al-impregnated mesoporous materials showed fast adsorption kinetics as well as high adsorption capacities, compared with activated alumina. The uniform mesopores of the Al-impregnated mesoporous materials caused the diffusion rate in the adsorption process to increase, which in turn caused the fast adsorption kinetics. High phosphate adsorption capacities of the Al-impregnated mesoporous materials were attributed to not only the increase of surface hydroxyl density on Al oxide due to well-dispersed impregnation of Al components but also the decrease in stoichiometry of surface hydroxyl ions to phosphate by the formation of monodentate surface complexes. PMID:14968882

  14. Adsorption of dyes onto activated carbon prepared from olive stones.

    PubMed

    Najar-Souissi, Souad; Ouederni, Abdelmottaleb; Ratel, Abdelhamid

    2005-01-01

    Activated carbon was produced from olive stones(OSAC) by a physical process in two steps. The adsorption character of this activated carbon was tested on three colour dyes molecules in aqueous solution: Methylene blue (MB), Rhodamine B (RB) and Congo Red(CR). The adsorption equilibrium was studied through isotherms construction at 30 degrees C, which were well described by Langmuir model. The adsorption capacity on the OSAC was estimated to be 303 mg/g, 217 mg/g and 167 mg/g respectively for MB, RB and CR. This activated carbon has a similar adsorption properties to that of commercial ones and show the same adsorption performances. The adsorption kinetics of the MB molecule in aqueous solution at different initial concentrations by OSAC was also studied. Kinetic experiments were well fitted by a simple intra-particle diffusion model. The measured kinetics constant was influenced by the initial concentration and we found the following correlation: Kid = 1.55 C0(0.51). PMID:16465895

  15. Random sequential adsorption on fractals.

    PubMed

    Ciesla, Michal; Barbasz, Jakub

    2012-07-28

    Irreversible adsorption of spheres on flat collectors having dimension d < 2 is studied. Molecules are adsorbed on Sierpinski's triangle and carpet-like fractals (1 < d < 2), and on general Cantor set (d < 1). Adsorption process is modeled numerically using random sequential adsorption (RSA) algorithm. The paper concentrates on measurement of fundamental properties of coverages, i.e., maximal random coverage ratio and density autocorrelation function, as well as RSA kinetics. Obtained results allow to improve phenomenological relation between maximal random coverage ratio and collector dimension. Moreover, simulations show that, in general, most of known dimensional properties of adsorbed monolayers are valid for non-integer dimensions.

  16. Modeling two-rate adsorption kinetics: Two-site, two-species, bilayer and rearrangement adsorption processes.

    PubMed

    Tripathi, Sumit; Tabor, Rico F

    2016-08-15

    The adsorption kinetics of many systems show apparent two-rate processes, where there appears to be resolved fast and slow adsorption steps. Such non-standard adsorption processes cannot be accounted for by conventional modeling methods, motivating new approaches. In this work, we present four different models that can account for two-rate adsorption and are based upon physically realistic processes - two adsorbing species, two surface sites having different energies, bilayer formation and molecular rearrangement modes. Each model is tested using a range of conditions, and the characteristic behavior is explored and compared. In these models, the effects of mass transport and bulk concentration are also accounted for, making them applicable in systems which are transport-limited or attachment-limited, or intermediate between the two. The applicability of these models is demonstrated by fitting exemplar experimental data for each of the four models, selecting the model on the basis of the known physical behavior of the adsorption kinetics. These models can be applied in a wide range of systems, from stagnant adsorption in large volume water treatment to highly dynamic flow conditions relevant to printing, coating and processing applications. PMID:27209397

  17. Adsorption of phosphate from aqueous solutions onto modified wheat residue: characteristics, kinetic and column studies.

    PubMed

    Xu, Xing; Gao, Baoyu; Wang, Wenyi; Yue, Qinyan; Wang, Yu; Ni, Shouqing

    2009-04-01

    Kinetic and column adsorption of phosphate from aqueous solution using modified wheat residue (MWS) as an adsorbent were studied in a batch reactor. The respective characteristic rate constants and activation energy were presented after linear and non-linear fitting. In addition, the effects of influent concentration of phosphate and flow rates on the column adsorption were also investigated. The results showed that the adsorption process could reach equilibrium in 10-15 min, and the pseudo-second-order equation generated the best agreement with experimental data for adsorption systems. The activation energy was 3.39 kJ mol(-1) indicating that the synthesis process was a physical adsorption. In the column tests, the increase of influent concentration and flow rate both decreased the breakthrough time, and the MWS-packed column exhibited excellent phosphate removal from aqueous solution. These results provide strong evidence of the potential of MWS for the technological applications of phosphate removal from aqueous solutions.

  18. Extracorporeal adsorption of endotoxin.

    PubMed

    Staubach, K H; Rosenfeldt, J A; Veit, O; Bruch, H P

    1997-02-01

    In a porcine endotoxin shock model using a continuous intravenous endotoxin infusion of 250 ng/kg body weight per hour, the cardiorespiratory and hematologic parameters were studied while applying a new on-line polymyxin B immobilized adsorption system. This preliminary report shows that the new adsorbent can remove endotoxin selectively from the circulation and confers a good amount of protection from endotoxin-induced cardiopulmonary decompensation as well as hematologic alterations. Survival time could be extended from 216 min to 313 min. Whereas cardiac output and mean arterial pressure declined critically after 3 h in the controls, the treated group remained stable for another 3 h. These data show that endotoxin adsorption by polymyxin B coupled covalently to acrylic spheres as an adjunctive on-line measure in the septic syndrome seems feasible. PMID:10225785

  19. Adsorption kinetics and equilibrium study of nitrogen species onto radiata pine (Pinus radiata) sawdust.

    PubMed

    Harmayani, Kadek D; Faisal Anwar, A H M

    2016-01-01

    Nitrogen species (NH3-N, NO3-N, and NO2-N) are found as one of the major dissolved constituents in wastewater or stormwater runoff. In this research, laboratory experiments were conducted to remove these pollutants from the water environment using radiata pine (Pinus radiata) sawdust. A series of batch tests was conducted by varying initial concentration, dosage, particle size, pH, and contact time to check the removal performance. Test results confirmed the effectiveness of radiata pine sawdust for removing these contaminants from the aqueous phase (100% removal of NO3-N, and NO2-N; 55% removal of NH3-N). The adsorbent dosage and initial concentration showed a significantly greater effect on the removal process over pH or particle sizes. The optimum dosage for contaminant removal on a laboratory scale was found to be 12 g. Next, the adsorption kinetics were studied using intraparticle diffusion, liquid-film diffusion, and a pseudo-first order and pseudo-second order model. The adsorption of all species followed a pseudo-second order model but NO2-N adsorption followed both models. In addition, the kinetics of NO2-N adsorption showed two-step adsorption following intraparticle diffusion and liquid-film diffusion. The isotherm study showed that NO3-N and NO2-N adsorption fitted slightly better with the Freundlich model but that NH3-N adsorption followed both Freundlich and Langmuir models. PMID:27438245

  20. How specific halide adsorption varies hydrophobic interactions.

    PubMed

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  1. Adsorption of organic chemicals in soils.

    PubMed Central

    Calvet, R

    1989-01-01

    This paper presents a review on adsorption of organic chemicals on soils sediments and their constituents. The first part of this review deals with adsorption from gas and liquid phases and gives a discussion on the physical meaning of the shape of adsorption isotherms. Results show that no general rules can be proposed to describe univocally the relation between the shape of isotherms and the nature of adsorbate-adsorbent system. Kinetics of adsorption is discussed through the description of various models. Theoretical developments exist both for the thermodynamics and the kinetics of adsorption, but there is a strong need for experimental results. Possible adsorption mechanisms are ion exchange, interaction with metallic cations, hydrogen bonds, charge transfers, and London-van der Waals dispersion forces/hydrophobic effect. However, direct proofs of a given mechanism are rare. Several factors influence adsorption behavior. Electronic structure of adsorbed molecules, properties of adsorbents, and characteristics of the liquid phase are discussed in relation to adsorption. Such properties as water solubility, organic carbon content of adsorbing materials, and the composition of the liquid phase are particularly important. Evaluation of adsorption can be obtained through either laboratory measurements or use of several correlations. Adsorption measurements must be interpreted, taking into account treatment of adsorbent materials, experimental conditions, and secondary phenomena such as degradations. Correlations between adsorption coefficients and water-octanol partition coefficient or water solubility are numerous. They may be useful tools for prediction purposes. Relations with transport, bioavailability, and degradation are described. PMID:2695323

  2. Phosphate adsorption on lanthanum loaded biochar.

    PubMed

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu

    2016-05-01

    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC. PMID:26871732

  3. Adsorption of organic chemicals in soils.

    PubMed

    Calvet, R

    1989-11-01

    This paper presents a review on adsorption of organic chemicals on soils sediments and their constituents. The first part of this review deals with adsorption from gas and liquid phases and gives a discussion on the physical meaning of the shape of adsorption isotherms. Results show that no general rules can be proposed to describe univocally the relation between the shape of isotherms and the nature of adsorbate-adsorbent system. Kinetics of adsorption is discussed through the description of various models. Theoretical developments exist both for the thermodynamics and the kinetics of adsorption, but there is a strong need for experimental results. Possible adsorption mechanisms are ion exchange, interaction with metallic cations, hydrogen bonds, charge transfers, and London-van der Waals dispersion forces/hydrophobic effect. However, direct proofs of a given mechanism are rare. Several factors influence adsorption behavior. Electronic structure of adsorbed molecules, properties of adsorbents, and characteristics of the liquid phase are discussed in relation to adsorption. Such properties as water solubility, organic carbon content of adsorbing materials, and the composition of the liquid phase are particularly important. Evaluation of adsorption can be obtained through either laboratory measurements or use of several correlations. Adsorption measurements must be interpreted, taking into account treatment of adsorbent materials, experimental conditions, and secondary phenomena such as degradations. Correlations between adsorption coefficients and water-octanol partition coefficient or water solubility are numerous. They may be useful tools for prediction purposes. Relations with transport, bioavailability, and degradation are described.

  4. Adsorption and Desorption of Nitrogen and Water Vapor by clay

    NASA Astrophysics Data System (ADS)

    Cui, Deshan; Chen, Qiong; Xiang, Wei; Huang, Wei

    2015-04-01

    Adsorption and desorption of nitrogen and water vapor by clay has a significant impact on unsaturated soil physical and mechanical properties. In order to study the adsorption and desorption characteristics of nitrogen and water vapor by montmorillonite, kaolin and sliding zone soils, the Autosorb-iQ specific surface area and pore size analyzer instrument of United State was taken to carry out the analysis test. The adsorption and desorption of nitrogen at 77K and water vapor at 293K on clay sample were conducted. The theories of BET, FHH and hydration energy were taken to calculate the specific surface, surface fractal dimension and adsorption energy. The results show that the calculated specific surface of water vapor by clay is bigger than nitrogen adsorption test because clay can adsorb more water vapor molecule than nitrogen. Smaller and polar water vapor molecule can access the micropore and then adsorb on the mineral surface and mineral intralayer, which make the mineral surface cations hydrate and the mineral surface smoother. Bigger and nonpolar nitrogen molecule can not enter into the micropore as water vapor molecule and has weak interaction with clay surface.

  5. Molecular structure-adsorption study on current textile dyes.

    PubMed

    Örücü, E; Tugcu, G; Saçan, M T

    2014-01-01

    This study was performed to investigate the adsorption of a diverse set of textile dyes onto granulated activated carbon (GAC). The adsorption experiments were carried out in a batch system. The Langmuir and Freundlich isotherm models were applied to experimental data and the isotherm constants were calculated for 33 anthraquinone and azo dyes. The adsorption equilibrium data fitted more adequately to the Langmuir isotherm model than the Freundlich isotherm model. Added to a qualitative analysis of experimental results, multiple linear regression (MLR), support vector regression (SVR) and back propagation neural network (BPNN) methods were used to develop quantitative structure-property relationship (QSPR) models with the novel adsorption data. The data were divided randomly into training and test sets. The predictive ability of all models was evaluated using the test set. Descriptors were selected with a genetic algorithm (GA) using QSARINS software. Results related to QSPR models on the adsorption capacity of GAC showed that molecular structure of dyes was represented by ionization potential based on two-dimensional topological distances, chromophoric features and a property filter index. Comparison of the performance of the models demonstrated the superiority of the BPNN over GA-MLR and SVR models. PMID:25529487

  6. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    NASA Astrophysics Data System (ADS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-05-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  7. IMPACT OF OXYGEN MEDIATED OXIDATIVE COUPLING ON ADSORPTION KINETICS

    EPA Science Inventory

    The presence of molecular oxygen in the test environment promotes oxidative coupling (polymer formation) of phenolic compounds on the surface of granular activated carbon (GAC). Both adsorption equilibria and adsorption kinetics are affected by these chemical reactions. Lack of...

  8. Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment.

    PubMed

    Aroguz, Ayse Z; Gulen, J; Evers, R H

    2008-04-01

    The adsorption kinetics of methylene blue on pyrolyzed petrified sediment (PPS) has been performed using a batch-adsorption technique. The effects of various experimental parameters, such as initial dye concentration, contact time, and temperature were investigated. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The best correlation coefficient was obtained using the pseudo first-order kinetic model, which shows that the adsorption of methylene blue followed the pseudo-first-order rate expression and the rate constants were evaluated. The Langmuir and Freundlich adsorption isotherm models were applied to describe the equilibrium isotherms and the isotherm constants were determined. It was found that the data fitted well to Langmuir and Freundlich models. The activation energy of adsorption was also evaluated for the adsorption of methylene blue onto pyrolyzed sediment. It was found about 8.5 kJ mol(-1). Thermodynamics parameters DeltaG(o), DeltaH(o), DeltaS(o) were calculated, indicating that this process can be spontaneous and endothermic. The adsorption enthalpy and entropy were found as 14-18.5 kJ mol(-1) and 52.8-67 J mol(-1) K(-1), respectively. The results obtained from the adsorption process using PPS as adsorbent was subjected to student's t-test.

  9. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.

    PubMed

    Szlachta, M; Wójtowicz, P

    2013-01-01

    This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m(2)/g, MWCNTs 358 m(2)/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal.

  10. Adsorption studies of Cu(II) on Boston fern (Nephrolepis exaltata Schott cv. Bostoniensis) leaves

    NASA Astrophysics Data System (ADS)

    Rao, Rifaqat Ali Khan; Khan, Umra

    2016-02-01

    Adsorption studies were done on Boston fern leaves for the effective removal of Cu(II) ions from aqueous solution. It has been tested for the first time for heavy metal adsorption from aqueous solution. This promising material has shown remarkable adsorption capacity towards Cu(II) ions which confirm its novelty, ease of availability, non-toxic nature, cheapness, etc., and give the main innovation to the present study. The adsorbent was analyzed by FT-IR, SEM and EDS. The effect of pH, contact time, initial metal ion concentration and temperature on the adsorption was investigated using batch process to optimize conditions for maximum adsorption. The adsorption of Cu(II) was maximum (96 %) at pH 4. The experimental data were analyzed by Langmuir, Freundlich and Tempkin isotherms. The kinetic studies of Cu(II)were carried out at room temperature (30 °C) in the concentration range 10-100 mg L-1. The data obtained fitted well with the Langmuir isotherm and pseudo-second-order kinetics model. The maximum adsorption capacity (q m) obtained from Langmuir adsorption isotherm was found to be 27.027 mg g-1 at 30 °C. The process was found to be exothermic and spontaneous in nature. The breakthrough and exhaustive capacities were found to be 12.5 and 37.5 mg g-1, respectively. Desorption studies showed that 93.3 % Cu(II) could be desorbed with 0.1 M HCl by continuous mode.

  11. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.

    PubMed

    Szlachta, M; Wójtowicz, P

    2013-01-01

    This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m(2)/g, MWCNTs 358 m(2)/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal. PMID:24292474

  12. Surfactant adsorption kinetics in microfluidics

    PubMed Central

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore–surfactant interactions. PMID:27688765

  13. mGluR3 knockout mice show a working memory defect and an enhanced response to MK-801 in the T- and Y-maze cognitive tests.

    PubMed

    Lainiola, Mira; Procaccini, Chiara; Linden, Anni-Maija

    2014-06-01

    Polymorphisms in the metabotropic glutamate receptor 3 (mGluR3) encoding gene GRM3 have been linked to schizophrenia and cognitive performance in humans. Our aim was to analyze the role of mGluR3 in basal working memory and attentional processes, and also when these functions were distracted by the psychotomimetic N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801). mGluR3 knockout (KO) mice were used. Spontaneous alternation in a T-maze test was significantly reduced in mGluR3-KO mice compared to wildtype (WT) mice, particularly after a low dose of MK-801 (0.03 mg/kg, i.p., 30 min). In a Y-maze novelty discrimination test, the locomotor stimulatory effect of MK-801 (0.1mg/kg) was enhanced in mGluR3-KO mice. Interestingly, mGluR3-KO mice showed the significantly reduced alternation in the spontaneous alternation T-maze test and the significantly enhanced sensitivity to MK-801 in the Y-maze test only when forced to enter the right arm first, not when the forced arm was on the left. A side-biased response was also found in a rewarded alternation T-maze test, where mGluR3-KO mice made significantly more incorrect visits to the left arm than the right arm after a 25-s delay. No genotype difference was found in the novelty discrimination in the Y-maze test, rewarded alternation with a 5-s delay, preference for left or right when free to enter either arm or in MK-801-induced circling. Our findings indicate cognitive disturbance and left-right asymmetry in certain behavioral responses of mGluR3-KO mice. This novel observation warrants further elucidation, and should also be considered in other studies of mGluR3 in brain functions.

  14. mGluR3 knockout mice show a working memory defect and an enhanced response to MK-801 in the T- and Y-maze cognitive tests.

    PubMed

    Lainiola, Mira; Procaccini, Chiara; Linden, Anni-Maija

    2014-06-01

    Polymorphisms in the metabotropic glutamate receptor 3 (mGluR3) encoding gene GRM3 have been linked to schizophrenia and cognitive performance in humans. Our aim was to analyze the role of mGluR3 in basal working memory and attentional processes, and also when these functions were distracted by the psychotomimetic N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801). mGluR3 knockout (KO) mice were used. Spontaneous alternation in a T-maze test was significantly reduced in mGluR3-KO mice compared to wildtype (WT) mice, particularly after a low dose of MK-801 (0.03 mg/kg, i.p., 30 min). In a Y-maze novelty discrimination test, the locomotor stimulatory effect of MK-801 (0.1mg/kg) was enhanced in mGluR3-KO mice. Interestingly, mGluR3-KO mice showed the significantly reduced alternation in the spontaneous alternation T-maze test and the significantly enhanced sensitivity to MK-801 in the Y-maze test only when forced to enter the right arm first, not when the forced arm was on the left. A side-biased response was also found in a rewarded alternation T-maze test, where mGluR3-KO mice made significantly more incorrect visits to the left arm than the right arm after a 25-s delay. No genotype difference was found in the novelty discrimination in the Y-maze test, rewarded alternation with a 5-s delay, preference for left or right when free to enter either arm or in MK-801-induced circling. Our findings indicate cognitive disturbance and left-right asymmetry in certain behavioral responses of mGluR3-KO mice. This novel observation warrants further elucidation, and should also be considered in other studies of mGluR3 in brain functions. PMID:24631392

  15. PDMS compound adsorption in context.

    PubMed

    Li, Nianzhen; Schwartz, Michael; Ionescu-Zanetti, Cristian

    2009-02-01

    Soft lithography of polydimethylsiloxane (PDMS), an elastomeric polymer, has enabled rapid and inexpensive fabrication of microfluidic devices for various biotechnology applications. However, concerns remain about adsorption of compounds on PDMS surfaces because of its porosity and hydrophobicity. Here, the adsorption of 2 small fluorescent dyes of different hydrophobicity (calcein and 5- (and 6-)carboxytetramethylrhodamine (TMR)) on PDMS surface has been systematically characterized, and PDMS adsorption has been compared with 2 traditional substrates: glass and polystyrene. To characterize adsorption in a regimen that is more relevant to microfluidic applications, the adsorption and desorption of the 2 compounds in PDMS microfluidic channels under flow conditions were also studied. Results showed that there was minimal adsorption of the hydrophilic compound calcein on PDMS, whereas the more hydrophobic TMR adsorbed on PDMS up to 4 times of that on glass or polystyrene. Under flow conditions, the desorption profiles and times needed to drop desorbed compound concentrations to negligible levels (desorption time constant, 10-42 s) were characterized. In the worst case scenario, after a 4-min exposure to TMR, 4 min of continuous wash resulted in compound concentrations in the microchannels to drop to values below 2 x 10(- 5) of the initial concentration.

  16. Immunohistological profile of the Ras homologous B protein (RhoB) in human testes showing normal spermatogenesis, spermatogenic arrest and Sertoli cell only syndrome.

    PubMed

    Adly, Mohamed A; Hussein, Mahmoud Rezk Abdelwahed

    2010-09-01

    Ras homologous B protein (RhoB) belongs to the Ras homologous subfamily which consists of low molecular weight (21 kDa) GTP-binding proteins. Rho proteins are regulatory molecules associated with various kinases and as such they mediate changes in cell shape, contractility, motility and gene expression. To date, no data are available about the expression pattern of RhoB protein in the human testis showing normal and abnormal spermatogenesis. The present study addresses these issues. Human testicular biopsy specimens were obtained from patients suffering from post-testicular infertility (testis showing normal spermatogenesis, 10 cases) and testicular infertility (testis showing Sertoli cell only syndrome and spermatogenic arrest, 10 patients each). The expression of RhoB was examined using in situ immunofluorescent staining methods. In testes showing normal spermatogenesis, RhoB had a strong expression in the seminiferous epithelium (cytoplasm of Sertoli-cells, spermatogonia and spermatocytes) and in the interstitium (Leydig cells). RhoB expression was weak in the myofibroblasts and absent in the spermatids and sperms. In the testes showing abnormal spermatogenesis, RhoB expression was moderate in the seminiferous epithelium (cytoplasm of Sertoli cells, spermatogonia and spermatocytes) and was completely absent in the Leydig cells, myofibroblasts, spermatids and sperms. To the best of our knowledge, this study provides the first morphological indication that RhoB protein is expressed in human testis and its expression undergoes testicular infertility associated changes. These findings suggest the involvement of RhoB in the process of spermatogenesis in human and their possible therapeutic ramifications in testicular infertility are open for further investigations.

  17. [Surface characteristics of alkali modified activated carbon and the adsorption capacity of methane].

    PubMed

    Zhang, Meng-Zhu; Li, Lin; Liu, Jun-Xin; Sun, Yong-Jun; Li, Guo-Bin

    2013-01-01

    Coconut shell based activated carbon was modified by alkali with different concentrations. The surface structures of tested carbons were observed and analyzed by SEM and BET methods. Boehm's titration and SEM/EDS methods were applied to assay the functional groups and elements on the carbon surface. The adsorption of methane on tested carbons was investigated and adsorption behavior was described by the adsorption isotherms. Results showed that surface area and pore volume of modified carbon increased and surface oxygen groups decreased as the concentration of the alkali used increased, with no obvious change in pore size. When concentration of alkali was higher than 3.3 mol x L(-1), the specific surface area and pore volume of modified carbon was larger than that of original carbon. Methane adsorption capacity of alkali modified carbon increased 24%. Enlargement of surface area and pore volume, reduction of surface oxygen groups will benefit to enhance the methane adsorption ability on activated carbon. Adsorption behavior of methane followed the Langmuir isotherm and the adsorption coefficient was 163.7 m3 x mg(-1).

  18. Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: Preparation, characterization, and adsorption mechanism.

    PubMed

    Ren, Huixue; Gao, Zhimin; Wu, Daoji; Jiang, Jiahui; Sun, Youmin; Luo, Congwei

    2016-02-10

    Alginate-carboxymethyl cellulose (CMC) gel beads were prepared in this study using sodium alginate (SA) and sodium CMC through blending and cross-linking. The specific surface area and aperture of the prepared SA-CMC gel beads were tested. The SA-CMC structure was characterized and analyzed via infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Static adsorption experiment demonstrated that Pb(II) adsorption of SA-CMC exceeded 99% under the optimized conditions. In addition, experiments conducted under the same experimental conditions showed that the lead ion removal efficiency of SA-CMC was significantly higher than that of conventional adsorbents. The Pb(II) adsorption process of SA-CMC followed the Langmuir adsorption isotherm, and the dynamic adsorption model could be described through a pseudo-second-order rate equation. Pb(II) removal mechanisms of SA-CMC, including physical, chemical, and electrostatic adsorptions, were discussed based on microstructure analysis and adsorption kinetics. Chemical adsorption was the main adsorption method among these mechanisms. PMID:26686144

  19. Enhancement of elemental mercury adsorption by silver supported material.

    PubMed

    Khunphonoi, Rattabal; Khamdahsag, Pummarin; Chiarakorn, Siriluk; Grisdanurak, Nurak; Paerungruang, Adjana; Predapitakkun, Somrudee

    2015-06-01

    Mercury, generally found in natural gas, is extremely hazardous. Although average mercury levels are relatively low, they are further reduced to comply with future mercury regulations, which are stringent in order to avoid releasing to the environment. Herein, vapor mercury adsorption was therefore investigated using two kinds of supports, granular activated carbon (GAC) and titanium dioxide (TiO2). Both supports were impregnated by silver (5 and 15 wt.%), before testing against a commercial adsorbent (sulfur-impregnated activated carbon, SAC). The adsorption isotherm, kinetics, and its thermodynamics of mercury adsorption were reported. The results revealed that Langmuir isotherm provided a better fit to the experimental data. Pseudo second-order was applicable to describe adsorption kinetics. The higher uniform Ag dispersion was a key factor for the higher mercury uptake. TiO2 supported silver adsorbent showed higher mercury adsorption than the commercial one by approximately 2 times. Chemisorption of mercury onto silver active sites was confirmed by an amalgam formation found in the spent adsorbents.

  20. Adsorption dynamics of trichlorofluoromethane in activated carbon fiber beds.

    PubMed

    Zhang, Xiaoping; Zhao, Xin; Hu, Jiaqi; Wei, Chaohai; Bi, Hsiaotao T

    2011-02-28

    Adsorption on carbon fixed-beds is considered as an inexpensive and highly effective way for controlling chlorofluorocarbons (CFCs) emissions. In the present work, a dynamic model under constant-pattern wave conditions has been developed to predict the breakthrough behavior of trichlorofluoromethane (CFC-11) adsorption in a fixed bed packed with activated carbon fibers (ACFs). The adsorption of CFC-11 vapor onto viscose-based ACFs was performed in a fixed bed at different test conditions. The results showed that, in a deep bed (>120 mm), the analytical model based on the external mass transfer with the Langmuir isotherm could describe the adsorption dynamics well. The model parameters, the characteristic breakthrough time and the film mass-transfer coefficients are related to such operating parameters as the superficial gas velocity, feed concentration and bed height. It was found from the breakthrough dynamics that the mass transfer from the fluid phase to the fiber surface dominated the CFC-11 adsorption onto ACFs in fixed beds.

  1. Adsorption dynamics of trichlorofluoromethane in activated carbon fiber beds.

    PubMed

    Zhang, Xiaoping; Zhao, Xin; Hu, Jiaqi; Wei, Chaohai; Bi, Hsiaotao T

    2011-02-28

    Adsorption on carbon fixed-beds is considered as an inexpensive and highly effective way for controlling chlorofluorocarbons (CFCs) emissions. In the present work, a dynamic model under constant-pattern wave conditions has been developed to predict the breakthrough behavior of trichlorofluoromethane (CFC-11) adsorption in a fixed bed packed with activated carbon fibers (ACFs). The adsorption of CFC-11 vapor onto viscose-based ACFs was performed in a fixed bed at different test conditions. The results showed that, in a deep bed (>120 mm), the analytical model based on the external mass transfer with the Langmuir isotherm could describe the adsorption dynamics well. The model parameters, the characteristic breakthrough time and the film mass-transfer coefficients are related to such operating parameters as the superficial gas velocity, feed concentration and bed height. It was found from the breakthrough dynamics that the mass transfer from the fluid phase to the fiber surface dominated the CFC-11 adsorption onto ACFs in fixed beds. PMID:21216098

  2. Comparative adsorption isotherms and modeling of methylene blue onto activated carbons

    NASA Astrophysics Data System (ADS)

    Belhachemi, Meriem; Addoun, Fatima

    2011-12-01

    The adsorption of methylene blue (MB) on activated carbons prepared from date stones with different degree of activation has been investigated. Equilibrium adsorption data of MB was carried out at 298 K. Four isotherm models (Freundlich, Langmuir, Redlich-Peterson and Sips) were tested for modeling the adsorption isotherms by nonlinear method. The three-parameter equations (Redlich-Peterson and Sips) showed more applicability than the two-parameter equations (Freundlich and Langmuir), which can be explained by the fact that these have three adjustable parameters. The best fit was achieved with the Redlich-Peterson equation according to the high value of correlation coefficient. All the samples were capable of retaining the MB, with the best result being reached by the sample with higher burn-off. Date stones activated carbon showed high adsorption capacity of 460 mg/g, calculated from the Sips isotherm model.

  3. Adsorption of hydrogen sulfide onto activated carbon fibers: effect of pore structure and surface chemistry.

    PubMed

    Feng, Wenguo; Kwon, Seokjoon; Borguet, Eric; Vidic, Radisav

    2005-12-15

    To understand the nature of H2S adsorption onto carbon surfaces under dry and anoxic conditions, the effects of carbon pore structure and surface chemistry were studied using activated carbon fibers (ACFs) with different pore structures and surface areas. Surface pretreatments, including oxidation and heattreatment, were conducted before adsorption/desorption tests in a fixed-bed reactor. Raw ACFs with higher surface area showed greater adsorption and retention of sulfur, and heat treatment further enhanced adsorption and retention of sulfur. The retained amount of hydrogen sulfide correlated well with the amount of basic functional groups on the carbon surface, while the desorbed amount reflected the effect of pore structure. Temperature-programmed desorption (TPD) and thermal gravimetric analysis (TGA) showed that the retained sulfurous compounds were strongly bonded to the carbon surface. In addition, surface chemistry of the sorbent might determine the predominant form of adsorbate on the surface. PMID:16475362

  4. Adsorption of organic solvent vapors on hydrophobic Y-type zeolite

    SciTech Connect

    Yun, J.H.; Choi, D.K.; Kim, S.H.

    1998-06-01

    Experimental isotherms and prediction results for adsorption of benzene, toluene, dichloromethane and 1,1-dichloro-1-fluoroethane on hydrophobic Y-type zeolite are reported. Isotherm shows the type-V shape according to the classification by Brunauer et al. A simple thermodynamic method is employed to predict the experimental equilibrium data at various temperatures simultaneously. This plain method is based on the assumption that the value of the isosteric heat of adsorption does not depend on temperature for a certain surface loading. The Clausius-Clapeyron equation was used to calculate the isosteric heat of adsorption. To apply the method, only two sets of the experimental isotherm data at two different temperatures are needed. The Clausius-Clapeyron equation with two isotherms provided simple and reliable prediction of adsorption equilibrium relationships at various temperatures. Results with this method showed that the predicted value agrees well with the experimental data in the range of temperatures for the system tested.

  5. Adsorption of hydrogen sulfide onto activated carbon fibers: effect of pore structure and surface chemistry.

    PubMed

    Feng, Wenguo; Kwon, Seokjoon; Borguet, Eric; Vidic, Radisav

    2005-12-15

    To understand the nature of H2S adsorption onto carbon surfaces under dry and anoxic conditions, the effects of carbon pore structure and surface chemistry were studied using activated carbon fibers (ACFs) with different pore structures and surface areas. Surface pretreatments, including oxidation and heattreatment, were conducted before adsorption/desorption tests in a fixed-bed reactor. Raw ACFs with higher surface area showed greater adsorption and retention of sulfur, and heat treatment further enhanced adsorption and retention of sulfur. The retained amount of hydrogen sulfide correlated well with the amount of basic functional groups on the carbon surface, while the desorbed amount reflected the effect of pore structure. Temperature-programmed desorption (TPD) and thermal gravimetric analysis (TGA) showed that the retained sulfurous compounds were strongly bonded to the carbon surface. In addition, surface chemistry of the sorbent might determine the predominant form of adsorbate on the surface.

  6. Regeneration of Exhausted Arsenic Adsorptive media of a Full Scale Treatment System

    EPA Science Inventory

    This presentation will describe the method and results of laboratory tests showing the feasibility of regenerating exhausted, iron-based, adsorptive media and the results of a follow up regeneration test at a full scale system in Twentynine Palms CA. The laboratory studies on se...

  7. Adsorption/desorption characteristics and separation of anthocyanins from muscadine (Vitis rotundifolia) juice pomace by use of macroporous adsorbent resins.

    PubMed

    Sandhu, Amandeep K; Gu, Liwei

    2013-02-20

    In this study, the adsorption/desorption characteristics of anthocyanins on five Amberlite resins (FPX-66, XAD-7HP, XAD-16N, XAD-1180, and XAD-761) were evaluated. FPX-66 and XAD-16N showed the highest adsorption and desorption capacities and ratios for anthocyanins from muscadine pomace extract, while XAD-7HP had the lowest adsorption and desorption capacities and ratios. On the basis of static adsorption and desorption tests, three resins (FPX-66, XAD-16N, and XAD-1180) were selected for adsorption kinetics and isotherms. The adsorption mechanism was better explained by the pseudo-first-order kinetics for FPX-66 and XAD-16N; however, for XAD-1180, pseudo-second-order kinetics was the most suitable model. The experimental data fitted best to Langmuir isotherm model for all three resins. Dynamic testing was done on a column packed with FPX-66 resin and breakthrough volume was reached at 17 bed volumes of muscadine pomace water extract during adsorption. Three bed volumes of aqueous ethanol (70%) resulted in complete desorption. Resin adsorption resulted in a concentrated pomace extract that contained 13% (w/w) anthocyanins with no detectable sugars. PMID:23368425

  8. Adsorption of phenolic compound by aged-refuse.

    PubMed

    Xiaoli, Chai; Youcai, Zhao

    2006-09-01

    The adsorption of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol by aged-refuse has been studied. Adsorption isotherms have been determined for phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol and the data fits well to the Freundlich equation. The chlorinated phenols are absorbed more strongly than the phenol and the adsorption capacity has an oblivious relationship with the numbers and the position of chlorine subsistent. The experiment data suggests that both the partition function and the chemical adsorption involve in the adsorption process. Pseudo-first-order and pseudo-second-order model were applied to investigate the kinetics of the adsorption and the results show that it fit the pseudo-second-order model. More than one step involves in the adsorption process and the overall rate of the adsorption process appears to be controlled by the chemical reaction. The thermodynamic analysis indicates that the adsorption is spontaneous and endothermic.

  9. Adsorption behavior of herbicide butachlor on typical soils in China and humic acids from the soil samples.

    PubMed

    Xu, Duanping; Xu, Zhonghou; Zhu, Shuquan; Cao, Yunzhe; Wang, Yu; Du, Xiaoming; Gu, Qingbao; Li, Fasheng

    2005-05-01

    Three kinds of soils in China, krasnozem, fluvo-aquic soil, and phaeozem, as well as the humic acids (HAs) isolated from them, were used to adsorb the herbicide butachlor from water. Under the experimental conditions, the adsorption amount of butachlor on soils was positively correlated with the content of soil organic matter. HAs extracted from different kinds of soils had different adsorption capacity for the tested herbicide, which was positively correlated with their content of carbonyls. The adsorption mechanism was studied using Fourier transform infrared spectroscopy and cross-polarization with magic angle spinning 13C nuclear magnetic resonance (CP-MAS 13C NMR) techniques. It was showed that the adsorption mainly took place on the C=O, phenolic and alcoholic O-H groups of HAs. It was also confirmed that the adsorption mechanism was hydrogen bonds formation between the above groups of HAs and butachlor molecules.

  10. Nickel oxide grafted andic soil for efficient cesium removal from aqueous solution: adsorption behavior and mechanisms.

    PubMed

    Ding, Dahu; Lei, Zhongfang; Yang, Yingnan; Feng, Chuanping; Zhang, Zhenya

    2013-10-23

    An andic soil, akadama clay, was modified with nickel oxide and tested for its potential application in the removal of cesium from aqueous solution. Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and powder X-ray diffraction (XRD) results revealed the nickel oxide was successfully grafted into akadama clay. N2 adsorption-desorption isotherms indicated the surface area decreased remarkably after modification while the portion of mesopores increased greatly. Thermogravimetric-differential thermal analysis (TG-DTA) showed the modified akadama clay had better thermostability than the pristine akadama clay. Decreases in cation exchange capacity (CEC) and ζ-potential were also detected after the modification. Adsorption kinetic and isotherm studies indicated the adsorption of Cs+ on the modified akadama clay was a monolayer adsorption process. Adsorption capacity was greatly enhanced for the modified akadama clay probably due to the increase in negative surface charge caused by the modification. The adsorption of Cs+ on the modified akadama clay was dominated by an electrostatic adsorption process. Results of this work are of great significance for the application of akadama clay as a promising adsorbent material for cesium removal from aqueous solutions.

  11. Adsorption of methylene blue on biochar microparticles derived from different waste materials.

    PubMed

    Lonappan, Linson; Rouissi, Tarek; Das, Ratul Kumar; Brar, Satinder K; Ramirez, Antonio Avalos; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-03-01

    Biochar microparticles were prepared from three different types of biochar, derived from waste materials, such as pine wood (BC-PW), pig manure (BC-PM) and cardboard (BC-PD) under various pyrolysis conditions. The microparticles were prepared by dry grinding and sequential sieving through various ASTM sieves. Particle size and specific surface area were analyzed using laser particle size analyzer. The particles were further characterized using scanning electron microscope (SEM). The adsorption capacity of each class of adsorbent was determined by methylene blue adsorption tests in comparison with commercially available activated carbon. Experimental results showed that dye adsorption increased with initial concentration of the adsorbate and biochar dosage. Biochar microparticles prepared from different sources exhibited improvement in adsorption capacity (7.8±0.5 mg g(-1) to 25±1.3 mg g(-1)) in comparison with raw biochar and commercially available activated carbon. The adsorption capacity varied with source material and method of production of biochar. The maximum adsorption capacity was 25 mg g(-1) for BC-PM microparticles at 25°C for an adsorbate concentration of 500 mg L(-1) in comparison with 48.30±3.6 mg g(-1) for activated carbon. The equilibrium adsorption data were best described by Langmuir model for BC-PM and BC-PD and Freundlich model for BC-PW.

  12. Adsorption of methylene blue on biochar microparticles derived from different waste materials.

    PubMed

    Lonappan, Linson; Rouissi, Tarek; Das, Ratul Kumar; Brar, Satinder K; Ramirez, Antonio Avalos; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-03-01

    Biochar microparticles were prepared from three different types of biochar, derived from waste materials, such as pine wood (BC-PW), pig manure (BC-PM) and cardboard (BC-PD) under various pyrolysis conditions. The microparticles were prepared by dry grinding and sequential sieving through various ASTM sieves. Particle size and specific surface area were analyzed using laser particle size analyzer. The particles were further characterized using scanning electron microscope (SEM). The adsorption capacity of each class of adsorbent was determined by methylene blue adsorption tests in comparison with commercially available activated carbon. Experimental results showed that dye adsorption increased with initial concentration of the adsorbate and biochar dosage. Biochar microparticles prepared from different sources exhibited improvement in adsorption capacity (7.8±0.5 mg g(-1) to 25±1.3 mg g(-1)) in comparison with raw biochar and commercially available activated carbon. The adsorption capacity varied with source material and method of production of biochar. The maximum adsorption capacity was 25 mg g(-1) for BC-PM microparticles at 25°C for an adsorbate concentration of 500 mg L(-1) in comparison with 48.30±3.6 mg g(-1) for activated carbon. The equilibrium adsorption data were best described by Langmuir model for BC-PM and BC-PD and Freundlich model for BC-PW. PMID:26818183

  13. Adsorption of hexavalent chromium onto organic bentonite modified by the use of iron(III) chloride.

    PubMed

    Hao, Jianchao; Xiao, Leilei; Liu, Huifen; Shi, Lijun; Xu, Xiaoyan; Lian, Bin; Liu, Congqiang

    2014-01-01

    The adsorption of hexavalent chromium (Cr(VI)) was improved by using organic bentonite (OB) modified with iron(III) chloride. The adsorption mechanisms and characteristics of OB and organic bentonite modified by FeCl3 (FMOB) were studied by using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy (EDS). It was found that hydroxyl-iron replaced some of the calcium and magnesium contained in the FMOB, but no significant change in its structure was shown even though the adsorption experiments proved that FMOB had a better Cr(VI) adsorption ability compared to OB. The coated material was prepared by mixing FMOB and 4A molecular sieves in a coated pot for the adsorption experiments in the test column. The relevant results showed that the adsorption of the coated material retained its high adsorption ability and maintained that ability after desorption and regeneration, which implied a potential for further application. PMID:25116496

  14. Modeling the adsorption of mixed gases based on pure gas adsorption properties

    NASA Astrophysics Data System (ADS)

    Tzabar, N.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.

    2015-12-01

    Sorption-based Joule-Thomson (JT) cryocoolers usually operate with pure gases. A sorption-based compressor has many benefits; however, it is limited by the pressure ratios it can provide. Using a mixed-refrigerant (MR) instead of a pure refrigerant in JT cryocoolers allows working at much lower pressure ratios. Therefore, it is attractive using MRs in sorption- based cryocoolers in order to reduce one of its main limitations. The adsorption of mixed gases is usually investigated under steady-state conditions, mainly for storage and separation processes. However, the process in a sorption compressor goes through various temperatures, pressures and adsorption concentrations; therefore, it differs from the common mixed gases adsorption applications. In order to simulate the sorption process in a compressor a numerical analysis for mixed gases is developed, based on pure gas adsorption characteristics. The pure gas adsorption properties have been measured for four gases (nitrogen, methane, ethane, and propane) with Norit-RB2 activated carbon. A single adsorption model is desired to describe the adsorption of all four gases. This model is further developed to a mixed-gas adsorption model. In future work more adsorbents will be tested using these four gases and the adsorption model will be verified against experimental results of mixed-gas adsorption measurements.

  15. Albumin (BSA) Adsorption over Graphene in Aqueous Environment: Influence of Orientation, Adsorption Protocol, and Solvent Treatment.

    PubMed

    Vilhena, J G; Rubio-Pereda, Pamela; Vellosillo, Perceval; Serena, P A; Pérez, Rubén

    2016-02-23

    We report 150 ns explicit solvent MD simulations of the adsorption on graphene of albumin (BSA) in two orientations and using two different adsorption protocols, i.e., free and forced adsorption. Our results show that free adsorption occurs with little structural rearrangements. Even taking adsorption to an extreme, by forcing it with a 5 nN downward force applied during the initial 20 ns, we show that along a particular orientation BSA is able to preserve the structural properties of the majority of its binding sites. Furthermore, in all the cases considered in this work, the ibuprofen binding site has shown a strong resilience to structural changes. Finally, we compare these results with implicit solvent simulations and find that the latter predicts an extreme protein unfolding upon adsorption. The origin of this discrepancy is attributed to a poor description of the water entropic forces at interfaces in the implicit solvent methods.

  16. Albumin (BSA) Adsorption over Graphene in Aqueous Environment: Influence of Orientation, Adsorption Protocol, and Solvent Treatment.

    PubMed

    Vilhena, J G; Rubio-Pereda, Pamela; Vellosillo, Perceval; Serena, P A; Pérez, Rubén

    2016-02-23

    We report 150 ns explicit solvent MD simulations of the adsorption on graphene of albumin (BSA) in two orientations and using two different adsorption protocols, i.e., free and forced adsorption. Our results show that free adsorption occurs with little structural rearrangements. Even taking adsorption to an extreme, by forcing it with a 5 nN downward force applied during the initial 20 ns, we show that along a particular orientation BSA is able to preserve the structural properties of the majority of its binding sites. Furthermore, in all the cases considered in this work, the ibuprofen binding site has shown a strong resilience to structural changes. Finally, we compare these results with implicit solvent simulations and find that the latter predicts an extreme protein unfolding upon adsorption. The origin of this discrepancy is attributed to a poor description of the water entropic forces at interfaces in the implicit solvent methods. PMID:26799950

  17. Chimpanzees Show a Developmental Increase in Susceptibility to Contagious Yawning: A Test of the Effect of Ontogeny and Emotional Closeness on Yawn Contagion

    PubMed Central

    Madsen, Elainie Alenkær; Persson, Tomas; Sayehli, Susan; Lenninger, Sara; Sonesson, Göran

    2013-01-01

    Contagious yawning has been reported for humans, dogs and several non-human primate species, and associated with empathy in humans and other primates. Still, the function, development and underlying mechanisms of contagious yawning remain unclear. Humans and dogs show a developmental increase in susceptibility to yawn contagion, with children showing an increase around the age of four, when also empathy-related behaviours and accurate identification of others’ emotions begin to clearly evince. Explicit tests of yawn contagion in non-human apes have only involved adult individuals and examined the existence of conspecific yawn contagion. Here we report the first study of heterospecific contagious yawning in primates, and the ontogeny of susceptibility thereto in chimpanzees, Pan troglodytes verus. We examined whether emotional closeness, defined as attachment history with the yawning model, affected the strength of contagion, and compared the contagiousness of yawning to nose-wiping. Thirty-three orphaned chimpanzees observed an unfamiliar and familiar human (their surrogate human mother) yawn, gape and nose-wipe. Yawning, but not nose-wiping, was contagious for juvenile chimpanzees, while infants were immune to contagion. Like humans and dogs, chimpanzees are subject to a developmental trend in susceptibility to contagious yawning, and respond to heterospecific yawn stimuli. Emotional closeness with the model did not affect contagion. The familiarity-biased social modulatory effect on yawn contagion previously found among some adult primates, seem to only emerge later in development, or be limited to interactions with conspecifics. The influence of the ‘chameleon effect’, targeted vs. generalised empathy, perspective-taking and visual attention on contagious yawning is discussed. PMID:24146848

  18. Chimpanzees show a developmental increase in susceptibility to contagious yawning: a test of the effect of ontogeny and emotional closeness on yawn contagion.

    PubMed

    Madsen, Elainie Alenkær; Persson, Tomas; Sayehli, Susan; Lenninger, Sara; Sonesson, Göran

    2013-01-01

    Contagious yawning has been reported for humans, dogs and several non-human primate species, and associated with empathy in humans and other primates. Still, the function, development and underlying mechanisms of contagious yawning remain unclear. Humans and dogs show a developmental increase in susceptibility to yawn contagion, with children showing an increase around the age of four, when also empathy-related behaviours and accurate identification of others' emotions begin to clearly evince. Explicit tests of yawn contagion in non-human apes have only involved adult individuals and examined the existence of conspecific yawn contagion. Here we report the first study of heterospecific contagious yawning in primates, and the ontogeny of susceptibility thereto in chimpanzees, Pan troglodytes verus. We examined whether emotional closeness, defined as attachment history with the yawning model, affected the strength of contagion, and compared the contagiousness of yawning to nose-wiping. Thirty-three orphaned chimpanzees observed an unfamiliar and familiar human (their surrogate human mother) yawn, gape and nose-wipe. Yawning, but not nose-wiping, was contagious for juvenile chimpanzees, while infants were immune to contagion. Like humans and dogs, chimpanzees are subject to a developmental trend in susceptibility to contagious yawning, and respond to heterospecific yawn stimuli. Emotional closeness with the model did not affect contagion. The familiarity-biased social modulatory effect on yawn contagion previously found among some adult primates, seem to only emerge later in development, or be limited to interactions with conspecifics. The influence of the 'chameleon effect', targeted vs. generalised empathy, perspective-taking and visual attention on contagious yawning is discussed. PMID:24146848

  19. Chimpanzees show a developmental increase in susceptibility to contagious yawning: a test of the effect of ontogeny and emotional closeness on yawn contagion.

    PubMed

    Madsen, Elainie Alenkær; Persson, Tomas; Sayehli, Susan; Lenninger, Sara; Sonesson, Göran

    2013-01-01

    Contagious yawning has been reported for humans, dogs and several non-human primate species, and associated with empathy in humans and other primates. Still, the function, development and underlying mechanisms of contagious yawning remain unclear. Humans and dogs show a developmental increase in susceptibility to yawn contagion, with children showing an increase around the age of four, when also empathy-related behaviours and accurate identification of others' emotions begin to clearly evince. Explicit tests of yawn contagion in non-human apes have only involved adult individuals and examined the existence of conspecific yawn contagion. Here we report the first study of heterospecific contagious yawning in primates, and the ontogeny of susceptibility thereto in chimpanzees, Pan troglodytes verus. We examined whether emotional closeness, defined as attachment history with the yawning model, affected the strength of contagion, and compared the contagiousness of yawning to nose-wiping. Thirty-three orphaned chimpanzees observed an unfamiliar and familiar human (their surrogate human mother) yawn, gape and nose-wipe. Yawning, but not nose-wiping, was contagious for juvenile chimpanzees, while infants were immune to contagion. Like humans and dogs, chimpanzees are subject to a developmental trend in susceptibility to contagious yawning, and respond to heterospecific yawn stimuli. Emotional closeness with the model did not affect contagion. The familiarity-biased social modulatory effect on yawn contagion previously found among some adult primates, seem to only emerge later in development, or be limited to interactions with conspecifics. The influence of the 'chameleon effect', targeted vs. generalised empathy, perspective-taking and visual attention on contagious yawning is discussed.

  20. Clicking-Machine Operator (boot & show; leather prod.) 6-62.055--Technical Report on Standardization of the General Aptitude Test Battery.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.

    The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…

  1. Specificity dependence between serological tests for diagnosing bovine brucellosis in Brucella-free farms showing false positive serological reactions due to Yersinia enterocolitica O:9

    PubMed Central

    2005-01-01

    Abstract When brucellosis false positive serological reactions happen in cattle, the serial use of pairs of specificity-correlated serological tests (rose bengal, complement fixation, competitive ELISA) results in specificities lower than expected. In this situation, highly specific tests, such as the indirect ELISA used alone, may be more adequate than serial testing. PMID:16454384

  2. MEG-measured auditory steady-state oscillations show high test-retest reliability: A sensor and source-space analysis.

    PubMed

    Tan, H-R M; Gross, J; Uhlhaas, P J

    2015-11-15

    Stability of oscillatory signatures across magnetoencephalography (MEG) measurements is an important prerequisite for basic and clinical research that has been insufficiently addressed. Here, we evaluated the test-retest reliability of auditory steady-state responses (ASSRs) over two MEG sessions. The study required participants (N=13) to detect the rare occurrence of pure tones interspersed within a stream of 5 Hz or 40 Hz amplitude-modulated (AM) tones. Intraclass correlations (ICC; Shrout and Fleiss, 1979) were derived to assess stability of spectral power changes and the inter-trial phase coherence (ITPC) of task-elicited neural responses. ASSRs source activity was estimated using eLORETA beamforming from bilateral auditory cortex. ASSRs to 40 Hz AM stimuli evoked stronger power modulation and phase-locking than 5 Hz stimulation. Overall, spectral power and ITPC values at both sensor- and source-level showed robust ICC values. Notably, ITPC measures yielded higher ICCs (~0.86-0.96) between sessions compared to the assessment of spectral power change (~0.61-0.82). Our data indicate that spectral modulations and phase consistency of ASSRs in MEG data are highly reproducible, providing support for MEG-measured oscillatory parameters in basic and clinical research.

  3. Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes.

    PubMed

    Li, Qiang; Chen, Bo; Lin, Peng; Zhou, Jiali; Zhan, Juhong; Shen, Qiuying; Pan, Xuejun

    2016-01-01

    The root powder of long-root Eichhornia crassipes, as a new kind of biodegradable adsorbent, has been tested for aqueous adsorption of Pb, Zn, Cu, and Cd. From FT-IR, we found that the absorption peaks of phosphorous compounds, carbonyl, and nitrogenous compounds displayed obvious changes before and after adsorption which illustrated that plant characteristics may play a role in binding with metals. Surface properties and morphology of the root powders have been characterized by means of SEM and BET. Energy spectrum analysis showed that the metals were adsorbed on root powders after adsorption. Then, optimum quantity of powder, pH values, and metal ion concentrations in single-system and multi-system were detected to discuss the characteristics and mechanisms of metal adsorption. Freundlich model and the second-order kinetics equation could well describe the adsorption of heavy metals in single-metal system. The adsorption of Pb, Zn, and Cd in the multi-metal system decreased with the concentration increased. At last, competitive adsorption of every two metals on root powder proved that Cu and Pb had suppressed the adsorption performance of Cd and Zn.

  4. Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes.

    PubMed

    Li, Qiang; Chen, Bo; Lin, Peng; Zhou, Jiali; Zhan, Juhong; Shen, Qiuying; Pan, Xuejun

    2016-01-01

    The root powder of long-root Eichhornia crassipes, as a new kind of biodegradable adsorbent, has been tested for aqueous adsorption of Pb, Zn, Cu, and Cd. From FT-IR, we found that the absorption peaks of phosphorous compounds, carbonyl, and nitrogenous compounds displayed obvious changes before and after adsorption which illustrated that plant characteristics may play a role in binding with metals. Surface properties and morphology of the root powders have been characterized by means of SEM and BET. Energy spectrum analysis showed that the metals were adsorbed on root powders after adsorption. Then, optimum quantity of powder, pH values, and metal ion concentrations in single-system and multi-system were detected to discuss the characteristics and mechanisms of metal adsorption. Freundlich model and the second-order kinetics equation could well describe the adsorption of heavy metals in single-metal system. The adsorption of Pb, Zn, and Cd in the multi-metal system decreased with the concentration increased. At last, competitive adsorption of every two metals on root powder proved that Cu and Pb had suppressed the adsorption performance of Cd and Zn. PMID:26605425

  5. Effect of calcium on adsorption capacity of powdered activated carbon.

    PubMed

    Li, Gang; Shang, Junteng; Wang, Ying; Li, Yansheng; Gao, Hong

    2013-12-01

    We investigated the effect of calcium ion on the adsorption of humic acid (HA) (as a target pollutant) by powered activated carbon. The HA adsorption isotherms at different pH and kinetics of two different solutions including HA alone and HA doped Ca(2+), were performed. It was showed that the adsorption capacity of powdered activated carbon (PAC) for HA was markedly enhanced when Ca(2+) was doped into HA. Also, HA and Ca(2+) taken as nitrate were tested on the uptake of each other respectively and it was showed that the adsorbed amounts of both of them were significantly promoted when HA and calcium co-existed. Furthermore, the adsorbed amount of HA slightly decreased with the increasing of Ca(2+) concentration, whereas the amount of calcium increased with the increasing of HA concentration, but all above the amounts without addition. Finally, the change of pH before and after adsorption process is studied. In the two different solutions including HA alone and HA doped Ca(2+), pH had a small rise, but the extent of pH of later solution was bigger. PMID:25078809

  6. Chemistry-specific surface adsorption of the barnacle settlement-inducing protein complex

    PubMed Central

    Petrone, Luigi; Aldred, Nick; Emami, Kaveh; Enander, Karin; Ederth, Thomas; Clare, Anthony S.

    2015-01-01

    Gregarious settlement in barnacle larvae (cyprids) is induced by a contact pheromone, the settlement-inducing protein complex (SIPC). The SIPC has been identified both in the cuticle of adult barnacles and in the temporary adhesive secretion (footprint) of cyprids. Besides acting as a settlement inducer, the presence of the SIPC in footprints points to its additional involvement in the adhesion process. SIPC adsorption behaviour was therefore investigated on a series of self-assembled monolayers (SAMs) by surface plasmon resonance at the pH of seawater (8.3). Fibrinogen and α2-macroglobulin (A2M) (blood complement protease inhibitors with which the SIPC shares 29% sequence homology) were used in the adsorption experiments as positive and negative standards, respectively. The mass uptake of the SIPC was comparable to that of fibrinogen, with adsorption observed even on the protein-resistant oligo(ethylene glycol) surface. Notably, on the positively charged SAM the SIPC showed a kinetic overshoot, indicating a metastable configuration causing the amount of adsorbed protein to temporarily exceed its equilibrium value. A2M adsorption was low or negligible on all SAMs tested, except for the positively charged surface, indicating that A2M adsorption is mainly driven by electrostatics. Evaluation of SIPC non-specific adsorption kinetics revealed that it adsorbed irreversibly and non-cooperatively on all surfaces tested. PMID:25657832

  7. Chemistry-specific surface adsorption of the barnacle settlement-inducing protein complex.

    PubMed

    Petrone, Luigi; Aldred, Nick; Emami, Kaveh; Enander, Karin; Ederth, Thomas; Clare, Anthony S

    2015-02-01

    Gregarious settlement in barnacle larvae (cyprids) is induced by a contact pheromone, the settlement-inducing protein complex (SIPC). The SIPC has been identified both in the cuticle of adult barnacles and in the temporary adhesive secretion (footprint) of cyprids. Besides acting as a settlement inducer, the presence of the SIPC in footprints points to its additional involvement in the adhesion process. SIPC adsorption behaviour was therefore investigated on a series of self-assembled monolayers (SAMs) by surface plasmon resonance at the pH of seawater (8.3). Fibrinogen and α2-macroglobulin (A2M) (blood complement protease inhibitors with which the SIPC shares 29% sequence homology) were used in the adsorption experiments as positive and negative standards, respectively. The mass uptake of the SIPC was comparable to that of fibrinogen, with adsorption observed even on the protein-resistant oligo(ethylene glycol) surface. Notably, on the positively charged SAM the SIPC showed a kinetic overshoot, indicating a metastable configuration causing the amount of adsorbed protein to temporarily exceed its equilibrium value. A2M adsorption was low or negligible on all SAMs tested, except for the positively charged surface, indicating that A2M adsorption is mainly driven by electrostatics. Evaluation of SIPC non-specific adsorption kinetics revealed that it adsorbed irreversibly and non-cooperatively on all surfaces tested. PMID:25657832

  8. Adsorption of thorium from aqueous solutions by perlite.

    PubMed

    Talip, Z; Eral, M; Hiçsönmez, U

    2009-02-01

    The use of expanded perlite for the adsorption of thorium from aqueous solution by batch technique is presented. The effects of particle size, pH of the solution, initial thorium concentration, shaking time, V/m ratio and temperature were determined. It was found that the adsorption capacity increases by the increase in the pH of the suspensions. The rate of thorium adsorption on expanded perlite was observed to be fast in the first hour of the reaction time. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models and the adsorption experiments conducted at 30 +/- 1 degrees C showed that the adsorption isotherms correlated well with the Langmuir model. From the adsorption data, thermodynamic parameters such as DeltaG(o), DeltaH(o) and DeltaS(o) were calculated as a function of temperature.

  9. Adsorption of xenon and krypton on shales

    NASA Technical Reports Server (NTRS)

    Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.

    1981-01-01

    A method that uses a mass spectrometer as a manometer is employed in the measurement of Xe and Kr adsorption parameters on shales and related samples, where gas partial pressures were lower than 10 to the -11th atm, corresponding adsorption coverages are only small fractions of a monolayer, and Henry's Law behavior is expected and observed. Results show heats of adsorption in the 2-7 kcal/mol range, and Henry constants at 0-25 C of 1 cu cm STP/g per atmosphere are extrapolated. Although the adsorption properties obtained are variable by sample, the range obtained suggests that shales may be capable of an equilibrium adsorption with modern air high enough to account for a significant fraction of the atmospheric inventory of Xe, and perhaps even of Kr. This effect will nevertheless not account for the factor-of-25 defficiency of atmospheric Xe, in comparison with the planetary gas patterns observed in meteorites.

  10. Adsorption kinetics of methyl violet onto perlite.

    PubMed

    Doğan, Mehmet; Alkan, Mahir

    2003-01-01

    This study examines adsorption kinetics and activation parameters of methyl violet on perlite. The effect of process parameters like contact time, concentration of dye, temperature and pH on the extent of methyl violet adsorption from solution has been investigated. Results of the kinetic studies show that the adsorption reaction is first order with respect to dye solution concentration with activation energy of 13.2 kJ mol(-1). This low activation energy value indicates that the adsorption reaction is diffusion controlled. The activation parameters using Arrhenius and Eyring equations have been calculated. Adsorption increases with increase of variables such as contact time, initial dye concentration, temperature and pH.

  11. Adsorption Refrigeration System

    SciTech Connect

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  12. Lichen substances affect metal adsorption in Hypogymnia physodes.

    PubMed

    Hauck, Markus; Huneck, Siegfried

    2007-01-01

    Lichen substances are known to function as chelators of cations. We tested the hypothesis that lichen substances can control the uptake of toxic metals by adsorbing metal ions at cation exchange sites on cell walls. If true, this hypothesis would help to provide a mechanistic explanation for results of a recent study showing increased production of physodalic acid by thalli of the lichen Hypogymnia physodes transplanted to sites with heavy metal pollution. We treated cellulose filters known to mimic the cation exchange abilities of lichen thalli with four lichen substances produced by H. physodes (physodic acid, physodalic acid, protocetraric acid, and atranorin). Treated filters were exposed to solutions containing seven cations (Ca(2+), Cu(2+), Fe(2+), Fe(3+), Mg(2+), Mn(2+), and Na(+)), and changes to the solution concentrations were measured. Physodalic acid was most effective at influencing metal adsorption, as it increased the adsorption of Fe(3+), but reduced the adsorption of Cu(2+), Mn(2+), and Na(+), and to a lesser extent, that of Ca(2+) and Mg(2+). Reduced Na(+) adsorption matches with the known tolerance of this species to NaCl. The results may indicate a possible general role of lichen substances in metal homeostasis and pollution tolerance. PMID:17136464

  13. Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater.

    PubMed

    Maruthamuthu, Murali Kannan; Nadarajan, Saravanan Prabhu; Ganesh, Irisappan; Ravikumar, Sambandam; Yun, Hyungdon; Yoo, Ik-Keun; Hong, Soon Ho

    2015-11-01

    For the construction of an efficient copper waste treatment system, a cell surface display strategy was employed. The copper adsorption ability of recombinant bacterial strains displaying three different copper binding peptides were evaluated in LB Luria-Bertani medium (LB), artificial wastewater, and copper phthalocyanine containing textile dye industry wastewater samples. Structural characteristics of the three peptides were also analyzed by similarity-based structure modeling. The best binding peptide was chosen for the construction of a dimeric peptide display and the adsorption ability of the monomeric and dimeric peptide displayed strains were compared. The dimeric peptide displayed strain showed superior copper adsorption in all three tested conditions (LB, artificial wastewater, and textile dye industry wastewater). When the strains were exposed to copper phthalocyanine dye polluted wastewater, the dimeric peptide display [543.27 µmol/g DCW dry cell weight (DCW)] showed higher adsorption of copper when compared with the monomeric strains (243.53 µmol/g DCW).

  14. Complex Parts, Complex Data: Why You Need to Understand What Radiation Single Event Testing Data Does and Doesn't Show and the Implications Thereof

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Berg, Melanie D.

    2015-01-01

    Electronic parts (integrated circuits) have grown in complexity such that determining all failure modes and risks from single particle event testing is impossible. In this presentation, the authors will present why this is so and provide some realism on what this means. Its all about understanding actual risks and not making assumptions.

  15. Complex Parts, Complex Data: Why You Need to Understand What Radiation Single Event Testing Data Does and Doesn't Show and the Implications Thereof

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Berg, Melanie D.

    2016-01-01

    Electronic parts (integrated circuits) have grown in complexity such that determining all failure modes and risks from single particle event testing is impossible. In this presentation, the authors will present why this is so and provide some realism on what this means. Its all about understanding actual risks and not making assumptions.

  16. Intelligence Tests with Higher G-Loadings Show Higher Correlations with Body Symmetry: Evidence for a General Fitness Factor Mediated by Developmental Stability

    ERIC Educational Resources Information Center

    Prokosch, M.D.; Yeo, R.A.; Miller, G.F.

    2005-01-01

    Just as body symmetry reveals developmental stability at the morphological level, general intelligence may reveal developmental stability at the level of brain development and cognitive functioning. These two forms of developmental stability may overlap by tapping into a ''general fitness factor.'' If so, then intellectual tests with higher…

  17. Unsaturated fatty acids show clear elicitation responses in a modified local lymph node assay with an elicitation phase, and test positive in the direct peptide reactivity assay.

    PubMed

    Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Miyazaki, Hiroshi; Itagaki, Hiroshi

    2015-12-01

    The Organisation for Economic Co-operation and Development (OECD) Test Guidelines (TG) adopted the murine local lymph node assay (LLNA) and guinea pig maximization test (GPMT) as stand-alone skin sensitization test methods. However, unsaturated carbon-carbon double-bond and/or lipid acids afforded false-positive results more frequently in the LLNA compared to those in the GPMT and/or in human subjects. In the current study, oleic, linoleic, linolenic, undecylenic, fumaric, maleic, and succinic acid and squalene were tested in a modified LLNA with an elicitation phase (LLNA:DAE), and in a direct peptide reactivity assay (DPRA) to evaluate their skin-sensitizing potential. Oleic, linoleic, linolenic, undecylenic and maleic acid were positive in the LLNA:DAE, of which three, linoleic, linolenic, and maleic acid were positive in the DPRA. Furthermore, the results of the cross-sensitizing tests using four LLNA:DAE-positive chemicals were negative, indicating a chemical-specific elicitation response. In a previous report, the estimated concentration needed to produce a stimulation index of 3 (EC3) of linolenic acid, squalene, and maleic acid in the LLNA was < 10%. Therefore, these chemicals were classified as moderate skin sensitizers in the LLNA. However, the skin-sensitizing potential of all LLNA:DAE-positive chemicals was estimated as weak. These results suggested that oleic, linoleic, linolenic, undecylenic, and maleic acid had skin-sensitizing potential, and that the LLNA overestimated the skin-sensitizing potential compared to that estimated by the LLNA:DAE.

  18. Unsaturated fatty acids show clear elicitation responses in a modified local lymph node assay with an elicitation phase, and test positive in the direct peptide reactivity assay.

    PubMed

    Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Miyazaki, Hiroshi; Itagaki, Hiroshi

    2015-12-01

    The Organisation for Economic Co-operation and Development (OECD) Test Guidelines (TG) adopted the murine local lymph node assay (LLNA) and guinea pig maximization test (GPMT) as stand-alone skin sensitization test methods. However, unsaturated carbon-carbon double-bond and/or lipid acids afforded false-positive results more frequently in the LLNA compared to those in the GPMT and/or in human subjects. In the current study, oleic, linoleic, linolenic, undecylenic, fumaric, maleic, and succinic acid and squalene were tested in a modified LLNA with an elicitation phase (LLNA:DAE), and in a direct peptide reactivity assay (DPRA) to evaluate their skin-sensitizing potential. Oleic, linoleic, linolenic, undecylenic and maleic acid were positive in the LLNA:DAE, of which three, linoleic, linolenic, and maleic acid were positive in the DPRA. Furthermore, the results of the cross-sensitizing tests using four LLNA:DAE-positive chemicals were negative, indicating a chemical-specific elicitation response. In a previous report, the estimated concentration needed to produce a stimulation index of 3 (EC3) of linolenic acid, squalene, and maleic acid in the LLNA was < 10%. Therefore, these chemicals were classified as moderate skin sensitizers in the LLNA. However, the skin-sensitizing potential of all LLNA:DAE-positive chemicals was estimated as weak. These results suggested that oleic, linoleic, linolenic, undecylenic, and maleic acid had skin-sensitizing potential, and that the LLNA overestimated the skin-sensitizing potential compared to that estimated by the LLNA:DAE. PMID:26558466

  19. [Adsorption and Desorption Characteristics of Endosulfan in Purple Soil].

    PubMed

    Zhao, Yan; Zheng, Guo-can; Zhu, Heng; Zhang, Jin-zhong; Zhu, Xiu-ying; Hu, Shu-chun; Wu, Ya-lin

    2015-09-01

    In order to reveal the residual process of endosulfan in purple soil and protect soil ecological environment, the adsorption and desorption characteristics of endosulfan in purple soil were investigated, and effects of temperature, adsorbent amount, and initial pH of adsorption solution on the adsorption capacity were also examined by static adsorption and desorption experiments. The results showed that the adsorption kinetic process could be well described by the second-order kinetic equation with the initial rate constants of α-, β-endosulfan as 0. 157 and 0. 115 mg.(g.min)-1, respectively. The adsorption thermodynamic process could be well described by the Langmuir isotherm with the maximum adsorption capacities of α-, β-endosulfan as 0. 257 mg . g -1 and 0. 155 mg . g -1, respectively. The adsorption process of endosulfan in purple soil may be an exothermic physicochemical process, and is dominated by physical adsorption. Under the experimental conditions examined in this study, the initial pH of adsorption solution had a relative great influence on the adsorption capacity, whereas the temperature and adsorbent amount had no significant influence. The desorption experiments found that the maximum desorption capacities of α-, β-endosulfan adsorbed in purple soil were 0. 029 mg . g -1 and 0. 017 mg . g -1 at 6 and 4 h, and accounted for 10. 5% and 16. 1% in the maximum adsorption capacities, respectively. PMID:26717711

  20. [Adsorption and Desorption Characteristics of Endosulfan in Purple Soil].

    PubMed

    Zhao, Yan; Zheng, Guo-can; Zhu, Heng; Zhang, Jin-zhong; Zhu, Xiu-ying; Hu, Shu-chun; Wu, Ya-lin

    2015-09-01

    In order to reveal the residual process of endosulfan in purple soil and protect soil ecological environment, the adsorption and desorption characteristics of endosulfan in purple soil were investigated, and effects of temperature, adsorbent amount, and initial pH of adsorption solution on the adsorption capacity were also examined by static adsorption and desorption experiments. The results showed that the adsorption kinetic process could be well described by the second-order kinetic equation with the initial rate constants of α-, β-endosulfan as 0. 157 and 0. 115 mg.(g.min)-1, respectively. The adsorption thermodynamic process could be well described by the Langmuir isotherm with the maximum adsorption capacities of α-, β-endosulfan as 0. 257 mg . g -1 and 0. 155 mg . g -1, respectively. The adsorption process of endosulfan in purple soil may be an exothermic physicochemical process, and is dominated by physical adsorption. Under the experimental conditions examined in this study, the initial pH of adsorption solution had a relative great influence on the adsorption capacity, whereas the temperature and adsorbent amount had no significant influence. The desorption experiments found that the maximum desorption capacities of α-, β-endosulfan adsorbed in purple soil were 0. 029 mg . g -1 and 0. 017 mg . g -1 at 6 and 4 h, and accounted for 10. 5% and 16. 1% in the maximum adsorption capacities, respectively.

  1. Adsorption of catechol from aqueous solution by aminated hypercrosslinked polymers.

    PubMed

    Sun, Yue; Li, Xiao-Tao; Xu, Chao; Chen, Jin-Long; Li, Ai-Min; Zhang, Quan-Xing

    2005-01-01

    Adsorption of catechol from aqueous solution with the hypercrosslinked polymeric adsorbent NDA-100 and its derivatives AH-1, AH-2 and AH-3 aminated by dimethylamine, the commercial resin Amberlite XAD-4 and weakly basic anion exchanger resin D301 was compared. It was found that the aminated hypercrosslinked resins had the highest adsorption capacities among the tested polymers. The empirical Freundlich equation was successfully employed to describe the adsorption process. Specific surface area and micropore structure of the adsorbent, in company with tertiary amino groups on matrix affected the adsorption performance towards catechol. In addition, thermodynamic study was carried out to interpret the adsorption mechanism. Kinetic study testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate and increase the adsorption apparent activation energy.

  2. Adsorption studies of Cu(II) onto biopolymer chitosan and its nanocomposite 5%bentonite/chitosan.

    PubMed

    Moussout, Hamou; Ahlafi, Hammou; Aazza, Mustapha; Zegaoui, Omar; El Akili, Charaf

    2016-01-01

    Chitosan (CS) and nanocomposite 5%bentonite/chitosan (5%Bt/CS) prepared from the natural biopolymer CS were tested to remove Cu(II) ions using a batch adsorption experiment at various temperatures (25, 35 and 45°C). X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis/differential thermal analysis (TGA/DTA) were used in CS and the nanocomposite characterisation. This confirmed the exfoliation of bentonite (Bt) to form the nanocomposite. The adsorption kinetics of copper on both solids was found to follow a pseudo-second-order law at each studied temperature. The Cu(II) adsorption capacity increased as the temperature increased from 25 to 45°C for nanocomposite adsorbent but slightly increased for CS. The data were confronted to the nonlinear Langmuir, Freundlich and Redlich-Peterson models. It was found that the experimental data fitted very well the Langmuir isotherm over the whole temperature and concentration ranges. The maximum monolayer adsorption capacity for the Cu(II) was 404-422 mg/g for CS and 282-337 mg/g for 5%Bt/CS at 25-45°C. The thermodynamic study showed that the adsorption process was spontaneous and endothermic. The complexation of Cu(II) with NH(2) and C = O groups as active sites was found to be the main mechanism in the adsorption processes. PMID:27148722

  3. Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons.

    PubMed

    Mansouri, Hayet; Carmona, Rocio J; Gomis-Berenguer, Alicia; Souissi-Najar, Souad; Ouederni, Abdelmottaleb; Ania, Conchi O

    2015-07-01

    This work investigates the competitive adsorption under dynamic and equilibrium conditions of ibuprofen (IBU) and amoxicillin (AMX), two widely consumed pharmaceuticals, on nanoporous carbons of different characteristics. Batch adsorption experiments of pure components in water and their binary mixtures were carried out to measure both adsorption equilibrium and kinetics, and dynamic tests were performed to validate the simultaneous removal of the mixtures in breakthrough experiments. The equilibrium adsorption capacities evaluated from pure component solutions were higher than those measured in dynamic conditions, and were found to depend on the porous features of the adsorbent and the nature of the specific/dispersive interactions that are controlled by the solution pH, density of surface change on the carbon and ionization of the pollutant. A marked roll-up effect was observed for AMX retention on the hydrophobic carbons, not seen for the functionalized adsorbent likely due to the lower affinity of amoxicillin towards the carbon adsorbent. Dynamic adsorption of binary mixtures from wastewater of high salinity and alkalinity showed a slight increase in IBU uptake and a reduced adsorption of AMX, demonstrating the feasibility of the simultaneous removal of both compounds from complex water matrices.

  4. [Preparation of HDTMA-modified Zeolite and Its Performance in Nitro-phenol Adsorption from Wastewaters].

    PubMed

    Guo, Jun-yuan; Wang, Bin

    2016-05-15

    In this study, natural zeolite was modified by HDTMA. Effects of the modified conditions, HDTMA-modified zeolite doses, solution pH values, and reaction time on nitro-phenol removal were investigated, and the adsorption kinetics and isotherms were discussed. Compared with natural zeolite, HDTMA-modified zeolite showed better performance in nitro-phenol removal. An adsorption capacity of 2.53 mg · g⁻¹ was achieved when the concentration of HDTMA solution (pH = 10) was 1.2% in preparation of modified zeolite. This adsorption capacity was higher than that obtained by natural zeolite (0.54 mg · g⁻¹). In adsorption tests, when HDTMA- modified zeolite dose was adjusted to 8 g · L⁻¹, the removal efficiency of nitro-phenol reached 93.9% after 90 min reaction, with wastewater pH of 6. Furthermore, the nitro-phenol adsorption process could be well fitted to the pseudo-first-order kinetics model (R² > 0.90), whereas the adsorption isotherm results indicated that Langmuir model provided the best fitting for the equilibrium data at different temperatures, with R² of higher than 0.90.

  5. [Preparation of HDTMA-modified Zeolite and Its Performance in Nitro-phenol Adsorption from Wastewaters].

    PubMed

    Guo, Jun-yuan; Wang, Bin

    2016-05-15

    In this study, natural zeolite was modified by HDTMA. Effects of the modified conditions, HDTMA-modified zeolite doses, solution pH values, and reaction time on nitro-phenol removal were investigated, and the adsorption kinetics and isotherms were discussed. Compared with natural zeolite, HDTMA-modified zeolite showed better performance in nitro-phenol removal. An adsorption capacity of 2.53 mg · g⁻¹ was achieved when the concentration of HDTMA solution (pH = 10) was 1.2% in preparation of modified zeolite. This adsorption capacity was higher than that obtained by natural zeolite (0.54 mg · g⁻¹). In adsorption tests, when HDTMA- modified zeolite dose was adjusted to 8 g · L⁻¹, the removal efficiency of nitro-phenol reached 93.9% after 90 min reaction, with wastewater pH of 6. Furthermore, the nitro-phenol adsorption process could be well fitted to the pseudo-first-order kinetics model (R² > 0.90), whereas the adsorption isotherm results indicated that Langmuir model provided the best fitting for the equilibrium data at different temperatures, with R² of higher than 0.90. PMID:27506040

  6. Remediation of hexachlorobenzene contaminated soils by rhamnolipid enhanced soil washing coupled with activated carbon selective adsorption.

    PubMed

    Wan, Jinzhong; Chai, Lina; Lu, Xiaohua; Lin, Yusuo; Zhang, Shengtian

    2011-05-15

    The present study investigates the selective adsorption of hexachlorobenzene (HCB) from rhamnolipid solution by a powdered activated carbon (PAC). A combined soil washing-PAC adsorption technique is further evaluated on the removal of HCB from two soils, a spiked kaolin and a contaminated real soil. PAC at a dosage of 10 g L(-1) could achieve a HCB removal of 80-99% with initial HCB and rhamnolipid concentrations of 1 mg L(-1) and 3.3-25 g L(-1), respectively. The corresponding adsorptive loss of rhamnolipid was 8-19%. Successive soil washing-PAC adsorption tests (new soil sample was subjected to washing for each cycle) showed encouraging leaching and adsorption performances for HCB. When 25 g L(-1) rhamnolipid solution was applied, HCB leaching from soils was 55-71% for three cycles of washing, and HCB removal by PAC was nearly 90%. An overall 86% and 88% removal of HCB were obtained for kaolin and real soil, respectively, by using the combined process to wash one soil sample for twice. Our investigation suggests that coupling AC adsorption with biosurfactant-enhanced soil washing is a promising alternative to remove hydrophobic organic compounds from soils. PMID:21397398

  7. Adsorption of carbon dioxide from gas streams via mesoporous spherical-silica particles.

    PubMed

    Lu, Chungsying; Bai, Hsunling; Su, Fengsheng; Chen, Wenfa; Hwang, Jyh Feng; Lee, Hsiu-Hsia

    2010-04-01

    A relatively new mesoporous silica sorbent for environmental protection applications (i.e., mesoporous spherical-silica particles [MSPs]), was modified by N-[3-(trimethoxysilyl)propyl]ethylenediamine (EDA) solution and was tested for its potential in the separation of carbon dioxide (CO2) from flue gas. The CO2 adsorption capacity of MSP and MSP (EDA) increased with temperature from 20 to 60 degrees C but decreased with temperature from 60 to 100 degrees C. The mechanism of CO2 adsorption on both samples is mainly attributed to physical interaction regardless of temperature change. The MSP (EDA) have good adsorption performance as compared with EDA-modified zeolite or granular activated carbon conducted in this study and many types of silica sorbents reported in the literature. The cyclic CO2 adsorption showed that spent MSP (EDA) could be effectively regenerated at 120 degrees C for 25 min and CO2 adsorption capacity of MSP (EDA) was preserved during 16 cycles of adsorption and thermal regeneration. These results suggests that MSP (EDA) are efficient CO2 sorbents and can be stably used in the prolonged cyclic operation.

  8. A Simple Adsorption Experiment

    ERIC Educational Resources Information Center

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  9. [Adsorption characteristics of the antibiotic sulfanilamide onto rice husk ash].

    PubMed

    Ji, Ying-Xue; Wang, Feng-He; Zhang, Fan; Zhang, Yan-Hong; Wang, Guo-Xiang; Gu, Zhong-Zhu

    2013-10-01

    Under different conditions of initial rice husk ash (RHA) dosage, oscillating temperature, oscillating frequency and solution pH, the adsorption characteristics of sulfanilamide on RHA with the change of time and its adsorption kinetics were investigated. RHA was characterized by SEM and FTIR before and after sulfanilamide adsorption. The results indicated that the adsorption characteristics of sulfanilamide on RHA was influenced by RHA dosage, oscillating temperature, oscillating frequency and solution pH. Within the RHA dosing range (0. 1-2.0 g.L-1) in this experiment, the optimal temperature for the adsorption was 25C , and with the increase of RHA dosage, the removal efficiency of sulfanilamide increased, the time required to reach adsorption equilibrium was shortened and the adsorptive quantity of sulfanilamide by per unit mass of RHA decreased. A high oscillating frequency was used to ensure the adsorption effect when the RHA concentration was high. Strong acidic and strong alkaline conditions were conducive to the adsorption of sulfanilamide. The analysis of adsorption dynamics showed that for the adsorption process with high RHA dosage ( >or= 1.0 g.L-1), the pseudo-second-order model fitted the adsorption behavior well, and the process was controlled by physical and chemical adsorption. Intraparticle diffusion model showed that the adsorption process was controlled by both membrane diffusion and internal diffusion, and the influence of the former became more obvious with the increase of the adsorbent concentration. Both the SEM and FTIR spectra proved the effective adsorption of sulfanilamide by RHA. PMID:24364310

  10. Thermodynamics of binary gas adsorption in nanopores.

    PubMed

    Dutta, Sujeet; Lefort, Ronan; Morineau, Denis; Mhanna, Ramona; Merdrignac-Conanec, Odile; Saint-Jalmes, Arnaud; Leclercq, Théo

    2016-09-21

    MCM-41 nanoporous silicas show a very high selectivity for monoalcohols over aprotic molecules during adsorption of a binary mixture in the gas phase. We present here an original use of gravimetric vapour sorption isotherms to characterize the role played by the alcohol hydrogen-bonding network in the adsorption process. Beyond simple selectivity, vapour sorption isotherms measured for various compositions help to completely unravel at the molecular level the step by step adsorption mechanism of the binary system in the nanoporous solid, from the first monolayers to the complete liquid condensation. PMID:27532892

  11. Adsorption-desorption behavior of thiram onto humic acid.

    PubMed

    Filipe, O M S; Vidal, M M; Duarte, A C; Santos, E B H

    2009-06-10

    The adsorption/desorption behavior of pure thiram (Thi-P) and formulated thiram (Thi-F) onto commercial humic acids (HA) was studied using a batch equilibration procedure. Results of adsorption kinetic experiments showed that thiram adsorption is a fast process since 85% of the equilibrium concentration is reached within two hours. Experimental K(D) values between 0.110 to 0.210 L g(-1) were obtained for the adsorption of both Thi-P and Thi-F onto HA, suggesting that thiram is strongly sorbed by humic acids. In general, for both Thi-P and Thi-F, the lower the initial thiram concentration, the stronger is its adsorption (higher K(D) and percentage adsorption values). The adsorption isotherms were found to match the BET model. The results show that thiram adsorption onto condensed humic acids cannot be explained only in terms of specific interactions, such as those identified in studies of adsorption of thiram with humic acids in solution. The comparison of sorption and desorption results allowed the observation of hysteresis phenomena. Desorption K(D) values were consistently higher than those for adsorption at the same equilibrium concentration. Hysteresis was lower for the formulated thiram suggesting that adsorption is more reversible in the presence of the formulation components turning the pesticide more susceptible to be leached.

  12. Comparison of batch, stirred flow chamber, and column experiments to study adsorption, desorption and transport of carbofuran within two acidic soils.

    PubMed

    Bermúdez-Couso, Alipio; Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2012-06-01

    Different methods (batch, column and stirred flow chamber experiments) used for adsorption and desorption of carbofuran studies were compared. All tested methods showed that the carbofuran adsorption was higher in the soil with the higher organic matter content, whereas the opposite behaviour was observed for the percentage of carbofuran desorbed. However, different methods have revealed some discrepancies in carbofuran adsorption/desorption kinetics. Although batch method showed interesting data on equilibrium experiments, such as a low heterogeneity for the carbofuran adsorption sites independent of soil organic matter content, it had some disadvantages for carbofuran adsorption/desorption kinetic studies. The disadvantages were related with the excessive limitations of this method on kinetics, i.e., no difference could be detected between different soils. However, with column and stirred flow chamber methods the carbofuran adsorption/desorption kinetics of different soils could be compared. Moreover, the absolute values of carbofuran adsorption/desorption and its rate were higher in the stirred flow chamber than in the batch and column experiments. Using stirred flow chamber experiments the carbofuran desorption was significantly faster than its adsorption, whereas carbofuran using column experiments they were similar. These discrepancies should be considered when the results obtained only with one method is discussed.

  13. Serologic and PCR testing of persons with chronic fatigue syndrome in the United States shows no association with xenotropic or polytropic murine leukemia virus-related viruses.

    PubMed

    Satterfield, Brent C; Garcia, Rebecca A; Jia, Hongwei; Tang, Shaohua; Zheng, Haoqiang; Switzer, William M

    2011-02-22

    In 2009, a newly discovered human retrovirus, xenotropic murine leukemia virus (MuLV)-related virus (XMRV), was reported by Lombardi et al. in 67% of persons from the US with chronic fatigue syndrome (CFS) by PCR detection of gag sequences. Although six subsequent studies have been negative for XMRV, CFS was defined more broadly using only the CDC or Oxford criteria and samples from the US were limited in geographic diversity, both potentially reducing the chances of identifying XMRV positive CFS cases. A seventh study recently found polytropic MuLV sequences, but not XMRV, in a high proportion of persons with CFS. Here we tested blood specimens from 45 CFS cases and 42 persons without CFS from over 20 states in the United States for both XMRV and MuLV. The CFS patients all had a minimum of 6 months of post-exertional malaise and a high degree of disability, the same key symptoms described in the Lombardi et al. study. Using highly sensitive and generic DNA and RNA PCR tests, and a new Western blot assay employing purified whole XMRV as antigen, we found no evidence of XMRV or MuLV in all 45 CFS cases and in the 42 persons without CFS. Our findings, together with previous negative reports, do not suggest an association of XMRV or MuLV in the majority of CFS cases.

  14. Serologic and PCR testing of persons with chronic fatigue syndrome in the United States shows no association with xenotropic or polytropic murine leukemia virus-related viruses

    PubMed Central

    2011-01-01

    In 2009, a newly discovered human retrovirus, xenotropic murine leukemia virus (MuLV)-related virus (XMRV), was reported by Lombardi et al. in 67% of persons from the US with chronic fatigue syndrome (CFS) by PCR detection of gag sequences. Although six subsequent studies have been negative for XMRV, CFS was defined more broadly using only the CDC or Oxford criteria and samples from the US were limited in geographic diversity, both potentially reducing the chances of identifying XMRV positive CFS cases. A seventh study recently found polytropic MuLV sequences, but not XMRV, in a high proportion of persons with CFS. Here we tested blood specimens from 45 CFS cases and 42 persons without CFS from over 20 states in the United States for both XMRV and MuLV. The CFS patients all had a minimum of 6 months of post-exertional malaise and a high degree of disability, the same key symptoms described in the Lombardi et al. study. Using highly sensitive and generic DNA and RNA PCR tests, and a new Western blot assay employing purified whole XMRV as antigen, we found no evidence of XMRV or MuLV in all 45 CFS cases and in the 42 persons without CFS. Our findings, together with previous negative reports, do not suggest an association of XMRV or MuLV in the majority of CFS cases. PMID:21342521

  15. Effect of soil type and organic manure on adsorption-desorption of flubendiamide.

    PubMed

    Das, Shaon Kumar; Mukherjee, Irani; Kumar, Aman

    2015-07-01

    Laboratory study on adsorption-desorption of flubendiamide was conducted in two soil types, varying in their physical and chemical properties, by batch equilibrium method. After 4 h of equilibrium time, adsorption of flubendiamide on soil matrix exhibited moderately low rate of accumulation with 4.52 ± 0.21% in red soil and low rate with 3.55 ± 0.21% in black soil. After amending soils with organic manure, adsorption percentage increased to 6.42 ± 0.21% in red soil and (4.18 ± 0.21%) in black soil indicating that amendment significantly increased sorption. Variation in sorption affinities of the soils as indicated by distribution coefficient (K d) for sorption was in the range of 2.98-4.32, 4.91-6.64, 1.04-1.45 and 1.92-2.81 ml/g for red soil, organic manure-treated red soil, black soil and organic manure-treated black soil, respectively. Desorption was slightly slower than adsorption indicating a hysteresis effect having hysteresis coefficient ranges between 0.023 and 0.149 in two test soils. The adsorption data for the insecticide fitted well the Freundlich equation. Results revealed that adsorption-desorption was influenced by soil types and showed that the maximum sorption and minimum desorption of the insecticide was observed in soils with higher organic carbon and clay content. It can be inferred that crystal lattice of the clay soil plays a significant role in flubendiamide adsorption and desorption. Adsorption was lower at acidic pH and gradually increased towards alkaline pH. As this insecticide is poorly sorbed in the two Indian soil types, there may be a possibility of their leaching to lower soil profiles.

  16. U(VI) adsorption on aquifer sediments at the Hanford Site.

    PubMed

    Um, Wooyong; Serne, R Jeffrey; Brown, Christopher F; Last, George V

    2007-08-15

    Aquifer sediments collected via split-spoon sampling in two new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Unit E Formation properties dominated by gravel and sand. High iron-oxide content in Fe oxide/clay coatings caused the highest U(VI) adsorption as quantified by batch K(d) values, indicating iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. Even though U(VI) adsorption on the gravel-sized fraction of the sediments is considered to be negligible, careful characterization should be conducted to determine U(VI) adsorption on gravel, because of presence of Fe oxides coatings and diffusion-controlled adsorption into the gravel particles' interior surfaces. A linear adsorption isotherm was observed up to 10(-6) M (238 microg/L) of total U(VI) concentration in batch U(VI) adsorption tests with varying total U(VI) concentrations in spiked groundwater. U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at high pH and high alkalinity conditions. Noticeable uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption K(d) values for aged uranium-contaminated sediments at the Hanford Site can be larger than adsorption K(d) values determined in short-term laboratory experiments and slow uranium release from contaminated sediments into the groundwater is expected.

  17. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    PubMed

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  18. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    SciTech Connect

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  19. [Adsorption of calcium ion from aqueous solution using Na(+)-conditioned clinoptilolite for hot-water softening].

    PubMed

    Zhang, Shuo; Wang, Dong; Chen, Yuan-Chao; Zhang, Xing-Wen; Chen, Gui-Jun

    2015-02-01

    This work investigated adsorptive removal of calcium ion (Ca2+) by virtue of Na(+) -conditioned clinoptilolite simulating the process of softening for industrial hot-water system. Influential factors such as the activation/regeneration of sorbent and solution pH were tested. The kinetics/thermodynamics for adsorption of Ca2+ were analyzed and discussed. Results showed that: (1) The adsorption rate was in good agreement with the pseudo-second order kinetic models, and the process of adsorption better followed the Langmuir model; (2) Higher solution temperature allowed an enhanced efficiency on Ca2+ removal, albeit the maximum adsorption capacity of Na(+)-conditioned clinoptilolite was hardly affected; (3) The process of adsorption was dominated by chemisorption, and also characterized by entropy increase with spontaneous/endothermic nature; (4) Solution temperature was suggested to be controlled within the range of 6 to 10, and more than 9 times of sorbent regeneration could be ensured for an effective adsorption towards Ca2+ with initial concentration less than 20 mg x L(-1). It was demonstrated that the activated clinoptilolite should be a promising alternative adsorbent for industrial hot-water softening. PMID:26031107

  20. Salinity and pH affect Na+-montmorillonite dissolution and amino acid adsorption: a prebiotic chemistry study

    NASA Astrophysics Data System (ADS)

    Farias, Ana Paula S. F.; Tadayozzi, Yasmin S.; Carneiro, Cristine E. A.; Zaia, Dimas A. M.

    2014-06-01

    The adsorption of amino acids onto minerals in prebiotic seas may have played an important role for their protection against hydrolysis and formation of polymers. In this study, we show that the adsorption of the prebiotic amino acids, glycine (Gly), α-alanine (α-Ala) and β-alanine (β-Ala), onto Na+-montmorillonite was dependent on salinity and pH. Specifically, adsorption decreased from 58.3-88.8 to 0-48.9% when salinity was increased from 10 to 100-150% of modern seawater. This result suggests reduced amino acid adsorption onto minerals in prebiotic seas, which may have been even more saline than the tested conditions. Amino acids also formed complexes with metals in seawater, affecting metal adsorption onto Na+-montmorillonite, and amino acid adsorption was enhanced when added before Na+-montmorillonite was exposed to high saline solutions. Also, the dissolution of Na+-montmorillonite was reduced in the presence of amino acids, with β-Ala being the most effective. Thus, prebiotic chemistry experiments should also consider the integrity of minerals in addition to their adsorption capacity.

  1. Male rats with same sex preference show high experimental anxiety and lack of anxiogenic-like effect of fluoxetine in the plus maze test.

    PubMed

    García-Cárdenas, Nallely; Olvera-Hernández, Sandra; Gómez-Quintanar, Blanca Nelly; Fernández-Guasti, Alonso

    2015-08-01

    Homosexual men show a 2-4 higher risk to suffer anxiety in comparison with heterosexuals. It is unknown if biological factors collaborate to increase such incidence. Fluoxetine produces differential brain activation in homosexuals as compared with heterosexuals, suggesting that it may produce a divergent behavioral effect dependant on sex-preference. The first aim was to evaluate experimental anxiety in male rats that show same-sex preference in the elevated plus maze (EPM). The second goal explored the putative differential effect of fluoxetine (10mg/kg) in male rats with female and same-sex preference in the EPM. To induce same-sex preference males were prenatally treated with letrozole (0.56μg/kg, 10-20 gestation days), while controls were males prenatally treated with letrozole that retain female-preference or which mothers received oil. In both groups we found animals with male preference, but the proportion was higher in males that prenatally received letrozole (10 vs. 27%). Males with same-sex preference spent less time and showed lower number of entries to the open arms of the EPM than males that prefer females, regardless of the prenatal treatment. In males with female preference, fluoxetine reduced the time spent and number of entries to the open arms that was absent in males with same-sex preference. These data suggest that biological factors contribute to the high levels of anxiety in subjects with same-sex preference and that fluoxetine in men may produce a divergent action depending on sexual orientation.

  2. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.

    PubMed

    Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo

    2014-07-01

    Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+).

  3. Adsorption of ferrous ions onto montmorillonites

    NASA Astrophysics Data System (ADS)

    Qin, Dawei; Niu, Xia; Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao

    2015-04-01

    The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe2+/Fetotal ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG0 and ΔH0 were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  4. Hierarchical Porous Zeolite Structures for Pressure Swing Adsorption Applications.

    PubMed

    Besser, Benjamin; Tajiri, Henrique Akira; Mikolajczyk, Gerd; Möllmer, Jens; Schumacher, Thomas C; Odenbach, Stefan; Gläser, Roger; Kroll, Stephen; Rezwan, Kurosch

    2016-02-10

    Porous adsorbents with hierarchical structured macropores ranging from 1 to 100 μm are prepared using a combination of freeze casting and additional sacrificial templating of polyurethane foams, with a zeolite 13X powder serving as adsorbent. The pore system of the prepared monoliths features micropores assigned to the zeolite 13X particle framework, interparticular pores of ∼1-2 μm, lamellar pores derived from freeze casting of ∼10 μm, and an interconnected pore network obtained from the sacrificial templates ranging from around 100 to 200 μm with a total porosity of 71%. Gas permeation measurements show an increase in intrinsic permeability by a factor of 14 for monoliths prepared with an additional sacrificial templated foam compared to monoliths solely providing freeze casting pores. Cyclic CO2 adsorption and desorption tests where pressure swings between 8 and 140 kPa reveal constant working capacities over multiple cycles. Furthermore, the monoliths feature a high volumetric working capacity of ∼1.34 mmol/cm(3) which is competitive to packed beds made of commercially available zeolite 13X beads (∼1.28 mmol/cm(3)). Combined with the faster CO2 uptake showing an adsorption of 50% within 5-8 s (beads ∼10 s), the monoliths show great potential for pressure swing adsorption applications, where high volumetric working capacities, fast uptakes, and low pressure drops are needed for a high system performance. PMID:26760054

  5. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments].

    PubMed

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui

    2011-02-01

    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions

  6. Arsenic removal from household drinking water by adsorption.

    PubMed

    Yuan, Tao; Hu, Jiang Yong; Ong, Say Leong; Luo, Qi Fang; Ng, Wern Jun

    2002-10-01

    Geogenic inorganic arsenic contamination in drinking water has been raising public health concern especially in developing countries. Cost-effective and stopgap arsenic removal method for household use (cooking and drinking) is very urgent. Several iron treated natural materials such as Fe-treated activated carbon (FeAC), Fe-treated gel beads (FeGB) and iron oxide-coated sand (IOCS), were investigated in this study for arsenic removal from dispersed household drinking water supply (scattered wells in the endemic arsenic poisoning areas). IOCS showed consistently good performance in terms of As(III) and As(V) removal in batch tests, column tests and field experiment. As(V) adsorption decreased slightly but As(III) adsorption maintained relatively stable when the pH value was increased from 5 to 9. In strong hardness water (612.5 mg/L CaCO3), As(III) adsorption efficiency was noted to decrease. The adsorption data obtained in column test fitted well to the Langmuir isotherm model. The adsorbent recovery efficiency was above 94% when using 0.2N NaOH regenerated the columns. In addition, 200 L of product water was produced by the household device (containing 3.0 kg IOCS produced) when the influent arsenic concentration ranging from 0.202 to 1.733 mg/L was encountered during the field experimental study conducted in Shanyin County, China. Neither the iron leaching nor other water quality deterioration was observed. It was noted in this study that IOCS is a promising medium for arsenic removal from household drinking water supplies.

  7. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters.

    PubMed

    Liu, Xiang; Lee, Duu-Jong

    2014-05-01

    This meta-analysis evaluates adsorption studies that report thermodynamic parameters for heavy metals and dyes from wastewaters. The adsorbents were derived from agricultural waste, industrial wastes, inorganic particulates, or some natural products. The adsorption mechanisms, derivation of thermodynamic relationships, and possible flaws made in such evaluation are discussed. This analysis shows that conclusions from the examined standard enthalpy and entropy changes are highly contestable. The reason for this flaw may be the poor physical structure of adsorbents tested, such that pore transport controlled the solute flux, leaving a surface reaction process near equilibrium. PMID:24461254

  8. Treatment and toxicity evaluation of methylene blue using electrochemical oxidation, fly ash adsorption and combined electrochemical oxidation-fly ash adsorption.

    PubMed

    Wang, Kai-sung; Wei, Ming-Chi; Peng, Tzu-Huan; Li, Heng-Ching; Chao, Shu-Ju; Hsu, Tzu-Fang; Lee, Hong-Shen; Chang, Shih-Hsien

    2010-08-01

    Treatment of a basic dye, methylene blue, by electrochemical oxidation, fly ash adsorption, and combined electrochemical oxidation-fly ash adsorption was compared. Methylene blue at 100 mgL(-1) was used in this study. The toxicity was also monitored by the Vibrio fischeri light inhibition test. When electrochemical oxidation was used, 99% color and 84% COD were removed from the methylene blue solution in 20 min at a current density of 428 Am(-2), NaCl of 1000 mgL(-1), and pH(0) of 7. However, the decolorized solution showed high toxicity (100% light inhibition). For fly ash adsorption, a high dose of fly ash (>20,000 mgL(-1)) was needed to remove methylene blue, and the Freundlich isotherm described the adsorption behavior well. In the combined electrochemical oxidation-fly ash adsorption treatment, the addition of 4000 mgL(-1) fly ash effectively reduced intermediate toxicity and decreased the COD of the electrochemical oxidation-treated methylene blue solution. The results indicated that the combined process effectively removed color, COD, and intermediate toxicity of the methylene blue solution.

  9. Comparative study on adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) by different adsorbents in water.

    PubMed

    Yao, Yuan; Volchek, Konstantin; Brown, Carl E; Robinson, Adam; Obal, Terry

    2014-01-01

    Perfluorinated compounds (PFCs) are emerging environmental pollutants. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are the two primary PFC contaminants that are widely found in water, particularly in groundwater. This study compared the adsorption behaviors of PFOS and PFOA on several commercially available adsorbents in water. The tested adsorbents include granular activated carbon (GAC: Filtrasorb 400), powdered activated carbon, multi-walled carbon nanotube (MCN), double-walled carbon nanotube, anion-exchange resin (AER: IRA67), non-ion-exchange polymer, alumina, and silica. The study demonstrated that adsorption is an effective technique for the removal of PFOS/PFOA from aqueous solutions. The kinetic tests showed that the adsorption onto AER reaches equilibrium rapidly (2 h), while it takes approximately 4 and 24 h to reach equilibrium for MCN and GAC, respectively. In terms of adsorption capacity, AER and GAC were identified as the most effective adsorbents to remove PFOS/PFOA from water. Furthermore, MCN, AER, and GAC proved to have high PFOS/PFOA removal efficiencies (≥98%). AER (IRA67) and GAC (Filtrasorb 400) were thus identified as the most promising adsorbents for treating PFOS/PFOA-contaminated groundwater at mg L(-1) level based on their equilibrium times, adsorption capacities, removal efficiencies, and associated costs. PMID:25521134

  10. Competitive removal of pharmaceuticals from environmental waters by adsorption and photocatalytic degradation.

    PubMed

    Rioja, N; Benguria, P; Peñas, F J; Zorita, S

    2014-10-01

    This work explores the competitive removal of pharmaceuticals from synthetic and environmental waters by combined adsorption-photolysis treatment. Five drugs usually present in waterways have been used as target compounds, some are pseudo-persistent pollutants (carbamazepine, clofibric acid, and sulfamethoxazole) and others are largely consumed (diclofenac and ibuprofen). The effect of the light source on adsorption of drugs onto activated carbons followed by photolysis with TiO2 was assessed, being UV-C light the most effective for drug removal in both deionized water and river water. Different composites prepared from titania nanoparticles and powdered activated carbons were tested in several combined adsorption-photocatalysis assays. The composites prepared by calcination at 400 °C exhibited much better performance than those synthesized at 500 °C, being the C400 composite the most effective one. Furthermore, some synthetic waters containing dissolved species and environmental waters were used to investigate the effect of the aqueous matrix on each drug removal. In general, photocatalyst deactivation was found in synthetic and environmental waters. This was particularly evident in the experiments performed with bicarbonate ions as well as with wastewater effluent. In contrast, tests conducted in seawater showed adsorption and photocatalytic degradation yields comparable to those obtained in deionized water. Considering the peculiarities of substrate competition in each aqueous matrix, the combined adsorption-photolysis treatment generally increased the overall elimination of drugs in water. PMID:24532206

  11. Competitive removal of pharmaceuticals from environmental waters by adsorption and photocatalytic degradation.

    PubMed

    Rioja, N; Benguria, P; Peñas, F J; Zorita, S

    2014-10-01

    This work explores the competitive removal of pharmaceuticals from synthetic and environmental waters by combined adsorption-photolysis treatment. Five drugs usually present in waterways have been used as target compounds, some are pseudo-persistent pollutants (carbamazepine, clofibric acid, and sulfamethoxazole) and others are largely consumed (diclofenac and ibuprofen). The effect of the light source on adsorption of drugs onto activated carbons followed by photolysis with TiO2 was assessed, being UV-C light the most effective for drug removal in both deionized water and river water. Different composites prepared from titania nanoparticles and powdered activated carbons were tested in several combined adsorption-photocatalysis assays. The composites prepared by calcination at 400 °C exhibited much better performance than those synthesized at 500 °C, being the C400 composite the most effective one. Furthermore, some synthetic waters containing dissolved species and environmental waters were used to investigate the effect of the aqueous matrix on each drug removal. In general, photocatalyst deactivation was found in synthetic and environmental waters. This was particularly evident in the experiments performed with bicarbonate ions as well as with wastewater effluent. In contrast, tests conducted in seawater showed adsorption and photocatalytic degradation yields comparable to those obtained in deionized water. Considering the peculiarities of substrate competition in each aqueous matrix, the combined adsorption-photolysis treatment generally increased the overall elimination of drugs in water.

  12. Protein adsorption onto ceramic surfaces.

    PubMed

    Takami, Y; Yamane, S; Makinouchi, K; Otsuka, G; Glueck, J; Benkowski, R; Nosé, Y

    1998-04-01

    Ceramics seldom have been used as blood-contacting materials. However, alumina ceramic (Al2O3) and polyethylene are incorporated into the pivot bearings of the Gyro centrifugal blood pump. This material combination was chosen based on the high durability of the materials. Due to the stagnant flow that often occurs in a continuous flow condition inside a centrifugal pump, pivot bearing system is extremely critical. To evaluate the thombogenicity of pivot bearings in the Gyro pump, this study sought to investigate protein adsorption, particularly albumin, IgG, fibrinogen, and fibronectin onto ceramic surfaces. Al2O3 and silicon carbide ceramic (SiC) were compared with polyethylene (PE) and polyvinylchloride (PVC). Bicinchoninic acid (BCA) protein assay revealed that the amount of adsorbed proteins onto Al2O3 and SiC was significantly less than that on PVC. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that numerous proteins adsorbed onto PVC compared to PE, Al2O3, and SiC. Identification of adsorbed proteins by Western immunoblotting revealed that the adsorption of albumin was similar on all four materials tested. Western immunoblotting also indicated lesser amounts of IgG, fibrinogen, and fibronectin on Al2O3 and SiC than on PE and PVC. In conclusion, ceramics (Al2O3 and SiC) are expected to be thromboresistant from the viewpoint of protein adsorption. PMID:9511095

  13. Adsorption of nisin and pediocin on nanoclays.

    PubMed

    Meira, Stela Maris Meister; Jardim, Arthur Izé; Brandelli, Adriano

    2015-12-01

    Three different nanoclays (bentonite, octadecylamine-modified montmorillonite and halloysite) were studied as potential carriers for the antimicrobial peptides nisin and pediocin. Adsorption occurred from peptide solutions in contact with nanoclays at room temperature. Higher adsorption of nisin and pediocin was obtained on bentonite. The antimicrobial activity of the resultant bacteriocin-nanoclay systems was analyzed using skimmed milk agar as food simulant and the largest inhibition zones were observed against Gram-positive bacteria for halloysite samples. Bacteriocins were intercalated into the interlayer space of montmorillonites as deduced from the increase of the basal spacing measured by X-ray diffraction (XRD) assay. Infrared spectroscopy suggested non-electrostatic interactions, such as hydrogen bonding between siloxane groups from clays and peptide molecules. Transmission electron microscopy did not show any alteration in morphologies after adsorption of antimicrobial peptides on bentonite and halloysite. These results indicate that nanoclays, especially halloysite, are suitable nanocarriers for nisin and pediocin adsorption.

  14. Adsorption of nisin and pediocin on nanoclays.

    PubMed

    Meira, Stela Maris Meister; Jardim, Arthur Izé; Brandelli, Adriano

    2015-12-01

    Three different nanoclays (bentonite, octadecylamine-modified montmorillonite and halloysite) were studied as potential carriers for the antimicrobial peptides nisin and pediocin. Adsorption occurred from peptide solutions in contact with nanoclays at room temperature. Higher adsorption of nisin and pediocin was obtained on bentonite. The antimicrobial activity of the resultant bacteriocin-nanoclay systems was analyzed using skimmed milk agar as food simulant and the largest inhibition zones were observed against Gram-positive bacteria for halloysite samples. Bacteriocins were intercalated into the interlayer space of montmorillonites as deduced from the increase of the basal spacing measured by X-ray diffraction (XRD) assay. Infrared spectroscopy suggested non-electrostatic interactions, such as hydrogen bonding between siloxane groups from clays and peptide molecules. Transmission electron microscopy did not show any alteration in morphologies after adsorption of antimicrobial peptides on bentonite and halloysite. These results indicate that nanoclays, especially halloysite, are suitable nanocarriers for nisin and pediocin adsorption. PMID:26041178

  15. Surface-modified magnetic colloids for affinity adsorption of immunoglobulins

    NASA Astrophysics Data System (ADS)

    Martins, Fernanda; Pinho, Samantha C.; Zollner, Terezinha C. A.; Zollner, Ricardo L.; de Cuyper, Marcel; Santana, Maria Helena A.

    This work describes the preparation, characterization and in vitro adsorption tests of surface-modified magnetoliposomes for affinity binding of (i) anticardiolipin (isotype G) antibodies and (ii) specific isotype E antibodies generated by hypersensitivity reactions in humans with respiratory allergy. In the first case, cardiolipin embedded in the bilayer of magnetoliposomes was used as specific ligand. In the second case, antigenic proteins present in an extract of Dermatophagoids pteronyssinus and Blomia tropicalis mites were covalently coupled on the surface of magnetoliposomes via a diglycolic spacer arm, and used as specific ligands for IgE. Antibody adsorption was performed in a high-gradient magnetophoresis system, using either sera of healthy individuals or a pool of sera from autoimmune or allergic patients. The selectivity and capacity of the system were quantified by a frontal analysis in a capillary column, and by constructing breakthrough curves. The results show that the highest yield and selectivity were obtained if the ligand was extended into the aqueous layer surrounding the magnetoliposome surface. A 100% selectivity was obtained for adsorption of specific IgE, and 8% for IgG. These results demonstrate the potentialities of both types of surface-modified magnetic biocolloids in the field of in vitro diagnosis tests for allergic or autoimmune conditions.

  16. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  17. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  18. Adsorption Behavior of Nonplanar Phthalocyanines: Competition of Different Adsorption Conformations

    PubMed Central

    2016-01-01

    Using density functional theory augmented with state-of-the-art van der Waals corrections, we studied the geometric and electronic properties of nonplanar chlorogallium-phthalocyanine GaClPc molecules adsorbed on Cu(111). Comparing these results with published experimental data for adsorption heights, we found indications for breaking of the metal–halogen bond when the molecule is heated during or after the deposition process. Interestingly, the work-function change induced by this dissociated geometry is the same as that computed for an intact adsorbate layer in the “Cl-down” configuration, with both agreeing well with the experimental photoemission data. This is unexpected, as the chemical natures of the adsorbates and the adsorption distances are markedly different in the two cases. The observation is explained as a consequence of Fermi-level pinning due to fractional charge transfer at the interface. Our results show that rationalizing the adsorption configurations on the basis of electronic interface properties alone can be ambiguous and that additional insight from dispersion-corrected DFT simulations is desirable. PMID:27066160

  19. Adsorptive separation of rhodium(III) using Fe(III)-templated oxine type of chemically modified chitosan

    SciTech Connect

    Alam, M.S.; Inoue, Katsutoshi; Yoshizuka, Kazuharu; Ishibashi, Hideaki

    1998-03-01

    The oxine type of chemically modified chitosan was prepared by the template crosslinking method using Fe(III) as a template ion. Batchwise adsorption of rhodium(III) on this chemically modified chitosan was examined from chloride media in the absence and presence of a large amount of tin(II). It was observed that the Fe(III)-templated oxine type of chemically modified chitosan shows better performance for rhodium adsorption than that of the original chitosan. When Sn(II) is absent from the solution, Rh(III) is hardly adsorbed on the modified chitosan and the order of selectivity of the adsorption of Rh(III), Pt(IV), and Cu(II) was found to be Pt(IV) > Cu(II) {approx} Rh(III). On the other hand, adsorption of rhodium is significantly increased in the presence of Sn(II) and the selectivity order of the adsorption was drastically changed to Rh(III) > Pt(IV) {much_gt} Cu(II), which ensures selective separation of Rh(III) from their mixture. Adsorption of Rh(III) increases with an increase in the concentration of Sn(II) in the aqueous solution, and maximum adsorption is achieved at a molar ratio, [Sn]/[Rh], of >6. The adsorption of Rh(III) decreases at a high concentration of hydrochloric acid. The maximum adsorption capacity was evaluated to be 0.92 mol/kg-dry adsorbent. Stripping tests of rhodium from the loaded chemically modified chitosan were carried out using different kinds of stripping agents containing some oxidizing agent. The maximum stripping of rhodium under these experimental conditions was found to be 72.5% by a single contact with 0.5 M HCl + 8 M HNO{sub 3}.

  20. The adsorptive capacity of vapor-phase mercury chloride onto powdered activated carbon derived from waste tires

    SciTech Connect

    Hsun-Yu Lin; Chung-Shin Yuan; Chun-Hsin Wu; Chung-Hsuang Hung

    2006-11-15

    Injection of powdered activated carbon (PAC) upstream of particulate removal devices (such as electrostatic precipitator and baghouses) has been used effectively to remove hazardous air pollutants, particularly mercury containing pollutants, emitted from combustors and incinerators. Compared with commercial PACs (CPACs), an alternative PAC derived from waste tires (WPAC) was prepared for this study. The equilibrium adsorptive capacity of mercury chloride (HgCl{sub 2}) vapor onto the WPAC was further evaluated with a self-designed bench-scale adsorption column system. The adsorption temperatures investigated in the adsorption column were controlled at 25 and 150{sup o}C. The superficial velocity and residence time of the flow were 0.01 m/sec and 4 sec, respectively. The adsorption column tests were run under nitrogen gas flow. Experimental results showed that WPAC with higher Brunauer Emmett Teller (BET) surface area could adsorb more HgCl{sub 2} at room temperature. The equilibrium adsorptive capacity of HgCl{sub 2} for WPAC measured in this study was 1.49 x 10{sup -1} mg HgCl{sub 2}/g PAC at 25{sup o}C with an initial HgCl{sub 2} concentration of 25 {mu}g/m{sup 3}. With the increase of adsorption temperature {le} 150{sup o}C, the equilibrium adsorptive capacity of HgCl{sub 2} for WPAC was decreased to 1.34 x 10{sup -1} mg HgCl{sub 2}/g PAC. Furthermore, WPAC with higher sulfur contents could adsorb even more HgCl{sub 2}. It was demonstrated that the mechanisms for adsorbing HgCl{sub 2} onto WPAC were physical adsorption and chemisorption at 25 and 150{sup o}C, respectively. 35 refs., 4 figs., 4 tabs.

  1. Study of random sequential adsorption by means of the gradient method

    NASA Astrophysics Data System (ADS)

    Loscar, E. S.; Guisoni, N.; Albano, E. V.

    2012-02-01

    By using the gradient method (GM) we study random sequential adsorption (RSA) processes in two dimensions under a gradient constraint that is imposed on the adsorption probability along one axis of the sample. The GM has previously been applied successfully to absorbing phase transitions (both first and second order), and also to the percolation transition. Now, we show that by using the GM the two transitions involved in RSA processes, namely percolation and jamming, can be studied simultaneously by means of the same set of simulations and by using the same theoretical background. For this purpose we theoretically derive the relevant scaling relationships for the RSA of monomers and we tested our analytical results by means of numerical simulations performed upon RSA of both monomers and dimers. We also show that two differently defined interfaces, which run in the direction perpendicular to the axis where the adsorption probability gradient is applied and separate the high-density (large-adsorption probability) and the low-density (low-adsorption probability) regimes, capture the main features of the jamming and percolation transitions, respectively. According to the GM, the scaling behaviour of those interfaces is governed by the roughness exponent α = 1/(1 + ν), where ν is the suitable correlation length exponent. Besides, we present and discuss in a brief overview some achievements of the GM as applied to different physical situations, including a comparison of the critical exponents determined in the present paper with those already published in the literature.

  2. Adsorption of cadmium from aqueous solutions by perlite.

    PubMed

    Mathialagan, T; Viraraghavan, T

    2002-10-14

    The present study examined the use of perlite for the removal of cadmium from aqueous solutions. The effects of pH and contact time on the adsorption process were examined. The optimum pH for adsorption was found to be 6.0. Residual cadmium concentration reached equilibrium in 6h and the rate of cadmium adsorption by perlite was rapid in the first hour of the reaction time. Ho's pseudo-second-order model best described the kinetics of the reaction. Batch adsorption experiments conducted at room temperature (22+/-1 degrees C) showed that the adsorption pattern followed the Freundlich isotherm model. The maximum removal of cadmium obtained from batch studies was 55%. Thomas model was used to describe the adsorption data from column studies. The results generally showed that perlite could be considered as a potential adsorbent for cadmium removal from aqueous solutions.

  3. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption.

    PubMed

    Zietzschmann, F; Mitchell, R-L; Jekel, M

    2015-11-01

    This study investigates if ozonation of wastewater treatment plant (WWTP) effluent can reduce the negative impacts of effluent organic matter (EfOM) on the adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC). Pre-treatment of the water included membrane filtration for the removal of suspended/colloidal organics, ozonation with various specific ozone consumptions, and subsequent OMP spiking to comparable initial concentrations in all of the ozonated waters. This approach allowed for comparative PAC adsorption tests. Adsorption analyses show that the adsorbability of EfOM decreases with increasing specific ozone consumptions. This is also reflected by liquid chromatography with online carbon and UV254 detection (LC-OCD) which shows the ozone-induced disintegration of large EfOM into smaller fragments. Also, small organic neutrals are decreased while the small organic acids peak continuously increases with rising specific ozone consumptions. UV254 demonstrates that the aromaticity of all LC-OCD fractions continuously declines together with increasing specific O3 consumptions. This explains the varying EfOM adsorbabilities that occur due to ozonation. The ozone-induced decrease of EfOM adsorbability directly translates into reduced adsorption competition against the adsorption of OMP. With higher specific ozone consumptions, OMP removal and OMP loadings increase. The reduced adsorption competition is reflected in the outputs from equivalent background compound (EBC) modeling. In each of the ozonated waters, correlations between the OMP removals and the UV254 removal were found.

  4. Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption.

    PubMed

    Zietzschmann, F; Mitchell, R-L; Jekel, M

    2015-11-01

    This study investigates if ozonation of wastewater treatment plant (WWTP) effluent can reduce the negative impacts of effluent organic matter (EfOM) on the adsorption of organic micro-pollutants (OMP) onto powdered activated carbon (PAC). Pre-treatment of the water included membrane filtration for the removal of suspended/colloidal organics, ozonation with various specific ozone consumptions, and subsequent OMP spiking to comparable initial concentrations in all of the ozonated waters. This approach allowed for comparative PAC adsorption tests. Adsorption analyses show that the adsorbability of EfOM decreases with increasing specific ozone consumptions. This is also reflected by liquid chromatography with online carbon and UV254 detection (LC-OCD) which shows the ozone-induced disintegration of large EfOM into smaller fragments. Also, small organic neutrals are decreased while the small organic acids peak continuously increases with rising specific ozone consumptions. UV254 demonstrates that the aromaticity of all LC-OCD fractions continuously declines together with increasing specific O3 consumptions. This explains the varying EfOM adsorbabilities that occur due to ozonation. The ozone-induced decrease of EfOM adsorbability directly translates into reduced adsorption competition against the adsorption of OMP. With higher specific ozone consumptions, OMP removal and OMP loadings increase. The reduced adsorption competition is reflected in the outputs from equivalent background compound (EBC) modeling. In each of the ozonated waters, correlations between the OMP removals and the UV254 removal were found. PMID:26231581

  5. Adsorptive removal of fluoride from aqueous solution using orange waste loaded with multi-valent metal ions.

    PubMed

    Paudyal, Hari; Pangeni, Bimala; Inoue, Katsutoshi; Kawakita, Hidetaka; Ohto, Keisuke; Harada, Hiroyuki; Alam, Shafiq

    2011-08-30

    Adsorption gels for fluoride ion were prepared from orange waste by saponification followed by metal loading. The pectin compounds contained in orange waste creates ligand exchange sites once it is loaded with multi-valent metal ions such as Al(3+), La(3+), Ce(3+), Ti(4+), Sn(4+), and V(4+) to be used for fluoride removal from aqueous solution. The optimum pH for fluoride removal depends on the type of loaded metal ions. The isotherm experiments showed the Langmuir type monolayer adsorption. Among all kinds of metal loaded gels tested, Al loaded gel appeared to exhibit the most favorable adsorption behavior. The adsorption kinetics of fluoride on loaded gel demonstrated fast adsorption process. The presence of NO(3)(-), Cl(-) and Na(+) ions has negligible effect on fluoride removal whereas SO(4)(2-) and HCO(3)(-) retarded the fluoride removal capacity in some extent. Fluoride removal at different adsorbent doses showed that fluoride concentration can be successfully lowered down to the acceptable level of environmental standard. The fluoride adsorption mechanism was interpreted in terms of ligand exchange mechanism. The complete elution of adsorbed fluoride from the gel was successfully achieved using NaOH solution.

  6. Preliminary Report on Monosodium Titanate Adsorption Kinetics

    SciTech Connect

    Hobbs, D.T.

    1998-12-11

    The Salt Disposition Systems Engineering Team identified the adsorption kinetics of actinides and strontium onto monosodium titanate (MST) as a technical risk for several of the processing alternatives selected for additional evaluation in Phase III of their effort. The Flow Sheet Team requested that the Savannah River Technology Center (SRTC) examine the adsorption kinetics of MST for several process alternatives.This study consisted of a statistically designed set of tests to determine the rate of adsorption of strontium, uranium, neptunium and plutonium as a function of temperature, MST concentration, and concentrations of sodium, strontium, uranium, neptunium and plutonium. Additional tests incorporated into the design assess the effects of mixing as well as the influence from the presence of sludge solids and sodium tetraphenylborate.

  7. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    PubMed

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.

  8. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    PubMed

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water. PMID:26803100

  9. Adsorption properties of macroporous adsorbent resins for separation of anthocyanins from mulberry.

    PubMed

    Chen, Yao; Zhang, Weijie; Zhao, Ting; Li, Fang; Zhang, Min; Li, Jing; Zou, Ye; Wang, Wei; Cobbina, Samuel J; Wu, Xiangyang; Yang, Liuqing

    2016-03-01

    In this study, the adsorption/desorption characteristics of mulberry anthocyanins (MA) on five types of macroporous resins (XAD-7HP, AB-8, HP-20, D-101 and X-5) were evaluated, XAD-7HP and AB-8 showed higher adsorption/desorption capacities. On the basis of static adsorption test, XAD-7HP and AB-8 resins were selected for kinetics, isotherms and thermodynamics. The adsorption mechanism indicated that the process was better explained by pseudo-first-order kinetics and the Langmuir isotherm model, and the thermodynamics tests showed that the processes were exothermic, spontaneous and thermodynamically feasible. Dynamic tests were performed on a column packed with XAD-7HP and AB-8, and breakthrough volume was reached at 15 and 14 bed volumes of MA solution, respectively. The purity of the fraction by 40% ethanol elution on XAD-7HP reached 93.6%, from which cyanidin-3-glucoside and cyanidin-3-rutinoside were identified by HPLC-ESI-MS/MS. The method could be used to prepare high purity anthocyanins from mulberry fruits as well as other plants.

  10. Adsorption properties of macroporous adsorbent resins for separation of anthocyanins from mulberry.

    PubMed

    Chen, Yao; Zhang, Weijie; Zhao, Ting; Li, Fang; Zhang, Min; Li, Jing; Zou, Ye; Wang, Wei; Cobbina, Samuel J; Wu, Xiangyang; Yang, Liuqing

    2016-03-01

    In this study, the adsorption/desorption characteristics of mulberry anthocyanins (MA) on five types of macroporous resins (XAD-7HP, AB-8, HP-20, D-101 and X-5) were evaluated, XAD-7HP and AB-8 showed higher adsorption/desorption capacities. On the basis of static adsorption test, XAD-7HP and AB-8 resins were selected for kinetics, isotherms and thermodynamics. The adsorption mechanism indicated that the process was better explained by pseudo-first-order kinetics and the Langmuir isotherm model, and the thermodynamics tests showed that the processes were exothermic, spontaneous and thermodynamically feasible. Dynamic tests were performed on a column packed with XAD-7HP and AB-8, and breakthrough volume was reached at 15 and 14 bed volumes of MA solution, respectively. The purity of the fraction by 40% ethanol elution on XAD-7HP reached 93.6%, from which cyanidin-3-glucoside and cyanidin-3-rutinoside were identified by HPLC-ESI-MS/MS. The method could be used to prepare high purity anthocyanins from mulberry fruits as well as other plants. PMID:26471611

  11. Protein Adsorption on Surfaces with Grafted Polymers

    PubMed Central

    Szleifer, I.

    1997-01-01

    A general theoretical framework for studying the adsorption of protein molecules on surfaces with grafted polymers is presented. The approach is a generalization of the single-chain mean-field theory, in which the grafted polymer-protein-solvent layer is assumed to be inhomogeneous in the direction perpendicular to the grafting surface. The theory enables the calculation of the adsorption isotherms of the protein as a function of the surface coverage of grafted polymers, concentration of protein in bulk, and type of solvent molecules. The potentials of mean force of the protein with the surface are calculated as a function of polymer surface coverage and amount of protein adsorbed. The theory is applied to model lysozyme on surfaces with grafted polyethylene oxide. The protein is modeled as spherical in solution, and it is assumed that the protein-polymer, protein-solvent, and polymer-solvent attractive interactions are all equal. Therefore, the interactions determining the structure of the layer (beyond the bare polymer-surface and protein-surface interactions) are purely repulsive. The bare surface-protein interaction is taken from atomistic calculations by Lee and Park. For surfaces that do not have preferential attractions with the grafted polymer segments, the adsorption isotherms of lysozyme are independent of the polymer length for chains with more than 50 ethylene oxide units. However, the potentials of mean force show strong variations with grafted polymer molecular weight. The competition between different conformations of the adsorbed protein is studied in detail. The adsorption isotherms change qualitatively for surfaces with attractive interactions with ethylene oxide monomers. The protein adsorption is a function of chain length—the longer the polymer the more effective it is in preventing protein adsorption. The structure of the layer and its deformation upon protein adsorption are very important in determining the adsorption isotherms and the

  12. Gas adsorption capacity of wood pellets

    DOE PAGES

    Yazdanpanah, F.; Sokhansanj, Shahabaddine; Lim, C. Jim; Lau, A.; Bi, X. T.

    2016-02-03

    In this paper, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO2) uptake compared to the regular and torrefied pellets. The high CO2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pellets was challengingmore » due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material.« less

  13. Superior adsorption of pharmaceutical molecules by highly porous BN nanosheets.

    PubMed

    Liu, Dan; Lei, Weiwei; Qin, Si; Klika, Karel D; Chen, Ying

    2016-01-01

    Highly porous boron nitride nanosheets (BNNSs) were tested as a re-usable adsorbent for the removal of pharmaceuticals from aqueous solution. The BNNSs exhibit both unprecedentedly high adsorption capacities and excellent recyclability while maintaining their high adsorption capacity by a simple regeneration process. These advantages render BNNSs a promising material for water remediation applications. PMID:26618906

  14. A comparison of three adsorption equations and sensitivity study of parameter uncertainty effects on adsorption refrigeration thermal performance estimation

    NASA Astrophysics Data System (ADS)

    Zhao, Yongling; Hu, Eric; Blazewicz, Antoni

    2012-02-01

    This paper presents isosteric-based adsorption equilibrium tests of three activated carbon samples with methanol as an adsorbate. Experimental data was fitted into Langmuir equation, Freundlich equation and Dubinin-Astakov (D-A) equation, respectively. The fitted adsorption equations were compared in terms of agreement with experimental data. Moreover, equation format's impacts on calculation of the coefficient of performance (COP) and refrigeration capacity of an adsorption refrigeration system was analyzed. In addition, the sensitivity of each parameter in each adsorption equation format to the estimation of cycle's COP and refrigeration capacity was investigated. It was found that the D-A equation is the best form for presenting the adsorptive property of a carbon-methanol working pair. The D-A equation is recommended for estimating thermal performance of an adsorption refrigeration system because simulation results obtained using the D-A equation are less sensitive to errors of experimentally determined D-A equation's parameters.

  15. Calcium lignosulfonate adsorption and desorption on Berea sandstone.

    PubMed

    Grigg, Reid B; Bai, Baojun

    2004-11-01

    This paper describes adsorption and desorption studies carried out with calcium lignosulfonate (CLS) on Berea sandstone. Circulation experiments were performed to determine CLS adsorption isotherms and the effects of CLS concentration, temperature, salinity, brine hardness, and injection rate on adsorption density. Flow-through experiments were performed to assess the reversibility of CLS adsorption and the influence of postflush rate, brine concentration, brine hardness, brine pH, and temperature on the desorption process. Results indicate that CLS adsorption isotherms on Berea sandstone follow the Freundlich isotherm law. The results presented in this paper on the effects of CLS adsorption and desorption on Berea sandstone show that: (1) increasing CLS concentration and salinity increases CLS adsorption density; (2) increasing temperature will decrease adsorption density; (3) increasing injection rate of CLS solution will slightly decrease CLS adsorption density; (4) postflush rate and salinity of brine have a large impact on the CLS desorption process; (5) the adsorption and desorption process are not completely reversible; and (5) temperature and pH of the postflush brine have little effect on desorption.

  16. Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups

    NASA Astrophysics Data System (ADS)

    Yang, Guo; Chen, Honglin; Qin, Hangdao; Feng, Yujun

    2014-02-01

    To study the contribution of different nitrogen-containing functional groups to enhancement of phenol adsorption, the aminated activated carbons (AC) were characterized by N2 adsorption/desorption, XPS, Boehm titration, and pH drift method and tested for adsorption behaviors of phenol. Adsorption isotherm fitting revealed that the Langmuir model was preferred for the aminated ACs. The adsorption capacity per unit surface area (qm/SSABET) was linearly correlated with the amount of pyridinic and pyrrolic N, which suggested that these two functional groups played a critical role in phenol adsorption. The enhancement of adsorption capacity was attributed to the strengthened π-π dispersion between phenol and basal plane of AC by pyridinic, pyrrolic N. The adsorption kinetics was found to follow the pseudo-second-order kinetic model, and intraparticle diffusion was one of the rate-controlling steps in the adsorption process.

  17. Novel sandwich structure adsorptive membranes for removal of 4-nitrotoluene from water.

    PubMed

    Guo, Yuexin; Jia, Zhiqian

    2016-11-01

    Novel sandwich PES-SPES/PS-PDVB/PTFE adsorptive membranes were prepared by a filtration/immersion precipitation method and employed for the removal of 4-nitrotoluene from water. The static adsorption thermodynamics, kinetics, dynamic adsorption/desorption and membrane reusability were investigated. The results showed that the Freundlich model describes the adsorption isotherm satisfactorily. With increased PS-PDVB content, the maximum static adsorption capacity, partition coefficient, apparent adsorption rate constant, and dynamic adsorption capacity all significantly increased. The sandwich membranes showed much higher removal efficiency and adsorption capacity than those of mixed matrix membranes. With respect to dynamics adsorption/desorption, the sandwich membranes exhibited excellent reusability, with a removal efficiency greater than 95% even after five recycles. PMID:27322899

  18. Evaluation of various substances to prevent adsorption of tuberculin purified protein derivative (PPD) to glass surfaces*

    PubMed Central

    Landi, S.; Held, H. R.; Tseng, M. C.

    1970-01-01

    It is well known that a dilute tuberculin PPD solution (1 IU or 5 IU per dose) very rapidly loses its potency owing to adsorption of tuberculoprotein to the wall of the container into which it is dispensed. The amount of tuberculoprotein adsorbed per cm2 of glass surface has been measured for phosphate-buffered saline over a wide pH range (pH 1 to pH 10). The maximum adsorption was found at pH 4 (0.31 μg/cm2) and the least at between pH 6 and pH 10 (0.15 μg/cm2). The rate of adsorption of tuberculoprotein to glass was not changed when the phosphate-buffered saline was replaced by borate-buffered saline. Tuberculin PPD prepared by the ammonium sulfate precipitation method, by the trichloroacetic acid precipitation method and by a combination of both methods adsorbed equally well to glass and no difference in the rate of adsorption for these tuberculoproteins was found. Forty-two substances in addition to Tween 80 were tested for their property to prevent adsorption of tuberculoprotein to glass in dilute tuberculin PPD solutions (50 IU/ml of 14C-labelled PPD). The most efficient anti-adsorption agents were found to be nonionic surfactants, some ionic surfactants and some colloidal substances; polypeptides and non-surface-active substances of low molecular weight showed little or no anti-adsorption property. The labelling of PPD with 14C has proved to be a valuable tool, particularly for long-term adsorption studies and for screening substances to be used as efficient anti-adsorption agents. These studies have permitted the selection of agents which could be added to dilute solutions of tuberculin PPD (10 IU/ml to 500 IU/ml or 0.2 μg/ml to 10 μg/ml respectively) in order to avoid loss of potency due to adsorption. PMID:5312323

  19. One-pot solvothermal synthesis of dual-phase titanate/titania Nanoparticles and their adsorption and photocatalytic Performances

    SciTech Connect

    Cheng, Yu Hua; Gong, Dangguo; Tang, Yuxin; Ho, Jeffery Weng Chye; Tay, Yee Yan; Lau, Wei Siew; Wijaya, Olivia; Lim, Jiexiang; Chen, Zhong

    2014-06-01

    Dual phase titanate/titania nanoparticles undergo phase transformation gradually with the increase of solvothermal synthesis temperature from 100 °C to 200 °C, and eventually are fully transformed into anatase TiO{sub 2}. The crystal structure change results in the changes of optical absorption, sensitizer/dopant formation and surface area of the materials which finally affect the overall dye removal ability. Reactions under dark and light have been conducted to distinguish the contributions of surface adsorption from photocatalytic degradation. The sample synthesized at 160 °C (S160) shows the best performances for both adsorption under dark and photocatalytic degradation of methylene blue (MB) under visible light irradiation. The adsorption mechanism for S160 is determined as monolayer adsorption based on the adsorption isotherm test under dark condition, and an impressive adsorption capacity of 162.19 mg/g is achieved. For the photocatalytic application, this sample at 0.1 g/L loading is also able to degrade 20 ppm MB within 6 hours under the visible light (>420 nm) condition. - Graphical abstract: The effect of solvothermal synthesis temperature on the formation and dye removal performance of dual phase titanate/titania nanoparticles was unveiled and optimized. - Highlights: • Low temperature one-pot solvothermal synthesis of dual-phase photocatalysts. • Correlation of the synthesis temperature is made with the phase composition. • Adsorption isotherm, kinetics, photocatalytic degradation were studied. • Synthesis at 160 °C yields the best material for adsorption of MB in dark. • The same sample also shows the best visible light degradation of MB.

  20. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.

    PubMed

    Altenor, Sandro; Carene, Betty; Emmanuel, Evens; Lambert, Jacques; Ehrhardt, Jean-Jacques; Gaspard, Sarra

    2009-06-15

    Vetiver roots have been utilized for the preparation of activated carbon (AC) by chemical activation with different impregnation ratios of phosphoric acid, X(P) (gH(3)PO(4)/g precursor): 0.5:1; 1:1 and 1.5:1. Textural characterization, determined by nitrogen adsorption at 77K shows that mixed microporous and mesoporous structures activated carbons (ACs) with high surface area (>1000 m(2)/g) and high pore volume (up to 1.19 cm(3)/g) can be obtained. The surface chemical properties of these ACs were investigated by X-ray photoelectron spectroscopy (XPS) and Boehm titration. Their textural and chemical characteristics were compared to those of an AC sample obtained by steam activation of vetiver roots. Classical molecules used for characterizing liquid phase adsorption, phenol and methylene blue (MB), were used. Adsorption kinetics of MB and phenol have been studied using commonly used kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the intraparticle diffusion model and as well the fractal, BWS (Brouers, Weron and Sotolongo) kinetic equation. The correlation coefficients (R(2)) and the normalized standard deviation Deltaq (%) were determined showing globally, that the recently derived fractal kinetic equation could best describe the adsorption kinetics for the adsorbates tested here, indicating a complex adsorption mechanism. The experimental adsorption isotherms of these molecules on the activated carbon were as well analysed using four isotherms: the classical Freundlich, Langmuir, Redlich-Peterson equations, but as well the newly published deformed Weibull Brouers-Sotolongo isotherm. The results obtained from the application of the equations show that the best fits were achieved with the Brouers-Sotolongo equation and with the Redlich-Peterson equation. Influence of surface functional groups towards MB adsorption is as well studied using various ACs prepared from vetiver roots and sugar cane bagasse. Opposite effects governing MB

  1. Mathematical modeling and experimental breakthrough curves of carbon dioxide adsorption on metal organic framework CPM-5.

    PubMed

    Sabouni, Rana; Kazemian, Hossein; Rohani, Sohrab

    2013-08-20

    It is essential to capture carbon dioxide from flue gas because it is considered one of the main causes of global warming. Several materials and different methods have been reported for CO2 capturing including adsorption onto zeolites and porous membranes, as well as absorption in amine solutions. All such methods require high energy input and high cost. A new class of porous materials called Metal Organic Frameworks (MOFs) exhibited excellent performance in extracting carbon dioxide from a gas mixture. In this study, the breakthrough curves for the adsorption of carbon dioxide on CPM-5 (crystalline porous materials) were obtained experimentally and theoretically using a laboratory-scale fixed-bed column at different experimental conditions such as feed flow rate, adsorption temperature, and feed concentration. It was found that the CPM-5 has a dynamic CO2 adsorption capacity of 11.9 wt % (2.7 mmol/g) (corresponding to 8 mL/min, 298 K, and 25% v/v CO2). The tested CPM-5 showed an outstanding adsorption equilibrium capacity (e.g., 2.3 mmol/g (10.2 wt %) at 298 K) compared to other adsorbents, which can be considered as an attractive adsorbent for separation of CO2 from flue gas.

  2. Modelling and understanding the competitive adsorption of microcystins and tannic acid.

    PubMed

    Campinas, Margarida; Viegas, Rui M C; Rosa, Maria João

    2013-10-01

    A predictive model integrating adsorption kinetics and competitive isotherm models (Homogeneous Surface Diffusion Model, Freundlich-type and Fritz & Schlünder isotherms) was developed to describe and understand the competing mechanism(s) and the ionic strength (IS) role on microcystins (MC) and tannic acid (TA) competitive adsorption. The developed model showed good agreement with the experimental data obtained from batch adsorption tests and isotherms conducted with MC extracts and TA model solutions (single-solute and multicomponent, IS presence and absence) using a mesoporous powdered activated carbon (PAC). Results confirm that similar size molecules such as MC and TA are strong competitors and tannin-rich waters may severely affect MC residuals in the treated water. Unlike usually considered, both direct site and pore blockage mechanisms seem relevant. Competition effects appear to be more dependent on the competitor/contaminant molar ratio than on the initial concentrations. The IS affects the extent and the mechanisms of MC-TA competitive adsorption, reducing PAC dose for safe control of MC residuals. The developed model, including a Ds analysis, is an important tool to understand the competitive adsorption of similar size adsorbates. PMID:23880216

  3. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings.

    PubMed

    Zeng, Le; Li, Xiaomei; Liu, Jindun

    2004-03-01

    This study explored the feasibility of utilizing industrial waste iron oxide tailings for phosphate removal in laboratory experiments. The experimental work emphasized on the evaluation of phosphate adsorption and desorption characteristics of the tailing material. The adsorption isotherm, kinetics, pH effect and desorption were examined in batch experiments. Five isotherm models were used for data fitting. The three-parameter equations (Redlich-Peterson and Langmuir-Freundlich) showed more applicability than the two-parameter equations (Freundlich, Langmuir and Temkin). A modified equation for calculation of the separation factor using the Langmuir-Freundlich equation constants was developed. The initial phosphate adsorption on the tailings was rapid. The adsorption kinetics can be best described by either the simple Elovich or power function equation. The phosphate adsorption on the tailings tended to decrease with an increase of pH. A phosphate desorbability of approximately 13-14% was observed, and this low desorbability likely resulted from a strong bonding between the adsorbed PO(4)(3-)and iron oxides in the tailings. Column flow-through tests using both synthetic phosphate solution and liquid hog manure confirmed the phosphate removal ability of the tailings. Due to their low cost and high capability, this type of iron oxide tailings has the potential to be utilized for cost-effective removal of phosphate from wastewater.

  4. Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents.

    PubMed

    Kahu, S S; Shekhawat, A; Saravanan, D; Jugade, R M

    2016-08-01

    Ionic solid (Ethylhexadecyldimethylammoniumbromide) impregnated phosphated chitosan (ISPC) was synthesized and applied for enhanced adsorption of hexavalent chromium from industrial effluent. The compound obtained was extensively characterized using instrumental techniques like FT-IR, TGA-DTA, XRD, SEM, BET and EDX. ISPC showed high adsorption capacity of 266.67mg/g in accordance with Langmuir isotherm model at pH 3.0 due to the presence of multiple sites which contribute for ion pair and electrostatic interactions with Cr(VI) species. The sorption kinetics and thermodynamic studies revealed that adsorption of Cr(VI) followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. Applicability of ISPC for higher sample volumes was discerned through column studies. The real chrome plating industry effluent was effectively treated with total chromium recovery of 94%. The used ISPC was regenerated simply by dilute ammonium hydroxide treatment and tested for ten adsorption-desorption cycles with marginal decrease in adsorption efficiency. PMID:27112874

  5. Modeling and CFD prediction for diffusion and adsorption within room with various adsorption isotherms.

    PubMed

    Murakami, S; Kato, S; Ito, K; Zhu, Q

    2003-01-01

    This paper presents physical models that are used for analyzing numerically the transportation of volatile organic compounds (VOCs) from building materials in a room. The models are based on fundamental physicochemical principles of their diffusion and adsorption/desorption (hereafter simply sorption) both in building materials and in room air. The performance of the proposed physical models is examined numerically in a test room with a technique supported by computational fluid dynamics (CFD). Two building materials are used in this study. One is a VOC emitting material for which the emission rate is mainly controlled by the internal diffusion of the material. The other is an adsorptive material that has no VOC source. It affects the room air concentration of VOCs with its sorption process. The floor is covered with an emission material made of polypropylene styrene-butadiene rubber (SBR). An adsorbent material made of coal-based activated carbon is spread over the sidewalls. The results of numerical prediction show that the physical models and their numerical simulations explain well the mechanism of the transportation of VOCs in a room.

  6. [Adsorption kinetics of reactive dyes on activated carbon fiber].

    PubMed

    Li, Ying; Yue, Qin-Yan; Gao, Bao-Yu; Yang, Jing; Zheng, Yan

    2007-11-01

    The adsorption capability of activated carbon fiber (ACF) to four reactive dyes (reactive brilliant red K-2BP, reactive turquoise blue KN-G, reactive golden yellow K-3RP, reactive black KN-B) in aqueous solution was studied, and adsorption mechanism was focused on from kinetics point of view. The results show that the equilibrium adsorbing capacity (q(e)) of each dye increases with the addition of initial concentration or temperature. On the same condition, the order of q(e) is: reactive brilliant red > reactive golden yellow > reactive black > reactive turquoise blue. The adsorption processes follow a pseudo second-order kinetic rate equation, and the steric structure, size and polarity of dyes are important influence factors to initial adsorption rate. The adsorption activation energy of each dye is low (16.42, 3.56, 5.21, 26.38 kJ x mol(-1) respectively), which indicates that it belongs to physics adsorption.

  7. Communication: Thermodynamic analysis of critical conditions of polymer adsorption

    SciTech Connect

    Cimino, R.; Neimark, A. V.; Rasmussen, C. J.

    2013-11-28

    Polymer adsorption to solid surfaces is a ubiquitous phenomenon, which has attracted long-lasting attention. Dependent on the competition between the polymer-solid adsorption and polymer-solvent solvation interactions, a chain may assume either 3d solvated conformation when adsorption is weak or 2d adsorbed conformation when adsorption is strong. The transition between these conformations occurring upon variation of adsorption strength is quite sharp, and in the limit of “infinite” chain length, can be treated as a critical phenomenon. We suggest a novel thermodynamic definition of the critical conditions of polymer adsorption from the equality of incremental chemical potentials of adsorbed and free chains. We show with the example of freely jointed Lennard-Jones chains tethered to an adsorbing surface that this new definition provides a link between thermodynamic and geometrical features of adsorbed chains and is in line with classical scaling relationships for the fraction of adsorbed monomers, chain radii of gyration, and free energy.

  8. CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS

    SciTech Connect

    Xiao, S.; Heung, L.

    2010-10-07

    Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

  9. Clomazone dissipation, adsorption and translocation in four paddy topsoils.

    PubMed

    Li, Lian-fang; Li, Guo-xue; Yang, Ren-bin; Guo, Zheng-yuan; Liao, Xiao-yong

    2004-01-01

    Laboratory experiments about the dissipation, adsorption and translocation in four paddy topsoils were conducted in this paper. From the results it can be concluded as follows: the dissipation rate of clomazone differed greatly in different paddy soil derived from different parent materials. The half-lives for clomazone degradation in paddy soils ranged from 5.7 to 22.0 d. The order of clomazone dissipation rate was reddish yellow paddy soil > alluvial sandy paddy soil > yellow clayey paddy soil > purple sandy paddy soil. Clomazone sorption quantity was significantly correlated with organic carbon (R2 = 0.62) and clay content(R2 = 0.67) in the tested paddy soils. Positive correlation was found between apparent Kd value and cation exchange content(CEC). The consequences for the adsorption of different soils were purple sandy paddy soil > yellow clayey paddy soil > reddish yellow paddy soil > alluvial sandy paddy soil. Under the simulated rainfall of 200 mm through four different unsaturated soil lysimeters over 24 h, clomazone was readily to be leached into lower surface soil and there was about 2.6%--4.2% of applied clomazone leached out of 20 cm cultivated soil layer. Translocation experiments showed that the order of clomazone leaching ability was: alluvial sandy paddy soil > reddish yellow paddy soil > yellow clayey paddy soil > purple sandy paddy soil. Simple regression results manifested that factors like CEC, organic carbon, clay, and adsorption rate constant had been negatively correlated with the percentage of clomazone loss from soil lysimeters.

  10. Study of Methylene Blue adsorption on keratin nanofibrous membranes.

    PubMed

    Aluigi, A; Rombaldoni, F; Tonetti, C; Jannoke, L

    2014-03-15

    In this work, keratin nanofibrous membranes (mean diameter of about 220nm) were prepared by electrospinning and tested as adsorbents for Methylene Blue through batch adsorption tests. The adsorption capacity of the membranes was evaluated as a function of initial dye concentration, pH, adsorbent dosage, time and temperature. The adsorption capacity increased with increasing the initial dye concentration and pH, while it decreased with increasing the adsorbent dosage and temperature, indicating an exothermic process. The adsorption results indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich and Temkin isotherm models. A mean free energy evaluated through the Dubinin-Radushkevich model of about 16kJmol(-1), indicated a chemisorption process which occurred by ion exchange. The kinetic data were found to fit the pseudo-second-order model better than the pseudo-first-order model. The obtained results suggest that keratin nanofibrous membranes could be promising candidates as dye adsorption filters.

  11. Adsorption of diethyl phthalate ester to clay minerals.

    PubMed

    Wu, Yanhua; Si, Youbin; Zhou, Dongmei; Gao, Juan

    2015-01-01

    Phthalate esters are a group of plasticizers, which have been widely detected in China's agricultural and industrial soils. In this study, batch adsorption experiments were conducted to investigate the environmental effects on the adsorption of diethyl phthalate ester (DEP) to clay minerals. The results showed that DEP adsorption isotherms were well fitted with the Freundlich model; the interlayer spacing of K(+) saturated montmorillonite (K-mont) was the most important adsorption area for DEP, and di-n-butyl ester (DnBP) was limited to intercalate into the interlayer of K-mont due to the bigger molecular size; there was no significant effect of pH and ionic strength on DEP adsorption to K-mont/Ca-mont, but to Na-mont clay. The adsorption to kaolinite was very limited. Data of X-ray diffraction and FTIR spectra further proved that DEP molecules could intercalate into K-/Ca-mont interlayer, and might interact with clay through H-bonding between carbonyl groups and clay adsorbed water. Coated humic acid on clay surface would enhance DEP adsorption at low concentration, but not at high concentration (eg. Ce>0.26 mM). The calculated adsorption enthalpy (ΔHobs) and adsorption isotherms at varied temperatures showed that DEP could be adsorbed easier as more adsorbed. This study implied that clay type, compound structure, exchangeable cation, soil organic matter and temperature played important roles in phthalate ester's transport in soil.

  12. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles.

    PubMed

    Su, Yu; Cui, Hang; Li, Qi; Gao, Shian; Shang, Jian Ku

    2013-09-15

    Phosphate removal is important in the control of eutrophication of water bodies. Adsorption is one of the promising approaches for the removal of phosphate, which could serve as a supplement for the biological phosphate removal process commonly used in the wastewater treatment industry to meet the discharge requirement when the biological performance is deteriorated from changes of operation conditions. Amorphous zirconium oxide nanoparticles were synthesized by a simple and low-cost hydrothermal process, and their phosphate removal performance was explored in aqueous environment under various conditions. A fast adsorption of phosphate was observed in the kinetics study, and their adsorption capacity was determined at about 99.01 mg/g at pH 6.2 in the equilibrium adsorption isotherm study. Commonly coexisting anions showed no or minimum effect on their phosphate adsorption performance. The phosphate adsorption showed little pH dependence in the range from pH 2 to 6, while it decreased sharply with the pH increase above pH 7. After adsorption, phosphate on these am-ZrO2 nanoparticles could be easily desorbed by NaOH solution washing. Both the macroscopic and microscopic techniques demonstrated that the phosphate adsorption mechanism of am-ZrO2 nanoparticles followed the inner-sphere complexing mechanism, and the surface hydroxyl groups played a key role in the phosphate adsorption.

  13. Adsorption of herbicides using activated carbons

    SciTech Connect

    Derbyshire, F.; Jagtoyan, M.; Lafferty, C.; Kimber, G.

    1996-10-01

    This work describes development of a series of novel activated carbon materials and their testing for possible water treatment applications by studying the adsorption of sodium pentachlorphenolate, PCP (a common herbicide/wood preservative). Although the application of activated carbons is an established technology for the treatment of public water supplies, there is a growing need for materials with higher selectivity and adsorptive capacities as well as high abrasion resistance. The materials that will be discussed include extruded wood-derived carbons with novel pore size distributions and high hardness, as well as activated carbon fiber composites. Comparisons will be made with commercial granular water treatment carbons.

  14. Elucidating the role of phenolic compounds in the effectiveness of DOM adsorption on novel tailored activated carbon.

    PubMed

    Yan, Liang; Fitzgerald, Martha; Khov, Cindy; Schafermeyer, Amy; Kupferle, Margaret J; Sorial, George A

    2013-11-15

    Two novel tailored activated carbons (BC-41-OG and BC-41-MnN) with favorable physicochemical characteristics were successfully prepared for adsorption of dissolved natural organic matter (DOM) by applying systematically chemical and thermal treatment. This research was conducted to investigate the impact of the presence of phenolics on the adsorption capacity of DOM. Isotherm tests were performed for both humic acid (HA) and phenolics on both novel tailored activated carbons and commercial activated carbon F400. The presence of phenolics display a significant effect on hindering the adsorption of HA, however; the physicochemical characteristics of novel activated carbons (surface metal oxides and mesoporosity) can play an important role in alleviating this effect. In contrast, F400, with a relatively lower mesoporosity and surface basicity as compared to the developed adsorbents, was severely impacted by the oligomerization of phenolic compounds. The adsorption capacity of DOM in presence of phenolics was further studied in a continuous flow microcolumn system. The column results showed that both BC-41-OG and BC-41-MnN have not only higher HA adsorption capacity but also better selective adsorption ability than F400.

  15. Adsorption of aqueous copper on peanut hulls

    NASA Astrophysics Data System (ADS)

    Davis, Kanika Octavia

    , scanning electron microscopy images coupled with energy dispersive X-ray spectroscopy showed that the percentage of copper on the modified hulls (2.5 %) was greater than on the unmodified hulls (1.6 %). This study concluded that the adsorption of copper using peanut hulls is a potential method for wastewater treatment and delignification and oxidation of the hulls increases the adsorption capacity approximately three-fold.

  16. Preparative separation and purification of fumigaclavine C from fermented mycelia of Aspergillus fumigatus CY018 by macroporous adsorption resin.

    PubMed

    Yao, Ling-Yun; Zhu, Yi-Xiang; Liu, Chang-Qing; Jiao, Rui-Hua; Lu, Yan-Hua; Tan, Ren-Xiang

    2015-05-01

    In this work, the separation and purification of fumigaclavine C (FC), an ergot alkaloid with strong anti-inflammatory activity from fermented mycelia of Aspergillus fumigatus was systematically evaluated. Among the eight tested resins, the non-polar resin D101 displayed the best adsorption and desorption based on of static adsorption and desorption tests. Adsorption isotherms were constructed on D101 resin and fitted well to the Freundlich model. Dynamic adsorption and desorption tests on a column packed with D101 resin have been investigated for optimization of chromatographic parameters. Under optimized conditions, the contents of FC increased from 7.32% (w/w) in the crude extract to 67.54% in the final product with a recovery yield of 90.35% (w/w) via one run. Furthermore, a lab scale-up separation was carried out, in which the FC content and recovery yield were 65.83% and 90.13%, respectively. These results demonstrated that this adsorption-desorption strategy by using D101 resin was simple and efficient, thus showing potential for large scale purification and preparation of FC in the future.

  17. Preparative separation and purification of fumigaclavine C from fermented mycelia of Aspergillus fumigatus CY018 by macroporous adsorption resin.

    PubMed

    Yao, Ling-Yun; Zhu, Yi-Xiang; Liu, Chang-Qing; Jiao, Rui-Hua; Lu, Yan-Hua; Tan, Ren-Xiang

    2015-05-01

    In this work, the separation and purification of fumigaclavine C (FC), an ergot alkaloid with strong anti-inflammatory activity from fermented mycelia of Aspergillus fumigatus was systematically evaluated. Among the eight tested resins, the non-polar resin D101 displayed the best adsorption and desorption based on of static adsorption and desorption tests. Adsorption isotherms were constructed on D101 resin and fitted well to the Freundlich model. Dynamic adsorption and desorption tests on a column packed with D101 resin have been investigated for optimization of chromatographic parameters. Under optimized conditions, the contents of FC increased from 7.32% (w/w) in the crude extract to 67.54% in the final product with a recovery yield of 90.35% (w/w) via one run. Furthermore, a lab scale-up separation was carried out, in which the FC content and recovery yield were 65.83% and 90.13%, respectively. These results demonstrated that this adsorption-desorption strategy by using D101 resin was simple and efficient, thus showing potential for large scale purification and preparation of FC in the future. PMID:25817261

  18. Adsorption behavior of heavy metals on biomaterials.

    PubMed

    Minamisawa, Mayumi; Minamisawa, Hiroaki; Yoshida, Shoichiro; Takai, Nobuharu

    2004-09-01

    We have investigated adsorption of Cd(II) and Pb(II) at pH 2-6.7 onto the biomaterials chitosan, coffee, green tea, tea, yuzu, aloe, and Japanese coarse tea, and onto the inorganic adsorbents, activated carbon and zeolite. High adsorptive capabilities were observed for all of the biomaterials at pH 4 and 6.7. In the adsorption of Cd(II), blend coffee, tea, green tea, and coarse tea have comparable loading capacities to activated carbon and zeolite. Although activated carbon, zeolite, and chitosan are utilized in a variety of fields such as wastewater treatment, chemical and metallurgical engineering, and analytical chemistry, these adsorbents are costly. On the other hand, processing of the test biomaterials was inexpensive, and all the biomaterials except for chitosan were able to adsorb large amounts of Pb(II) and Cd(II) ions after a convenient pretreatment of washing with water followed by drying. The high adsorption capability of the biomaterials prepared from plant materials is promising in the development of a novel, low-cost adsorbent. From these results, it is concluded that heavy metal removal using biomaterials would be an effective method for the economic treatment of wastewater. The proposed adsorption method was applied to the determination of amounts of Cd(II) and Pb(II) in water samples.

  19. Porous silicon functionalization for possible arsenic adsorption

    NASA Astrophysics Data System (ADS)

    Balderas-Valadez, Ruth Fabiola; Agarwal, Vivechana

    2014-09-01

    Thiol-functionalized porous silicon (PS) monolayer was evaluated for its possible application in As (III) adsorption. Dimercaptosuccinic acid (DMSA) attached to mesoporous silicon via amide bond linkages was used as a chelate for As (III). Two different aminosilanes namely 3-(aminopropyl) triethoxysilane (APTES) and 3-aminopropyl (diethoxy)-methylsilane (APDEMS) were tested as linkers to evaluate the relative response for DMSA attachment. The aminosilane-modified PS samples were attached to DMSA by wet impregnation followed by the adsorption of As (III). Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to identify the functional groups and to estimate the As (III) content, respectively. FTIR spectroscopy confirmed the covalent bonding of DMSA with amide and R-COOH groups on the nanostructured porous surface. XPS confirms the preferred arsenic adsorption on the surface of PS/DMSA samples as compared to the aminosilane-modified and bare PS substrates.

  20. Porous silicon functionalization for possible arsenic adsorption

    PubMed Central

    2014-01-01

    Thiol-functionalized porous silicon (PS) monolayer was evaluated for its possible application in As (III) adsorption. Dimercaptosuccinic acid (DMSA) attached to mesoporous silicon via amide bond linkages was used as a chelate for As (III). Two different aminosilanes namely 3-(aminopropyl) triethoxysilane (APTES) and 3-aminopropyl (diethoxy)-methylsilane (APDEMS) were tested as linkers to evaluate the relative response for DMSA attachment. The aminosilane-modified PS samples were attached to DMSA by wet impregnation followed by the adsorption of As (III). Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to identify the functional groups and to estimate the As (III) content, respectively. FTIR spectroscopy confirmed the covalent bonding of DMSA with amide and R-COOH groups on the nanostructured porous surface. XPS confirms the preferred arsenic adsorption on the surface of PS/DMSA samples as compared to the aminosilane-modified and bare PS substrates. PMID:25249826

  1. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds.

    PubMed

    Bandosz, Teresa J; Petit, Camille

    2009-10-15

    Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH(3) adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Brønsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air. PMID:19615690

  2. How soil organic matter composition controls hexachlorobenzene-soil-interactions: adsorption isotherms and quantum chemical modeling.

    PubMed

    Ahmed, Ashour A; Kühn, Oliver; Aziz, Saadullah G; Hilal, Rifaat H; Leinweber, Peter

    2014-04-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soiladsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HCB adsorption. To obtain a molecular level understanding, a test set has been developed on the basis of elemental analysis which comprises 32 representative soil constituents. The calculated binding energy for HCB with each representative system shows that HCB binds to SOM stronger than to soil minerals. For SOM, HCB binds to alkylated aromatic, phenols, lignin monomers, and hydrophobic aliphatic compounds stronger than to polar aliphatic compounds confirming the above adsorption isotherms. Moreover, quantitative structure-activity relationship (QSAR) of the binding energy with independent physical properties of the test set systems for the first time indicated that the polarizability, the partial charge on the carbon atoms, and the molar volume are the most important properties controlling HCB-SOM interactions.

  3. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds

    SciTech Connect

    Bandosz, T.J.; Petit, C.

    2009-10-15

    Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH{sub 3} adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Bronsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.

  4. Evaluation of the isosteric heat of adsorption at zero coverage for hydrogen on activated carbons

    NASA Astrophysics Data System (ADS)

    Dohnke, E.; Beckner, M.; Romanos, J.; Olsen, R.; Wexler, C.; Pfeifer, P.

    2011-03-01

    Activated carbons made from corn cob show promise as materials for high-capacity hydrogen storage. As part of our characterization of these materials, we are interested in learning how different production methods affect the adsorption energies. In this talk, we will show how hydrogen adsorption isotherms may be used to calculate these adsorption energies at zero coverage using Henry's law. We will additionally discuss differences between the binding energy and the isosteric heat of adsorption by applying this analysis at different temperatures.

  5. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption

    SciTech Connect

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin; Zhang, Jing-Li; Si, Weijiang; Dong, Yunhui Zhuo, Shuping

    2015-10-15

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g{sup −1} at 0.2 A g{sup −1}, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and high recycling performance toward several metal ions such as Pb{sup 2+}, Cu{sup 2+} and Cd{sup 2+}. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents. - Graphical abstract: Three-dimensional nitrogen-doped graphene aerogels were prepared by using melamine as reducing and functionalizing agent in an aqueous medium with ammonia, which showed multifunctional applications in supercapacitors and adsorption. - Highlights: • Three-dimensional nitrogen-doped graphene aerogels (NGAs) were prepared. • Melamine was used as reducing and functionalizing agent. • NGAs exhibited relatively good electrochemical properties in supercapacitor. • NGAs exhibited high adsorption performance toward several metal ions. • CNGAs showed outstanding adsorption capacities for various oils and solvents.

  6. Solvothermal synthesis of MnFe2O4-graphene composite-Investigation of its adsorption and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Chella, Santhosh; Kollu, Pratap; Komarala, Eswara Vara P. R.; Doshi, Sejal; Saranya, Murugan; Felix, Sathiyanathan; Ramachandran, Rajendran; Saravanan, Padmanapan; Koneru, Vijaya Lakshmi; Venugopal, Velmurugan; Jeong, Soon Kwan; Nirmala Grace, Andrews

    2015-02-01

    Graphene manganese ferrite (MnFe2O4-G) composite was prepared by a solvothermal process. The as-prepared graphene manganese ferrite composite was tested for the adsorption of lead (Pb(II)) and cadmium (Cd(II)) ions by analytical methods under diverse experimental parameters. With respect to contact time measurements, the adsorption of Pb and Cd ions increased and reached equilibrium within 120 and 180 min at 37 °C with a maximum adsorption at pH 5 and 7 respectively. The Langmuir model correlates to the experimental data showing an adsorption capacity of 100 for Pb(II) and 76.90 mg g-1 for Cd(II) ions. Thermodynamic studies revealed that the adsorption of Pb and Cd ions onto MnFe2O4-G was spontaneous, exothermic and feasible in the range of 27-47 °C. Cytotoxicity behavior of graphene against bacterial cell membrane is well known. To better understand its antimicrobial mechanism, the antibacterial activity of graphene and MnFe2O4-G nanocomposite was compared. Under similar concentration and incubation conditions, nanocomposite MnFe2O4-G dispersion showed the highest antibacterial activity of 82%, as compared to graphene showing 37% cell loss. Results showed that the prepared composite possess good adsorption efficiency and thus could be considered as an excellent material for removal of toxic heavy metal ions as explained by adsorption isotherm. Hence MnFe2O4-G can be used as an adsorbent as well as an antimicrobial agent.

  7. Modeling adsorption: Investigating adsorbate and adsorbent properties

    NASA Astrophysics Data System (ADS)

    Webster, Charles Edwin

    1999-12-01

    Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas

  8. Adsorption of emulsified oil from metalworking fluid on activated bleaching earth-chitosan-SDS composites: Optimization, kinetics, isotherms.

    PubMed

    Naowanat, Nitiya; Thouchprasitchai, Nutthavich; Pongstabodee, Sangobtip

    2016-03-15

    The adsorption of emulsified oil from metalworking fluid (MWF) on activated bleaching earth (BE)-chitosan-sodium dodecyl sulfate (SDS) composites (BE/MCS) was investigated under a statistical design of experiments at a 95% confidence interval to identify the critical factors and to optimize the adsorption capacity. The BE/MCS adsorbents were characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller adsorption/desorption isotherms, contact angle analysis (sessile drop technique) and their zeta potential. From the results of a full 2(5) factorial design with three center points, the adsorbent weight and initial pH of the MWF had a significant antagonistic effect on the adsorption capacity while the initial MWF concentration and BE:chitosan:SDS weight ratio had a synergistic influence. Temperature factor has no discernible effect on the capacity. From the FCCC-RSM design, the optimal capacity range of 2840-2922.5 mg g(-1) was achieved at sorbent weight of 1.6-1.9 g, pH of 5.5-6.5, initial MWF concentration of 52-55 g l(-1) and BE:chitosan:SDS (w/w/w) ratio of 4.7:1:1-6.2:1:1. To test the validation and sensitivity of RSM model, the results showed that the estimated adsorption capacity was close to the experimental capacity within an error range of ±3%, suggesting that the RSM model was acceptable and satisfied. From three kinetics models (pseudo-first-order, pseudo-second-order model and Avrami's equation) and two adsorption isotherms (Langmuir model and Freundlich model), assessed using an error function (Err) and the coefficient of determination (R(2)), Avrami's equation and Freundlich isotherm model provided a good fitting for the data, suggesting the presence of more than one reaction pathway in the MWF adsorption process and the heterogeneous surface adsorption of the BC/ABE-5.5 composite. PMID:26731309

  9. Adsorption of emulsified oil from metalworking fluid on activated bleaching earth-chitosan-SDS composites: Optimization, kinetics, isotherms.

    PubMed

    Naowanat, Nitiya; Thouchprasitchai, Nutthavich; Pongstabodee, Sangobtip

    2016-03-15

    The adsorption of emulsified oil from metalworking fluid (MWF) on activated bleaching earth (BE)-chitosan-sodium dodecyl sulfate (SDS) composites (BE/MCS) was investigated under a statistical design of experiments at a 95% confidence interval to identify the critical factors and to optimize the adsorption capacity. The BE/MCS adsorbents were characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller adsorption/desorption isotherms, contact angle analysis (sessile drop technique) and their zeta potential. From the results of a full 2(5) factorial design with three center points, the adsorbent weight and initial pH of the MWF had a significant antagonistic effect on the adsorption capacity while the initial MWF concentration and BE:chitosan:SDS weight ratio had a synergistic influence. Temperature factor has no discernible effect on the capacity. From the FCCC-RSM design, the optimal capacity range of 2840-2922.5 mg g(-1) was achieved at sorbent weight of 1.6-1.9 g, pH of 5.5-6.5, initial MWF concentration of 52-55 g l(-1) and BE:chitosan:SDS (w/w/w) ratio of 4.7:1:1-6.2:1:1. To test the validation and sensitivity of RSM model, the results showed that the estimated adsorption capacity was close to the experimental capacity within an error range of ±3%, suggesting that the RSM model was acceptable and satisfied. From three kinetics models (pseudo-first-order, pseudo-second-order model and Avrami's equation) and two adsorption isotherms (Langmuir model and Freundlich model), assessed using an error function (Err) and the coefficient of determination (R(2)), Avrami's equation and Freundlich isotherm model provided a good fitting for the data, suggesting the presence of more than one reaction pathway in the MWF adsorption process and the heterogeneous surface adsorption of the BC/ABE-5.5 composite.

  10. Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan

    NASA Astrophysics Data System (ADS)

    Yang, Guide; Tang, Lin; Lei, Xiaoxia; Zeng, Guangming; Cai, Ye; Wei, Xue; Zhou, Yaoyu; Li, Sisi; Fang, Yan; Zhang, Yi

    2014-02-01

    The present study developed an α-ketoglutaric acid-modified magnetic chitosan (α-KA-Fe3O4/CS) for highly efficient adsorption of Cd(II) from aqueous solution. Several techniques, including transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and vibrating sample magnetometer (VSM), were applied to characterize the adsorbent. Batch tests were conducted to investigate the Cd(II) adsorption performance of α-KA-Fe3O4/CS. The maximum adsorption efficiency of Cd(II) appeared at pH 6.0 with the value of 93%. The adsorption amount was large and even reached 201.2 mg/g with the initial Cd(II) concentration of 1000 mg/L. The adsorption equilibrium was reached within 30 min and commendably described by pseudo-second-order model, and Langmuir model fitted the adsorption isotherm better. Furthermore, thermodynamic parameters, free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) of Cd(II) adsorption were also calculated and showed that the overall adsorption process was endothermic and spontaneous in nature because of positive ΔH values and negative ΔG values, respectively. Moreover, the Cd(II)-loaded α-KA-Fe3O4/CS could be regenerated by 0.02 mol/L NaOH solution, and the cadmium removal capacity could still be kept around 89% in the sixth cycle. All the results indicated that α-KA-Fe3O4/CS was a promising adsorbent in environment pollution cleanup.

  11. Integrated Testing of a 4-Bed Molecular Sieve and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Mulloth, Lila M.; Affleck, David L.

    2004-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. This paper reports the integrated 4BMS and liquid-cooled TSAC testing conducted during the period of March 3 to April 18, 2003. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  12. New Adsorption Methods.

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    1984-01-01

    Discusses a simple method for following the movement of a solute in an adsorption or ion exchange system. This movement is used to study a variety of operational methods, including continuous flow and pulsed flow counter-current operations and simulated counter-current systems. Effect of changing thermodynamic variables is also considered. (JM)

  13. SEPARATION BY ADSORPTION

    DOEpatents

    Lowe, C.S.

    1959-06-16

    Separation of Pu from fission products by adsorption on hydrous aluminum silicate is described. The Pu in a HNO/sub 3/ solution is oxidized to the hexavalent state and contacted with the silicate which adsorbs fission products. (T.R.H.)

  14. Engineered Structured Sorbents for the Adsorption of Carbon Dioxide and Water Vapor from Manned Spacecraft Atmospheres: Applications and Testing 2008/2009

    NASA Technical Reports Server (NTRS)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian

    2009-01-01

    This paper describes efforts to improve on typical packed beds of sorbent pellets by making use of structured sorbents and alternate bed configurations to improve system efficiency and reliability. The benefits of the alternate configurations include increased structural stability gained by eliminating clay bound zeolite pellets that tend to fluidize and erode, and better thermal control during sorption to increase process efficiency. Test results that demonstrate such improvements are described and presented.

  15. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    SciTech Connect

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  16. Powdered activated carbon adsorption of two fishy odorants in water: Trans,trans-2,4-heptadienal and trans,trans-2,4-decadienal.

    PubMed

    Li, Xin; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2015-06-01

    Powdered activated carbon (PAC) adsorption of two fishy odorants, trans,trans-2,4-heptadienal (HDE) and trans,trans-2,4-decadienal (DDE), was investigated. Both the pseudo first-order and the pseudo second-order kinetic models well described the kinetics curves, and DDE was more readily removed by PAC. In isotherm tests, both Freundlich and Modified Freundlich isotherms fitted the experimental data well. PAC exhibited a higher adsorption capacity for DDE than for HDE, which could be ascribed to the difference in their hydrophobicity. The calculated thermodynamic parameters (ΔG0, ΔH0, and ΔS0) indicated an exothermic and spontaneous adsorption process. PAC dosage, pH, and natural organic matter (NOM) presence were found to influence the adsorption process. With increasing PAC dosage, the pseudo first-order and pseudo second-order rate constants both increased. The value of pH had little influence on HDE or DDE molecules but altered the surface charge of PAC, and the maximum adsorption capacity occurred at pH9. The presence of NOM, especially the fraction with molecular weight less than 1k Dalton, hindered the adsorption. The study showed that preloaded NOM impaired the adsorption capacity of HDE or DDE more severely than simultaneously fed NOM did.

  17. Powdered activated carbon adsorption of two fishy odorants in water: Trans,trans-2,4-heptadienal and trans,trans-2,4-decadienal.

    PubMed

    Li, Xin; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2015-06-01

    Powdered activated carbon (PAC) adsorption of two fishy odorants, trans,trans-2,4-heptadienal (HDE) and trans,trans-2,4-decadienal (DDE), was investigated. Both the pseudo first-order and the pseudo second-order kinetic models well described the kinetics curves, and DDE was more readily removed by PAC. In isotherm tests, both Freundlich and Modified Freundlich isotherms fitted the experimental data well. PAC exhibited a higher adsorption capacity for DDE than for HDE, which could be ascribed to the difference in their hydrophobicity. The calculated thermodynamic parameters (ΔG0, ΔH0, and ΔS0) indicated an exothermic and spontaneous adsorption process. PAC dosage, pH, and natural organic matter (NOM) presence were found to influence the adsorption process. With increasing PAC dosage, the pseudo first-order and pseudo second-order rate constants both increased. The value of pH had little influence on HDE or DDE molecules but altered the surface charge of PAC, and the maximum adsorption capacity occurred at pH9. The presence of NOM, especially the fraction with molecular weight less than 1k Dalton, hindered the adsorption. The study showed that preloaded NOM impaired the adsorption capacity of HDE or DDE more severely than simultaneously fed NOM did. PMID:26040727

  18. Neptunium(V) adsorption to calcite

    NASA Astrophysics Data System (ADS)

    Heberling, Frank; Brendebach, Boris; Bosbach, Dirk

    2008-12-01

    The migration behavior of the actinyl ions U(VI)O 22+, Np(V)O 2+ and Pu(V,VI)O 2(+,2+) in the geosphere is to a large extend controlled by sorption reactions (inner- or outer-sphere adsorption, ion-exchange, coprecipitation/structural incorporation) with minerals. Here NpO 2+ adsorption onto calcite is studied in batch type experiments over a wide range of pH (6.0-9.4) and concentration (0.4 μM-40 μM) conditions. pH is adjusted by variation of CO 2 partial pressure. Adsorption is found to be pH dependent with maximal adsorption at pH 8.3 decreasing with increasing and decreasing pH. pH dependence of adsorption decreases with increasing Np(V) concentration. EXAFS data of neptunyl adsorbed to calcite and neptunyl in the supernatant shows differences in the Np(V)-O-yl distance, 1.85 ± 0.01 Å for the adsorbed and 1.82 ± 0.01 Å for the solution species. The equatorial environment of the neptunyl in solution shows about 5 oxygen neighbours at 2.45 ± 0.02 Å. For adsorbed neptunyl there are also about 5 oxygen neighbours at 2.46 ± 0.01 Å. An additional feature in the adsorbed species' R-space spectrum can be related to carbonate neighbours, 3 to 6 carbon backscatterers (C-eq) at 3.05 ± 0.03 Å and 3 to 6 oxygen backscatterers (O-eq2) at 3.31 ± 0.02 Å. The differences in the Np(V)-O-yl distance and the C-eq and O-eq2 backscatterers which are only present for the adsorbed species indicate inner-sphere bonding of the adsorbed neptunyl species to the calcite surface. Experiments on adsorption kinetics indicate that after a fast surface adsorption process a continuous slow uptake occurs which may be explained by incorporation via surface dissolution and reprecipitation processes. This is also indicated by the part irreversibility of the adsorption as shown by increased KD values after desorption compared to adsorption.

  19. Characterization of micro- and mesoporous materials using accelerated dynamics adsorption.

    PubMed

    Qajar, Ali; Peer, Maryam; Rajagopalan, Ramakrishnan; Foley, Henry C

    2013-10-01

    Porosimetry is a fundamental characterization technique used in development of new porous materials for catalysis, membrane separation, and adsorptive gas storage. Conventional methods like nitrogen and argon adsorption at cryogenic temperatures suffer from slow adsorption dynamics especially for microporous materials. In addition, CO2, the other common probe, is only useful for micropore characterization unless being compressed to exceedingly high pressures to cover all required adsorption pressures. Here, we investigated the effect of adsorption temperature, pressure, and type of probe molecule on the adsorption dynamics. Methyl chloride (MeCl) was used as the probe molecule, and measurements were conducted near room temperature under nonisothermal condition and subatmospheric pressure. A pressure control algorithm was proposed to accelerate adsorption dynamics by manipulating the chemical potential of the gas. Collected adsorption data are transformed into pore size distribution profiles using the Horvath-Kavazoe (HK), Saito-Foley (SF), and modified Kelvin methods revised for MeCl. Our study shows that the proposed algorithm significantly speeds up the rate of data collection without compromising the accuracy of the measurements. On average, the adsorption rates on carbonaceous and aluminosilicate samples were accelerated by at least a factor of 4-5. PMID:23919893

  20. Influence of Ca2+ on tetracycline adsorption on montmorillonite.

    PubMed

    Parolo, M Eugenia; Avena, Marcelo J; Pettinari, Gisela R; Baschini, Miria T

    2012-02-15

    The adsorption of tetracycline (TC) on montmorillonite was studied as a function of pH and Ca(2+) concentration using a batch technique complemented with X-ray diffraction and transmission electron microscopy. In the absence of Ca(2+), TC adsorption was high at low pH and decreased as the pH increased. In the presence of Ca(2+), at least two different adsorption processes took place in the studied systems, i.e., cation exchange and Ca-bridging. Cation exchange was the prevailing process at pH<5, and thus, TC adsorption decreased by increasing total Ca(2+) concentration. On the contrary, Ca-bridging was the prevailing process at pH>5, and thus, TC adsorption increased by increasing Ca(2+) concentration. The pH 5 represents an isoadsorption pH where both adsorption processes compensate each other. TC adsorption became independent of Ca(2+) concentration at this pH. For TC adsorption on Ca(2+)-montmorillonite in 0.01 M NaCl experiments, the ratio adsorbed TC/retained Ca(2+) was close to 1 in the pH range of 5-9, indicating an important participation of Ca(2+) in the binding of TC to montmorillonite. X-ray diffraction and transmission electron microscopy showed that TC adsorption induced intercalation between montmorillonite layers forming a multiphase system with stacking of layers with and without intercalated TC. PMID:22189389

  1. Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite.

    PubMed

    Wang, Fei; Liu, Chengshuai; Shih, Kaimin

    2012-11-01

    Understanding the interaction of perfluorochemicals, persistent pollutants with known human health effects, with mineral compounds in surface water and groundwater environments is essential to determining their fate and transport. Kinetic experiments showed that adsorption equilibrium can be achieved within 48 h and the boehmite (AlOOH) surface is receptive to perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorption. The adsorption isotherms estimated the maximum adsorption capacities of PFOS and PFOA on boehmite as 0.877 μg m(-2) and 0.633 μg m(-2), respectively. Compared to the adsorption capacity on γ-alumina, the abundant hydroxyl groups on boehmite surfaces resulted in the 2-3 times higher adsorption of PFOS and PFOA. Increasing solution pH led to a moderate decrease in PFOS and PFOA adsorption, owing to an increase in ligand exchange reactions and the decrease of electrostatic interactions. The presence of NaCl and CaCl(2) in solution demonstrated negative effects for PFOS and PFOA adsorption on boehmite surfaces, with potential mechanisms being electrical double layer compression, competitive adsorption of chloride, and the Ca(2+) bridging effect between perfluorochemicals. PMID:22897837

  2. Adsorption and photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer.

    PubMed

    Kamal, Tahseen; Ul-Islam, Mazhar; Khan, Sher Bahadar; Asiri, Abdullah M

    2015-11-01

    Pure chitosan and its zinc oxide composite coatings were applied on microfibriller cellulose mat (MCM) to prepare chitosan coated microfibriller cellulose (Chi-MCM) and zinc oxide/chitosan coated microfibriller cellulose (ZnO/Chi-MCM), respectively. X-ray diffraction (XRD), and scanning electron microscopy (SEM), were used to characterize the samples in this study. SEM images showed that dense chitosan solutions (3 and 5wt%) made a thick layer over MCM while diluted solution (1wt%) resulted in wrapping of the chitosan over the individual microfibers and avoided the thick layer formation. Removal of an azo dye methyl orange (MO) from aqueous solution using adsorption and combined adsorption with photodegradation activity of the Chi-MCM and ZnO/Chi-MCM were evaluated, respectively. Compared in the absence of UV light, ZnO/Chi-MCM showed faster and higher degree of dye removal by photocatalytic dissociation and adsorption under ultraviolet irradiation. Various parameters including pH of MO solution and its initial concentration were tested for the removal of MO dye. ZnO/Chi-MCM showed maximum adsorption capacity of 42.8mg/g. Antibacterial activities were also evaluated where ZnO/Chi-MCM displayed a remarkable performance inhibiting the Escherichia coli growth.

  3. Adsorption and photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer.

    PubMed

    Kamal, Tahseen; Ul-Islam, Mazhar; Khan, Sher Bahadar; Asiri, Abdullah M

    2015-11-01

    Pure chitosan and its zinc oxide composite coatings were applied on microfibriller cellulose mat (MCM) to prepare chitosan coated microfibriller cellulose (Chi-MCM) and zinc oxide/chitosan coated microfibriller cellulose (ZnO/Chi-MCM), respectively. X-ray diffraction (XRD), and scanning electron microscopy (SEM), were used to characterize the samples in this study. SEM images showed that dense chitosan solutions (3 and 5wt%) made a thick layer over MCM while diluted solution (1wt%) resulted in wrapping of the chitosan over the individual microfibers and avoided the thick layer formation. Removal of an azo dye methyl orange (MO) from aqueous solution using adsorption and combined adsorption with photodegradation activity of the Chi-MCM and ZnO/Chi-MCM were evaluated, respectively. Compared in the absence of UV light, ZnO/Chi-MCM showed faster and higher degree of dye removal by photocatalytic dissociation and adsorption under ultraviolet irradiation. Various parameters including pH of MO solution and its initial concentration were tested for the removal of MO dye. ZnO/Chi-MCM showed maximum adsorption capacity of 42.8mg/g. Antibacterial activities were also evaluated where ZnO/Chi-MCM displayed a remarkable performance inhibiting the Escherichia coli growth. PMID:26321421

  4. Adsorption of small organic molecules on graphene.

    PubMed

    Lazar, Petr; Karlický, František; Jurečka, Petr; Kocman, Mikuláš; Otyepková, Eva; Šafářová, Klára; Otyepka, Michal

    2013-04-24

    We present a combined experimental and theoretical quantification of the adsorption enthalpies of seven organic molecules (acetone, acetonitrile, dichloromethane, ethanol, ethyl acetate, hexane, and toluene) on graphene. Adsorption enthalpies were measured by inverse gas chromatography and ranged from -5.9 kcal/mol for dichloromethane to -13.5 kcal/mol for toluene. The strength of interaction between graphene and the organic molecules was estimated by density functional theory (PBE, B97D, M06-2X, and optB88-vdW), wave function theory (MP2, SCS(MI)-MP2, MP2.5, MP2.X, and CCSD(T)), and empirical calculations (OPLS-AA) using two graphene models: coronene and infinite graphene. Symmetry-adapted perturbation theory calculations indicated that the interactions were governed by London dispersive forces (amounting to ∼60% of attractive interactions), even for the polar molecules. The results also showed that the adsorption enthalpies were largely controlled by the interaction energy. Adsorption enthalpies obtained from ab initio molecular dynamics employing non-local optB88-vdW functional were in excellent agreement with the experimental data, indicating that the functional can cover physical phenomena behind adsorption of organic molecules on graphene sufficiently well.

  5. Effective adsorption of Cr(VI) on mesoporous Fe-functionalized Akadama clay: Optimization, selectivity, and mechanism

    NASA Astrophysics Data System (ADS)

    Ji, Min; Su, Xiao; Zhao, Yingxin; Qi, Wenfang; Wang, Yue; Chen, Guanyi; Zhang, Zhenya

    2015-07-01

    A Japanese volcanic soil, Akadama clay, was functionalized with metal salts (FeCl3, AlCl3, CaCl2, MgCl2, MnCl2) and tested for Cr(VI) removal from aqueous solution. FeCl3 was selected as the most efficient activation agent. To quantitatively investigate the independent or interactive contribution of influencing factors (solution pH, contact time, adsorbent dose, and initial concentration) to Cr(VI) adsorption onto Fe-functionalized AC (FFAC), factorial experimental design was applied. Results showed initial concentration contributed most to adsorption capacity of Cr(VI) (53.17%), followed by adsorbent dosage (45.15%), contact time (1.12%) and the interaction between adsorbent dosage and contact time (0.37%). The adsorption showed little dependence on solution pH from 2 to 8. Adsorption selectivity of Cr(VI) was evaluated through analyzing distribution coefficient, electrical double layer theory, as well as the valence and Pauling's ionic radii of co-existing anions (Cl-, SO42-, and PO43-). EDX and XPS analyses demonstrated the adsorption mechanism of Cr(VI) onto FFAC included electrostatic attraction, ligant exchange, and redox reaction. Improved treatment for tannery wastewater shows a potential application of FFAC as a cost-effective adsorbent for Cr(VI) removal.

  6. Adsorption of hydroxyacetone on pure ice surfaces.

    PubMed

    Petitjean, Mélanie; Darvas, Maria; Picaud, Sylvain; Jedlovszky, Pál; Le Calvé, Stéphane

    2010-12-17

    The adsorption of hydroxyacetone molecules at the surface of ice is investigated by means of flow-tube reactor measurements in the temperature range: 213-253 K. The number of molecules adsorbed per surface unit is conventionally plotted as a function of the absolute gas concentration of hydroxyacetone and is compared to that previously obtained for acetone and ethanol. The enthalpy of adsorption and the monolayer capacity at the ice surface are determined. In addition, molecular dynamics simulations are performed to support the experimental results. However, it is shown that the available interaction potential between hydroxyacetone and ice is not accurate enough to allow a robust detailed analysis of the adsorption process. Finally, a rapid estimation of the hydroxyacetone partitioning between the gas phase and ice shows that in the densest ice clouds, up to 29% of hydroxyacetone could be adsorbed on pure ice surfaces at 203 K.

  7. Evaluation of the adsorption capacity of alkali-treated waste materials for the adsorption of sulphamethoxazole.

    PubMed

    Kurup, Lisha

    2012-01-01

    The present work is to develop potential adsorbents from waste material and employ them for the removal of a hazardous antibacterial, sulphamethoxazole, from the wastewater by the Adsorption technique. The Adsorption technique was used to impound the dangerous antibiotics from wastewater using Deoiled Soya (DOS), an agricultural waste, and Water Hyacinth (WH), a prolific colonizer. The adsorption capacity of these adsorbents was further enhanced by treating them with sodium hydroxide solution and it was seen that the adsorption capacity increases by 10 to 25%. Hence a comparative account of the adsorption studies of all the four adsorbents, i.e. DOS, Alkali-treated DOS, WH and Alkali-treated Water Hyacinth has been discussed in this paper. Different isotherms like Freundlich, Langmuir and Dubinin-Radushkevich were also deduced from the adsorption data. Isotherm studies were in turn used in estimating the thermodynamic parameters. DOS showed sorption capacity of 0.0007 mol g(-1) while Alkali-treated Deoiled Soya exhibited 0.0011 mol g(-1) of sorption capacity, which reveals that the adsorption is higher in case of alkali-treated adsorbent. The mean sorption energy (E) was obtained between 9 and 12 kJ mol, which shows that the reaction proceeds by ion exchange reaction. Kinetic study reveals that the reaction follows pseudo-second-order rate equation. Moreover, mass transfer studies performed for the ongoing processes show that the mass transfer coefficient obtained for alkali-treated moieties was higher than the parent moieties. The breakthrough curves plotted from the column studies show percentage saturation of 90-98%. About 87-97% of sulphamethoxazole was recovered from column by desorption. PMID:22508113

  8. Adsorption of 2,4-Dichlorophenoxyacetic Acid from an Aqueous Solution on Fly Ash.

    PubMed

    Kuśmierek, Krzysztof; Świątkowski, Andrzej

    2016-03-01

    The adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on fly ash was studied. The effects of adsorbent dose, contact time, pH, ionic strength, and temperature on the adsorption were investigated. Adsorption kinetic data were analyzed using pseudo-first and pseudo-second order models, and results showed that adsorption kinetics were better represented by the pseudo-second order model. Adsorption isotherms of 2,4-D on fly ash were analyzed using the Freundlich and Langmuir models. Thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicated that the adsorption process was spontaneous and endothermic. The negative values of ΔG° and the positive value of ΔH° indicate the spontaneous nature of 2,4-D adsorption on fly ash, and that the adsorption process was endothermic. Results showed that fly ash is an efficient, low-cost adsorbent for removal of 2,4-D from water.

  9. Adsorption and desorption characteristics of methamphetamine, 3,4-methylenedioxymethamphetamine, and pseudoephedrine in soils.

    PubMed

    Pal, Raktim; Megharaj, Mallavarapu; Kirkbride, K Paul; Naidu, Ravi

    2015-06-01

    This work presents, for the first time, information on the adsorption-desorption characteristics of illicit drugs and precursors in soils and an estimation of their potential bioavailability. The experiment was conducted using a batch equilibrium technique for the parent drugs methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) and the precursor pseudoephedrine in three South Australian soils varying in physiochemical properties. The individual compounds exhibited different adsorption mechanisms in the test soils, and the results fitted better with the Freundlich isotherm model (r (2) ≥ 0.99). The maximum adsorption capacity was recorded for pseudoephedrine (2,000 μg g(-1)). However, pseudoephedrine recorded lower organic carbon normalized adsorption coefficient values (<250 mL g(-1)), lower magnitudes of Gibb's free energy change, and higher percent desorption (73-92 %) compared to methamphetamine and MDMA. The results thus showed pseudoephedrine to be the most mobile compound in the soils under study, to have the highest availability for degradation of the three compounds, and to have the highest susceptibility to biotic degradation in test soils.

  10. Adsorption and desorption characteristics of methamphetamine, 3,4-methylenedioxymethamphetamine, and pseudoephedrine in soils.

    PubMed

    Pal, Raktim; Megharaj, Mallavarapu; Kirkbride, K Paul; Naidu, Ravi

    2015-06-01

    This work presents, for the first time, information on the adsorption-desorption characteristics of illicit drugs and precursors in soils and an estimation of their potential bioavailability. The experiment was conducted using a batch equilibrium technique for the parent drugs methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) and the precursor pseudoephedrine in three South Australian soils varying in physiochemical properties. The individual compounds exhibited different adsorption mechanisms in the test soils, and the results fitted better with the Freundlich isotherm model (r (2) ≥ 0.99). The maximum adsorption capacity was recorded for pseudoephedrine (2,000 μg g(-1)). However, pseudoephedrine recorded lower organic carbon normalized adsorption coefficient values (<250 mL g(-1)), lower magnitudes of Gibb's free energy change, and higher percent desorption (73-92 %) compared to methamphetamine and MDMA. The results thus showed pseudoephedrine to be the most mobile compound in the soils under study, to have the highest availability for degradation of the three compounds, and to have the highest susceptibility to biotic degradation in test soils. PMID:24838127

  11. Television Quiz Show Simulation

    ERIC Educational Resources Information Center

    Hill, Jonnie Lynn

    2007-01-01

    This article explores the simulation of four television quiz shows for students in China studying English as a foreign language (EFL). It discusses the adaptation and implementation of television quiz shows and how the students reacted to them.

  12. [Adsorption of Congo red from aqueous solution on hydroxyapatite].

    PubMed

    Zhan, Yan-Hui; Lin, Jian-Wei

    2013-08-01

    The adsorption of Congo red (CR) from aqueous solution on hydroxyapatite was investigated using batch experiments. The hydroxyapatite was effective for CR removal from aqueous solution. The adsorption kinetics of CR on hydroxyapatite well followed a pseudo-second-order model. The equilibrium adsorption data of CR on hydroxyapatite could be described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and showed that the adsorption of CR on hydroxyapatite was spontaneous and exothermic in nature. The CR adsorption capacity for hydroxyapatite decreased significantly with increasing pH from 8 to 10. Thermal regeneration showed that hydroxyapatite could be used for six desorption-adsorption cycles with high removal efficiency for CR in each cycle. The mechanisms for CR adsorption on hydroxyapatite with pH value below the pH at point of zero charge (pH(PZC)) include electrostatic attraction, hydrogen bonding and Lewis acid-base interaction. The mechanisms for CR adsorption on hydroxyapatite with pH value above its pH(PZC) include hydrogen bonding and Lewis acid-base interaction. Results of this work indicate that hydroxyapatite is a promising adsorbent for CR removal from aqueous solution.

  13. Adsorption and desorption characteristics of arsenic onto ceria nanoparticles

    PubMed Central

    2012-01-01

    The rapid increase in the use of engineered nanoparticles [ENPs] has resulted in an increasing concern over the potential impacts of ENPs on the environmental and human health. ENPs tend to adsorb a large variety of toxic chemicals when they are emitted into the environment, which may enhance the toxicity of ENPs and/or adsorbed chemicals. The study was aimed to investigate the adsorption and desorption behaviors of arsenic on ceria NPs in aqueous solution using batch technique. Results show that the adsorption behavior of arsenic on ceria NPs was strongly dependent on pH and independent of ionic strength, indicating that the electrostatic effect on the adsorption of these elements was relatively not important compared to surface chemical reactions. The adsorption isotherms fitted very well to both the Langmuir and Freundlich models. The thermodynamic parameters (ΔH0, ΔS0, and ΔG0) for the adsorption of arsenic were determined at three different temperatures of 283, 303, and 323 K. The adsorption reaction was endothermic, and the process of adsorption was favored at high temperature. The desorption data showed that desorption hysteresis occurred at the initial concentration studied. High adsorption capacity of arsenic on ceria NPs suggests that the synergistic effects of ceria NPs and arsenic on the environmental systems may exist when they are released into the environment. PMID:22269298

  14. Adsorption of Pyrene onto the Agricultural By-Product: Corncob.

    PubMed

    Li, Xiaojun; Tong, Dongli; Allinson, Graeme; Jia, Chunyun; Gong, Zongqing; Liu, Wan

    2016-01-01

    The adsorption behavior of pyrene on corncob was studied to provide a theoretical basis for the possible use of this material as an immobilized carrier for improving the bioremediation of PAH-contaminated soil. The results were as follows. Kinetic experiments showed that the adsorption processes obeyed a pseudo-second-order model. The intraparticle diffusion of Weber-Morris model fitting showed that the film and intraparticle diffusions were the key rate-limiting processes, and the adsorption process mainly consisted of three steps: boundary layer diffusion and two intra-particle diffusions. Experimental adsorption data for pyrene were successfully described by the adsorption-partition equilibrium model. The maximum adsorption capacity at 25°C was 214.8 μg g(-1). The adsorption contribution decreased significantly when the Ce/Sw (the equilibrium concentration/solubility in water) was higher than 1. Adsorption decreased with increased temperature. Based on the above results, the corncob particles could be helpful in the bioremediation of pyrene-contaminated soil.

  15. Adsorption of Pyrene onto the Agricultural By-Product: Corncob.

    PubMed

    Li, Xiaojun; Tong, Dongli; Allinson, Graeme; Jia, Chunyun; Gong, Zongqing; Liu, Wan

    2016-01-01

    The adsorption behavior of pyrene on corncob was studied to provide a theoretical basis for the possible use of this material as an immobilized carrier for improving the bioremediation of PAH-contaminated soil. The results were as follows. Kinetic experiments showed that the adsorption processes obeyed a pseudo-second-order model. The intraparticle diffusion of Weber-Morris model fitting showed that the film and intraparticle diffusions were the key rate-limiting processes, and the adsorption process mainly consisted of three steps: boundary layer diffusion and two intra-particle diffusions. Experimental adsorption data for pyrene were successfully described by the adsorption-partition equilibrium model. The maximum adsorption capacity at 25°C was 214.8 μg g(-1). The adsorption contribution decreased significantly when the Ce/Sw (the equilibrium concentration/solubility in water) was higher than 1. Adsorption decreased with increased temperature. Based on the above results, the corncob particles could be helpful in the bioremediation of pyrene-contaminated soil. PMID:26573838

  16. [Adsorption of Congo red from aqueous solution on hydroxyapatite].

    PubMed

    Zhan, Yan-Hui; Lin, Jian-Wei

    2013-08-01

    The adsorption of Congo red (CR) from aqueous solution on hydroxyapatite was investigated using batch experiments. The hydroxyapatite was effective for CR removal from aqueous solution. The adsorption kinetics of CR on hydroxyapatite well followed a pseudo-second-order model. The equilibrium adsorption data of CR on hydroxyapatite could be described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and showed that the adsorption of CR on hydroxyapatite was spontaneous and exothermic in nature. The CR adsorption capacity for hydroxyapatite decreased significantly with increasing pH from 8 to 10. Thermal regeneration showed that hydroxyapatite could be used for six desorption-adsorption cycles with high removal efficiency for CR in each cycle. The mechanisms for CR adsorption on hydroxyapatite with pH value below the pH at point of zero charge (pH(PZC)) include electrostatic attraction, hydrogen bonding and Lewis acid-base interaction. The mechanisms for CR adsorption on hydroxyapatite with pH value above its pH(PZC) include hydrogen bonding and Lewis acid-base interaction. Results of this work indicate that hydroxyapatite is a promising adsorbent for CR removal from aqueous solution. PMID:24191561

  17. Adsorption and regenerative oxidation of trichlorophenol with synthetic zeolite: Ozone dosage and its influence on adsorption performance.

    PubMed

    Zhang, Yongjun; Prigent, Bastien; Geißen, Sven-Uwe

    2016-07-01

    Regeneration of loaded adsorbents is a key step for the sustainability of an adsorption process. In this study, ozone was applied to regenerate a synthetic zeolite for the adsorption of trichlorophenol (TCP) as an organic model pollutant. Three initial concentrations of TCP in water phase were used in adsorption tests. After the equilibrium, zeolite loaded different amounts of TCP was dried and then regenerated with ozone gas. It was found that the adsorption capacity of zeolite was increased through three regeneration cycles. However, the adsorption kinetics was compromised after the regeneration with slightly declined 2nd order reaction constants. The ozone demand for the regeneration was highly dependent on the TCP mass loaded onto the zeolite. It was estimated that the mass ratio of ozone to TCP was 1.2 ± 0.3 g O3/g TCP. PMID:27043379

  18. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.

    PubMed

    Zhu, Xuan; Tsang, Daniel C W; Chen, Feng; Li, Shiyu; Yang, Xin

    2015-01-01

    Ciprofloxacin (CIP) is a commonly used antibiotic and widely detected in wastewaters and farmlands nowadays. This study evaluated the efficacy of next-generation adsorbent (graphene) and conventional adsorbent (granular activated carbon, GAC) for CIP removal. Batch experiments and characterization tests were conducted to investigate the adsorption kinetics, equilibrium isotherms, thermodynamic properties, and the influences of solution chemistry (pH, ionic strength, natural organic matter (NOM), and water sources). Compared to GAC, graphene showed significantly faster adsorption and reached equilibrium within 3 min, confirming the rapid access of CIP into the macroporous network of high surface area of graphene as revealed by the Brunner-Emmet-Teller measurements analysis. The kinetics was better described by a pseudo-second-order model, suggesting the importance of the initial CIP concentration related to surface site availability of graphene. The adsorption isotherm on graphene followed Langmuir model with a maximum adsorption capacity of 323 mg/g, which was higher than other reported carbonaceous adsorbents. The CIP adsorption was thermodynamically favourable on graphene and primarily occurred through π - π interaction, according to the FTIR spectroscopy. While the adsorption capacity of graphene decreased with increasing solution pH due to the speciation change of CIP, the adverse effects of ionic strength (0.01-0.5 mol L(-1)), presence of NOM (5 mg L⁻¹), and different water sources (river water or drinking water) were less significant on graphene than GAC. These results indicated that graphene can serve as an alternative adsorbent for CIP removal in commonly encountered field conditions, if proper separation and recovery is available in place. PMID:26050736

  19. Effect of adsorption time on the adhesion strength between salivary pellicle and human tooth enamel.

    PubMed

    Zhang, Y F; Zheng, J; Zheng, L; Zhou, Z R

    2015-02-01

    Salivary pellicle is a biofilm that is formed by the selective adsorption of salivary proteins. Almost all the functions of the salivary pellicle (lubricating properties, anti-caries properties, etc.) are closely associated with its adhesion strength to tooth surface. The objective of this study was to investigate the effect of adsorption time on the adhesion strength between salivary pellicle and human tooth enamel, aiming to understand what act as the determinant of the interfacial adhesion. In this study, human tooth enamel samples were immersed in human whole saliva in vitro to obtain a salivary pellicle on the surface of enamel. Immersion treatments lasting up to 1, 3, 10 and 60 min were conducted, respectively. Nano-scratch tests were conducted on the surface of enamel after different adsorption times. The wettability of enamel surface was measured through water contact angle. Results showed that the shear energy between salivary pellicle and enamel surface increased exponentially with the adsorption time. The adhesion force between salivary pellicle and bare enamel surface was more than twice that between salivary pellicle and salivary pellicle. It was found that both the wettability and zeta potential of enamel increased obviously after 1 min saliva-adsorption treatment, and then they almost kept stable as the adsorption time further increased. In summary, the adhesion strength between initial salivary pellicle and enamel surface was much higher than that between initial salivary pellicle and outer salivary pellicle. It seemed that electrostatic interaction contributed to the adhesion between the initial salivary pellicle and enamel surface, but not to the adhesion between the initial and outer salivary pellicle. The results would be helpful to extend the understanding of the adhesion mechanism of salivary pellicle and then to develop new artificial saliva and dental restorative materials.

  20. Regenerable adsorption system

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Perry, Jay (Inventor); Walsh, Dennis (Inventor)

    2006-01-01

    A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent.

  1. Enhancing adsorption efficiency of dichloroacetic acid onto mesoporous carbons: Procedure optimization, mechanism and characterization.

    PubMed

    Ding, Ying; Zhu, Jianzhong; Ji, Dongliang; Cao, Yang; Ling, Xiaojia; Chen, Wei

    2015-08-15

    Highly ordered mesoporous carbon may be directly synthesized via supramolecular self-assembly with in situ evaporation-induced crystallization process by controlling thermal reaction temperatures and carbon mass loading. In the present study, the effects of thermal reaction temperatures on the structural characterization and adsorption capacity of mesoporous carbon have been investigated and analyzed with orthogonal test experiments. The results show the carbonization temperature (R=32.1) plays a more important role than the self-assembly temperature (R=8.5) and thermal polymerization temperature (R=10.1) in manipulating the pore texture structures. The optimization grouping temperature was 40-110-500 °C. The optimum mesoporous carbon sample had the highest BET specific surface area (474 m(2)/g), the largest pore volume (0.46 cm(3)/g), and with reasonable uniform pore size distribution. The adsorption evaluation also shows the adsorption capacity is strongly correlated with the pore structure of mesoporous carbon, the optimized mesoporous carbon sample displayed the largest adsorption capacity (350 mg/g) at an initial concentration of 20.0 mg/L of dichloroacetic acid. The study results indicate optimization of thermal reaction parameters is an effective approach for synthesis of ordered mesoporous carbons.

  2. Enhanced Adsorption of Hydroxyl- and Amino-Substituted Aromatic Chemicals to Nitrogen-Doped Multiwall Carbon Nanotubes: A Combined Batch and Theoretical Calculation Study.

    PubMed

    Zuo, Linzi; Guo, Yong; Li, Xiao; Fu, Heyun; Qu, Xiaolei; Zheng, Shourong; Gu, Cheng; Zhu, Dongqiang; Alvarez, Pedro J J

    2016-01-19

    A large effort is being made to develop nanosorbents with tunable surface chemistry for enhanced adsorption affinity and selectivity toward target organic contaminants. Heteroatom N-doped multiwall carbon nanotubes (N-MCNT) were synthesized by chemical vapor deposition of pyridine and were further investigated for the adsorptive removal of several aromatic chemicals varying in electronic donor and acceptor ability from aqueous solutions using a batch technique. Compared with commercial nondoped multiwall carbon nanotubes (MCNT), N-MCNT had similar specific surface area, morphology, and pore-size distribution but more hydrophilic surfaces and more surface defects due to the doping of graphitic and pyridinic N atoms. N-MCNT exhibited enhanced adsorption (2-10 folds) for the π-donor chemicals (2-naphthol and 1-naphthalmine) at pH ∼6 but similar adsorption for the weak π-donor chemical (naphthalene) and even lower adsorption (up to a 2-fold change) for the π-acceptor chemical (1,3-dinitrobenzene). The enhanced adsorption of 2-naphthol and 1-naphthalmine to N-MCNT was mainly attributed to the favored π-π electron-donor-acceptor (EDA) interaction between the π-donor adsorbate molecule and the polarized N-heterocyclic aromatic ring (π-acceptor) on N-MCNT. The proposed adsorption enhancement mechanisms were further tested through the pH effects on adsorption and the density function theory (DFT) calculation. The results show for the first time that the adsorptive interaction of π-donor aromatic compounds with carbon nanomaterials can be facilitated by N-doping.

  3. Enhanced Adsorption of Hydroxyl- and Amino-Substituted Aromatic Chemicals to Nitrogen-Doped Multiwall Carbon Nanotubes: A Combined Batch and Theoretical Calculation Study.

    PubMed

    Zuo, Linzi; Guo, Yong; Li, Xiao; Fu, Heyun; Qu, Xiaolei; Zheng, Shourong; Gu, Cheng; Zhu, Dongqiang; Alvarez, Pedro J J

    2016-01-19

    A large effort is being made to develop nanosorbents with tunable surface chemistry for enhanced adsorption affinity and selectivity toward target organic contaminants. Heteroatom N-doped multiwall carbon nanotubes (N-MCNT) were synthesized by chemical vapor deposition of pyridine and were further investigated for the adsorptive removal of several aromatic chemicals varying in electronic donor and acceptor ability from aqueous solutions using a batch technique. Compared with commercial nondoped multiwall carbon nanotubes (MCNT), N-MCNT had similar specific surface area, morphology, and pore-size distribution but more hydrophilic surfaces and more surface defects due to the doping of graphitic and pyridinic N atoms. N-MCNT exhibited enhanced adsorption (2-10 folds) for the π-donor chemicals (2-naphthol and 1-naphthalmine) at pH ∼6 but similar adsorption for the weak π-donor chemical (naphthalene) and even lower adsorption (up to a 2-fold change) for the π-acceptor chemical (1,3-dinitrobenzene). The enhanced adsorption of 2-naphthol and 1-naphthalmine to N-MCNT was mainly attributed to the favored π-π electron-donor-acceptor (EDA) interaction between the π-donor adsorbate molecule and the polarized N-heterocyclic aromatic ring (π-acceptor) on N-MCNT. The proposed adsorption enhancement mechanisms were further tested through the pH effects on adsorption and the density function theory (DFT) calculation. The results show for the first time that the adsorptive interaction of π-donor aromatic compounds with carbon nanomaterials can be facilitated by N-doping. PMID:26669961

  4. Characterization of immunoglobulin adsorption on dextran-grafted hydrophobic charge-induction resins: Cross-effects of ligand density and pH/salt concentration.

    PubMed

    Liu, Tao; Lin, Dong-Qiang; Zhang, Qi-Lei; Yao, Shan-Jing

    2015-05-29

    Hydrophobic charge-induction chromatography (HCIC) is a promising technology for antibody purification. New HCIC resins MMI-B-XL with dextran-grafted agarose gel as the matrix and 2-mercapto-1-methyl-imidazole (MMI) as the functional ligand were prepared with different ligand densities. The adsorption behaviors (static adsorption equilibrium and adsorption kinetics) of human immunoglobulin G (hIgG) on series of MMI-B-XL resins at varying pHs and salt concentrations were investigated. The cross-effects of solid phase property (ligand density) and liquid phase conditions (pH and salt concentration) were focused. The results showed that the new resins had typical pH-dependent and salt-tolerant characteristics for hIgG adsorption, but differences were found for the resins with different ligand densities. For MMI-B-XL resins with higher ligand density, an obvious higher saturated adsorption capacity (Qm) and effective pore diffusivity (De) could be obtained, which were less affected at pH 7.0∼8.9 but dropped drastically at pH 5.0. Salt addition had less influence on protein adsorption onto MMI-B-XL with higher ligand density. Qm and De both reached minimum values at 0.2mol/L NaCl for all MMI-B-XL resins tested. The results of dynamic binding in the column demonstrated that MMI-B-XL with higher ligand density had better performance for hIgG adsorption, especially under high linear velocities. The mechanism of the cross-effects of ligand density and pH/salt concentration on IgG adsorption was discussed, which provides new insights into protein adsorption and mass transport for dextran-grafted HCIC resins. PMID:25892639

  5. Adsorption of lead onto smectite from aqueous solution.

    PubMed

    Mhamdi, M; Galai, H; Mnasri, N; Elaloui, E; Trabelsi-Ayadi, M

    2013-03-01

    The purpose of this research is to study the effect of a new method of adsorption using membrane filtration to determine the maximum amount of lead adsorbed by clay and investigate the behavior of the clay after adsorption of the said metal. Treatment of wastewater contaminated with heavy metals depends on the characteristics of the effluent, the amount of final discharge, the cost of treatment, and the compatibility of the treatment process. The process of adsorption of heavy metals by clays may be a simple, selective, and economically viable alternative to the conventional physical-chemical treatment. This is justified by the importance of the surface developed by this material, the presence of negative charges on the said surface, the possibility of ion exchange taking place, and its wide availability in nature. The removal of lead from wastewater was studied by using the adsorption technique and using clay as the adsorbent. A method was optimized for adsorption through a membrane approaching natural adsorption. This new method is simple, selective, and the lead adsorption time is about 3 days. The various properties of clay were determined. It was observed that the cation exchange capacity of the clay was 56 meq/100 g of hydrated clay for the raw sample and 82 meq/100 g for the purified sample. The total surface area determined by the methylene blue method was equal to 556 and 783 m(2)/g for the raw and purified samples, respectively. The adsorption kinetics depends on several parameters. The Pb(II) clay, obeys the Langmuir, Freundlich, and the Elovich adsorption isotherms with high regression coefficients. The use of this adsorbent notably decreases the cost of treatment. It was concluded that clay shows a strong adsorption capacity on Pb(II), the maximum interaction occurring with purified clay treated at high concentration of lead. It is proposed that this adsorption through a membrane be extended for the treatment of effluents containing other metals. PMID

  6. Temperature Swing Adsorption Compressor Development

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Mulloth, Lila M.; Affleck, Dave L.

    2001-01-01

    Closing the oxygen loop in an air revitalization system based on four-bed molecular sieve and Sabatier reactor technology requires a vacuum pump-compressor that can take the low-pressure CO, from the 4BMS and compress and store for use by a Sabatier reactor. NASA Ames Research Center proposed a solid-state temperature-swing adsorption (TSA) compressor that appears to meet performance requirements, be quiet and reliable, and consume less power than a comparable mechanical compressor/accumulator combination. Under this task, TSA compressor technology is being advanced through development of a complete prototype system. A liquid-cooled TSA compressor has been partially tested, and the rest of the system is being fabricated. An air-cooled TSA compressor is also being designed.

  7. Removal of carbonyl sulfide using activated carbon adsorption.

    PubMed

    Sattler, Melanie L; Rosenberk, Ranjith Samuel

    2006-02-01

    Wastewater treatment plant odors are caused by compounds such as hydrogen sulfide (H2S), methyl mercaptans, and carbonyl sulfide (COS). One of the most efficient odor control processes is activated carbon adsorption; however, very few studies have been conducted on COS adsorption. COS is not only an odor causing compound but is also listed in the Clean Air Act as a hazardous air pollutant. Objectives of this study were to determine the following: (1) the adsorption capacity of 3 different carbons for COS removal; (2) the impact of relative humidity (RH) on COS adsorption; (3) the extent of competitive adsorption of COS in the presence of H2S; and (4) whether ammonia injection would increase COS adsorption capacity. Vapor phase react (VPR; reactivated), BPL (bituminous coal-based), and Centaur (physically modified to enhance H2S adsorption) carbons manufactured by Calgon Carbon Corp. were tested in three laboratory-scale columns, 6 in. in depth and 1 in. in diameter. Inlet COS concentrations varied from 35 to 49 ppmv (86-120 mg/m3). RHs of 17%, 30%, 50%, and 90% were tested. For competitive adsorption studies, H2S was tested at 60 ppmv, with COS at 30 ppmv. COS, RH, H2S, and ammonia concentrations were measured using an International Sensor Technology Model IQ-350 solid state sensor, Cole-Parmer humidity stick, Interscan Corp. 1000 series portable analyzer, and Drager Accuro ammonia sensor, respectively. It was found that the adsorption capacity of Centaur carbon for COS was higher than the other two carbons, regardless of RH. As humidity increased, the percentage of decrease in adsorption capacity of Centaur carbon, however, was greater than the other two carbons. The carbon adsorption capacity for COS decreased in proportion to the percentage of H2S in the gas stream. More adsorption sites appear to be available to H2S, a smaller molecule. Ammonia, which has been found to increase H2S adsorption capacity, did not increase the capacity for COS.

  8. Adsorption efficiency of natural materials for low-concentration cesium in solution.

    PubMed

    Miura, A; Kubota, T; Hamada, K; Hitomi, T

    2016-01-01

    In this study, several natural materials were investigated in order to clarify their potential use as cesium (Cs) adsorbents in situ. Four materials--carbonized rice hull, beech sawdust, oak sawdust, and charcoal (Japanese cedar)--which were previously shown to have Cs adsorption capabilities, were examined. Cs adsorption experiments were conducted using different initial Cs and adsorbent concentrations. The physical properties, adsorption isotherms, and adsorption processes were then examined, so as to exploit the Cs adsorption characteristics in the field. Based on these findings, carbonized rice hull and beech sawdust were selected as effective Cs adsorbents. It was found that these materials show continuous and stable Cs adsorption rates for different initial Cs concentrations. The adsorption efficiency of these two adsorption materials in combination was considered, and it was shown that the adsorption isotherms for carbonized rice hull and beech sawdust follow the Freundlich model. Furthermore, the beech sawdust adsorption process exhibited better agreement with the calculated values obtained via the adsorption rate model and the adsorption kinetics model than did the carbonized rice hull adsorption.

  9. Adsorption efficiency of natural materials for low-concentration cesium in solution.

    PubMed

    Miura, A; Kubota, T; Hamada, K; Hitomi, T

    2016-01-01

    In this study, several natural materials were investigated in order to clarify their potential use as cesium (Cs) adsorbents in situ. Four materials--carbonized rice hull, beech sawdust, oak sawdust, and charcoal (Japanese cedar)--which were previously shown to have Cs adsorption capabilities, were examined. Cs adsorption experiments were conducted using different initial Cs and adsorbent concentrations. The physical properties, adsorption isotherms, and adsorption processes were then examined, so as to exploit the Cs adsorption characteristics in the field. Based on these findings, carbonized rice hull and beech sawdust were selected as effective Cs adsorbents. It was found that these materials show continuous and stable Cs adsorption rates for different initial Cs concentrations. The adsorption efficiency of these two adsorption materials in combination was considered, and it was shown that the adsorption isotherms for carbonized rice hull and beech sawdust follow the Freundlich model. Furthermore, the beech sawdust adsorption process exhibited better agreement with the calculated values obtained via the adsorption rate model and the adsorption kinetics model than did the carbonized rice hull adsorption. PMID:27191567

  10. Competitive adsorption of cellulase components and its significance in a synergistic mechanism

    SciTech Connect

    Ryu, D.D.Y.; Kim, C.; Mandels, M.

    1984-05-01

    Some studies on the adsorption of cellulase on cellulose revealed part of the mechanisms involved in the enzymatic hydrolysis of cellulose and provided some clues to the synergistic mechanism of cellulase complex. The adsorption of cellulase was significantly affected by the reaction conditions and physical chemical characteristics of cellulose. Endoglucanase consisted of adsorbable and nonadsorbable components. Cellobiohydrolase had the strongest adsorption affinity. Each cellulase component is postulated to have distinctly different adsorption sites on cellulose, corresponding to the active sites in the hydrolysis reaction. Competitive adsorption kinetics between cellulase components were also observed during the adsorption process. The degree of competitive adsorption was most remarkable when the composition of cellulase components was nearly the same as that in the crude cellulase complex. This seems to show the optimal relative composition of cellulase components. The synergism between cellobiohydrolase and endoglucananse could be elucidated more clearly by this competitive adsorption model of the reaction mechanism.

  11. Fenhexamid adsorption behavior on soil amended with wine lees.

    PubMed

    Pinna, Maria Vittoria; Budroni, Marilena; Farris, Giovanni Antonio; Pusino, Alba

    2008-11-26

    The adsorption of fenhexamid (FEN) [N-(2,3-dichloro-4-hydroxyphenyl)-1-methylcyclohexanecarboxamide] on vineyard soil amended with wine lees (WL) produced by vinery was studied. The adsorption extent depends on WL fraction. The addition of the centrifuged solid lees (SWL) increases the FEN adsorption on soil. Most likely, the organic insoluble fraction formed mainly by dead fermentation yeasts is responsible for the observed increase. The adsorption measured on some deactivated yeasts of wine fermentation shows that Saccharomyces cerevisiae are the most active in FEN retention. On the other hand, the soil amendment with whole WL decreases considerably the fungicide adsorption. This opposite effect may be the result of FEN hydrophobic bonds with the dissolved organic matter of lees that keeps fungicide in solution. This hypothesis is substantiated by the increased FEN solubility in the supernatant of centrifuged wine lees (LWL). The results of soil column mobility confirm that the elution with LWL increases the mobility of FEN in soil.

  12. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    PubMed

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original. PMID:23243870

  13. Adsorption of mercury on laterite from Guizhou Province, China.

    PubMed

    Yu, Xiaohong; Zhu, Lijun; Guo, Baiwei; He, Shouyang

    2008-01-01

    The adsorption behaviors of Hg(II) on laterite from Guizhou Province, China, were studied and the adsorption mechanism was discussed. The results showed that different mineral compositons in the laterite will cause differences in the adsorption capacity of laterite to Hg(II). Illite and non-crystalloids are the main contributors to enhancing the adsorption capacity of laterite to Hg(II). The pH of the solution is an important factor affecting the adsorption of Hg(II) on laterite. The alkalescent environment (pH 7-9) is favorable to the adsorption of Hg(II). The amount of adsorbed Hg(II) increases with increasing pH. When the pH reaches a certain value, the amount of the adsorbed Hg(II) will reach the maximum level. The amount of adsorbed Hg(II) decreases with increasing pH. The optimal pHs of laterite and kaolinite are 9 and 8, respectively. The optimal initial concentrations of Hg(II) on laterite and kaolinite are 250 and 200 microg/ml, respectively. The adsorption isotherms were described by the Langmuir model. The adsorption of Hg(II) on laterite is a quick process while that of Hg(II) on kaolinite is a slow reaction. Laterite from Guizhou Province is a promising environmental material which can be used in the removal of Hg(II) from wastewater. PMID:19202872

  14. Adsorption of a multicomponent rhamnolipid surfactant to soil

    SciTech Connect

    Noordmann, W.H.; Brusseau, M.L.; Janssen, D.B.

    2000-03-01

    The adsorption of rhamnolipid, a multicomponent biosurfactant with potential application in soil remediation, to two sandy soils was investigated using batch and column studies. The surfactant mixture contained six anionic components differing in lipid chain length and number of rhamnose moieties. Batch adsorption experiments indicated that the overall adsorption isotherms of total surfactant and of the individual components leveled off above a concentration at which micelles were formed. Column experiments showed that the retardation factors for the total surfactant and for the individual components decreased with increasing influent concentration. Extended tailing was observed in the distal portion of the surfactant breakthrough curve. The concentration-dependent retardation factors and the extended tailing are in accordance with the nonlinear (concave) adsorption isotherms found in the batch adsorption studies. The more hydrophobic rhamnolipid components were preferentially adsorbed, but adsorption was not correlated with the organic carbon content of the soil. This suggests that adsorption of rhamnolipid to soil is not a partitioning process but mainly an interfacial adsorption process.

  15. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2).

    PubMed

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui; Kuo, Chung-Yih; Jean, Jiin-Shuh; Chen, Wan-Ru; Lv, Guocheng

    2014-07-30

    The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330mg/g (1.05mmol/g) at pH 6-7. The adsorption kinetics was fast, almost reaching equilibrium in 2h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d001 spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater. PMID:24373983

  16. Adsorption of mercury on laterite from Guizhou Province, China.

    PubMed

    Yu, Xiaohong; Zhu, Lijun; Guo, Baiwei; He, Shouyang

    2008-01-01

    The adsorption behaviors of Hg(II) on laterite from Guizhou Province, China, were studied and the adsorption mechanism was discussed. The results showed that different mineral compositons in the laterite will cause differences in the adsorption capacity of laterite to Hg(II). Illite and non-crystalloids are the main contributors to enhancing the adsorption capacity of laterite to Hg(II). The pH of the solution is an important factor affecting the adsorption of Hg(II) on laterite. The alkalescent environment (pH 7-9) is favorable to the adsorption of Hg(II). The amount of adsorbed Hg(II) increases with increasing pH. When the pH reaches a certain value, the amount of the adsorbed Hg(II) will reach the maximum level. The amount of adsorbed Hg(II) decreases with increasing pH. The optimal pHs of laterite and kaolinite are 9 and 8, respectively. The optimal initial concentrations of Hg(II) on laterite and kaolinite are 250 and 200 microg/ml, respectively. The adsorption isotherms were described by the Langmuir model. The adsorption of Hg(II) on laterite is a quick process while that of Hg(II) on kaolinite is a slow reaction. Laterite from Guizhou Province is a promising environmental material which can be used in the removal of Hg(II) from wastewater.

  17. A Holographic Road Show.

    ERIC Educational Resources Information Center

    Kirkpatrick, Larry D.; Rugheimer, Mac

    1979-01-01

    Describes the viewing sessions and the holograms of a holographic road show. The traveling exhibits, believed to stimulate interest in physics, include a wide variety of holograms and demonstrate several physical principles. (GA)

  18. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity.

    PubMed

    Wang, Xinghao; Qu, Ruijuan; Liu, Jiaoqin; Wei, Zhongbo; Wang, Liansheng; Yang, Shaogui; Huang, Qingguo; Wang, Zunyao

    2016-01-01

    Experiments were conducted to investigate the effect of four different carbon nanotubes single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) and hydroxylated and carboxylated multi-walled carbon nanotubes (OH-MWCNTs and COOH-MWCNTs) on Cd toxicity to the aquatic organism Daphnia magna. The acute toxicity results indicated that all CNTs could enhance the toxicity of Cd to D. magna. Furthermore, the filtrate toxicity and adsorption tests showed that the toxicity-increasing effect of SWCNTs and MWCNTs in the overall system was mainly caused by catalysts impurities from the pristine CNTs, whereas the greater adsorption of Cd onto OH-MWCNTs (30.52 mg/g) and COOH-MWCNTs (24.93 mg/g) was the key factor contributing to the enhanced toxicity. This result raised a concern that the metal catalyst impurities, adsorption capacities, and accumulation of waterborne CNTs were responsible for the toxicity of Cd to aquatic organism.

  19. Fluorocarbon adsorption in hierarchical porous frameworks

    NASA Astrophysics Data System (ADS)

    Motkuri, Radha Kishan; Annapureddy, Harsha V. R.; Vijaykumar, M.; Schaef, H. Todd; Martin, Paul F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-01

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g-1 at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g-1 at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  20. Fluorocarbon adsorption in hierarchical porous frameworks.

    PubMed

    Motkuri, Radha Kishan; Annapureddy, Harsha V R; Vijaykumar, M; Schaef, H Todd; Martin, Paul F; McGrail, B Peter; Dang, Liem X; Krishna, Rajamani; Thallapally, Praveen K

    2014-07-09

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g(-1) at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g(-1) at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane > chlorodifluoromethane > chlorotrifluoromethane > tetrafluoromethane > methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  1. Fluorocarbon adsorption in hierarchical porous frameworks

    SciTech Connect

    Motkuri, RK; Annapureddy, HVR; Vijaykumar, M; Schaef, HT; Martin, PF; McGrail, BP; Dang, LX; Krishna, R; Thallapally, PK

    2014-07-09

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g(-1) at a very low relative saturation pressure (P/P-o) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g(-1) at P/P-o of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  2. Correlation of adsorption isotherms of hydrogen isotopes on mordenite adsorbents using reactive vacancy solution theory

    SciTech Connect

    Munakata, K.; Nakamura, A.; Kawamura, Y.

    2015-03-15

    The authors have applied the isotherm equations derived from the reactive vacancy solution theory (RVST) to correlation of experimental and highly non-ideal adsorption isotherms of hydrogen and deuterium on a mordenite adsorbent, and have examined the ability of the isotherm equations to match this correlation. Several isotherm equations such as Langmuir, Freundlich, Toth, Vacancy Solution Theory and so forth were also tested, but they did not work. For the Langmuir-Freundlich equation tests have indicated that its 'ability to correlate' of the adsorption isotherms is not satisfactory. For the multi-site Langmuir-Freundlich (MSLF) equation the correlation of the isotherms appears to be somewhat improved but remains unsatisfactory. The results show that the isotherm equations derived from RVST can better correlate the experimental isotherms.

  3. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity

    SciTech Connect

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M.

    2011-07-27

    Laboratory experiments were performed to investigate the contribution of variable grain sizes to uranium adsorption/desorption in a sediment collected from the US DOE Hanford site. The sediment was wet-sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.05-0.2 mm), and clay/silt fraction (< 0.05mm). For each size fraction and their composite (sediment), batch experiments were performed to determine uranium adsorption isotherms, and stirred flow-cell experiments were conducted to derive kinetic data of uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size-specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment, but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. Our analysis also showed that uranium adsorption site concentration estimated from the adsorption isotherms was 3 orders of magnitude less than a site concentration estimated from sediment surface area and generic site density. One important implication of this study is that grain size distribution may be used to estimate uranium adsorption site, and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  4. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene

    SciTech Connect

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Jiao, Yuqin; Xia, Yanzhi; Xia, Linhua; Wang, Zonghua; Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-08-15

    Graphical abstract: The effect of temperature on phenol adsorbed by graphene shows that the equilibrium adsorption capacity of phenol increases with the increase in temperature from 285 to 333 K. Increasing adsorption capacities with temperature indicates that the adsorption of phenol is controlled by an endothermic reaction. Highlights: ► The graphene has high phenol adsorption capacity. ► The graphene has a high specific surface area of 305 m{sup 2}/g. ► The adsorption capacity is high at acidic pH range. ► The graphene has rapid phenol adsorption rate. ► Phenol adsorption is a spontaneous and endothermic process. -- Abstract: Graphene, a new member of carbon family, has been prepared, characterized and used as adsorbent to remove phenol from aqueous solution. The effect parameters including pH, dosage, contact time, and temperature on the adsorption properties of phenol onto graphene were investigated. The results showed that the maximum adsorption capacity can reach 28.26 mg/g at the conditions of initial phenol concentration of 50 mg/L, pH 6.3 and 285 K. Adsorption data were well described by both Freundlich and Langmuir models. The kinetic study illustrated that the adsorption of phenol onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of phenol onto graphene was endothermic and spontaneous.

  5. Dynamic competitive adsorption of bone-related proteins on calcium phosphate ceramic particles with different phase composition and microstructure.

    PubMed

    Wang, Jing; Zhang, Huijie; Zhu, Xiangdong; Fan, Hongsong; Fan, Yujiang; Zhang, Xingdong

    2013-08-01

    The biocompatibility and bioactivity of biomaterials used for hard tissue repair are closely related to their adsorption capacities for bone-related proteins. In the present study, three types of calcium phosphate (CaP) ceramic particles with different phase composition or microstructure were fabricated, and their protein adsorption abilities were investigated by a self-made device under the simulated dynamic physiological circumstance. The results of X-ray diffraction, field emission scanning electron microscopy, mercury penetration test, and nitrogen sorption test showed that the irregular hydroxyapatite (HA) ceramic particles obtained by conventional drying and sintering (named as HA-C) had fewer micropores and lower specific surface area (SSA) than did the spherical HA or biphasic calcium phosphate (BCP) ceramic particles made by spray drying and sintering (named as HA-S and BCP-S, respectively). The dynamic protein adsorption study proved that both the phase composition and microstructure of CaP ceramic particles affected their adsorption capacities for those bone-related proteins. The spherical HA-S and BCP-S particles with abundant micropores and high SSA showed higher adsorption of serum proteins, including fibronectin and vitronectin, than the irregular HA-C did. On the other hand, in spite of the relatively high concentration of bovine serum albumin (BSA) in the binary bone morphogenetic protein 2 (BMP-2)/BSA solution, BMP-2 adsorption on the three CaP ceramic particles increased with the increase in its initial concentration. Similarly, HA-S and BCP-S particles had a larger amount of the adsorbed BMP-2 per gram solid than HA-C did. Therefore, it could be believed that the difference of various CaP ceramics in the phase composition and microporous structure would affect their binding capacity for those bone-related proteins and thus lead to their difference in osteoinduction.

  6. The Ozone Show.

    ERIC Educational Resources Information Center

    Mathieu, Aaron

    2000-01-01

    Uses a talk show activity for a final assessment tool for students to debate about the ozone hole. Students are assessed on five areas: (1) cooperative learning; (2) the written component; (3) content; (4) self-evaluation; and (5) peer evaluation. (SAH)

  7. Show What You Know

    ERIC Educational Resources Information Center

    Eccleston, Jeff

    2007-01-01

    Big things come in small packages. This saying came to the mind of the author after he created a simple math review activity for his fourth grade students. Though simple, it has proven to be extremely advantageous in reinforcing math concepts. He uses this activity, which he calls "Show What You Know," often. This activity provides the perfect…

  8. Showing What They Know

    ERIC Educational Resources Information Center

    Cech, Scott J.

    2008-01-01

    Having students show their skills in three dimensions, known as performance-based assessment, dates back at least to Socrates. Individual schools such as Barrington High School--located just outside of Providence--have been requiring students to actively demonstrate their knowledge for years. The Rhode Island's high school graduating class became…

  9. Stage a Water Show

    ERIC Educational Resources Information Center

    Frasier, Debra

    2008-01-01

    In the author's book titled "The Incredible Water Show," the characters from "Miss Alaineus: A Vocabulary Disaster" used an ocean of information to stage an inventive performance about the water cycle. In this article, the author relates how she turned the story into hands-on science teaching for real-life fifth-grade students. The author also…

  10. What Do Maps Show?

    ERIC Educational Resources Information Center

    Geological Survey (Dept. of Interior), Reston, VA.

    This curriculum packet, appropriate for grades 4-8, features a teaching poster which shows different types of maps (different views of Salt Lake City, Utah), as well as three reproducible maps and reproducible activity sheets which complement the maps. The poster provides teacher background, including step-by-step lesson plans for four geography…

  11. Obesity in show cats.

    PubMed

    Corbee, R J

    2014-12-01

    Obesity is an important disease with a high prevalence in cats. Because obesity is related to several other diseases, it is important to identify the population at risk. Several risk factors for obesity have been described in the literature. A higher incidence of obesity in certain cat breeds has been suggested. The aim of this study was to determine whether obesity occurs more often in certain breeds. The second aim was to relate the increased prevalence of obesity in certain breeds to the official standards of that breed. To this end, 268 cats of 22 different breeds investigated by determining their body condition score (BCS) on a nine-point scale by inspection and palpation, at two different cat shows. Overall, 45.5% of the show cats had a BCS > 5, and 4.5% of the show cats had a BCS > 7. There were significant differences between breeds, which could be related to the breed standards. Most overweight and obese cats were in the neutered group. It warrants firm discussions with breeders and cat show judges to come to different interpretations of the standards in order to prevent overweight conditions in certain breeds from being the standard of beauty. Neutering predisposes for obesity and requires early nutritional intervention to prevent obese conditions. PMID:24612018

  12. Show Me the Way

    ERIC Educational Resources Information Center

    Dicks, Matthew J.

    2005-01-01

    Because today's students have grown up steeped in video games and the Internet, most of them expect feedback, and usually gratification, very soon after they expend effort on a task. Teachers can get quick feedback to students by showing them videotapes of their learning performances. The author, a 3rd grade teacher describes how the seemingly…

  13. The Art Show

    ERIC Educational Resources Information Center

    Scolarici, Alicia

    2004-01-01

    This article describes what once was thought to be impossible--a formal art show extravaganza at an elementary school with 1,000 students, a Department of Defense Dependent School (DODDS) located overseas, on RAF Lakenheath, England. The dream of this this event involved the transformation of the school cafeteria into an elegant art show…

  14. Honored Teacher Shows Commitment.

    ERIC Educational Resources Information Center

    Ratte, Kathy

    1987-01-01

    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  15. Adsorption-desorption of tricyclazole: effect of soil types and organic matter.

    PubMed

    Kumar, Naveen; Mukherjee, Irani; Varghese, Eldho

    2015-03-01

    Adsorption-desorption of tricyclazole was studied by batch equilibrium method in two soil types, varying in their physical and chemical properties. The adsorption of tricyclazole on the soil matrix exhibited low rate of accumulation with 18.24 ± 0.14 % in Ultisol and moderately high rate with 43.62 ± 0.14 % in Vertisol after 6 h of equilibrium time. For soils amended with farmyard manure (FYM), the adsorption percentage increased to 32.52 ± 0.14 % in Ultisol and 55.14 ± 0.14 % in Vertisol. The Freundlich model was used to describe the adsorption-desorption of the tricyclazole in two soils. The adsorption isotherm suggested a relatively higher affinity of tricyclazole to the adsorption sites at low equilibrium concentrations. Variation in sorption affinities of the soils as indicated by the distribution coefficient (K d) for sorption in the range of 0.78 ± 0.01-1.38 ± 0.03, 1.71 ± 0.03-2.99 ± 0.09, 2.75 ± 0.05-4.69 ± 0.01, and 4.65 ± 0.08-7.64 ± 0.01 mL/g for Ultisol, FYM-amended Ultisol, Vertisol, and FYM-amended Vertisol, respectively. Desorption was slower than adsorption, indicating a hysteresis effect. The hysteresis coefficient varied from 0.023 ± 0.15 to 0.160 ± 0.12 in two test soils. A good fit to the linear and Freundlich isotherms was observed with correlation coefficients >0.96. The results revealed that adsorption-desorption was influenced by soil properties and showed that the maximum sorption and minimum desorption of pesticide were observed in soils with higher organic carbon and clay content. Thus, groundwater contamination may be minimized, on application of tricyclazole in high-sorption soils of rice-growing regions. PMID:25647794

  16. Adsorption-desorption of tricyclazole: effect of soil types and organic matter.

    PubMed

    Kumar, Naveen; Mukherjee, Irani; Varghese, Eldho

    2015-03-01

    Adsorption-desorption of tricyclazole was studied by batch equilibrium method in two soil types, varying in their physical and chemical properties. The adsorption of tricyclazole on the soil matrix exhibited low rate of accumulation with 18.24 ± 0.14 % in Ultisol and moderately high rate with 43.62 ± 0.14 % in Vertisol after 6 h of equilibrium time. For soils amended with farmyard manure (FYM), the adsorption percentage increased to 32.52 ± 0.14 % in Ultisol and 55.14 ± 0.14 % in Vertisol. The Freundlich model was used to describe the adsorption-desorption of the tricyclazole in two soils. The adsorption isotherm suggested a relatively higher affinity of tricyclazole to the adsorption sites at low equilibrium concentrations. Variation in sorption affinities of the soils as indicated by the distribution coefficient (K d) for sorption in the range of 0.78 ± 0.01-1.38 ± 0.03, 1.71 ± 0.03-2.99 ± 0.09, 2.75 ± 0.05-4.69 ± 0.01, and 4.65 ± 0.08-7.64 ± 0.01 mL/g for Ultisol, FYM-amended Ultisol, Vertisol, and FYM-amended Vertisol, respectively. Desorption was slower than adsorption, indicating a hysteresis effect. The hysteresis coefficient varied from 0.023 ± 0.15 to 0.160 ± 0.12 in two test soils. A good fit to the linear and Freundlich isotherms was observed with correlation coefficients >0.96. The results revealed that adsorption-desorption was influenced by soil properties and showed that the maximum sorption and minimum desorption of pesticide were observed in soils with higher organic carbon and clay content. Thus, groundwater contamination may be minimized, on application of tricyclazole in high-sorption soils of rice-growing regions.

  17. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: V. Complicated effects of counterions.

    PubMed

    Liu, Na; Yu, Linling; Sun, Yan

    2015-07-24

    In the previous studies on protein adsorption to poly(ethylenimine) (PEI)-grafted Sepharose FF resins, a critical ionic capacity (600mmol/L) of PEI-Sepharose resins was found for the adsorption of bovine serum albumin (BSA), above which both protein capacity and uptake rate increased drastically. In this work, the influence of counterions on the PEI-Sepharose resin with an ionic capacity of 683mmol/L (FF-PEI-L680) was investigated with sodium salts of SCN(-), Cl(-), HPO4(2-) and SO4(2-). Linear gradient elution, batch adsorption and breakthrough experiments showed that counterion preference, effective pore diffusion coefficient (De) and dynamic binding capacity (DBC) values increased in the order of SCN(-), Cl(-), HPO4(2-) and SO4(2-), while static adsorption capacity decreased in this order. It is considered that higher counterion preference of the ion exchange groups resulted in lower protein binding strength and adsorption capacity, while the De value increased due to the enhanced "chain delivery" effect (a kind of surface diffusion). Besides, the DBC value was mainly dependent on De value. In particular, SO4(2-) was the most favorable counterion for the PEI-Sepharose resin, which gave rise to the highest De value (De/D0=1.17, D0 is protein diffusivity in free solution) and DBC value (118mg/mL at a residence time of 2min). Moreover, the effects of counterions on BSA adsorption to DEAE Sepharose FF and Q Sepharose FF, which were non-grafted resins, were also studied for comparisons. It was found that the counterion preferences of the two non-grafted resins were different from each other and also different from that of FF-PEI-L680. The different counterion preferences were attributed to the differences in the ion-exchange ligand chemistries. In addition, the De values for DEAE Sepharose FF and Q Sepharose FF kept unchanged. The low counterion sensitivity of De values could be interpreted as the lack of "chain delivery" effect for the non-grafted resins. The

  18. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: V. Complicated effects of counterions.

    PubMed

    Liu, Na; Yu, Linling; Sun, Yan

    2015-07-24

    In the previous studies on protein adsorption to poly(ethylenimine) (PEI)-grafted Sepharose FF resins, a critical ionic capacity (600mmol/L) of PEI-Sepharose resins was found for the adsorption of bovine serum albumin (BSA), above which both protein capacity and uptake rate increased drastically. In this work, the influence of counterions on the PEI-Sepharose resin with an ionic capacity of 683mmol/L (FF-PEI-L680) was investigated with sodium salts of SCN(-), Cl(-), HPO4(2-) and SO4(2-). Linear gradient elution, batch adsorption and breakthrough experiments showed that counterion preference, effective pore diffusion coefficient (De) and dynamic binding capacity (DBC) values increased in the order of SCN(-), Cl(-), HPO4(2-) and SO4(2-), while static adsorption capacity decreased in this order. It is considered that higher counterion preference of the ion exchange groups resulted in lower protein binding strength and adsorption capacity, while the De value increased due to the enhanced "chain delivery" effect (a kind of surface diffusion). Besides, the DBC value was mainly dependent on De value. In particular, SO4(2-) was the most favorable counterion for the PEI-Sepharose resin, which gave rise to the highest De value (De/D0=1.17, D0 is protein diffusivity in free solution) and DBC value (118mg/mL at a residence time of 2min). Moreover, the effects of counterions on BSA adsorption to DEAE Sepharose FF and Q Sepharose FF, which were non-grafted resins, were also studied for comparisons. It was found that the counterion preferences of the two non-grafted resins were different from each other and also different from that of FF-PEI-L680. The different counterion preferences were attributed to the differences in the ion-exchange ligand chemistries. In addition, the De values for DEAE Sepharose FF and Q Sepharose FF kept unchanged. The low counterion sensitivity of De values could be interpreted as the lack of "chain delivery" effect for the non-grafted resins. The

  19. Adsorption dynamics of methyl violet onto granulated mesoporous carbon: Facile synthesis and adsorption kinetics.

    PubMed

    Kim, Yohan; Bae, Jiyeol; Park, Hosik; Suh, Jeong-Kwon; You, Young-Woo; Choi, Heechul

    2016-09-15

    A new and facile one-step synthesis method for preparing granulated mesoporous carbon (GMC) with three-dimensional spherical mesoporous symmetry is prepared to remove large molecular weight organic compounds in aqueous phase. GMC is synthesized in a single step using as-synthesized mesoporous carbon particles and organic binders through a simple and economical synthesis approach involving a simultaneous calcination and carbonization process. Characterization results obtained from SEM, XRD, as well as surface and porosity analysis indicate that the synthesized GMC has similar physical properties to those of the powdered mesoporous carbon and maintains the Brunauer-Emmett-Teller (BET) surface area and pore volume because the new synthesis method prevents the collapse of the pores during the granulation process. Batch adsorption experiments revealed GMC showed a substantial adsorption capacity (202.8 mg/g) for the removal of methyl violet as a target large molecular contaminant in aqueous phase. The mechanisms and dynamics modeling of GMC adsorption were also fully examined, which revealed that surface diffusion was rate limiting step on adsorption process of GMC. Adsorption kinetics of GMC enables 3 times faster than that of granular activated carbon in terms of surface diffusion coefficient. This is the first study, to the best of our knowledge, to synthesize GMC as an adsorbent for water purification by using facile granulation method and to investigate the adsorption kinetics and characteristics of GMC. This study introduces a new and simple method for the synthesis of GMC and reveals its adsorption characteristics for large molecular compounds in a water treatment.

  20. Adsorption dynamics of methyl violet onto granulated mesoporous carbon: Facile synthesis and adsorption kinetics.

    PubMed

    Kim, Yohan; Bae, Jiyeol; Park, Hosik; Suh, Jeong-Kwon; You, Young-Woo; Choi, Heechul

    2016-09-15

    A new and facile one-step synthesis method for preparing granulated mesoporous carbon (GMC) with three-dimensional spherical mesoporous symmetry is prepared to remove large molecular weight organic compounds in aqueous phase. GMC is synthesized in a single step using as-synthesized mesoporous carbon particles and organic binders through a simple and economical synthesis approach involving a simultaneous calcination and carbonization process. Characterization results obtained from SEM, XRD, as well as surface and porosity analysis indicate that the synthesized GMC has similar physical properties to those of the powdered mesoporous carbon and maintains the Brunauer-Emmett-Teller (BET) surface area and pore volume because the new synthesis method prevents the collapse of the pores during the granulation process. Batch adsorption experiments revealed GMC showed a substantial adsorption capacity (202.8 mg/g) for the removal of methyl violet as a target large molecular contaminant in aqueous phase. The mechanisms and dynamics modeling of GMC adsorption were also fully examined, which revealed that surface diffusion was rate limiting step on adsorption process of GMC. Adsorption kinetics of GMC enables 3 times faster than that of granular activated carbon in terms of surface diffusion coefficient. This is the first study, to the best of our knowledge, to synthesize GMC as an adsorbent for water purification by using facile granulation method and to investigate the adsorption kinetics and characteristics of GMC. This study introduces a new and simple method for the synthesis of GMC and reveals its adsorption characteristics for large molecular compounds in a water treatment. PMID:27262123

  1. Studies of gas adsorption in flexible Metal-Organic frameworks

    NASA Astrophysics Data System (ADS)

    Sircar, Sarmishtha

    minutes to >60 hours, and this in turn, led to a ˜300 fold increase in capacity, convergence of capacities at similar reduced temperatures (critical temperature being the reducing parameter), discontinuities in the isotherms, lowering of gate-opening pressures, changes in the isotherm shapes as well as width of hysteresis loops. Although an experimental time effect was also seen for H2 adsorption at 77K, H2 showed no discontinuity in the adsorption isotherm, adsorption-desorption hysteresis was much less pronounced, and equilibration required significantly less time. The significant difference in rates of adsorption by different gases was attributed to an activated configurational diffusion regime in which the diffusing species moves through a corrugated surface potential when the diameter of the adsorbate approaches that of the pore. A concentration-dependent diffusion model coupled with insufficient equilibration time provides an alternate explanation to describe the stepwise adsorption behavior in GO-MOFs and the changes in capacities. A sigmoid shape of adsorption rate data at cryogenic temperatures is atypical of simple Fickian diffusion, suggesting a more complex mechanistic explanation is required to explain adsorption kinetics to GO-MOFs. Extending the unreacted shrinking core model from the field of catalyst deactivation suggests that relaxation will be much faster relative to diffusion when temperature is increased even by just 10K. From a thermodynamic perspective, adsorption isotherms on (2) demonstrate universality when pressure and temperature are scaled/reduced according to those at critical conditions. At similar reduced conditions, isotherms of gases on (2) converged and both capacity and pressure points of discontinuities showed a predictive behavior. Discrete levels of capacities were found which decrease in temperature. Existence of a universal parameter of heat of gate-opening is calculated and the heats of adsorption and structural expansion are

  2. Enrichment and purification of marine polyphenol phlorotannins using macroporous adsorption resins.

    PubMed

    Kim, Jiyoung; Yoon, Minseok; Yang, Hyejin; Jo, Jinho; Han, Daeseok; Jeon, You-Jin; Cho, Suengmok

    2014-11-01

    Phlorotannins are one of the most important bioactive polyphenols; however, their purification using chromatographic methods has not been explored. Here, we studied purification of phlorotannins from the crude phlorotannin extract (CPhE) of the brown seaweed Ecklonia cava using macroporous adsorption resins. For purification of phlorotannins, four resins (HP-20, SP-850, XAD-7HP, and XAD-2) were screened. Among them, HP-20 resin showed the highest adsorption and desorption capacities. In static adsorption tests, the adsorption capacity of HP-20 increased with increasing temperature (25-45°C). Optimal conditions for the dynamic experiments can be summarized as follows: total phlorotannin content (TPhC) in loading solution: 1.5mg PGE/mL, processing volume: 4 BV, flow rate: 1 mL/min, temperature: 45°C, desorption solvent: 40% ethanol solution. After purification, TPhC (452 mg PGE/g) and arsenic (180 μg/g) of CPhE increased and decreased to 905 mg PGE/g and 48 μg/g, respectively. Recovery rate of phlorotannins from CPhE was 92%.

  3. Enrichment and purification of marine polyphenol phlorotannins using macroporous adsorption resins.

    PubMed

    Kim, Jiyoung; Yoon, Minseok; Yang, Hyejin; Jo, Jinho; Han, Daeseok; Jeon, You-Jin; Cho, Suengmok

    2014-11-01

    Phlorotannins are one of the most important bioactive polyphenols; however, their purification using chromatographic methods has not been explored. Here, we studied purification of phlorotannins from the crude phlorotannin extract (CPhE) of the brown seaweed Ecklonia cava using macroporous adsorption resins. For purification of phlorotannins, four resins (HP-20, SP-850, XAD-7HP, and XAD-2) were screened. Among them, HP-20 resin showed the highest adsorption and desorption capacities. In static adsorption tests, the adsorption capacity of HP-20 increased with increasing temperature (25-45°C). Optimal conditions for the dynamic experiments can be summarized as follows: total phlorotannin content (TPhC) in loading solution: 1.5mg PGE/mL, processing volume: 4 BV, flow rate: 1 mL/min, temperature: 45°C, desorption solvent: 40% ethanol solution. After purification, TPhC (452 mg PGE/g) and arsenic (180 μg/g) of CPhE increased and decreased to 905 mg PGE/g and 48 μg/g, respectively. Recovery rate of phlorotannins from CPhE was 92%. PMID:24874368

  4. Adsorption of glycosaminoglycans to the cell surface is responsible for cellular donnan effects.

    PubMed

    Hagenfeld, Daniel; Kathagen, Nadine; Prehm, Peter

    2014-07-01

    In previous publications, we showed that extracellular glycosaminoglycans reduced the membrane potential, caused cell blebbing and swelling and decreased the intracellular pH independently of cell surface receptors. These phenomena were explained by Donnan effects. The effects were so large that they could not be attributed to glycosaminoglycans in solution. Therefore, we tested the hypothesis that glycosaminoglycans were concentrated on the cell membrane and analysed the mechanism of adsorption by fluorescent hyaluronan, chondroitin sulphate and heparin. The influence of the CD44 receptor was evaluated by comparing CD44 expressing human fibroblasts with CD44 deficient HEK cells. Higher amounts of glycosaminoglycans adsorbed to fibroblasts than to HEK cells. When the membrane potential was annihilated by substituting NaCl by KCl in the medium, adsorption was reduced and intracellular pH decrease was abolished. To eliminate other cellular interfering factors, potential-dependent adsorption was demonstrated for hyaluronan which adsorbed to inert gold foils in physiological salt concentrations at pH 7.2 and surface potentials up to 120 mV. From these results, we conclude that large cellular Donnan effects of glycosaminoglycans results from receptor mediated, hydrophobic and ionic adsorption to cell surfaces.

  5. Coat thickness dependent adsorption of hydrophobic molecules at polymer brushes

    NASA Astrophysics Data System (ADS)

    Smiatek, Jens; Heuer, Andreas; Wagner, Hendrik; Studer, Armido; Hentschel, Carsten; Chi, Lifeng

    2013-01-01

    We study the adsorption properties of hydrophobic test particles at polymer brushes with different coat thicknesses via mesoscopic dissipative particle dynamics simulations. Our findings indicate stronger free energies of adsorption at thin polymer brushes. The reason for this difference is mainly given by entropic contributions due to different elastic deformations of the coatings. The numerical findings are supported by analytical calculations and are in good qualitative agreement to experimental fluorescence intensity results.

  6. Crosslinked Electro-Spun Chitosan Nanofiber Mats with Cd(II) as Template Ions for Adsorption Applications.

    PubMed

    Li, Yan; Xu, Cong; Qiu, Tianbao; Xu, Xiaoyan

    2015-06-01

    The Cd(II) ion imprinting electro-spun crosslinked chitosan nanofiber mats were successfully prepared using Cd(II) as template ions and glutaraldehyde (GA) as crosslinker to investigate the adsorption of Cd(II) and Pb(II) ions in aqueous solutions. The Cd(II) ion imprinting electro-spun crosslinked chitosan nanofiber mats were characterized by the Fourier Transform Infrared Spectrometer (FTIR), Scanning Electron Microscope (SEM), Thermal Gravimetric Analysis (TGA), elemental analysis and solubility tests. The prepared chitosan nanofiber mats exhibited a higher adsorption capacity for both Cd(II) (364.3 mg/g) and Pb(II) (272.0 mg/g) ions. The dynamic study demonstrated that the adsorption process followed the second-order kinetic equation. Langmuir and Freundlich adsorption models were used to analyze the equilibrium isotherm data. The results showed that the Langmuir model was best suitable for predicting the adsorption isotherm of the studied system. The as prepared Cd(II) ion imprinting electro-spun crosslinked chitosan nanofiber mats might be used as an effective adsorbent for Cd(II) and Pb(II) removal from heavy metal wastewater. PMID:26369036

  7. Removal of ethylenthiourea and 1,2,4-triazole pesticide metabolites from water by adsorption in commercial activated carbons.

    PubMed

    Amorim, Camila C; Bottrel, Sue Ellen C; Costa, Elizângela P; Teixeira, Ana Paula C; Leão, Mônica M D

    2013-01-01

    This study evaluated the adsorption capacity of ethylenthiourea (ETU) and 1H-1,2,4-triazole (1,2,4-T) for two commercial activated carbons: charcoal-powdered activated carbon (CPAC) and bovine bone-powdered activated carbon (BPAC). The tests were conducted at a bench scale, with ETU and 1,2,4-T diluted in water, for isotherm and adsorption kinetic studies. The removal of the compounds was accompanied by a total organic carbon (TOC) analysis and ultraviolet (UV) reduction analysis. The coals were characterized by their surface area using nitrogen adsorption/desorption, by a scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS) and by a zero charge point analysis (pHpcz). The results showed that adsorption kinetics followed a pseudo-second-order model for both coals, and the adsorption isotherms for CPAC and BPAC were adjusted to the Langmuir and Freundlich isotherms, respectively. The CPAC removed approximately 77% of the ETU and 76% of the 1,2,4-T. The BPAC was ineffective at removing the contaminants. PMID:23356339

  8. Adsorption characteristics of multiple microcystins and cylindrospermopsin on sediment: Implications for toxin monitoring and drinking water treatment.

    PubMed

    Maghsoudi, Ehsan; Prévost, Michèle; Vo Duy, Sung; Sauvé, Sébastien; Dorner, Sarah

    2015-09-01

    Adsorption of mixtures of cyanotoxins onto sediment as a dominant mechanism in the elimination of cyanotoxins from the aqueous phase has not been extensively investigated. The aim of this study was to investigate adsorption and desorption behavior of six microcystins including microcystin (MC)-LR, RR, YR, LY, LW and LF and cylindrospermopsin (CYN) on natural sediment. Freundlich and Langmuir isotherms could be fitted for MC-LR, RR, YR and CYN. Sorption kinetics showed immediate rapid adsorption for all cyanotoxins: CYN, MCLW and MCLF were adsorbed 72.6%, 56.7% and 55.3% respectively within 2 h. Results of desorption experiments demonstrated that less than 9% of cyanotoxins desorbed from sediment within 96 h. Adsorption of cyanotoxins onto three fractionated sediments particles, clay-silt (<75 μm), find sand (75-315 μm) and coarse sand (315-2000 μm) demonstrated that adsorption capacity of coarse sand fraction for all the tested cyanotoxins was less than 4% of the clay-silt fraction. Results of this study revealed that there is a potential for cyanotoxins to accumulate in the sediments of lakes, as well as in drinking water treatment plants. Monitoring programs must consider cyanotoxins in the particulate phase to avoid largely underestimating toxin concentrations following their release from blooms.

  9. Suitability of adsorption isotherms for predicting the retention capacity of active slag filters removing phosphorus from wastewater.

    PubMed

    Pratt, C; Shilton, A

    2009-01-01

    Active slag filters are an emerging technology for removing phosphorus (P) from wastewater. A number of researchers have suggested that adsorption isotherms are a useful tool for predicting P retention capacity. However, to date the appropriateness of using isotherms for slag filter design remains unverified due to the absence of benchmark data from a full-scale, field filter operated to exhaustion. This investigation compared the isotherm-predicted P retention capacity of a melter slag with the P adsorption capacity determined from a full-scale, melter slag filter which had reached exhaustion after five years of successfully removing P from waste stabilization pond effluent. Results from the standard laboratory batch test showed that P adsorption correlated more strongly with the Freundlich Isotherm (R(2)=0.97, P<0.01) than the Langmuir Isotherm, a similar finding to previous studies. However, at a P concentration of 10 mg/L, typical of domestic effluent, the Freundlich equation predicted a retention capacity of 0.014 gP/kg slag; markedly lower than the 1.23 gP/kg slag adsorbed by the field filter. Clearly, the result generated by the isotherm bears no resemblance to actual field capacity. Scanning electron microscopy analysis revealed porous, reactive secondary minerals on the slag granule surfaces from the field filter which were likely created by weathering. This slow weathering effect, which generates substantial new adsorption sites, is not accounted for by adsorption isotherms rendering them ineffective in slag filter design. PMID:19403982

  10. Liofilchem® Chromatic VRE and vancomycin MIC Test Strip detected glycopeptide resistance in a vanB neonatal Enterococcus faecium isolate showing alternate vancomycin susceptibility and resistance with bioMérieux Vitek2

    PubMed Central

    Savini, Vincenzo; Marrollo, Roberta; Coclite, Eleonora; Fusilli, Paola; D’Incecco, Carmine; Fazii, Paolo; Gherardi, Giovanni

    2014-01-01

    A 1-month old neonate urine sample yielded vanB Enterococcus faecium; nevertheless, the isolate alternatively showed susceptibility and resistance to vancomycin with bioMérieux Vitek2 (cards AST592, AST632, AST586), while glycopeptide resistance was detected by Liofilchem® vancomycin MIC Test Strip and disc along with the Chromatic VRE chromogenic medium. This communication emphasizes that, as vanB gene may be heterogeneously expressed within a given Enterococcus population, glycopeptide resistance may be missed when using automated systems for antibiotic susceptibility testing. We suggest therefore that vancomycin in vitro activity be studied on all clinical isolates through agar methods, including use of chromogenic media. PMID:25337280

  11. The adsorption of HCl on volcanic ash

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Xochilt; Schiavi, Federica; Keppler, Hans

    2016-03-01

    data provided here, the gas compositions in equilibrium with the ash surfaces can be calculated. In particular, for dacitic composition, the molar ratio of S/Cl adsorbed to the ash surface is related to the molar S/Cl ratio in the gas phase according to the equation ln ⁡(S / Cl) adsorbed = 2855T-1 + 0.28 ln ⁡(S / Cl) gas - 11.14. Our data also show that adsorption on ash will significantly reduce the fraction of HCl reaching the stratosphere, only if the initial HCl content in the volcanic gas is low (<1 mol%). For higher initial HCl concentrations, adsorption on ash has only a minor effect. While HCl scavenging by hydrometeors may remove a considerable fraction of HCl from the eruption column, recent models suggest that this process is much less efficient than previously thought. Our experimental data therefore support the idea that the HCl loading from major explosive eruptions may indeed cause severe depletions of stratospheric ozone.

  12. Assessing the adsorption properties of shales

    NASA Astrophysics Data System (ADS)

    Pini, Ronny

    2015-04-01

    applied, where these measures are simultaneously evaluated through a graphical method. The density of the adsorbed phase is estimated and compared to data reported in the literature; the latter is key to disclose gas-reserves and/or potential storage capacity estimates. The comparison with engineered materials highlights the complexity of the adsorption process in rocks. In fact, when evaluated against classic adsorbent materials, these preliminary data show that the adsorption mechanism in shales is further complicated by the presence of resident fluids (such as oil) that can additionally contribute to their total uptake capacity. This further highlights the need of improving our current understanding of the fundamental mechanisms controlling the uptake and release of fluids from these materials, and provides substantial research opportunities under the common goal of providing an efficient and sustainable use of unconventional resources.

  13. Adsorption of diblock polypeptides on polystyrene latex.

    PubMed

    Jain, Ritesh; Forciniti, Daniel

    2012-10-30

    The adsorption of peptides at solid/liquid interfaces is affected by peptide/surface and peptide/peptide hydrophobic and electrostatic forces. Three diblock copolypeptides and two homopeptides were adsorbed on poly(styrene) nanospheres from water, water/methanol, and water/glycerol mixtures at different pH's to study both of these effects. Peptides with one hydrophilic (glutamic acid or lysine) and one nonpolar block (alanine) or with both hydrophilic blocks with opposite charges (glutamic acid and lysine) were chemically synthesized and used as adsorbates in this study. The amount adsorbed was determined, and dynamic light scattering (DLS) was used to measure the adsorbed layer thickness. It was found that peptide/surface and peptide/peptide electrostatic interactions dominate the adsorption process. Hydrophobic forces also play a role, but secondary to electrostatic forces. Positively charged blocks show high affinity for the surface, whereas negatively charged blocks were excluded from it. Poly(Lys) has the highest affinity by the surface, while (Glu)(14)-b-(Ala)(5) has the lowest. Adsorption of all peptides was inhibited by methanol and promoted by glycerol. The adsorption for (Lys)(5)-b-(Glu)(6) was extremely sensitive to pH, irrespective of cosolvent, whereas the thickness for (Lys)(30)-b-(Ala)(41) was sensitive to pH as well as cosolvent. Aggregation was observed in the presence of the nanosurfaces but not in the bulk peptides under some pH and solvent conditions. PMID:23009064

  14. Zinc modulates thrombin adsorption to fibrin

    SciTech Connect

    Hopmeier, P.; Halbmayer, M.; Fischer, M.; Marx, G. )

    1990-05-01

    Human thrombin with high affinity to Sepharose insolubilized fibrin monomers (high-affinity thrombin) was used to investigate the effect of Zn(II) on the thrombin adsorption to fibrin. Results showed that at Zn(II) concentrations exceeding 100 mumols/l, thrombin binding to fibrin was decreased concomitant with the Zn(II) concentration and time; at lower Zn(II) concentrations, thrombin adsorption was enhanced. Experimental results were identical by using 125I-labelled high-affinity alpha-thrombin or by measuring the thrombin activity either by chromogenic substrate or by a clotting time method. In contrast, Ca(II) alone (final conc. 3 mmol/l) or in combination with Zn(II) was not effective. However, at higher Ca(II) concentrations (7.5-15 mmol/l), thrombin adsorption was apparently decreased. Control experiments revealed that Zn(II) had no impact on the clottability of fibrinogen, and that the results of the experiments with Ca(II) were not altered by possible cross-linking of fibrin. We conclude that unlike Ca(II), Zn(II) is highly effective in modulating thrombin adsorption to fibrin.

  15. Modeling the Adsorption of Oxalate onto Montmorillonite.

    PubMed

    Ramos, M Elena; Emiroglu, Caglayan; García, David; Sainz-Díaz, C Ignacio; Huertas, F Javier

    2015-11-01

    In this work, a multiscale modeling of the interaction of oxalate with clay mineral surfaces from macroscale thermodynamic equilibria simulations to atomistic calculations is presented. Previous results from macroscopic adsorption data of oxalate on montmorillonite in 0.01 M KNO3 media at 25 °C within the pH range from 2.5 to 9 have been used to develop a surface complexation model. The experimental adsorption edge data were fitted using the triple-layer model (TLM) with the aid of the FITEQL 4.0 computer program. Surface complexation of oxalate is described by two reactions: >AlOH + Ox(2-) + 2H(+) = >AlOxH + H2O (log K = 14.39) and >AlOH + Ox(2-) + H(+) = >AlOx(-) + H2O (log K = 10.39). The monodentate complex >AlOxH dominated adsorption below pH 4, and the bidentate complex >AlOx(-) was predominant at higher pH values. Both of the proposed inner-sphere oxalate species are qualitatively consistent with previously published diffuse reflectance FTIR spectroscopic results for oxalate on montmorillonite edge surface (Chem. Geol. 2014, 363, 283-292). Atomistic computational studies have been performed to understand the interactions at the molecular level between adsorbates and mineral surface, showing the atomic structures and IR frequency shifts of the adsorption complexes of oxalate with the edge surface of a periodic montmorillonite model. PMID:26444928

  16. Random sequential adsorption on partially covered surfaces

    NASA Astrophysics Data System (ADS)

    Adamczyk, Zbigniew; Weroński, Paweł

    1998-06-01

    The random sequential adsorption (RSA) approach was used to analyze adsorption of hard spheres at surfaces precovered with smaller sized particles. Numerical simulations were performed to determine the available surface function φl of larger particles for various particle size ratios λ=al/as and surface concentration of smaller particles θs. It was found that the numerical results were in a reasonable agreement with the formula stemming from the scaled particle theory with the modification for the sphere/sphere geometry. Particle adsorption kinetics was also determined in terms of the RSA simulations. By extrapolating the θl vs τ-1/2 dependencies, the jamming concentrations of larger spheres θl∞ were determined as a function of the initial smaller sphere concentration. It was found that θl∞ were considerably reduced by the presence of smaller sized particles, especially for λ≫1. The pair correlation function g of larger particles in the jamming state was also determined, showing more short range ordering (at the same θl) in comparison with monodisperse systems. The theoretical predictions stemming from our calculations suggest that the presence of trace amounts of very small particles may exert a decisive influence on adsorption of larger particles.

  17. Adsorption of hexavalent chromium on dunite.

    PubMed

    Demetriou, Antri; Pashalidis, Ioannis

    2011-01-01

    The paper presents and discusses the effect of various physicochemical parameters (e.g. pH, ionic strength, Cr(VI) initial concentration, amount of the adsorbent, temperature and contact time between metal ion and adsorbent) on the adsorption efficiency of Cr(VI) on dunite in aqueous solutions under atmospheric conditions. Evaluation of the experimental data shows that dunite presents increased affinity for Cr(VI) over a wide pH range and Cr(VI) concentration, and the experimental data are well fitted by the K(d) adsorption model. The relative adsorption is pH dependent and decreases slightly (about 10%) with increasing pH, because of changes in the surface charge of the solid. The effect of the ionic strength is significant (particularly at low pH), indicating the predominance of outer-sphere complexes. Moreover, adsorption experiments at various temperatures, two different pH values (pH 3 and pH 8) and three different ionic strengths (0.0, 0.1 and 1.0 M NaClO(4)), indicate an endothermic but spontaneous entropy-driven processes. PMID:21330733

  18. Cd adsorption onto bacterial surfaces: A universal adsorption edge?

    NASA Astrophysics Data System (ADS)

    Yee, Nathan; Fein, Jeremy

    2001-07-01

    In this study, we measure the thermodynamic stability constants for proton and Cd binding onto the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive bacteria Bacillus megaturium, Streptococcus faecalis, Staphylococcus aureus, Sporosarcina ureae, and Bacillus cereus. Potentiometric titrations and Cd-bacteria adsorption experiments yield average values for the carboxyl site pK a, site concentration, and log stability constant for the bacterial surface Cd-carboxyl complex of 5.0, 2.0 × 10 -3 mol/g and 4.0 respectively. Our results indicate that a wide range of bacterial species exhibit nearly identical Cd adsorption behavior as a function of pH. We propose that metal-bacteria adsorption is not dependent on the bacterial species involved, and we develop a generalized adsorption model which may greatly simplify the task of quantifying the effects of bacterial adsorption on dissolved mass transport in realistic geologic systems.

  19. Rethinking Critical Adsorption

    NASA Astrophysics Data System (ADS)

    Franck, Carl; Peach, Sarah; Polak, Robert D.

    1996-03-01

    Recent reflectivity experiments on near-critical mixtures of carbon disulfide and nitromethane contained in glass cells footnote Niraj S. Desai, Sarah Peach, and Carl Franck, Phys. Rev. E 52, 4129 (1995) have shown that preferential adsorption of one liquid component onto the wall can be controlled by chemical modification of the glass. The glass was treated with varying amounts of hexamethyldisilazane to decrease surface polarity and therefore enhance the adsorption of carbon disulfide in a surprisingly continuous way. The effect of the glass wall on the local liquid composition can be described by two different scaling hypotheses: using a short range field on the liquid closest to the wall, or pinning the amplitude of the order parameter at the surface. We have found that only the second approach is consistent with the experimental data, although this is difficult to reconcile with observed wetting critical phenomena. We also have reexamined the issue of substrate inhomogeneity and conclude that the substrates were indeed homogeneous on relevant length scales. Supported by the NSF under DMR-9320910 and the central facilities of the Materials Science Center at Cornell University.

  20. Taking in a Show.

    PubMed

    Boden, Timothy W

    2016-01-01

    Many medical practices have cut back on education and staff development expenses, especially those costs associated with conventions and conferences. But there are hard-to-value returns on your investment in these live events--beyond the obvious benefits of acquired knowledge and skills. Major vendors still exhibit their services and wares at many events, and the exhibit hall is a treasure-house of information and resources for the savvy physician or administrator. Make and stick to a purposeful plan to exploit the trade show. You can compare products, gain new insights and ideas, and even negotiate better deals with representatives anxious to realize returns on their exhibition investments. PMID:27249887

  1. Taking in a Show.

    PubMed

    Boden, Timothy W

    2016-01-01

    Many medical practices have cut back on education and staff development expenses, especially those costs associated with conventions and conferences. But there are hard-to-value returns on your investment in these live events--beyond the obvious benefits of acquired knowledge and skills. Major vendors still exhibit their services and wares at many events, and the exhibit hall is a treasure-house of information and resources for the savvy physician or administrator. Make and stick to a purposeful plan to exploit the trade show. You can compare products, gain new insights and ideas, and even negotiate better deals with representatives anxious to realize returns on their exhibition investments.

  2. Adsorption of cadmium by sulphur dioxide treated activated carbon.

    PubMed

    Macías-García, A; Gómez-Serrano, V; Alexandre-Franco, M F; Valenzuela-Calahorro, C

    2003-10-01

    Merck carbon (1.5 mm) was treated in three ways: heating from ambient temperature to 900 degrees C in SO(2); treatment at ambient temperature in SO(2); or successive treatments in SO(2) and H(2)S at ambient temperature. All samples were then characterised and tested as adsorbents of Cd(2+) from aqueous solution. The characterisation was in terms of composition by effecting ultimate and proximate analyses and also of textural properties by N(2) adsorption at -196 degrees C. Kinetics and extent of the adsorption process of Cd(2+) were studied at 25 and 45 degrees C at pH of the Cd(2+) solution (i.e., 6.2) and at 25 degrees C also at pH 2.0. The various treatments of the starting carbon had no significant effect on the kinetics of the adsorption of Cd(2+), but increased its adsorption capacity. The most effective treatment was heating to 900 degrees C, the adsorption in this case being 70.3% more than that of the starting carbon. The adsorption increased at 45 degrees C but decreased at pH 2.0 when compared to adsorption at 25 degrees C and pH 6.2, respectively.

  3. Adsorption of cadmium(II) on waste biomaterial.

    PubMed

    Baláž, M; Bujňáková, Z; Baláž, P; Zorkovská, A; Danková, Z; Briančin, J

    2015-09-15

    Significant increase of the adsorption ability of the eggshell biomaterial toward cadmium was observed upon milling, as is evidenced by the value of maximum monolayer adsorption capacity of 329mgg(-1), which is markedly higher than in the case of most "green" sorbents. The main driving force of the adsorption was proven to be the presence of aragonite phase as a consequence of phase transformation from calcite occurring during milling. Cadmium is adsorbed in a non-reversible way, as documented by different techniques (desorption tests, XRD and EDX measurements). The optimum pH for cadmium adsorption was 7. The adsorption process was accompanied by the increase of the value of specific surface area. The course of adsorption has been described by Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The adsorption kinetics was evaluated using three models, among which the best correlation coefficients and the best normalized standard deviation values were achieved for the pseudo-second order model and the intraparticle diffusion model, respectively.

  4. Adsorption of cadmium(II) on waste biomaterial.

    PubMed

    Baláž, M; Bujňáková, Z; Baláž, P; Zorkovská, A; Danková, Z; Briančin, J

    2015-09-15

    Significant increase of the adsorption ability of the eggshell biomaterial toward cadmium was observed upon milling, as is evidenced by the value of maximum monolayer adsorption capacity of 329mgg(-1), which is markedly higher than in the case of most "green" sorbents. The main driving force of the adsorption was proven to be the presence of aragonite phase as a consequence of phase transformation from calcite occurring during milling. Cadmium is adsorbed in a non-reversible way, as documented by different techniques (desorption tests, XRD and EDX measurements). The optimum pH for cadmium adsorption was 7. The adsorption process was accompanied by the increase of the value of specific surface area. The course of adsorption has been described by Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The adsorption kinetics was evaluated using three models, among which the best correlation coefficients and the best normalized standard deviation values were achieved for the pseudo-second order model and the intraparticle diffusion model, respectively. PMID:26005798

  5. Adsorption of ammonia on treated stainless steel and polymer surfaces

    NASA Astrophysics Data System (ADS)

    Vaittinen, O.; Metsälä, M.; Persijn, S.; Vainio, M.; Halonen, L.

    2014-05-01

    Adsorption of dynamically diluted ammonia at part-per-billion to low part-per-million concentrations in dry nitrogen was studied with treated and non-treated stainless steel and polymer test tubes. The treatments included electropolishing and two types of coatings based on amorphous silicon. Cavity ring-down spectroscopy with an external cavity diode laser operating in the near-infrared wavelength range was used to monitor the adsorption process in real time in continuous-flow conditions to obtain quantitative assessment of the adsorptive properties of the studied surfaces. The investigated polymers were all less adsorptive than any of the treated or non-treated stainless steel surfaces. Some of the commercial coatings reduced the adsorption loss of stainless steel by a factor of ten or more. Polyvinylidene fluoride was found to be superior (less adsorption) to the four other studied polymer coatings. The number of adsorbed ammonia molecules per surface area obtained at different ammonia gas phase concentrations was modeled with Langmuir and Freundlich isotherms. The time behavior of the adsorption-desorption process occurring in the time scale of seconds and minutes was simulated with a simple kinetic model.

  6. Laboratory investigation of steam adsorption in geothermal reservoir rocks

    SciTech Connect

    Luetkehans, J.

    1988-02-01

    Some vapor-dominated geothermal reservoirs and low-permeability gas reservoirs exhibit anomalous behavior that may be caused by surface adsorption. For example, geothermal reservoirs in the Larderello are of Italy and reservoirs in the Geysers Geothermal Field, California produce little, if any, liquid. Yet to satisfy material balance constraints, another phase besides steam must be present. If steam adsorption occurring in significant amounts is not accounted for, the reserves will be grossly under-estimated. In addition, well tests may be misinterpreted because the pressure response is delayed owing to be adsorbed material leaving or entering the gaseous phase. In the present research the role of adsorption in geothermal reservoirs in investigated. Two sets of laboratory equipment were constructed to measure adsorption isotherms of cores from Berea sandstone, Larderello, and The Geysers. Seven experimental runs were completed using nitrogen on the low temperature apparatus at -196/sup 0/C. Eight runs were conducted using steam on the high temperature apparatus at temperatures ranging from 150 C to 207/sup 0/C. The largest specific surface area and the greatest nitrogen adsorption isotherm were measured on the Berea sandstone, followed by a core from Larderello and then The Geysers. Difficulties in determining whether a system had reached equilibrium at the end of each step lead to questions regarding the magnitude of adsorption measured by the steam runs. Nevertheless, adsorption was observed and the difficulties themselves were useful indicators of needed future research.

  7. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    SciTech Connect

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that the GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.

  8. Adsorption of nitrogen-heterocyclic compounds on bamboo charcoal: kinetics, thermodynamics, and microwave regeneration.

    PubMed

    Liao, Peng; Yuan, Songhu; Xie, Wenjing; Zhang, Wenbiao; Tong, Man; Wang, Kun

    2013-01-15

    The adsorption kinetics and thermodynamics of nitrogen-heterocyclic compounds (NHCs), pyridine, indole and quinoline, in aqueous solutions on bamboo charcoal (BC), as well as the regeneration of spent BC by microwave radiation, are investigated. BC is produced by incomplete combustion of moso bamboo at high temperature and nitrogen atmosphere. Adsorption kinetics is analyzed using pseudo-first-order and pseudo-second-order as well as Weber-Morris model. The results show that NHC adsorption on BC is predominantly regulated by surface diffusion in initial 1h followed by intraparticle diffusion in later stage. BC exhibits a strong adsorption affinity to NHCs, and the adsorption isotherms are well described by Freundlich model. Thermodynamic analysis indicates that the adsorption is spontaneous and endothermic. Adsorption site energy analysis illustrates a distribution of adsorption energy, which indicates the heterogeneous sites on BC for NHC adsorption. Furthermore, spent BC with NHC adsorption can be effectively regenerated by MW radiation. The adsorption capacity becomes even higher than that of virgin BC after five times of adsorption-regeneration cycles. This study proves BC is a promising adsorbent for NHC removal in wastewater.

  9. A pressure-amplifying framework material with negative gas adsorption transitions

    NASA Astrophysics Data System (ADS)

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M.; Zander, Stefan; Pillai, Renjith S.; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-01

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers—or metal–organic frameworks (MOFs)—has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

  10. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    DOE PAGES

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that themore » GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.« less

  11. A pressure-amplifying framework material with negative gas adsorption transitions

    NASA Astrophysics Data System (ADS)

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M.; Zander, Stefan; Pillai, Renjith S.; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-01

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers—or metal-organic frameworks (MOFs)—has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

  12. A pressure-amplifying framework material with negative gas adsorption transitions.

    PubMed

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M; Zander, Stefan; Pillai, Renjith S; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-21

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials. PMID:27049950

  13. Competitive adsorption, displacement, and transport of organic matter on iron oxide: I. Competitive adsorption

    NASA Astrophysics Data System (ADS)

    Gu, Baohua; Mehlhorn, Tonia L.; Liang, Liyuan; McCarthy, John F.

    1996-06-01

    Different organic compounds or fractions of natural organic matter (NOM) show different adsorption affinities ( K) and capacities ( qm) on mineral surfaces. We hypothesize that these different organic compounds or fractions compete for adsorption when surface adsorption sites are limited. In this study, competitive adsorption of binary mixtures of Suwannee River NOM (SR-NOM), polyacrylic acid (PAA), phthalic acid, and salicylic acid on iron oxide was investigated at a constant solid:solution ratio, temperature, and pressure, but at varying C weight fractions, pH, and solution concentrations of the mixture. Results revealed that, in general, PAA is the most competitive whereas SR-NOM is more competitive than phthalic and salicylic acids. The competitive adsorption of these organic compounds is pH-dependent. At pH < 4, PAA becomes less competitive than SR-NOM or phthalic and salicylic acids. The competition among these organic compounds may be related to their carboxyl functional groups and their molecular structure. The overall strong competitiveness of PAA at pH > 4 in comparison with other organics is attributed to its high carboxyl density and linear molecular structure, which promote strong surface complexation with iron oxide. Because of the heterogeneity or polydispersity of NOM, this research indicates that NOM partitioning and transport in the subsurface soil environment are influenced by the dynamic competitive interactions between NOM subcomponents (or fractions). This process ultimately influences the distribution, interaction, and cotransport of contaminants and mineral colloids that are associated with NOM.

  14. Obesity in show dogs.

    PubMed

    Corbee, R J

    2013-10-01

    Obesity is an important disease with a growing incidence. Because obesity is related to several other diseases, and decreases life span, it is important to identify the population at risk. Several risk factors for obesity have been described in the literature. A higher incidence of obesity in certain breeds is often suggested. The aim of this study was to determine whether obesity occurs more often in certain breeds. The second aim was to relate the increased prevalence of obesity in certain breeds to the official standards of that breed. To this end, we investigated 1379 dogs of 128 different breeds by determining their body condition score (BCS). Overall, 18.6% of the show dogs had a BCS >5, and 1.1% of the show dogs had a BCS>7. There were significant differences between breeds, which could be correlated to the breed standards. It warrants firm discussions with breeders and judges in order to come to different interpretations of the standards to prevent overweight conditions from being the standard of beauty. PMID:22882163

  15. A model free method for estimation of complicated adsorption isotherms in liquid chromatography.

    PubMed

    Forssén, Patrik; Fornstedt, Torgny

    2015-08-28

    Here we show that even extremely small variations in the adsorption isotherm can have a tremendous effect on the shape of the overloaded elution profiles and that the earlier in the adsorption isotherms the variation take place, the larger its impact on the shape of the elution profile. These variations are so small that they can be "hidden" by the discretization and in the general experimental noise when using traditional experimental methods, such as frontal analysis, to measure adsorption isotherms. But as the effects of these variations are more clearly visible in the elution profiles, the Inverse Method (IM) of adsorption isotherm estimation is an option. However, IM usually requires that one selects an adsorption isotherm model prior to the estimation process. Here we show that even complicated models might not be able to estimate the adsorption isotherms with multiple inflection points that small variations might give rise to. We therefore developed a modified IM that, instead of fixed adsorption isotherm models, uses monotone piecewise interpolation. We first validated the method with synthetic data and showed that it can be used to estimate an adsorption isotherm, which accurately predicts an extremely "strange" elution profile. For this case it was impossible to estimate the adsorption isotherm using IM with a fixed adsorption model. Finally, we will give an example of a real chromatographic system where adsorption isotherm with inflection points is estimated by the modified IM.

  16. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent.

    PubMed

    Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz

    2015-11-01

    In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.

  17. Adsorption of imidazole on Au(111) surface: Dispersion corrected density functional study

    NASA Astrophysics Data System (ADS)

    Izzaouihda, Safia; Mahjoubi, Khaled; Abou El Makarim, Hassna; Komiha, Najia; Benoit, David M.

    2016-10-01

    We use density functional theory in the generalized gradient approximation to study the adsorption of imidazole on the Au(111) surface and account for dispersion effect using Grimme's empirical dispersion correction technique. Our results show that the adsorption energy of imidazole depends on the slab size and on the adsorption site. In agreement with other studies, we find the largest adsorption energy for imidazole on a top site of Au(111). However, we also note that the adsorption energy at other sites is substantial.

  18. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue.

    PubMed

    Jung, Kyung-Won; Choi, Brian Hyun; Hwang, Min-Jin; Jeong, Tae-Un; Ahn, Kyu-Hong

    2016-11-01

    Biomass-based granular activated carbon was successfully prepared by entrapping activated carbon powder derived from spent coffee grounds into calcium-alginate beads (SCG-GAC) for the removal of acid orange 7 (AO7) and methylene blue (MB) from aqueous media. The dye adsorption process is highly pH-dependent and essentially independent of ionic effects. The adsorption kinetics was satisfactorily described by the pore diffusion model, which revealed that pore diffusion was the rate-limiting step during the adsorption process. The equilibrium isotherm and isosteric heat of adsorption indicate that SCG-GAC possesses an energetically heterogeneous surface and operates via endothermic process in nature. The maximum adsorption capacities of SCG-GAC for AO7 (pH 3.0) and MB (pH 11.0) adsorption were found to be 665.9 and 986.8mg/g at 30°C, respectively. Lastly, regeneration tests further confirmed that SCG-GAC has promising potential in its reusability, showing removal efficiency of more than 80% even after seven consecutive cycles.

  19. Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation.

    PubMed

    Julcour Lebigue, Carine; Andriantsiferana, Caroline; N'Guessan Krou; Ayral, Catherine; Mohamed, Elham; Wilhelm, Anne-Marie; Delmas, Henri; Le Coq, Laurence; Gerente, Claire; Smith, Karl M; Pullket, Suangusa; Fowler, Geoffrey D; Graham, Nigel J D

    2010-12-01

    This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L(-1)). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles.

  20. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue.

    PubMed

    Jung, Kyung-Won; Choi, Brian Hyun; Hwang, Min-Jin; Jeong, Tae-Un; Ahn, Kyu-Hong

    2016-11-01

    Biomass-based granular activated carbon was successfully prepared by entrapping activated carbon powder derived from spent coffee grounds into calcium-alginate beads (SCG-GAC) for the removal of acid orange 7 (AO7) and methylene blue (MB) from aqueous media. The dye adsorption process is highly pH-dependent and essentially independent of ionic effects. The adsorption kinetics was satisfactorily described by the pore diffusion model, which revealed that pore diffusion was the rate-limiting step during the adsorption process. The equilibrium isotherm and isosteric heat of adsorption indicate that SCG-GAC possesses an energetically heterogeneous surface and operates via endothermic process in nature. The maximum adsorption capacities of SCG-GAC for AO7 (pH 3.0) and MB (pH 11.0) adsorption were found to be 665.9 and 986.8mg/g at 30°C, respectively. Lastly, regeneration tests further confirmed that SCG-GAC has promising potential in its reusability, showing removal efficiency of more than 80% even after seven consecutive cycles. PMID:27494099

  1. Not a "reality" show.

    PubMed

    Wrong, Terence; Baumgart, Erica

    2013-01-01

    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show. PMID:23631336

  2. Not a "reality" show.

    PubMed

    Wrong, Terence; Baumgart, Erica

    2013-01-01

    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show.

  3. Global versus local adsorption selectivity

    NASA Astrophysics Data System (ADS)

    Pauzat, Françoise; Marloie, Gael; Markovits, Alexis; Ellinger, Yves

    2015-10-01

    The origin of the enantiomeric excess found in the amino acids present in the organic matter of carbonaceous meteorites is still unclear. Selective adsorption of one of the two enantiomers existing after a racemic formation could be part of the answer. Hereafter we report a comparative study of the adsorption of the R and S enantiomers of α-alanine and lactic acid on the hydroxylated { } chiral surface of α-quartz using numerical simulation techniques. Structurally different adsorption sites were found with opposite R versus S selectivity for the same molecule-surface couple, raising the problem of whether to consider adsorption as a local property or as a global response characteristic of the whole surface. To deal with the second term of this alternative, a statistical approach was designed, based on the occurrence of each adsorption site whose energy was calculated using first principle periodic density functional theory. It was found that R-alanine and S-lactic acid are the enantiomers preferentially adsorbed, even if the adsorption process on the quartz { } surface stays with a disappointingly poor enantio-selectivity. Nevertheless, it highlighted the important point that considering adsorption as a global property changes perspectives in the search for more efficient enantio-selective supports and more generally changes the way to apprehend adsorption processes in astro-chemistry/biology.

  4. Design method for adsorption beds

    NASA Technical Reports Server (NTRS)

    Blakely, R. L.; Jackson, J. K.

    1970-01-01

    Regenerable adsorption beds for long-term life support systems include synthetic geolite to remove carbon dioxide and silica gel to dehumidify the atmospheric gas prior to its passage through the geolite beds. Bed performance is evaluated from adsorption characteristics, heat and mass transfer, and pressure drop.

  5. Liquid-Phase Adsorption Fundamentals.

    ERIC Educational Resources Information Center

    Cooney, David O.

    1987-01-01

    Describes an experiment developed and used in the unit operations laboratory course at the University of Wyoming. Involves the liquid-phase adsorption of an organic compound from aqueous solution on activated carbon, and is relevant to adsorption processes in general. (TW)

  6. [Adsorption characteristics of f2 bacteriophages by four substrates in constructed wetland].

    PubMed

    Chen, Di; Zheng, Xiang; Wei, Yuan-Song; Yang, Yong

    2013-10-01

    Performance of f2 phages adsorption by four substrates including anthracite coal, steel slag, zeolite and forsterite was investigated through batch and dynamic experiments. Results of batch experiments showed that the removal efficiency of f2 phages by these four substrates was in the order of anthracite > steel slag > forsterite approximately zeolite. The adsorption of f2 phages by anthracite experienced fast, medium and slow stages, and the removal efficiency of f2 phages increased gradually with the increase of anthracite dosage, e. g. the optimized dosage of anthracite was 8.0 g at a solid/liquid ratio of 1:12.5 (m/V). The isothermal adsorption of all four substrates was described with Freundlich and Langmuir isothermal adsorption equation very well, and the adsorption of f2 phages by both anthracite and steel slag fitted pseudo-second order adsorption kinetics at their theoretical adsorption capacities of 3. 35 x 10(8) PFU.g-1 and 2.56 x 10(8) PFU.g-1, respectively, nearly the same as the equilibrium adsorption capacities obtained under the experiment conditions. And the liquid diffusion process was a rate-limiting step of the adsorption of f2 phage by both anthracite and steel slag, but not the only one. The results of dynamic adsorption experiments showed that the adsorption process of f2 phages in the three adsorption columns including anthracite, steel slag and zeolite experienced four stages of adaption, adsorption, pulse adsorption and adsorption equilibrium, and the total removal rates of f2 phages were more than 2. 55 Ig.

  7. Adsorption properties of. cap alpha. -modification of boron nitride

    SciTech Connect

    Gavrilova, T.B.; Kiselev, A.V.; Parshina, I.V.; Roshchina, T.M.

    1986-11-01

    The adsorption properties of four samples of ..cap alpha..-BN were studied by means of gas chromatography. The particles of ..cap alpha..-BN particles, according to data obtained by electron microscopy, have the shape of thin platelets. A sample of ..cap alpha..-BN prepared from magnesium polyboride was found to be the most nearly homogeneous adsorbent. For a number of n-alkanes, benzene, and alkylbenzenes, data have been obtained on the retention volumes (Henry constants) and the differential heats of adsorption for surface coverages approaching zero. These thermodynamic data on the adsorption showed that ..cap alpha..-BN, like graphitized thermal carbon black, is a nonspecific adsorbent.

  8. Adsorption edge study about cadmium, copper, nickel and zinc adsorption by variable charge soils

    NASA Astrophysics Data System (ADS)

    Casagrande, J. C.; Mouta, E. R.; Soares, M. R.

    2009-04-01

    The improper discharge of industrial and urban residues and the inadvertent use of fertilizers and pesticides can result in soil and water pollution and improve the potential of trace metals to enter in the human food chain. Adsorption reactions occur at the solid/liquid interface and are the most important mechanisms for controlling the activity of metal ions in soil solution. In a complex system with amphoteric behavior, the comprehension of the mobility, availability and fate of pollutants in the soil system is crucial for the prediction of the environmental consequences and for development of prevention/remediation strategies. A comparative study of cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) adsorption by highly weathered soils was carried out. Surface (0-0.2m) and subsoil (B horizon) samples were taken from a Rhodic Kandiudalf (RH), an Anionic "Xanthic" Acrudox (XA) and an Anionic "Rhodic" Acrudox (RA), located in brazilian humid tropical area. As the pH and the ionic strength are important environmental factors influencing the solution chemistry of heavy metals in variable charge systems, adsorption envelopes, in a batch adsorption experiment, were elaborated by reacting, for 24 h, soil samples with individual 0.01, 0.1 and 1.0 mol L-1 Ca(NO3)2 aqueous solutions containing nitrate salts of the adsorptive heavy metal (Cd, Cu, Ni and Zn) at the initial concentration of 5 mg L-1, with an increasing pH value from 3.0 to 8.0. pH50-100%, the difference between the pH of 100 and 50 percent metal adsorption was determined. A sharp increase of adsorption density (adsorption edge) was observed within a very narrow pH range, usually less than two pH units. Commonly, the relative affinity of a soil for a metal cation increases with the tendency of the cation to form inner-sphere surface complexes. This may be caused by differences in extent of hydrolysis of Cu ions and in affinity of adsorption sites for Cu. In general, subsurface samples showed low pH50

  9. Public medical shows.

    PubMed

    Walusinski, Olivier

    2014-01-01

    In the second half of the 19th century, Jean-Martin Charcot (1825-1893) became famous for the quality of his teaching and his innovative neurological discoveries, bringing many French and foreign students to Paris. A hunger for recognition, together with progressive and anticlerical ideals, led Charcot to invite writers, journalists, and politicians to his lessons, during which he presented the results of his work on hysteria. These events became public performances, for which physicians and patients were transformed into actors. Major newspapers ran accounts of these consultations, more like theatrical shows in some respects. The resultant enthusiasm prompted other physicians in Paris and throughout France to try and imitate them. We will compare the form and substance of Charcot's lessons with those given by Jules-Bernard Luys (1828-1897), Victor Dumontpallier (1826-1899), Ambroise-Auguste Liébault (1823-1904), Hippolyte Bernheim (1840-1919), Joseph Grasset (1849-1918), and Albert Pitres (1848-1928). We will also note their impact on contemporary cinema and theatre. PMID:25273491

  10. [Adsorption-desorption Characteristics of Fermented Rice Husk for Ferrous and Sulfur Ions].

    PubMed

    Xie, Xiao-mei; Liao, Min; Hua, Jia-yuan; Chen, Na; Zhang, Nan; Xu, Pei-zhi; Xie Kai-zhi; XU, Chang-xu; Liu, Guang-rong

    2015-10-01

    To understand the potential of rice husk to fix Fe2+ and S2- ions, the sorption of Fe2+ and S2- by fermented rice husk was studied by using batch incubation experiments in the present study. The effects of adsorption time, Fe2+ and S2- concentration, pH, the temperature and ionic strength in adsorption reaction solution on the sorption were investigated. Therefore, the stability of Fe2+ and S2- adsorbed by fermented rice husk was further validated by desorption experiments performed under similar conditions as adsorption. The results showed that, the adsorption kinetics of Fe2+ (r = 0.912 1) and S2- (r = 0.901 1) by fermented rice husk fits the Elovich kinetics equation, and Freundlich isotherm model could simulate the isotherm adsorption processes of Fe2+ (R2 = 0.965 1) and S2- (R2 = 0.936 6) on fermented rice husk was better than other models. The adsorption processes on fermented rice husk were non- preferential adsorption for Fe2+ and S2, while the adsorption process of Fe2+ on fermented rice husk was spontaneous reaction and the adsorption process of S2- was non-spontaneous reaction. The adsorption processes of Fe2+ and S2- on fermented rice husk were endothermic process since high temperature could benefit to the adsorption. The adsorption mechanism of Fe2+ on fermented rice husk was mainly controlled by coordination adsorption, the adsorption mechanism of S2- on fermented rice husk was mainly controlled by ligand exchange adsorption. The adsorption processes of Fe2+ and S2- on fermented rice husk showed greater pH adaptability which ranged from 1.50 to 11.50. With the increasing of ionic strength, the amount of adsorbed Fe2+ on fermented rice husk wasincreased in some extent, the amount of adsorbed S2- on fermented rice husk was slightly decreased, which further proved the adsorption of Fe2+ was major in inner sphere complexation and the adsorption of S2- was major in outer complexation. The desorption rates of Fe2+ and S2- which was adsorbed by fermented

  11. [Adsorption-desorption Characteristics of Fermented Rice Husk for Ferrous and Sulfur Ions].

    PubMed

    Xie, Xiao-mei; Liao, Min; Hua, Jia-yuan; Chen, Na; Zhang, Nan; Xu, Pei-zhi; Xie Kai-zhi; XU, Chang-xu; Liu, Guang-rong

    2015-10-01

    To understand the potential of rice husk to fix Fe2+ and S2- ions, the sorption of Fe2+ and S2- by fermented rice husk was studied by using batch incubation experiments in the present study. The effects of adsorption time, Fe2+ and S2- concentration, pH, the temperature and ionic strength in adsorption reaction solution on the sorption were investigated. Therefore, the stability of Fe2+ and S2- adsorbed by fermented rice husk was further validated by desorption experiments performed under similar conditions as adsorption. The results showed that, the adsorption kinetics of Fe2+ (r = 0.912 1) and S2- (r = 0.901 1) by fermented rice husk fits the Elovich kinetics equation, and Freundlich isotherm model could simulate the isotherm adsorption processes of Fe2+ (R2 = 0.965 1) and S2- (R2 = 0.936 6) on fermented rice husk was better than other models. The adsorption processes on fermented rice husk were non- preferential adsorption for Fe2+ and S2, while the adsorption process of Fe2+ on fermented rice husk was spontaneous reaction and the adsorption process of S2- was non-spontaneous reaction. The adsorption processes of Fe2+ and S2- on fermented rice husk were endothermic process since high temperature could benefit to the adsorption. The adsorption mechanism of Fe2+ on fermented rice husk was mainly controlled by coordination adsorption, the adsorption mechanism of S2- on fermented rice husk was mainly controlled by ligand exchange adsorption. The adsorption processes of Fe2+ and S2- on fermented rice husk showed greater pH adaptability which ranged from 1.50 to 11.50. With the increasing of ionic strength, the amount of adsorbed Fe2+ on fermented rice husk wasincreased in some extent, the amount of adsorbed S2- on fermented rice husk was slightly decreased, which further proved the adsorption of Fe2+ was major in inner sphere complexation and the adsorption of S2- was major in outer complexation. The desorption rates of Fe2+ and S2- which was adsorbed by fermented

  12. Adsorption behavior and mechanism of glufosinate onto goethite.

    PubMed

    Xu, Jian; Gu, Xueyuan; Guo, Yong; Tong, Fei; Chen, Liangyan

    2016-08-01

    The adsorption of glufosinate (GLU), a widely used herbicide similar to glyphosate (GLY), onto goethite was investigated as a function of the pH, ionic strength, background cations and anions, heavy metal ions and fulvic acids (FAs) by using batch adsorption experiments. In situ ATR-FTIR spectroscopy and density functional theory (DFT) calculations were carried out to characterize the molecular interactions between GLU and goethite surfaces. The macroscopic results indicated that an increasing pH exerted an adverse effect on GLU adsorption because of the electrostatic repulsion, and the adsorption was not sensitive to ionic strengths or background cation types, indicating that an inner-sphere surface complex was involved. GLU adsorption can be considerably depressed by PO4(3-), SO4(2-), and a high level of FA because of the competitive effect, while being enhanced by Cu(2+) with a maximum adsorption at approximately pH5 because of the metal ion bridging effect. Other examined divalent metal cations (Cd(2+), Zn(2+), and Pb(2+)) showed almost no effect on GLU adsorption, indicating weak interaction between them. ATR-FTIR spectra and the DFT calculations further proved that GLU was bonded to goethite surfaces through the formation of a monodentate mononuclear inner-sphere complex between the phosphinic moiety and surface Fe(III) centers under an acidic condition. The results showed that GLU had a similar adsorption mechanism to that of GLY onto goethite, but with a lower adsorption affinity, possibly exerting higher mobility and risk in soils. PMID:27096492

  13. The Great Cometary Show

    NASA Astrophysics Data System (ADS)

    2007-01-01

    its high spatial and spectral resolution, it was possible to zoom into the very heart of this very massive star. In this innermost region, the observations are dominated by the extremely dense stellar wind that totally obscures the underlying central star. The AMBER observations show that this dense stellar wind is not spherically symmetric, but exhibits a clearly elongated structure. Overall, the AMBER observations confirm that the extremely high mass loss of Eta Carinae's massive central star is non-spherical and much stronger along the poles than in the equatorial plane. This is in agreement with theoretical models that predict such an enhanced polar mass-loss in the case of rapidly rotating stars. ESO PR Photo 06c/07 ESO PR Photo 06c/07 RS Ophiuchi in Outburst Several papers from this special feature focus on the later stages in a star's life. One looks at the binary system Gamma 2 Velorum, which contains the closest example of a star known as a Wolf-Rayet. A single AMBER observation allowed the astronomers to separate the spectra of the two components, offering new insights in the modeling of Wolf-Rayet stars, but made it also possible to measure the separation between the two stars. This led to a new determination of the distance of the system, showing that previous estimates were incorrect. The observations also revealed information on the region where the winds from the two stars collide. The famous binary system RS Ophiuchi, an example of a recurrent nova, was observed just 5 days after it was discovered to be in outburst on 12 February 2006, an event that has been expected for 21 years. AMBER was able to detect the extension of the expanding nova emission. These observations show a complex geometry and kinematics, far from the simple interpretation of a spherical fireball in extension. AMBER has detected a high velocity jet probably perpendicular to the orbital plane of the binary system, and allowed a precise and careful study of the wind and the shockwave

  14. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions.

    PubMed

    Jiang, Shasha; Huang, Longbin; Nguyen, Tuan A H; Ok, Yong Sik; Rudolph, Victor; Yang, Hong; Zhang, Dongke

    2016-01-01

    Biochar adsorption may lower concentrations of soluble metals in pore water of sulphidic Cu/Pb-Zn mine tailings. Unlike soil, high levels of salinity and soluble cations are present in tailing pore water, which may affect biochar adsorption of metals from solution. In the present study, removal of soluble copper (Cu) and zinc (Zn) ions by soft- (pine) and hard-wood (jarrah) biochars pyrolysed at high temperature (about 700 °C) was evaluated under typical ranges of pH and salinity conditions resembling those in pore water of sulphidic tailings, prior to their direct application into the tailings. Surface alkalinity, cation exchange capacity, and negative surface charge of biochars affected Cu and Zn adsorption capacities. Quantitative comparisons were provided by fitting the adsorption equilibrium data with either the homogeneous or heterogeneous surface adsorption models (i.e. Langmuir and Freundlich, respectively). Accordingly, the jarrah biochar showed higher Cu and Zn adsorption capacity (Qmax=4.39 and 2.31 mg/g, respectively) than the softwood pine biochar (Qmax=1.47 and 1.00 mg/g). Copper and Zn adsorption by the biochars was favoured by high pH conditions under which they carried more negative charges and Cu and Zn ions were predicted undergoing hydrolysis and polymerization. Within the tested range, salinity had relatively weak effects on the adsorption, which perhaps influenced the surface charge and induced competition for negative charged sites between Na(+) and exchangeable Ca(2+) and/or heavy metal ions. Large amounts of waste wood/timber at many mine sites present a cost-effective opportunity to produce biochars for remediation of sulphidic tailings and seepage water. PMID:26206747

  15. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions.

    PubMed

    Jiang, Shasha; Huang, Longbin; Nguyen, Tuan A H; Ok, Yong Sik; Rudolph, Victor; Yang, Hong; Zhang, Dongke

    2016-01-01

    Biochar adsorption may lower concentrations of soluble metals in pore water of sulphidic Cu/Pb-Zn mine tailings. Unlike soil, high levels of salinity and soluble cations are present in tailing pore water, which may affect biochar adsorption of metals from solution. In the present study, removal of soluble copper (Cu) and zinc (Zn) ions by soft- (pine) and hard-wood (jarrah) biochars pyrolysed at high temperature (about 700 °C) was evaluated under typical ranges of pH and salinity conditions resembling those in pore water of sulphidic tailings, prior to their direct application into the tailings. Surface alkalinity, cation exchange capacity, and negative surface charge of biochars affected Cu and Zn adsorption capacities. Quantitative comparisons were provided by fitting the adsorption equilibrium data with either the homogeneous or heterogeneous surface adsorption models (i.e. Langmuir and Freundlich, respectively). Accordingly, the jarrah biochar showed higher Cu and Zn adsorption capacity (Qmax=4.39 and 2.31 mg/g, respectively) than the softwood pine biochar (Qmax=1.47 and 1.00 mg/g). Copper and Zn adsorption by the biochars was favoured by high pH conditions under which they carried more negative charges and Cu and Zn ions were predicted undergoing hydrolysis and polymerization. Within the tested range, salinity had relatively weak effects on the adsorption, which perhaps influenced the surface charge and induced competition for negative charged sites between Na(+) and exchangeable Ca(2+) and/or heavy metal ions. Large amounts of waste wood/timber at many mine sites present a cost-effective opportunity to produce biochars for remediation of sulphidic tailings and seepage water.

  16. Stretched View Showing 'Victoria'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Stretched View Showing 'Victoria'

    This pair of images from the panoramic camera on NASA's Mars Exploration Rover Opportunity served as initial confirmation that the two-year-old rover is within sight of 'Victoria Crater,' which it has been approaching for more than a year. Engineers on the rover team were unsure whether Opportunity would make it as far as Victoria, but scientists hoped for the chance to study such a large crater with their roving geologist. Victoria Crater is 800 meters (nearly half a mile) in diameter, about six times wider than 'Endurance Crater,' where Opportunity spent several months in 2004 examining rock layers affected by ancient water.

    When scientists using orbital data calculated that they should be able to detect Victoria's rim in rover images, they scrutinized frames taken in the direction of the crater by the panoramic camera. To positively characterize the subtle horizon profile of the crater and some of the features leading up to it, researchers created a vertically-stretched image (top) from a mosaic of regular frames from the panoramic camera (bottom), taken on Opportunity's 804th Martian day (April 29, 2006).

    The stretched image makes mild nearby dunes look like more threatening peaks, but that is only a result of the exaggerated vertical dimension. This vertical stretch technique was first applied to Viking Lander 2 panoramas by Philip Stooke, of the University of Western Ontario, Canada, to help locate the lander with respect to orbiter images. Vertically stretching the image allows features to be more readily identified by the Mars Exploration Rover science team.

    The bright white dot near the horizon to the right of center (barely visible without labeling or zoom-in) is thought to be a light-toned outcrop on the far wall of the crater, suggesting that the rover can see over the low rim of Victoria. In figure 1, the northeast and southeast rims are labeled

  17. The adsorption of plutonium IV and V on goethite

    NASA Astrophysics Data System (ADS)

    Sanchez, Arthur L.; Murray, James W.; Sibley, Thomas H.

    1985-11-01

    The adsorption of Pu(IV) and Pu(V) on goethite (αFeOOH) from NaNO 3 solution shows distinct differences related to the different hydrolytic character of these two oxidation states. Under similar solution conditions, the adsorption edge of the more strongly hydrolyzable Pu(IV) occurs in the pH range 3 to 5 while that for Pu(V) is at pH 5 to 7. The adsorption edge for Pu(V) shifts with time to lower pH values and this appears to be due to the reduction of Pu(V) to Pu(IV) in the presence of the goethite surface. These results suggest that redox transformations may be an important aspect of Pu adsorption chemistry and the resulting scavenging of Pu from natural waters. Increasing ionic strength (from 0.1 M to 3 M NaCl or NaNO 3 and 0.03 M to 0.3 M Na 2SO 4) did not influence Pu(IV) or Pu(V) adsorption. In the presence of dissolved organic carbon (DOC), Pu(V) reduction to Pu(IV) occurred in solution. Pu(IV) adsorption on goethite decreased by 30% in the presence of 240 ppm natural DOC found in Soap Lake, Washington waters. Increasing concentrations of carbonate ligands decreased Pu(IV) and Pu(V) adsorption on goethite, with an alkalinity of 1000 meq/l totally inhibiting adsorption. The Pu-goethite adsorption system provides the data base for developing a thermodynamic model of Pu interaction with an oxide surface and with dissolved ligands, using the MINEQL computer program. From the model calculations we determined equilibrium constants for the adsorption of Pu(IV) hydrolysis species. The model was then applied to Pu adsorption in carbonate media to see how the presence of CO 3-2 could influence the mobility of Pu. The decrease in adsorption appears to be due to formation of a Pu-CO 3 complex. Model calculations were used to predict what the adsorption curves would look like if Pu-CO 3 complexes formed.

  18. Alkoxysilane adsorption on metal oxide substrates

    NASA Technical Reports Server (NTRS)

    Ramsier, R. D.; Zhuang, G. R.; Henriksen, P. N.

    1989-01-01

    Reflection-absorption infrared and inelastic electron tunneling spectroscopies have been used to study adsorption of liquid phase mono-, di-, and trialkoxysilanes on evaporated Al and Cu substrates. Spectral evidence shows that substrate properties influence the chemical and physical nature of trialkoxysilane films and that silane functionality plays a role in molecular orientation. Results show that dialkoxysilane films contain structural gradients, with adsorption at the monomolecular level influenced by surface morphology, and with organofunctionality and dosing procedure affecting the formation of thicker films. Evidence is presented that monoalkoxysilanes react with alumina surfaces, and a broad, multipeaked band from 1600 to 1900/cm has been interpreted as characteristic of the silylated AlO(x)Pb interface.

  19. Evaluating the Adsorptive Capacities of Chemsorb 1000 and Chemsorb 1425

    NASA Technical Reports Server (NTRS)

    Monje, Oscar Alberto Monje; Surma, Jan M.; Johnsey, Marissa N.; Melendez, Orlando

    2014-01-01

    The Air Revitalization Lab at KSC tested Chemsorb 1000 and 1425, two candidate sorbents for use in future air revitalization technologies being evaluated by the ARREM project. Chemsorb 1000 and 1425 are granular coconut-shell activated carbon sorbents produced by Molecular Products, Inc. that may be used in the TCCS. Chemsorb 1000 is a high grade activated carbon for organic vapor adsorption. In contrast, Chemsorb 1425 is a high-grade impregnated activated carbon for adsorption of airborne ammonia and amines. Chemsorb 1000 was challenged with simulated spacecraft gas streams in order to determine its adsorptive capacities for mixtures of volatile organics compounds. Chemsorb 1425 was challenged with various NH3 concentrations to determine its adsorptive capacity.

  20. Tetraethylenepentamine embedded zeolite A for carbon dioxide adsorption.

    PubMed

    Kim, Young-Ki; Mo, Yong-Hwan; Lee, Jun; You, Hyo-Sang; Yi, Chang-Keun; Park, Young Cheol; Park, Sang-Eon

    2013-04-01

    Tetraethylenepentamine (TEPA) embedded zeolite A crystals were synthesized by using TEPA and the preformed zeolite A precursor under the microwave irradiation. The presence of TEPA in zeolite A crystal was confirmed by TG analysis and FTIR, Raman spectra. The CO2 adsorptive behavior of TEPA embedded zeolite A samples was investigated by CO2 isotherms measured at 25 degrees C comparing with zeolite A. The optimum CO2 sorption capacity was found in the case of 7.5% TEPA embedded zeolite A, which showed 3.75 mmol g(-1) where as the zeolite A showed less CO2 adsorption capacity of 2.88 mmol g(-1). The adsorption capacity of TEPA embedded Zeolite A was sustained up to 90% during 4 cycles of temperature swing adsorption (TSA) from 40 degrees C to 140 degrees C, indicating that the TEPA embedded Zeolite A was found to be useful as one of the application to solid amine adsorbent for CO2.

  1. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  2. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  3. Hydrogen adsorption on sulphur-doped SiC nanotubes

    NASA Astrophysics Data System (ADS)

    Sevak Singh, Ram

    2016-07-01

    Hydrogen (H2) is an energy carrier and clean fuel that can be used for a broad range of applications that include fuel cell vehicles. Therefore, development of materials for hydrogen storage is demanded. Nanotubes, in this context, are appropriate materials. Recently, silicon carbide nanotube (SiCNTs) have been predicted as potential nanomaterials for hydrogen storage, and atomic doping into the nanotubes improves the H2 adsorption. Here, we report H2 adsorption properties of sulphur-doped (S-doped) SiCNTs using first-principles calculations based on density functional theory. The H2 adsorption properties are investigated by calculations of energy band structures, density of states (DOS), adsorption energy and Mulliken charge population analysis. Our findings show that, compared to the intrinsic SiCNT, S-doped SiCNT is more sensitive to H2 adsorption. H2 gas adsorption on S-doped C-sites of SiCNT brings about significant modulation of the electronic structure of the nanotube, which results in charge transfer from the nanotube to the gas, and dipole-dipole interactions cause chemisorptions of hydrogen. However, in the case of H2 gas adsorption on S-doped Si-sites of the nanotube, lesser charge transfer from the nanotube to the gas results in physisorptions of the gas. The efficient hydrogen sensing properties of S-doped SiCNTs, studied here, may have potential for its practical realization for hydrogen storage application.

  4. Hydrogen adsorption on sulphur-doped SiC nanotubes

    NASA Astrophysics Data System (ADS)

    Sevak Singh, Ram

    2016-07-01

    Hydrogen (H2) is an energy carrier and clean fuel that can be used for a broad range of applications that include fuel cell vehicles. Therefore, development of materials for hydrogen storage is demanded. Nanotubes, in this context, are appropriate materials. Recently, silicon carbide nanotube (SiCNTs) have been predicted as potential nanomaterials for hydrogen storage, and atomic doping into the nanotubes improves the H2 adsorption. Here, we report H2 adsorption properties of sulphur-doped (S-doped) SiCNTs using first-principles calculations based on density functional theory. The H2 adsorption properties are investigated by calculations of energy band structures, density of states (DOS), adsorption energy and Mulliken charge population analysis. Our findings show that, compared to the intrinsic SiCNT, S-doped SiCNT is more sensitive to H2 adsorption. H2 gas adsorption on S-doped C-sites of SiCNT brings about significant modulation of the electronic structure of the nanotube, which results in charge transfer from the nanotube to the gas, and dipole–dipole interactions cause chemisorptions of hydrogen. However, in the case of H2 gas adsorption on S-doped Si-sites of the nanotube, lesser charge transfer from the nanotube to the gas results in physisorptions of the gas. The efficient hydrogen sensing properties of S-doped SiCNTs, studied here, may have potential for its practical realization for hydrogen storage application.

  5. Effect of DOM Size on Organic Micropollutant Adsorption by GAC.

    PubMed

    Kennedy, Anthony M; Summers, R Scott

    2015-06-01

    Granular activated carbon (GAC) adsorption of the micropollutants 2-methylisoborneol (MIB) and warfarin (WFN) at ng/L levels was investigated in five waters with isolated natural dissolved organic matter (DOM) held at a constant dissolved organic carbon concentration. Each water was evaluated for competitive adsorption effects based on the pretreatment of ultrafiltration, coagulation, and additional background micropollutants. Using the breakthrough with unfractionated DOM as a baseline, on average, the water with lower molecular weight (MW) DOM decreased MIB and WFN adsorption capacity by 59%, whereas the water with higher MW DOM increased MIB and WFN adsorption capacity by 64%. All waters showed similar decreasing MIB and WFN adsorption capacity with increasing empty bed contact time (EBCT), with more dramatic effects seen for the more strongly adsorbing WFN. On average, MIB and WFN adsorption kinetics were two times slower in the water with higher MW DOM compared to the water with lower MW DOM, as described by the intraparticle pore diffusion tortuosity. Increased adsorption competition from 27 micropollutants other than MIB and WFN at environmentally relevant concentrations had little to no effect on MIB and WFN breakthrough behavior. Any competitive effect from background micropollutants became indiscernible at longer EBCTs. PMID:25955134

  6. [Adsorption of Cr (VI) on magnetic graphene from aqueous solution].

    PubMed

    Liu, Wei; Yang, Qi; Li, Bo; Chen, Hai; Nie, Lan-Yu

    2015-02-01

    Chemical deposition method was applied to prepare magnetic graphene composites using graphite oxide and ferric salt (FeCl2 - 4H2O and FeCl3 x 6H2O) as starting materials. The static experiments were performed to study kinetics, thermodynamic, adsorption isotherm and effects of various parameters, such as pH, temperature and time on Cr(VI) adsorption. The results showed that adsorption kinetics followed the pseudo-second-order model. Compared with Freundlich isotherm, Langmuir isotherm could better describe the adsorption process. The parameters of thermodynamics were ΔHθ = 33.89 kJ x mol(-1), ΔSθ = 120.15 J x (mol x K)(-1), ΔGθ = -2.51 kJ x mol(-1) (303 K), it demonstrated that the adsorption was a spontaneously endothermic process. It also indicated that the optimal pH was 2. Higher temperature and extension of time were in favor of adsorption. When used repeatedly for three times, the adsorption capacity decreased from 3.9 mg x g(-1) to 2.1 mg x g(-1) with an initial concentration of 5 mg x L(-1). By using a permanent magnet, the recycling process of adsorbent was easy to be operated and adsorbent could be regenerated by sodium hydrate solution. Hence, the composites is a promising adsorbent for efficient removal of Cr(VI) from wastewater. PMID:26031080

  7. Synthesis and CO₂ adsorption properties of molecularly imprinted adsorbents.

    PubMed

    Zhao, Yi; Shen, Yanmei; Bai, Lu; Hao, Rongjie; Dong, Liyan

    2012-02-01

    A series of molecularly imprinted adsorbents of CO(2) were developed by molecular self-assembly procedures, using ethanedioic acid, acrylamide, and ethylene glycol dimethacrylate as template, functional monomer, and cross-linker, respectively. Textural properties of these adsorbents were characterized by N(2) adsorption experiment, thermo-gravimetric analysis, and Fourier transform infrared spectroscopy. CO(2) adsorption capacities of adsorbents were investigated by thermo-gravimetric balance under 15% CO(2)/85% Ar atmosphere. Adsorption selectivity of CO(2) was studied by fixed-bed adsorption/desorption experiments. All the adsorbents displayed good thermal stability at 200 °C. Among them, MIP1b, with the higher amine content, exhibited the largest CO(2) capacity, which maintained steady after 50 adsorption-desorption cycles. Although MIP3 showed the highest specific surface, the CO(2) capacity was lower than that of MIP1b. CO(2) adsorption mechanism of molecularly imprinted adsorbents was determined to be physical sorption according to the adsorption enthalpies integrated from the DSC heatflow profiles. The calculated separation factors of CO(2) under 15% CO(2)/85% N(2) atmosphere were above 100 for all adsorbents.

  8. Adsorption of hydrogen sulfide on montmorillonites modified with iron.

    PubMed

    Nguyen-Thanh, Danh; Block, Karin; Bandosz, Teresa J

    2005-04-01

    Sodium-rich montmorillonite was modified with iron in order to introduce active centers for hydrogen sulfide adsorption. In the first modification, interlayer sodium cations were exchanged with iron. In another modification, iron oxocations were introduced to the clay surface. The most elaborated modification was based on doping of iron within the interlayer space of aluminum-pillared clay. The modified clay samples were tested as hydrogen sulfide adsorbents. Iron-doped samples showed a significant improvement in the capacity for H2S removal, despite of a noticeable decrease in microporosity compared to the initial pillared clay. The smallest capacity was obtained for the clay modified with iron oxocations. Variations in adsorption capacity are likely due to differences in the chemistry of iron species, degree of their dispersion on the surface, and accessibility of small pores for H2S molecule. The results suggest that on the surface of iron-modified clay hydrogen sulfide reacts with Fe(+3) forming sulfides or it is catalytically oxidized to SO2 on iron (hydro)oxides. Subsequent oxidation may lead to sulfate formation.

  9. Predicting the adsorption capacity and isotherm curvature of organic compounds onto activated carbons in natural waters.

    PubMed

    Hung, H W; Lin, T F

    2006-03-01

    A simple approach to predict the adsorption capacity and isotherm curvature of organic compounds onto activated carbon in natural water was investigated. A combination of the well-known equivalent background compound (EBC), and the simplified competitive adsorption model (SCAM) was employed to delineate the equilibrium capacity. This SCAM-EBC approach may reduce the numerical and experimental effort to obtain the parameters required to predict the adsorption capacity for a specific adsorption system. Several sets of experimental data, including weakly adsorbing (MTBE), strongly adsorbing compounds (TCP, atrazine, and chloroform), and two taste and odor causing compounds (MIB and geosmin) onto different activated carbons in three natural waters and a synthetic groundwater, were tested to verify the SCAM-EBC approach. Based on the approach, a parameter, called relative adsorptivity, describing the adsorption preference of the adsorbent between EBC and the target compound was employed to simulate the isotherm curvature in natural water. The relative adsorptivity of the SCAM-EBC approach is constant and can be directly obtained from the SCAM-EBC parameters in a specific adsorption system. The potential and extent of isotherm curvature can be simulated by only changing the parameter of relative adsorptivity. The marked isotherm curvature was found while the relative adsorptivity is larger than 2.0 to 4.0 for all the systems tested.

  10. Synthesis and optimization of Fe₂O₃ nanofibers for chromate adsorption from contaminated water sources.

    PubMed

    Nalbandian, Michael J; Zhang, Miluo; Sanchez, Joel; Choa, Yong-Ho; Nam, Jin; Cwiertny, David M; Myung, Nosang V

    2016-02-01

    In this work, α-Fe2O3 nanofibers were synthesized via electrospinning and characterized to observe optimal morphological and dimensional properties towards chromate removal. The Fe2O3 nanofiber samples were tested in aqueous solutions containing chromate (CrO4(2-)) to analyze their adsorption capabilities and compare them with commercially-available Fe2O3 nanoparticles. Synthesized Fe2O3 nanofibers were observed with a variety of different average diameters, ranging from 23 to 63 nm, while having a constant average grain size at 34 nm, point zero charge at pH 7.1, and band gap at 2.2 eV. BET analysis showed an increase in specific surface area with decreasing average diameter, from 7.2 to 59.2 m(2)/g, due to the increased surface area-to-volume ratio with decreasing nanofiber size. Based on CrO4(2-) adsorption isotherms at pH 6, adsorption capacity of the Fe2O3 nanofibers increased with decreasing diameter, with the 23 nm sized nanofibers having an adsorption capacity of 90.9 mg/g, outperforming the commercially-available Fe2O3 nanoparticles by nearly 2-fold. Additionally, adsorption kinetics was also analyzed, increasing with decreasing nanofiber diameter. The enhanced performance of the nanofiber is suggested to be caused solely due to the increased surface area, in part by its size and morphology. Electrospun Fe2O3 nanofibers provide a promising solution for effective heavy metal removal through nanotechnology-integrated treatment systems. PMID:26433935

  11. Adsorption of levofloxacin onto goethite: effects of pH, calcium and phosphate.

    PubMed

    Qin, Xiaopeng; Liu, Fei; Wang, Guangcai; Weng, Liping; Li, Lu

    2014-04-01

    Adsorption of levofloxacin (LEV), one of the extensively used antibiotics, onto goethite was investigated using batch experiments. The adsorption of LEV on goethite was pH-dependent. A maximum adsorption was reached at pH 6. Above or below pH 6, the adsorption decreased. In the presence of calcium (Ca(2+)), a decrease in adsorption was observed, due to probably formation of Ca(2+)-LEV complexes in solutions. Phosphate also showed a significant inhibition on LEV adsorption over a pH range of 3-10. Phosphate competed with LEV for binding sites on the surface of goethite, and the electrostatic competition between LEV and phosphate on goethite surface might be another reason for the decrease in adsorption. These results indicated that Ca(2+) and phosphate have a great influence on the distribution of LEV in soils and waters, which will eventually affect its antibacterial activity in the environment.

  12. Study on the methylene blue adsorption from wastewaters by pore-expanded calcium fluoride sludge adsorbent.

    PubMed

    Hong, Junming; Lin, Bing; Hong, Gui-Bing; Chang, Chang-Tang

    2014-04-01

    The adsorption of methylene blue (MB) onto pore-expanded calcium fluoride sludge (ECF) by the batch adsorption technique was investigated. The results showed that the adsorption capacity increased with increasing MB concentration but decreased as pH was increased. In order to investigate the adsorption mechanisms, three simplified isotherm models and kinetic models were used in this study. The best-fit adsorption isotherm was achieved with the Temkin model. Furthermore, the pseudo-second-order kinetic model agreed very well with the dynamical behavior for the adsorption of MB onto ECF. Thermodynamic studies revealed that the adsorption process of MB onto ECF was spontaneous and exothermic. The results indicated that ECF adsorbed MB efficiently and could be used as a waste adsorbent for the removal of cationic dyes in wastewater treatment.

  13. Enhanced adsorptive removal of toxic dyes using SiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Batool, S. S.; Imran, Z.; Hassan, Safia; Rasool, Kamran; Ahmad, Mushtaq; Rafiq, M. A.

    2016-05-01

    Electrospinning method was used to synthesize porous SiO2 nanofibers. The adsorption of Methyl Orange and Safranin O by porous SiO2 nanofibers was carried out by varying the parameters such as pH, contact time, adsorbent dose, dye concentration, and temperature. Equilibrium adsorption data followed Langmuir isotherms. Kinetic adsorption followed second-order rate kinetics model. The maximum adsorption capacity for Methyl Orange and Safranin O was found to be 730.9 mg/g and 960.4 mg/g, respectively. Acidic pH was favorable for the adsorption of Methyl Orange while basic pH was favorable for the adsorptions of Safranin O. Modeling study suggested the major mode of adsorption, while thermodynamic study showed the endothermic reactions. This effort has pronounced impact on environmental applications of SiO2 nanofibers as auspicious adsorbent nanofibers for organic material from aqueous solution.

  14. New insight into the biological treatment by activated sludge: the role of adsorption process.

    PubMed

    Zhang, Xiaochun; Li, Xinrun; Zhang, Qingrui; Peng, Qiuming; Zhang, Wen; Gao, Faming

    2014-02-01

    The objective of this study was to evaluate the effect of adsorption on the biological treatment process of wastewater. In the absence of substrate in the water, activated sludge developed well in the first hour, indicating that the growth of microorganism was not directly related to substrate concentration and the dissolved organic matter in the water assays were performed, no organic matter was detected out, revealing that there was no desorption in the activated sludge adsorption process. Activated sludge batch growth experiments in the presence of different adsorption capacities indicated that specific growth rate increased as specific adsorption capacity increased. The experiment on the relationship of adsorption capacity and substrate concentration or sludge concentration was also carried out. Specific adsorption capacity increased as sludge load increased, presenting linear correlation. The experiment results showed that adsorption should be taken into account in the study of the biological treatment process of wastewater.

  15. Enhanced adsorptive removal of toxic dyes using SiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Batool, S. S.; Imran, Z.; Hassan, Safia; Rasool, Kamran; Ahmad, Mushtaq; Rafiq, M. A.

    2016-05-01

    Electrospinning method was used to synthesize porous SiO2 nanofibers. The adsorption of Methyl Orange and Safranin O by porous SiO2 nanofibers was carried out by varying the parameters such as pH, contact time, adsorbent dose, dye concentration, and temperature. Equilibrium adsorption data followed Langmuir isotherms. Kinetic adsorption followed second-order rate kinetics model. The maximum adsorption capacity for Methyl Orange and Safranin O was found to be 730.9 mg/g and 960.4 mg/g, respectively. Acidic pH was favorable for the adsorption of Methyl Orange while basic pH was favorable for the adsorptions of Safranin O. Modeling study suggested the major mode of adsorption, while thermodynamic study showed the endothermic reactions. This effort has pronounced impact on environmental applications of SiO2 nanofibers as auspicious adsorbent nanofibers for organic material from aqueous solution.

  16. Adsorption mechanism of sodium dodecyl benzene sulfonate on carbon blacks by adsorption isotherm and zeta potential determinations.

    PubMed

    Zhao, Yapei; Lu, Pei; Li, Caiting; Fan, Xiaopeng; Wen, Qingbo; Zhan, Qi; Shu, Xin; Xu, Tieliang; Zeng, Guangming

    2013-01-01

    Surfactant solutions were propounded to remove fine and hydrophobic carbon black particles from coal-fired flue gas. The adsorption mechanisms between sodium dodecyl benzene sulfonate (SDBS, an anionic surfactant) and carbon black particles in suspension were investigated. The influence of inorganic salt (NaCl) was also considered. As results showed, hydrophobic interactions contributed to the strong adsorption between SDBS and carbon black particles in the absence of NaCl, and adding NaCl affected the adsorption process. The adsorption amount of SDBS significantly increased when NaCl was added into the SDBS solution; however, when SDBS was in low concentration, the amount of adsorbed SDBS, which was responsible for the shift of zeta potentials, varied little under different concentrations of NaCl. This indicated that the adsorption of SDBS was mainly caused by hydrophobic interaction and Na+ could not change the adsorption of SDBS on adsorption site when SDBS was in low concentration. Moreover, the adsorbed SDBS and Na+ were retained in the Stern layer. PMID:23530331

  17. Adsorption and wettability study of methyl ester sulphonate on precipitated asphaltene

    NASA Astrophysics Data System (ADS)

    Okafor, H. E.; Sukirman, Y.; Gholami, R.

    2016-03-01

    Asphaltene precipitation from crude oil and its subsequent aggregation forms solid, which preferentially deposit on rock surfaces causing formation damage and wettability changes leading to loss of crude oil production. To resolve this problem, asphaltene inhibitor has been injected into the formation to prevent the precipitation of asphaltene. Asphaltene inhibitors that are usually employed are generally toxic and non-biodegradable. This paper presents a new environmentally friendly asphaltene inhibitor (methyl ester sulphonate), an anionic surfactant, which has excellent sorption on formation rock surfaces. Result from adsorption study validated by Langmuir and Freundlich models indicate a favourable adsorption. At low volumes injected, methyl ester sulphonate is capable of reverting oil-wet sandstone surface to water-wet surface. Biodegradability test profile shows that for concentrations of 100-5000ppm it is biodegradable by 65-80%.

  18. Functionalized Nanoporous Sorbents for Adsorption of Radioiodine from Groundwater and Waste Glass Leachates

    SciTech Connect

    Mattigod, Shas V.; Fryxell, Glen E.; Parker, Kent E.

    2007-07-02

    Performance tests were conducted using novel sorbent materials that can immobilize or delay the transport of radioiodine that would be released during physical and chemical degradation of solidified low-level waste packages. The results showed that metal-capped novel sorbents such as Hg-thiol and Ag-thiol Self-Assembled Monolayers on Mesoporous Silica (SAMMS), designed specifically to adsorb soft anions such as I-, had very high affinities for adsorption of radioiodine (Kd ~1x104 – 4x105 ml/g). The iodide adsorption performance of these novel sorbents was from one to two orders of magnitude better than many natural mineral and modified mineral sorbents. These data indicate that the novel nanoporous sorbent materials are capable of significantly retarding the mobility of radioiodine leaching from physically and chemically weathered low-level waste glass packages during various physical and chemical weathering reactions expected during long-term disposal.

  19. Ibuprofen adsorption in four agricultural volcanic soils.

    PubMed

    Estevez, Esmeralda; Hernandez-Moreno, Jose Manuel; Fernandez-Vera, Juan Ramon; Palacios-Diaz, Maria Pino

    2014-01-15

    Ibuprofen (IB) is a high environmental risk drug and one of the most frequently prescribed in human medicine. Recently, IB has been detected in Gran Canaria in reclaimed water for irrigation and in groundwater. Adsorption was studied in four volcanic soils from three islands of the Canarian Archipelago. Once the biodegradation process has been excluded from the experimental conditions, a batch method was applied using initial concentrations of 1-5-10-20-50-100-200 mg L(-1) and two soil/water ratios (w/V): 1:5 (OECD, 2000) and 1:1. Non-linear and linearized Langmuir and Freundlich equations were well fitted. The wide IB range tested in our batch studies allowed us to measure experimental adsorption values close to the maximum adsorption capacity (S(max)) as estimated by Langmuir, making it possible thereby to validate the use of the Langmuir equation when there is a burst of contamination at high concentration. The distribution coefficient (Kd), S(max) and Retardation Factor (RF) varied from 0.04 to 0.5 kg L(-1), 4-200 mgk g(-1) and 1.2-1.9, respectively. The lowest S(max) and Kd values were found for the 1:1S/W ratio whereas most batch studies employ 1:5S/W ratios, thus obtaining higher adsorption parameters than when considering field conditions (1:1). Despite the high anion retention of andic soils, similar Kd and RF to those reported for other soils were obtained in 1:5, while high S(max) was found. Our results demonstrate that IB adsorption in volcanic areas responds not only to the soil properties commonly cited in adsorption studies, but also depends on andic properties, sorbent concentration and Dissolved Organic Carbon, the higher values of which are related to the lower Kd and S(max). The low RF and low detection frequency of the IB in groundwater suggests that a) reclaimed water irrigation is not the main source of IB, and b) the existence of some uncontrolled water disposal points in the zone.

  20. Carbon dioxide adsorption in Brazilian coals

    SciTech Connect

    Jose Luciano Soares; Andre L.B. Oberziner; Humberto J. Jose; Alirio E. Rodrigues; Regina F.P.M. Moreira

    2007-01-15

    Carbon dioxide (CO{sub 2}) is one of the most important greenhouse gases. In the period between 1980 and 1998, CO{sub 2} emissions increased more than 21% and projections suggest that the emissions will continue to increase globally by 2.2% between 2000 and 2020 and 3.3% in the developed countries. The sequestration of CO{sub 2} in deep unminable coal beds is one of the more promising of several methods of geological sequestration that are currently being investigated. CO{sub 2} can adsorb onto coal, and there are several studies demonstrating that CO{sub 2} dissolves in coals and swells them. At very low pressures (P {lt} 1 bar), CO{sub 2} dissolution does not seem to be a problem; however, high pressures are necessary for CO{sub 2} sequestration (P {gt} 50 bar). In this study, we evaluated the kinetics and equilibrium of sorption of CO{sub 2} on Brazilian coals at low pressures. The adsorption equilibrium isotherm at room temperature (30{sup o}C) was measured through the static method. The results showed that the Freundlich model or the Langmuir model is suitable to describe the equilibrium experimental results. The CO{sub 2} adsorption capacity of Brazilian coals are in the range of 0.089-0.186 mmol CO{sub 2}/g, which are typical values for coals with high ash content. The dynamics of adsorption in a fixed-bed column that contains granular coal (particle sizes of 0.8, 2.4, and 4.8 mm) showed that the adsorption rate is fast and a mathematical model was developed to describe the CO{sub 2} dynamics of the adsorption in a fixed-bed column. The linear driving force (LDF) was used to describe the rate of adsorption and the mass-transfer constants of the LDF model (K{sub s}) are in the range of 1.0-2.0 min{sup -1}. 29 refs., 5 figs., 3 tabs.

  1. Effect of citrate on Aspergillus niger phytase adsorption and catalytic activity in soil

    NASA Astrophysics Data System (ADS)

    Mezeli, Malika; Menezes-Blackburn, Daniel; Zhang, Hao; Giles, Courtney; George, Timothy; Shand, Charlie; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Stutter, Marc; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2015-04-01

    Current developments in cropping systems that promote mobilisation of phytate in agricultural soils, by exploiting plant-root exudation of phytase and organic acids, offer potential for developments in sustainable phosphorus use. However, phytase adsorption to soil particles and phytate complexion has been shown to inhibit phytate dephosphorylation, thereby inhibiting plant P uptake, increasing the risk of this pool contributing to diffuse pollution and reducing the potential benefits of biotechnologies and management strategies aimed to utilise this abundant reserve of 'legacy' phosphorus. Citrate has been seen to increase phytase catalytic efficiency towards complexed forms of phytate, but the mechanisms by which citrate promotes phytase remains poorly understood. In this study, we evaluated phytase (from Aspergillus niger) inactivation, and change in catalytic properties upon addition to soil and the effect citrate had on adsorption of phytase and hydrolysis towards free, precipitated and adsorbed phytate. A Langmuir model was fitted to phytase adsorption isotherms showing a maximum adsorption of 0.23 nKat g-1 (19 mg protein g-1) and affinity constant of 435 nKat gˉ1 (8.5 mg protein g-1 ), demonstrating that phytase from A.niger showed a relatively low affinity for our test soil (Tayport). Phytases were partially inhibited upon adsorption and the specific activity was of 40.44 nKat mgˉ1 protein for the free enzyme and 25.35 nKat mgˉ1 protein when immobilised. The kinetics of adsorption detailed that most of the adsorption occurred within the first 20 min upon addition to soil. Citrate had no effect on the rate or total amount of phytase adsorption or loss of activity, within the studied citrate concentrations (0-4mM). Free phytases in soil solution and phytase immobilised on soil particles showed optimum activity (>80%) at pH 4.5-5.5. Immobilised phytase showed greater loss of activity at pH levels over 5.5 and lower activities at the secondary peak at pH 2

  2. Adsorption and diffusion of fluids in well-characterized adsorbent materials. Renewal progress report, August 1, 1995 to January 31, 1998

    SciTech Connect

    Gubbins, Keith E.; Cracknell, R.F.; Maddox, M.; Nicholson, D.

    1999-08-01

    This is an invited review paper describing recent advances in molecular simulation and theory of fluids confined within well-characterized porous materials. Methods and intermolecular potential models are described. This is followed by showing results for several examples, including supercritical methane adsorption in carbons, adsorption and diffusion of argon in VPI-5, adsorption of argon in silicalite-1, nitrogen adsorption in MCM-41, and adsorption of argon and nitrogen in carbon nanotubes.

  3. Effect of low molecular weight organic acids on phosphorus adsorption by ferric-alum water treatment residuals.

    PubMed

    Wang, Changhui; Wang, Ziyuan; Lin, Lu; Tian, Binghui; Pei, Yuansheng

    2012-02-15

    Effects of low molecular weight organic acids (LMWOAs; citric acid, oxalic acid and tartaric acid) on phosphorus (P) adsorption by ferric-alum water treatment residuals (FARs) were studied. Both batch and column experiments indicated that the effects of LMWOAs on P adsorption were closely related to adsorption time. Initially, all acids presented inhibitory function on P adsorption. The inhibition became weaker with time, eventually promoting P adsorption for citric acid and tartaric acid. In the column experiment with a 61-day duration, high P adsorption rates (>55%) were observed for the test groups containing citric acid and tartaric acid. Interestingly, higher pH likely enhanced P adsorption with the effects of LMWOAs and a distinct relationship between LMWOAs' effects on P adsorption and their concentrations was not observed. Moreover, fractionation of the adsorbed P from the FARs demonstrated that oxalic acid reduced P adsorption capacity, while citric acid and tartaric acid increased. Based on the forms of Fe and Al existing in the FARs and Fourier transform infrared spectroscopy analyses, LMWOAs can promote P adsorption through activating crystalline Fe/Al and preventing crystallization of amorphous Fe/Al to increase P adsorption sites, and can also inhibit P adsorption by competition with adsorption sites.

  4. [Adsorption Characteristics of Norfloxacin by Biochars Derived from Reed Straw and Municipal Sludge].

    PubMed

    Zhang, Han-yu; Wang, Zhao-wei; Gao, Jun-hong; Zhu, Jun-min; Xie, Chao-ran; Xie, Xiao-yun

    2016-02-15

    Two types of biochars were prepared by pyrolyzing reed straw and municipal sludge at the temperature of 500 degrees C. The structure and properties of biochars were characterized by BET, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and fourier transform infrared spectroscopy ( FTIR ). The effects of pH value, adsorption time, temperature and initial concentration of norfloxacin (NOR) on the adsorption behaviors were determined by single factor experiments, which were used to preliminarily discuss adsorption mechanism. The results showed that the adsorption of NOR onto biochars derived from reed straw and municipal sludge could reach 70% and 60% of the total adsorption within 12 h, respectively; the maximum adsorption capacities of the two biochars were 2.13 mg x g(-1) (biochar derived from reed straw) and 2.09 mg x g(-1) (biochar derived from municipal sludge). The quantities of both absorptions increased with the decreasing solution pH. The two adsorption kinetics of NOR onto biochars followed the pseudo second order kinetic equations, and adsorption isotherms fitted well with the Langmuir equations. Adsorption thermodynamics parameters such as Gibbs free energy (AG), enthalpy (AH) and entropy (AS) indicated that the two adsorptions were endothermic reactions. Infrared spectroscopy analysis indicated that oxygen-containing functional groups on biochars provided NOR molecules with adsorptive sites, which facilitated the formation of hydrogen bonds between NOR and the biochars.

  5. Preparation of titanium peroxide and its selective adsorption property on cationic dyes

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-guang; Huang, Ji-guo; Wang, Bo; Bi, Qiang; Dong, Li-li; Liu, Xing-juan

    2014-02-01

    Titanium peroxide powder was prepared with the reaction of titanium sulfate and H2O2 and showed good selective adsorption property on cationic dyes. The obtained material was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric and differential scanning calorimetry (TG-DSC). The selective adsorption property was confirmed and evaluated by adsorption experiments of methyl orange (MO), phenol and three kinds of cationic dyes including methylene blue (MB), malachite green (MG) and neutral red (NR). The adsorption was very fast and adsorption equilibrium was reached in a very short time for all three cationic dyes. The adsorption kinetics of MB, MG and NR were studied then. It was found that the adsorption data fitted perfectly with the pseudo-second-order kinetics and the saturated adsorption capacities for MB, MG and NR were 224.37, 251.38 and 327.61 mg/g at 25 °C, respectively. The characterization and adsorption results indicated the controlling mechanism of adsorption processes could be electrostatic adsorption.

  6. [Adsorption Characteristics of Norfloxacin by Biochars Derived from Reed Straw and Municipal Sludge].

    PubMed

    Zhang, Han-yu; Wang, Zhao-wei; Gao, Jun-hong; Zhu, Jun-min; Xie, Chao-ran; Xie, Xiao-yun

    2016-02-15

    Two types of biochars were prepared by pyrolyzing reed straw and municipal sludge at the temperature of 500 degrees C. The structure and properties of biochars were characterized by BET, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and fourier transform infrared spectroscopy ( FTIR ). The effects of pH value, adsorption time, temperature and initial concentration of norfloxacin (NOR) on the adsorption behaviors were determined by single factor experiments, which were used to preliminarily discuss adsorption mechanism. The results showed that the adsorption of NOR onto biochars derived from reed straw and municipal sludge could reach 70% and 60% of the total adsorption within 12 h, respectively; the maximum adsorption capacities of the two biochars were 2.13 mg x g(-1) (biochar derived from reed straw) and 2.09 mg x g(-1) (biochar derived from municipal sludge). The quantities of both absorptions increased with the decreasing solution pH. The two adsorption kinetics of NOR onto biochars followed the pseudo second order kinetic equations, and adsorption isotherms fitted well with the Langmuir equations. Adsorption thermodynamics parameters such as Gibbs free energy (AG), enthalpy (AH) and entropy (AS) indicated that the two adsorptions were endothermic reactions. Infrared spectroscopy analysis indicated that oxygen-containing functional groups on biochars provided NOR molecules with adsorptive sites, which facilitated the formation of hydrogen bonds between NOR and the biochars. PMID:27363161

  7. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  8. Structural Determinants for Protein adsorption/non-adsorption to Silica Surface

    PubMed Central

    Mathé, Christelle; Devineau, Stéphanie; Aude, Jean-Christophe; Lagniel, Gilles; Chédin, Stéphane; Legros, Véronique; Mathon, Marie-Hélène; Renault, Jean-Philippe; Pin, Serge; Boulard, Yves; Labarre, Jean

    2013-01-01

    The understanding of the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest in both fundamental research and applications such as nanotechnology. However, despite intense research, the mechanisms and the structural determinants of protein/surface interactions are still unclear. We developed a strategy consisting in identifying, in a mixture of hundreds of soluble proteins, those proteins that are adsorbed on the surface and those that are not. If the two protein subsets are large enough, their statistical comparative analysis must reveal the physicochemical determinants relevant for adsorption versus non-adsorption. This methodology was tested with silica nanoparticles. We found that the adsorbed proteins contain a higher number of charged amino acids, particularly arginine, which is consistent with involvement of this basic amino acid in electrostatic interactions with silica. The analysis also identified a marked bias toward low aromatic amino acid content (phenylalanine, tryptophan, tyrosine and histidine) in adsorbed proteins. Structural analyses and molecular dynamics simulations of proteins from the two groups indicate that non-adsorbed proteins have twice as many π-π interactions and higher structural rigidity. The data are consistent with the notion that adsorption is correlated with the flexibility of the protein and with its ability to spread on the surface. Our findings led us to propose a refined model of protein adsorption. PMID:24282583

  9. Adsorption of Atmospheric Gases on Pu Surfaces

    SciTech Connect

    Nelson, A J; Holliday, K S; Stanford, J A; Grant, W K; Erler, R G; Allen, P G; McLean, W; Roussel, P

    2012-03-29

    Surface adsorption represents a competition between collision and scattering processes that depend on surface energy, surface structure and temperature. The surface reactivity of the actinides can add additional complexity due to radiological dissociation of the gas and electronic structure. Here we elucidate the chemical bonding of gas molecules adsorbed on Pu metal and oxide surfaces. Atmospheric gas reactions were studied at 190 and 300 K using x-ray photoelectron spectroscopy. Evolution of the Pu 4f and O 1s core-level states were studied as a function of gas dose rates to generate a set of Langmuir isotherms. Results show that the initial gas dose forms Pu{sub 2}O{sub 3} on the Pu metal surface followed by the formation of PuO{sub 2} resulting in a layered oxide structure. This work represents the first steps in determining the activation energy for adsorption of various atmospheric gases on Pu.

  10. Adsorption of methyl mercaptan on activated carbons.

    PubMed

    Bashkova, Svetlana; Bagreev, Andrey; Bandosz, Teresa J

    2002-06-15

    Activated carbons of different origins were studied as methyl mercaptan adsorbents in wet, dry, and oxidizing conditions. The materials were characterized using adsorption of nitrogen, Boehm titration, and thermal analysis. Investigation was focused on the feasibility of the removal of methyl mercaptan on activated carbons and on the role of surface chemistry and porosity in the adsorption/oxidation processes. The results showed relatively high capacities of carbons for removal of CH3SH. The amount adsorbed depends on the surface features. Methyl mercaptan, in general, is oxidized to disulfides, which, depending on the chemistry of the carbon surface, can be converted to sulfonic acid due to the presence of water and active radicals.

  11. Centrifugal Adsorption Cartridge System

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas-permeable, hydrophobic membrane. During operation, the liquid effluent from the bioreactor is introduced at one end of the spiral ramp, which then constrains the liquid to flow along the spiral path through the adsorbent material. The spiral ramp also makes the flow more nearly uniform than it would otherwise be, and it minimizes any channeling other than that of the spiral flow itself. The adsorbent material is formulated to selectively capture the bioproduct(s) of interest. The bioproduct(s) can then be stored in bound form in the cartridge or else eluted from the cartridge. The centrifugal effect of the spiral flow is utilized to remove gas bubbles from the liquid. The centrifugal effect forces the bubbles radially inward, toward and through the membrane of the inner cylinder. The gas-permeable, hydrophobic membrane allows the bubbles to enter the inner cylinder while keeping the liquid out. The bubbles that thus enter the cylinder are vented to the atmosphere. The spacing between the ramps determines rate of flow along the spiral, and thereby affects the air-bubble-removal efficiency. The spacing between the ramps also determines the length of the fluid path through the cartridge adsorbent, and thus affects the bioproduct

  12. Adsorption of zinc on magnetite pellets

    SciTech Connect

    Cargnel, D.A.; Cole, C.A.

    1995-12-31

    Zinc is a common contaminant in wastewater electroplating, metal finishing, and many other industrial processes. This paper presents the results of work which is intended to be the first step in an evaluation of the use of concentrated and pelletized magnetite for the adsorption of metals from industrial wastewater. The magnetite used is a cold carbon bonded material which is formulated for the steel industry as a complete product ready for feed to the furnaces. The specific objective of this work was to determine the zinc adsorption capacity of the prepared magnetite pellets through batch tests that were designed to allow the development of an adsorption isotherm. Future work would explore the potential for use of the spent adsorbent in the steel making process, thereby allowing the recovered metals to be recycled into steel products, while avoiding spent adsorbent disposal costs. Although not evaluated in this study, an additional advantage of the use of magnetite as an adsorbent is that it can be magnetically separated from the wastewater.

  13. Cellulose aerogel regenerated from ionic liquid solution for immobilized metal affinity adsorption.

    PubMed

    Oshima, Tatsuya; Sakamoto, Toshihiko; Ohe, Kaoru; Baba, Yoshinari

    2014-03-15

    Surface morphology of cellulosic adsorbents is expected to influence the adsorption behavior of biomacromolecules. In the present study, cellulose aerogel regenerated from ionic liquid solution was prepared for use as a polymer support for protein adsorption. Iminodiacetic acid groups were introduced to the aerogel for immobilized metal affinity adsorption of proteins. A Cu(II)-immobilized iminodiacetic acid cellulose aerogel (Cu(II)-IDA-CA), which has a large specific surface area, showed a higher adsorption capacity than Cu(II)-immobilized iminodiacetic acid bacterial cellulose (Cu(II)-IDA-BC) and Cu(II)-immobilized iminodiacetic acid plant cellulose (Cu(II)-IDA-PC). In contrast, the Cu(II)-immobilized cellulosic adsorbents showed similar adsorption capacities for smaller amino acid and peptides. The results show that cellulose aerogels are useful as polymer supports with high protein adsorption capacities.

  14. A DFT study of formaldehyde adsorption on functionalized graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Maaghoul, Zohreh; Fazileh, Farhad; Kakemam, Jamal

    2015-02-01

    Density functional theory (DFT) based ab initio calculations were done to monitor the formaldehyde (CHOH) adsorptive behavior on pristine and Ni-decorated graphene sheet. Structural optimization indicates that the formaldehyde molecule is physisorbed on the pristine sheet via partly weak van der Waals attraction having the adsorption energy of about -15.7 kcal/mol. Metal decorated sheet is able to interact with the CHOH molecule, so that single Ni atoms prefer to bind strongly at the bridge site of graphene and each metal atom bound on sheet may adsorb up to four CHOH. The findings also show that the Ni decoration on graphene surface results in some changes in electronic properties of the sheet and its Eg is remained unchanged after adsorption of CHOH molecules. It is noteworthy to say that no bond cleavage was observed for the adsorption of CHOH on Ni-decorated graphene.

  15. Measurements of water vapor adsorption on The Geysers rocks

    SciTech Connect

    Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

    1996-04-01

    One of the goals of this project is to determine the dependence of the water retention capacity of the rocks as a function of temperature. The results show a significant dependence of the adsorption and desorption isotherms on the grain size of the sample. The increase in the amount of water retained with temperature observed previously between 90 and 30{degrees}C for various reservoir rocks from The Geysers may be due to the contribution of slow chemical adsorption and may be dependent on the time allowed for equilibration. In contrast with the results of Shang, some closed and nearly closed hysteresis loops on the water adsorption/desorption isotherms were obtained in this study. In these cases the effects of activated processes were not present, and no increase in water adsorption with temperature was observed.

  16. Adsorption of metal ions by carboxymethylchitin and carboxymethylchitosan hydrogels

    NASA Astrophysics Data System (ADS)

    Wasikiewicz, Jaroslaw M.; Nagasawa, Naotsugu; Tamada, Masao; Mitomo, Hiroshi; Yoshii, Fumio

    2005-07-01

    Radiation cross-linking of CM-chitin and CM-chitosan has been investigated. Such parameters of radiation cross-linking as gelation doses, cross-linking and degradation radiation yields and ratios of scission to cross-linking has been determined for both polymers. The absorption ability of various metal ions into EB-radiation cross-linked carboxymethylchitin and carboxymethylchitosan has been investigated. The highest adsorption of scandium and gold has been obtained for carboxymethylchitin (CMCht) and carboxymethylchitosan (CMChts), respectively. Kinetic studies showed that adsorption of most of the metal ions occur in a relatively short period of time (2 h). Detail investigation of adsorption of gold ions has been carried out for both hydrogels. The maximum uptake of Au cations, based on Langmuir equation was determined to be 37.59 for CM-chitosan and 11.86 for CM-chitin. Both hydrogels indicate favorable adsorption of gold cations.

  17. Influence of milling on the adsorption ability of eggshell waste.

    PubMed

    Baláž, Matej; Ficeriová, Jana; Briančin, Jaroslav

    2016-03-01

    Eggshell waste was successfully used for the removal of heavy metal ions from model solutions. The effect of ball milling on the structure and adsorption ability of eggshell (ES) and its membrane (ESM) was investigated, with the conclusion that milling is benefitial only for the ES. The adsorption experiments showed that the ESM is a selective adsorbent, as the adsorption ability toward different ions decreased in the following order: Ag(I) > Cd(II) > Zn(II). The obtained Qm values for Ag(I) adsorption on the ESM and ES were 52.9 and 55.7 mg g(-1), respectively. The potential industrial application of ES was also demonstrated by successful removal of Ag(I) from the technological waste. PMID:26741552

  18. Adsorption of chromium onto activated alumina: kinetics and thermodynamics studies.

    PubMed

    Marzouk, Ikhlass; Dammak, Lassaad; Hamrouni, Béchir

    2013-02-01

    In this study, the removal of chromium (VI) by adsorption on activated alumina was investigated and the results were fitted to Langmuir, Freundlich, Dubinin-Redushkevich, and Temkin adsorption models at various temperatures. The constants of each model were evaluated depending on temperature. Thermodynamic parameters for the adsorption system were determined at 10, 25 and 40 degrees C. (deltaH degrees = -21.18 kJ x mol(-1); deltaG degrees = -8.75 to -7.43 kJ x mol(-1) and deltaS degrees = -0.043 kJ x K(-1) x mol(-1)). The obtained values showed that chromium (VI) adsorption is a spontaneous and exothermic process. The kinetic process was evaluated by first-order, second-order and Elovich kinetic models.

  19. Modeling Interfacial Adsorption of Polymer-Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yong, Xin

    2014-11-01

    Numerous natural and industrial processes demand advances in our fundamental understanding of colloidal adsorption at liquid interfaces. Using dissipative particle dynamics (DPD), we model the interfacial adsorption of core-shell nanoparticles at the water-oil interface. The solid core of the nanoparticle encompasses beads arranged in an fcc lattice structure and its surface is uniformly grafted with polymer chains. The nanoparticles bind to the interface from either phase to minimize total surface energy. With a single nanoparticle, we demonstrate detailed kinetics of different stages in the adsorption process. Prominent effect of grafted polymer chains is characterized by varying molecular weight and polydispersity of the chains. We also preload nanoparticles straddling the interface to reveal the influence of nanoparticle surface density on further adsorption. Importantly, these studies show how surface-grafted polymer chains can alter the interfacial behavior of colloidal particles and provide guidelines for designing on-demand Pickering emulsion.

  20. Controls on polyacrylamide adsorption to quartz, kaolinite, and feldspar

    SciTech Connect

    Graveling, G.J.; Ragnarsdottir, K.V.; Allen, G.C.

    1997-09-01

    Potentiometric titrations of quartz, kaolinite, feldspar, and partially hydrolysed polyacrylamide (HPAM), and sorption measurements of HPAM on the minerals, allows identification of the general mechanisms of polyacrylamide adsorption to aluminosilicates and quartz. Adsorption was monitored at the mineral solution interface by way of X-ray photoelectron spectroscopy (XPS). XPS spectra of the unreacted minerals show bands in the Ols, Si2p, Al2p, and Cls regions. Additional peaks are observed in the Cls and N1s regions after treatment with polyacrylamide and the latter is used in this study to monitor corresponding to surface site saturation. At a fixed polymer concentration, adsorption varies with pH-dependent surface charge. The adsorption mechanism changes with pH, reflecting variation in the pH-dependent concentrations of ionizable groups on polyacrylamide and at aluminosilicate surfaces, and the extent of hydrogen-bonding between uncharged mineral surface sites and polymer amide groups. 42 refs., 10 figs., 2 tabs.

  1. Hydrous ferric oxide doped alginate beads for fluoride removal: Adsorption kinetics and equilibrium studies

    NASA Astrophysics Data System (ADS)

    Sujana, M. G.; Mishra, A.; Acharya, B. C.

    2013-04-01

    A new biopolymer beads, composite of hydrous ferric oxide (HFO) and alginate were synthesised, characterised and studied for its fluoride efficiency from water. The beads were characterised by chemical analysis, BET surface area, pHPZC and X-ray diffraction (XRD) analysis. The optimum conditions for fluoride removal were determined by studying operational variables viz. pH, contact time, initial F- concentration, bead dose and temperature. Presence of other anions like SO42-, PO43-, NO3-, Cl- and HCO3- effect on fluoride removal efficiency of prepared beads was also tested. The beads were 0.8-0.9 mm in size and contain 32-33% Fe (III) and showed specific surface area of 25.80 m2 g-1 and pHPZC of 5.15. Modified beads demonstrated Langmuir F- adsorption capacity of 8.90 mg g-1 at pH 7.0. The adsorption kinetics were best described by the pseudo-second order kinetic model followed by intra-particle diffusion as the rate determining step. It was found that about 80% of the adsorbed fluoride could be desorbed by using 0.05 M HCl. The FTIR, Raman and SEM-EDAX analysis were used to study the fluoride adsorption mechanisms on beads. Studies were also conducted to test the potential application of beads for F- removal from drinking water and the treated water quality.

  2. Adsorption of Oxyanions from Industrial Wastewater using Perlite-Supported Magnetite.

    PubMed

    Verbinnen, Bram; Block, Chantal; Vandecasteele, Carlo

    2016-05-01

    Most studies on oxyanion adsorption focus on their removal from synthetic solutions. It is often claimed that the considered adsorbents can be used to treat real (industrial) wastewaters, but this is seldom tested. Perlite-supported magnetite was characterized first by determining its specific surface area, magnetite content and by examining the coating. Tests on a synthetic solution showed that at the ideal pH values (pH 3 to 5), the order of adsorption is Mo(VI) > As(V) > Sb(V) > Cr(VI) > Se(VI). Most oxyanions can be removed for more than 75% with an adsorbent dosage of 1 g/l. Furthermore, perlite-supported magnetite has a higher removal efficiency for oxyanions than commercially available adsorbents and comparable adsorbents described in literature. Perlite-supported magnetite is suitable for treating real wastewaters: it can remove several oxyanions simultaneously from the considered industrial wastewater, but the adsorption order changes due to the presence of interfering anions.

  3. Theoretical study on the adsorption of carbon dioxide on individual and alkali-metal doped MOF-5s

    NASA Astrophysics Data System (ADS)

    Ha, Nguyen Thi Thu; Lefedova, O. V.; Ha, Nguyen Ngoc

    2016-01-01

    Density functional theory (DFT) calculations were performed to investigate the adsorption of carbon dioxide (CO2) on metal-organic framework (MOF-5) and alkali-metal (Li, K, Na) doped MOF-5s. The adsorption energy calculation showed that metal atom adsorption is exothermic in MOF-5 system. Moreover, alkali-metal doping can significantly improve the adsorption ability of carbon dioxide on MOF-5. The best influence is observed for Li-doping.

  4. Arsenic Adsorption Onto Iron Oxides Minerals

    NASA Astrophysics Data System (ADS)

    Aredes, S.; Klein, B.; Pawlik, M.

    2004-12-01

    The predominant form of arsenic in water is as an inorganic ion. Under different redox conditions arsenic in water is stable in the +5 and +3 oxidation states. Arsenic oxidation state governs its toxicity, chemical form and solubility in natural and disturbed environments. As (III) is found in anoxic environments such as ground water , it is toxic and the common species is the neutral form, H3AsO3. As (V) is found in aerobic conditions such as surface water, it is less toxic and the common species in water are: H2AsO4 - and HAsO4 {- 2}. The water pH determines the predominant arsenate or arsenite species, however, both forms of arsenic can be detected in natural water systems. Iron oxides minerals often form in natural waters and sediments at oxic-anoxic boundaries. Over time they undergo transformation to crystalline forms, such as goethite or hematite. Both As(V) and As(III) sorbs strongly to iron oxides, however the sorption behavior of arsenic is dependent on its oxidation state and the mineralogy of the iron oxides. Competition between arsenic and others ions, such fluoride, sulphate and phosphate also play a role. On the other hand, calcium may increase arsenic adsorption onto iron oxides. Electrokinetic studies and adsorption experiments were carried out in order to determine which conditions favour arsenic adsorption. Hematite, goethite and magnetite as iron based sorbents were used. Test were also conducted with a laterite soil rich in iron minerals. The focus of this study is to evaluate physical and chemical conditions which favour arsenic adsorption onto iron oxides minerals, the results contribute to an understanding of arsenic behaviour in natural and disturbed environments. Furthermore, results could contribute in developing an appropriate remediation technology for arsenic removal in water using iron oxides minerals.

  5. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  6. Albumin adsorption on CoCrMo alloy surfaces

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Yang, Hongjuan; Su, Yanjing; Qiao, Lijie

    2015-12-01

    Proteins can adsorb on the surface of artificial joints immediately after being implanted. Although research studying protein adsorption on medical material surfaces has been carried out, the mechanism of the proteins’ adsorption which affects the corrosion behaviour of such materials still lacks in situ observation at the micro level. The adsorption of bovine serum albumin (BSA) on CoCrMo alloy surfaces was studied in situ by AFM and SKPFM as a function of pH and the charge of CoCrMo alloy surfaces. Results showed that when the specimens were uncharged, hydrophobic interaction could govern the process of the adsorption rather than electrostatic interaction, and BSA molecules tended to adsorb on the surfaces forming a monolayer in the side-on model. Results also showed that adsorbed BSA molecules could promote the corrosion process for CoCrMo alloys. When the surface was positively charged, the electrostatic interaction played a leading role in the adsorption process. The maximum adsorption occurred at the isoelectric point (pH 4.7) of BSA.

  7. Characterization and adsorption of Lactobacillus virulent phage P1.

    PubMed

    Chen, X; Xi, Y; Zhang, H; Wang, Z; Fan, M; Liu, Y; Wu, W

    2016-09-01

    Bacteriophage infection of lactic acid bacteria is considered an important problem worldwide in the food fermentation industry, as it may produce low quality or unsafe foods, cause fermentation failure, and result in economic losses. To increase current knowledge on the properties of Lactobacillus virulent phages, we evaluated the effect of divalent cations, temperature, pH, and chloramphenicol on the adsorption ability of Lactobacillus virulent phage P1. Phage P1 was isolated from the abnormal fermentation liquid of Lactobacillus plantarum IMAU10120. The results showed that this phage belonged to the Siphoviridae family. The latent period of this phage was 45min, and the burst time was 90min. Burst size was 132.88±2.37 phage counts expressed per milliliter per infective center. This phage showed good tolerance at different temperatures, but incubation at 50°C only affected its adsorption. Adsorption rate reached a maximum value between 30 and 42°C. A high adsorption value of phage infectivity was obtained from pH 6 to 8. Moreover, calcium ions promoted and increased the adsorption capacity of phage P1, but magnesium ions had negative effects. Chloramphenicol had no effect on phage adsorption. This study increased current knowledge on the characterization and biological aspects of Lactobacillus virulent phages, and may provide some basic information that can be used to design successful antiphage strategies in the food industry. PMID:27372579

  8. Adsorption Kinetics at Silica Gel/Ionic Liquid Solution Interface.

    PubMed

    Flieger, Jolanta; Tatarczak-Michalewska, Małgorzata; Groszek, Anna; Blicharska, Eliza; Kocjan, Ryszard

    2015-12-10

    A series of imidazolium and pyridinium ionic liquids with different anions (Cl(-), Br(-), BF₄(-), PF₆(-)) has been evaluated for their adsorption activity on silica gel. Quantification of the ionic liquids has been performed by the use of RP-HPLC with organic-aqueous eluents containing an acidic buffer and a chaotropic salt. Pseudo-second order kinetic models were applied to the experimental data in order to investigate the kinetics of the adsorption process. The experimental data showed good fitting with this model, confirmed by considerably high correlation coefficients. The adsorption kinetic parameters were determined and analyzed. The relative error between the calculated and experimental amount of ionic liquid adsorbed at equilibrium was within 7%. The effect of various factors such as initial ionic liquid concentration, temperature, kind of solvent, kind of ionic liquid anion and cation on adsorption efficiency were all examined in a lab-scale study. Consequently, silica gel showed better adsorptive characteristics for imidazolium-based ionic liquids with chaotropic anions from aqueous solutions in comparison to pyridinium ionic liquids. The adsorption was found to decrease with the addition of organic solvents (methanol, acetonitrile) but it was not sensitive to the change of temperature in the range of 5-40 °C.

  9. Albumin adsorption on CoCrMo alloy surfaces

    PubMed Central

    Yan, Yu; Yang, Hongjuan; Su, Yanjing; Qiao, Lijie

    2015-01-01

    Proteins can adsorb on the surface of artificial joints immediately after being implanted. Although research studying protein adsorption on medical material surfaces has been carried out, the mechanism of the proteins’ adsorption which affects the corrosion behaviour of such materials still lacks in situ observation at the micro level. The adsorption of bovine serum albumin (BSA) on CoCrMo alloy surfaces was studied in situ by AFM and SKPFM as a function of pH and the charge of CoCrMo alloy surfaces. Results showed that when the specimens were uncharged, hydrophobic interaction could govern the process of the adsorption rather than electrostatic interaction, and BSA molecules tended to adsorb on the surfaces forming a monolayer in the side-on model. Results also showed that adsorbed BSA molecules could promote the corrosion process for CoCrMo alloys. When the surface was positively charged, the electrostatic interaction played a leading role in the adsorption process. The maximum adsorption occurred at the isoelectric point (pH 4.7) of BSA. PMID:26673525

  10. Study of adsorption of Neon on open Carbon nanohorns aggregates

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl Andrew

    Adsorption isotherms can be used to determine surface area of a substrate and the heat released when adsorption occurs. Our measurements are done determining the equilibrium pressures corresponding to a given amount of gas adsorbed on a substrate at constant temperature. The adsorption studies were done on aggregates of open dahlia-like carbon nanohorns. The nanohorns were oxidized for 9 hours at 550 °C to open them up and render their interior space accessible for adsorption. Volumetric adsorption measurements of Ne were performed at twelve different temperatures between 19 K and 48 K. The isotherms showed two substeps. The first substep corresponds to adsorption on the high energy binding sites in the interior of the nanohorns, near the tip. The second substep corresponds to low energy binding sites both on the outside of the nanotubes and inside the nanotube away from the tip. The isosteric heat measurements obtained from the isotherm data also shows these two distinct substeps. The effective surface area of the open nanotubes was determined from the isotherms using the point-B method. The isosteric heat and surface area data for neon on open nanohorns were compared to two similar experiments of neon adsorbed on aggregates of closed nanohorns.

  11. Effects of adsorption and confinement on nanoporous electrochemistry.

    PubMed

    Bae, Je Hyun; Han, Ji-Hyung; Han, Donghyeop; Chung, Taek Dong

    2013-01-01

    Characteristic molecular dynamics of reactant molecules confined in the space of the nanometer scale augments the frequency of collisions with the electrified surface so that a given faradaic reaction can be enhanced at nanoporous electrodes, the so-called nano-confinement effect. Since this effect is grounded on diffusion inside nanopores, it is predicted that adsorption onto the surface will seriously affect the enhancement by nano-confinement. We experimentally explored the correlation between adsorption and the confinement effect by examining the oxidation of butanol isomers at platinum and gold nanoporous electrodes. The results showed that electrooxidation of 2-butanol, which is a non-adsorption reaction, was enhanced more than that of 1-butanol, which is an adsorption reaction, at nanoporous platinum in acidic media. In contrast, the nanoporous gold electrode, on which 1-butanol is less adsorptive than it is on platinum, enhanced the electrooxidation of 1-butanol greatly. Furthermore, the electrocatalytic activity of nanoporous gold for oxygen reduction reaction was improved so much as to be comparable with that of flat Pt. These findings show that the nano-confinement effect can be appreciable for electrocatalytic oxygen reduction as well as alcohol oxidation unless the adsorption is extensive, and suggests a new strategy in terms of material design for innovative non-noble metal electrocatalysts.

  12. Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater.

    PubMed

    Maruthamuthu, Murali Kannan; Nadarajan, Saravanan Prabhu; Ganesh, Irisappan; Ravikumar, Sambandam; Yun, Hyungdon; Yoo, Ik-Keun; Hong, Soon Ho

    2015-11-01

    For the construction of an efficient copper waste treatment system, a cell surface display strategy was employed. The copper adsorption ability of recombinant bacterial strains displaying three different copper binding peptides were evaluated in LB Luria-Bertani medium (LB), artificial wastewater, and copper phthalocyanine containing textile dye industry wastewater samples. Structural characteristics of the three peptides were also analyzed by similarity-based structure modeling. The best binding peptide was chosen for the construction of a dimeric peptide display and the adsorption ability of the monomeric and dimeric peptide displayed strains were compared. The dimeric peptide displayed strain showed superior copper adsorption in all three tested conditions (LB, artificial wastewater, and textile dye industry wastewater). When the strains were exposed to copper phthalocyanine dye polluted wastewater, the dimeric peptide display [543.27 µmol/g DCW dry cell weight (DCW)] showed higher adsorption of copper when compared with the monomeric strains (243.53 µmol/g DCW). PMID:26219270

  13. Short-Cycle Adsorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1988-01-01

    Modular adsorption/Joule-Thomson-effect refrigerator offers fast regeneration; adsorption/desorption cycle time expected to be 1 minute. Pressurized hydrogen generated by bank of compressor modules during heating phase passes through system of check valves and expands in Joule-Thomson junction as it enters refrigeration chamber. Hydrogen absorbs heat from load before it is sucked out by another bank of compressor modules in cooling phase.

  14. Engineered, Robust Polyelectrolyte Multilayers by Precise Control of Surface Potential for Designer Protein, Cell, and Bacteria Adsorption.

    PubMed

    Zhu, Xiaoying; Guo, Shifeng; He, Tao; Jiang, Shan; Jańczewski, Dominik; Vancso, G Julius

    2016-02-01

    Cross-linked layer-by-layer (LbL) assemblies with a precisely tuned surface ζ-potential were fabricated to control the adsorption of proteins, mammalian cells, and bacteria for different biomedical applications. Two weak polyions including a synthesized polyanion and polyethylenimine were assembled under controlled conditions and cross-linked to prepare three robust LbL films as model surfaces with similar roughness and water affinity but displaying negative, zero, and positive net charges at the physiological pH (7.4). These surfaces were tested for their abilities to adsorb proteins, including bovine serum albumin (BSA) and lysozyme (LYZ). In the adsorption tests, the LbL films bind more proteins with opposite charges but less of those with like charges, indicating that electrostatic interactions play a major role in protein adsorption. However, LYZ showed higher nonspecific adsorption than BSA, because of the specific behavior of LYZ molecules, such as stacked multilayer formation during adsorption. To exclude such stacking effects from experiments, protein molecules were covalently immobilized on AFM colloidal probes to measure the adhesion forces against the model surfaces utilizing direct protein molecule-surface contacts. The results confirmed the dominating role of electrostatic forces in protein adhesion. In fibroblast cell and bacteria adhesion tests, similar trends (high adhesion on positively charged surfaces, but much lower on neutral and negatively charged surfaces) were observed because the fibroblast cell and bacterial surfaces studied possess negative potentials. The cross-linked LbL films with improved stability and engineered surface charge described in this study provide an excellent platform to control the behavior of different charged objects and can be utilized in practical biomedical applications. PMID:26756285

  15. Engineered, Robust Polyelectrolyte Multilayers by Precise Control of Surface Potential for Designer Protein, Cell, and Bacteria Adsorption.

    PubMed

    Zhu, Xiaoying; Guo, Shifeng; He, Tao; Jiang, Shan; Jańczewski, Dominik; Vancso, G Julius

    2016-02-01

    Cross-linked layer-by-layer (LbL) assemblies with a precisely tuned surface ζ-potential were fabricated to control the adsorption of proteins, mammalian cells, and bacteria for different biomedical applications. Two weak polyions including a synthesized polyanion and polyethylenimine were assembled under controlled conditions and cross-linked to prepare three robust LbL films as model surfaces with similar roughness and water affinity but displaying negative, zero, and positive net charges at the physiological pH (7.4). These surfaces were tested for their abilities to adsorb proteins, including bovine serum albumin (BSA) and lysozyme (LYZ). In the adsorption tests, the LbL films bind more proteins with opposite charges but less of those with like charges, indicating that electrostatic interactions play a major role in protein adsorption. However, LYZ showed higher nonspecific adsorption than BSA, because of the specific behavior of LYZ molecules, such as stacked multilayer formation during adsorption. To exclude such stacking effects from experiments, protein molecules were covalently immobilized on AFM colloidal probes to measure the adhesion forces against the model surfaces utilizing direct protein molecule-surface contacts. The results confirmed the dominating role of electrostatic forces in protein adhesion. In fibroblast cell and bacteria adhesion tests, similar trends (high adhesion on positively charged surfaces, but much lower on neutral and negatively charged surfaces) were observed because the fibroblast cell and bacterial surfaces studied possess negative potentials. The cross-linked LbL films with improved stability and engineered surface charge described in this study provide an excellent platform to control the behavior of different charged objects and can be utilized in practical biomedical applications.

  16. Experimental Investigation on a Novel Four-bed Adsorption Chiller

    NASA Astrophysics Data System (ADS)

    Ng, Kim Choon; Chua, Hui Tong; Wang, Jin Bao; Wang, Xiao Lin; Kashiwagi, Takao; Akisawa, Atsushi; Saha, Bidyut Baran

    A prototype multi-bed regenerative adsorption chiller with a novel four-bed operation mode has been designed, fabricated and tested. The rating tests are conducted under assorted ARI coolant, using a purpose-built rating. The 4.bed design exhibits superior heat extraction capability from the heat source as its "slave-first-then-master" arrangement permits individual bed to maximize energy utilization in a batch cycle. Overall system performance of chiller is evaluated for various adsorption-desorption cycle and switching time at assorted coolant inlet temperatures. For fair comparison, the 4-bed chiller is also compared with that of a two-bed mode at the same working conditions.

  17. Cr(VI) Adsorption on Red Mud Modified by Lanthanum: Performance, Kinetics and Mechanisms

    PubMed Central

    Cui, You-Wei; Li, Jie; Du, Zhao-Fu; Peng, Yong-Zhen

    2016-01-01

    Water pollution caused by the highly toxic metal hexavalent chromium (Cr(VI)) creates significant human health and ecological risks. In this study, a novel adsorbent was used to treat Cr(VI)-containing wastewater; the adsorbent was prepared using red mud (RM) generated from the alumina production industry and the rare earth element lanthanum. This study explored adsorption performance, kinetics, and mechanisms. Results showed that the adsorption kinetics of the RM modified by lanthanum (La-RM), followed the pseudo-second-order model, with a rapid adsorption rate. Cr(VI) adsorption was positively associated with the absorbent dose, pH, temperature, and initial Cr(VI) concentration; coexisting anions had little impact. The maximum Cr(VI) adsorption capacity was 17.35 mg/g. Cr(VI) adsorption on La-RM was a mono-layer adsorption pattern, following the Langmuir isotherm model. Thermodynamic parameters showed the adsorption was spontaneous and endothermic. The adsorption of Cr(VI) on La-RM occurred as a result of LaOCl formation on the RM surface, which in turn further reacted with Cr(VI) in the wastewater. This study highlighted a method for converting industrial waste into a valuable material for wastewater treatment. The novel absorbent could be used as a potential adsorbent for treating Cr(VI)-contaminating wastewater, due to its cost-effectiveness and high adsorption capability. PMID:27658113

  18. AgII doped MIL-101 and its adsorption of iodine with high speed in solution

    NASA Astrophysics Data System (ADS)

    Mao, Ping; Qi, Bingbing; Liu, Ying; Zhao, Lei; Jiao, Yan; Zhang, Yi; Jiang, Zheng; Li, Qiang; Wang, Jinfeng; Chen, Shouwen; Yang, Yi

    2016-05-01

    In order to improve the adsorption speed of iodine from water, MIL-101 with extra-large specific surface area (3054 m2/g) was chosen as a base material, and then, Ag was doped into MIL-101 to enhance its adsorption capacity through an incipient-wetness impregnation method. With the characterization of SEM-EDS, TEM, XRD, XPS, TGA, IR, and BET techniques, the resulting Ag was identified to be stay in the framework of MIL-101 stably in the form of AgII (generally, AgII cation is not stable). However, after the adsorption of I- anions, AgII stay in the cages of MIL-101 in the form of AgI/AgI3. It is important to note that, all adsorbents show high adsorption speed of iodine in solution. The equilibrium adsorption time of the adsorbents were acquired by only a few minutes, which can be attributed to its large BET surface area. An interesting note is that, when the doping amount of Ag is less than 9%, the iodine anions adsorption capacity of Ag@MIL-101 is greater than its theoretical adsorption capacity. It shows that both physical adsorption and chemical adsorption are existed in the adsorption process. This study hopefully leads to a new and highly efficient Ag-based adsorbent for iodide adsorb from solutions.

  19. Thiol-functionalized polysilsesquioxane as efficient adsorbent for adsorption of Hg(II) and Mn(II) from aqueous solution

    SciTech Connect

    Niu, Yuzhong Qu, Rongjun; Liu, Xiguang; Mu, Lei; Bu, Baihui; Sun, Yuting; Chen, Hou; Meng, Yangfeng; Meng, Lina; Cheng, Lin

    2014-04-01

    Highlights: • PMPSQ was promising adsorbent for the removal of Hg(II) and Mn(II). • The adsorption kinetics followed the pseudo-second-order model. • The adsorption isotherms can be described by the monolayer Langmuir model. • The adsorption was controlled by film diffusion and chemical ion-exchange mechanism. - Abstract: Thiol-functionalized polysilsesquioxane was synthesized and used for the adsorption of Hg(II) and Mn(II) from aqueous solution. Results showed that the optimal pH was about 6 and 5 for Hg(II) and Mn(II), respectively. Adsorption kinetics showed that the adsorption equilibriums were established within 100 min and followed pseudo-second-order model. Adsorption isotherms revealed that the adsorption capacities increased with the increasing of temperature. The adsorption was found to be well described by the monolayer Langmuir isotherm model and took place by chemical ion-exchange mechanism. The thermodynamic properties indicated the adsorption processes were spontaneous and endothermic nature. Selectively adsorption showed that PMPSQ can selectively adsorb Hg(II) from binary ion systems in the presence of the coexistent ions Mn(II), Cu(II), Pb(II), Co(II), and Ni(II). Based on the results, it is concluded that PMPSQ had comparable high adsorption efficiency and could be potentially used for the removal of Hg(II) and Mn(II) from aqueous solution.

  20. Effects of solution conditions and surface chemistry on the adsorption of three recombinant botulinum neurotoxin antigens to aluminum salt adjuvants.

    PubMed

    Vessely, Christina; Estey, Tia; Randolph, Theodore W; Henderson, Ian; Nayar, Rajiv; Carpenter, John F

    2007-09-01

    Botulinum neurotoxin (BoNT) is a biological warfare threat. Protein antigens have been developed against the seven major BoNT serotypes for the development of a recombinant protein vaccine. This study is an evaluation of adsorption profiles for three of the recombinant protein antigens to aluminum salt adjuvants in the development of a trivalent vaccine against BoNT. Adsorption profiles were obtained over a range of protein concentrations. The results document that charge-charge interactions dominate the adsorption of antigen to adjuvant. Optimal conditions for adsorption were determined. However, potency studies and solution stability studies indicated the necessity of using aluminum hydroxide adjuvant at low pH. To improve the adsorption profiles to AlOH adjuvant, phosphate ions were introduced into the adsorption buffers. The resulting change in the adjuvant chemistry led to an improvement of adsorption of the BoNT antigens to aluminum hydroxide adjuvant while maintaining potency. Competitive adsorption profiles were also determined, and showed changes in maximum adsorption from mixed solutions compared to adsorption from individual protein solutions. The adsorption profiles for each protein varied due to differences in adsorption mechanism and affinity for the adjuvant surface. These results emphasize the importance of evaluating competitive adsorption in the development of multivalent vaccine products. PMID:17518359