Sample records for adsorption-driven surface segregation

  1. The influence of CO adsorption on the surface composition of cobalt/palladium alloys

    NASA Astrophysics Data System (ADS)

    Murdoch, A.; Trant, A. G.; Gustafson, J.; Jones, T. E.; Noakes, T. C. Q.; Bailey, P.; Baddeley, C. J.

    2016-04-01

    Segregation induced by the adsorption of gas phase species can strongly influence the composition of bimetallic surfaces and can therefore play an important role in influencing heterogeneous catalytic reactions. The addition of palladium to cobalt catalysts has been shown to promote Fischer Tropsch catalysis. We investigate the adsorption of CO onto bimetallic CoPd surfaces on Pd{111} using a combination of reflection absorption infrared spectroscopy and medium energy ion scattering. The vibrational frequency of adsorbed CO provides crucial information on the adsorption sites adopted by CO and medium energy ion scattering probes the surface composition before and after CO exposure. We show that cobalt segregation is induced by CO adsorption and rationalise these observations in terms of the strength of adsorption of CO in various surface adsorption sites.

  2. Segregation at the surfaces of CuxPd1-x alloys in the presence of adsorbed S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, James B.; Priyadarshini, Deepika; Gellman, Andrew J.

    2012-10-01

    The influence of adsorbed S on surface segregation in Cu{sub x}Pd{sub 1 - x} alloys (S/Cu{sub x}Pd{sub 1 - x)} was characterized over a wide range of bulk alloy compositions (x = 0.05 to 0.95) using high-throughput Composition Spread Alloy Film (CSAF) sample libraries. Top-surface and near-surface compositions of the CSAFs were measured as functions of bulk Cu composition, x, and temperature using spatially resolved low energy ion scattering spectroscopy (LEISS) and X-ray photoemission spectroscopy (XPS). Preferential segregation of Cu to the top-surface of the S/Cu{sub x}Pd{sub 1 - x} CSAF was observed at all bulk compositions, x, but themore » extent of Cu segregation to the S/Cu{sub x}Pd{sub 1 - x} surface was lower than the Cu segregation to the surface of a clean Cu{sub x}Pd{sub 1 - x} CSAF, clear evidence of an S-induced “segregation reversal.” The Langmuir–McLean formulation of the Gibbs isotherm was used to estimate the enthalpy and entropy of Cu segregation to the top-surface, ΔH{sub seg}(x) and ΔS{sub seg}(x), at saturation sulfur coverages. While Cu segregation to the top-surface of the clean Cu{sub x}Pd{sub 1 - x} is exothermic (ΔH{sub seg} < 0) for all bulk Cu compositions, it is endothermic (ΔH{sub seg} > 0) for S/Cu{sub x}Pd{sub 1 - x}. Segregation to the S/Cu{sub x}Pd{sub 1 - x} surface is driven by entropy. Changes in segregation patterns that occur upon adsorption of S onto Cu{sub x}Pd{sub 1 - x} appear to be related to formation of energetically favored Pd{single bond}S bonds at the surface, which counterbalance the enthalpic driving forces for Cu segregation to the clean surface.« less

  3. First-principles study of Au–Cu alloy surface changes induced by gas adsorption of CO, NO, or O{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhifallah, Marwa; Université de Gabes, Unité de recherche environnement, Catalyse et Analyse des Procédés, 6072 Gabes; Dhouib, Adnene

    2016-07-14

    The surface composition of bimetallics can be strongly altered by adsorbing molecules where the metal with the strongest interaction with the adsorbate segregates into the surface. To investigate the effect of reactive gas on the surface composition of Au–Cu alloy, we examined by means of density functional theory to study the segregation behavior of copper in gold matrices. The adsorption mechanisms of CO, NO, and O{sub 2} gas molecules on gold, copper, and gold-copper low index (111), (100), and (110) surfaces were analyzed from energetic and electronic points of view. Our results show a strong segregation of Cu toward themore » (110) surface in the presence of all adsorbed molecules. Interestingly, the Cu segregation toward the (111) and (100) surface could occur only in the presence of CO and at a lower extent in the presence of NO. The analysis of the electronic structure highlights the different binding characters of adsorbates inducing the Cu segregation.« less

  4. Bombardment-induced segregation and redistribution

    NASA Astrophysics Data System (ADS)

    Lam, N. Q.; Wiedersich, H.

    During ion bombardment, a number of processes can alter the compositional distribution and microstructure in near-surface regions of alloys. The relative importance of each process depends principally on the target composition, temperature, and ion characteristics. In addition to displacement mixing leading to a randomization of atomic locations, and preferential loss of alloying elements by sputtering, which are dominant at relatively low temperatures, several thermally-activated processes, including radiation-enhanced diffusion, radiation-induced segregation and Gibbsian adsorption, also play important roles. At elevated temperatures, nonequilibrium point defects induced by ion impacts become mobile and tend to anneal out by recombination and diffusion to extended sinks, such as dislocations, grain boundaries and free surfaces. The high defect concentrations, far exceeding the thermodynamic equilibrium values, can enhance diffusion-controlled processes, while persistent defect fluxes, originating from the spatial non-uniformity in defect production and annihilation, give rise to local redistribution of alloy constituents because of radiation-induced segregation. Moreover, when the alloy is maintained at high temperature, Gibbsian adsorption, driven by the reduction in free energy of the system, occurs even without irradiation; it involves a compositional perturbation in a few atom layers near the alloy surface. The combination of these processes leads to the complex development of a compositionally-modified layer in the subsurface region. Considerable progress has been made recently in identifying and understanding the relative contributions from the individual processes under various irradiation conditions. In the present paper, selected examples of these different phenomena and their synergistic effects on the evolution of the near-surface compositions of alloys during sputtering and ion implantation at elevated temperatures are discussed.

  5. Stress-Driven Melt Segregation and Organization in Partially Molten Rocks III: Annealing Experiments and Surface Tension-Driven Redistribution of Melt

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Hustoft, J. W.; Holtzman, B. K.; Kohlstedt, D. L.; Phipps Morgan, J.

    2004-12-01

    As discussed in the two previous abstracts in this series, simple shear experiments on synthetic upper mantle-type rock samples reveal the segregation of melt into melt-rich bands separated by melt-depleted lenses. Here, we present new results from experiments designed to understand the driving forces working for and against melt segregation. To better understand the kinetics of surface tension-driven melt redistribution, we first deform samples at similar conditions (starting material, sample size, stress and strain) to produce melt-rich band networks that are statistically similar. Then the load is removed and the samples are statically annealed to allow surface tension to redistribute the melt-rich networks. Three samples of olivine + 20 vol% chromite + 4 vol% MORB were deformed at a confining pressure of 300 MPa and a temperature of 1523 K in simple shear at shear stresses of 20 - 55 MPa to shear strains of 3.5 and then statically annealed for 0, 10, or 100 h at the same P-T conditions. Melt-rich bands are fewer in number and appear more diffuse when compared to the deformed but not annealed samples. Bands with less melt tend to disappear more rapidly than more melt-rich ones. The melt fraction in the melt-rich bands decreased from 0.2 in the quenched sample to 0.1 in the sample annealed for 100 h. After deformation, the melt fraction in the melt-depleted regions are ~0.006; after static annealing for 100 h, this value increases to 0.02. These experiments provide new quantitative constraints on the kinetics of melt migration driven by surface tension. By quantifying this driving force in the same samples in which stress-driven distribution occurred, we learn about the relative kinetics of stress-driven melt segregation. The kinetics of both of these processes must be scaled together to mantle conditions to understand the importance of stress-driven melt segregation in the Earth, and to understand the interaction of this process with melt-rock reaction-driven processes.

  6. Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry

    DOE PAGES

    Abdeljawad, Fadi; Foiles, Stephen M.

    2016-05-04

    The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less

  7. Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdeljawad, Fadi; Foiles, Stephen M.

    The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less

  8. Oxygen adsorption on Cu-9 at. %Al(111) studied by low energy electron diffraction and Auger electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Yoshitake, Michiko; Bera, Santanu; Yamauchi, Yasuhiro; Song, Weijie

    2003-07-01

    Cu-based alloys have been used for electric cables for long time. In the field of microelectronics, Al had been used for electrical wiring. However, it became clear that electromigration occurs in Al that causes breaking of wires in minute wirings. Due to this problem, Cu wiring is used in most advanced microprocessors. Cu metal is more corrosive than Al and Cu-based alloys with a small amount of Al is expected to solve problems both on electromigration and corrosion. The initial stage of corrosion is oxygen adsorption. We studied surface segregation of Al on Cu-9% Al(111) and oxygen adsorption on the surface with/without Al segregation in ultrahigh vacuum by low energy electron diffraction (LEED) and Auger electron spectroscopy. It was found that Al segregates on the surface to form (√3×√3)R30° structure and the structure vanishes above 595 K to give (1×1) structure while Al still segregates. The specimen was exposed to oxygen at different temperatures. The amount of oxygen uptake was not structure dependent but temperature dependent. Below 595 K, only a small amount of oxygen adsorbed. Between 595 and 870 K, oxygen adsorbed surface showed amorphous LEED pattern. The specimen was annealed at 1070 K after oxygen exposure. When the specimen was exposed oxygen below 870 K, the oxygen Auger intensity decreased significantly by annealing and the annealed surface showed (√3×√3)R30° structure at room temperature. When the specimen was exposed to oxygen at 870 K, diffused spots developed newly in LEED pattern but the pattern disappeared after 1070 K annealing while oxygen Auger intensity remained almost constant. Exposing the specimen to oxygen at 995 K resulted in clear spots in the LEED pattern, which were attributed to the (7/√3×7√3)R30° structure.

  9. Definition and effect of chemical properties of surfaces in friction, wear, and lubrication

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Chemical properties relative to their role in adhesion, friction, wear and lubrication discussed in this paper will include: (1) adsorption, both physical and chemical; (2) orientation of the solid as well as the lubricant; (3) surface energy; (4) surface segregation; (5) surface versus bulk metallurgical effects; (6) electronic nature of the surface; and (7) bonding mechanisms.

  10. First-Principles Study of Mo Segregation in MoNi(111): Effects of Chemisorbed Atomic Oxygen

    PubMed Central

    Yu, Yanlin; Xiao, Wei; Wang, Jianwei; Wang, Ligen

    2015-01-01

    Segregation at metal alloy surfaces is an important issue because many electrochemical and catalytic properties are directly correlated to the surface composition. We have performed density functional theory calculations for Mo segregation in MoNi(111) in the presence of chemisorbed atomic oxygen. In particular, the coverage dependence and possible adsorption-induced segregation phenomena are addressed by investigating segregation energies of the Mo atom in MoNi(111). The theoretical calculated results show that the Mo atom prefers to be embedded in the bulk for the clean MoNi(111), while it segregates to the top-most layer when the oxygen coverage is thicker than 1/9 monolayer (ML). Furthermore, we analyze the densities of states for the clean and oxygen-chemisorbed MoNi(111), and see a strong covalent bonding between Mo d-band states and O p-states. The present study provides valuable insight for exploring practical applications of Ni-based alloys as hydrogen evolution electrodes. PMID:28787811

  11. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    PubMed

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  12. Time scale of random sequential adsorption.

    PubMed

    Erban, Radek; Chapman, S Jonathan

    2007-04-01

    A simple multiscale approach to the diffusion-driven adsorption from a solution to a solid surface is presented. The model combines two important features of the adsorption process: (i) The kinetics of the chemical reaction between adsorbing molecules and the surface and (ii) geometrical constraints on the surface made by molecules which are already adsorbed. The process (i) is modeled in a diffusion-driven context, i.e., the conditional probability of adsorbing a molecule provided that the molecule hits the surface is related to the macroscopic surface reaction rate. The geometrical constraint (ii) is modeled using random sequential adsorption (RSA), which is the sequential addition of molecules at random positions on a surface; one attempt to attach a molecule is made per one RSA simulation time step. By coupling RSA with the diffusion of molecules in the solution above the surface the RSA simulation time step is related to the real physical time. The method is illustrated on a model of chemisorption of reactive polymers to a virus surface.

  13. Enhancing the Ion Transport in LiMn1.5Ni0.5O4 by Altering the Particle Wulff Shape via Anisotropic Surface Segregation.

    PubMed

    Huang, Jiajia; Liu, Haodong; Zhou, Naixie; An, Ke; Meng, Ying Shirley; Luo, Jian

    2017-10-25

    Spontaneous and anisotropic surface segregation of W cations in LiMn 1.5 Ni 0.5 O 4 particles can alter the Wulff shape and improve surface stability, thereby significantly improving the electrochemical performance. An Auger electron nanoprobe was employed to identify the anisotropic surface segregation, whereby W cations prefer to segregate to {110} surface facets to decrease its relative surface energy according to Gibbs adsorption theory and subsequently increase its surface area according to Wulff theory. Consequently, the rate performance is improved (e.g., by ∼5-fold at a high rate of 25C) because the {110} facets have more open channels for fast lithium ion diffusion. Furthermore, X-ray photoelectron spectroscopy (XPS) depth profiling suggested that the surface segregation and partial reduction of W cation inhibit the formation of Mn 3+ on surfaces to improve cycling stability via enhancing the cathode electrolyte interphase (CEI) stability at high charging voltages. This is the first report of using anisotropic surface segregation to thermodynamically control the particle morphology as well as enhancing CEI stability as a facile, and potentially general, method to significantly improve the electrochemical performance of battery electrodes. Combining neutron diffraction, an Auger electron nanoprobe, XPS, and other characterizations, we depict the underlying mechanisms of improved ionic transport and CEI stability in high-voltage LiMn 1.5 Ni 0.5 O 4 spinel materials.

  14. Adsorption of Xyloglucan onto Cellulose Surfaces of Different Morphologies: An Entropy-Driven Process.

    PubMed

    Benselfelt, Tobias; Cranston, Emily D; Ondaral, Sedat; Johansson, Erik; Brumer, Harry; Rutland, Mark W; Wågberg, Lars

    2016-09-12

    The temperature-dependence of xyloglucan (XG) adsorption onto smooth cellulose model films regenerated from N-methylmorpholine N-oxide (NMMO) was investigated using surface plasmon resonance spectroscopy, and it was found that the adsorbed amount increased with increasing temperature. This implies that the adsorption of XG to NMMO-regenerated cellulose is endothermic and supports the hypothesis that the adsorption of XG onto cellulose is an entropy-driven process. We suggest that XG adsorption is mainly driven by the release of water molecules from the highly hydrated cellulose surfaces and from the XG molecules, rather than through hydrogen bonding and van der Waals forces as previously suggested. To test this hypothesis, the adsorption of XG onto cellulose was studied using cellulose films with different morphologies prepared from cellulose nanocrystals (CNC), semicrystalline NMMO-regenerated cellulose, and amorphous cellulose regenerated from lithium chloride/dimethylacetamide. The total amount of high molecular weight xyloglucan (XGHMW) adsorbed was studied by quartz crystal microbalance and reflectometry measurements, and it was found that the adsorption was greatest on the amorphous cellulose followed by the CNC and NMMO-regenerated cellulose films. There was a significant correlation between the cellulose dry film thickness and the adsorbed XG amount, indicating that XG penetrated into the films. There was also a correlation between the swelling of the films and the adsorbed amounts and conformation of XG, which further strengthened the conclusion that the water content and the subsequent release of the water upon adsorption are important components of the adsorption process.

  15. Dopant Adsorption and Incorporation at Irradiated GaN Surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, Thomas; Doolittle, W. Alan

    2006-03-01

    Mg and O are two of the common dopants in GaN, but, in spite of extensive investigation, the atomic scale understanding of their adsorption and incorporation is still incomplete. In particular, high-energy electron irradiation, such as occurring during RHEED, has been reported to have an important effect on the incorporation of these impurities, but no study has addressed the detailed mechanisms of this effect yet. Here we use DFT calculations to study the adsorption and incorporation of Mg and O at the Ga- and N-polar GaN surfaces under various Ga, Mg and O coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find that the adsorption and incorporation of the two impurities have opposite surface polarity dependence: substitutional Mg prefers to incorporate at the GaN(0001) surface, while O prefers to adsorb and incorporate at the N-polar surface. In addition, our results indicate that in presence of light irradiation the tendency of Mg to surface-segregate is reduced. The O adsorption energy on the N-polar surface is also significantly reduced, consistent with the experimental observation of a much smaller concentration of oxygen in the irradiated samples.

  16. Adsorption and covalent binding of fibrinogen as a method for probing the chemical composition of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microsphere surfaces.

    PubMed

    Gosecka, Monika; Chehimi, Mohamed M; Basinska, Teresa; Slomkowski, Stanislaw; Makowski, Tomasz

    2017-12-01

    We investigated the distribution of polyglycidol and polystyrene on the surface of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres (random distribution or segregated into hydrophilic and hydrophobic patches), using fibrinogen (Fb) as a macromolecular probe. The fibrinogen was adsorbed or covalently attached to the surface of the poly(styrene-co-α-tert-butoxy-ω-vinylbenzyl-polyglycidol) (P(S/PGLy)) microspheres. The P(S/PGLy) particles were prepared by emulsion copolymerization of styrene and α-tert-butoxy-ω-vinylbenzyl-polyglycidol (PGLy) macromonomer initiated with potassium persulfate. The polymerizations yielded P(S/PGLy) particles with various surface fractions of polyglycidol, depending on the amount of added macromonomer and the addition process. In some syntheses, the entire macromonomer amount was added once at the beginning of the polymerization, while in others, the macromonomer was added gradually after the formation of particle seeds from pure polystyrene. XPS studies revealed that the fraction of polyglycidol in the interfacial layer of the microspheres was larger when the entire amount of macromonomer was added at the beginning of the polymerization than when it was added after formation of the polystyrene seeds. Studies of fibrinogen adsorption provided the first evidence of segregation of the hydrophobic (polystyrene) and hydrophilic (polyglycidol) components at the surface of the composite P(S/PGLy) microspheres into patches. The hydrophobic patches are composed mainly of polystyrene. However, they also contain a small amount of polyglycidol chains, making the adsorption of fibrinogen weaker than the adsorption onto the pure polystyrene. Studies of covalent immobilization of fibrinogen on the microspheres via 1,3,5-trichlorotriazine confirmed these findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enhanced removal of azo dye using modified PAN nanofibrous membrane Fe complexes with adsorption/visible-driven photocatalysis bifunctional roles

    NASA Astrophysics Data System (ADS)

    Li, Fu; Dong, Yongchun; Kang, Weimin; Cheng, Bowen; Cui, Guixin

    2017-05-01

    A series of polyacrylonitrile (PAN) nanofibrous membrane Fe complexes as the Fenton heterogeneous catalysts were fabricated through surface modification with different ratio of hydrazine hydrate (HH) and hydroxylamine (HA) and subsequent coordination with Fe3+ ions for the synergistic removal of a typical azo dye, Reactive Red 195 (RR 195) via adsorption and visible-driven photocatalytic oxidation. Effect of molar ratio of HH and HA on surface structure characteristics of the resulting complexes were examined. Their adsorptive or photocatalytic activity was also compared by changing molar ratio of HH and HA. The results indicated that three PAN nanofibrous membrane Fe complexes prepared with simultaneous modification of HA and HH exhibited much higher adsorption and visible photocatalytic activities than the complex modified solely with HA or HH due to their distinctive surface structures containing more active sites. Their adsorption and visible photocatalytic kinetics of RR 195 followed pseudo-second-order model equation. Their high photocatalytic rate constant and large amount of dye adsorption were regarded as the main reasons for better dye removal efficiency and durability in cyclic reuse by means of the synergistic adsorption-photocatalysis process.

  18. Investigation of iron adsorption on composite transition metal carbides in steel by first-principles calculation

    NASA Astrophysics Data System (ADS)

    Xiong, Hui-Hui; Gan, Lei; Tong, Zhi-Fang; Zhang, Heng-Hua; Zhou, Yang

    2018-05-01

    The nucleation potential of transition metal (TM) carbides formed in steel can be predicted by the behavior of iron adsorption on their surface. Therefore, Fe adsorption on the (001) surface of (A1-xmx)C (A = Nb, Ti, m = Mo, V) was investigated by the first-principles method to reveal the initialization of Fe nucleation. The Mulliken population and partial density of state (PDOS) were also calculated and analyzed in this work. The results show that Fe adsorption depends on the composition and configuration of the composite carbides. The adsorption energy (Wads) of Fe on most of (A1-xmx)C is larger than that of Fe on pure TiC or NbC. The maximum Wads is found for Fe on (Nb0.5Mo0.5)C complex carbide, indicating that this carbide has the high nucleation capacity at early stage. The Fe adsorption could be improved by the segregation of Cr and Mn atoms on the surfaces of (Nb0.5Mo0.5)C and (Ti0.5Mo0.5)C. The PDOS analysis of (Cr, Mn)-doped systems further explains the strong interactions between Fe and Cr or Mn atoms.

  19. Evaluation and selection of refrigeration systems for lunar surface and space applications

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Blount, T. D.; Williams, J. L.

    1971-01-01

    Evaluated are the various refrigeration machines which could be used to provide heat rejection in environmental control systems for lunar surface and spacecraft applications, in order to select the best refrigeration machine for satisfying each individual application and the best refrigeration machine for satisfying all of the applications. The refrigeration machine considered include: (1) vapor comparison cycle (work-driven); (2) vapor adsorption cycle (heat-driven); (3) vapor absorption cycle (heat-driven); (4) thermoelectric (electrically-driven); (5) gas cycle (work driven); (6) steam-jet (heat-driven).

  20. Adsorbate-driven morphological changes on Cu(111) nano-pits

    DOE PAGES

    Mudiyanselage, K.; Xu, F.; Hoffmann, F. M.; ...

    2014-12-09

    Adsorbate-driven morphological changes of pitted-Cu(111) surfaces have been investigated following the adsorption and desorption of CO and H. The morphology of the pitted-Cu(111) surfaces, prepared by Ar + sputtering, exposed a few atomic layers deep nested hexagonal pits of diameters from 8 to 38 nm with steep step bundles. The roughness of pitted-Cu(111) surfaces can be healed by heating to 450-500 K in vacuum. Adsorption of CO on the pitted-Cu(111) surface leads to two infrared peaks at 2089-2090 and 2101-2105 cm -1 for CO adsorbed on under-coordinated sites in addition to the peak at 2071 cm -1 for CO adsorbedmore » on atop sites of the close-packed Cu(111) surface. CO adsorbed on under-coordinated sites is thermally more stable than that of atop Cu(111) sites. Annealing of the CO-covered surface from 100 to 300 K leads to minor changes of the surface morphology. In contrast, annealing of a H covered surface to 300 K creates a smooth Cu(111) surface as deduced from infrared data of adsorbed CO and scanning tunnelling microscopy (STM) imaging. The observation of significant adsorbate-driven morphological changes with H is attributed to its stronger modification of the Cu(111) surface by the formation of a sub-surface hydride with a hexagonal structure, which relaxes into the healed Cu(111) surface upon hydrogen desorption. These morphological changes occur ~150 K below the temperature required for healing of the pitted-Cu(111) surface by annealing in vacuum. In contrast, the adsorption of CO, which only interacts with the top-most Cu layer and desorbs by 160 K, does not significantly change the morphology of the pitted-Cu(111) surface.« less

  1. Modeling Pressure-Driven Transport of Proteins through a Nanochannel

    PubMed Central

    Carr, Rogan; Comer, Jeffrey; Ginsberg, Mark D.; Aksimentiev, Aleksei

    2012-01-01

    Reducing the size of a nanofluidic channel not only creates new opportunities for high-precision manipulation of biological macromolecules, but also makes the performance of the entire nanofluidic system more susceptible to undesirable interactions between the transported biomolecules and the walls of the channel. In this manuscript, we report molecular dynamics simulations of a pressure-driven flow through a silica nanochannel that characterized, with atomic resolution, adsorption of a model protein to its surface. Although the simulated adsorption of the proteins was found to be nonspecific, it had a dramatic effect on the rate of the protein transport. To determine the relative strength of the protein–silica interactions in different adsorbed states, we simulated flow-induced desorption of the proteins from the silica surface. Our analysis of the protein conformations in the adsorbed states did not reveal any simple dependence of the adsorption strength on the size and composition of the protein–silica contact, suggesting that the heterogeneity of the silica surface may be a important factor. PMID:22611338

  2. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A.; Jackson, George

    2018-04-01

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  3. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement.

    PubMed

    Wu, Liang; Malijevský, Alexandr; Avendaño, Carlos; Müller, Erich A; Jackson, George

    2018-04-28

    A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

  4. A comparative study of fibrinogen adsorption onto metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Silva-Bermudez, P.; Muhl, S.; Rodil, S. E.

    2013-10-01

    One of the first events occurring upon foreign material-biological medium contact is the adsorption of proteins, which evolution greatly determines the cells response to the material. Protein-surface interactions are a complex phenomenon driven by the physicochemical properties of the surface, protein(s) and liquid medium involve in the interaction. In this article the adsorption of fibrinogen (Fbg) onto Ta2O5, Nb2O5, TiO2 and ZrO2 thin films is reported. The adsorption kinetics and characteristics of the adsorbed fibrinogen layer were studied in situ using dynamic and spectroscopic ellipsometry. The films wettability, surface energy (γLW/AB) and roughness were characterized aiming to elucidate their correlations with Fbg adsorption. The adsorption rate changed accordingly to the film; the fastest adsorption rate and highest Fbg surface mass concentration (Γ) was observed on ZrO2. The hydrophobic/hydrophilic character of the oxide highly influenced Fbg adsorption. On Ta2O5, Nb2O5 and TiO2, which were either hydrophilic or in the breaking-point between hydrophilicity and hydrophobicity, Γ was correlated to the polar component of γLW/AB and roughness of the surface. On ZrO2, clearly hydrophobic, Γ increased significantly off the correlation observed for the other films. The results indicated different adsorption dynamics and orientations of the Fbg molecules dependent on the surface hydrophobic/hydrophilic character.

  5. First-principles molecular dynamics study of water dissociation on the γ-U(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Zhang, Ping

    2015-05-01

    Based on first-principles molecular dynamics simulations at finite temperatures, we systematically study the adsorption and dissociation of water molecules on the γ-U(1 0 0) surface. We predict that water molecules spontaneously dissociate upon approaching the native γ-U(1 0 0) surface. The dissociation results from electronic interactions between surface uranium 6d states and 1b2, 3a1, and 1b1 molecular orbitals of water. With segregated Nb atoms existing on the surface, adsorbing water molecules also dissociate spontaneously because Nb 3d electronic states can also interact with the molecular orbitals similarly. After dissociation, the isolated hydrogen atoms are found to diffuse fast on both the γ-U surface and that with a surface substitutional Nb atom, which is very similar to the ‘Hot-Atom’ dissociation of oxygen molecules on the Al(1 1 1) surface. From a series of consecutive molecular dynamics simulations, we further reveal that on both the γ-U surface and that with a surface substitutional Nb atom, one surface U atom will be pulled out to form the U-O-U structure after dissociative adsorption of 0.44 ML water molecules. This result indicates that oxide nucleus can form at low coverage of water adsorption on the two surfaces.

  6. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  7. In situ formation of the active sites in Pd-Au bimetallic nanocatalysts for CO oxidation: NAP (near ambient pressure) XPS and MS study.

    PubMed

    Bukhtiyarov, A V; Prosvirin, I P; Saraev, A A; Klyushin, A Yu; Knop-Gericke, A; Bukhtiyarov, V I

    2018-06-07

    Model bimetallic Pd-Au/HOPG catalysts have been investigated in the CO oxidation reaction using a combination of NAP XPS and MS techniques. The samples have shown catalytic activity at temperatures above 150 °C. The redistribution of Au and Pd on the surface depending on the reaction conditions has been demonstrated using NAP XPS. The Pd enrichment of the bimetallic particles' surface under reaction gas mixture has been shown. Apparently, CO adsorption induces Pd segregation on the surface. Heating the sample under reaction conditions above 150 °C decomposes the Pd-CO state due to CO desorption and reaction and simultaneous Pd-Au alloy formation on the surface takes place. Cooling back down to RT results in reversible Pd segregation due to Pd-CO formation and the sample becomes inactive. It has been shown that in situ studies are necessary for investigation of the active sites in Pd-Au bimetallic systems.

  8. Boundary layers of aqueous surfactant and block copolymer solutions against hydrophobic and hydrophilic solid surfaces

    NASA Astrophysics Data System (ADS)

    Steitz, Roland; Schemmel, Sebastian; Shi, Hongwei; Findenegg, Gerhard H.

    2005-03-01

    The boundary layer of aqueous surfactants and amphiphilic triblock copolymers against flat solid surfaces of different degrees of hydrophobicity was investigated by neutron reflectometry (NR), grazing incidence small angle neutron scattering (GISANS) and atomic force microscopy (AFM). Solid substrates of different hydrophobicities were prepared by appropriate surface treatment or by coating silicon wafers with polymer films of different chemical natures. For substrates coated with thin films (20-30 nm) of deuterated poly(styrene) (water contact angle \\theta_{\\mathrm {w}} \\approx 90^\\circ ), neutron reflectivity measurements on the polymer/water interface revealed a water depleted liquid boundary layer of 2-3 nm thickness and a density about 90% of the bulk water density. No pronounced depletion layer was found at the interface of water against a less hydrophobic polyelectrolyte coating (\\theta_{\\mathrm {w}} \\approx 63^\\circ ). It is believed that the observed depletion layer at the hydrophobic polymer/water interface is a precursor of the nanobubbles which have been observed by AFM at this interface. Decoration of the polymer coatings by adsorbed layers of nonionic CmEn surfactants improves their wettability by the aqueous phase at surfactant concentrations well below the critical micellar concentration (CMC) of the surfactant. Here, GISANS experiments conducted on the system SiO2/C8E4/D2O reveal that there is no preferred lateral organization of the C8E4 adsorption layers. For amphiphilic triblock copolymers (PEO-PPO-PEO) it is found that under equilibrium conditions they form solvent-swollen brushes both at the air/water and the solid/water interface. In the latter case, the brushes transform to uniform, dense layers after extensive rinsing with water and subsequent solvent evaporation. The primary adsorption layers maintain properties of the precursor brushes. In particular, their thickness scales with the number of ethylene oxide units (EO) of the block copolymer. In the case of dip-coating without subsequent rinsing, surface patterns of the presumably crystalline polymer on top of the primary adsorption layer develop upon drying under controlled conditions. The morphology depends mainly on the nominal surface coverage with the triblock copolymer. Similar morphologies are found on bare and polystyrene-coated silicon substrates, indicating that the surface patterning is mainly driven by segregation forces within the polymer layers and not by interactions with the substrate.

  9. Adsorption of charged albumin subdomains on a graphite surface.

    PubMed

    Raffaini, Giuseppina; Ganazzoli, Fabio

    2006-03-01

    We report some new molecular dynamics simulation results about the adsorption on a hydrophobic graphite surface of two albumin subdomains, each formed by three different alpha-helices, considering the correctly charged side groups at pH = 7 instead of the neutral ones as done in our previous exploratory paper (Raffaini and Ganazzoli, Langmuir 2003;19:3403-3412). We find that the presence of charges affects somewhat the initial adsorption stage on the electrostatically neutral surface, but not the final one. Thus, we recover the result that a monolayer of aminoacids is eventually formed, with a rough parallelism of distant strands to optimize both the intramolecular and the surface interactions. This feature is consistent with the adsorption on the hydrophobic surface being driven by dispersion forces only, and with the "soft" nature of albumin. Additional optimizations of the final monolayer carried out at pH = 3 and 11 do not modify appreciably this picture, suggesting that adsorption on graphite is basically independent of pH. The enhanced hydration of the final adsorption state due to the (delocalized) charges of the side groups is also discussed in comparison with similar results of the neutralized subdomains. (c) 2005 Wiley Periodicals, Inc.

  10. pH and generation dependent morphologies of PAMAM dendrimers on a graphene substrate.

    PubMed

    Gosika, Mounika; Maiti, Prabal K

    2018-03-07

    The adsorption of PAMAM dendrimers at solid/water interfaces has been extensively studied, and is mainly driven by electrostatic and van der Waals interactions between the substrate and the dendrimers. However, the pH dependence of the adsorption driven predominantly by the van der Waals interactions is poorly explored, although it is crucial for investigating the potentiality of these dendrimers in supercapacitors and surface patterning. Motivated by this aspect, we have studied the adsorption behavior of PAMAM dendrimers of generations 2 (G2) to 5 (G5) with pH and salt concentration variation, on a charge neutral graphene substrate, using fully atomistic molecular dynamics simulations. The instantaneous snapshots from our simulations illustrate that the dendrimers deform significantly from their bulk structures. Based on various structural property calculations, we classify the adsorbed dendrimer morphologies into five categories and map them to a phase diagram. Interestingly, the morphologies we report here have striking analogies with those reported in star-polymer adsorption studies. From the fractional contacts and other structural property analyses we find that the deformations are more pronounced at neutral pH as compared to high and low pH. Higher generation dendrimers resist deformation following the deformation trend, G2 > G3 > G4 > G5 at any given pH level. As the adsorption here is mainly driven by van der Waals interactions, we observe no desorption of the dendrimers as the salt molarity is increased, unlike that reported in the electrostatically driven adsorption studies.

  11. Study toward high-performance thermally driven air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Miyawaki, Jin; Ohba, Tomonori; Yoon, Seong-Ho; Saha, Bidyut Baran; Koyama, Shigeru

    2017-01-01

    The Adsorption heat pump is a technology for cooling and heating by using hot water as a driving heat source. It will largely contribute to energy savings when it is driven by solar thermal energy or waste heat. The system is available in the market worldwide, and there are many examples of application to heat recovery in factories and to solar cooling systems. In the present system, silica gel and zeolite are popular adsorbents in combination with water refrigerant. Our study focused on activated carbon-ethanol pair for adsorption cooling system because of the potential to compete with conventional systems in terms of coefficient of performance. In addition, activated-ethanol pair can generally produce larger cooling effect by an adsorption-desorption cycle compared with that of the conventional pairs in terms of cooling effect per unit adsorbent mass. After the potential of a commercially available activated carbon with highest level specific surface area was evaluated, we developed a new activated carbon that has the optimum pore characteristics for the purpose of solar or waste heat driven cooling systems. In this paper, comparison of refrigerants for adsorption heat pump application is presented, and a newly developed activated carbon for ethanol adsorption heat pump is introduced.

  12. Adsorption of Selenium and Strontium on Goethite: EXAFS Study and Surface Complexation Modeling of the Ternary Systems.

    PubMed

    Nie, Zhe; Finck, Nicolas; Heberling, Frank; Pruessmann, Tim; Liu, Chunli; Lützenkirchen, Johannes

    2017-04-04

    Knowledge of the geochemical behavior of selenium and strontium is critical for the safe disposal of radioactive wastes. Goethite, as one of the most thermodynamically stable and commonly occurring natural iron oxy-hydroxides, promisingly retains these elements. This work comprehensively studies the adsorption of Se(IV) and Sr(II) on goethite. Starting from electrokinetic measurements, the binary and ternary adsorption systems are investigated and systematically compared via batch experiments, EXAFS analysis, and CD-MUSIC modeling. Se(IV) forms bidentate inner-sphere surface complexes, while Sr(II) is assumed to form outer-sphere complexes at low and intermediate pH and inner-sphere complexes at high pH. Instead of a direct interaction between Se(IV) and Sr(II), our results indicate an electrostatically driven mutual enhancement of adsorption. Adsorption of Sr(II) is promoted by an average factor of 5 within the typical groundwater pH range from 6 to 8 for the concentration range studied here. However, the interaction between Se(IV) and Sr(II) at the surface is two-sided, Se(IV) promotes Sr(II) outer-sphere adsorption, but competes for inner-sphere adsorption sites at high pH. The complexity of surfaces is highlighted by the inability of adsorption models to predict isoelectric points without additional constraints.

  13. Evolution of the surface species of the V 2O 5-WO 3 catalysts

    NASA Astrophysics Data System (ADS)

    Najbar, M.; Brocławik, E.; Góra, A.; Camra, J.; Białas, A.; Wesełucha-Birczyńska, A.

    2000-07-01

    Vanadia-related species formed as a result of vanadium segregation at the surface of V-W oxide bronze crystallites were investigated. The structures of these species and their transformations induced by oxygen removal and oxygen adsorption were monitored using photoelectron spectroscopy and the FT Raman technique. Assignments of the MeO vibrational bands, based on the results of DFT calculations for model clusters, have been proposed. Two kinds of surface species are dominant depending on the tungsten content: V 4+-O-W 6+ at low tungsten content and V 5+-O-W 5+ at higher tungsten concentration.

  14. Flexible Charged Macromolecules on Mixed Fluid Lipid Membranes: Theory and Monte Carlo Simulations

    PubMed Central

    Tzlil, Shelly; Ben-Shaul, Avinoam

    2005-01-01

    Fluid membranes containing charged lipids enhance binding of oppositely charged proteins by mobilizing these lipids into the interaction zone, overcoming the concomitant entropic losses due to lipid segregation and lower conformational freedom upon macromolecule adsorption. We study this energetic-entropic interplay using Monte Carlo simulations and theory. Our model system consists of a flexible cationic polyelectrolyte, interacting, via Debye-Hückel and short-ranged repulsive potentials, with membranes containing neutral lipids, 1% tetravalent, and 10% (or 1%) monovalent anionic lipids. Adsorption onto a fluid membrane is invariably stronger than to an equally charged frozen or uniform membrane. Although monovalent lipids may suffice for binding rigid macromolecules, polyvalent counter-lipids (e.g., phosphatidylinositol 4,5 bisphosphate), whose entropy loss upon localization is negligible, are crucial for binding flexible macromolecules, which lose conformational entropy upon adsorption. Extending Rosenbluth's Monte Carlo scheme we directly simulate polymer adsorption on fluid membranes. Yet, we argue that similar information could be derived from a biased superposition of quenched membrane simulations. Using a simple cell model we account for surface concentration effects, and show that the average adsorption probabilities on annealed and quenched membranes coincide at vanishing surface concentrations. We discuss the relevance of our model to the electrostatic-switch mechanism of, e.g., the myristoylated alanine-rich C kinase substrate protein. PMID:16126828

  15. An Apical MRCK-driven Morphogenetic Pathway Controls Epithelial Polarity

    PubMed Central

    Zihni, Ceniz; Vlassaks, Evi; Terry, Stephen; Carlton, Jeremy; Leung, Thomas King Chor; Olson, Michael; Pichaud, Franck; Balda, Maria Susana; Matter, Karl

    2017-01-01

    Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning defective (PAR) proteins that are separated into distinct cortical domains. PAR protein segregation is thought to be a consequence of asymmetric actomyosin contractions. The mechanism of activation of apically polarized actomyosin contractility is unknown. Here we show that the Cdc42 effector MRCK activates Myosin-II at the apical pole to segregate aPKC-Par6 from junctional Par3, defining the apical domain. Apically polarized MRCK-activated actomyosin contractility is reinforced by cooperation with aPKC-Par6 downregulating antagonistic RhoA-driven junctional actomyosin contractility, and drives polarization of cytosolic brush border determinants and apical morphogenesis. MRCK-activated polarized actomyosin contractility is required for apical differentiation and morphogenesis in vertebrate epithelia and Drosophila photoreceptors. Our results identify an apical origin of actomyosin-driven morphogenesis that couples cytoskeletal reorganization to PAR polarity signalling. PMID:28825699

  16. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, D.H.

    1984-08-30

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.

  17. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  18. Static adsorptive fouling of extracellular polymeric substances with different membrane materials.

    PubMed

    Su, Xinying; Tian, Yu; Zuo, Wei; Zhang, Jun; Li, Hui; Pan, Xiaoyue

    2014-03-01

    Adsorptive fouling of microbial extracellular polymeric substances (EPS) greatly influences the fouling behavior and membrane characteristics in a membrane bioreactor (MBR). In this study, adsorptive fouling of the EPS on different membrane materials was compared and adsorptive mechanism between membranes and EPS was investigated by thermodynamic analysis. The results suggested that both the absolute and relative changes of hydraulic resistances should be considered to evaluate fouling of membranes with different materials, and Sips isotherm was the most suitable model to describe the EPS carbohydrate and protein adsorptions on membranes. Thermodynamic analysis showed that both EPS carbohydrate and protein adsorptions were spontaneous (ΔrG(θ) < 0), endothermic (ΔrH(θ) > 0), and entropy driven (ΔrS(θ) > 0). Decreasing ΔrG(θ) values with temperature suggested that EPS adsorptive fouling can be limited by reducing temperature. In addition, physisorption processes and hydrogen bonding interactions between EPS and membranes might play a relatively major role in the adsorption mechanism of EPS on the membrane surface. Atomic force microscopy (AFM) and contact angle analysis confirmed that the adsorptive fouling modified the membrane surface, making the membrane surface more heterogeneous and more hydrophobic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2011-07-01

    Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC). Copyright © 2011 Elsevier B.V. All rights reserved.

  20. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    NASA Astrophysics Data System (ADS)

    Erikat, I. A.; Hamad, B. A.

    2013-11-01

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  1. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface.

    PubMed

    Erikat, I A; Hamad, B A

    2013-11-07

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  2. Fibronectin module FN(III)9 adsorption at contrasting solid model surfaces studied by atomistic molecular dynamics.

    PubMed

    Kubiak-Ossowska, Karina; Mulheran, Paul A; Nowak, Wieslaw

    2014-08-21

    The mechanism of human fibronectin adhesion synergy region (known as integrin binding region) in repeat 9 (FN(III)9) domain adsorption at pH 7 onto various and contrasting model surfaces has been studied using atomistic molecular dynamics simulations. We use an ionic model to mimic mica surface charge density but without a long-range electric field above the surface, a silica model with a long-range electric field similar to that found experimentally, and an Au {111} model with no partial charges or electric field. A detailed description of the adsorption processes and the contrasts between the various model surfaces is provided. In the case of our model silica surface with a long-range electrostatic field, the adsorption is rapid and primarily driven by electrostatics. Because it is negatively charged (-1e), FN(III)9 readily adsorbs to a positively charged surface. However, due to its partial charge distribution, FN(III)9 can also adsorb to the negatively charged mica model because of the absence of a long-range repulsive electric field. The protein dipole moment dictates its contrasting orientation at these surfaces, and the anchoring residues have opposite charges to the surface. Adsorption on the model Au {111} surface is possible, but less specific, and various protein regions might be involved in the interactions with the surface. Despite strongly influencing the protein mobility, adsorption at these model surfaces does not require wholesale FN(III)9 conformational changes, which suggests that the biological activity of the adsorbed protein might be preserved.

  3. Polymer adsorption-driven self-assembly of nanostructures.

    PubMed

    Chakraborty, A K; Golumbfskie, A J

    2001-01-01

    Driven by prospective applications, there is much interest in developing materials that can perform specific functions in response to external conditions. One way to design such materials is to create systems which, in response to external inputs, can self-assemble to form structures that are functionally useful. This review focuses on the principles that can be employed to design macromolecules that when presented with an appropriate two-dimensional surface, will self-assemble to form nanostructures that may be functionally useful. We discuss three specific examples: (a) biomimetic recognition between polymers and patterned surfaces. (b) control and manipulation of nanomechanical motion generated by biopolymer adsorption and binding, and (c) creation of patterned nanostructuctures by exposing molten diblock copolymers to patterned surfaces. The discussion serves to illustrate how polymer sequence can be manipulated to affect self-assembly characteristics near adsorbing surfaces. The focus of this review is on theoretical and computational work aimed toward elucidating the principles underlying the phenomena pertinent to the three topics noted above. However, synergistic experiments are also described in the appropriate context.

  4. Gibbsian segregating alloys driven by thermal and concentration gradients: A potential grazing collector optics used in EUV lithography

    NASA Astrophysics Data System (ADS)

    Qiu, Huatan

    A critical issue for EUV lithography is the minimization of collector degradation from intense plasma erosion and debris deposition. Reflectivity and lifetime of the collector optics will be heavily dependent on surface chemistry interactions between fuels and various mirror materials, in addition to high-energy ion and neutral particle erosion effects. An innovative Gibbsian segregation (GS) concept has been developed for being a self-healing, erosion-resistant collector optics. A Mo-Au GS alloy is developed on silicon using a DC dual-magnetron co-sputtering system in order for enhanced surface roughness properties, erosion resistance, and self-healing characteristics to maintain reflectivity over a longer period of mirror lifetime. A thin Au segregating layer will be maintained through segregation during exposure, even though overall erosion is taking place. The reflective material, Mo, underneath the segregating layer will be protected by this sacrificial layer which is lost due to preferential sputtering. The two dominant driving forces, thermal (temperature) and surface concentration gradient (surface removal flux), are the focus of this work. Both theoretical and experimental efforts have been performed to prove the effectiveness of the GS alloy used as EUV collection optics, and to elucidate the underlying physics behind it. The segregation diffusion, surface balance, erosion, and in-situ reflectivity will be investigated both qualitatively and quantitatively. Results show strong enhancement effect of temperature on GS performance, while only a weak effect of surface removal rate on GS performance. When equilibrium between GS and erosion is reached, the surface smoothness could be self-healed and reflectivity could be maintained at an equilibrium level, instead of continuously dropping down to an unacceptable level as conventional optic mirrors behave. GS process also shows good erosion resistance. The effectiveness of GS alloy as EUV mirror is dependent on the temperature and surface removal rate. The Mo-Au GS alloy could be effective at elevated temperature as the potential grazing mirror as EUV collector optics.

  5. Energetics of small molecule and water complexation in hydrophobic calixarene cavities.

    PubMed

    Notestein, Justin M; Katz, Alexander; Iglesia, Enrique

    2006-04-25

    Calixarenes grafted on silica are energetically uniform hosts that bind aromatic guests with 1:1 stoichiometry, as shown by binding energies that depend upon the calixarene upper rim composition but not on their grafted surface density (0.02-0.23 nm(-2)). These materials are unique in maintaining a hydrophilic silica surface, as probed by H2O physisorption measurements, while possessing a high density of hydrophobic binding sites that are orthogonal to the silica surface below them. The covalently enforced cone-shaped cavities and complete accessibility of these rigidly grafted calixarenes allow the first unambiguous measurements of the thermodynamics of guest interaction with the same calixarene cavities in aqueous solution and vapor phase. Similar to adsorption into nonpolar protein cavities, adsorption into these hydrophobic cavities from aqueous solution is enthalpy-driven, which is in contrast to entropy-driven adsorption into water-soluble hydrophobic hosts such as beta cyclodextrin. The adsorption thermodynamics of several substituted aromatics from vapor and liquid are compared by (i) describing guest chemical potentials relative to pure guest, which removes differences among guests because of aqueous solvation and van der Waals contacts in the pure condensed phase, and (ii) passivating residual guest binding sites on exposed silica, titrated by water during adsorption from aqueous solution, using inorganic salts before vapor adsorption. Adsorption isotherms depend only upon the saturation vapor pressure of each guest, indicating that guest binding from aqueous or vapor media is controlled by van der Waals contacts with hydrophobic calixarene cavities acting as covalently assembled condensation nuclei, without apparent contributions from CH-pi or other directional interactions. These data also provide the first direct quantification of free energies for interactions of water with the calixarene cavity interior. The calixarene-water interface is stabilized by approximately 20 kJ/mol relative to the water-vapor interface, indicating that water significantly competes with the aromatic guests for adsorption at these ostensibly hydrophobic cavities. This result is useful for understanding models of water interactions with other concave hydrophobic surfaces, including those commonly observed within proteins.

  6. A scanning tunneling microscopy study of PH 3 adsorption on Si(1 1 1)-7 × 7 surfaces, P-segregation and thermal desorption

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Shen, T.-C.

    2007-04-01

    PH 3 adsorption on Si(1 1 1)-7 × 7 was studied after various exposures between 0.3 and 60 L at room temperature by means of scanning tunneling microscopy (STM). PH 3-, PH 2-, H-reacted, and unreacted adatoms can be identified by analyzing empty-state STM images at different sample biases. PH x-reacted rest-atoms can be observed in empty-state STM images if neighboring adatoms are hydrogen terminated. Most of the PH 3 adsorbs dissociatively on the surface, generating H- and PH 2-adsorbed rest-atom and adatom sites. Dangling-bonds at rest-atom sites are more reactive than adatom sites and the faulted half of the 7 × 7 unit cell is more reactive than the unfaulted half. Center adatoms are overwhelmingly preferred over corner adatoms for PH 2 adsorption. The saturation P coverage is ˜0.18 ML. Annealing of PH 3-reacted 7 × 7 surfaces at 900 K generates disordered, partially P-covered surfaces, but dosing PH 3 at 900 K forms P/Si(1 1 1)- 6√{3} surfaces. Si deposition at 510 K leaves disordered clusters on the surface, which cannot be reordered by annealing up to 800 K. However, annealing above 900 K recreates P/Si(1 1 1)- 6√{3} surfaces. Surface morphologies formed by sequential rapid thermal annealing are also presented.

  7. BSMV as a Biotemplate for Palladium Nanomaterial Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adigun, Oluwamayowa O.; Retzlaff-Roberts, Erin Lynn; Novikova, Gloria

    BSMV was successfully used as a biotemplate to form high quality Pd nanorods in the absence of an exogenous reducer. The nanorods synthesized were uniform with controllable diameters. X-ray absorption spectroscopy (XAS) studies were used to elucidate the fundamental rate law for Pd reduction mediated by the virus surface. The technique was subsequently combined with UV-Vis spectroscopy to decouple the processes of adsorption and reduction of Pd precursor. Adsorption was best modeled by a multi-step Langmuir isotherm. It was deduced that the 1st local isotherm is governed by electrostatically driven adsorption, which is then followed by sorption driven by covalentmore » affinity of metal precursor molecules for amino residues. Finally, study of the BSMV-Pd particles using USAXS enabled the characterization of all length scales in the synthesized particles.« less

  8. CO2 hydrogenation on a metal hydride surface.

    PubMed

    Kato, Shunsuke; Borgschulte, Andreas; Ferri, Davide; Bielmann, Michael; Crivello, Jean-Claude; Wiedenmann, Daniel; Parlinska-Wojtan, Magdalena; Rossbach, Peggy; Lu, Ye; Remhof, Arndt; Züttel, Andreas

    2012-04-28

    The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface. This journal is © the Owner Societies 2012

  9. Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes.

    PubMed

    Li, Chengcheng; Wang, Tuo; Zhao, Zhi-Jian; Yang, Weimin; Li, Jian-Feng; Li, Ang; Yang, Zhilin; Ozin, Geoffrey A; Gong, Jinlong

    2018-05-04

    A hundred years on, the energy-intensive Haber-Bosch process continues to turn the N 2 in air into fertilizer, nourishing billions of people while causing pollution and greenhouse gas emissions. The urgency of mitigating climate change motivates society to progress toward a more sustainable method for fixing N 2 that is based on clean energy. Surface oxygen vacancies (surface O vac ) hold great potential for N 2 adsorption and activation, but introducing O vac on the very surface without affecting bulk properties remains a great challenge. Fine tuning of the surface O vac by atomic layer deposition is described, forming a thin amorphous TiO 2 layer on plasmon-enhanced rutile TiO 2 /Au nanorods. Surface O vac in the outer amorphous TiO 2 thin layer promote the adsorption and activation of N 2 , which facilitates N 2 reduction to ammonia by excited electrons from ultraviolet-light-driven TiO 2 and visible-light-driven Au surface plasmons. The findings offer a new approach to N 2 photofixation under ambient conditions (that is, room temperature and atmospheric pressure). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterizing and modeling protein-surface interactions in lab-on-chip devices

    NASA Astrophysics Data System (ADS)

    Katira, Parag

    Protein adsorption on surfaces determines the response of other biological species present in the surrounding solution. This phenomenon plays a major role in the design of biomedical and biotechnological devices. While specific protein adsorption is essential for device function, non-specific protein adsorption leads to the loss of device function. For example, non-specific protein adsorption on bioimplants triggers foreign body response, in biosensors it leads to reduced signal to noise ratios, and in hybrid bionanodevices it results in the loss of confinement and directionality of molecular shuttles. Novel surface coatings are being developed to reduce or completely prevent the non-specific adsorption of proteins to surfaces. A novel quantification technique for extremely low protein coverage on surfaces has been developed. This technique utilizes measurement of the landing rate of microtubule filaments on kinesin proteins adsorbed on a surface to determine the kinesin density. Ultra-low limits of detection, dynamic range, ease of detection and availability of a ready-made kinesin-microtubule kit makes this technique highly suitable for detecting protein adsorption below the detection limits of standard techniques. Secondly, a random sequential adsorption model is presented for protein adsorption to PEO-coated surfaces. The derived analytical expressions accurately predict the observed experimental results from various research groups, suggesting that PEO chains act as almost perfect steric barriers to protein adsorption. These expressions can be used to predict the performance of a variety of systems towards resisting protein adsorption and can help in the design of better non-fouling surface coatings. Finally, in biosensing systems, target analytes are captured and concentrated on specifically adsorbed proteins for detection. Non-specific adsorption of proteins results in the loss of signal, and an increase in the background. The use of nanoscale transducers as receptors is beneficial from the point of view of signal enhancement, but has a strong mass transport limitation. To overcome this, the use of molecular shuttles has been proposed that can selectively capture analytes and actively transport them to the nanoreceptors. The effect of employing such a two-stage capture process on biosensor sensitivity is theoretically investigated and an optimum design for a kinesin-microtubule-driven hybrid biosensor is proposed.

  11. Continuum modelling of segregating tridisperse granular chute flow

    NASA Astrophysics Data System (ADS)

    Deng, Zhekai; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2018-03-01

    Segregation and mixing of size multidisperse granular materials remain challenging problems in many industrial applications. In this paper, we apply a continuum-based model that captures the effects of segregation, diffusion and advection for size tridisperse granular flow in quasi-two-dimensional chute flow. The model uses the kinematics of the flow and other physical parameters such as the diffusion coefficient and the percolation length scale, quantities that can be determined directly from experiment, simulation or theory and that are not arbitrarily adjustable. The predictions from the model are consistent with experimentally validated discrete element method (DEM) simulations over a wide range of flow conditions and particle sizes. The degree of segregation depends on the Péclet number, Pe, defined as the ratio of the segregation rate to the diffusion rate, the relative segregation strength κij between particle species i and j, and a characteristic length L, which is determined by the strength of segregation between smallest and largest particles. A parametric study of particle size, κij, Pe and L demonstrates how particle segregation patterns depend on the interplay of advection, segregation and diffusion. Finally, the segregation pattern is also affected by the velocity profile and the degree of basal slip at the chute surface. The model is applicable to different flow geometries, and should be easily adapted to segregation driven by other particle properties such as density and shape.

  12. Anions adsorption onto nanoparticles: effects on colloid stability and mobility in the environment

    NASA Astrophysics Data System (ADS)

    Missana, Tiziana; Benedicto, Ana; Mayordomo, Natalia; Alonso, Ursula

    2013-04-01

    Nanoparticles and colloids can enhance the contaminant transport in groundwater, if the contaminant is irreversibly adsorbed onto their surface; additionally colloids must be stable and mobile under the chemical conditions of the environment of interest. Colloid stability and mobility are factors directly related to the chemistry of the water, which determines the charge and size of the particles, but these colloidal properties can also be affected by the contaminant adsorption. This last point, which is potentially very relevant on the overall colloid-driven transport, is scarcely investigated. The evaluation of the stability of a colloidal system is generally carried out by measuring the aggregation kinetic after the change of a specific chemical condition, mainly pH or ionic strength of the aqueous solution. The effect of anion adsorption onto the stability of colloidal systems is mostly neglected. Parameters of the nanoparticles,as the point of zero charge (pH PCZ) or the isoelectric point (pH IEP) are determined with "inert" electrolytes and this might not be representative of their real behavior in natural systems. In this work, the effects of the Se(IV) (selenite) adsorption on alumina (Al2O3) nanoparticles have been analyzed. Selenite adsorption was studied in a wide range of pH (2-12) and ionic strengths (0.0005 - 0.1 M in NaClO4) and the effect of the adsorption on the main properties of the colloids (size and charge) were analyzed. Se adsorption on Al2O3 is almost independent of the ionic strength and decreases with increasing pH; sorption data were successfully fit by surface complexation modeling. Selenite adsorption (at medium-high surface occupancies) clearly affected the stability of Al2O3 colloids, with a clear shift of the isoelectric point towards more acid pH and enhancing colloid aggregation when the ionic strength increases. Considering the obtained results, the effect of anions in the chemical composition of natural water, frequently not accounted for in stability studies, will be discussed, as well as their implications on possible colloid-driven selenite transport in the environment.

  13. Effect of Organic Cations on Hydrogen Oxidation Reaction of Carbon Supported Platinum

    DOE PAGES

    Chung, Hoon Taek; Choe, Yong-Kee; Martinez, Ulises; ...

    2016-11-02

    Effect of organic cations on hydrogen oxidation reaction (HOR) of carbon supported platinum (Pt/C) is investigated using three 0.1 M alkaline electrolytes, tetramethylammonium hydroxide (TMAOH), tetrabutylammonium hydroxide (TBAOH) and tetrabutylphosphonium hydroxide (TBPOH). Rotating disk electrode experiments indicate that the HOR of Pt/C is adversely impacted by time-dependent and potential-driven chemisorption of organic cations. In-situ infrared reflection adsorption spectroscopy experiments indicated that the specific chemisorption of organic cations drives the hydroxide co-adsorption on Pt surface. The co-adsorption of TMA + and hydroxide at 0.1 V vs. reversible hydrogen electrode is the strongest; consequently, complete removal of the co-adsorbed layer from Ptmore » surface is difficult even after exposure the Pt surface to 1.2 V. Conversely, the chemisorption of TBP+ is the weakest, yet notable decrease of HOR current density is still observed. The adsorption energies, ΔE, for TMA +, TBA +, and TBP + on Pt (111) surface from density functional theory are computed to be -2.79, -2.42 and -2.00 eV, respectively. The relatively low adsorption energy of TBP + is explained by the steric hindrance and electronic effect. This study emphasizes the importance of cationic group on HOR activity of alkaline anion exchange membrane fuel cells.« less

  14. Influence of the physico-chemical properties of CeO 2-ZrO 2 mixed oxides on the catalytic oxidation of NO to NO 2

    NASA Astrophysics Data System (ADS)

    Atribak, Idriss; Guillén-Hurtado, Noelia; Bueno-López, Agustín; García-García, Avelina

    2010-10-01

    Commercial and home-made Ce-Zr catalysts prepared by co-precipitation were characterised by XRD, Raman spectroscopy, N 2 adsorption at -196 °C and XPS, and were tested for NO oxidation to NO 2. Among the different physico-chemical properties characterised, the surface composition seems to be the most relevant one in order to explain the NO oxidation capacity of these Ce-Zr catalysts. As a general trend, Ce-Zr catalysts with a cerium-rich surface, that is, high XPS-measured Ce/Zr atomic surface ratios, are more active than those with a Zr-enriched surface. The decrease in catalytic activity of the Ce-Zr mixed oxided upon calcinations at 800 °C with regard to 500 °C is mainly attributed to the decrease in Ce/Zr surface ratio, that is, to the surface segregation of Zr. The phase composition (cubic or t'' for Ce-rich compositions) seems not to be a direct effect on the catalytic activity for NO oxidation in the range of compositions tested. However, the formation of a proper solid solution prevents important surface segregation of Zr upon calcinations at high temperature. The effect of the BET surface area in the catalytic activity for NO oxidation of Ce-Zr mixed oxides is minor in comparison with the effect of the Ce/Zr surface ratio.

  15. Adsorption and desorption of carbaryl on hexadecyl trimethyl ammonium bromide modified zeolite NaY using RGB portable photometer

    NASA Astrophysics Data System (ADS)

    Patdhanagul, Nopbhasinthu; Chanpaka, Saiphon; Intharaksa, Orapan; Sirival, Rujikarn; Thanomsith, Kannikar; Wongkwanklom, Sarayuth

    2018-04-01

    The carbaryl adsorption-desorption isotherms of zeolite NaY and hexadecyl trimethyl ammonium bromide (HTAB) modified zeolite NaY were investigated. Zeolite NaY was synthesized and modified by HTAB in the concentration range 0.1 - 10.0 mM. The adsorption isotherms indicated that zeolite modified with HTAB could significantly enhance the carbaryl adsorption capacity. Zeolite NaY modified with 5.0 mM HTAB gave great carbaryl adsorption because of hydrophilic surface. The 5.0 mM HTAB could adsorb up to 145.75 ppm g-1 of carbaryl which was equivalent to a 36.7% increase. The Surface area characterization showed the remaining of pore volume and pore size diameter and external surface area whereas the BET surface area and micropore surface area of modified zeolite slightly decreased. The XRD results indicate that modification of zeolite NaY with HTAB does not change the crystallinity of the starting zeolite. The elemental analysis indicated that the Si/Al ratio of synthesized zeolite NaY was close to 2.43. Desorption of carbaryl was tested by organic solvents such as methanol, ethanol, tetrahydrofuran, hexane and Deionized water. The results demonstrated that the percentage desorption of methanol is the highest. Carbaryl was quantitatively desorbed with percentage desorption of 82-100 %. It indicated sorption mechanism of carbaryl on the modified sorbent which was principally driven by hydrophobic forces.

  16. Optimized Model Surfaces for Advanced Atomic Force Microscopy Studies of Surface Nanobubbles.

    PubMed

    Song, Bo; Zhou, Yi; Schönherr, Holger

    2016-11-01

    The formation of self-assembled monolayers (SAMs) of binary mixtures of 16-mercaptohexadecanoic acid (MHDA) and 1-octadecanethiol (ODT) on ultraflat template-stripped gold (TSG) surfaces was systematically investigated to clarify the assembly behavior, composition, and degree of possible phase segregation in light of atomic force microscopy (AFM) studies of surface nanobubbles on these substrates. The data for SAMs on TSG were compared to those obtained by adsorption on rough evaporated gold, as reported in a previous study. Quartz crystal microbalance and surface plasmon resonance data acquired in situ on TSG indicate that similar to SAM formation on conventional evaporated gold substrates ODT and MHDA form monolayers and bilayers, respectively. The second layer on MHDA, whose formation is attributed to hydrogen bonding, can be easily removed by adequate rinsing with water. The favorable agreement of the grazing incidence reflection Fourier transform infrared (GIR FTIR) spectroscopy and contact angle data analyzed with the Israelachvili-Gee model suggests that the binary SAMs do not segregate laterally. This conclusion is fully validated by high-resolution friction force AFM observations down to a length scale of 8-10 nm, which is much smaller than the typical observed surface nanobubble radii. Finally, correspondingly functionalized TSG substrates are shown to be valuable supports for studying surface nanobubbles by AFM in water and for addressing the relation between surface functionality and nanobubble formation and properties.

  17. Adsorption-induced deformation of nanoporous materials—A review

    NASA Astrophysics Data System (ADS)

    Gor, Gennady Y.; Huber, Patrick; Bernstein, Noam

    2017-03-01

    When a solid surface accommodates guest molecules, they induce noticeable stresses to the surface and cause its strain. Nanoporous materials have high surface area and, therefore, are very sensitive to this effect called adsorption-induced deformation. In recent years, there has been significant progress in both experimental and theoretical studies of this phenomenon, driven by the development of new materials as well as advanced experimental and modeling techniques. Also, adsorption-induced deformation has been found to manifest in numerous natural and engineering processes, e.g., drying of concrete, water-actuated movement of non-living plant tissues, change of permeation of zeolite membranes, swelling of coal and shale, etc. In this review, we summarize the most recent experimental and theoretical findings on adsorption-induced deformation and present the state-of-the-art picture of thermodynamic and mechanical aspects of this phenomenon. We also reflect on the existing challenges related both to the fundamental understanding of this phenomenon and to selected applications, e.g., in sensing and actuation, and in natural gas recovery and geological CO2 sequestration.

  18. Atomistic investigation on the detachment of oil molecules from defective alumina surface

    NASA Astrophysics Data System (ADS)

    Xie, W. K.; Sun, Y. Z.; Liu, H. T.

    2017-12-01

    The mechanism of oil detachment from defective alumina surface in aqueous solution was investigated via atomistic molecular dynamics (MD) simulations. Special attention was focused on the effect of surface defect on the oil detachment. Our simulation results suggest that compared with perfect Al2O3 surface, defective substrate surface provides much more sites for the adsorption of oil molecules, thus it has higher oil adsorption energy. However, higher oil-solid adsorption energy does not mean that oil contaminants are much more difficult to be detached. It is found that surface defect could induce the spontaneous imbibition of water molecules, effectively promoting the detachment of oil molecules. Thus, compared with perfect alumina surface, the detachment of oil molecules from defective alumina surface tends to be much easier. Moreover, surface defect could lead to the oil residues inside surface defect. In water solution, the entire detachment process of oil molecules on defective surface consists of following stages, including the early detachment of oil molecules inside surface defect induced by capillary-driven spontaneous imbibition of water molecules, the following conformational change of oil molecules on topmost surface and the final migration of detached oil molecules from solid surface. These findings may help to sufficiently enrich the removal mechanism of oil molecules adhered onto defective solid surface.

  19. Particle-size segregation and diffusive remixing in shallow granular avalanches

    NASA Astrophysics Data System (ADS)

    Gray, J. M. N. T.; Chugunov, V. A.

    2006-12-01

    Segregation and mixing of dissimilar grains is a problem in many industrial and pharmaceutical processes, as well as in hazardous geophysical flows, where the size-distribution can have a major impact on the local rheology and the overall run-out. In this paper, a simple binary mixture theory is used to formulate a model for particle-size segregation and diffusive remixing of large and small particles in shallow gravity-driven free-surface flows. This builds on a recent theory for the process of kinetic sieving, which is the dominant mechanism for segregation in granular avalanches provided the density-ratio and the size-ratio of the particles are not too large. The resulting nonlinear parabolic segregation remixing equation reduces to a quasi-linear hyperbolic equation in the no-remixing limit. It assumes that the bulk velocity is incompressible and that the bulk pressure is lithostatic, making it compatible with most theories used to compute the motion of shallow granular free-surface flows. In steady-state, the segregation remixing equation reduces to a logistic type equation and the ‘S’-shaped solutions are in very good agreement with existing particle dynamics simulations for both size and density segregation. Laterally uniform time-dependent solutions are constructed by mapping the segregation remixing equation to Burgers equation and using the Cole Hopf transformation to linearize the problem. It is then shown how solutions for arbitrary initial conditions can be constructed using standard methods. Three examples are investigated in which the initial concentration is (i) homogeneous, (ii) reverse graded with the coarse grains above the fines, and, (iii) normally graded with the fines above the coarse grains. Time-dependent two-dimensional solutions are also constructed for plug-flow in a semi-infinite chute.

  20. Fundamentals of Nanoscale Polymer–Protein Interactions and Potential Contributions to Solid-State Nanobioarrays

    PubMed Central

    2015-01-01

    Protein adsorption onto polymer surfaces is a very complex, ubiquitous, and integrated process, impacting essential areas of food processing and packaging, health devices, diagnostic tools, and medical products. The nature of protein–surface interactions is becoming much more complicated with continuous efforts toward miniaturization, especially for the development of highly compact protein detection and diagnostic devices. A large body of literature reports on protein adsorption from the perspective of ensemble-averaged behavior on macroscopic, chemically homogeneous, polymeric surfaces. However, protein–surface interactions governing the nanoscale size regime may not be effectively inferred from their macroscopic and microscopic characteristics. Recently, research efforts have been made to produce periodically arranged, nanoscopic protein patterns on diblock copolymer surfaces solely through self-assembly. Intriguing protein adsorption phenomena are directly probed on the individual biomolecule level for a fundamental understanding of protein adsorption on nanoscale surfaces exhibiting varying degrees of chemical heterogeneity. Insight gained from protein assembly on diblock copolymers can be effectively used to control the surface density, conformation, orientation, and biofunctionality of prebound proteins in highly miniaturized applications, now approaching the nanoscale. This feature article will highlight recent experimental and theoretical advances made on these fronts while focusing on single-biomolecule-level investigations of protein adsorption behavior combined with surface chemical heterogeneity on the length scale commensurate with a single protein. This article will also address advantages and challenges of the self-assembly-driven patterning technology used to produce protein nanoarrays and its implications for ultrahigh density, functional, and quantifiable protein detection in a highly miniaturized format. PMID:24456577

  1. Fundamentals of nanoscale polymer-protein interactions and potential contributions to solid-state nanobioarrays.

    PubMed

    Hahm, Jong-in

    2014-08-26

    Protein adsorption onto polymer surfaces is a very complex, ubiquitous, and integrated process, impacting essential areas of food processing and packaging, health devices, diagnostic tools, and medical products. The nature of protein-surface interactions is becoming much more complicated with continuous efforts toward miniaturization, especially for the development of highly compact protein detection and diagnostic devices. A large body of literature reports on protein adsorption from the perspective of ensemble-averaged behavior on macroscopic, chemically homogeneous, polymeric surfaces. However, protein-surface interactions governing the nanoscale size regime may not be effectively inferred from their macroscopic and microscopic characteristics. Recently, research efforts have been made to produce periodically arranged, nanoscopic protein patterns on diblock copolymer surfaces solely through self-assembly. Intriguing protein adsorption phenomena are directly probed on the individual biomolecule level for a fundamental understanding of protein adsorption on nanoscale surfaces exhibiting varying degrees of chemical heterogeneity. Insight gained from protein assembly on diblock copolymers can be effectively used to control the surface density, conformation, orientation, and biofunctionality of prebound proteins in highly miniaturized applications, now approaching the nanoscale. This feature article will highlight recent experimental and theoretical advances made on these fronts while focusing on single-biomolecule-level investigations of protein adsorption behavior combined with surface chemical heterogeneity on the length scale commensurate with a single protein. This article will also address advantages and challenges of the self-assembly-driven patterning technology used to produce protein nanoarrays and its implications for ultrahigh density, functional, and quantifiable protein detection in a highly miniaturized format.

  2. Interface-Driven Structural Distortions and Composition Segregation in Two-Dimensional Heterostructures

    DOE PAGES

    Ditto, Jeffrey; Merrill, Devin R.; Mitchson, Gavin; ...

    2017-09-06

    The discovery of emergent phenomena in 2D materials has sparked substantial research efforts in the materials community. A significant experimental challenge for this field is exerting atomistic control over the structure and composition of the constituent 2D layers and understanding how the interactions between layers drive both structure and properties. While no segregation for single bilayers was observed, segregation of Pb to the surface of three bilayer thick PbSe–SnSe alloy layers was discovered within [(Pb xSn 1–xSe) 1+δ] n(TiSe 2) 1 heterostructures using electron microscopy. This segregation is thermodynamically favored to occur when Pb xSn 1–xSe layers are interdigitated withmore » TiSe 2 monolayers. DFT calculations indicate that the observed segregation depends on what is adjacent to the Pb xSn 1–xSe layers. As a result, the interplay between interface- and volume-free energies controls both the structure and composition of the constituent layers, which can be tuned using layer thickness.« less

  3. Interface-Driven Structural Distortions and Composition Segregation in Two-Dimensional Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditto, Jeffrey; Merrill, Devin R.; Mitchson, Gavin

    The discovery of emergent phenomena in 2D materials has sparked substantial research efforts in the materials community. A significant experimental challenge for this field is exerting atomistic control over the structure and composition of the constituent 2D layers and understanding how the interactions between layers drive both structure and properties. While no segregation for single bilayers was observed, segregation of Pb to the surface of three bilayer thick PbSe–SnSe alloy layers was discovered within [(Pb xSn 1–xSe) 1+δ] n(TiSe 2) 1 heterostructures using electron microscopy. This segregation is thermodynamically favored to occur when Pb xSn 1–xSe layers are interdigitated withmore » TiSe 2 monolayers. DFT calculations indicate that the observed segregation depends on what is adjacent to the Pb xSn 1–xSe layers. As a result, the interplay between interface- and volume-free energies controls both the structure and composition of the constituent layers, which can be tuned using layer thickness.« less

  4. Race and Space in the 1990s: Changes in the Geographic Scale of Racial Residential Segregation, 1990-2000

    PubMed Central

    Reardon, Sean F.; Farrell, Chad R.; Matthews, Stephen A.; O'Sullivan, David; Bischoff, Kendra; Firebaugh, Glenn

    2014-01-01

    We use newly developed methods of measuring spatial segregation across a range of spatial scales to assess changes in racial residential segregation patterns in the 100 largest U.S. metropolitan areas from 1990 to 2000. Our results point to three notable trends in segregation from 1990 to 2000: 1) Hispanic-white and Asian-white segregation levels increased at both micro- and macro-scales; 2) black-white segregation declined at a micro-scale, but was unchanged at a macro-scale; and 3) for all three racial groups and for almost all metropolitan areas, macro-scale segregation accounted for more of the total metropolitan area segregation in 2000 than in 1990. Our examination of the variation in these trends among the metropolitan areas suggests that Hispanic-white and Asian-white segregation changes have been driven largely by increases in macro-scale segregation resulting from the rapid growth of the Hispanic and Asian populations in central cities. The changes in black-white segregation, in contrast, appear to be driven by the continuation of a 30-year trend in declining micro-segregation, coupled with persistent and largely stable patterns of macro-segregation. PMID:19569292

  5. Adsorption of surfactants and polymers at interfaces

    NASA Astrophysics Data System (ADS)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge density. In practical systems the adsorption phenomena were found to be far more complex. Electrostatic and hydrogen bonding interactions play a major role in the adsorption of cationic polyelectrolytes on cellulosic substrates. Cationic and underivatized guar gum macromolecules form complexes with fines and dissolved and colloidal carbohydrates which are then retained on the cellulose fibers. The extent of the adsorption and association depends on the charge and nature of all the components present in pulp suspensions.

  6. Controlling adsorption of albumin with hyaluronan on silica surfaces and sulfonated latex particles.

    PubMed

    Berts, Ida; Fragneto, Giovanna; Porcar, Lionel; Hellsing, Maja S; Rennie, Adrian R

    2017-10-15

    Polysaccharides are known to modify binding of proteins at interfaces and this paper describes studies of these interactions and how they are modified by pH. Specifically, the adsorption of human serum albumin on to polystyrene latex and to silica is described, focusing on how this is affected by hyaluronan. Experiments were designed to test how such binding might be modified under relevant physiological conditions. Changes in adsorption of albumin alone and the co-adsorption of albumin and hyaluronan are driven by electrostatic interactions. Multilayer binding is found to be regulated by the pH of the solution and the molecular mass and concentration of hyaluronan. Highest adsorption was observed at pH below 4.8 and for low molecular mass hyaluronan (≤150kDa) at concentrations above 2mgml -1 . On silica with grafted hyaluronan, albumin absorption is reversed by changes in solvent pH due to their strong electrostatic attraction. Albumin physisorbed on silica surfaces is also rinsed away with dilute hyaluronan solution at pH 4.8. The results demonstrate that the protein adsorption can be controlled both by changes of pH and by interaction with other biological macromolecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2010-11-01

    In this contribution, we present experimental information about the effect of xanthan gum (XG) on the adsorption behaviour of two milk whey protein samples (MWP), beta-lactoglobulin (beta-LG) and whey protein concentrate (WPC), at the air-water interface. The MWP concentration studied corresponded to the protein bulk concentration which is able to saturate the air-water interface (1.0 wt%). Temperature, pH and ionic strength of aqueous systems were kept constant at 20 degrees C, pH 7 and 0.05 M, respectively, while the XG bulk concentration varied in the range 0.00-0.25 wt%. Biopolymer interactions in solution were analyzed by extrinsic fluorescence spectroscopy using 1-anilino-8-naphtalene sulphonic acid (ANS) as a protein fluorescence probe. Interfacial biopolymer interactions were evaluated by dynamic tensiometry and surface dilatational rheology. Adsorption behaviour was discussed from a rheokinetic point of view in terms of molecular diffusion, penetration and conformational rearrangement of adsorbed protein residues at the air-water interface. Differences in the interaction magnitude, both in solution and at the interface vicinity, and in the adsorption rheokinetic parameters were observed in MWP/XG mixed systems depending on the protein type (beta-LG or WPC) and biopolymer relative concentration. beta-LG adsorption in XG presence could be promoted by mechanisms based on biopolymer segregative interactions and thermodynamic incompatibility in the interface vicinity, resulting in better surface and viscoelastic properties. The same mechanism could be responsible of WPC interfacial adsorption in the presence of XG. The interfacial functionality of WPC was improved by the synergistic interactions with XG, although WPC chemical complexity might complicate the elucidation of molecular events that govern adsorption dynamics of WPC/XG mixed systems at the air-water interface. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Electrochemically Driven Deactivation and Recovery in PrBaCo2 O5+δ Oxygen Electrodes for Reversible Solid Oxide Fuel Cells.

    PubMed

    Zhu, Lin; Wei, Bo; Wang, Zhihong; Chen, Kongfa; Zhang, Haiwu; Zhang, Yaohui; Huang, Xiqiang; Lü, Zhe

    2016-09-08

    The understanding of surface chemistry changes on oxygen electrodes is critical for the development of reversible solid oxide fuel cell (RSOFC). Here, we report for the first time that the electrochemical potentials can drastically affect the surface composition and hence the electrochemical activity and stability of PrBaCo2 O5+δ (PBCO) electrodes. Anodic polarization degrades the activity of the PBCO electrode, whereas the cathodic bias could recover its performance. Alternating anodic/cathodic polarization for 180 h confirms this behavior. Microstructure and chemical analysis clearly show that anodic bias leads to the accumulation and segregation of insulating nanosized BaO on the electrode surface, whereas cathodic polarization depletes the surface species. Therefore, a mechanism based on the segregation and incorporation of BaO species under electrochemical potentials is considered to be responsible for the observed deactivation and recovery process, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system.

    PubMed

    Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian

    2015-12-22

    The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos-an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.

  10. Quantitative determination of zero-gravity effects on electronic materials processing germanium crystal growth with simultaneous interface demarcation experiment MA-060, section 5

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.; Lichtensteiger, M.; Herman, C. J.

    1982-01-01

    The crystal growth and segregation characteristics of a melt in a directional solidification configuration under near zero g conditions were investigated. The germanium (doped with gallium) system was selected because it was extensively studied on Earth and because it lends itself to a very detailed macroscopic and microscopic characterization. An extensive study was performed of the germanium crystals grown during the Apollo-Soyuz Test Project mission. It was found that single crystal growth was achieved and that the interface demarcation functioned successfully. On the basis of the results obtained to date, there is no indication that convection driven by thermal or surface tension gradients was present in the melt. The gallium segregation, in the absence of gravity, was found to be fundamentally different in its initial and its subsequent stages from that of the ground based tests. None of the existing theoretical models for growth and segregation can account for the observed segregation behavior in the absence of gravity.

  11. Adsorption and removal of clofibric acid and diclofenac from water with MIEX resin.

    PubMed

    Lu, Xian; Shao, Yisheng; Gao, Naiyun; Chen, Juxiang; Zhang, Yansen; Wang, Qiongfang; Lu, Yuqi

    2016-10-01

    This study demonstrates the use of MIEX resin as an efficient adsorbent for the removal of clofibric acid (CA) and diclofenac (DCF). The adsorption performance of CA and DCF are investigated by a batch mode in single-component or bi-component adsorption system. Various factors influencing the adsorption of CA and DCF, including initial concentration, contact time, adsorbent dosage, initial solution pH, agitation speed, natural organic matter and coexistent anions are studied. The Langmuir model can well describe CA adsorption in single-component system, while the Freundlich model gives better fitting in bi-component system. The DCF adsorption can be well fitted by the Freundlich model in both systems. Thermodynamic analyses show that the adsorption of CA and DCF is an endothermic (ΔH(o) > 0), entropy driven (ΔS(o) > 0) process and more randomness exists in the DCF adsorption process. The values of Gibbs free energy (ΔG(o) < 0) indicate the adsorption of DCF is spontaneous but nonspontaneous (ΔG(o) > 0) for CA adsorption. The kinetic data suggest the adsorption of CA and DCF follow the pseudo-first-order model in both systems and the intra-particle is not the unique rate-limiting step. The adsorption process is controlled simultaneously by external mass transfer and surface diffusion according to the surface diffusion modified Biot number (Bis) ranging from 1.06 to 26.15. Moreover, the possible removal mechanism for CA and DCF is respectively proposed based on the ion exchange stoichiometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Thermodynamics of Indomethacin Adsorption to Phospholipid Membranes.

    PubMed

    Fearon, Amanda D; Stokes, Grace Y

    2017-11-22

    Using second-harmonic generation, we directly monitored adsorption of indomethacin, a nonsteroidal anti-inflammatory drug, to supported lipid bilayers composed of phospholipids of varying phase, cholesterol content, and head group charge without the use of extrinsic labels at therapeutically relevant aqueous concentrations. Indomethacin adsorbed to gel-phase lipids with a high binding affinity, suggesting that like other arylacetic acid-containing drugs, it preferentially interacts with ordered lipid domains. We discovered that adsorption of indomethacin to gel-phase phospholipids was endothermic and entropically driven, whereas adsorption to fluid-phase phospholipids was exothermic and enthalpically driven. As temperature increased from 19 to 34 °C, binding affinities to gel-phase lipids increased by 7-fold but relative surface concentration decreased to one-fifth of the original value. We also compared our results to the entropies reported for indomethacin adsorbed to surfactant micelles, which are used in drug delivery systems, and assert that adsorbed water molecules in the phospholipid bilayer may be buried deeper into the acyl chains and less accessible for disruption. The thermodynamic studies reported here provide mechanistic insight into indomethacin interactions with mammalian plasma membranes in the gastrointestinal tract and inform studies of drug delivery, where indomethacin is commonly used as a prototypical, hydrophobic small-molecule drug.

  13. The Sulphur Poisoning Behaviour of Gadolinia Doped Ceria Model Systems in Reducing Atmospheres

    PubMed Central

    Gerstl, Matthias; Nenning, Andreas; Iskandar, Riza; Rojek-Wöckner, Veronika; Bram, Martin; Hutter, Herbert; Opitz, Alexander Karl

    2016-01-01

    An array of analytical methods including surface area determination by gas adsorption using the Brunauer, Emmett, Teller (BET) method, combustion analysis, XRD, ToF-SIMS, TEM and impedance spectroscopy has been used to investigate the interaction of gadolinia doped ceria (GDC) with hydrogen sulphide containing reducing atmospheres. It is shown that sulphur is incorporated into the GDC bulk and might lead to phase changes. Additionally, high concentrations of silicon are found on the surface of model composite microelectrodes. Based on these data, a model is proposed to explain the multi-facetted electrochemical degradation behaviour encountered during long term electrochemical measurements. While electrochemical bulk properties of GDC stay largely unaffected, the surface polarisation resistance is dramatically changed, due to silicon segregation and reaction with adsorbed sulphur. PMID:28773771

  14. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels.

    PubMed

    Jiang, Feng; Dinh, Darren M; Hsieh, You-Lo

    2017-10-01

    Ultra-light aerogels have been assembled from cellulose nanofibrils into hierarchically macroporous (several hundred μm) honeycomb cellular structure surrounded with mesoporous (8-60nm) thin walls. The high specific surface (193m 2 /g) and surface carboxyl content (1.29mmol/g) of these aerogels were demonstrated to be highly capable of removing cationic malachite green (MG) dye from aqueous media. The rapid MG adsorption was driven by electrostatic interactions and followed a pseudo-second-order adsorption kinetic and monolayer Langmuir adsorption isotherm. At a low 1:5mg/mL aerogel/MG ratio, both initial MG adsorption rate (2.3-59.8mgg -1 min -1 ) and equilibrium adsorption capacity (53.0-203.7mgg -1 ) increased with increasing initial MG concentrations from 10 to 200mg/L, reaching a maximum adsorption of 212.7mgg -1 . The excellent dye removal efficiency was demonstrated by complete MG removal through four repetitive adsorptions at a low 1:5mg/mL aerogel/MG ratio and 10mg/L dye concentration as well as 92% MG adsorption in a single batch at one order of magnitude higher10:5mg/mL aerogel/MG ratio and 100mg/L dye concentration. The adsorbed MG in aerogels could be desorbed in aqueous media by increasing ionic strength, demonstrating facile recovery of both dye and aerogel as well as the robust capability of this aerogel for repetitive applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Adsorption, dissociation and diffusion of hydrogen on the ZrCo surface and subsurface: A comprehensive study using first principles approach

    NASA Astrophysics Data System (ADS)

    Chattaraj, D.; Kumar, Nandha; Ghosh, Prasenjit; Majumder, C.; Dash, Smruti

    2017-11-01

    With increasing demand for hydrogen economy driven world, the fundamental research of hydrogen-metal interactions has gained momentum. In this work we report a systematic theoretical study of the stability of different surfaces of intermetallic ZrCo that is a possible candidate as a getter bed for tritium. Our first principles ab initio thermodynamic calculations predict that amongst the (100), (110) and (111) surfaces, the stoichiometric (110) surface is the most stable one over a wide range of Co chemical potential. We have also studied adsorption, dissociation and diffusion of hydrogen on the (110) surface. On the basis of total energy, it is seen that adsorption of molecular hydrogen (H2) on the surface is much weaker than atomic hydrogen. The H2 decomposition on ZrCo surface can easily take place and the dissociation barrier is calculated to be 0.70 eV. The strength of binding of H atom on the surface is more or less independent of surface coverage till 1.0 ML of H. The thermodynamic stability of atomic H adsorbed on the surface, in subsurface and bulk decreases from surface to bulk to subsurface. Though the H atoms are mobile on the surface, their diffusion to the subsurface involves a barrier of about 0.79 eV.

  16. Microgravity Segregation in Binary Mixtures of Inelastic Spheres Driven by Velocity Fluctuation Gradients

    NASA Technical Reports Server (NTRS)

    Jenkins, James T.; Louge, Michel Y.

    1996-01-01

    We are interested in collisional granular flows of dry materials in reduced gravity. Because the particles interact through collisions, the energy of the particle velocity fluctuations plays an important role in the physics. Here we focus on the separation of grains by properties - size, for example - that is driven by spatial gradients in the fluctuation energy of the grains. The segregation of grains by size is commonly observed in geophysical flows and industrial processes. Segregation of flowing grains can also take place based on other properties, e.g. shape, mass, friction, and coefficient of restitution. Many mechanisms may be responsible for segregation; most of these are strongly influenced by gravity. Here, we outline a mechanism that is independent of gravity. This mechanism may be important but is often obscured in terrestrial grain flows. It is driven by gradients in fluctuation energy. In microgravity, the separation of grains by property will proceed slowly enough to permit flight observations to provide an unambiguous measurement of the transport coefficients associated with the segregation. In this context, we are planning a microgravity shear cell experiment that contains a mixture of two types of spherical grains. The grains will be driven to interact with two different types of boundaries on either sides of the cell. The resulting separation will be observed visually.

  17. Thermodynamics of adsorption of dithiocarbamates at the hanging mercury drop.

    PubMed

    Giannakopoulos, Evangelos; Deligiannakis, Yiannis

    2007-02-27

    Two dimethyldithiocarbamate (DMDTC) pesticides, thiram and ziram, are adsorbed onto a Hg drop via an entropically driven process. The adsorption isotherms are described by the Frumkin equation. For both molecules, the adsorption is characterized by a nonlinear pseudosigmoid temperature dependence of the Gibbs free energy. For the temperature range of 273-313 K, DeltaGADS varies between -43.4 and -56.71 kJ/mol for thiram and -42.60 and -55.67 kJ/mol for ziram. This variation of DeltaGADS reveals that the adsorption strength is increased at higher temperatures. During the adsorption of either molecule, strong lateral interactions are developed between neighboring adsorbates, which are severely weakened as the temperature increases. A unified reaction scheme is suggested for both ziram and thiram that predicts the formation and adsorption of a surface complex, (DMDTC)2Hg. In the case of thiram, two DMDTC molecules are formed by the cleavage of the disulfide S-S bond near the Hg electrode. The thermodynamic and structural parameters reveal that there are two limiting thermodynamic regimes for the adsorbed (DMDTC)2Hg species that originate from two limiting adsorption conformations of the adsorbates on the Hg surface. A transition occurs between these two conformations at temperatures in the region of 285-295 K. This transition is accompanied by large entropic and enthalpic changes.

  18. Reactive wetting properties of TiO2 nanoparticles predicted by ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.

    2016-07-01

    Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity. Electronic supplementary information (ESI) available: Simulation data on equilibration of energies and structures (root-mean-square-deviations and coordination numbers); radial distribution functions for all O-Ti pairs over the entire data domain; comparison of coordination number distributions for dry and wet nanoparticles; dynamics of water reactivity; high-resolution electron density for the rutile NP. A movie of the simulation trajectory for the rutile (TiO2)24.30H2O system. See DOI: 10.1039/C6NR02791A

  19. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    PubMed Central

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    2015-01-01

    The segregation of DNA before cell division is essential for faithful genetic inheritance. In many bacteria, segregation of low-copy number plasmids involves an active partition system composed of a nonspecific DNA-binding ATPase, ParA, and its stimulator protein ParB. The ParA/ParB system drives directed and persistent movement of DNA cargo both in vivo and in vitro. Filament-based models akin to actin/microtubule-driven motility were proposed for plasmid segregation mediated by ParA. Recent experiments challenge this view and suggest that ParA/ParB system motility is driven by a diffusion ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. Here, we develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA–nucleoid affinity to the motion of the ParB-bound cargo. Paradoxically, this resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work thus sheds light on an emergent phenomenon in which nonmotor proteins work collectively via mechanochemical coupling to propel cargos—an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria. PMID:26647183

  20. Phase transitions in single macromolecules: Loop-stretch transition versus loop adsorption transition in end-grafted polymer chains

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I.; Skvortsov, Alexander M.; Yan, Dadong; Schmid, Friederike

    2018-01-01

    We use Brownian dynamics simulations and analytical theory to compare two prominent types of single molecule transitions. One is the adsorption transition of a loop (a chain with two ends bound to an attractive substrate) driven by an attraction parameter ɛ and the other is the loop-stretch transition in a chain with one end attached to a repulsive substrate, driven by an external end-force F applied to the free end. Specifically, we compare the behavior of the respective order parameters of the transitions, i.e., the mean number of surface contacts in the case of the adsorption transition and the mean position of the chain end in the case of the loop-stretch transition. Close to the transition points, both the static behavior and the dynamic behavior of chains with different length N are very well described by a scaling ansatz with the scaling parameters (ɛ - ɛ*)Nϕ (adsorption transition) and (F - F*)Nν (loop-stretch transition), respectively, where ϕ is the crossover exponent of the adsorption transition and ν is the Flory exponent. We show that both the loop-stretch and the loop adsorption transitions provide an exceptional opportunity to construct explicit analytical expressions for the crossover functions which perfectly describe all simulation results on static properties in the finite-size scaling regime. Explicit crossover functions are based on the ansatz for the analytical form of the order parameter distributions at the respective transition points. In contrast to the close similarity in equilibrium static behavior, the dynamic relaxation at the two transitions shows qualitative differences, especially in the strongly ordered regimes. This is attributed to the fact that the surface contact dynamics in a strongly adsorbed chain is governed by local processes, whereas the end height relaxation of a strongly stretched chain involves the full spectrum of Rouse modes.

  1. Optimizing adsorption of fluoride from water by modified banana peel dust using response surface modelling approach

    NASA Astrophysics Data System (ADS)

    Bhaumik, Ria; Mondal, Naba Kumar

    2016-06-01

    The present work highlighted the effective application of banana peel dust (BPD) for removal of fluoride (F-) from aqueous solution. The effects of operating parameters such as pH, initial concentration, adsorbent dose, contact time, agitation speed and temperature were analysed using response surface methodology. The significance of independent variables and their interactions were tested by the analysis of variance and t test statistics. Experimental results revealed that BPD has higher F- adsorption capacity (17.43, 26.31 and 39.5 mg/g). Fluoride adsorption kinetics followed pseudo-second-order model with high correlation of coefficient value (0.998). On the other hand, thermodynamic data suggest that adsorption is favoured at lower temperature, exothermic in nature and enthalpy driven. The adsorbents were characterised through scanning electron microscope, Fourier transform infrared spectroscopy and point of zero charges (pHZPC) ranges from pH 6.2-8.2. Finally, error analysis clearly demonstrates that all three adsorbents are well fitted with Langmuir isotherm compared to the other isotherm models. The reusable properties of the material support further development for commercial application purpose.

  2. The formation of the smallest fullerene-like carbon cages on metal surfaces

    NASA Astrophysics Data System (ADS)

    Ben Romdhane, F.; Rodríguez-Manzo, J. A.; Andrieux-Ledier, A.; Fossard, F.; Hallal, A.; Magaud, L.; Coraux, J.; Loiseau, A.; Banhart, F.

    2016-01-01

    The nucleation and growth of carbon on catalytically active metal surfaces is one of the most important techniques to produce nanomaterials such as graphene or nanotubes. Here it is shown by in situ electron microscopy that fullerene-like spherical clusters with diameters down to 0.4 nm and thus much smaller than C60 grow in a polymerized state on Co, Fe, or Ru surfaces. The cages appear on the surface of metallic islands in contact with graphene under heating to at least 650 °C and successively cooling to less than 500 °C. The formation of the small cages is explained by the segregation of carbon on a supersaturated metal, driven by kinetics. First principles energy calculations show that the clusters polymerize and can be attached to defects in graphene. Under compression, the polymerized cages appear in a crystalline structure.The nucleation and growth of carbon on catalytically active metal surfaces is one of the most important techniques to produce nanomaterials such as graphene or nanotubes. Here it is shown by in situ electron microscopy that fullerene-like spherical clusters with diameters down to 0.4 nm and thus much smaller than C60 grow in a polymerized state on Co, Fe, or Ru surfaces. The cages appear on the surface of metallic islands in contact with graphene under heating to at least 650 °C and successively cooling to less than 500 °C. The formation of the small cages is explained by the segregation of carbon on a supersaturated metal, driven by kinetics. First principles energy calculations show that the clusters polymerize and can be attached to defects in graphene. Under compression, the polymerized cages appear in a crystalline structure. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08212a

  3. Oxygen and sulfur adsorption on vicinal surfaces of copper and silver: Preferred adsorption sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Da-Jiang; Thiel, Patricia A.

    We present an extensive density functional theory (DFT) study of adsorption site energetics for oxygen and sulfur adsorbed on two vicinal surfaces of Cu and Ag, with the goal of identifying the most stable adsorption site(s), identifying trends and common themes, and comparing with experimental work in the literature where possible. We also present benchmark calculations for adsorption on the flat (111) and (100) surfaces. The first vicinal surface is the (211), and results are similar for both metals. Here, we find that the step-doubling reconstruction is favored with both adsorbates and is driven by the creation of a specialmore » stable fourfold hollow (4fh) site at the reconstructed step. Zig-zag chain structures consisting of X–M–X units (X = chalcogen, M = metal) at the step edge are considered, in which the special 4fh site is partially occupied. The zig-zag configuration is energetically competitive for oxygen but not sulfur. DFT results for oxygen agree with experiment in terms of the stability of the reconstruction, but contradict the original site assignment. The second vicinal surface is the (410), where again results are similar for both metals. For oxygen, DFT predicts that step sites are filled preferentially even at lowest coverage, followed by terrace sites, consistent with the experiment. For sulfur, in contrast, DFT predicts that terrace sites fill first. Oxygen forms O–M–O rows on the top edge of the step, where it occupies incomplete 4fh sites. This resolves an experimental ambiguity in the site assignment. Finally, for both the (211) and (410) surfaces, the interaction energy that stabilizes the X–M–X chain or row correlates with the linearity of the X–M–X unit, which may explain key differences between oxygen and sulfur.« less

  4. Oxygen and sulfur adsorption on vicinal surfaces of copper and silver: Preferred adsorption sites

    DOE PAGES

    Liu, Da-Jiang; Thiel, Patricia A.

    2018-03-28

    We present an extensive density functional theory (DFT) study of adsorption site energetics for oxygen and sulfur adsorbed on two vicinal surfaces of Cu and Ag, with the goal of identifying the most stable adsorption site(s), identifying trends and common themes, and comparing with experimental work in the literature where possible. We also present benchmark calculations for adsorption on the flat (111) and (100) surfaces. The first vicinal surface is the (211), and results are similar for both metals. Here, we find that the step-doubling reconstruction is favored with both adsorbates and is driven by the creation of a specialmore » stable fourfold hollow (4fh) site at the reconstructed step. Zig-zag chain structures consisting of X–M–X units (X = chalcogen, M = metal) at the step edge are considered, in which the special 4fh site is partially occupied. The zig-zag configuration is energetically competitive for oxygen but not sulfur. DFT results for oxygen agree with experiment in terms of the stability of the reconstruction, but contradict the original site assignment. The second vicinal surface is the (410), where again results are similar for both metals. For oxygen, DFT predicts that step sites are filled preferentially even at lowest coverage, followed by terrace sites, consistent with the experiment. For sulfur, in contrast, DFT predicts that terrace sites fill first. Oxygen forms O–M–O rows on the top edge of the step, where it occupies incomplete 4fh sites. This resolves an experimental ambiguity in the site assignment. Finally, for both the (211) and (410) surfaces, the interaction energy that stabilizes the X–M–X chain or row correlates with the linearity of the X–M–X unit, which may explain key differences between oxygen and sulfur.« less

  5. Block copolymer modified surfaces for conjugation of biomacromolecules with control of quantity and activity.

    PubMed

    Li, Xin; Wang, Mengmeng; Wang, Lei; Shi, Xiujuan; Xu, Yajun; Song, Bo; Chen, Hong

    2013-01-29

    Polymer brush layers based on block copolymers of poly(oligo(ethylene glycol) methacrylate) (POEGMA) and poly(glycidyl methacrylate) (PGMA) were formed on silicon wafers by activators generated by electron transfer atom transfer radical polymerization (AGET ATRP). Different types of biomolecule can be conjugated to these brush layers by reaction of PGMA epoxide groups with amino groups in the biomolecule, while POEGMA, which resists nonspecific protein adsorption, provides an antifouling environment. Surfaces were characterized by water contact angle, ellipsometry, and Fourier transform infrared spectroscopy (FTIR) to confirm the modification reactions. Phase segregation of the copolymer blocks in the layers was observed by AFM. The effect of surface properties on protein conjugation was investigated using radiolabeling methods. It was shown that surfaces with POEGMA layers were protein resistant, while the quantity of protein conjugated to the diblock copolymer modified surfaces increased with increasing PGMA layer thickness. The activity of lysozyme conjugated on the surface could also be controlled by varying the thickness of the copolymer layer. When biotin was conjugated to the block copolymer grafts, the surface remained resistant to nonspecific protein adsorption but showed specific binding of avidin. These properties, that is, well-controlled quantity and activity of conjugated biomolecules and specificity of interaction with target biomolecules may be exploited for the improvement of signal-to-noise ratio in sensor applications. More generally, such surfaces may be useful as biological recognition elements of high specificity for functional biomaterials.

  6. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent.

    PubMed

    Wang, Futao; Pan, Yuanfeng; Cai, Pingxiong; Guo, Tianxiang; Xiao, Huining

    2017-10-01

    A high efficient and eco-friendly sugarcane cellulose-based adsorbent was prepared in an attempt to remove Pb 2+ , Cu 2+ and Zn 2+ from aqueous solutions. The effects of initial concentration of heavy metal ions and temperature on the adsorption capacity of the bioadsorbent were investigated. The adsorption isotherms showed that the adsorption of Pb 2+ , Cu 2+ and Zn 2+ followed the Langmuir model and the maximum adsorptions were as high as 558.9, 446.2 and 363.3mg·g -1 , respectively, in single component system. The binary component system was better described with the competitive Langmuir isotherm model. The three dimensional sorption surface of binary component system demonstrated that the presence of Pb 2+ decreased the sorption of Cu 2+ , but the adsorption amount of other metal ions was not affected. The result from SEM-EDAX revealed that the adsorption of metal ions on bioadsorbent was mainly driven by coordination, ion exchange and electrostatic association. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Quantitative determination of zero-gravity effects on electronic materials processing germanium crystal growth with simultaneous interface demarcation. Experiment MA-060

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.

    1977-01-01

    Experiment MA-060 was designed to establish the crystal growth and segregation characteristics of a melt in a directional solidification configuration under near zero-g conditions. The interface demarcation technique was incorporated into the experiment since it constitutes a unique tool for recording the morphology of the growth rate throughout solidification, and for establishing an absolute time reference framework for all stages of the solidification process. An extensive study was performed of the germanium crystals grown during the Apollo-Soyuz Test Project mission. It was found that single crystal growth was achieved and that the interface demarcation functioned successfully. There was no indication that convection driven by thermal or surface tension gradients was present in the melt. The gallium segregation, in the absence of gravity, was found to be fundamentally different in its initial and its subsequent stages from that of the ground-based tests. None of the existing theoretical models for growth and segregation can account for the observed segregation behavior in the absence of gravity.

  8. Surface Demixing in a AuSn Liquid Alloy

    NASA Astrophysics Data System (ADS)

    Balagurusamy, Venkat; Streitel, Reinhard; Shpyrko, Oleg; Pershan, Peter; Ocko, Ben; Deutsch, Moshe

    2006-03-01

    We present results of X-ray reflectivity studies of the eutectic AuSn alloy liquid-vapor interface. The analysis shows that in common with the BiSn eutectic, there is surface demixing that extends to more than one monolayer. This is in contrast to a common presumption that the Gibbs adsorption predicts complete demixing only in the surface monolayer. The composition profiles can be explained by surface segregation theory for attractive interaction between Sn and Au atoms, similar to BiIn [1] and BiSn [2]. [1] E. DiMasi, H. Tostmann, O. G. Shpyrko, P. Huber, B. M. Ocko, P. S. Pershan, M. Deutsch, and L. E. Berman, Phys. Rev. Lett. 86, 1538 (2001) [2] O. G. Shpyrko, A. Y. Grigoriev, R. Streitel, D. Pontoni, P. S. Pershan, M. Deutsch, and B. M. Ocko, Phys. Rev. Lett. 95, 106103 (2005) *Present address: Center for Nanoscale Materials, ANL

  9. Supported Intrinsically Porous Oligomers as Hybrid Materials for Separations, Storage, and Sensing

    NASA Astrophysics Data System (ADS)

    Thompson, Anthony Boone

    Adsorption-desorption phenomena are often difficult to study at the molecular level because the surfaces on which they occur can be heterogeneous, giving a wide distribution of adsorption sites and associated energies. Considering that these phenomena underlie an incredibly wide variety of industrially important processes, a better understanding could aid in the development of more efficient methods. In this work, we describe an approach to designing materials with well-defined adsorption sites by covalently attaching intrinsically porous molecules to solid surfaces by a rigid multidentate linker. These cup-shaped molecules are intended to act as adsorption sites on the material, whereas the rigid attachment to the solid support serves to prevent movement and conformational changes of the sites, leading to better understanding of adsorption phenomena. As a proof-of-concept application, materials were used for adsorption of n-butanol biofuel and related compounds from dilute aqueous solution. The materials were thermally and hydrolytically stable, and adsorption phenomena were reversible. Adsorption sites containing more hydrophobic molecular area led to stronger adsorption, suggesting that it is driven by weak van der Waals forces. Likewise, adsorption sites that were strongly polarized performed poorly, possibly reflecting a greater energy penalty of removing water molecules from the cavity. Upon placing a Lewis acidic metal at the bottom of the cavity, an enhancement was seen only with the most acidic metal, which may indicate weak guest coordination. Observing that hydrophobic interactions dominate adsorption on these materials, efforts were made to develop hybrid materials with large hydrophobic area for adsorption. Glaser coupling of diethynylbenzene was used to grow oligo(phenylene butadiynylene)s from the surface of silica, resulting in materials that were more than 25% organic by weight. In addition to their potential use as adsorbents, these materials may be promising for hydrogen storage via spillover. Finally, to demonstrate other potential uses of supported intrinsically porous oligomers, a TiO2-supported calixarene material was synthesized and used as a simple molecular sensor, opening up the possibility of using these materials for sensing. Overall, the methods used here result in robust hybrid materials with narrow adsorption site distributions and therefore are of potential use in many future applications.

  10. Banded Spherulitic Morphology in Blends of Poly(propylene fumarate) and Poly( -caprolactone) and Interaction with MC3T3-E1 Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kan; Jesse, Stephen; Wang, Shanfeng

    2012-01-01

    The thermal properties, morphological development, crystallization behavior, and miscibility of semicrystalline PCL and its 25, 50, and 75 wt% blends with amorphous PPF in spin-coated thin films crystallized at various crystallization temperatures (T{sub c}) from 25 to 52 C are investigated. The surface roughness of PPF/PCL ({phi}{sub PCL} = 75%) films increases with increasing T{sub c} and consequently the adsorption of serum proteins is also increased. No significant variance is found in surface hydrophilicity or in mouse MC3T3-E1 cell attachment, spreading, and proliferation on PPF/PCL ({phi}{sub PCL} = 75%) films crystallized isothermally at 25, 37, and 45 C, because ofmore » low ridge height, nonuniformity in structures, and PPF surface segregation« less

  11. Brain bases for auditory stimulus-driven figure-ground segregation.

    PubMed

    Teki, Sundeep; Chait, Maria; Kumar, Sukhbinder; von Kriegstein, Katharina; Griffiths, Timothy D

    2011-01-05

    Auditory figure-ground segregation, listeners' ability to selectively hear out a sound of interest from a background of competing sounds, is a fundamental aspect of scene analysis. In contrast to the disordered acoustic environment we experience during everyday listening, most studies of auditory segregation have used relatively simple, temporally regular signals. We developed a new figure-ground stimulus that incorporates stochastic variation of the figure and background that captures the rich spectrotemporal complexity of natural acoustic scenes. Figure and background signals overlap in spectrotemporal space, but vary in the statistics of fluctuation, such that the only way to extract the figure is by integrating the patterns over time and frequency. Our behavioral results demonstrate that human listeners are remarkably sensitive to the appearance of such figures. In a functional magnetic resonance imaging experiment, aimed at investigating preattentive, stimulus-driven, auditory segregation mechanisms, naive subjects listened to these stimuli while performing an irrelevant task. Results demonstrate significant activations in the intraparietal sulcus (IPS) and the superior temporal sulcus related to bottom-up, stimulus-driven figure-ground decomposition. We did not observe any significant activation in the primary auditory cortex. Our results support a role for automatic, bottom-up mechanisms in the IPS in mediating stimulus-driven, auditory figure-ground segregation, which is consistent with accumulating evidence implicating the IPS in structuring sensory input and perceptual organization.

  12. Vitronectin as a Micromanager of Cell Response in Material-Driven Fibronectin Nanonetworks.

    PubMed

    Cantini, Marco; Gomide, Karina; Moulisova, Vladimira; González-García, Cristina; Salmerón-Sánchez, Manuel

    2017-09-01

    Surface functionalization strategies of synthetic materials for regenerative medicine applications comprise the development of microenvironments that recapitulate the physical and biochemical cues of physiological extracellular matrices. In this context, material-driven fibronectin (FN) nanonetworks obtained from the adsorption of the protein on poly(ethyl acrylate) provide a robust system to control cell behavior, particularly to enhance differentiation. This study aims at augmenting the complexity of these fibrillar matrices by introducing vitronectin, a lower-molecular-weight multifunctional glycoprotein and main adhesive component of serum. A cooperative effect during co-adsorption of the proteins is observed, as the addition of vitronectin leads to increased fibronectin adsorption, improved fibril formation, and enhanced vitronectin exposure. The mobility of the protein at the material interface increases, and this, in turn, facilitates the reorganization of the adsorbed FN by cells. Furthermore, the interplay between interface mobility and engagement of vitronectin receptors controls the level of cell fusion and the degree of cell differentiation. Ultimately, this work reveals that substrate-induced protein interfaces resulting from the cooperative adsorption of fibronectin and vitronectin fine-tune cell behavior, as vitronectin micromanages the local properties of the microenvironment and consequently short-term cell response to the protein interface and higher order cellular functions such as differentiation.

  13. Segregation physics of a macroscale granular ratchet

    NASA Astrophysics Data System (ADS)

    Bhateja, Ashish; Sharma, Ishan; Singh, Jayant K.

    2017-05-01

    New experiments with multigrain mixtures in a laterally shaken, horizontal channel show complete axial segregation of species. The channel consists of multiple concatenated trapeziums, and superficially resembles microratchets wherein asymmetric geometries and potentials transport, and sort, randomly agitated microscopic particles. However, the physics of our macroscale granular ratchet is fundamentally different, as macroscopic segregation is gravity driven. Our observations are not explained by classical granular segregation theories either. Motivated by the experiments, extensive parallelized discrete element simulations reveal that the macroratchet differentiates grains through hierarchical bidirectional segregation over two different time scales: Grains rapidly sort vertically into horizontal bands spanning the channel's length that, subsequently, slowly separate axially, driven by strikingly gentle, average interfacial pressure gradients acting over long distances. At its maximum, the pressure gradient responsible for axial separation was due to a change in height of about two big grain diameters (d =7 mm) over a meter-long channel. The strong directional segregation achieved by the granular macroratchet has practical importance, while identifying the underlying new physics will further our understanding of granular segregation in industrial and geophysical processes.

  14. Inclusion flotation-driven channel segregation in solidifying steels

    PubMed Central

    Li, Dianzhong; Chen, Xing-Qiu; Fu, Paixian; Ma, Xiaoping; Liu, Hongwei; Chen, Yun; Cao, Yanfei; Luan, Yikun; Li, Yiyi

    2014-01-01

    Channel segregation, which is featured by the strip-like shape with compositional variation in cast materials due to density contrast-induced flow during solidification, frequently causes the severe destruction of homogeneity and some fatal damage. An investigation of its mechanism sheds light on the understanding and control of the channel segregation formation in solidifying metals, such as steels. Until now, it still remains controversial what composes the density contrasts and, to what extent, how it affects channel segregation. Here we discover a new force of inclusion flotation that drives the occurrence of channel segregation. It originates from oxide-based inclusions (Al2O3/MnS) and their sufficient volume fraction-driven flotation becomes stronger than the traditionally recognized inter-dendritic thermosolutal buoyancy, inducing the destabilization of the mushy zone and dominating the formation of channels. This study uncovers the mystery of oxygen in steels, extends the classical macro-segregation theory and highlights a significant technological breakthrough to control macrosegregation. PMID:25422943

  15. Rational design of interfacial properties of ferric (hydr)oxide nanoparticles by adsorption of fatty acids from aqueous solutions.

    PubMed

    Ponnurangam, Sathish; Chernyshova, Irina V; Somasundaran, Ponisseril

    2012-07-24

    Notwithstanding the great practical importance, still open are the questions how, why, and to what extent the size, morphology, and surface charge of metal (hydr)oxide nanoparticles (NPs) affect the adsorption form, adsorption strength, surface density, and packing order of organic (bio)molecules containing carboxylic groups. In this article, we conclusively answer these questions for a model system of ferric (hydr)oxide NPs and demonstrate applicability of the established relationships to manipulating their hydrophobicity and dispersibility. Employing in situ Fourier transform infrared (FTIR) spectroscopy and adsorption isotherm measurements, we study the interaction of 150, 38, and 9 nm hematite (α-Fe(2)O(3)) and ∼4 nm 2-line ferrihydrite with sodium laurate (dodecanoate) in water. We discover that, independent of morphology, an increase in size of the ferric (hydr)oxide NPs significantly improves their adsorption capacity and affinity toward fatty acids. This effect favors the formation of bilayers, which in turn promotes dispersibility of the larger NPs in water. At the same time, the local order in self-assembled monolayer (SAM) strongly depends on the morphological compatibility of the NP facets with the geometry-driven well-packed arrangements of the hydrocarbon chains as well as on the ratio of the chemisorbed to the physically adsorbed carboxylate groups. Surprisingly, the geometrical constraints can be removed, and adsorption capacity can be increased by negatively polarizing the NPs due to promotion of the outer-sphere complexes of the fatty acid. We interpret these findings and discuss their implications for the nanotechnological applications of surface-functionalized metal (hydr)oxide NPs.

  16. Finite-Temperature Hydrogen Adsorption/Desorption Thermodynamics Driven by Soft Vibration Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Sung-Jae; Lee, Eui-Sup; Yoon, Mina

    2013-01-01

    It is widely accepted that room-temperature hydrogen storage on nanostructured or porous materials requires enhanced dihydrogen adsorption. In this work we reveal that room-temperature hydrogen storage is possible not only by the enhanced adsorption, but also by making use of the vibrational free energy from soft vibration modes. These modes exist for example in the case of metallo-porphyrin-incorporated graphenes (M-PIGs) with out-of-plane ( buckled ) metal centers. There, the in-plane potential surfaces are flat because of multiple-orbital-coupling between hydrogen molecules and the buckled-metal centers. This study investigates the finite-temperature adsorption/desorption thermodynamics of hydrogen molecules adsorbed on M-PIGs by employing first-principlesmore » total energy and vibrational spectrum calculations. Our results suggest that the current design strategy for room-temperature hydrogen storage materials should be modified by explicitly taking finite-temperature vibration thermodynamics into account.« less

  17. Effect of Segregation of Secondary Phase Particles and "S" Line on Tensile Fracture Behavior of Friction Stir-Welded 2024Al-T351 Joints

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Xiao, B. L.; Ma, Z. Y.

    2013-09-01

    A 5-mm-thick 2024Al-T351 plate was friction stir welded (FSWed) at welding speeds of 100, 200, and 400 mm min-1 with a constant rotation rate of 800 rpm, and the microstructure and tensile fracture behavior of the joints were investigated in detail. FSW resulted in the redistribution of secondary phase particles along the recrystallized grain boundaries at the nugget zone (NZ), forming linear segregation bands consisting of secondary phase particles. The segregation bands, mainly present in the shoulder-driven zone, were believed to result from periodic material flow, with the average band spacing on the longitudinal and horizontal cross sections equal to the tool advancement per revolution. At a low welding speed of 100 mm min-1, in spite of the highest density of segregation bands, the FSWed 2024Al-T351 joint fractured along the low hardness zone (LHZ) of the heat-affected zone because of large hardness gap between NZ and LHZ. Increasing the welding speed to 200 and 400 mm min-1 reduced both the hardness gap between NZ and LHZ and the density of segregation bands. In this case, the segregation bands played a role, resulting in unusual fracture of the joints along the segregation bands. The "S" line originated from the oxide film on the initial butting surfaces and did not affect the fracture behavior of the FSWed 2024Al-T351 joints.

  18. Influence of the molecular architecture on the adsorption onto solid surfaces: comb-like polymers.

    PubMed

    Guzmán, Eduardo; Ortega, Francisco; Prolongo, Margarita G; Starov, Victor M; Rubio, Ramón G

    2011-09-28

    The processes of adsorption of grafted copolymers onto negatively charged surfaces were studied using a dissipative quartz crystal microbalance (D-QCM) and ellipsometry. The control parameters in the study of the adsorption are the existence or absence on the molecular architecture of grafted polyethyleneglycol (PEG) chains with different lengths and the chemical nature of the main chain, poly(allylamine) (PAH) or poly(L-lysine) (PLL). It was found out that the adsorption kinetics of the polymers showed a complex behavior. The total adsorbed amount depends on the architecture of the polymer chains (length of the PEG chains), on the polymer concentration and on the chemical nature of the main chain. The comparison of the thicknesses of the adsorbed layers obtained from D-QCM and from ellipsometry allowed calculation of the water content of the layers that is intimately related to the grafting length. The analysis of D-QCM results also provides information about the shear modulus of the layers, whose values have been found to be typical of a rubber-like polymer system. It is shown that the adsorption of polymers with a charged backbone is not driven exclusively by the electrostatic interactions, but the entropic contributions as a result of the trapping of water in the layer structure are of fundamental importance.

  19. Facile synthesis of polyaniline-modified CuS with enhanced adsorbtion and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Chen, Shaohua; Shuai, Ying

    2016-10-01

    Novel hierarchical polyaniline-modified CuS (PANI-CuS) has been synthesized by simple assembling PANI on the surface of flower-like CuS spheres. The PANI modification enhances the adsorption properties of flower-like CuS. The prepared PANI-CuS composites exhibit higher visible-light-driven photocatalytic activities in degradation of rhodamine B (RhB) than that of neat CuS. The unusual photocatalytic activity could be attributed to the great adsorptivity of dyes, the extended photoresponse range, and the high migration efficiency of photoinduced electrons, which may effectively suppress the charge recombination. This work not only provides a simple strategy for fabricating highly efficient and stable CuS-based composites, but also proves that these unique structures are excellent platforms for significantly improving their visible- light-driven photoactivities, holding great promise for their applications in the field of purifying polluted water resources.

  20. Large entropy derived from low-frequency vibrations and its implications for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Chen, Hongshan

    2018-02-01

    Adsorption and desorption are driven by the energy and entropy competition, but the entropy effect is often ignored in hydrogen storage and the optimal adsorption strength for the ambient storage is controversial in the literature. This letter investigated the adsorption states of the H2 molecule on M-B12C6N6 (M = Li, Na, Mg, Ca, and Sc) and analyzed the correlation among the zero point energy (ZPE), the entropy change, and the adsorption energy and their effects on the delivery capacities. The ZPE has large correction to the adsorption energy due to the light mass of hydrogen. The computations show that the potential energies along the spherical surface centered at the alkali metals are very flat and it leads to large entropy (˜70 J/mol.K) of the adsorbed H2 molecules. The entropy change can compensate the enthalpy change effectively, and the ambient storage can be realized with relatively weak adsorption of ΔH = -12 kJ/mol. The results are encouraging and instructive for the design of hydrogen storage materials.

  1. Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents.

    PubMed

    Zhang, Weiming; Xu, Zhengwen; Pan, Bingcai; Hong, Changhong; Jia, Kun; Jiang, Peijuan; Zhang, Qingjian; Pan, Bingjun

    2008-09-01

    Removal of phthalate esters from water has been of considerable concern recently. In the present study, the adsorptive removal performance of diethyl phthalate (DEP) from water was investigated with the aminated polystyrene resin (NDA-101) and oxidized polystyrene resin (NDA-702). In addition, the commercial homogeneous polystyrene resin (XAD-4) and acrylic ester resin (Amberlite XAD-7) as well as coal-based granular activated carbon (AC-750) were chosen for comparison. The corresponding equilibrium isotherms are well described by the Freundlich equation and the adsorption capacities for DEP followed the order NDA-702 > NDA-101 > AC-750 > XAD-4 > XAD-7. Analysis of adsorption mechanisms suggested that these adsorbents spontaneously adsorb DEP molecules driven mainly by enthalpy change, and the adsorption process was derived by multiple adsorbent-adsorbate interactions such as hydrogen bonding, pi-pi stacking, and micropore filling. The information related to the adsorbent surface heterogeneity and the adsorbate-adsorbate interaction was obtained by Do's model. All the results indicate that heterogeneous resins NDA-702 and NDA-101 have excellent potential as an adsorption material for the removal of DEP from the contaminated water.

  2. The effect of a solid surface on the segregation and melting of salt hydrates.

    PubMed

    Zhang, Yu; Anim-Danso, Emmanuel; Dhinojwala, Ali

    2014-10-22

    Considering the importance of salt and water on earth, the crystallization of salt hydrates next to solid surfaces has important implications in physical and biological sciences. Heterogeneous nucleation is driven by surface interactions, but our understanding of hydrate formation near surfaces is limited. Here, we have studied the hydrate formation of three commonly prevalent salts, MgCl2, CaCl2, and NaCl, next to a sapphire substrate using surface sensitive infrared-visible sum frequency generation (SFG) spectroscopy. SFG spectroscopy can detect the crystallization and melting of salt hydrates at the interface by observing the changes in the intensity and the location of the cocrystallized water hydroxyl peaks (3200-3600 cm(-1)). The results indicate that the surface crystal structures of these three hydrates are similar to those in the bulk. For the NaCl solution, the brine solution is segregated next to the sapphire substrate after the formation of the ice phase. In contrast, the MgCl2 and CaCl2 surface hydrate crystals are interdispersed with nanometer-size ice crystals. The nanosize ice crystals melt at much lower temperatures than bulk ice crystals. For NaCl and MgCl2 solution, the NaCl hydrates prefer to crystallize next to the sapphire substrate instead of the ice crystals and MgCl2 hydrates.

  3. Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution.

    PubMed

    Pal, Umapada; Sandoval, Alberto; Madrid, Sergio Isaac Uribe; Corro, Grisel; Sharma, Vivek; Mohanty, Paritosh

    2016-11-01

    Mixed oxide nanoparticles containing Ti, Si, and Al of 8-15 nm size range were synthesized using a combined sol-gel - hydrothermal method. Effects of composition on the structure, morphology, and optical properties of the nanoparticles were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microRaman spectroscopy, and diffuse reflectance spectroscopy (DRS). Dye removal abilities of the nanoparticles from aqueous solutions were tested for different cationic dyes. While all the mixed oxide nanoparticles revealed high and fast adsorption of cationic dyes, the particles containing Ti and Si turned out to be the best. The adsorption kinetics and equilibrium adsorption behavior of the adsorbate - adsorbent systems could be well described by pseudo-second-order kinetics and Langmuir isotherm model, respectively. Estimated thermodynamic parameters revealed the adsorption process is spontaneous, driven mainly by the electrostatic force between the cationic dye molecules and negative charge at nanoparticle surface. Highest dye adsorption capacity (162.96 mg MB/g) of the mixed oxide nanostructures containing Ti and Si is associated to their high specific surface area, and the presence of surface Si-O(δ-) groups, in addition to the hydroxyl groups of amorphous titania. Mixed oxide nanoparticles containing 75% Ti and 25% Si seen to be the most efficient adsorbents for removing cationic dye molecules from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria

    PubMed Central

    Navarrete, Jesica U.; Borrok, David M.; Viveros, Marian; Ellzey, Joanne T.

    2011-01-01

    Copper isotopes may prove to be a useful tool for investigating bacteria–metal interactions recorded in natural waters, soils, and rocks. However, experimental data which attempt to constrain Cu isotope fractionation in biologic systems are limited and unclear. In this study, we utilized Cu isotopes (δ65Cu) to investigate Cu–bacteria interactions, including surface adsorption and intracellular incorporation. Experiments were conducted with individual representative species of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, as well as with wild-type consortia of microorganisms from several natural environments. Ph-dependent adsorption experiments were conducted with live and dead cells over the pH range 2.5–6. Surface adsorption experiments of Cu onto live bacterial cells resulted in apparent separation factors (Δ65Cusolution–solid = δ65Cusolution – δ65Cusolid) ranging from +0.3‰ to +1.4‰ for B. subtilis and +0.2‰ to +2.6‰ for E. coli. However, because heat-killed bacterial cells did not exhibit this behavior, the preference of the lighter Cu isotope by the cells is probably not related to reversible surface adsorption, but instead is a metabolically-driven phenomenon. Adsorption experiments with heat-killed cells yielded apparent separation factors ranging from +0.3‰ to –0.69‰ which likely reflects fractionation from complexation with organic acid surface functional group sites. For intracellular incorporation experiments the lab strains and natural consortia preferentially incorporated the lighter Cu isotope with an apparent Δ65Cusolution–solid ranging from ~+1.0‰ to +4.4‰. Our results indicate that live bacterial cells preferentially sequester the lighter Cu isotope regardless of the experimental conditions. The fractionation mechanisms involved are likely related to active cellular transport and regulation, including the reduction of Cu(II) to Cu(I). Because similar intracellular Cu machinery is shared by fungi, plants, and higher organisms, the influence of biological processes on the δ65Cu of natural waters and soils is probably considerable. PMID:21785492

  5. Gas/Surface Interaction Study Applied to Si-based Materials Used in Driven Micro- and Nano-scale Devices

    DTIC Science & Technology

    2010-01-01

    science and engineering. For example, by measuring the frequency shift of sensor oscillations, one can measure gas adsorption on the sensor surface...free-molecular regime with varied gas pressure. The measurement path of the experimental setup is schematically shown in Fig. 3.1. The sensor is...excited by the electric field between the sensor and fixed electrode by means of a specially designed system of self-induced oscillations. The

  6. Mesoporous zirconium titanium oxides. Part 1: Porosity modulation and adsorption properties of xerogels.

    PubMed

    Griffith, Christopher S; Sizgek, G Devlet; Sizgek, Erden; Scales, Nicholas; Yee, Patrick J; Luca, Vittorio

    2008-11-04

    A series of zirconium titanium oxide mesophases containing 33 atom % Zr have been prepared using carboxylic acids of different alkyl chain lengths (Cy ) from y=4-18 through organic-inorganic polymer phase segregation as the gel transition is approached. Thermal treatment of these transparent gels up to 450 degrees C eliminated the organic template, and domain coarsening occurred affording stable worm-hole mesoporous materials of homogeneous composition and pore diameters varying from about 3 to 4 nm in fine increments. With such materials, it was subsequently possible to precisely study the adsorption of vanadium oxo-anions and cations from aqueous solutions and, more particularly, probe the kinetics of intraparticle mass transport as a function of the associated pore dimension. The kinetics of mass transport through the pore systems was investigated using aqueous vanadyl (VO2+) and orthovanadate (VO3(OH)2-) probe species at concentrations ranging from 10 to 200 ppm (0.2 to 4 mmol/L) and pH values of 0 and 10.5, respectively. In the case of both of these vanadium species, the zirconium titanate mesophases displayed relatively slow kinetics, taking in excess of about 500 min to achieve maximum uptake. By using a pseudo-second-order rate law, it was possible to extract the instantaneous and overall rate of the adsorption processes and then relate these to the pore diameters. Both the instantaneous and overall rates of adsorption increased with increasing surface area and pore diameter over the studied pore size range. However, the equilibrium adsorption capacity increased linearly with pore diameter only for the higher concentrations and was independent of pore diameter for the lower concentration. These results have been interpreted using a model in which discrete adsorption occurs at low concentrations and is then followed by multilayer adsorption at higher concentration.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Sandra D.; Liu, Jia; Arey, Bruce W.

    The distribution of iron resulting from the autocatalytic interaction of aqueous Fe(II) with the hematite (001) surface was directly mapped in three dimensions (3D) for the first time, using iron isotopic labelling and atom probe tomography (APT). Analyses of the mass spectrum showed that natural abundance ratios in 56Fe-dominant hematite are recovered at depth with good accuracy, whereas at the relict interface with 57Fe(II) solution evidence for hematite growth by oxidative adsorption of Fe(II) was found. 3D reconstructions of the isotope positions along the surface normal direction showed a zone enriched in 57Fe, which was consistent with an average netmore » adsorption of 3.2 – 4.3 57Fe atoms nm–2. Statistical analyses utilizing grid-based frequency distribution analyses show a heterogeneous, non-random distribution of oxidized Fe on the (001) surface, consistent with Volmer-Weber-like island growth. The unique 3D nature of the APT data provides an unprecedented means to quantify the atomic-scale distribution of sorbed 57Fe atoms and the extent of segregation on the hematite surface. This new ability to spatially map growth on single crystal faces at the atomic scale will enable resolution to long-standing unanswered questions about the underlying mechanisms for electron and atom exchange involved in a wide variety of redox-catalyzed processes at this archetypal and broadly relevant interface.« less

  8. Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by Antimony and Tin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marina, Olga A.; Coyle, Christopher A.; Engelhard, Mark H.

    2011-02-28

    Surface Ni/Sb and Ni/Sb alloys were found to efficiently minimize the negative effects of sulfur on the performance of Ni/zirconia anode-supported solid oxide fuel cells (SOFC). Prior to operating on fuel gas containing low concentrations of H2S, the nickel/zirconia anodes were briefly exposed to antimony or tin vapor, which only slightly affected the SOFC performance. During the subsequent exposures to 1 and 5 ppm H2S, increases in anodic polarization losses were minimal compared to those observed for the standard nickel/zirconia anodes. Post-test XPS analyses showed that Sb and Sn tended to segregate to the surface of Ni particles, and furthermore » confirmed a significant reduction of adsorbed sulfur on the Ni surface in Ni/Sn and Ni/Sb samples compared to the Ni. The effect may be the result of weaker sulfur adsorption on bimetallic surfaces, adsorption site competition between sulfur and Sb or Sn on Ni, or other factors. The use of dilute binary alloys of Ni-Sb or Ni-Sn in the place of Ni, or brief exposure to Sb or Sn vapor, may be effective means to counteract the effects of sulfur poisoning in SOFC anodes and Ni catalysts. Other advantages, including suppression of coking or tailoring the anode composition for the internal reforming, are also expected.« less

  9. Differences in the adsorption behaviour of poly(ethylene oxide) copolymers onto model polystyrene nanoparticles assessed by isothermal titration microcalorimetry correspond to the biological differences.

    PubMed

    Stolnik, S; Heald, C R; Garnett, M G; Illum, L; Davis, S S

    2005-01-01

    The adsorption behaviour of a tetrafunctional copolymer of poly (ethylene oxide)-poly (propylene oxide) ethylene diamine (commercially available as Poloxamine 908) and a diblock copolymer of poly (lactic acid)-poly (ethylene oxide) (PLA/PEG 2:5) onto a model colloidal drug carrier (156 nm sized polystyrene latex) is described. The adsorption isotherm, hydrodynamic thickness of the adsorbed layers and enthalpy of the adsorption were assessed. The close similarity in the conformation of the poly (ethylene oxide) (PEO) chains (molecular weight 5,000 Da) in the adsorbed layers of these two copolymers was demonstrated by combining the adsorption data with the adsorbed layer thickness data. In contrast, the results from isothermal titration microcalorimetry indicated a distinct difference in the interaction of the copolymers with the polystyrene colloid surface. Poloxamine 908 adsorption to polystyrene nanoparticles is dominated by an endothermic heat effect, whereas, PLA/PEG 2:5 adsorption is entirely an exothermic process. This difference in adsorption behaviour could provide an explanation for differences in the biodistribution of Poloxamine 908 and PLA/PEG 2:5 coated polystyrene nanoparticles observed in previous studies. A comparison with the interaction enthalpy for several other PEO-containing copolymers onto the same polystyrene colloid was made. The results demonstrate the importance of the nature of the anchoring moiety on the interaction of the adsorbing copolymer with the colloid surface. An endothermic contribution is found when an adsorbing molecule contains a poly (propylene oxide) (PPO) moiety (e.g. Poloxamine 908), whilst the adsorption is exothermic (i.e. enthalpy driven) for PEO copolymers with polylactide (PLA/PEG 2:5) or alkyl moieties.

  10. Influence of the "surface effect" on the segregation parameters of S in Fe(100): A multi-scale modelling and Auger Electron Spectroscopy study

    NASA Astrophysics Data System (ADS)

    Barnard, P. E.; Terblans, J. J.; Swart, H. C.

    2015-12-01

    The article takes a new look at the process of atomic segregation by considering the influence of surface relaxation on the segregation parameters; the activation energy (Q), segregation energy (ΔG), interaction parameter (Ω) and the pre-exponential factor (D0). Computational modelling, namely Density Functional Theory (DFT) and the Modified Darken Model (MDM) in conjunction with Auger Electron Spectroscopy (AES) was utilized to study the variation of the segregation parameters for S in the surface region of Fe(100). Results indicate a variation in each of the segregation parameters as a function of the atomic layer under consideration. Values of the segregation parameters varied more dramatically as the surface layer is approached, with atomic layer 2 having the largest deviations in comparison to the bulk values. This atomic layer had the highest Q value and formed the rate limiting step for the segregation of S towards the Fe(100) surface. It was found that the segregation process is influenced by two sets of segregation parameters, those of the surface region formed by atomic layer 2, and those in the bulk material. This article is the first to conduct a full scale investigation on the influence of surface relaxation on segregation and labelled it the "surface effect".

  11. FENTON-DRIVEN REGENERATION OF GRANULAR ACTIVATED CARBON: A TECHNOLOGY OVERVIEW

    EPA Science Inventory

    A Fenton-driven mechanism for regenerating spent granular activated carbon (GAC) involves the combined, synergistic use of two reliable and well established treatment technologies - adsorption onto activated carbon and Fenton oxidation. During carbon adsorption treatment, enviro...

  12. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  13. Domain Formation Induced by the Adsorption of Charged Proteins on Mixed Lipid Membranes

    PubMed Central

    Mbamala, Emmanuel C.; Ben-Shaul, Avinoam; May, Sylvio

    2005-01-01

    Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein's size and charge and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation. PMID:15626713

  14. Use of LEED, Auger emission spectroscopy and field ion microscopy in microstructural studies

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Buckley, D. H.; Pepper, S. V.; Brainard, W. A.

    1972-01-01

    Surface research tools such as LEED, Auger emission spectroscopy analysis, and field ion microscopy are discussed. Examples of their use in studying adhesion, friction, wear, and lubrication presented. These tools have provided considerable insight into the basic nature of solid surface interactions. The transfer of metals from one surface to another at the atomic level has been observed and studied with each of these devices. The field ion microscope has been used to study polymer-metal interactions and Auger analysis to study the mechanism of polymer adhesion to metals. LEED and Auger analysis have identified surface segregation of alloying elements and indicated the influence of these elements in metallic adhesion. LEED and Auger analysis have assisted in adsorption studies in determining the structural arrangement and quantity of adsorbed species present in making an understanding of the influence of these species on adhesion possible. These devices are assisting in the furtherance of understanding of the fundamental mechanism involved in the adhesion, friction, wear, and lubrication processes.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimoto, Shinya, E-mail: yosshi@issp.u-tokyo.ac.jp; Shiozawa, Yuichiro; Koitaya, Takanori

    Electronic states and electrical conductivity of the native oxide Si(111) surface adsorbed with an electron donor tetrakis(dimethylamino)ethylene (TDAE) were investigated using ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy (XPS), and independently driven four-probe conductivity measurements. The formation of positively charged TDAE species is confirmed by the downward shift of the vacuum level by 1.45 eV, the absence of HOMO level in the valence band, and observation of the positively charged state in the N 1s XPS spectra. Si 2p XPS spectra and four-probe conductivity measurements revealed that TDAE adsorption induces an increase in downward band bending and a reduction in electrical resistancemore » of the surface, respectively. The sheet conductivity and the electron density of the surface are 1.1 μS/◻ and 4.6 × 10{sup 9} cm{sup −2}, respectively, after TDAE adsorption, and they are as high as 350% of the original surface. These results demonstrate that the electron density of the semiconductor surface is successfully controlled by the electron donor molecule TDAE.« less

  16. Solution pH and oligoamine molecular weight dependence of the transition from monolayer to multilayer adsorption at the air-water interface from sodium dodecyl sulfate/oligoamine mixtures.

    PubMed

    Halacheva, S S; Penfold, J; Thomas, R K; Webster, J R P

    2013-05-14

    Neutron reflectivity and surface tension have been used to investigate the solution pH and oligoamine molecular weight dependence of the adsorption of sodium dodecyl sulfate (SDS)/oligoamine mixtures at the air-water interface. For diethylenetriamine, triamine, or triethylenetetramine, tetramine mixed with SDS, there is monolayer adsorption at pH 7 and 10, and multilayer adsorption at pH 3. For the slightly higher molecular weight tetraethylenepentamine, pentamine, and pentaethylenehexamine, hexamine, the adsorption is in the form of a monolayer at pH 3 and multilayers at pH 7 and 10. Hence, there is a pH driven transition from monolayer to multilayer adsorption, which shifts from low pH to higher pH as the oligoamine molecular weight increases from tetramine to pentamine. This results from the relative balance between the electrostatic attraction between the SDS and amine nitrogen group which decreases as the charge density decreases with increasing pH, the ion-dipole interaction between the amine nitrogen and SDS sulfate group which is dominant at higher pH, and the hydrophobic interalkyl chain interaction between bound SDS molecules which changes with oligoamine molecular weight.

  17. Quantifying differences in the impact of variable chemistry on equilibrium uranium(VI) adsorption properties of aquifer sediments

    USGS Publications Warehouse

    Stoliker, Deborah L.; Kent, Douglas B.; Zachara, John M.

    2011-01-01

    Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2-, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (Kc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

  18. The role of surfaces, chemical interfaces, and disorder on plutonium incorporation in pyrochlores

    DOE PAGES

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    2016-07-27

    Pyrochlores, a class of complex oxides with formula A 2B 2O 7, are one of the candidates for nuclear waste encapsulation, due to the natural occurrence of actinide-bearing pyrochlore minerals and laboratory observations of high radiation tolerance. In this work, we use atomistic simulations to determine the role of surfaces, chemical interfaces, and cation disorder on the plutonium immobilization properties of pyrochlores as a function of pyrochlore chemistry. We find that both Pu 3+ and Pu 4+ segregate to the surface for the four low-index pyrochlore surfaces considered, and that the segregation energy varies with the chemistry of the compound.more » We also find that pyrochlore/pyrochlore bicrystals A 2B 2O 7/A 2'B 2'O 7 can be used to immobilize Pu 3+ and Pu 4+ either in the same or separate phases of the compound, depending on the chemistry of the material. Finally, we find that Pu 4+ segregates to the disordered phase of an order/disorder bicrystal, driven by the occurrence of local oxygen-rich environments. However, Pu 3+ is weakly sensitive to the oxygen environment, and therefore only slightly favors the disordered phase. This behavior suggests that, at some concentration, Pu incorporation can destabilize the pyrochlore structure. Together, these results provide new insight into the ability of pyrochlore compounds to encapsulate Pu and suggest new considerations in the development of waste forms based on pyrochlores. Particularly, the phase structure of a multi-phase pyrochlore composite can be used to independently getter decay products based on their valence and size.« less

  19. Cobalt and iron segregation and nitride formation from nitrogen plasma treatment of CoFeB surfaces

    NASA Astrophysics Data System (ADS)

    Mattson, E. C.; Michalak, D. J.; Veyan, J. F.; Chabal, Y. J.

    2017-02-01

    Cobalt-iron-boron (CoFeB) thin films are the industry standard for ferromagnetic layers in magnetic tunnel junction devices and are closely related to the relevant surfaces of CoFe-based catalysts. Identifying and understanding the composition of their surfaces under relevant processing conditions is therefore critical. Here we report fundamental studies on the interaction of nitrogen plasma with CoFeB surfaces using infrared spectroscopy, x-ray photoemission spectroscopy, and low energy ion scattering. We find that, upon exposure to nitrogen plasma, clean CoFeB surfaces spontaneously reorganize to form an overlayer comprised of Fe2N3 and BN, with the Co atoms moved well below the surface through a chemically driven process. Subsequent annealing to 400 °C removes nitrogen, resulting in a Fe-rich termination of the surface region.

  20. The Saudi Arabian International Student Experience: From a Gender-Segregated Society to Studying in a Mixed-Gender Environment

    ERIC Educational Resources Information Center

    Alhazmi, Ahmed; Nyland, Berenice

    2013-01-01

    In Saudi Arabia gender segregation is a cultural practice that occurs across all public and private domains. This segregation has shaped the lives of Saudi citizens and is driven socially through cultural and religious discourses and politically through regulation and policy. For Saudi students undertaking their education in western countries, the…

  1. Film depth and concentration banding in free-surface Couette flow of a suspension.

    PubMed

    Timberlake, Brian D; Morris, Jeffrey F

    2003-05-15

    The film depth of a free-surface suspension flowing in a partially filled horizontal concentric-cylinder, or Couette, device has been studied in order to assess its role in the axial concentration banding observed in this flow. The flow is driven by rotation of the inner cylinder. The banding phenomenon is characterized by particle-rich bands which under flow appear as elevated regions at the free surface separated axially by regions dilute relative to the mean concentration. The concentric cylinders studied had outer radius R(o) = 2.22 cm and inner radii R(i) = 0.64, 0.95 and 1.27 cm; the suspension, of bulk particle volume fraction phi = 0.2 in all experiments described, was composed of particles of either 250-300 microm diameter or less than 106 microm diameter, with the suspending fluid an equal density liquid of viscosity 160 P. The ratio of the maximum to the minimum particle volume fraction along the axis in the segregated condition varies from O(1) to infinite. The latter case implies complete segregation, with bands of clear fluid separating the concentrated bands. The film depth has been varied through variation of the filled fraction, f, of the annular gap between the cylinders and through the rotation rate. Film depth was analysed by edge detection of video images of the free surface under flow, and the time required for band formation was determined for all conditions at which film depth was studied. The film depth increases roughly as the square root of rotation speed for f = 0.5. Band formation is more rapid for thicker films associated with more rapid rotation rates at f = 0.5, whereas slower formation rates are observed with thicker films caused by large f, f > 0.65. It is observed that the film depth over the inner cylinder grows prior to onset of banding, for as yet unknown reasons. A mechanism for segregation of particles and liquid in film flows based upon 'differential drainage' of the particle and liquid phase in the gravity-driven flow within the film over the inner cylinder is formulated to describe the onset of concentration fluctuations. This model predicts that suspension drainage flows lead to growth of fluctuations in phi under regions of negative surface curvature.

  2. Striped, honeycomb, and twisted moiré patterns in surface adsorption systems with highly degenerate commensurate ground states

    NASA Astrophysics Data System (ADS)

    Elder, K. R.; Achim, C. V.; Granato, E.; Ying, S. C.; Ala-Nissila, T.

    2017-11-01

    Atomistically thin adsorbate layers on surfaces with a lattice mismatch display complex spatial patterns and ordering due to strain-driven self-organization. In this work, a general formalism to model such ultrathin adsorption layers that properly takes into account the competition between strain and adhesion energy of the layers is presented. The model is based on the amplitude expansion of the two-dimensional phase field crystal (PFC) model, which retains atomistic length scales but allows relaxation of the layers at diffusive time scales. The specific systems considered here include cases where both the film and the adsorption potential can have either honeycomb (H) or triangular (T) symmetry. These systems include the so-called (1 ×1 ) , (√{3 }×√{3 }) R 30∘ , (2 ×2 ) , (√{7 }×√{7 }) R 19 .1∘ , and other higher order states that can contain a multitude of degenerate commensurate ground states. The relevant phase diagrams for many combinations of the H and T systems are mapped out as a function of adhesion strength and misfit strain. The coarsening patterns in some of these systems is also examined. The predictions are in good agreement with existing experimental data for selected strained ultrathin adsorption layers.

  3. A first principles study on the electronic origins of silver segregation at the Ag-Au (111) surface

    NASA Astrophysics Data System (ADS)

    Hoppe, Sandra; Müller, Stefan

    2017-12-01

    The special electronic structure of gold gives rise to many interesting phenomena, such as its color. The surface segregation of the silver-gold system has been the subject of numerous experimental and theoretical studies, yielding conflicting results ranging from strong Ag surface enrichment to Au surface segregation. Via a combined approach of density functional theory (DFT) and statistical physics, we have analyzed the segregation at the Ag-Au (111) surface with different Ag bulk concentrations. Interestingly, we observe a moderate Au surface segregation, which is due to a charge transfer from the less electronegative Ag to Au. Canonical Monte Carlo simulations suggest that the calculated concentration profile with a Au-enriched surface layer remains stable up to higher temperatures. However, the presence of adsorbed oxygen reverses the segregation behavior and leads to strong Ag enrichment of the surface layer.

  4. Fluensulfone sorption and mobility as affected by soil type.

    PubMed

    Morris, Kelly A; Li, Xiao; Langston, David B; Davis, Richard F; Timper, Patricia; Grey, Timothy L

    2018-02-01

    Fluensulfone is a fluoroalkenyl chemical with activity against multiple genera of plant-parasitic nematodes. The adsorption, desorption, and mobility of fluensulfone were evaluated on multiple soils from the USA in laboratory and column experiments. Adsorption data regressed to the logarithmic Freundlich equation resulted in isotherm values of 1.24 to 3.28. Soil adsorption of fluensulfone correlated positively with organic matter (0.67) and clay (0.34), but negatively with sand (-0.54). Fluensulfone soil desorption correlated to pH (0.38) and cation exchange capacity (0.44). Fluensulfone desorption from Arredondo sand soil was 26%, and from other soils ranged from 43 to 70%. In mobility experiments, fluensulfone in the leachate peaked at 3 h, gradually declining and becoming undetectable after 9 h. Recovery from leachate was 45% of the initial fluensulfone applied to the soil surface. In separate experiments, 30-cm-long soil columns were saturated with 1 L of water, and then segregated into three 10-cm sections. Fluensulfone recovery was 41, 34, 29, and 13% in Chualar sandy loam, Arredondo sand, Greenville sandy clay loam, and Tifton loamy sand, respectively, in the top 10-cm section. Data indicated that soil organic matter and clay contents will affect sorption, mobility, and dissipation of fluensulfone. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  6. Granular Segregation Driven by Particle Interactions

    NASA Astrophysics Data System (ADS)

    Lozano, C.; Zuriguel, I.; Garcimartín, A.; Mullin, T.

    2015-05-01

    We report the results of an experimental study of particle-particle interactions in a horizontally shaken granular layer that undergoes a second order phase transition from a binary gas to a segregation liquid as the packing fraction C is increased. By focusing on the behavior of individual particles, the effect of C is studied on (1) the process of cluster formation, (2) cluster dynamics, and (3) cluster destruction. The outcomes indicate that the segregation is driven by two mechanisms: attraction between particles with the same properties and random motion with a characteristic length that is inversely proportional to C . All clusters investigated are found to be transient and the probability distribution functions of the separation times display a power law tail, indicating that the splitting probability decreases with time.

  7. Excess charge driven dissociative hydrogen adsorption on Ti2O4.

    PubMed

    Song, Xiaowei; Fagiani, Matias R; Debnath, Sreekanta; Gao, Min; Maeda, Satoshi; Taketsugu, Tetsuya; Gewinner, Sandy; Schöllkopf, Wieland; Asmis, Knut R; Lyalin, Andrey

    2017-08-30

    The mechanism of dissociative D 2 adsorption on Ti 2 O 4 - , which serves as a model for an oxygen vacancy on a titania surface, is studied using infrared photodissociation spectroscopy in combination with density functional theory calculations and a recently developed single-component artificial force induced reaction method. Ti 2 O 4 - readily reacts with D 2 under multiple collision conditions in a gas-filled ion trap held at 16 K forming a global minimum-energy structure (DO-Ti-(O) 2 -Ti(D)-O) - . The highly exergonic reaction proceeds quasi barrier-free via several intermediate species, involving heterolytic D 2 -bond cleavage followed by D-atom migration. We show that, compared to neutral Ti 2 O 4 , the excess negative charge in Ti 2 O 4 - is responsible for the substantial lowering of the D 2 dissociation barrier, but does not affect the molecular D 2 adsorption energy in the initial physisorption step.

  8. Modifications in nanoparticle-protein interactions by varying the protein conformation

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Yadav, I.; Aswal, V. K.; Kohlbrecher, J.

    2017-05-01

    Small-angle neutron scattering has been used to study the interaction of silica nanoparticle with Bovine Serum Albumin (BSA) protein without and with a protein denaturing agent urea. The measurements have been carried out at pH 7 where both the components (nanoparticle and protein) are similarly charged. We show that the interactions in nanoparticle-protein system can be modified by changing the conformation of protein through the presence of urea. In the absence of urea, the strong electrostatic repulsion between the nanoparticle and protein prevents protein adsorption on nanoparticle surface. This non-adsorption, in turn gives rise to depletion attraction between nanoparticles. However, with addition of urea the depletion attraction is completely suppressed. Urea driven denaturation of protein is utilized to expose the positively charged patched of the BSA molecules which eventually leads to adsorption of BSA on nanoparticles eliminating the depletion interaction.

  9. In situ growth of hierarchical Al2O3 nanostructures onto TiO2 nanofibers surface: super-hydrophilicity, efficient oil/water separation and dye-removal.

    PubMed

    Fu, Wanlin; Dai, Yunqian; Tian, Jilan; Huang, Chaobo; Liu, Zhongche; Liu, Ken; Yin, Linzhi; Huang, Fangfang; Lu, Yingwei; Sun, Yueming

    2018-08-24

    Developing a facile strategy to synthesize template-free TiO 2 membrane with stable super-hydrophilic surface is still a daunting challenge. In this work, super-hydrophilicity (close to 0°) and underwater super-oleophobicity (165°) have been successfully demonstrated on a hierarchical Al 2 O 3 /TiO 2 membrane, which is prepared via a facile electrospinning method followed by simple calcination in air. The precisely-tuned Al 2 O 3 heterojunctions grew in situ and dispersed uniformly on the TiO 2 surface, resulting in an 'island in the sea' configuration. Such a unique feature allows not only achieving super-hydrophilicity by maximizing the surface roughness and enhancing the hydrogen bonding, but also improving the adsorption capacity toward different toxic dyes utilizing the abundant adsorption sites protected by the hierarchical nanostructure during sintering. The new Al 2 O 3 /TiO 2 nanofibrous membrane can serve as a novel filter for gravity driven oil/water separation along with dye removal, achieving 97.7% of oil/water separation efficiency and 98% of dye capture, thanks to their superb wettability and the sophisticated adsorptive performance. Our presented fabrication strategy can be extended to a wide range of ceramic materials and inspires their advanced applications in water purification under harsh liquid-phase environments.

  10. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations.

    PubMed

    Huang, Rixiang; Carney, Randy P; Ikuma, Kaoru; Stellacci, Francesco; Lau, Boris L T

    2014-06-24

    As nanoparticles (NPs) enter into biological systems, they are immediately exposed to a variety and concentration of proteins. The physicochemical interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of NP surface heterogeneity, the interactions between bovine serum albumin (BSA) and gold NPs (AuNPs) with similar chemical composition but different surface structures were investigated. Different interaction modes and BSA conformations were studied by dynamic light scattering, circular dichroism spectroscopy, fluorescence quenching and isothermal titration calorimetry (ITC). Depending on the surface structure of AuNPs, BSA seems to adopt either a "side-on" or an "end-on" conformation on AuNPs. ITC demonstrated that the adsorption of BSA onto AuNPs with randomly distributed polar and nonpolar groups was primarily driven by electrostatic interaction, and all BSA were adsorbed in the same process. The adsorption of BSA onto AuNPs covered with alternating domains of polar and nonpolar groups was a combination of different interactions. Overall, the results of this study point to the potential for utilizing nanoscale manipulation of NP surfaces to control the resulting NP-protein interactions.

  11. Adsorption of Synthetic Cationic Polymers on Model Phospholipid Membranes: Insight from Atomic-Scale Molecular Dynamics Simulations.

    PubMed

    Kostritskii, Andrei Yu; Kondinskaia, Diana A; Nesterenko, Alexey M; Gurtovenko, Andrey A

    2016-10-11

    Although synthetic cationic polymers represent a promising class of effective antibacterial agents, the molecular mechanisms behind their antimicrobial activity remain poorly understood. To this end, we employ atomic-scale molecular dynamics simulations to explore adsorption of several linear cationic polymers of different chemical structure and protonation (polyallylamine (PAA), polyethylenimine (PEI), polyvinylamine (PVA), and poly-l-lysine (PLL)) on model bacterial membranes (4:1 mixture of zwitterionic phosphatidylethanolamine (PE) and anionic phosphatidylglycerol (PG) lipids). Overall, our findings show that binding of polycations to the anionic membrane surface effectively neutralizes its charge, leading to the reorientation of water molecules close to the lipid/water interface and to the partial release of counterions to the water phase. In certain cases, one has even an overcharging of the membrane, which was shown to be a cooperative effect of polymer charges and lipid counterions. Protonated amine groups of polycations are found to interact preferably with head groups of anionic lipids, giving rise to formation of hydrogen bonds and to a noticeable lateral immobilization of the lipids. While all the above findings are mostly defined by the overall charge of a polymer, we found that the polymer architecture also matters. In particular, PVA and PEI are able to accumulate anionic PG lipids on the membrane surface, leading to lipid segregation. In turn, PLL whose charge twice exceeds charges of PVA/PEI does not induce such lipid segregation due to its considerably less compact architecture and relatively long side chains. We also show that partitioning of a polycation into the lipid/water interface is an interplay between its protonation level (the overall charge) and hydrophobicity of the backbone. Therefore, a possible strategy in creating highly efficient antimicrobial polymeric agents could be in tuning these polycation's properties through proper combination of protonated and hydrophobic blocks.

  12. Effect of lattice-gas atoms on the adsorption behaviour of thioether molecules.

    PubMed

    Pan, Yi; Yang, Bing; Hulot, Catherine; Blechert, Siegfried; Nilius, Niklas; Freund, Hans-Joachim

    2012-08-21

    Using STM topographic imaging and spectroscopy, we have investigated the adsorption of two thioether molecules, 1,2-bis(phenylthio)benzene and (bis(3-phenylthio)-phenyl)sulfane, on noble and transition metal surfaces. The two substrates show nearly antipodal behaviour. Whereas complexes with one or two protruding centres are observed on Au(111), only flat and uniform ad-structures are found on NiAl(110). The difference is ascribed to the possibility of the thioethers to form metal-organic complexes by coordinating lattice-gas atoms on the Au(111), while only the pristine molecules adsorb on the alloy surface. The metal coordination in the first case is driven by the formation of strong Au-S bonds and enables the formation of characteristic monomer, dimer and chain-like structures of the thioethers, using the Au atoms as linkers. A similar mechanism is not available on the NiAl, because no lattice gas develops at this surface at room temperature. Our work demonstrates how surface properties, i.e. the availability of mobile ad-species, determine the interaction of organic molecules with metallic substrates.

  13. Understanding the adsorptive interactions of arsenate-iron nanoparticles with curved fullerene-like sheets in activated carbon using a quantum mechanics/molecular mechanics computational approach.

    PubMed

    Ha, Nguyen Ngoc; Cam, Le Minh; Ha, Nguyen Thi Thu; Goh, Bee-Min; Saunders, Martin; Jiang, Zhong-Tao; Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z; El-Harbawi, Mohanad; Yin, Chun-Yang

    2017-06-07

    The prevalence of global arsenic groundwater contamination has driven widespread research on developing effective treatment systems including adsorption using various sorbents. The uptake of arsenic-based contaminants onto established sorbents such as activated carbon (AC) can be effectively enhanced via immobilization/impregnation of iron-based elements on the porous AC surface. Recent suggestions that AC pores structurally consist of an eclectic mix of curved fullerene-like sheets may affect the arsenic adsorption dynamics within the AC pores and is further complicated by the presence of nano-sized iron-based elements. We have therefore, attempted to shed light on the adsorptive interactions of arsenate-iron nanoparticles with curved fullerene-like sheets by using hybridized quantum mechanics/molecular mechanics (QMMM) calculations and microscopy characterization. It is found that, subsequent to optimization, chemisorption between HAsO 4 2- and the AC carbon sheet (endothermic process) is virtually non-existent - this observation is supported by experimental results. Conversely, the incorporation of iron nanoparticles (FeNPs) into the AC carbon sheet greatly facilitates chemisorption of HAsO 4 2- . Our calculation implies that iron carbide is formed at the junction between the iron and the AC interface and this tightly chemosorbed layer prevents detachment of the FeNPs on the AC surface. Other aspects including electronic structure/properties, carbon arrangement defects and rate of adsorptive interaction, which are determined using the Climbing-Image NEB method, are also discussed.

  14. Thermodynamic understanding of Sn whisker growth on the Cu surface in Cu(top)-Sn(bottom) bilayer system upon room temperature aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lin; Jian, Wei; Lin, Bing

    2015-06-07

    Sn whiskers are observed by scanning electron microscope on the Cu surface in Cu(top)-Sn(bottom) bilayer system upon room temperature aging. Only Cu{sub 6}Sn{sub 5} phase appears in the X-ray diffraction patterns and no Sn element is detected in the Cu sublayer by scanning transmission electron microscopy. Based on the interfacial thermodynamics, the intermetallic Cu{sub 6}Sn{sub 5} compound phase may form directly at the Sn grain boundary. Driven by the stress gradient during the formation of Cu{sub 6}Sn{sub 5} compound at Sn grain boundaries, Sn atoms segregate onto the Cu surface and accumulate to form Sn whisker.

  15. Preparation of K-doped TiO2 nanostructures by wet corrosion and their sunlight-driven photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Shin, Eunhye; Jin, Saera; Kim, Jiyoon; Chang, Sung-Jin; Jun, Byung-Hyuk; Park, Kwang-Won; Hong, Jongin

    2016-08-01

    K-doped TiO2 nanowire networks were prepared by the corrosion reaction of Ti nanoparticles in an alkaline (potassium hydroxide: KOH) solution. The prepared nanostructures were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD) and photoluminescence (PL) spectra. Their sunlight-driven photocatalytic activity was also investigated with differently charged dye molecules, such as methylene blue, rhodamine B and methyl orange. The adsorption of the dye molecules on the photocatalyst surface would play a critical role in their selective photodegradation under sunlight illumination.

  16. Adsorption of quantum dots onto polymer and Gemini surfactant films: a quartz crystal microbalance study.

    PubMed

    Alejo, T; Merchán, M D; Velázquez, M M

    2014-08-26

    We used quartz crystal microbalance with dissipation to study the mechanical properties, the kinetics of adsorption, and the amount of CdSe quantum dots (QDs) adsorbed onto a SiO2 sensor, referred as bare sensor, onto the sensor modified with a film of the polymer poly(maleic anhydride-alt-1-octadecene), PMAO, or with a film of the Gemini surfactant ethyl-bis(dimethyl octadecyl ammonium bromide), abbreviated as 18-2-18. Results showed that when the sensor is coated with polymer or surfactant molecules, the coverage increases compared with that obtained for the bare sensor. On the other hand, rheological properties and kinetics of adsorption of QDs are driven by QD nanoparticles. Thus, the QD films present elastic behavior, and the elasticity values are independent of the molecule used as coating and similar to the elasticity value obtained for QDs films on the bare sensor. The QD adsorption is a two-step mechanism in which the fastest process is attributed to the QD adsorption onto the solid substrate and the slowest one is ascribed to rearrangement movements of the nanoparticles adsorbed at the surface.

  17. Two critical periods in early visual cortex during figure-ground segregation.

    PubMed

    Wokke, Martijn E; Sligte, Ilja G; Steven Scholte, H; Lamme, Victor A F

    2012-11-01

    The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure-ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual cortex (V1/V2). However, areas V1/V2 have also been frequently associated with later stages of figure-ground segregation (such as border ownership or surface segregation). To causally link activity in early visual cortex to different stages of figure-ground segregation, we briefly disrupted activity in areas V1/V2 at various moments in time using transcranial magnetic stimulation (TMS). Prior to stimulation we presented stimuli that made it possible to differentiate between figure border detection and surface segregation. We concurrently recorded electroencephalographic (EEG) signals to examine how neural correlates of figure-ground segregation were affected by TMS. Results show that disruption of V1/V2 in an early time window (96-119 msec) affected detection of figure stimuli and affected neural correlates of figure border detection, border ownership, and surface segregation. TMS applied in a relatively late time window (236-259 msec) selectively deteriorated performance associated with surface segregation. We conclude that areas V1/V2 are not only essential in an early stage of figure-ground segregation when figure borders are detected, but subsequently causally contribute to more sophisticated stages of figure-ground segregation such as surface segregation.

  18. Two critical periods in early visual cortex during figure–ground segregation

    PubMed Central

    Wokke, Martijn E; Sligte, Ilja G; Steven Scholte, H; Lamme, Victor A F

    2012-01-01

    The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure–ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual cortex (V1/V2). However, areas V1/V2 have also been frequently associated with later stages of figure–ground segregation (such as border ownership or surface segregation). To causally link activity in early visual cortex to different stages of figure–ground segregation, we briefly disrupted activity in areas V1/V2 at various moments in time using transcranial magnetic stimulation (TMS). Prior to stimulation we presented stimuli that made it possible to differentiate between figure border detection and surface segregation. We concurrently recorded electroencephalographic (EEG) signals to examine how neural correlates of figure–ground segregation were affected by TMS. Results show that disruption of V1/V2 in an early time window (96–119 msec) affected detection of figure stimuli and affected neural correlates of figure border detection, border ownership, and surface segregation. TMS applied in a relatively late time window (236–259 msec) selectively deteriorated performance associated with surface segregation. We conclude that areas V1/V2 are not only essential in an early stage of figure–ground segregation when figure borders are detected, but subsequently causally contribute to more sophisticated stages of figure–ground segregation such as surface segregation. PMID:23170239

  19. Kinetochore-independent chromosome segregation driven by lateral microtubule bundles

    PubMed Central

    Muscat, Christina C; Torre-Santiago, Keila M; Tran, Michael V; Powers, James A; Wignall, Sarah M

    2015-01-01

    During cell division, chromosomes attach to spindle microtubules at sites called kinetochores, and force generated at the kinetochore-microtubule interface is the main driver of chromosome movement. Surprisingly, kinetochores are not required for chromosome segregation on acentrosomal spindles in Caenorhabditis elegans oocytes, but the mechanism driving chromosomes apart in their absence is not understood. In this study, we show that lateral microtubule–chromosome associations established during prometaphase remain intact during anaphase to facilitate separation, defining a novel form of kinetochore-independent segregation. Chromosome dynamics during congression and segregation are controlled by opposing forces; plus-end directed forces are mediated by a protein complex that forms a ring around the chromosome center and dynein on chromosome arms provides a minus-end force. At anaphase onset, ring removal shifts the balance between these forces, triggering poleward movement along lateral microtubule bundles. This represents an elegant strategy for controlling chromosomal movements during cell division distinct from the canonical kinetochore-driven mechanism. DOI: http://dx.doi.org/10.7554/eLife.06462.001 PMID:26026148

  20. Granular segregation driven by particle interactions.

    PubMed

    Lozano, C; Zuriguel, I; Garcimartín, A; Mullin, T

    2015-05-01

    We report the results of an experimental study of particle-particle interactions in a horizontally shaken granular layer that undergoes a second order phase transition from a binary gas to a segregation liquid as the packing fraction C is increased. By focusing on the behavior of individual particles, the effect of C is studied on (1) the process of cluster formation, (2) cluster dynamics, and (3) cluster destruction. The outcomes indicate that the segregation is driven by two mechanisms: attraction between particles with the same properties and random motion with a characteristic length that is inversely proportional to C. All clusters investigated are found to be transient and the probability distribution functions of the separation times display a power law tail, indicating that the splitting probability decreases with time.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    Pyrochlores, a class of complex oxides with formula A 2B 2O 7, are one of the candidates for nuclear waste encapsulation, due to the natural occurrence of actinide-bearing pyrochlore minerals and laboratory observations of high radiation tolerance. In this work, we use atomistic simulations to determine the role of surfaces, chemical interfaces, and cation disorder on the plutonium immobilization properties of pyrochlores as a function of pyrochlore chemistry. We find that both Pu 3+ and Pu 4+ segregate to the surface for the four low-index pyrochlore surfaces considered, and that the segregation energy varies with the chemistry of the compound.more » We also find that pyrochlore/pyrochlore bicrystals A 2B 2O 7/A 2'B 2'O 7 can be used to immobilize Pu 3+ and Pu 4+ either in the same or separate phases of the compound, depending on the chemistry of the material. Finally, we find that Pu 4+ segregates to the disordered phase of an order/disorder bicrystal, driven by the occurrence of local oxygen-rich environments. However, Pu 3+ is weakly sensitive to the oxygen environment, and therefore only slightly favors the disordered phase. This behavior suggests that, at some concentration, Pu incorporation can destabilize the pyrochlore structure. Together, these results provide new insight into the ability of pyrochlore compounds to encapsulate Pu and suggest new considerations in the development of waste forms based on pyrochlores. Particularly, the phase structure of a multi-phase pyrochlore composite can be used to independently getter decay products based on their valence and size.« less

  2. Segregation effects during solidification in weightless melts

    NASA Technical Reports Server (NTRS)

    Li, C.

    1973-01-01

    Two types of melt segregation effects were studied: (1) evaporative segregation, or segregation due to surface evaporation; and (2) freezing segregation, or segregation due to liquid-solid phase transformation. These segregation effects are closely related. In fact, evaporative segregation always precedes freezing segregation to some degree and must often be studied prior to performing meaningful solidification experiments. This is particularly true since evaporation may cause the melt composition, at least at the critical surface regions or layers to be affected manyfold within seconds so that the surface region or layer melting point and other thermophysical properties, nucleation characteristics, base for undercooling, and critical velocity to avoid constitutional supercooling, may be completely unexpected. An important objective was, therefore, to develop the necessary normal evaporation equations for predicting the compositional changes within specified times at temperature and to correlate these equations with actual experimental data collected from the literature.

  3. Reversible electric-field manipulation of the adsorption morphology and magnetic anisotropy of small Fe and Co clusters on graphene

    NASA Astrophysics Data System (ADS)

    Tanveer, M.; Dorantes-Dávila, J.; Pastor, G. M.

    2017-12-01

    First-principles electronic calculations show how the adsorption morphology, orbital magnetism, and magnetic anisotropy energy (MAE) of small CoN and FeN clusters (N ≤3 ) on graphene (G) can be reversibly controlled under the action of an external electric field (EF). A variety of cluster-specific and EF-induced effects are revealed, including (i) perpendicular or canted adsorption configurations of the dimers and trimers, (ii) significant morphology-dependent permanent dipole moments and electric susceptibilities, (iii) EF-induced reversible transitions among the different metastable adsorption morphologies of Fe3 and Co3 on graphene, (iv) qualitative changes in the MAE landscape driven by structural changes, (v) colossal values of the magnetic anisotropy Δ E ≃45 meV per atom in Co2/G , (vi) EF-induced spin-reorientation transitions in Co3/G , and (vii) reversibly tunable coercive field and blocking temperatures, which in some cases allow a barrierless magnetization reversal of the cluster. These remarkable electric and magnetic fingerprints open new possibilities of characterizing and exploiting the size- and structural-dependent properties of magnetic nanostructures at surfaces.

  4. Comparison of the adsorbed conformation of barley lipid transfer protein at the decane-water and vacuum-water interface: a molecular dynamics simulation.

    PubMed

    Euston, S R; Hughes, P; Naser, Md A; Westacott, R E

    2008-05-01

    Molecular dynamics simulation is used to model the adsorption of the barley lipid transfer protein (LTP) at the decane-water and vacuum-water interfaces. Adsorption at both surfaces is driven by displacement of water molecules from the interfacial region. LTP adsorbed at the decane surface exhibits significant changes in its tertiary structure, and penetrates a considerable distance into the decane phase. At the vacuum-water interface LTP shows small conformational changes away from its native structure and does not penetrate into the vacuum space. Modification of the conformational stability of LTP by reduction of its four disulphide bonds leads to an increase in conformational entropy of the molecules, which reduces the driving force for adsorption. Evidence for changes in the secondary structure are also observed for native LTP at the decane-water interface and reduced LTP at the vacuum-water interface. In particular, intermittent formation of short (six-residue) regions of beta-sheet is found in these two systems. Formation of interfacial beta-sheet in adsorbed proteins has been observed experimentally, notably in the globular milk protein beta-lactoglobulin and lysozyme.

  5. Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration

    PubMed Central

    Rufin, Marc A.; Barry, Mikayla E.; Adair, Paige A.; Hawkins, Melissa L.; Raymond, Jeffery E.; Grunlan, Melissa A.

    2016-01-01

    In contrast to modification with conventional PEO-silanes (i.e. no siloxane tether), silicones with dramatically enhanced protein resistance have been previously achieved via bulk-modification with poly (ethylene oxide) (PEO)-silane amphiphiles α-(EtO)3Si(CH2)2-oligodimethylsiloxane13-block-PEOn-OCH3 when n = 8 and 16 but not when n = 3. In this work, their efficacy was evaluated in terms of optimal PEO-segment length and minimum concentration required in silicone. For each PEO-silane amphiphile (n = 3, 8, and 16), five concentrations (5, 10, 25, 50, and 100 μmol per 1 g silicone) were evaluated. Efficacy was quantified in terms of the modified silicones’ abilities to undergo rapid, water-driven surface restructuring to form hydrophilic surfaces as well as resistance to fibrinogen adsorption. Only n = 8 and 16 were effective, with a lower minimum concentration in silicone required for n = 8 (10 μmol per 1 g silicone) versus n = 16 (25 μmol per 1 g silicone). Statement of Significance Silicone is commonly used for implantable medical devices, but its hydrophobic surface promotes protein adsorption which leads to thrombosis and infection. Typical methods to incorporate poly(ethylene oxide) (PEO) into silicones have not been effective due to the poor migration of PEO to the surface-biological interface. In this work, PEO-silane amphiphiles – comprised of a siloxane tether (m = 13) and variable PEO segment lengths (n = 3, 8, 16) – were blended into silicone to improve its protein resistance. The efficacy of the amphiphiles was determined to be dependent on PEO length. With the intermediate PEO length (n = 8), water-driven surface restructuring and resulting protein resistance was achieved with a concentration of only 1.7 wt%. PMID:27090588

  6. Prediction of molecular separation of polar-apolar mixtures on heterogeneous metal-organic frameworks: HKUST-1.

    PubMed

    Van Assche, Tom R C; Duerinck, Tim; Van der Perre, Stijn; Baron, Gino V; Denayer, Joeri F M

    2014-07-08

    Due to the combination of metal ions and organic linkers and the presence of different types of cages and channels, metal-organic frameworks often possess a large structural and chemical heterogeneity, complicating their adsorption behavior, especially for polar-apolar adsorbate mixtures. By allocating isotherms to individual subunits in the structure, the ideal adsorbed solution theory (IAST) can be adjusted to cope with this heterogeneity. The binary adsorption of methanol and n-hexane on HKUST-1 is analyzed using this segregated IAST (SIAST) approach and offers a significant improvement over the standard IAST model predictions. It identifies the various HKUST-1 cages to have a pronounced polar or apolar adsorptive behavior.

  7. Adsorption of mixtures of poly(amidoamine) dendrimers and sodium dodecyl sulfate at the air-water interface.

    PubMed

    Arteta, Marianna Yanez; Campbell, Richard A; Nylander, Tommy

    2014-05-27

    We relate the adsorption from mixtures of well-defined poly(amidoamine) (PAMAM) dendrimers of generations 4 and 8 with sodium dodecyl sulfate (SDS) at the air-water interface to the bulk solution properties. The anionic surfactant shows strong attractive interactions with the cationic dendrimers at pH 7, and electrophoretic mobility measurements indicate that the association is primarily driven by electrostatic interactions. Optical density measurements highlight the lack of colloidal stability of the formed bulk aggregates at compositions close to charge neutrality, the time scale of which is dependent on the dendrimer generation. Adsorption at the air-water interface was followed from samples immediately after mixing using a combination of surface tension, neutron reflectometry, and ellipsometry measurements. In the phase separation region for dendrimers of generation 4, we observed high surface tension corresponding to a depleted surfactant solution but only when the aggregates carried an excess of surfactant. Interestingly, these depleted adsorption layers contained spontaneously adsorbed macroscopic aggregates, and these embedded particles do not rearrange to spread monomeric material at the interface. These findings are discussed in relation to the interfacial properties of mixtures involving dendrimers of generation 8 as well as polydisperse linear and hyperbranched polyelectrolytes where there is polyelectrolyte bound to a surfactant monolayer. The results presented here demonstrate the capability of dendrimers to sequester anionic surfactants in a controllable manner, with potential applications as demulsification and antifoaming agents.

  8. A gel probe equilibrium sampler for measuring arsenic porewater profiles and sorption gradients in sediments: II. Field application to Haiwee reservoir sediment

    USGS Publications Warehouse

    Campbell, K.M.; Root, R.; O'Day, P. A.; Hering, J.G.

    2008-01-01

    Arsenic (As) geochemistry and sorption behavior were measured in As- and iron (Fe)-rich sediments of Haiwee Reservoir by deploying undoped (clear) polyacrylamide gels and hydrous ferric oxide (HFO)-doped gels in a gel probe equilibrium sampler, which is a novel technique for directly measuring the effects of porewater composition on As adsorption to Fe oxides phases in situ. Arsenic is deposited at the sediment surface as As(V) and is reduced to As(III) in the upper layers of the sediment (0-8 cm), but the reduction of As(V) does not cause mobilization into the porewater. Dissolved As and Fe concentrations increased at depth in the sediment column driven by the reductive dissolution of amorphous Fe(III) oxyhydroxides and conversion to a mixed Fe(II, III) green rust-type phase. Adsorption of As and phosphorous (P) onto HFO-doped gels was inhibited at intermediate depths (10-20 cm), possibly due to dissolved organic or inorganic carbon, indicating that dissolved As concentrations were at least partially controlled by porewater composition rather than surface site availability. In sediments that had been recently exposed to air, the region of sorption inhibition was not observed, suggesting that prior exposure to air affected the extent of reductive dissolution, porewater chemistry, and As adsorption behavior. Arsenic adsorption onto the HFO-doped gels increased at depths >20 cm, and the extent of adsorption was most likely controlled by the competitive effects of dissolved phosphate. Sediment As adsorption capacity appeared to be controlled by changes in porewater composition and competitive effects at shallower depths, and by reductive dissolution and availability of sorption sites at greater burial depths. ?? 2008 American Chemical Society.

  9. Ammonia-evaporation-induced construction of three-dimensional NiO/g-C3N4 composite with enhanced adsorption and visible light-driven photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Tsvetkov, Martin; Spassov, Tony

    2018-07-01

    Novel visible light-driven heterostructured NiO/g-C3N4 photocatalyst has been designed and successfully prepared via ammonia-evaporation-induced method. The synthetic strategy consists of grafting the surface of g-C3N4 with Ni(NH3)62+ complex followed by its hydrolysis at lower pH to form nano-wrinkled thin film of α-Ni(OH)2. The final NiO/g-C3N4 hybrid was obtained after calcination of the Ni(OH)2/g-C3N4 precursor at 350 °C. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, FTIR, N2 adsorption/desorption, UV-vis diffuse reflectance and photoluminescence spectroscopy were used to characterize the resulting material. Our results revealed the formation of meso-/macroporous three-dimensional hierarchical honeycomb-like structure with high BET surface area (141 m2 g-1). The photocatalytic performance of the composite under visible light (λ > 400 nm) irradiation was evaluated through degradation of Malachite Green (MG) from aqueous medium at room temperature (25 °C). For the sake of comparison, the physico-chemical and photocatalytic properties of the pristine g-C3N4 and nanostructured NiO were also examined. Results indicated that NiO/g-C3N4 is much more active than pristine g-C3N4 and NiO in the photodegradation of MG. The enhanced photocatalytic performance of the composite was mainly attributed to the combination of high adsorption capacity which facilitates the direct redox reactions of dye and the efficient inhibition of photo-generated electron-hole pair recombination. Superoxide radicals (•O2-) and photo-generated holes (h+) were found to be the main active species in the process.

  10. Helium segregation on surfaces of plasma-exposed tungsten

    DOE PAGES

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; ...

    2016-01-21

    Here we report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He-n (1 <= n <= 7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides themore » thermodynamic driving force for surface segregation. Elastic interaction force induces drift fluxes of these mobile Hen clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. Moreover, these near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.« less

  11. Helium segregation on surfaces of plasma-exposed tungsten

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; Hammond, Karl D.; Wirth, Brian D.

    2016-02-01

    We report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He n (1  ⩽  n  ⩽  7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides the thermodynamic driving force for surface segregation. This elastic interaction force induces drift fluxes of these mobile He n clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters’ drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. These near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.

  12. Influence of thermal convection on density segregation in a vibrated binary granular system.

    PubMed

    Windows-Yule, C R K; Weinhart, T; Parker, D J; Thornton, A R

    2014-02-01

    Using a combination of experimental results and discrete particle method simulations, the role of buoyancy-driven convection in the segregative behavior of a three-dimensional, binary granular system is investigated. A relationship between convective motion and segregation intensity is presented, and a qualitative explanation for this behavior is proposed. This study also provides an insight into the role of diffusive behavior in the segregation of a granular bed in the convective regime. The results of this work strongly imply the possibility that, for an adequately fluidized granular bed, the degree of segregation may be indirectly controlled through the adjustment of the system's driving parameters, or the dissipative properties of the system's side-boundaries.

  13. Vibrational Studies of Adsorbate-Induced Reconstruction on Molybdenum Surfaces.

    NASA Astrophysics Data System (ADS)

    Lopinski, Gregory Peter

    Adsorbate-induced rearrangement of the substrate structure strongly modifies the adsorbate-substrate and adsorbate-adsorbate interactions, leading to the complex behavior observed in many chemisorption systems. In this thesis the H/Mo(211), O/Mo(211) and Na/Mo(100) systems have been studied using high resolution electron energy loss spectroscopy (HREELS) to observe vibrations of the adsorbed atoms. The vibrational data is correlated with observations of the long-range order probed by LEED as well as the work function changes induced by adsorption. Adsorbate -induced substrate reconstruction plays an important role in all three of these systems. Studies of the coadsorption systems O+H/Mo(211) and Na+O/Mo(100) indicate how these effects can influence interactions between adsorbates. For H/Mo(211), above 1ML a (1 x 1) to (1 x 2) transition is observed and attributed to modification of the substrate periodicity. Below 1ML, H atoms are bridge bonded and induce local distortions of the substrate. The transition to the (1 x 2) phase involves the ordering of these displacements and occupation of three-fold sites partially populated by conversion of the bridge bonded species. This conversion accounts for the sawtooth-like coverage dependence of the work function. The structural model proposed for this system is also supported by the desorption parameters and partial molar entropy extracted from adsorption isobars. Oxygen adsorption on Mo(211) involves the occupation of multiple binding sites, with both the long-range order and the local geometry of the adsorbate phases strongly temperature dependent. Coadsorption of low coverages of oxygen and hydrogen leads to segregation of the two adsorbates which can be understood in terms of a substrate-mediated repulsive interaction between O and H. For Na/Mo(100), the frequency of the Na-Mo symmetric stretch mode does not shift with coverage although the mode intensity is strongly coverage dependent. The absence of a frequency shift as well as the form of the observed coverage dependence differ from the predictions of the traditional charge transfer model of alkali adsorption. The relevance of the vibrational results to the Na-induced structural changes observed on this surface are also discussed. Na adsorption has been found to dramatically alter the interaction of oxygen with this surface, due to the presence of a strong attractive interaction between Na and O that forces O atoms to occupy a different binding site than on a clean surface.

  14. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  15. Natural convection in melt crystal growth - The influence of flow pattern on solute segregation

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Yamaguchi, Y.; Chang, C. J.

    1982-01-01

    The results of two lines of research aimed at calculating the structure of the flows driven by buoyancy in small-scale crystal growth systems and at understanding the coupling between these flows, the shape of the solidification interface, and dopant segregation in the crystal are reviewed. First, finite-element methods are combined with computer-aided methods for detecting multiple steady solutions to analyze the structure of the buoyancy-driven axisymmetric flows in a vertical cylinder heated from below. This system exhibits onset of convection, multiple steady flows, and loss of the primary stable flow beyond a critical value of the Rayleigh number. Second, results are presented for calculations of convection, melt/solid interface shape, and dopant segregation within a vertical ampoule with thermal boundary conditions that represent a prototype of the vertical Bridgman growth system.

  16. Ion adsorption-induced wetting transition in oil-water-mineral systems.

    PubMed

    Mugele, Frieder; Bera, Bijoyendra; Cavalli, Andrea; Siretanu, Igor; Maestro, Armando; Duits, Michel; Cohen-Stuart, Martien; van den Ende, Dirk; Stocker, Isabella; Collins, Ian

    2015-05-27

    The relative wettability of oil and water on solid surfaces is generally governed by a complex competition of molecular interaction forces acting in such three-phase systems. Herein, we experimentally demonstrate how the adsorption of in nature abundant divalent Ca(2+) cations to solid-liquid interfaces induces a macroscopic wetting transition from finite contact angles (≈ 10°) with to near-zero contact angles without divalent cations. We developed a quantitative model based on DLVO theory to demonstrate that this transition, which is observed on model clay surfaces, mica, but not on silica surfaces nor for monovalent K(+) and Na(+) cations is driven by charge reversal of the solid-liquid interface. Small amounts of a polar hydrocarbon, stearic acid, added to the ambient decane synergistically enhance the effect and lead to water contact angles up to 70° in the presence of Ca(2+). Our results imply that it is the removal of divalent cations that makes reservoir rocks more hydrophilic, suggesting a generalizable strategy to control wettability and an explanation for the success of so-called low salinity water flooding, a recent enhanced oil recovery technology.

  17. Solvent coarsening around colloids driven by temperature gradients

    NASA Astrophysics Data System (ADS)

    Roy, Sutapa; Dietrich, Siegfried; Maciolek, Anna

    2018-04-01

    Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature Tc of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.

  18. Charge transfer and formation of reduced Ce3+ upon adsorption of metal atoms at the ceria (110) surface.

    PubMed

    Nolan, Michael

    2012-04-07

    The modification of cerium dioxide with nanoscale metal clusters is intensely researched for catalysis applications, with gold, silver, and copper having been particularly well studied. The interaction of the metal cluster with ceria is driven principally by a localised interaction between a small number of metal atoms (as small as one) and the surface and understanding the fundamentals of the interaction of metal atoms with ceria surfaces is therefore of great interest. Much attention has been focused on the interaction of metals with the (111) surface of ceria, since this is the most stable surface and can be grown as films, which are probed experimentally. However, nanostructures exposing other surfaces such as (110) show high activity for reactions including CO oxidation and require further study; these nanostructures could be modified by deposition of metal atoms or small clusters, but there is no information to date on the atomic level details of metal-ceria interactions involving the (110) surface. This paper presents the results of density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) calculations of the adsorption of a number of different metal atoms at an extended ceria (110) surface; the metals are Au, Ag, Cu, Al, Ga, In, La, Ce, V, Cr, and Fe. Upon adsorption all metals are oxidised, transferring electron(s) to the surface, resulting in localised surface distortions. The precise details depend on the identity of the metal atom. Au, Ag, Cu each transfer one electron to the surface, reducing one Ce ion to Ce(3+), while of the trivalent metals, Al and La are fully oxidised, but Ga and In are only partially oxidised. Ce and the transition metals are also partially oxidised, with the number of reduced Ce ions possible in this surface no more than three per adsorbed metal atom. The predicted oxidation states of the adsorbed metal atoms should be testable in experiments on ceria nanostructures modified with metal atoms.

  19. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    PubMed

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Quantifying differences in the impact of variable chemistry on equilibrium Uranium(VI) adsorption properties of aquifer sediments.

    PubMed

    Stoliker, Deborah L; Kent, Douglas B; Zachara, John M

    2011-10-15

    Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO₂²⁺ + 2CO₃²⁻ = >SOUO₂(CO₃HCO₃)²⁻, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logK(c)) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logK(c) values. Using this approach, logK(c) values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (< 0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logK(c) uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.

  1. Surface segregation on Fe3%Si0.04%VC(100) single crystal surfaces

    NASA Astrophysics Data System (ADS)

    Uebing, C.; Viefhaus, H.

    1990-10-01

    Surface segregation phenomena on (100) oriented single crystal surfaces of the ferritic Fe-3%Si-0.04%V-C alloy were investigated by AES and LEED. At temperatures below 635 °C vanadium and carbon cosegregation is observed after prolonged heating. At thermodynamic equilibrium the substrate surface is saturated with the binary surface compound VC. The two-dimensional VC is epitaxially arranged on the substrate surface as indicated by LEED investigations. Its structure corresponds to the (100) plane of the three-dimensional VC with rocksalt structure. Sharp above 635 °C the surface compound VC is dissolved into the bulk. At higher temperatures the substrate surface is covered with segregated silicon forming a c(2 × 2) structure. This surface phase transition is reversible. Because of the low concentration and slow diffusion of vanadium, non-equilibrium surface states are formed as intermediates upon segregation of silicon and carbon. Below 500 °C a disordered graphite layer with a characteristical asymmetrical C Auger peak is observed on the substrate surface. Above 500 °C carbon segregation leads to the formation of an ordered c(2 × 2) structure with a symmetrical C Auger peak being characteristic for carbidic or atomically adsorbed species. At increasing temperatures silicon segregation takes place leading to a c(2 × 2) structure. Between silicon and carbon site competition is effective.

  2. Segregation Phenomena on the Crystal Surface of Chemical Compounds

    NASA Astrophysics Data System (ADS)

    Tomashpol'skii, Yu. Ya.

    2018-06-01

    The current state of the theoretical and experimental studies of changes in the chemical structure and composition caused by segregation phenomena on the surface of chemical compounds was reviewed. The review considers the experimental data obtained exclusively on single crystals, which were studied by modern instrumental methods, including in situ Auger electron spectrometry, X-ray spectral microanalysis, high-resolution scanning and transmission electron microscopy, secondary electron emission, and atomic force microscopy. The models that suggest the crystal-chemical diffusion and liquid-phase mechanisms of segregation were described. The parameters of the theory include the type of chemical bond, elastic constants, and crystal-chemical characteristics of substances. The models make it possible to predict the nature of changes in the surface composition: segregation tendency, segregant type, and degree of nonstoichiometry. A new direction in surface segregation was considered, which is promising for nanoelectronics and emission electronics.

  3. Surface segregation in binary mixtures of imidazolium-based ionic liquids

    NASA Astrophysics Data System (ADS)

    Souda, Ryutaro

    2010-09-01

    Surface composition of binary mixtures of room-temperature ionic liquids has been investigated using time-of-flight secondary ion mass spectrometry at room temperature over a wide composition range. The imidazolium cations with longer aliphatic groups tend to segregate to the surface, and a bis(trifluoromethanesulfonyl)imide anion (Tf 2N -) is enriched at the surface relative to hexafluorophosphate (PF 6-). The surface of an equimolar mixture of Li[Tf 2N] and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF 6]) has a nominal composition of [bmim][Tf 2N] because of surface segregation and ligand exchange. The surface segregation of cations and anions is likely to result from alignment of specific ligand-exchanged molecules at the topmost surface layer to exclude more hydrophobic part of the molecules.

  4. Effect of Sr Content and Strain on Sr Surface Segregation of La 1–x Sr x Co 0.2 Fe 0.8 O 3-δ as Cathode Material for Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yang; Ludwig, Karl F.; Woicik, Joseph C.

    2016-10-12

    Strontium doped lanthanum cobalt ferrite (LSCF) is a widely used cathode material due to its high electronic and ionic conductivity, and reasonable oxygen surface exchange coefficient. However, LSCF can have long-term stability issues such as surface segregation of Sr during solid oxide fuel cell (SOFC) operation, which can adversely affect the electrochemical performance. Thus, understanding the nature of the Sr surface segregation phenomenon, and how it is affected by the composition of LSCF and strain are critical. In this research, heteroepitaxial thin films of La 1-x Sr xCo 0.2Fe 0.8O 3 - with varying Sr content (x = 0.4, 0.3,more » 0.2) were deposited by pulsed laser deposition (PLD) on single crystal NdGaO 3, SrTiO 3 and GdScO 3 substrates, leading to different levels of strain in the films. The extent of Sr segregation at the film surface was quantified using synchrotron-based total reflection x-ray fluorescence (TXRF), and atomic force microscopy (AFM). The electronic structure of the Sr-rich phases formed on the surface was investigated by hard X-ray photoelectron spectroscopy (HAXPES). The extent of Sr segregation was found to be a function of the Sr content in bulk. Lowering the Sr content from 40% to 30% reduced the surface segregation, but further lowering the Sr content to 20% increased the segregation. The strain of LSCF thin films on various substrates was measured using high-resolution x-ray diffraction (HRXRD) and the Sr surface segregation was found to be reduced with compressive strain and enhanced with tensile strain present within the thin films. A model was developed correlating the Sr surface segregation with Sr content and strain effects to explain the experimental results.« less

  5. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence

    PubMed Central

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D.; Chait, Maria

    2016-01-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence—the coincidence of sound elements in and across time—is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals (“stochastic figure-ground”: SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as “figures” popping out of a stochastic “ground.” Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the “figure” from the randomly varying “ground.” Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the “classic” auditory system, is also involved in the early stages of auditory scene analysis.” PMID:27325682

  6. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence.

    PubMed

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D; Chait, Maria

    2016-09-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence-the coincidence of sound elements in and across time-is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals ("stochastic figure-ground": SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as "figures" popping out of a stochastic "ground." Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the "figure" from the randomly varying "ground." Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the "classic" auditory system, is also involved in the early stages of auditory scene analysis." © The Author 2016. Published by Oxford University Press.

  7. Alloy formation and metal oxide segregation in Pt-Re/. gamma. -Al/sub 2/O/sub 3/ catalysts as investigated by temperature-programmed reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, N.; Prins, R.

    1979-10-15

    Temperature-programmed reduction has been used to characterize the finely dispersed metal compounds in a series of Pt-Re/..gamma..-Al/sub 2/O/sub 3/ catalysts. Strong evidence has been obtained that zerovalent Pt and Re atoms are in intimate contact with each other after catalyst reduction. The formation of bimetallic clusters supports the alloy explanation for the improved performance of this type of bimetallic reforming catalyst. Treatment of the reduced catalysts with oxygen above about 200/sup 0/C causes segregation of platinum and rhenium oxides. Adsorption of oxygen at temperatures up to 100/sup 0/C leaves the bimetallic clusters largely intact, but subsequent high-temperature treatment in themore » absence of extra oxygen leads to segregation of Pt and Re species. This suggests that in the presence of adsorbed oxygen the Pt-Re clusters are thermodynamically unstable, but that under mild conditions the rate of segregation is slow. 10 figures, 4 tables.« less

  8. Insight into synergistically enhanced adsorption and visible light photocatalytic performance of Z-scheme heterojunction of SrTiO3(La,Cr)-decorated WO3 nanosheets

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Jiang, Junzhe; Jia, Yushuai; Qiu, Jinmin; Xia, Tonglin; Zhang, Yuhong; Li, Yuqin; Chen, Xiangshu

    2017-08-01

    The efficient treatment of dye wastewater has been a hot topic of environment field. The integration of adsorption and photocatalytic degradation via fabrication of bi-component heterojunction photocatalyst is considered as a facile and effective strategy to enhance the dye elimination efficiency. In this report, a Z-scheme heterojunction material, SrTiO3(La,Cr)/WO3 with bifunction of adsorption and photocatalysis was successfully synthesized for efficient removal of methylene blue (MB) under visible light irradiation. The morphology and microstructure characterization demonstrates that the SrTiO3(La,Cr) nanoparticles are uniformly decorated on the WO3 nanosheets, forming an intimate heterojunction interface. MB degradation results indicate that the removal efficiency by the synergistic adsorption-photocatalysis process is greatly improved compared to pure WO3 and SrTiO3(La,Cr) with the adsorption and photocatalytic activity closely related to the composition of the material. The possible mechanism for the enhanced photocatalytic activity could be ascribed to the formation of a Z-scheme heterojunction system based on active species trapping experiments. Furthermore, the investigations of adsorption kinetics and isotherm show that the adsorption process follows pseudo-second-order kinetic model and Langmuir isotherm, respectively. Due to the synergistic advantages of negative zeta potential, large surface area and accelerated separation of photogenerated carriers driven by Z-scheme heterojunction, SrTiO3(La,Cr)/WO3 exhibits excellent adsorption-photocatalytic performance and stability on MB removal, which could be potentially used for practical wastewater treatment.

  9. Surface Composition of NiPd Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Khalil, Joe; Bozzolo, Guillermo; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Surface segregation in Ni-Pd alloys has been studied using the BFS method for alloys. Not only does the method predict an oscillatory segregation profile but it also indicates that the number of Pd-enriched surface planes can vary as a function of orientation. The segregation profiles were computed as a function of temperature, crystal face, and composition. Pd enrichment of the first layer is observed in (111) and (100) surfaces, and enrichment of the top two layers occurs for (110) surfaces. In all cases, the segregation profile shows oscillations that are actually related to weak ordering tendencies in the bulk. An atom-by-atom analysis was performed to identify the competing mechanisms leading to the observed surface behaviors. Large-scale atomistic simulations were also performed to investigate the temperature dependence of the segregation profiles as well as for analysis of the bulk structures. Finally, the observed surface behaviors are discussed in relation to the bulk phase structure of Ni-Pd alloys, which exhibit a tendency to weakly order.

  10. Equivalent Aqueous Phase Modulation of Domain Segregation in Myelin Monolayers and Bilayer Vesicles

    PubMed Central

    Oliveira, Rafael G.; Schneck, Emanuel; Funari, Sergio S.; Tanaka, Motomu; Maggio, Bruno

    2010-01-01

    Purified myelin can be spread as monomolecular films at the air/aqueous interface. These films were visualized by fluorescence and Brewster angle microscopy, showing phase coexistence at low and medium surface pressures (<20–30 mN/m). Beyond this threshold, the film becomes homogeneous or not, depending on the aqueous subphase composition. Pure water as well as sucrose, glycerol, dimethylsulfoxide, and dimethylformamide solutions (20% in water) produced monolayers that become homogeneous at high surface pressures; on the other hand, the presence of salts (NaCl, CaCl2) in Ringer's and physiological solution leads to phase domain microheterogeneity over the whole compression isotherm. These results show that surface heterogeneity is favored by the ionic milieu. The modulation of the phase-mixing behavior in monolayers is paralleled by the behavior of multilamellar vesicles as determined by small-angle and wide-angle x-ray scattering. The correspondence of the behavior of monolayers and multilayers is achieved only at high surface pressures near the equilibrium adsorption surface pressure; at lower surface pressures, the correspondence breaks down. The equilibrium surface tension on all subphases corresponds to that of the air/alkane interface (27 mN/m), independently on the surface tension of the clean subphase. PMID:20816062

  11. Catalytic reaction processes revealed by scanning probe microscopy. [corrected].

    PubMed

    Jiang, Peng; Bao, Xinhe; Salmeron, Miquel

    2015-05-19

    Heterogeneous catalysis is of great importance for modern society. About 80% of the chemicals are produced by catalytic reactions. Green energy production and utilization as well as environmental protection also need efficient catalysts. Understanding the reaction mechanisms is crucial to improve the existing catalysts and develop new ones with better activity, selectivity, and stability. Three components are involved in one catalytic reaction: reactant, product, and catalyst. The catalytic reaction process consists of a series of elementary steps: adsorption, diffusion, reaction, and desorption. During reaction, the catalyst surface can change at the atomic level, with roughening, sintering, and segregation processes occurring dynamically in response to the reaction conditions. Therefore, it is imperative to obtain atomic-scale information for understanding catalytic reactions. Scanning probe microscopy (SPM) is a very appropriate tool for catalytic research at the atomic scale because of its unique atomic-resolution capability. A distinguishing feature of SPM, compared to other surface characterization techniques, such as X-ray photoelectron spectroscopy, is that there is no intrinsic limitation for SPM to work under realistic reaction conditions (usually high temperature and high pressure). Therefore, since it was introduced in 1981, scanning tunneling microscopy (STM) has been widely used to investigate the adsorption, diffusion, reaction, and desorption processes on solid catalyst surfaces at the atomic level. STM can also monitor dynamic changes of catalyst surfaces during reactions. These invaluable microscopic insights have not only deepened the understanding of catalytic processes, but also provided important guidance for the development of new catalysts. This Account will focus on elementary reaction processes revealed by SPM. First, we will demonstrate the power of SPM to investigate the adsorption and diffusion process of reactants on catalyst surfaces at the atomic level. Then the dynamic processes, including surface reconstruction, roughening, sintering, and phase separation, studied by SPM will be discussed. Furthermore, SPM provides valuable insights toward identifying the active sites and understanding the reaction mechanisms. We also illustrate here how both ultrahigh vacuum STM and high pressure STM provide valuable information, expanding the understanding provided by traditional surface science. We conclude with highlighting remarkable recent progress in noncontact atomic force microscopy (NC-AFM) and inelastic electron tunneling spectroscopy (IETS), and their impact on single-chemical-bond level characterization for catalytic reaction processes in the future.

  12. Multifaceted adsorption of α-cyano-4-hydroxycinnamic acid on silver colloidal and island surfaces

    NASA Astrophysics Data System (ADS)

    Jung, Dawoon; Jeon, Kooknam; Yeo, Juhyun; Hussain, Shafqat; Pang, Yoonsoo

    2017-12-01

    The surface adsorption of organic nitrile compounds on the silver colloidal and island surfaces has been studied using surface-enhanced Raman scattering (SERS). α-Cyano-4-hydroxycinnamic acid (CHCA) with nitrile and carboxyl groups shows various surface adsorption on the silver surfaces. In acidic conditions, the surface adsorption of CHCA via the nitrile group with a more or less tilted geometry to the surface was found. When the solution pH increases, the carboxylate and nitrile groups of deprotonated CHCA participate in the surface adsorption, whereas the molecular plane of CHCA becomes more parallel to the surface. The ν(Ctbnd N) band in SERS of CHCA is the indicator of the surface adsorption geometry. The strongly red-shifted and broadened ν(Ctbnd N) band in SERS represents the surface adsorption via π-electrons of the Ctbnd N bond (side-on geometry; π-coordination). Nitriles adsorbed on the surface via the nonbonding electron pair of the nitrogen atom (end-on geometry; σ-coordination) often cause the blue-shifts and small band broadening in ν(Ctbnd N) in SERS. The surface adsorption geometry of organic nitriles based on many previous experimental results was further confirmed by the surface adsorption of CHCA on the silver island surfaces and dinitrile compounds on the silver colloidal surfaces.

  13. The formation of the smallest fullerene-like carbon cages on metal surfaces.

    PubMed

    Ben Romdhane, F; Rodríguez-Manzo, J A; Andrieux-Ledier, A; Fossard, F; Hallal, A; Magaud, L; Coraux, J; Loiseau, A; Banhart, F

    2016-02-07

    The nucleation and growth of carbon on catalytically active metal surfaces is one of the most important techniques to produce nanomaterials such as graphene or nanotubes. Here it is shown by in situ electron microscopy that fullerene-like spherical clusters with diameters down to 0.4 nm and thus much smaller than C60 grow in a polymerized state on Co, Fe, or Ru surfaces. The cages appear on the surface of metallic islands in contact with graphene under heating to at least 650 °C and successively cooling to less than 500 °C. The formation of the small cages is explained by the segregation of carbon on a supersaturated metal, driven by kinetics. First principles energy calculations show that the clusters polymerize and can be attached to defects in graphene. Under compression, the polymerized cages appear in a crystalline structure.

  14. Role of block copolymer adsorption versus bimodal grafting on nanoparticle self-assembly in polymer nanocomposites.

    PubMed

    Zhao, Dan; Di Nicola, Matteo; Khani, Mohammad M; Jestin, Jacques; Benicewicz, Brian C; Kumar, Sanat K

    2016-09-14

    We compare the self-assembly of silica nanoparticles (NPs) with physically adsorbed polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymers (BCP) against NPs with grafted bimodal (BM) brushes comprised of long, sparsely grafted PS chains and a short dense carpet of P2VP chains. As with grafted NPs, the dispersion state of the BCP NPs can be facilely tuned in PS matrices by varying the PS coverage on the NP surface or by changes in the ratio of the PS graft to matrix chain lengths. Surprisingly, the BCP NPs are remarkably better dispersed than the NPs tethered with bimodal brushes at comparable PS grafting densities. We postulate that this difference arises because of two factors inherent in the synthesis of the NPs: In the case of the BCP NPs the adsorption process is analogous to the chains being "grafted to" the NP surface, while the BM case corresponds to "grafting from" the surface. We have shown that the "grafted from" protocol yields patchy NPs even if the graft points are uniformly placed on each particle. This phenomenon, which is caused by chain conformation fluctuations, is exacerbated by the distribution function associated with the (small) number of grafts per particle. In contrast, in the case of BCP adsorption, each NP is more uniformly coated by a P2VP monolayer driven by the strongly favorable P2VP-silica interactions. Since each P2VP block is connected to a PS chain we conjecture that these adsorbed systems are closer to the limit of spatially uniform sparse brush coverage than the chemically grafted case. We finally show that the better NP dispersion resulting from BCP adsorption leads to larger mechanical reinforcement than those achieved with BM particles. These results emphasize that physical adsorption of BCPs is a simple, effective and practically promising strategy to direct NP dispersion in a chemically unfavorable polymer matrix.

  15. Concentration transient analysis of antimony surface segregation during Si(100) molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Markert, L. C.; Greene, J. E.; Ni, W.-X.; Hansson, G. V.; Sundgren, J.-E.

    1991-01-01

    Antimony surface segregation during Si(100) molecular beam epitaxy (MBE) was investigated at temperatures T(sub s) = 515 - 800 C using concentration transient analysis (CTA). The dopant surface coverage Theta, bulk fraction gamma, and incorporation probability sigma during MBE were determined from secondary-ion mass spectrometry depth profiles of modulation-doped films. Programmed T(sub s) changes during growth were used to trap the surface-segregated dopant overlayer, producing concentration spikes whose integrated area corresponds to Theta. Thermal antimony doping by coevaporation was found to result in segregation strongly dependent on T(sub s) with Theta(sub Sb) values up to 0.9 monolayers (ML): in films doped with Sb(+) ions accelerated by 100 V, Theta(sub Sb) was less than or equal to 4 x 10(exp -3) ML. Surface segregation of coevaporated antimony was kinematically limited for the film growth conditions in these experiments.

  16. Direct Observation of the Surface Segregation of Cu in Pd by Time-Resolved Positron-Annihilation-Induced Auger Electron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.

    2010-11-12

    Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to {tau}=1.38(0.21) h, and the final segregated configurationmore » was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.« less

  17. Direct Observation of the Surface Segregation of Cu in Pd by Time-Resolved Positron-Annihilation-Induced Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.

    2010-11-01

    Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to τ=1.38(0.21)h, and the final segregated configuration was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.

  18. Heats of Segregation of BCC Metals Using Ab Initio and Quantum Approximate Methods

    NASA Technical Reports Server (NTRS)

    Good, Brian; Chaka, Anne; Bozzolo, Guillermo

    2003-01-01

    Many multicomponent alloys exhibit surface segregation, in which the composition at or near a surface may be substantially different from that of the bulk. A number of phenomenological explanations for this tendency have been suggested, involving, among other things, differences among the components' surface energies, molar volumes, and heats of solution. From a theoretical standpoint, the complexity of the problem has precluded a simple, unified explanation, thus preventing the development of computational tools that would enable the identification of the driving mechanisms for segregation. In that context, we investigate the problem of surface segregation in a variety of bcc metal alloys by computing dilute-limit heats of segregation using both the quantum-approximate energy method of Bozzolo, Ferrante and Smith (BFS), and all-electron density functional theory. In addition, the composition dependence of the heats of segregation is investigated using a BFS-based Monte Carlo procedure, and, for selected cases of interest, density functional calculations. Results are discussed in the context of a simple picture that describes segregation behavior as the result of a competition between size mismatch and alloying effects

  19. Immobilization of sodium alginate sulfates on polysulfone ultrafiltration membranes for selective adsorption of low-density lipoprotein.

    PubMed

    Wang, Wei; Huang, Xiao-Jun; Cao, Jian-Da; Lan, Ping; Wu, Wen

    2014-01-01

    A novel method for the immobilization of sodium alginate sulfates (SAS) on polysulfone (PSu) ultrafiltration membranes to achieve selective adsorption of low-density lipoprotein (LDL) was developed, which involved the photoinduced graft polymerization of acrylamide on the membrane and the Hofmann rearrangement reaction of grafted acrylamide followed by chemical binding of SAS with glutaraldehyde. The surface modification processes were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy characterization. Zeta potential and water contact angle measurements were performed to investigate the surface charge and wettability of the membranes. An enzyme-linked immunosorbent assay was used to measure the binding of LDL on plain and modified PSu membranes. It was found that the PSu membrane immobilized with sodium alginate sulfates (PSu-SAS) greatly enhanced the selective adsorption of LDL from protein solutions and the absorbed LDL could be easily eluted with sodium chloride solution, indicating a specific and reversible binding of LDL to SAS, mainly driven by electrostatic forces. Furthermore, the PSu-SAS membrane showed good blood compatibility as examined by platelet adhesion. The results suggest that the PSu-SAS membranes are promising for application in simultaneous hemodialysis and LDL apheresis therapy. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Inhibition of calcite precipitation by natural organic material: Kinetics, mechanism, and thermodynamics

    USGS Publications Warehouse

    Lin, Y.-P.; Singer, P.C.; Aiken, G.R.

    2005-01-01

    The inhibition of calcite precipitation by natural organic material (NOM) in solutions seeded with calcite was investigated using a pH-stat system. Experiments were carried out using three NOMs with different physical/chemical properties. For each of the materials, inhibition was found to be more effective at lower carbonate/calcium ratios and lower pH values. The reduction in the precipitation rate could be explained by a Langmuir adsorption model using a conditional equilibrium constant. By identification of the type of site on the NOM molecules that is involved in the adsorption reaction, the "conditional" equilibrium constants obtained at different solution compositions converged to a single "nonconditional" value. The thermodynamic data determined at 25??C and 1 atm suggest that the interaction between NOM molecules and the calcite surface is chemisorptive in nature and that adsorption is an endothermic reaction driven by the entropy change. The greatest degree of inhibition was observed for the NOM with the highest molecular weight and aromatic carbon content. For a given type of NOM, the degree of inhibition of calcite precipitation was dictated by the balance between the enthalpy change and the entropy change of the adsorption reaction. ?? 2005 American Chemical Society.

  1. Oxygen adsorption on the Al0.25Ga0.75N (0001) surface: A first-principles study

    NASA Astrophysics Data System (ADS)

    Fu, Jiaqi; Song, Tielei; Liang, Xixia; Zhao, Guojun

    2018-04-01

    To understand the interaction mechanism for the oxygen adsorption on AlGaN surface, herein, we built the possible models of oxygen adsorption on Al0.25Ga0.75N (0001) surface. For different oxygen coverage, three kinds of adsorption site are considered. Then the favorable adsorption sites are characterized by first principles calculation for (2 × 2) supercell of Al0.25Ga0.75N (0001) surface. On basis of the optimal adsorption structures, our calculated results show that all the adsorption processes are exothermic, indicating that the (0001) surface orientation is active towards the adsorption of oxygen. The doping of Al is advantage to the adsorption of O atom. Additionally, the adsorption energy decreases with reducing the oxygen coverage, and the relationship between them is approximately linear. Owing to the oxygen adsorption, the surface states in the fundamental band gap are significant reduced with respect to the free Al0.25Ga0.75N (0001) surface. Moreover, the optical properties on different oxygen coverage are also discussed.

  2. Structure and Dynamics of Confined Alcohol-Water Mixtures.

    PubMed

    Bampoulis, Pantelis; Witteveen, Jorn P; Kooij, E Stefan; Lohse, Detlef; Poelsema, Bene; Zandvliet, Harold J W

    2016-07-26

    The effect of confinement between mica and graphene on the structure and dynamics of alcohol-water mixtures has been studied in situ and in real time at the molecular level by atomic force microscopy (AFM) at room temperature. AFM images reveal that the adsorbed molecules are segregated into faceted alcohol-rich islands on top of an ice layer on mica, surrounded by a pre-existing multilayer water-rich film. These faceted islands are in direct contact with the graphene surface, revealing a preferred adsorption site. Moreover, alcohol adsorption at low relative humidity (RH) reveals a strong preference of the alcohol molecules for the ordered ice interface. The growth dynamics of the alcohol islands is governed by supersaturation, temperature, the free energy of attachment of molecules to the island edge and two-dimensional (2D) diffusion. The measured diffusion coefficients display a size dependence on the molecular size of the alcohols, and are about 6 orders of magnitude smaller than the bulk diffusion coefficients, demonstrating the effect of confinement on the behavior of the alcohols. These experimental results provide new insights into the behavior of multicomponent fluids in confined geometries, which is of paramount importance in nanofluidics and biology.

  3. Comparative study on the copper activation and xanthate adsorption on sphalerite and marmatite surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wang, Yu; Luo, Deqiang; Chen, Luzheng; Deng, Jiushuai

    2018-05-01

    The copper activation and potassium butyl xanthate (PBX) adsorption on sphalerite and marmatite surfaces were comparatively investigated using in situ local electrochemical impedance spectroscopy (LEIS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and surface adsorption tests. Comparing the LEIS and surface adsorption results, it was found that the activation time is a key factor influencing the copper activation and PBX adsorption on marmatite surface, but it has a negligible influence on sphalerite. For a short activation time within 10 min, the Fe impurity in marmatite shows an adverse influence on the speed of Cu adsorption and ion exchange as well as on the subsequent PBX adsorption. For a long activation time of 30 min, the LEIS, ToF-SIMS and surface adsorption results suggested that the Fe impurity in marmatite enhances the copper adsorption, whereas such enhanced copper adsorption of marmatite cannot result in corresponding enhancing of PBX adsorption. DFT result showed that the Fe impurity in marmatite has harmful influence on the PBX interaction with the Cu-activated surface by increasing the interaction energy. ToF-SIMS result further indicated that the Cu distribution in the outermost surface of marmatite is less than that of the sphalerite, which also results in the less PBX adsorption for the marmatite.

  4. Design of Ceramic Springs for Use in Semiconductor Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Kaforey, M. F.; Deeb, C. W.; Matthiesen, D. H.

    1999-01-01

    Segregation studies can be done in microgravity to reduce buoyancy driven convection and investigate diffusion-controlled growth during the growth of semiconductor crystals. During these experiments, it is necessary to prevent free surface formation in order to avoid surface tension driven convection (Marangoni convection). Semiconductor materials such as gallium arsenide and germanium shrink upon melting, so a spring is necessary to reduce the volume of the growth chamber and prevent the formation of a free surface when the sample melts. A spring used in this application must be able to withstand both the high temperature and the processing atmosphere. During the growth of gallium arsenide crystals during the GTE Labs/USAF/NASA GaAs GAS Program and during the CWRU GaAs programs aboard the First and Second United States microgravity Laboratories, springs made of pyrolytic boron nitride (PBN) leaves were used. The mechanical properties of these PBN springs have been investigated and springs having spring constants ranging from 0.25 N/mm to 25 N/mm were measured. With this improved understanding comes the ability to design springs for more general applications, and guidelines are given for optimizing the design of PBN springs for crystal growth applications.

  5. Controlled electron doping into metallic atomic wires: Si(111)4×1-In

    NASA Astrophysics Data System (ADS)

    Morikawa, Harumo; Hwang, C. C.; Yeom, Han Woong

    2010-02-01

    We demonstrate the controllable electron doping into metallic atomic wires, indium wires self-assembled on the Si(111) surface, which feature one-dimensional (1D) band structure and temperature-driven metal-insulator transition. The electron filling of 1D metallic bands is systematically increased by alkali-metal adsorption, which, in turn, tunes the macroscopic property, that is, suppresses the metal-insulator transition. On the other hand, the dopant atoms induce a local lattice distortion without a band-gap opening, leading to a microscopic phase separation on the surface. The distinct bifunctional, electronic and structural, roles of dopants in different length scales are thus disclosed.

  6. Synthesis and characterization of Silica/polyvinyl imidazole/H2PO4-core-shell nanoparticles as recyclable adsorbent for efficient scavenging of Sm(III) and Dy(III) from water.

    PubMed

    Ettehadi Gargari, Jafar; Sid Kalal, Hossein; Shakeri, Alireza; Khanchi, Alireza

    2017-11-01

    In this study, we used Silica/polyvinyl imidazole core-shell nanoparticles impregnated with sodium dihydrogen phosphate (SiO 2 /PVI/H 2 PO 4 - NPs) for adsorption of samarium and dysprosium ions from aqueous solutions. The effects of the pH, adsorbent dose, contact time, and initial concentration of the adsorbate on the Core-shell nanoparticles adsorption capacity have been studied. The pH value for maximum removal of Sm (III) and Dy (III) on the core-shell nanoparticles surface were found to be 4. The saturated capacity of SiO 2 /PVI/H 2 PO 4 - NPs was up to 160mg.g -1 and 150mg.g -1 at 25°C for Sm (III) and Dy (III) ions respectively. The obtained uptake data were analyzed by the Langmuir and Freundlich equations using a linearized correlation coefficient at room temperature. The Freundlich isotherm was found to fit well with the equilibrium data. The adsorption kinetics could be modeled by a pseudo-second-order rate expression. Thermodynamic investigation revealed the adsorption process of the studied ions is entropy driven. Furthermore, the performance of regeneration and reutilization were studied. The adsorbed Sm (III) and Dy (III) can be desorbed by 0.5mol/L HCl, with the desorption percentage of 90% for Sm (III) and Dy (III). After five adsorption-desorption cycles, the adsorption capacity shows a slight decrease (about 15%), implying that the SiO 2 /PVI/H 2 PO 4 - NPs can be used as an effective adsorbent for the removal and recovery of Sm(III) and Dy(III) from aqueous solution. The colloid stability of the SiO 2 /PVI/H 2 PO 4 - NPs was investigated by dynamic light scattering measurements. The SiO 2 /PVI/H 2 PO 4 - NPs are stable in adsorption media after five adsorption - desorption cycles. The high stability of SiO 2 /PVI/H 2 PO 4 - NPs can be attributed to steric stabilization by polyvinyl imidazole adsorbed on SiO 2 nanoparticle surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Thermal effects in equilibrium surface segregation in a copper/10-atomic-percent-aluminum alloy using Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1972-01-01

    Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.

  8. Controlling surface-segregation of a polymer to display carboxy groups on an outermost surface using perfluoroacyl groups.

    PubMed

    Nishimori, Keisuke; Kitahata, Shigeru; Nishino, Takashi; Maruyama, Tatsuo

    2018-05-10

    Controlling the surface properties of solid polymers is important for practical applications. We here succeeded in controlling the surface segregation of polymers to display carboxy groups on an outermost surface, which allowed the covalent immobilization of functional molecules via the carboxy groups on a substrate surface. Random methacrylate-based copolymers containing carboxy groups, in which carboxy groups were protected with perfluoroacyl (Rf) groups, were dip-coated on acrylic substrate surfaces. X-ray photoelectron spectroscopy and contact-angle measurements revealed that the Rf groups were segregated to the outermost surface of the dip-coated substrates. The Rf groups were removed by hydrolysis of the Rf esters in the copolymers, resulting in the display of carboxy groups on the surface. The quantification of carboxy groups on a surface revealed that the carboxy groups were reactive to a water-soluble solute in aqueous solution. The surface segregation was affected by the molecular structure of the copolymer used for dip-coating.

  9. Adsorption of Dyes in Studying the Surface Chemistry of Ultradispersed Diamond

    NASA Astrophysics Data System (ADS)

    Khokhlova, T. D.; Yunusova, G. R.; Lanin, S. N.

    2018-05-01

    The effect the surface chemistry of ultradispersed diamond (UDD) has on the adsorption of watersoluble dyes is considered. A comparison is made to adsorption on graphitized thermal carbon black (GTCB), which has a homogeneous and nonporous surface. The adsorption isotherms of dyes and the dependence of the adsorption on the pH of solutions are measured. It is found that UDD adsorbs acid (anionic) dyes—acid orange (AO) and acid anthraquinone blue (AAB)—but barely adsorbs a basic (cationic) dye, methylene blue (MB), because of the predominance of positively charged basic groups on the surface of UDD. The maximum adsorption of AO is much lower on UDD than on GTCB, while the maximum adsorption of AAB is similar for both surfaces. The adsorption of AO on UDD depends strongly on the pH of the solution, while the adsorption of AAB is independent of this parameter. It is suggested that the adsorption of AAB is determined not only by ionic and hydrophobic interactions but also by coordination interactions with impurity metal ions on a UDD surface. It is concluded that the adsorption of dyes characterizes the chemistry of a UDD surface with high sensitivity.

  10. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  11. Flow-induced conformational changes in gelatin structure and colloidal stabilization.

    PubMed

    Akbulut, Mustafa; Reddy, Naveen K; Bechtloff, Bernd; Koltzenburg, Sebastian; Vermant, Jan; Prud'homme, Robert K

    2008-09-02

    Flow can change the rate at which solutes adsorb on surfaces by changing mass transfer to the surface, but moreover, flow can induce changes in the conformation of macromolecules in solution by providing sufficient stresses to perturb the segmental distribution function. However, there are few studies where the effect of flow on macromolecules has been shown to alter the structure of macromolecules adsorbed on surfaces. We have studied how the local energy dissipation alters the adsorption of gelatin onto polystyrene nanoparticles ( r = 85 nm). The change in the nature of the adsorbed layer is manifest in the change in the ability of the nanoparticles to resist aggregation. Circular dichroism spectroscopy was used to assess conformational changes in gelatin, and dynamic light scattering was used to assess the colloid stability. Experiments were conducted in a vortex jet mixer where energy density and mixing times have been quantified; mixing of the gelatin and unstable nanoparticles occurs on the order of milliseconds. The adsorption of the gelatin provides steric stabilization to the nanoparticles. We found that the stability of the gelatin-adsorbed nanoparticles increased with increasing mixing velocities: when the mixing velocities were changed from 0.9 to 550 m/s, the radius of the nanoclusters (aggregates) formed 12 h after the mixing decreased from 2620 to 600 nm. Increasing temperature also gave rise to similar trends in the stability behavior with increasing temperature, leading to increasing colloid stability. Linear flow birefringence studies also suggested that the velocity fields in the mixer are sufficiently strong to produce conformational changes in the gelatin. These results suggest that the energy dissipation produced by mixing can activate conformational changes in gelatin to alter its adsorption on the surfaces of nanoparticles. Understanding how such conformational changes in gelatin can be driven by local fluid mechanics and how these changes are related to the adsorption behavior of gelatin is very important both industrially and scientifically.

  12. Friction imprint effect in mechanically cleaved BaTiO{sub 3} (001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Christian J.; Maryland Nanocenter, University of Maryland, College Park, Maryland 20742; Ebeling, Daniel

    2014-09-28

    Adsorption, chemisorption, and reconstruction at the surfaces of ferroelectric materials can all contribute toward the pinning of ferroelectric polarization, which is called the electrical imprint effect. Here, we show that the opposite is also true: freshly cleaved, atomically flat surfaces of (001) oriented BaTiO{sub 3} exhibit a persistent change in surface chemistry that is driven by ferroelectric polarization. This surface modification is explored using lateral force microscopy (LFM), while the ferroelectric polarization is probed using piezoresponse force microscopy. We find that immediately after cleaving BaTiO{sub 3}, LFM reveals friction contrast between ferroelectric domains. We also find that this surface modificationmore » remains after the ferroelectric domain distribution is modified, resulting in an imprint of the original ferroelectric domain distribution on the sample surface. This friction imprint effect has implications for surface patterning as well as ferroelectric device operation and failure.« less

  13. Anomalous segregation dynamics of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Mones, Enys; Czirók, András; Vicsek, Tamás

    2015-06-01

    A number of novel experimental and theoretical results have recently been obtained on active soft matter, demonstrating the various interesting universal and anomalous features of this kind of driven systems. Here we consider the adhesion difference-driven segregation of actively moving units, a fundamental but still poorly explored aspect of collective motility. In particular, we propose a model in which particles have a tendency to adhere through a mechanism which makes them both stay in touch and synchronize their direction of motion—but the interaction is limited to particles of the same kind. The calculations corresponding to the related differential equations can be made in parallel, thus a powerful GPU card allows large scale simulations. We find that in a very large system of particles, interacting without explicit alignment rule, three basic segregation regimes seem to exist as a function of time: (i) at the beginning the time dependence of the correlation length is analogous to that predicted by the Cahn-Hilliard theory, (ii) next rapid segregation occurs characterized with a separation of the different kinds of units being faster than any previously suggested speed, finally, (iii) the growth of the characteristic sizes in the system slows down due to a new regime in which self-confined, rotating, splitting and re-joining clusters appear. Our results can explain recent observations of segregating tissue cells in vitro.

  14. Density Functional Theory plus Hubbard U Study of the Segregation of Pt to the CeO2- x Grain Boundary.

    PubMed

    Zhou, Guoli; Li, Pan; Ma, Qingmin; Tian, Zhixue; Liu, Ying

    2018-03-14

    Grain boundaries (GBs) can be used as traps for solute atoms and defects, and the interaction between segregants and GBs is crucial for understanding the properties of nanocrystalline materials. In this study, we have systematically investigated the Pt segregation and Pt-oxygen vacancies interaction at the ∑3 (111) GB in ceria (CeO 2 ). The Pt atom has a stronger tendency to segregate to the ∑3 (111) GB than to the (111) and (110) free surfaces, but the tendency is weaker than to (112) and (100). Lattice distortion plays a dominant role in Pt segregation. At the Pt-segregated-GB (Pt@GB), oxygen vacancies prefer to form spontaneously near Pt in the GB region. However, at the pristine GB, oxygen vacancies can only form under O-poor conditions. Thus, Pt segregation to the GB promotes the formation of oxygen vacancies, and their strong interactions enhance the interfacial cohesion. We propose that GBs fabricated close to the surfaces of nanocrystalline ceria can trap Pt from inside the grains or other types of surface, resulting in the suppression of the accumulation of Pt on the surface under redox reactions, especially under O-poor conditions.

  15. Surface Segregation in Multicomponent Systems: Modeling of Surface Alloys and Alloy Surfaces

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Noebe, Ronald D.; Good, Brian; Honecy, Frank S.; Abel, Phillip

    1999-01-01

    The study of surface segregation, although of great technological importance, has been largely restricted to experimental work due to limitations associated with theoretical methods. However, recent improvements in both first-particle and semi-empirical methods are opening, the doors to an array of new possibilities for surface scientists. We apply one of these techniques, the Bozzolo, Ferrante and Smith (BFS) method for alloys, which is particularly suitable for complex systems, to several aspects of the computational modeling of surfaces and segregation, including alloy surface segregation, structure and composition of alloy surfaces, and the formation of surface alloys. We conclude with the study of complex NiAl-based binary, ternary and quaternary thin films (with Ti, Cr and Cu additions to NiAl). Differences and similarities between bulk and surface compositions are discussed, illustrated by the results of Monte Carlo simulations. For some binary and ternary cases, the theoretical predictions are compared to experimental results, highlighting the accuracy and value of this developing theoretical tool.

  16. Analysis of Helium Segregation on Surfaces of Plasma-Exposed Tungsten

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitrios; Hu, Lin; Hammond, Karl; Wirth, Brian

    2015-11-01

    We report a systematic theoretical and atomic-scale computational study of implanted helium segregation on surfaces of tungsten, which is considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations, including molecular statics to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile helium clusters (of 1-7 He atoms) in the near-surface region are attracted to the surface due to an elastic interaction force. This thermodynamic driving force induces drift fluxes of these mobile clusters toward the surface, facilitating helium segregation. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, at rates much higher than in the bulk material. This cluster dynamics has significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure.

  17. Nanosilica-based molecularly imprinted polymer nanoshell for specific recognition and determination of rhodamine B in red wine and beverages.

    PubMed

    Long, Zerong; Xu, Weiwei; Lu, Yi; Qiu, Hongdeng

    2016-09-01

    A new and facile rhodamine B (RhB)-imprinted polymer nanoshell coating for SiO2 nanoparticles was readily prepared by a combination of silica gel modification and molecular surface imprinting. The RhB-imprinted polymers (RhB-MIPs) were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and UV-vis spectroscopy; the binding properties and selectivity of these MIPs were investigated in detail. The uniformly imprinted nanoparticles displayed a rather thin shell thickness (23nm) with highly effective recognition sites, showing homogenous distribution and monolayer adsorption. The maximum MIP adsorption capacity (Qm) was as high as 45.2mgg(-1), with an adsorption equilibrium time of about 15min at ambient temperature. Dynamic rebinding experiments showed that chemical adsorption is crucial for RhB binding to RhB-MIPs. The adsorption isotherm for RhB-MIPs binding could also be described by the Langmuir equation at different temperatures and pH values. Increasing temperature led to an enhanced Qm, a decreased dissociation constant (K'd), and a more negative free energy (ΔG), indicating that adsorption is favored at higher temperatures. Moreover, the adsorption capacity of RhB was remarkably affected by pH. At pH>7, the adsorption of RhB was driven by hydrogen bonding interactions, while at pH<7 electrostatic forces were dominant. Additionally, the MIPs also showed specific recognition of RhB from the standard mixture solution containing five structurally analogs. This method was also successfully employed to determine RhB content in red wine and beverages using three levels of spiking, with recoveries in the range of 91.6-93.1% and relative standard deviations lower than 4.1%. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Competitive adsorption in model charged protein mixtures: Equilibrium isotherms and kinetics behavior

    NASA Astrophysics Data System (ADS)

    Fang, F.; Szleifer, I.

    2003-07-01

    The competitive adsorption of proteins of different sizes and charges is studied using a molecular theory. The theory enables the study of charged systems explicitly including the size, shape, and charge distributions in all the molecular species in the mixture. Thus, this approach goes beyond the commonly used Poisson-Boltzmann approximation. The adsorption isotherms of the protein mixtures are studied for mixtures of two proteins of different size and charge. The amount of proteins adsorbed and the fraction of each protein is calculated as a function of the bulk composition of the solution and the amount of salt in the system. It is found that the total amount of proteins adsorbed is a monotonically decreasing function of the fraction of large proteins on the bulk solution and for fixed protein composition of the salt concentration. However, the composition of the adsorbed layer is a complicated function of the bulk composition and solution ionic strength. The structure of the adsorb layer depends upon the bulk composition and salt concentration. In general, there are multilayers adsorbed due to the long-range character of the electrostatic interactions. When the composition of large proteins in bulk is in very large excess it is found that the structure of the adsorb multilayer is such that the layer in contact with the surface is composed by a mixture of large and small proteins. However, the second and third layers are almost exclusively composed of large proteins. The theory is also generalized to study the time-dependent adsorption. The approach is based on separation of time scales into fast modes for the ions from the salt and the solvent and slow for the proteins. The dynamic equations are written for the slow modes, while the fast ones are obtained from the condition of equilibrium constrained to the distribution of proteins given by the slow modes. Two different processes are presented: the adsorption from a homogeneous solution to a charged surface at low salt concentration, and large excess of the large proteins in bulk. The second process is the kinetics of structural and adsorption change by changing the salt concentration of the bulk solution from low to high. The first process shows a large overshoot of the large proteins on the surface due to their excess in solution, followed by a surface replacement by the smaller molecules. The second process shows a very fast desorption of the large proteins followed by adsorption at latter stages. This process is found to be driven by large electrostatic repulsions induced by the fast ions from the salt approaching the surface. The relevance of the theoretical predictions to experimental system and possible directions for improvements of the theory are discussed.

  19. Self-organized carbon-rich stripe formation from competitive carbon and aluminium segregation at Fe0.85Al0.15(1 1 0) surfaces

    NASA Astrophysics Data System (ADS)

    Dai, Zongbei; Borghetti, Patrizia; Mouchaal, Younes; Chenot, Stéphane; David, Pascal; Jupille, Jacques; Cabailh, Gregory; Lazzari, Rémi

    2018-06-01

    By combining Scanning Tunnelling Microscopy, Low Energy Electron Diffraction and X-ray Photoelectron Spectroscopy, it was found that the surface of A2 random alloy Fe0.85Al0.15(1 1 0) is significantly influenced by the segregation of aluminium but also of carbon bulk impurities. Below ∼ 900 K, carbon segregates in the form of self-organized protruding stripes separated by ∼ 5 nm that run along the [ 0 0 1 ] B bulk direction and cover up to 34% of the surface. Their C 1s spectroscopic signature that is dominated by graphitic carbon peaks around 900 K. Above this temperature, the surface carbon concentration decays by redissolution in the bulk, whereas an intense aluminium segregation is observed giving rise to a hexagonal superstructure. The present findings is interpreted by a competitive segregation between the two elements.

  20. Adsorption of heavy metal ions by hierarchically structured magnetite-carbonaceous spheres.

    PubMed

    Gong, Jingming; Wang, Xiaoqing; Shao, Xiulan; Yuan, Shuang; Yang, Chenlin; Hu, Xianluo

    2012-11-15

    Magnetically driven separation technology has received considerable attention in recent decade for its great potential application. In this work, hierarchically structured magnetite-carbonaceous microspheres (Fe(3)O(4)-C MSs) have been synthesized for the adsorption of heavy metal ions from aqueous solution. Each sphere contains numerous unique rattle-type structured magnetic particles, realizing the integration of rattle-type building unit into microspheres. The as-prepared composites with high BET surface area, hierarchical as well as mesoporous structures, exhibit an excellent adsorption capacity for heavy metal ions and a convenient separation procedure with the help of an external magnet. It was found that the maximum adsorption capacity of the composite toward Pb(2+) was ∼126mgg(-1), displaying a high efficiency for the removal of heavy metal ions. The Freundlich adsorption isotherm was applicable to describe the removal processes. Kinetics of the Pb(2+) removal was found to follow pseudo-second-order rate equation. The as-prepared composite of Fe(3)O(4)-C MSs as well as Pb(2+)-adsorbed composite were carefully examined by scanning electron microscopy (SEM), Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR), nitrogen sorption measurements, and X-ray photoelectron spectroscopy (XPS). Based on the characterization results, a possible mechanism of Pb(2+) removal with the composite of Fe(3)O(4)-C MSs was proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Quantifying Differences in the Impact of Variable Chemistry on Equilibrium Uranium(VI) Adsorption Properties of Aquifer Sediments

    PubMed Central

    2011-01-01

    Uranium adsorption–desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500–1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2–, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (<0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logKc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors. PMID:21923109

  2. Fenton-Driven Regeneration of MTBE-spent Granular Activated Carbon

    EPA Science Inventory

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto activated carbon and Fenton-driven oxidation regeneration of the spent-GAC...

  3. Adsorption of benzyldimethylhexadecylammonium chloride at the hydrophobic silica-water interface studied by total internal reflection Raman spectroscopy: effects of silica surface properties and metal salt addition.

    PubMed

    Grenoble, Zlata; Baldelli, Steven

    2013-08-29

    The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface further indicate that the surface charge and potential influence the surfactant diffusion and kinetic rates of adsorption at the silica-water interface.

  4. Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules.

    PubMed

    Chen, Ran; Riviere, Jim E

    2017-01-01

    Quantitative analysis of the interactions between nanomaterials and their surrounding environment is crucial for safety evaluation in the application of nanotechnology as well as its development and standardization. In this chapter, we demonstrate the importance of the adsorption of surrounding molecules onto the surface of nanomaterials by forming biocorona and thus impact the bio-identity and fate of those materials. We illustrate the key factors including various physical forces in determining the interaction happening at bio-nano interfaces. We further discuss the mathematical endeavors in explaining and predicting the adsorption phenomena, and propose a new statistics-based surface adsorption model, the Biological Surface Adsorption Index (BSAI), to quantitatively analyze the interaction profile of surface adsorption of a large group of small organic molecules onto nanomaterials with varying surface physicochemical properties, first employing five descriptors representing the surface energy profile of the nanomaterials, then further incorporating traditional semi-empirical adsorption models to address concentration effects of solutes. These Advancements in surface adsorption modelling showed a promising development in the application of quantitative predictive models in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.

  5. A relativistic density functional study of the role of 5f electrons in atomic and molecular adsorptions on actinide surfaces

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad Nurul

    Atomic and molecular adsorptions of oxygen and hydrogen on actinide surfaces have been studied within the generalized gradient approximations to density functional theory (GGA-DFT). The primary goal of this work is to understand the details of the adsorption processes, such as chemisorption sites, energies, adsorption configurations and activation energies for dissociation of molecules; and the signature role of the plutonium 5f electrons. The localization of the 5f electrons remains one of central questions in actinides and one objective here is to understand the extent to which localizations plays a role in adsorption on actinide surfaces. We also investigated the magnetism of the plutonium surfaces, given the fact that magnetism in bulk plutonium is a highly controversial issue, and the surface magnetism of it is not a well explored territory. Both the non-spin-polarized and spin-polarized calculations have been performed to arrive at our conclusions. We have studied both the atomic and molecular hydrogen and oxygen adsorptions on plutonium (100) and (111) surfaces. We have also investigated the oxygen molecule adsorptions on uranium (100) surface. Comparing the adsorption on uranium and plutonium (100) surfaces, we have seen that O2 chemisorption energy for the most favorable adsorption site on uranium surface has higher chemisorption energy, 9.492 eV, than the corresponding plutonium site, 8.787 eV. Also degree of localization of 5f electrons is less for uranium surface. In almost all of the cases, the most favorable adsorption sites are found where the coordination numbers are higher. For example, we found center sites are the most favorable sites for atomic adsorptions. In general oxygen reacts more strongly with plutonium surface than hydrogen. We found that atomic oxygen adsorption energy on (100) surface is 3.613 eV more than that of the hydrogen adsorptions, considering only the most favorable site. This is also true for molecular adsorptions, as the oxygen molecules on both (100) and (111) plutonium surfaces dissociate almost spontaneously, whereas hydrogen needs some activation energy to dissociate. From spin-polarized calculations we found both (100) and (111) surfaces have the layer by layer alternating spin-magnetic behavior. In general adsorption of H2 and O2 do not change this behavior.

  6. Oxygen adsorption on the Al₉Co₂(001) surface: first-principles and STM study.

    PubMed

    Villaseca, S Alarcón; Loli, L N Serkovic; Ledieu, J; Fournée, V; Gille, P; Dubois, J-M; Gaudry, E

    2013-09-04

    Atomic oxygen adsorption on a pure aluminum terminated Al9Co2(001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is described. The preferential adsorption site is identified as a 'bridge' type site between the cluster entities exposed at the (001) surface termination. The Al-O bonding between the adsorbate and the substrate presents a covalent character, with s-p hybridization occurring between the states of the adsorbed oxygen atom and the aluminum atoms of the surface. The simulated STM image of the preferential adsorption site is in agreement with experimental observations. This work shows that oxygen adsorption generates important atomic relaxations of the topmost surface layer and that sub-surface cobalt atoms strongly influence the values of the adsorption energies. The calculated Al-O distances are in agreement with those reported in Al2O and Al2O3 oxides and for oxygen adsorption on Al(111).

  7. Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Subramaniam, M. N.; Goh, P. S.; Abdullah, N.; Lau, W. J.; Ng, B. C.; Ismail, A. F.

    2017-06-01

    Removal of methylene blue (MB) via adsorption and photocatalysis using titanate nanotubes (TNTs) with different surface areas were investigated and compared to commercial titanium dioxide (TiO2) P25 Degussa nanoparticles. The TNTs with surface area ranging from 20 m2/g to 200 m2/g were synthesized via hydrothermal method with different reaction times. TEM imaging confirmed the tubular structure of TNT while XRD spectra indicated all TNTs exhibited anatase crystallinity. Batch adsorption rate showed linearity with surface properties of TNTs, where materials with higher surface area showed higher adsorption rate. The highest MB adsorption (70%) was achieved by TNT24 in 60 min whereas commercial TiO2 exhibited the lowest adsorption of only 10% after 240 min. Adsorption isotherm studies indicated that adsorption using TNT is better fitted into Langmuir adsorption isotherm than Freundlich isotherm model. Furthermore, TNT24 was able to perform up to 90% removal of MB within 120 min, demonstrating performance that is 2-fold better compared to commercial TiO2. The high surface area and surface Bronsted acidity are the main reasons for the improvement in MB removal performance exhibited by TNT24. The improvement in surface acidity enhanced the adsorption properties of all the nanotubes prepared in this study.

  8. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules

    NASA Astrophysics Data System (ADS)

    Fan, Yaming; Zhuo, Yuqun; Li, Liangliang

    2017-10-01

    SeO2 adsorption mechanisms on CaO surface were firstly investigated by both density functional theory (DFT) calculations and adsorption experiments. Adsorption of multiple SeO2 on the CaO (001) surface was investigated using slab model. Based on the results of adsorption energy and surface property, a double-layer adsorption mechanisms were proposed. In experiments, the SeO2 adsorption products were prepared in a U-shaped quartz reactor at 200 °C. The surface morphology was investigated by field emission scanning electron microscopy (FE-SEM). The superficial and total SeO2 mass fractions were measured by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), respectively. The surface valence state and bulk structure are determined by XPS and X-Ray Diffraction (XRD). The experimental results are in good agreement with the DFT results. In conclusion, the fundamental SeO2 chemisorption mechanisms on CaO surface were suggested.

  9. Feedforward and recurrent processing in scene segmentation: electroencephalography and functional magnetic resonance imaging.

    PubMed

    Scholte, H Steven; Jolij, Jacob; Fahrenfort, Johannes J; Lamme, Victor A F

    2008-11-01

    In texture segregation, an example of scene segmentation, we can discern two different processes: texture boundary detection and subsequent surface segregation [Lamme, V. A. F., Rodriguez-Rodriguez, V., & Spekreijse, H. Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cerebral Cortex, 9, 406-413, 1999]. Neural correlates of texture boundary detection have been found in monkey V1 [Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378, 492-496, 1995; Grosof, D. H., Shapley, R. M., & Hawken, M. J. Macaque-V1 neurons can signal illusory contours. Nature, 365, 550-552, 1993], but whether surface segregation occurs in monkey V1 [Rossi, A. F., Desimone, R., & Ungerleider, L. G. Contextual modulation in primary visual cortex of macaques. Journal of Neuroscience, 21, 1698-1709, 2001; Lamme, V. A. F. The neurophysiology of figure ground segregation in primary visual-cortex. Journal of Neuroscience, 15, 1605-1615, 1995], and whether boundary detection or surface segregation signals can also be measured in human V1, is more controversial [Kastner, S., De Weerd, P., & Ungerleider, L. G. Texture segregation in the human visual cortex: A functional MRI study. Journal of Neurophysiology, 83, 2453-2457, 2000]. Here we present electroencephalography (EEG) and functional magnetic resonance imaging data that have been recorded with a paradigm that makes it possible to differentiate between boundary detection and scene segmentation in humans. In this way, we were able to show with EEG that neural correlates of texture boundary detection are first present in the early visual cortex around 92 msec and then spread toward the parietal and temporal lobes. Correlates of surface segregation first appear in temporal areas (around 112 msec) and from there appear to spread to parietal, and back to occipital areas. After 208 msec, correlates of surface segregation and boundary detection also appear in more frontal areas. Blood oxygenation level-dependent magnetic resonance imaging results show correlates of boundary detection and surface segregation in all early visual areas including V1. We conclude that texture boundaries are detected in a feedforward fashion and are represented at increasing latencies in higher visual areas. Surface segregation, on the other hand, is represented in "reverse hierarchical" fashion and seems to arise from feedback signals toward early visual areas such as V1.

  10. Formation, Characteristics and Electrocatalytic Properties of Nanoporous Metals Formed by Dealloying of Ternary-Noble Alloys

    NASA Astrophysics Data System (ADS)

    Vega Zuniga, Adrian A.

    Nanoporous metals formed by electrochemical dealloying of silver from Ag-Au-Pt alloys, with 77 at.% silver and platinum contents of 1, 2 and 3 at.%, have been studied. The presence of platinum, which is immobile relative to gold, refine the ligament size and stabilized the nanostructure against coarsening, even under experimental conditions that would be expected to promote coarsening (e.g., exposure to high temperature, longer dealloying times). By adding only 1 at.% Pt to the alloy precursor, the ligament/pore size was reduced by 50% with respect to that in nanoporous gold (NPG), which was formed on a Ag-Au alloy with the same silver content as ternary alloys. A further decrease in the ligament size was observed by increasing the platinum content of the precursor; however, most of the improvement occurred with 1 at.% Pt. The adsorbate-induced surface segregation of platinum was also investigated for these nanoporous metals. By exposing freshly-dealloyed nanostructures to moderate temperatures in the presence of air, platinum segregated to the ligament surface; in contrast, in an inert atmosphere (Ar-H 2), platinum mostly reverted to the bulk of the ligaments. This thermally activated process was thermodynamically driven by the interaction between platinum and oxygen; however, at the desorption temperature of oxygen, platinum de-segregated from the surface. Moreover, the co-segregation of platinum and oxygen hindered the thermal coarsening of the ligaments. Finally, the electrocatalytic abilities of these nanostructures were studied towards methanol and ethanol electro-oxidation, in alkaline and acidic media, showing significantly improved response in comparison to that observed in NPG. The synergistic effect between gold and platinum atoms and the smaller feature size of the nanostructures were directly associated with this behaviour. In alkaline electrolyte, the nanostructure formed on the alloy with 1 at.% Pt showed higher catalytic response than the other two ternary nanostructures, which could be associated with the platinum/gold ratio on the surface of the structure. In acidic electrolyte, the nanostructure with the highest platinum content displayed the highest electrocatalytic response. Furthermore, the presence of platinum changed the selectivity of both reactions: the concentrations of carbonate produced increased by increasing the platinum content in the alloy precursor.

  11. Segregation of large granules from close-packed cluster of small granules due to buoyancy.

    PubMed

    Yang, Xian-qing; Zhou, Kun; Qiu, Kang; Zhao, Yue-min

    2006-03-01

    Segregation of large granules in a vibrofluidized granular bed with inhomogeneous granular number density distribution is studied by an event-driven algorithm. Simulation results show that the mean vertical position of large granules decreases with the increase of the density ration of the large granules to the small ones. This conclusion is consistent with the explanation that the net pressure due to the small surrounding particle impacts balances the large granular weight, and indict that the upward movement of the large granules is driven by the buoyancy. The values of temperature, density, and pressure of the systems are also computed by changing the conditions such as heating temperature on the bottom and restitution coefficient of particles. These results indicate that the segregation of large granules also happen in the systems with density inversion or even close-packed cluster of particles floating on a low-density fluid, due to the buoyancy. An equation of state is proposed to explain the buoyancy.

  12. Removal and Recovery of Toxic Silver Ion Using Deep-Sea Bacterial Generated Biogenic Manganese Oxides

    PubMed Central

    Pei, Yuanjun; Chen, Xiao; Xiong, Dandan; Liao, Shuijiao; Wang, Gejiao

    2013-01-01

    Products containing silver ion (Ag+) are widely used, leading to a large amount of Ag+-containing waste. The deep-sea manganese-oxidizing bacterium Marinobacter sp. MnI7-9 efficiently oxidizes Mn2+ to generate biogenic Mn oxide (BMO). The potential of BMO for recovering metal ions by adsorption has been investigated for some ions but not for Ag+. The main aim of this study was to develop effective methods for adsorbing and recovering Ag using BMO produced by Marinobacter sp. MnI7-9. In addition, the adsorption mechanism was determined using X-ray photoelectron spectroscopy analysis, specific surface area analysis, adsorption kinetics and thermodynamics. The results showed that BMO had a higher adsorption capacity for Ag+ compared to the chemical synthesized MnO2 (CMO). The isothermal absorption curves of BMO and CMO both fit the Langmuir model well and the maximum adsorption capacities at 28°C were 8.097 mmol/g and 0.787 mmol/g, for BMO and CMO, respectively. The change in enthalpy (ΔHθ) for BMO was 59.69 kJ/mol indicating that it acts primarily by chemical adsorption. The change in free energy (ΔGθ) for BMO was negative, which suggests that the adsorption occurs spontaneously. Ag+ adsorption by BMO was driven by entropy based on the positive ΔSθ values. The Ag+ adsorption kinetics by BMO fit the pseudo-second order model and the apparent activation energy of Ea is 21.72 kJ/mol. X-ray photoelectron spectroscopy analysis showed that 15.29% Ag+ adsorbed by BMO was transferred to Ag(0) and meant that redox reaction had happened during the adsorption. Desorption using nitric acid and Na2S completely recovered the Ag. The results show that BMO produced by strain MnI7-9 has potential for bioremediation and reutilization of Ag+-containing waste. PMID:24312566

  13. Mechanism and energetics of O and O{sub 2} adsorption on polar and non-polar ZnO surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Seebauer, Edmund G.; Ertekin, Elif, E-mail: ertekin@illinois.edu

    2016-05-14

    Polar surfaces of semiconducting metal oxides can exhibit structures and chemical reactivities that are distinct from their non-polar surfaces. Using first-principles calculations, we examine O adatom and O{sub 2} molecule adsorption on 8 different known ZnO reconstructions including Zn-terminated (Zn–ZnO) and O-terminated (O–ZnO) polar surfaces, and non-polar surfaces. We find that adsorption tendencies are largely governed by the thermodynamic environment, but exhibit variations due to the different surface chemistries of various reconstructions. The Zn–ZnO surface reconstructions which appear under O-rich and H-poor environments are found to be most amenable to O and O{sub 2} adsorption. We attribute this to themore » fact that on Zn–ZnO, the O-rich environments that promote O adsorption also simultaneously favor reconstructions that involve adsorbed O species. On these Zn–ZnO surfaces, O{sub 2} dissociatively adsorbs to form O adatoms. By contrast, on O–ZnO surfaces, the O-rich conditions required for O or O{sub 2} adsorption tend to promote reconstructions involving adsorbed H species, making further O species adsorption more difficult. These insights about O{sub 2} adsorption on ZnO surfaces suggest possible design rules to understand the adsorption properties of semiconductor polar surfaces.« less

  14. Adsorption properties for urokinase on local diatomite surface

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiang; Zhang, Jianbo; Yang, Weimin; Wu, Jieda; Chen, Rongsan

    2003-02-01

    In this paper, adsorption isotherm of urokinase on two typical local diatomites were determined at 25 °C and their surface electrical potentials (ζ), isoelectrical point values (IEP) were determined. The properties of diatomites, the relationship among diatomite structure, pore-size distribution, surface ζ and adsorption isotherm were discussed. The adsorption equation of urokinase was calculated from the adsorption isotherm. The adsorption mode of urokinase on diatomite surface was judged by the configuration function α. The relationship between the amount of adsorbed urokinase and IEP value was also discussed.

  15. Study of Cs/NF3 adsorption on GaN (0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike

    2017-03-01

    To investigate the optoelectronics properties of Cs/NF3 adsorption on GaN (0 0 1) photocathode surface, different adsorption models of Cs-only, Cs/O, Cs/NF3 adsorption on GaN clean surface were established, respectively. Atomic structures, work function, adsorption energy, E-Mulliken charge distribution, density of states and optical properties of all these adsorption systems were calculated using first principles. Compared with Cs/O co-adsorption, Cs/NF3 co-adsorption show better stability and more decline of work function, which is more beneficial for photoemission efficiency. Besides, surface band structures of Cs/NF3 co-adsorption system exhibit metal properties, implying good conductivity. Meanwhile, near valence band minimum of Cs/NF3 co-adsorption system, more acceptor levels emerges to form a p-type emission surface, which is conductive to the escape of photoelectrons. In addition, imaginary part of dielectric function curve and absorption curve of Cs/NF3 co-adsorption system both move towards lower energy side. This work can direct the optimization of activation process of NEA GaN photocathode.

  16. Modification of molybdenum surface by low-energy oxygen implantation at room temperature

    NASA Astrophysics Data System (ADS)

    Kavre Piltaver, Ivna; Jelovica Badovinac, Ivana; Peter, Robert; Saric, Iva; Petravic, Mladen

    2017-12-01

    We have studied the initial stages of oxide formation on molybdenum surfaces under 1 keV O2+ ion bombardment at room temperature (RT), using x-ray photoelectron spectroscopy around Mo 3d or O 1s core-levels and the valence band photoemission. The results are compared with the oxidation mechanism of thermally oxidized Mo at RT. The thermal oxidation reveals the formation of a very thin MoO2 layer that prevents any further adsorption of oxygen at higher oxygen doses. Oxygen implantation is more efficient in creating thicker oxide films with the simultaneous formation of several oxide compounds. The oxidation rates of MoO2 and Mo2O5 follow the parabolic growth rate consistent with the mass transport driven by diffusion of either neutral or singly and doubly charged oxygen interstitials. The oxidation of MoO3, which occurs at a later oxidation stage, follows the logarithmic rate driven by the diffusion of cations in an electric field.

  17. Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice

    NASA Astrophysics Data System (ADS)

    Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Gigiberiya, Volodymyr A.; Vygornitskii, Nikolai V.

    2017-05-01

    The diffusion-driven self-assembly of rodlike particles was studied by means of Monte Carlo simulation. The rods were represented as linear k -mers (i.e., particles occupying k adjacent sites). In the initial state, they were deposited onto a two-dimensional square lattice of size L ×L up to the jamming concentration using a random sequential adsorption algorithm. The size of the lattice, L , was varied from 128 to 2048, and periodic boundary conditions were applied along both x and y axes, while the length of the k -mers (determining the aspect ratio) was varied from 2 to 12. The k -mers oriented along the x and y directions (kx-mers and ky-mers, respectively) were deposited equiprobably. In the course of the simulation, the numbers of intraspecific and interspecific contacts between the same sort and between different sorts of k -mers, respectively, were calculated. Both the shift ratio of the actual number of shifts along the longitudinal or transverse axes of the k -mers and the electrical conductivity of the system were also examined. For the initial random configuration, quite different self-organization behavior was observed for short and long k -mers. For long k -mers (k ≥6 ), three main stages of diffusion-driven spatial segregation (self-assembly) were identified: the initial stage, reflecting destruction of the jamming state; the intermediate stage, reflecting continuous cluster coarsening and labyrinth pattern formation; and the final stage, reflecting the formation of diagonal stripe domains. Additional examination of two artificially constructed initial configurations showed that this pattern of diagonal stripe domains is an attractor, i.e., any spatial distribution of k -mers tends to transform into diagonal stripes. Nevertheless, the time for relaxation to the steady state essentially increases as the lattice size growth.

  18. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ming; Kang, Zhan, E-mail: zhankang@dlut.edu.cn; Huang, Xiaobo

    2015-08-28

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-networkmore » (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.« less

  19. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Li, Ming; Huang, Xiaobo; Kang, Zhan

    2015-08-01

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  20. Elementary surface chemistry during CuO/Al nanolaminate-thermite synthesis: copper and oxygen deposition on aluminum (111) surfaces.

    PubMed

    Lanthony, Cloé; Guiltat, Mathilde; Ducéré, Jean Marie; Verdier, Agnes; Hémeryck, Anne; Djafari-Rouhani, Mehdi; Rossi, Carole; Chabal, Yves J; Estève, Alain

    2014-09-10

    The surface chemistry associated with the synthesis of energetic nanolaminates controls the formation of the critical interfacial layers that dominate the performances of nanothermites. For instance, the interaction of Al with CuO films or CuO with Al films needs to be understood to optimize Al/CuO nanolaminates. To that end, the chemical mechanisms occurring during early stages of molecular CuO adsorption onto crystalline Al(111) surfaces are investigated using density functional theory (DFT) calculations, leading to the systematic determination of their reaction enthalpies and associated activation energies. We show that CuO undergoes dissociative chemisorption on Al(111) surfaces, whereby the Cu and O atoms tend to separate from each other. Both Cu and O atoms form islands with different properties. Copper islanding fosters Cu insertion (via surface site exchange mechanism) into the subsurface, while oxygen islands remain stable at the surface. Above a critical local oxygen coverage, aluminum atoms are extracted from the Al surface, leading to oxygen-aluminum intermixing and the formation of aluminum oxide (γ-alumina). For Cu and O co-deposition, copper promotes oxygen-aluminum interaction by oxygen segregation and separates the resulting oxide from the Al substrate by insertion into Al and stabilization below the oxide front, preventing full mixing of Al, Cu, and O species.

  1. Influence of surface roughness on cetyltrimethylammonium bromide adsorption from aqueous solution.

    PubMed

    Wu, Shuqing; Shi, Liu; Garfield, Lucas B; Tabor, Rico F; Striolo, Alberto; Grady, Brian P

    2011-05-17

    The influence of surface roughness on surfactant adsorption was studied using a quartz crystal microbalance with dissipation (QCM-D). The sensors employed had root-mean-square (R) roughness values of 2.3, 3.1, and 5.8 nm, corresponding to fractal-calculated surface area ratios (actual/nominal) of 1.13, 1.73, and 2.53, respectively. Adsorption isotherms measured at 25 °C showed that adsorbed mass of cetyltrimethylammonium bromide per unit of actual surface area below 0.8 cmc, or above 1.2 cmc, decreases as the surface roughness increases. At the cmc, both the measured adsorbed amount and the measured dissipation increased dramatically on the rougher surfaces. These results are consistent with the presence of impurities, suggesting that roughness exacerbates well-known phenomena reported in the literature of peak impurity-related adsorption at the cmc. The magnitude of the increase, especially in dissipation, suggests that changes in adsorbed amount may not be the only reason for the observed results, as aggregates at the cmc on rougher surfaces are more flexible and likely contain larger amounts of solvent. Differences in adsorption kinetics were also found as a function of surface roughness, with data showing a second, slower adsorption rate after rapid initial adsorption. A two-rate Langmuir model was used to further examine this effect. Although adsorption completes faster on the smoother surfaces, initial adsorption at zero surface coverage is faster on the rougher surfaces, suggesting the presence of more high-energy sites on the rougher surfaces.

  2. Methanol adsorption and dissociation on LaMnO 3 and Sr doped LaMnO 3 (001) surfaces

    DOE PAGES

    Beste, Ariana

    2017-06-20

    Using density functional theory, we investigate in this paper methanol adsorption and dissociation on the MnO 2- and LaO-terminated LaMnO 3 (001) surface as a function of Sr dopant enrichment in and near the surface. In response to bulk cleavage, we find electron depletion of the negatively charged MnO 2 surface layer that is enhanced by Sr doping in the subsurface. In contrast, we observe electron accumulation in the positively charged LaO surface layer that is reduced by Sr doping in the surface layer. Methanol adsorbs dissociatively on the LaO termination of the LaMnO 3 (001) surface. Methanol adsorption onmore » the LaO termination is strongly preferred over adsorption on the MnO 2 termination. While moderate doping has a small influence on methanol adsorption and dissociation, when 100% of La is replaced by Sr in the surface or subsurface, the adsorption preference of methanol is reversed. Finally, if the surface is highly dopant enriched, methanol favours dissociative adsorption on the MnO 2-terminated surface.« less

  3. Methanol adsorption and dissociation on LaMnO 3 and Sr doped LaMnO 3 (001) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beste, Ariana

    Using density functional theory, we investigate in this paper methanol adsorption and dissociation on the MnO 2- and LaO-terminated LaMnO 3 (001) surface as a function of Sr dopant enrichment in and near the surface. In response to bulk cleavage, we find electron depletion of the negatively charged MnO 2 surface layer that is enhanced by Sr doping in the subsurface. In contrast, we observe electron accumulation in the positively charged LaO surface layer that is reduced by Sr doping in the surface layer. Methanol adsorbs dissociatively on the LaO termination of the LaMnO 3 (001) surface. Methanol adsorption onmore » the LaO termination is strongly preferred over adsorption on the MnO 2 termination. While moderate doping has a small influence on methanol adsorption and dissociation, when 100% of La is replaced by Sr in the surface or subsurface, the adsorption preference of methanol is reversed. Finally, if the surface is highly dopant enriched, methanol favours dissociative adsorption on the MnO 2-terminated surface.« less

  4. Directed and persistent movement arises from mechanochemistry of the ParA/ParB system

    NASA Astrophysics Data System (ADS)

    Hu, Longhua; Vecchiarelli, Anthony G.; Mizuuchi, Kiyoshi; Neuman, Keir C.; Liu, Jian

    The segregation of DNA prior to cell division is essential for faithful genetic inheritance. In many bacteria, segregation of the low-copy-number plasmids involves an active partition system composed of ParA ATPase and its stimulator protein ParB. Recent experiments suggest that ParA/ParB system motility is driven by a diffusion-ratchet mechanism in which ParB-coated plasmid both creates and follows a ParA gradient on the nucleoid surface. However, the detailed mechanism of ParA/ParB-mediated directed and persistent movement remains unknown. We develop a theoretical model describing ParA/ParB-mediated motility. We show that the ParA/ParB system can work as a Brownian ratchet, which effectively couples the ATPase-dependent cycling of ParA-nucleoid affinity to the motion of the ParB bound cargo. Paradoxically, the resulting processive motion relies on quenching diffusive plasmid motion through a large number of transient ParA/ParB-mediated tethers to the nucleoid surface. Our work sheds light on a new emergent phenomenon in which non-motor proteins work collectively via mechanochemical coupling to propel cargos -- an ingenious solution shaped by evolution to cope with the lack of processive motor proteins in bacteria.

  5. Towards wall functions for the prediction of solute segregation in plane front directional solidification

    NASA Astrophysics Data System (ADS)

    Chatelain, M.; Rhouzlane, S.; Botton, V.; Albaric, M.; Henry, D.; Millet, S.; Pelletier, D.; Garandet, J. P.

    2017-10-01

    The present paper focuses on solute segregation occurring in directional solidification processes with sharp solid/liquid interface, like silicon crystal growth. A major difficulty for the simulation of such processes is their inherently multi-scale nature: the impurity segregation problem is controlled at the solute boundary layer scale (micrometers) while the thermal problem is ruled at the crucible scale (meters). The thickness of the solute boundary layer is controlled by the convection regime and requires a specific refinement of the mesh of numerical models. In order to improve numerical simulations, wall functions describing solute boundary layers for convecto-diffusive regimes are derived from a scaling analysis. The aim of these wall functions is to obtain segregation profiles from purely thermo-hydrodynamic simulations, which do not require solute boundary layer refinement at the solid/liquid interface. Regarding industrial applications, various stirring techniques can be used to enhance segregation, leading to fully turbulent flows in the melt. In this context, the scaling analysis is further improved by taking into account the turbulent solute transport. The solute boundary layers predicted by the analytical model are compared to those obtained by transient segregation simulations in a canonical 2D lid driven cavity configuration for validation purposes. Convective regimes ranging from laminar to fully turbulent are considered. Growth rate and molecular diffusivity influences are also investigated. Then, a procedure to predict concentration fields in the solid phase from a hydrodynamic simulation of the solidification process is proposed. This procedure is based on the analytical wall functions and on solute mass conservation. It only uses wall shear-stress profiles at the solidification front as input data. The 2D analytical concentration fields are directly compared to the results of the complete simulation of segregation in the lid driven cavity configuration. Finally, an additional output from the analytical model is also presented. We put in light the correlation between different species convecto-diffusive behaviour; we use it to propose an estimation method for the segregation parameters of various chemical species knowing segregation parameters of one specific species.

  6. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons

    NASA Astrophysics Data System (ADS)

    De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E.; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy

    2013-01-01

    The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.

  7. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons.

    PubMed

    De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy

    2013-01-09

    The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.

  8. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100).

    PubMed

    Pan, Yun-xiang; Liu, Chang-jun; Mei, Donghai; Ge, Qingfeng

    2010-04-20

    The effects of hydration and oxygen vacancy on CO(2) adsorption on the beta-Ga(2)O(3)(100) surface have been studied using density functional theory slab calculations. Adsorbed CO(2) is activated on the dry perfect beta-Ga(2)O(3)(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect beta-Ga(2)O(3)(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect beta-Ga(2)O(3)(100) surface. Adsorption of CO(2) on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slightly repulsive interaction when H(2)O and CO(2) are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the coadsorbed H(2)O to a bicarbonate species, making the CO(2) adsorption exothermic, with an adsorption energy of -0.13 eV. The effect of defects on CO(2) adsorption and activation has been examined by creating an oxygen vacancy on the dry beta-Ga(2)O(3)(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O(2) molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO(2). In the most stable CO(2) adsorption configuration on the dry defective beta-Ga(2)O(3)(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO(2) occupies the oxygen vacancy site, and the CO(2) adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is spontaneous, with a reaction energy of -0.62 eV. These results indicate that, when water and CO(2) are present in the adsorption system simultaneously, water will compete with CO(2) for the oxygen vacancy sites and impact CO(2) adsorption and conversion negatively.

  9. Surface and adsorptive properties of Moringa oleifera bark for removal of V(V) from aqueous solutions.

    PubMed

    Mnisi, Robert Londi; Ndibewu, Peter Papoh

    2017-11-04

    The bark of Moringa oleifera, a cheap and readily available natural biopolymeric resource material, found to significantly reduce coliform load and turbidity in contaminated water is investigated in this paper. Its surface and adsorptive properties are investigated to explore its adsorptive potential in removing V(V) from aqueous solutions. Surface properties were investigated using FTIR, HRSEM/EDS, IC, and BET-N 2 adsorption techniques. Adsorptive properties were investigated by optimizing adsorption parameters such as pH, temperature, initial metal concentration, and adsorbent dosage, using V(V) as an adsorbate. The adsorption-desorption isotherms are typical of type II with a H3 hysteresis loop and is characteristic of a largely macroporous material. Bottle ink pores are observed, which can provide good accessibility of the active sites, even though the internal BET surface area is typically low (1.79 g/m 2 ). Solution pH significantly influences the adsorptive potential of the material. The low surface area negatively impacts on the adsorption capacity, but is compensated for by the exchangeable anions (Cl - , F - , PO 4 3- , NO 3 - , and SO 4 2- ) and cations (Ca 2+ , K + , Mg 2+ , and Al 3+ ) at the surface and the accessibility of the active sites. Adsorption isotherm modeling show that the surface is largely heterogeneous with complex multiple sites and adsorption is not limited to monolayer.

  10. Insulin adsorption on crystalline SiO2: Comparison between polar and nonpolar surfaces using accelerated molecular-dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nejad, Marjan A.; Mücksch, Christian; Urbassek, Herbert M.

    2017-02-01

    Adsorption of insulin on polar and nonpolar surfaces of crystalline SiO2 (cristobalite and α -quartz) is studied using molecular dynamics simulation. Acceleration techniques are used in order to sample adsorption phase space efficiently and to identify realistic adsorption conformations. We find major differences between the polar and nonpolar surfaces. Electrostatic interactions govern the adsorption on polar surfaces and can be described by the alignment of the protein dipole with the surface dipole; hence spreading of the protein on the surface is irrelevant. On nonpolar surfaces, on the other hand, van-der-Waals interaction dominates, inducing surface spreading of the protein.

  11. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.

    PubMed

    Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan

    2018-06-19

    The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Xe adsorption site distributions on Pt(111), Pt(221) and Pt(531)

    NASA Astrophysics Data System (ADS)

    Gellman, Andrew J.; Baker, L.; Holsclaw, B. S.

    2016-04-01

    The ideal structures of the Pt(111), Pt(221) and Pt(531) surfaces expose adsorption sites that can be qualitatively described as terrace sites on Pt(111), both step and terrace sites on Pt(221), and kink sites on Pt(531). The real surface structures of these surfaces can be complicated by imperfections such as misorientation, reconstruction and thermal roughening, all of which will influence their distributions of adsorption sites. Xe adsorption sites on the Pt(111), Pt(221) and Pt(531) surfaces have been probed using both photoemission of adsorbed Xe (PAX) and temperature programmed desorption (TPD) of Xe. Both PAX and Xe TPD are sensitive to the adsorption sites of the Xe and serve as complementary means of assessing the distributions of adsorption sites on these three Pt surfaces. The adsorption of Xe is sufficiently sensitive to detect the presence of residual steps on the Pt(111) surface at a density of 1.5% step atoms per Pt atom. On the Pt(221) surface, PAX and Xe TPD reveal adsorption at both terrace and step sites simultaneously. Although the ideal structure of the Pt(531) surface has no well-defined steps or terraces, Xe adsorption indicates that its adsorption sites are best described as a distribution of both step and kink sites with roughly twice as many steps sites as kinks.

  13. Determination of oligomeric chain length distributions at surfaces using ToF-SIMS: segregation effects and polymer properties

    NASA Astrophysics Data System (ADS)

    Gardella, Joseph A.; Mahoney, Christine M.

    2004-06-01

    While many XPS and SIMS studies of polymers have detected and quantified segregation of low surface energy blocks or components in copolymers and polymer blends [D. Briggs, in: D.R. Clarke, S. Suresh, I.M. Ward (Eds.), Surface Analysis of Polymers by XPS and Static SIMS, Cambridge University Press, Cambridge, 1998 (Chapter 5).], this paper reports ToF-SIMS studies of direct measurement of the segment length distribution at the surface of siloxane copolymers. These data allow insight into the segregation of particular portions of the oligomeric distribution; specifically, in this study, longer PDMS oligomers segregated at the expense of shorter PDMS chains. We have reported XPS analysis of competitive segregation effects for short PDMS chains [Macromolecules 35 (13) (2002) 5256]. In this study, a series of poly(ureaurethane)-poly(dimethylsiloxane) (PUU-PDMS) copolymers have been synthesized containing varying ratios of G-3 and G-9 (G- X describes the average segment length of the PDMS added), while maintaining a constant overall siloxane weight percentage (10, 30, and 60%). These copolymers were utilized as model systems to study the preferential segregation of certain siloxane segment lengths to the surface over others. ToF-SIMS analysis of PUU-PDMS copolymers has yielded high-mass range copolymer fragmentation patterns containing intact PDMS segments. For the first time, this information is utilized to determine PDMS segment length distributions at the copolymer surface as compared to the bulk. The results show that longer siloxane segment lengths are preferentially segregating to the surface over shorter chain lengths. These results also show the importance of ToF-SIMS and mass spectrometry in the development of new materials containing low molecular weight amino-propyl-terminated siloxanes.

  14. From aggregative adsorption to surface depletion: Aqueous systems of C nE m amphiphiles at hydrophilic surfaces

    DOE PAGES

    Rother, Gernot; Müter, Dirk; Bock, Henry; ...

    2017-03-27

    Adsorption of a short-chain nonionic amphiphile (C 6E 3) at the surface of mesoporous silica glass (CPG-10) was studied by a combination of adsorption measurements and mesoscale simulations. Adsorption measurements covering a wide composition range of the C 6E 3 + water system show that no adsorption occurs up to the critical micelle concentration (cmc), at which a sharp increase of adsorption is observed that is attributed to ad-micelle formation at the pore walls. Intriguingly, as the concentration is increased further, the surface excess of the amphiphile begins to decrease and eventually becomes negative, which corresponds to preferential adsorption ofmore » water rather than amphiphile at high amphiphile concentrations. The existence of such a surface-azeotropic point has not previously been reported in the surfactant adsorption field. Dissipative particle dynamics (DPD) simulations were performed to reveal the structural origin of this transition from aggregative adsorption to surface depletion. Finally, the simulations indicate that this transition can be attributed to the repulsive interaction between head groups, causing amphiphilic depletion in the region around the corona of the surface micelles.« less

  15. Do Low Surface Brightness Galaxies Host Stellar Bars?

    NASA Astrophysics Data System (ADS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo

    2017-09-01

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  16. Do Low Surface Brightness Galaxies Host Stellar Bars?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness ismore » mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.« less

  17. Phosphorus Segregation in Meta-Rapidly Solidified Carbon Steels

    NASA Astrophysics Data System (ADS)

    Li, Na; Qiao, Jun; Zhang, Junwei; Sha, Minghong; Li, Shengli

    2017-09-01

    Twin-roll strip casters for near-net-shape manufacture of steels have received increased attention in the steel industry. Although negative segregation of phosphorus occurred in twin-roll strip casting (TRSC) steels in our prior work, its mechanism is still unclear. In this work, V-shaped molds were designed and used to simulate a meta-rapid solidification process without roll separating force during twin roll casting of carbon steels. Experimental results show that no obvious phosphorus segregation exist in the V-shaped mold casting (VMC) steels. By comparing TRSC and the VMC, it is proposed that the negative phosphorus segregation during TRSC results from phosphorus redistribution driven by recirculating and vortex flow in the molten pool. Meanwhile, solute atoms near the advancing interface are overtaken and incorporated into the solid because of the high solidification speed. The high rolling force could promote the negative segregation of alloying elements in TRSC.

  18. From HADES to PARADISE—atomistic simulation of defects in minerals

    NASA Astrophysics Data System (ADS)

    Parker, Stephen C.; Cooke, David J.; Kerisit, Sebastien; Marmier, Arnaud S.; Taylor, Sarah L.; Taylor, Stuart N.

    2004-07-01

    The development of the HADES code by Michael Norgett in the 1970s enabled, for the first time, the routine simulation of point defects in inorganic solids at the atomic scale. Using examples from current research we illustrate how the scope and applications of atomistic simulations have widened with time and yet still follow an approach readily identifiable with this early work. Firstly we discuss the use of the Mott-Littleton methodology to study the segregation of various isovalent cations to the (00.1) and (01.2) surfaces of haematite (agr-Fe2O3). The results show that the size of the impurities has a considerable effect on the magnitude of the segregation energy. We then extend these simulations to investigate the effect of the concentration of the impurities at the surface on the segregation process using a supercell approach. We consider next the effect of segregation to stepped surfaces illustrating this with recent work on segregation of La3+ to CaF2 surfaces, which show enhanced segregation to step edges. We discuss next the application of lattice dynamics to modelling point defects in complex oxide materials by applying this to the study of hydrogen incorporation into bgr-Mg2SiO4. Finally our attention is turned to a method for considering the surface energy of physically defective surfaces and we illustrate its approach by considering the low index surfaces of agr-Al2O3.

  19. Do Irregularly Shaped School Attendance Zones Contribute to Racial Segregation or Integration?

    PubMed Central

    Saporito, Salvatore; Van Riper, David

    2017-01-01

    This research investigates if and how much the shapes of school attendance zones contribute to racial segregation in schools. We find that the typical school attendance zone is relatively compact and resembles a square-like shape. Compact zones typically draw children from local residential areas, and since local areas are often racially homogeneous, this suggests that high levels of racial segregation in the largest school districts are largely structured by existing residential segregation. Still, this study finds that the United States contains some attendance zones with highly irregular shapes—some of which are as irregular as the most irregular Congressional District. Although relatively rare, attendance zones that are highly irregular in shape almost always contain racially diverse student populations. This racial diversity contributes to racial integration within school districts. These findings contradict recent theoretical and empirical scholarship arguing that irregularly shaped zones contribute to racial segregation in schools. Our findings suggest that most racial segregation in school attendance zones is driven by large-scale segregation across residential areas rather than a widespread practice among school districts to exacerbate racial segregation by delineating irregularly shaped attendance zones. PMID:28804732

  20. Ultra-fast grain boundary diffusion and its contribution to surface segregation on a martensitic steel. Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Christien, F.; Le Gall, R.

    2011-09-01

    Phosphorus surface segregation was measured by Auger Electron Spectroscopy on a 17-4 PH martensitic stainless steel at 450, 550 and 600 °C. Surface segregation was shown to be much faster than expected which was attributed to a high contribution of phosphorus diffusion along the former austenitic grain boundaries. A model of surface segregation was developed following the Darken-du Plessis approach and taking account of both bulk and grain boundary solute diffusion. The phosphorus grain boundary diffusion coefficient in 17-4 PH was estimated: DGB< = 6.2 10 4 exp(- 157 kJ mol - 1 /RT)cm 2 s - 1 . It is found to be more than three orders of magnitude higher in 17-4 PH steel than in α-iron.

  1. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites].

    PubMed

    Wang, Yan; Tan, Wen-Feng; Feng, Xiong-Han; Qiu, Guo-Hong; Liu, Fan

    2011-10-01

    Adsorption characteristics of mineral surface for heavy metal ions are largely determined by the type and amount of surface adsorption sites. However, the effects of substructure variance in manganese oxide on the adsorption sites and adsorption characteristics remain unclear. Adsorption experiments and powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were combined to examine the adsorption characteristics of Pb2+, Cu2+, Zn2+ and Cd2+ sequestration by birnessites with different Mn average oxidation state (AOS), and the Mn AOS dependent adsorption sites and adsorption characteristics. The results show that the maximum adsorption capacity of Pb2+, Cu2+, Zn2+ and Cd2+ increased with increasing birnessite Mn AOS. The adsorption capacity followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The observations suggest that there exist two sites on the surface of birnessite, i. e., high-binding-energy site (HBE site) and low-binding-energy site (LBE site). With the increase of Mn AOS for birnessites, the amount of HBE sites for heavy metal ions adsorption remarkably increased. On the other hand, variation in the amount of LBE sites was insignificant. The amount of LBE sites is much more than those of HBE sites on the surface of birnessite with low Mn AOS. Nevertheless, both amounts on the surface of birnessite with high Mn AOS are very close to each other. Therefore, the heavy metal ions adsorption capacity on birnessite is largely determined by the amount of HBE sites. On birnessite surface, adsorption of Cu2+, Zn2+, and Cd2+ mostly occurred at HBE sites. In comparison with Zn2+ and Cd2+, more Cu2+ adsorbed on the LBW sites. Pb2+ adsorption maybe occupy at both LBE sites and HBE sites simultaneously.

  2. Segregation of O2 and CO on the surface of dust grains determines the desorption energy of O2

    NASA Astrophysics Data System (ADS)

    Noble, J. A.; Diana, S.; Dulieu, F.

    2015-12-01

    Selective depletion towards pre-stellar cores is still not understood. The exchange between the solid and gas phases is central to this mystery. The aim of this paper is to show that the thermal desorption of O2 and CO from a submonolayer mixture is greatly affected by the composition of the initial surface population. We have performed thermally programmed desorption (TPD) experiments on various submonolayer mixtures of O2 and CO. Pure O2 and CO exhibit almost the same desorption behaviour, but their desorption differs strongly when mixed. Pure O2 is slightly less volatile than CO, while in mixtures, O2 desorbs earlier than CO. We analyse our data using a desorption law linking competition for binding sites with desorption, based on the assumption that the binding energy distribution of both molecules is the same. We apply Fermi-Dirac statistics in order to calculate the adsorption site population distribution, and derive the desorbing fluxes. Despite its simplicity, the model reproduces the observed desorption profiles, indicating that competition for adsorption sites is the reason for lower temperature O2 desorption. CO molecules push-out or `dislodge' O2 molecules from the most favourable binding sites, ultimately forcing their early desorption. It is crucial to consider the surface coverage of dust grains in any description of desorption. Competition for access to binding sites results in some important discrepancies between similar kinds of molecules, such as CO and O2. This is an important phenomenon to be investigated in order to develop a better understanding of the apparently selective depletion observed in dark molecular clouds.

  3. A first principles study of the properties of Al:ZnO and its adhesion to Ag in an optical coating

    NASA Astrophysics Data System (ADS)

    Lin, Zheshuai; Bristowe, Paul D.

    2009-07-01

    A first principles density functional study of the atomistic properties of Al:ZnO and its adhesion to Ag is presented. Optical coatings often contain interfaces between ZnO (0001) and Ag (111) layers whose bonding can be improved by incorporating small amounts of Al into the ZnO but the underlying strengthening mechanism remains unclear. It is assumed that Al relaxes the internal compressive stress in the film but the situation is complicated by the presence of hydrogen and/or water which can adsorb on the ZnO surface during fabrication of the coating. Hydrogen and/or water are known to weaken the Ag/ZnO interface particularly when it is O terminated. In this paper it is shown that aluminum substitutes on Zn sites in ZnO and this does indeed reduce the internal stress in the layer under compression. However, it is also shown that Al segregates to the ZnO surface when it is O terminated (but not Zn terminated) and this reduces the propensity for hydrogen adsorption. Thus by eliminating some of the hydrogen from the ZnO surface which is more likely to be O terminated than Zn terminated under ambient conditions, the strength of the Ag/ZnO interface can be increased. The effect of aluminum incorporation into the ZnO layer is therefore twofold: it relaxes the residual stresses in the coating and also improves the chemical bonding at the metal/oxide interface by removing the weakening effects of gaseous adsorption. The changes in interfacial bonding are explained in terms of an electron redistribution and compensation model.

  4. Texture segregation, surface representation and figure-ground separation.

    PubMed

    Grossberg, S; Pessoa, L

    1998-09-01

    A widespread view is that most texture segregation can be accounted for by differences in the spatial frequency content of texture regions. Evidence from both psychophysical and physiological studies indicate, however, that beyond these early filtering stages, there are stages of 3-D boundary segmentation and surface representation that are used to segregate textures. Chromatic segregation of element-arrangement patterns--as studied by Beck and colleagues--cannot be completely explained by the filtering mechanisms previously employed to account for achromatic segregation. An element arrangement pattern is composed of two types of elements that are arranged differently in different image regions (e.g. vertically on top and diagonally on the bottom). FACADE theory mechanisms that have previously been used to explain data about 3-D vision and figure-ground separation are here used to simulate chromatic texture segregation data, including data with equiluminant elements on dark or light homogeneous backgrounds, or backgrounds composed of vertical and horizontal dark or light stripes, or horizontal notched stripes. These data include the fact that segregation of patterns composed of red and blue squares decreases with increasing luminance of the interspaces. Asymmetric segregation properties under 3-D viewing conditions with the equiluminant elements close or far are also simulated. Two key model properties are a spatial impenetrability property that inhibits boundary grouping across regions with non-collinear texture elements and a boundary-surface consistency property that uses feedback between boundary and surface representations to eliminate spurious boundary groupings and separate figures from their backgrounds.

  5. Adsorption of xenon on vicinal copper and platinum surfaces

    NASA Astrophysics Data System (ADS)

    Baker, Layton

    The adsorption of xenon was studied on Cu(111), Cu(221), Cu(643) and on Pt(111), Pt(221), and Pt(531) using low energy electron diffraction (LEED), temperature programmed desorption (TPD) of xenon, and ultraviolet photoemission of adsorbed xenon (PAX). These experiments were performed to study the atomic and electronic structure of stepped and step-kinked, chiral metal surfaces. Xenon TPD and PAX were performed on each surface in an attempt to titrate terrace, step edge, and kink adsorption sites by adsorption energetics (TPD) and local work function differences (PAX). Due to the complex behavior of xenon on the vicinal copper and platinum metal surfaces, adsorption sites on these surfaces could not be adequately titrated by xenon TPD. On Cu(221) and Cu(643), xenon desorption from step adsorption sites was not apparent leading to the conclusion that the energy difference between terrace and step adsorption is minuscule. On Pt(221) and Pt(531), xenon TPD indicated that xenon prefers to bond at step edges and that the xenon-xenon interaction at step edges in repulsive but no further indication of step-kink adsorption was observed. The Pt(221) and Pt(531) TPD spectra indicated that the xenon overlayer undergoes strong compression near monolayer coverage on these surfaces due to repulsion between step-edge adsorbed xenon and other encroaching xenon atoms. The PAX experiments on the copper and platinum surfaces demonstrated that the step adsorption sites have lower local work functions than terrace adsorption sites and that higher step density leads to a larger separation in the local work function of terrace and step adsorption sites. The PAX spectra also indicated that, for all surfaces studied at 50--70 K, step adsorption is favored at low coverage but the step sites are not saturated until monolayer coverage is reached; this observation is due to the large entropy difference between terrace and step adsorption states and to repulsive interactions between xenon atoms adsorbed at step edges (on the platinum surfaces). The results herein provide several novel observations regarding the adsorptive behavior of xenon on vicinal copper and platinum surfaces.

  6. The electronic and optical properties of Cs adsorbed GaAs nanowires via first-principles study

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei

    2018-07-01

    In this study, we investigate the Cs adsorption mechanism on (110) surface of zinc-blende GaAs nanowire. The adsorption energy, work function, dipole moment, geometric structure, Mulliken charge distribution, charge transfer index, band structures, density of state and optical properties of Cs adsorption structures are calculated utilizing first-principles method based on density function theory. Total-energy calculations show that all the adsorption energies are negative, indicating that Cs adsorption process is exothermic and Cs covered GaAs nanowires are stable. The work function of nanowire surface has an obvious decrease after Cs adsorption. Besides, the ionization of nanowire surface is enhanced as well. More importantly, Cs adsorption contributes to a lower side shift of bands near Fermi level, and the corresponding band gap disappears. Additionally, the absorption peak and energy loss function after Cs adsorption are far higher than those before adsorption, implying better light absorption characteristic of nanowire surface after Cs adsorption. These theoretical calculations can directly guide the Cs activation experiment for negative electron affinity GaAs nanowire, and also lay a foundation for the further study of Cs/O co-adsorption on the nanowire surface.

  7. Albumin adsorption on CoCrMo alloy surfaces

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Yang, Hongjuan; Su, Yanjing; Qiao, Lijie

    2015-12-01

    Proteins can adsorb on the surface of artificial joints immediately after being implanted. Although research studying protein adsorption on medical material surfaces has been carried out, the mechanism of the proteins’ adsorption which affects the corrosion behaviour of such materials still lacks in situ observation at the micro level. The adsorption of bovine serum albumin (BSA) on CoCrMo alloy surfaces was studied in situ by AFM and SKPFM as a function of pH and the charge of CoCrMo alloy surfaces. Results showed that when the specimens were uncharged, hydrophobic interaction could govern the process of the adsorption rather than electrostatic interaction, and BSA molecules tended to adsorb on the surfaces forming a monolayer in the side-on model. Results also showed that adsorbed BSA molecules could promote the corrosion process for CoCrMo alloys. When the surface was positively charged, the electrostatic interaction played a leading role in the adsorption process. The maximum adsorption occurred at the isoelectric point (pH 4.7) of BSA.

  8. Pd surface and Pt subsurface segregation in Pt1-c Pd c nanoalloys

    NASA Astrophysics Data System (ADS)

    De Clercq, A.; Giorgio, S.; Mottet, C.

    2016-02-01

    The structure and chemical arrangement of Pt1-c Pd c nanoalloys with the icosahedral and face centered cubic symmetry are studied using Monte Carlo simulations with a tight binding interatomic potential fitted to density-functional theory calculations. Pd surface segregation from the lowest to the highest coordinated sites is predicted by the theory together with a Pt enrichment at the subsurface, whatever the structure and the size of the nanoparticles, and which subsists when increasing the temperature. The onion-shell chemical configuration is found for both symmetries and is initiated from the Pd surface segregation. It is amplified in the icosahedral symmetry and small sizes but when considering larger sizes, the oscillating segregation profile occurs near the surface on about three to four shells whatever the structure. Pd segregation results from the significant lower cohesive energy of Pd as compared to Pt and the weak ordering tendency leads to the Pt subsurface segregation. The very weak size mismatch does not prevent the bigger atoms (Pt) from occupying subsurface sites which are in compression whereas the smaller ones (Pd) occupy the central site of the icosahedra where the compression is an order of magnitude higher.

  9. Micro and Macro Segregation in Alloys Solidifying with Equiaxed Morphology

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Curreri, Peter A.; Leon-Torres, Jose; Sen, Subhayu

    1996-01-01

    To understand macro segregation formation in Al-Cu alloys, experiments were run under terrestrial gravity (1g) and under low gravity during parabolic flights (10(exp -2) g). Alloys of two different compositions (2% and 5% Cu) were solidified at two different cooling rates. Systematic microscopic and SEM observations produced microstructural and segregation maps for all samples. These maps may be used as benchmark experiments for validation of microstructure evolution and segregation models. As expected, the macro segregation maps are very complex. When segregation was measured along the central axis of the sample, the highest macro segregation for samples solidified at 1g was obtained for the lowest cooling rate. This behavior is attributed to the longer time available for natural convection and shrinkage flow to affect solute redistribution. In samples solidified under low-g, the highest macro-segregation was obtained at the highest cooling rate. In general, low-gravity solidification resulted in less segregation. To explain the experimental findings, an analytical (Flemings-Nereo) and a numerical model were used. For the numerical model, the continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the microscopic transport phenomena, for a two-phase system. The model proposed considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The Flemings-Nereo model explains well macro segregation in the initial stages of low-gravity segregation. The numerical model can describe the complex macro segregation pattern and the differences between low- and high-gravity solidification.

  10. The adsorption of argon on ZnO at 77K

    NASA Astrophysics Data System (ADS)

    Marinelli, Francis; Grillet, Yves; Pellenq, Roland J.-M.

    We have studied the adsorption of argon onto ZnO surfaces at 77K by means of quasiequilibrium adsorption volumetry coupled with high resolution microcalorimetry and Grand Canonical Monte-Carlo (GCMC) simulations. The adsorbate/surface adsorption potential function (PN type) used in the simulations, was determined on the basis of ab initio calculations (corrected for dispersion interactions). The first aspect of this work was to test the ability of a standard solid-state Hartree-Fock technique coupled with a perturbative semiempirical approach in deriving a reliable adsorption potential function. The dispersion part of the adsorbate/surface interatomic potential was derived by using perturbation theory-based equations while the repulsive and induction interactions were derived from periodic HartreeFock (CRYSTAL92) calculations. GCMC simulations based on this adsorption potential allow one to calculate adsorption isotherms and isosteric heat versus loading curves as well as singlet distribution functions at 77K for each type of ZnO (neutral and polar) faces. The combined analysis of the simulation data for all surfaces gives a good insight of the adsorption mechanism of argon onto ZnO surfaces at 77K in agreement with experiment. As far as neutral surfaces are concerned, it is shown that adsorption first takes place within the 'troughs' which cover ZnO neutral surfaces. At low chemical potentials, these semi-channels are preferential adsorption sites in which we could detect a nearly one-dimensional adsorbate freezing in a commensurate phase at 77K. The polar O faces are the most favourable surfaces for adsorption at higher chemical potentials.

  11. Morphology and antimony segregation of spangles on batch hot-dip galvanized coatings

    NASA Astrophysics Data System (ADS)

    Peng, Shu; Lu, Jintang; Che, Chunshan; Kong, Gang; Xu, Qiaoyu

    2010-06-01

    Spangles produced by batch hot-dip galvanizing process have a rougher surface and a greater surface segregation of alloying element compared with those in continuous hot-dip galvanizing line (CGL), owing to the cooling rate of the former is much smaller than that of the later. Therefore, typical spangles on a batch hot-dipped Zn-0.05Al-0.2Sb alloy coating were investigated. The chemical, morphological characterization and identification of the phases on the spangles were examined by scanning electron microscopy (SEM), backscattered electron imaging (BSE), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The results showed that the coating surface usually exhibited three kinds of spangles: shiny, feathery and dull spangle, of which extensively antimony surface segregation was detected. The nature of precipitate on the coating surface was identified as β-Sb 3Zn 4, The precipitated β-Sb 3Zn 4 particles distributed randomly on the shiny spangle surface, both β-Sb 3Zn 4 particles and dentritic segregation of antimony dispersed in the dendritic secondary arm spacings of the feathery spangle and on the whole dull spangle surface. The dentritic segregation of antimony and precipitation of Sb 3Zn 4 compound are discussed by a proposed model.

  12. Protein adsorption at charged surfaces: the role of electrostatic interactions and interfacial charge regulation.

    PubMed

    Hartvig, Rune A; van de Weert, Marco; Østergaard, Jesper; Jorgensen, Lene; Jensen, Henrik

    2011-03-15

    The understanding of protein adsorption at charged surfaces is important for a wide range of scientific disciplines including surface engineering, separation sciences and pharmaceutical sciences. Compared to chemical entities having a permanent charge, the adsorption of small ampholytes and proteins is more complicated as the pH near a charged surface can be significantly different from the value in bulk solution. In this work, we have developed a phenomenological adsorption model which takes into account the combined role of interfacial ion distribution, interfacial charge regulation of amino acids in the proximity of the surface, electroneutrality, and mass balance. The model is straightforward to apply to a given set of experimental conditions as most model parameters are obtained from bulk properties and therefore easy to estimate or are directly measurable. The model provides a detailed understanding of the importance of surface charge on adsorption and in particular of how changes in surface charge, concentration, and surface area may affect adsorption behavior. The model is successfully used to explain the experimental adsorption behavior of the two model proteins lysozyme and α-lactalbumin. It is demonstrated that it is possible to predict the pH and surface charge dependent adsorption behavior from experimental or theoretical estimates of a preferred orientation of a protein at a solid charged interface.

  13. A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION

    PubMed Central

    Finch, Craig; Clarke, Thomas; Hickman, James J.

    2012-01-01

    Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices. PMID:23729843

  14. Discussion on 'characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption' by Lu et al.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James C. Hower; Bruno Valentim; Irena J. Kostova

    2008-03-15

    Mercury capture by coal-combustion fly ash is a function of the amount of Hg in the feed coal, the amount of carbon in the fly ash, the type of carbon in the fly ash (including variables introduced by the rank of the feed coal), and the flue gas temperature at the point of ash collection. In their discussion of fly ash and Hg adsorption, Lu et al. (Energy Fuels 2007, 21, 2112-2120) had some fundamental flaws in their techniques, which, in turn, impact the validity of analyzed parameters. First, they used mechanical sieving to segregate fly ash size fractions. Mechanicalmore » sieving does not produce representative size fractions, particularly for the finest sizes. If the study samples were not obtained correctly, the subsequent analyses of fly ash carbon and Hg cannot accurately represent the size fractions. In the analysis of carbon forms, it is not possible to accurately determine the forms with scanning electron microscopy. The complexity of the whole particles is overlooked when just examining the outer particle surface. Examination of elements such as Hg, present in very trace quantities in most fly ashes, requires careful attention to the analytical techniques. 36 refs., 3 figs., 1 tab.« less

  15. Quantitatively identifying the roles of interfacial water and solid surface in governing peptide adsorption.

    PubMed

    Xu, Zhijun; Yang, Xiao; Wei, Qichao; Zhao, Weilong; Cui, Beiliang; Yang, Xiaoning; Sahai, Nita

    2018-06-11

    Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Though the water phase at the surface/water interface has been recognized as three types: free water in the bulk region, intermediate water phase and surface-bound water layers adjacent to the surface, the roles of the water and surface in determining the protein adsorption are not clearly identified, particularly at the quantitative level. Herein, we provide a methodology involving the combination of microsecond strengthen sampling simulation and force integration to quantitatively characterize the water-induced contribution and the peptide-surface interactions into the adsorption free energy. Using hydroxyapatite and graphene surfaces as examples, we demonstrate how the distinct interfacial features dominate the delicate force balance between these two thermodynamics parameters, leading to surface preference/resistance to peptide adsorption. Specifically, the water layer provides sustained repelling force against peptide adsorption, as indicated by a monotonic increase in the water-induced free energy profile, whereas the contribution to the free energy from the surface effect is thermodynamically favorable, thus acting as the dominant driving force for peptide adsorptions. More importantly, the revealed adsorption mechanism is critically dictated by the distribution of water phase at the solid/water interface, which plays a crucial role in establishing the force balance between the interactions of the peptide with the water layer and the surface. For the HAP surface, the charged peptide exhibits strong binding affinity to the surface, which is ascribed to the controlling contribution of peptide-surface interaction in the intermediate water phase and the surface-bound water layers are observed as the origin of bioresistance of solid surfaces towards the adsorption of charge-neutral peptides. The preferred peptide adsorption on the graphene, however, is dominated by the surface-induced component at the water layers adjacent to the surface. Our results further elucidate that the intermediate water phase significantly shortens the effective range of the surface dispersion force to guide the diffusion of the peptide to the interface, in sharp contrast to the observation in interfacial systems involving the strong water-surface interaction.

  16. Plasma protein adsorption to zwitterionic poly (carboxybetaine methacrylate) modified surfaces: chain chemistry and end-group effects on protein adsorption kinetics, adsorbed amounts and immunoblots.

    PubMed

    Abraham, Sinoj; Bahniuk, Markian S; Unsworth, Larry D

    2012-12-01

    Protein-surface interactions are crucial to the overall biocompatability of biomaterials, and are thought to be the impetus towards the adverse host responses such as blood coagulation and complement activation. Only a few studies hint at the ultra-low fouling potential of zwitterionic poly(carboxybetaine methacrylate) (PCBMA) grafted surfaces and, of those, very few systematically investigate their non-fouling behavior. In this work, single protein adsorption studies as well as protein adsorption from complex solutions (i.e. human plasma) were used to evaluate the non-fouling potential of PCBMA grafted silica wafers prepared by nitroxide-mediated free radical polymerization. PCBMAs used for surface grafting varied in charge separating spacer groups that influence the overall surface charges, and chain end-groups that influence the overall hydrophilicity, thereby, allows a better understanding of these effects towards the protein adsorption for these materials. In situ ellipsometry was used to quantify the adsorbed layer thickness and adsorption kinetics for the adsorption of four proteins from single protein buffer solutions, viz, lysozyme, α-lactalbumin, human serum albumin and fibrinogen. Total amount of protein adsorbed on surfaces differed as a function of surface properties and protein characteristics. Finally, immunoblots results showed that human plasma protein adsorption to these surfaces resulted, primarily, in the adsorption of human serum albumin, with total protein adsorbed amounts being the lowest for PCBMA-3 (TEMPO). It was apparent that surface charge and chain hydrophilicity directly influenced protein adsorption behavior of PCBMA systems and are promising materials for biomedical applications.

  17. Adsorption of poly(ethylene glycol)-modified ribonuclease A to a poly(lactide-co-glycolide) surface.

    PubMed

    Daly, Susan M; Przybycien, Todd M; Tilton, Robert D

    2005-06-30

    Protein adsorption is a source of variability in the release profiles of therapeutic proteins from biodegradable microspheres. We employ optical reflectometry and total internal reflection fluorescence to explore the extent and kinetics of ribonuclease A (RNase A) adsorption to spin-cast films of poly(lactide-co-glycolide) (PLG) and, in particular, to determine how covalent grafting of polyethylene glycol (PEG) to RNase A affects adsorption. Adsorption kinetics on PLG surfaces are surface-limited for RNase A but transport-limited for unconjugated PEG homopolymers and for PEG-modified RNase A, indicating that PEG anchors the conjugates to the surface during the transport-limited regime. PEG modification of RNase A decreases the total number of adsorbed molecules per unit area but increases the areal surface coverage because the grafted PEG chains exclude additional surface area. Total internal reflection fluorescence-based exchange measurements show that there is no exchange between adsorbed and solution-phase protein molecules. This indicates an unusually tenacious adsorption. Streaming current measurements indicate that the zeta potential of the PLG surface becomes increasingly negative as the film is exposed to water for several weeks, as expected. Aging of the PLG surface results in increased adsorption of unmodified RNase A but decreased adsorption of unconjugated PEG homopolymers and of PEG-RNase A conjugates, relative to the extent of adsorption on freshly prepared PLG surfaces. Adsorption results correlate well with an increase in the rate, total extent and preservation of bioactivity of RNase A released from PLG microspheres for the PEG-modified version of RNase A.

  18. Activated carbon with excellent chromium(VI) adsorption performance prepared by acid-base surface modification.

    PubMed

    Liu, S X; Chen, X; Chen, X Y; Liu, Z F; Wang, H L

    2007-03-06

    In the present work, activated carbon (AC) with excellent Cr(VI) adsorption performance especially at low concentrations was prepared by an acid-base surface modification method. Raw activated carbon (AC(0)) was first oxidized in boiling HNO(3) (AC(1)), then treated with a mixture of NaOH and NaCl (AC(2)). Batch equilibrium and continuous column adsorption were conducted to evaluate the adsorption performance. Boehm titration, elemental analysis, and N(2)/77K adsorption isotherm methods were used to characterize the surface properties and pore structure of modified ACs. The results revealed that the modified AC exhibited excellent Cr(VI) adsorption performance in terms of adsorption capacity and adsorption rate: AC(2)>AC(1)>AC(0). Modification caused S(BET) to decrease and the total number of surface oxygen acidic groups to increase. HNO(3) oxidization produced positive acid groups, and subsequently NaOH treatment replaced H(+) of surface acid groups by Na(+), and the acidity of AC decreased. The main cause of higher Cr(VI) adsorption capacity and rate for AC(2) was the presence of more oxygen surface acidic groups and suitable surface acidity. HNO(3)-NaOH modification shows potential for the preparation of high quality AC for the effective removal of low concentrations of Cr(VI).

  19. Hierarchical representation of shapes in visual cortex—from localized features to figural shape segregation

    PubMed Central

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228

  20. Hierarchical representation of shapes in visual cortex-from localized features to figural shape segregation.

    PubMed

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.

  1. A periodic DFT study of ammonia adsorption on the V2O5 (001), V2O5 (010) and V2O5 (100) surfaces: Lewis versus Brönsted acid sites

    NASA Astrophysics Data System (ADS)

    Yao, Huichao; Chen, Yu; Wei, Yuechang; Zhao, Zhen; Liu, Zhichang; Xu, Chunming

    2012-11-01

    The adsorption of ammonia at Brönsted and Lewis acid sites on three low-index (001), (010) and (100) surfaces of V2O5 catalyst was investigated using density functional theory (DFT) method. Three levels of surface relaxation periodic models including top single layer relaxation (S-model), moderately deeper relaxation (M-model) and full relaxation model (F-model) were applied to examine the effect of the surface relaxation on the binding structures and adsorption energies. The results of calculations showed that on the saturated basal plane V2O5 (001), ammonia adsorption at the Brönsted acid sites (VOH) is energetically more favorable. On unsaturated (010) and (100) surfaces, ammonia is adsorbed strongly on both Brönsted (VOH) and Lewis acid sites (V). Surface relaxations have no influence on ammonia adsorption on saturated (001) surface, while a strong dependence on the relaxation models is observed for NH3-adsorption energies on (010) and (100) surfaces, especially at the Lewis acid sites of both side planes. When complete relaxation considered (F-model), ammonia adsorption on the Lewis acid sites (V) dominates for side planes (010) and (100). In the presence of VOH as neighbor, the ammonia adsorption at V sites is however weakened significantly due to steric hindrance. Hydrogen bonds may play a role, although not determining one, in the respect of the adsorption of ammonia on (010) and (100) surfaces. Moderate relaxation and full relaxation are absolutely necessary for the description of both H and NH3 adsorption on unsaturated (100) and (010) surfaces, respectively.

  2. Competitive Adsorption between Nanoparticles and Surface Active Ions for the Oil-Water Interface.

    PubMed

    Hua, Xiaoqing; Bevan, Michael A; Frechette, Joelle

    2018-04-24

    Nanoparticles (NPs) can add functionality (e.g., catalytic, optical, rheological) to an oil-water interface. Adsorption of ∼10 nm NPs can be reversible; however, the mechanisms for adsorption and its effects on surface pressure remain poorly understood. Here we demonstrate how the competitive reversible adsorption of NPs and surfactants at fluid interfaces can lead to independent control of both the adsorbed amount and surface pressure. In contrast to prior work, both species investigated (NPs and surfactants) interact reversibly with the interface and without the surface active species binding to NPs. Independent measurements of the adsorption and surface pressure isotherms allow determination of the equation of state (EOS) of the interface under conditions where the NPs and surfactants are both in dynamic equilibrium with the bulk phase. The adsorption and surface pressure measurements are performed with gold NPs of two different sizes (5 and 10 nm), at two pH values, and across a wide concentration range of surfactant (tetrapentylammonium, TPeA + ) and NPs. We show that free surface active ions compete with NPs for the interface and give rise to larger surface pressures upon the adsorption of NPs. Through a competitive adsorption model, we decouple the contributions of NPs wetting at the interface and their surface activity on the measured surface pressure. We also demonstrate reversible control of adsorbed amount via changes in the surfactant concentration or the aqueous phase pH.

  3. Theoretical insight of adsorption thermodynamics of multifunctional molecules on metal surfaces

    NASA Astrophysics Data System (ADS)

    Loffreda, David

    2006-05-01

    Adsorption thermodynamics based on density functional theory (DFT) calculations are exposed for the interaction of several multifunctional molecules with Pt and Au(1 1 0)-(1 × 2) surfaces. The Gibbs free adsorption energy explicitly depends on the adsorption internal energy, which is derived from DFT adsorption energy, and the vibrational entropy change during the chemisorption process. Zero-point energy (ZPE) corrections have been systematically applied to the adsorption energy. Moreover the vibrational entropy change has been computed on the basis of DFT harmonic frequencies (gas and adsorbed phases, clean surfaces), which have been extended to all the adsorbate vibrations and the metallic surface phonons. The phase diagrams plotted in realistic conditions of temperature (from 100 to 400 K) and pressure (0.15 atm) show that the ZPE corrected adsorption energy is the main contribution. When strong chemisorption is considered on the Pt surface, the multifunctional molecules are adsorbed on the surface in the considered temperature range. In contrast for weak chemisorption on the Au surface, the thermodynamic results should be held cautiously. The systematic errors of the model (choice of the functional, configurational entropy and vibrational entropy) make difficult the prediction of the adsorption-desorption phase boundaries.

  4. Ab Initio Cluster Calculations for the Adsorption of Small Molecules on Oxide Surfaces - from Single Molecules to Monolayers

    NASA Astrophysics Data System (ADS)

    Pykavy, M.; Staemmler, V.; Rittner, F.

    2000-04-01

    Quantum chemical ab initio cluster calculations were performed for the adsorption of small molecules on metal oxide surfaces. Two systems were studied in detail: The adsorption of N2 on the (110) surface plane of TiO2 (rutile) and the adsorption of CO on the polar (0001) surface of Cr2O3. In both cases a full five-dimensional potential for the interaction of a single molecule with the respective surface was calculated. For N2/TiO2 (110) the minimum was found for the end-on adsorption of N2 atop a coordinately unsaturated surface Ti atom, with an adsorption energy of (35 ± 5) kJ/mol. In the case of CO/Cr2O3 (0001) the CO molecule is adsorbed strongly tilted (almost side-on) along a line connecting two Cr3+ ions at the surface; the calculated adsorption energy is 22 kJ/mol. In conjunction with empirical pair potentials for the N2/N2 and CO/CO interaction in the gas phase, Monte Carlo simulations were carried out to determine adsorption isotherms and the geometric structure of adsorbed monolayers.

  5. Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti-6.5Al-1Mo-1V-2Zr

    NASA Astrophysics Data System (ADS)

    Liu, Jian-hua; Zhan, Zhong-wei; Yu, Mei; Li, Song-mei

    2013-01-01

    The adsorption behavior of glycidoxypropyl-trimethoxy-silane (GTMS) on titanium alloy Ti-6.5Al-1Mo-1V-2Zr was investigated by using X-ray photoelectron spectroscopy (XPS), Tafel polarization test, and electrochemical impedance spectroscopy (EIS). From the XPS results, it was found that the silane coverage on the titanium surface generally increased with GTMS concentration, with a slight decrease at concentration of 0.1%. Based on the relationship between isoelectronic point (IEP) of titanium surface and the pH values of silane solutions, adsorption mechanisms at different concentrations were proposed. The surface coverage data of GTMS on titanium surface was also derived from electrochemical measurements. By linear fitting the coverage data, it revealed that the adsorption of GTMS on the titanium alloy surface at 30 °C was of a physisorption-based mechanism, and obeyed Langmuir adsorption isotherm. The adsorption equilibrium constant (Kads) and free energy of adsorption process (ΔGads) were calculated to elaborate the mechanism of GTMS adsorption.

  6. First-principles calculation of adsorption of shale gas on CaCO3 (100) surfaces.

    PubMed

    Luo, Qiang; Pan, Yikun; Guo, Ping; Wang, Zhouhua; Wei, Na; Sun, Pengfei; Liu, Yuxiao

    2017-06-16

    To demonstrate the adsorption strength of shale gas to calcium carbonate in shale matrix, the adsorption of shale gas on CaCO3 (100) surfaces was studied using the first-principles method, which is based on the density functional theory (DFT). The structures and electronic properties of CH4, C2H6, CO2 and N2 molecules were calculated by the generalized gradient approximation (GGA), for a coverage of 1 monolayer (ML). Under the same conditions, the density of states (DOS) of CaCO3 (100) surfaces before and after the adsorption of shale gas molecules at high-symmetry adsorption sites were compared. The results showed that the adsorption energies of CH4, C2H6, CO2 and N2 on CaCO3 (100) surfaces were between 0.2683 eV and -0.7388 eV. When a CH4 molecule was adsorbed at a hollow site and its 2 hydrogen atoms were parallel to the long diagonal (H3) on the CaCO3 (100) surface, it had the most stable adsorption, and the adsorption energy was only -0.4160 eV. The change of adsorption energy of CH4 was no more than 0.0535 eV. Compared with the DOS distribution of CH4 before adsorption, it shifted to the left overall after adsorption. At the same time, the partial density of states (PDOS) curves of CaCO3 (100) surfaces before and after adsorption basically overlapped. This work showed that the adsorption effect of shale gas on calcium carbonate is very weak, and the adsorption is physisorption at the molecular level.

  7. Designing transition metal surfaces for their adsorption properties and chemical reactivity

    NASA Astrophysics Data System (ADS)

    Montemore, Matthew M.

    Many technological processes, such as catalysis, electrochemistry, corrosion, and some materials synthesis techniques, involve molecules bonding to and/or reacting on surfaces. For many of these applications, transition metals have proven to have excellent chemical reactivity, and this reactivity is strongly tied to the surface's adsorption properties. This thesis focuses on predicting adsorption properties for use in the design of transition metal surfaces for various applications. First, it is shown that adsorption through a particular atom (e.g, C or O) can be treated in a unified way. This allows predictions of all C-bound adsorbates from a single, simple adsorbate, such as CH3. In particular, consideration of the adsorption site can improve the applicability of previous approaches, and gas-phase bond energies correlate with adsorption energies for similarly bound adsorbates. Next, a general framework is presented for understanding and predicting adsorption through any atom. The energy of the adsorbate's highest occupied molecular orbital (HOMO) determines the strength of the repulsion between the adsorbate and the surface. Because adsorbates with similar HOMO energies behave similarly, their adsorption energies correlate. This can improve the efficiency of predictions, but more importantly it constrains catalyst design and suggests strategies for circumventing these constraints. Further, the behavior of adsorbates with dissimilar HOMO energies varies in a systematic way, allowing predictions of adsorption energy differences between any two adsorbates. These differences are also useful in surface design. In both of these cases, the dependence of adsorption energies on surface electronic properties is explored. This dependence is used to justify the unified treatments mentioned above, and is used to gain further insight into adsorption. The properties of the surface's d band and p band control variations in adsorption energy, as does the strength of the adsorbate-surface coupling. A single equation, with only a single adsorbate-dependent fitting parameter as well as a few universal fitting parameters, is developed that can predict the adsorption energy of any radical on any close-packed transition metal surface. The surface electronic properties that are input into this equation can be estimated based on the alloy structure of the surface, improving prospects for high-throughput screening and rational catalyst design. The methods discussed in this thesis are used to design a novel catalyst for ethylene epoxidation, which is experimentally synthesized and tested. Initial tests indicate that this catalyst may have improved selectivity over pure Ag.

  8. Adsorption and oxidation of oxalic acid on anatase TiO2 (001) surface: A density functional theory study.

    PubMed

    Sun, Tao; Wang, Yun; Zhang, Haimin; Liu, Porun; Zhao, Huijun

    2015-09-15

    Anatase TiO2 (001) surfaces have attracted great interest for photo-degradation of organic species recently due to their high reactivity. In this work, adsorption properties and oxidation mechanisms of oxalic acid on the anatase TiO2 (001) surface have been theoretically investigated using the first-principles density functional theory. Various possible adsorption configurations are considered by diversifying the connectivity of carboxylic groups with the surface. It is found that the adsorption of oxalic acid on the anatase (001) surface prefer the dissociative states. A novel double-bidentate configuration has been found due to the structural match between oxalic acid and the (001) surface. More charge is transferred from the adsorbed oxalic acid to the surface with the double-bidentate configuration when comparing with other adsorption structures. Thus, there is a positive correlation relationship between the transferred charge amount and the interfacial bond numbers when oxalic acid adsorbs on the anatase TiO2 (001) surface. The adsorption energies with dispersion corrections have demonstrated that the van der Waals interactions play an important role in the adsorption, especially when adsorbates are close to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effects of oxygen chemical potential on the anisotropy of the adsorption properties of Zr surfaces.

    PubMed

    Zhang, Hai-Hui; Xie, Yao-Ping; Yao, Mei-Yi; Xu, Jing-Xiang; Zhang, Jin-Long; Hu, Li-Juan

    2018-05-30

    The anisotropy of metal oxidation is a fundamental issue, and the oxidation of Zr surfaces also attracts much attention due to the application of Zr alloys as cladding materials for nuclear fuels in nuclear power plants. In this study, we systematically investigate the diagram of O adsorption on low Miller index Zr surfaces by using first-principles calculations based on density functional theory calculations. We find that O adsorption on the basal surface, Zr(0001), is more favourable than that on the prism surfaces, Zr(112[combining macron]0) and Zr(101[combining macron]0), under strong O-reducing conditions, while O adsorption on the prism surface is more favourable than that of the basal surface under weak O-reducing conditions and the O-rich conditions. Our findings reveal that the anisotropy of adsorption properties of O on the Zr surfaces is dependent on the O chemical potential in the environment. Furthermore, the ability of the prism for O adsorption is stronger than that of the basal surface under the O-rich condition, which is consistent with the experimental observation that the oxidation of the prism Zr surface is easier than that of the basal surface. Systematic surveys show the adsorption ability of the surface under strong O-reducing conditions is determined by the low coordination numbers of surface atoms and surface geometrical structures, while the adsorption ability of the surface under weak O-reducing conditions and O-rich conditions is only determined by the low coordination number of surface atoms. These results can provide an atomic scale understanding of the initial oxidation of Zr surfaces, which inevitably affects the growth of protective passivation layers that play critical roles in the corrosion resistance of Zr cladding materials.

  10. Driving spin transition at interface: Role of adsorption configurations

    NASA Astrophysics Data System (ADS)

    Zhang, Yachao

    2018-01-01

    A clear insight into the electrical manipulation of molecular spins at interface is crucial to the design of molecule-based spintronic devices. Here we report on the electrically driven spin transition in manganocene physisorbed on a metallic surface in two different adsorption configurations predicted by ab initio techniques, including a Hubbard-U correction at the manganese site and accounting for the long-range van der Waals interactions. We show that the application of an electric field at the interface induces a high-spin to low-spin transition in the flat-lying manganocene, while it could hardly alter the high-spin ground state of the standing-up molecule. This phenomenon cannot be explained by either the molecule-metal charge transfer or the local electron correlation effects. We demonstrate a linear dependence of the intra-molecular spin-state splitting on the energy difference between crystal-field splitting and on-site Coulomb repulsion. After considering the molecule-surface binding energy shifts upon spin transition, we reproduce the obtained spin-state energetics. We find that the configuration-dependent responses of the spin-transition originate from the binding energy shifts instead of the variation of the local ligand field. Through these analyses, we obtain an intuitive understanding of the effects of molecule-surface contact on spin-crossover under electrical bias.

  11. Adsorption characteristics of Bisphenol-A on tailored activated carbon in aqueous solutions.

    PubMed

    Yan, Liang; Lv, Di; Huang, Xinwen; Shi, Huixiang; Zhang, Geshan

    2016-10-01

    The adsorption behavior of pharmaceuticals and personal care product, Bisphenol-A (BPA), according to four coal-based and four wood-based granular activated carbons modified using outgassing treatment, acidic treatment or alkaline treatment was studied. The adsorption isotherm results indicated that carbon surface acidity played a very important role in the adsorption of BPA. It was found that increasing surface acidity would increase the hydrogen bonding effects and increase adsorption of BPA on activated carbon. The acidic modified sample (F600-A and OLC-A) represented the best adsorption capacity, and the equilibrium adsorption amounts reached 346.42 and 338.55 mg/g, respectively. Further, effects of surface charge and surface basicity were examined. It was found that the adsorbed amount of BPA decreased with the increase of surface charge. Finally, there appeared to be a significant oligomerization phenomenon with BPA molecules onto the surface of activated carbon. OLC and OLC-OG, which have higher micropore percentages, are very effective in hampering the oligomerization of BPA under oxic conditions.

  12. Performance Investigation of a Solar Heat Driven Adsorption Chiller under Two Different Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Choudhury, Biplab; Chatterjee, Pradip Kumar; Habib, Khairul; Saha, Bidyut Baran

    2018-06-01

    The demand for cooling, especially in the developing economies, is rising at a fast rate. Fast-depleting sources of fossil fuel and environmental concerns necessitate looking for alternative cooling solutions. Solar heat driven adsorption based cooling cycles are environmentally friendly due to their use of natural refrigerants and the thermal compression process. In this paper, a performance simulation study of a basic two-bed solar adsorption chiller has been performed through a transient model for two different climatic locations in India. Effect of operating temperatures and cycle time on the chiller performance has been studied. It is observed that the solar hot water temperature obtained in the composite climate of Delhi (28.65°N, 77.25°E) can run the basic adsorption cooling cycle efficiently throughout the year. Whereas, the monsoon months of July and August in the warm and humid climate of Durgapur (23.48°N, 87.32°E) are unable to supply the required driving heat.

  13. Optimizing long-range order, band gap, and group velocities for graphene on close-packed metal surfaces.

    PubMed

    Natterer, F D; Rusponi, S; Papagno, M; Carbone, C; Brune, H

    2012-08-08

    We compare different growth methods with the aim of optimizing the long-range order of a graphene layer grown on Ru(0001). Combining chemical vapor deposition with carbon loading and segregation of the surface layer leads to autocorrelation lengths of 240 Å. We present several routes to band gap and charge carrier mobility engineering for the example of graphene on Ir(111). Ir cluster superlattices self-assembled onto the graphene moiré pattern produce a strong renormalization of the electron group velocity close to the Dirac point, leading to highly anisotropic Dirac cones and the enlargement of the gap from 140 to 340 meV. This gap can further be enhanced to 740 meV by Na co-adsorption onto the Ir cluster superlattice at room temperature. This value is close to that of Ge, and the high group velocity of the charge carriers is fully preserved. We also present data for Na adsorbed without the Ir clusters. In both cases we find that the Na is on top of the graphene layer.

  14. Preparation of robust braid-reinforced poly(vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution.

    PubMed

    Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto

    2017-08-01

    Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Numerical simulation of artificial microswimmers driven by Marangoni flow

    NASA Astrophysics Data System (ADS)

    Stricker, L.

    2017-10-01

    In the present paper the behavior of a single artificial microswimmer is addressed, namely an active droplet moving by Marangoni flow. We provide a numerical treatment for the main factors playing a role in real systems, such as advection, diffusion and the presence of chemical species with different behaviors. The flow field inside and outside the droplet is modeled to account for the two-way coupling between the surrounding fluid and the motion of the swimmer. Mass diffusion is also taken into account. In particular, we consider two concentration fields: the surfactant concentration in the bulk, i.e. in the liquid surrounding the droplet, and the surfactant concentration on the surface. The latter is related to the local surface tension, through an equation of state (Langmuir equation). We examine different interaction mechanisms between the bulk and the surface concentration fields, namely the case of insoluble surfactants attached to the surface (no exchange between the bulk and the surface) and soluble surfactants with adsorption/desorption at the surface. We also consider the case where the bulk concentration field is in equilibrium with the content of the droplet. The numerical results are validated through comparison with analytical calculations. We show that our model can reproduce the typical pusher/puller behavior presented by squirmers. It is also able to capture the self-propulsion mechanism of droplets driven by Belousov-Zhabotinsky (BZ) reactions, as well as a typical chemotactic behavior.

  16. A First Principles Study of H2 Adsorption on LaNiO3(001) Surfaces

    PubMed Central

    Pan, Changchang; Chen, Yuhong; Wu, Na; Zhang, Meiling; Yuan, Lihua; Zhang, Cairong

    2017-01-01

    The adsorption of H2 on LaNiO3 was investigated using density functional theory (DFT) calculations. The adsorption sites, adsorption energy, and electronic structure of LaNiO3(001)/H2 systems were calculated and indicated through the calculated surface energy that the (001) surface was the most stable surface. By looking at optimized structure, adsorption energy and dissociation energy, we found that there were three types of adsorption on the surface. First, H2 molecules completely dissociate and then tend to bind with the O atoms, forming two –OH bonds. Second, H2 molecules partially dissociate with the H atoms bonding to the same O atom to form one H2O molecule. These two types are chemical adsorption modes; however, the physical adsorption of H2 molecules can also occur. When analyzing the electron structure of the H2O molecule formed by the partial dissociation of the H2 molecule and the surface O atom, we found that the interaction between H2O and the (001) surface was weaker, thus, H2O was easier to separate from the surface to create an O vacancy. On the (001) surface, a supercell was constructed to accurately study the most stable adsorption site. The results from analyses of the charge population; electron localization function; and density of the states indicated that the dissociated H and O atoms form a typical covalent bond and that the interaction between the H2 molecule and surface is mainly due to the overlap-hybridization among the H 1s, O 2s, and O 2p states. Therefore, the conductivity of LaNiO3(001)/H2 is stronger after adsorption and furthermore, the conductivity of the LaNiO3 surface is better than that of the LaFeO3 surface. PMID:28772396

  17. Metal-Organic Frameworks in Adsorption-Driven Heat Pumps: The Potential of Alcohols as Working Fluids.

    PubMed

    de Lange, Martijn F; van Velzen, Benjamin L; Ottevanger, Coen P; Verouden, Karlijn J F M; Lin, Li-Chiang; Vlugt, Thijs J H; Gascon, Jorge; Kapteijn, Freek

    2015-11-24

    A large fraction of global energy is consumed for heating and cooling. Adsorption-driven heat pumps and chillers could be employed to reduce this consumption. MOFs are often considered to be ideal adsorbents for heat pumps and chillers. While most published works to date on this topic have focused on the use of water as a working fluid, the instability of many MOFs to water and the fact that water cannot be used at subzero temperatures pose certain drawbacks. The potential of using alcohol-MOF pairs in adsorption-driven heat pumps and chillers is investigated. To this end, 18 different selected MOF structures in combination with either methanol or ethanol as a working fluid are considered, and their potential is assessed on the basis of adsorption measurements and thermodynamic efficiencies. If alcohols are used instead of water, then (1) adsorption occurs at lower relative pressures for methanol and even lower pressure for ethanol, (2) larger pores can be utilized efficiently, as hysteresis is absent for pores smaller than 3.4 nm (2 nm for water), (3) larger pore sizes need to be employed to ensure the desired stepwise adsorption, (4) the effect of (polar/apolar) functional groups in the MOF is far less pronounced, (5) the energy released or taken up per cycle is lower, but heat and mass transfer may be enhanced, (6) stability of MOFs seems to be less of an issue, and (7) cryogenic applications (e.g., ice making) become feasible. From a thermodynamic perspective, UiO-67, CAU-3, and ZIF-8 seem to be the most promising MOFs for both methanol and ethanol as working fluids. Although UiO-67 might not be completely stable, both CAU-3 and ZIF-8 have the potential to be applied, especially in subzero-temperature adsorption chillers (AC).

  18. Measurements of Submicron Particle Adsorption and Particle Film Elasticity at Oil-Water Interfaces.

    PubMed

    Manga, Mohamed S; Hunter, Timothy N; Cayre, Olivier J; York, David W; Reichert, Matthew D; Anna, Shelly L; Walker, Lynn M; Williams, Richard A; Biggs, Simon R

    2016-05-03

    The influence of particle adsorption on liquid/liquid interfacial tension is not well understood, and much previous research has suggested conflicting behaviors. In this paper we investigate the surface activity and adsorption kinetics of charge stabilized and pH-responsive polymer stabilized colloids at oil/water interfaces using two tensiometry techniques: (i) pendant drop and (ii) microtensiometer. We found, using both techniques, that charge stabilized particles had little or no influence on the (dynamic) interfacial tension, although dense silica particles affected the "apparent" measured tension in the pendent drop, due to gravity driven elongation of the droplet profile. Nevertheless, this apparent change additionally allowed the study of adsorption kinetics, which was related qualitatively between particle systems by estimated diffusion coefficients. Significant and real interfacial tension responses were measured using ∼53 nm core-shell latex particles with a pH-responsive polymer stabilizer of poly(methyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (pMMA-b-pDMAEMA) diblock copolymer. At pH 2, where the polymer is strongly charged, behavior was similar to that of the bare charge-stabilized particles, showing little change in the interfacial tension. At pH 10, where the polymer is discharged and poorly soluble in water, a significant decrease in the measured interfacial tension commensurate with strong adsorption at the oil-water interface was seen, which was similar in magnitude to the surface activity of the free polymer. These results were both confirmed through droplet profile and microtensiometry experiments. Dilational elasticity measurements were also performed by oscillation of the droplet; again, changes in interfacial tension with droplet oscillation were only seen with the responsive particles at pH 10. Frequency sweeps were performed to ascertain the dilational elasticity modulus, with measured values being significantly higher than previously reported for nanoparticle and surfactant systems, and similar in magnitude to protein stabilized droplets.

  19. Study of lysozyme mobility and binding free energy during adsorption on a graphene surface

    NASA Astrophysics Data System (ADS)

    Nakano, C. Masato; Ma, Heng; Wei, Tao

    2015-04-01

    Understanding protein adsorption is a key to the development of biosensors and anti-biofouling materials. Hydration essentially controls the adsorption process on hydrophobic surfaces, but its effect is complicated by various factors. Here, we present an ideal model system to isolate hydration effects—lysozyme adsorption on a flat hydrophobic graphene surface. Our all-atom molecular dynamics and molecular-mechanics/Poisson-Boltzmann surface area computation study reveal that lysozyme on graphene displays much larger diffusivity than in bulk water. Protein's hydration free energy within the first hydration shell is dominated by the protein-water electrostatic interactions and acts as an energy barrier for protein adsorption. On the other hand, the surface tension, especially that from the hydrophobic graphene, can effectively weaken the barrier to promote adsorption.

  20. Impact of Ti Incorporation on Hydroxylation and Wetting of Fe 3 O 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Pearce, Carolyn I.; Droubay, Timothy C.

    2017-08-24

    Understanding the interaction of water with compositionally tuned metal oxides is central to exploiting their unique catalytic and magnetic properties. However, processes such as hydroxylation, wetting, and resulting changes in electronic structure at ambient conditions are challenging to probe in situ. Here, we examine the hydroxylation and wetting of Fe(3-x)TixO4 epitaxial films directly using ambient pressure X-ray photoelectron spectroscopy under controlled relative humidity. Fe2+ formation promoted by Ti4+ substitution for Fe3+ increases with hydroxylation, commensurate with a decrease in the surface work function or change in the surface dipole. The incorporation of small amounts of Ti (x=0.25) as a bulkmore » dopant dramatically impacts hydroxylation, in part due to surface segregation, leading to coverages closer to that of TiO2 than Fe3O4. However, the Fe(3-x)TixO4 compositional series shows a similar affinity for water physisorption, which begins at notably lower relative humidity than on TiO2. The findings suggest that relative humidity rather than surface hydroxyl density controls wettability. Studies of this kind directly relate to rational design of doped magnetite into more active catalysts for UV/Fenton degradation, the adsorption of contaminants, and the development of spin filters.« less

  1. Adsorption of organic molecules on a porous polymer surface modified with the supramolecular structure of melamine-cyanuric acid

    NASA Astrophysics Data System (ADS)

    Gainullina, Yu. Yu.; Guskov, V. Yu.

    2017-10-01

    The adsorption of organic molecules on the surface of a porous polymeric sorbent modified with a mixed cyanuric acid-melamine supramolecular structure is studied. The parameters of thermodynamic adsorption are considered and the contributions from intermolecular interactions to the Helmholtz energy of adsorption are assessed. Analysis of the molar changes in internal energy and adsorption entropy shows that the supramolecular structure formed on the surface could not exhibit dimension effects, indicating there were no cavities. The contributions from nonspecific interactions to the Helmholtz energy of adsorption generally fall, while those of specific interactions increase, indicating an increase in the polarity of the sorbent surface.

  2. L-Tryptophan on Cu(111): engineering a molecular labyrinth driven by indole groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yitamben, E. N.; Clayborne, A.; Darling, Seth B.

    2015-05-21

    The present article investigates the adsorption and molecular orientation of L-Tryptophan, which is both an essential amino acid important for protein synthesis and of particular interest for the development of chiral molecular electronics and biocompatible processes and devices, on Cu(111) using scanning tunneling microscopy and spectroscopy at 55 K and at room temperature. The arrangement of chemisorbed L-Tryptophan on the copper surface varies with both temperature and surface coverage. At low coverage, small clusters form on the surface irrespective of temperature, while at high coverage an ordered chain structure emerges at room temperature, and a tightly packed structure forms amore » molecular labyrinth at low temperature. The dominating superstructure of the adsorbates arises from intermolecular hydrogen bonding, and pi-bonding interactions between the indole groups of neighboring molecules and the Cu surface.« less

  3. A DFT+U investigation of hydrogen adsorption on the LaFeO3(010) surface.

    PubMed

    Boateng, Isaac W; Tia, Richard; Adei, Evans; Dzade, Nelson Y; Catlow, C Richard A; de Leeuw, Nora H

    2017-03-08

    The ABO 3 perovskite lanthanum ferrite (LaFeO 3 ) is a technologically important electrode material for nickel-metal hydride batteries, energy storage and catalysis. However, the electrochemical hydrogen adsorption mechanism on LaFeO 3 surfaces remains under debate. In the present study, we have employed spin-polarized density functional theory calculations, with the Hubbard U correction (DFT+U), to unravel the adsorption mechanism of H 2 on the LaFeO 3 (010) surface. We show from our calculated adsorption energies that the preferred site for H 2 adsorption is the Fe-O bridge site, with an adsorption energy of -1.18 eV (including the zero point energy), which resulted in the formation of FeOH and FeH surface species. H 2 adsorption at the surface oxygen resulted in the formation of a water molecule, which leaves the surface to create an oxygen vacancy. The H 2 molecule is found to interact weakly with the Fe and La sites, where it is only physisorbed. The electronic structures of the surface-adsorption systems are discussed via projected density of state and Löwdin population analyses. The implications of the calculated adsorption strengths and structures are discussed in terms of the improved design of nickel-metal hydride (Ni-MH) battery prototypes based on LaFeO 3 .

  4. Competitive Protein Adsorption on Polysaccharide and Hyaluronate Modified Surfaces

    PubMed Central

    Ombelli, Michela; Costello, Lauren; Postle, Corinne; Anantharaman, Vinod; Meng, Qing Cheng; Composto, Russell J.; Eckmann, David M.

    2011-01-01

    We measured adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) onto six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and streptococcus zooepidemicus. Film thickness and surface morphology depended on HA molecular weight and concentration. BSA coverage was enhanced on surfaces upon competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of hyaluronic acid utilized. With changing bulk protein concentration from 20 to 40 µg ml−1 for each species, Fg coverage on silicon increased by 4×, whereas both BSA and Fg adsorption on dextran and HA were far less dependent of protein bulk concentration. PMID:21623481

  5. Supramolecular Rotor and Translator at Work: On-Surface Movement of Single Atoms.

    PubMed

    Ohmann, Robin; Meyer, Jörg; Nickel, Anja; Echeverria, Jorge; Grisolia, Maricarmen; Joachim, Christian; Moresco, Francesca; Cuniberti, Gianaurelio

    2015-08-25

    A supramolecular nanostructure composed of four 4-acetylbiphenyl molecules and self-assembled on Au (111) was loaded with single Au adatoms and studied by scanning tunneling microscopy at low temperature. By applying voltage pulses to the supramolecular structure, the loaded Au atoms can be rotated and translated in a controlled manner. The manipulation of the gold adatoms is driven neither by mechanical interaction nor by direct electronic excitation. At the electronic resonance and driven by the tunneling current intensity, the supramolecular nanostructure performs a small amount of work of about 8 × 10(-21) J, while transporting the single Au atom from one adsorption site to the next. Using the measured average excitation time necessary to induce the movement, we determine the mechanical motive power of the device, yielding about 3 × 10(-21) W.

  6. Surface Segregation in Ternary Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.

  7. Uncovering mass segregation with galaxy analogues in dark-matter simulations

    NASA Astrophysics Data System (ADS)

    Joshi, Gandhali D.; Parker, Laura C.; Wadsley, James

    2016-10-01

    We investigate mass segregation in group and cluster environments by identifying galaxy analogues in high-resolution dark-matter simulations. Subhaloes identified by the Amiga's Halo Finder (AHF) and ROCKSTAR halo finders have similar mass functions, independent of resolution, but different radial distributions due to significantly different subhalo hierarchies. We propose a simple way to classify subhaloes as galaxy analogues. The radial distributions of galaxy analogues agree well at large halocentric radii for both AHF and ROCKSTAR but disagree near parent halo centres where the phase-space information used by ROCKSTAR is essential. We see clear mass segregation at small radii (within 0.5 rvir) with average galaxy analogue mass decreasing with radius. Beyond the virial radius, we find a mild trend where the average galaxy analogue mass increases with radius. These mass segregation trends are strongest in small groups and dominated by the segregation of low-mass analogues. The lack of mass segregation in massive galaxy analogues suggests that the observed trends are driven by the complex accretion histories of the parent haloes rather than dynamical friction.

  8. Surface characterization of acidic ceria-zirconia prepared by direct sulfation

    NASA Astrophysics Data System (ADS)

    Azambre, B.; Zenboury, L.; Weber, J. V.; Burg, P.

    2010-05-01

    Acidic ceria-zirconia (SCZ) solid acid catalysts with a nominal surface density of ca 2 SO 42-/nm 2 were prepared by a simple route consisting in soaking high specific surface area Ce xZr 1- xO 2 (with x = 0.21 and 0.69) mixed oxides solutions in 0.5 M sulphuric acid. Characterizations by TPD-MS, TP-DRIFTS and FT-Raman revealed that most of surface structures generated by sulfation are stable at least up to 700 °C under inert atmosphere and consist mainly as isolated sulfates located on defects or crystal planes and to a lesser extent as polysulfates. Investigations by pyridine adsorption/desorption have stated that: SCZ possess both strong Brønsted (B) and Lewis (L) acid sites, some of them being presumably superacidic; the B/L site ratio was found to be more dependent on the temperature and hydration degree than on the composition of the ceria-zirconia. By contrast, the reactivity of the parent Ce xZr 1- xO 2 materials towards pyridine is mostly driven by redox properties resulting in the formation of Py-oxide with the participation of Lewis acid sites of moderate strength ( cus Ce x+ and Zr x+ cations). Basicity studies by CO 2 adsorption/desorption reveal that SCZ surfaces are solely acidic whereas the number and strength of Lewis basic sites increases with the Ce content for the parent Ce xZr 1- xO 2 materials.

  9. Surface Complexation of Neodymium at the Rutile-Water Interface: A Potentiometric and Modeling Study in NaCl Media to 250°C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Mora K.; Machesky, Michael L.; Wesolowski, David J

    2005-01-01

    The adsorption of Nd{sup 3+} onto rutile surfaces was examined by potentiometric titration from 25 to 250 C, in 0.03 and 0.30m NaCl background electrolyte. Experimental results show that Nd{sup 3+} sorbs strongly, even at low temperature, with adsorption commencing below the pHznpc of rutile. In addition, there is a systematic increase in Nd{sup 3+} adsorption with increasing temperature. The experimental results were rationalized and described using surface oxygen proton affinities computed from the MUlti SIte Complexation or MUSIC model, coupled with a Stern-based three-layer description of the oxide/water interface. Moreover, molecular-scale information was incorporated successfully into the surface complexationmore » model, providing a unique geometry for the adsorption of Nd{sup 3+} on rutile. The primary mode of Nd{sup 3+} adsorption was assumed to be the tetradentate configuration found for Y{sup 3+} adsorption on the rutile (110) surface from previously described in situ X-ray standing wave experiments, wherein the sorbing cations bond directly with two adjacent ''terminal'' and two adjacent ''bridging'' surface oxygen atoms. Similarly, the adsorption of Na{sup +} counterions was also assumed to be tetradentate, as supported by MD simulations of Na{sup +} interactions with the rutile (110) surface, and by analogous X-ray standing wave results for Rb{sup +} adsorption on rutile. Fitting parameters for Nd{sup 3+} adsorption included binding constants for the tetradentate adsorption complex and capacitance values for the inner-sphere binding plane. In addition, hydrolysis of the tetradentate adsorption complex was permitted and resulted in significantly improved model fits at higher temperature and pH values. The modeling results indicate that the Stern-based MUSIC surface-complexation model adequately accommodates molecular-scale information to uniquely rationalize and describe multivalent ion adsorption systematically into the hydrothermal regime.« less

  10. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiemstra, T.; Riemsdijk, W.H. van

    1999-02-01

    An important challenge in surface complexation models (SCM) is to connect the molecular microscopic reality to macroscopic adsorption phenomena. This study elucidates the primary factor controlling the adsorption process by analyzing the adsorption and competition of PO{sub 4}, AsO{sub 4}, and SeO{sub 3}. The authors show that the structure of the surface-complex acting in the dominant electrostatic field can be ascertained as the primary controlling adsorption factor. The surface species of arsenate are identical with those of phosphate and the adsorption behavior is very similar. On the basis of the selenite adsorption, The authors show that the commonly used 1pKmore » models are incapable to incorporate in the adsorption modeling the correct bidentate binding mechanism found by spectroscopy. The use of the bidentate mechanism leads to a proton-oxyanion ratio and corresponding pH dependence that are too large. The inappropriate intrinsic charge attribution to the primary surface groups and the condensation of the inner sphere surface complex to a point charge are responsible for this behavior of commonly used 2pK models. Both key factors are differently defined in the charge distributed multi-site complexation (CD-MUSIC) model and are based in this model on a surface structural approach. The CD-MUSIC model can successfully describe the macroscopic adsorption phenomena using the surface speciation and binding mechanisms as found by spectroscopy. The model is also able to predict the anion competition well. The charge distribution in the interface is in agreement with the observed structure of surface complexes.« less

  11. Rapid Detection of Melamine in Tap Water and Milk Using Conjugated "One-Step" Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor.

    PubMed

    Hu, Yaxi; Lu, Xiaonan

    2016-05-01

    An innovative "one-step" sensor conjugating molecularly imprinted polymers and surface enhanced Raman spectroscopic-active substrate (MIPs-SERS) was investigated for simultaneous extraction and determination of melamine in tap water and milk. This sensor was fabricated by integrating silver nanoparticles (AgNPs) with MIPs synthesized by bulk polymerization of melamine (template), methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linking agent), and 2,2'-azobisisobutyronitrile (initiator). Static and kinetic adsorption tests validated the specific affinity of MIPs-AgNPs to melamine and the rapid adsorption equilibration rate. Principal component analysis segregated SERS spectral features of tap water and milk samples with different melamine concentrations. Partial least squares regression models correlated melamine concentrations in tap water and skim milk with SERS spectral features. The limit of detection (LOD) and limit of quantification (LOQ) of melamine in tap water were determined as 0.0019 and 0.0064 mmol/L, while the LOD and LOQ were 0.0165 and 0.055 mmol/L for the determination of melamine in skim milk. However, this sensor is not ideal to quantify melamine in tap water and skim milk. By conjugating MIPs with SERS-active substrate (that is, AgNPs), reproducibility of SERS spectral features was increased, resulting in more accurate detection. The time required to determine melamine in tap water and milk were 6 and 25 min, respectively. The low LOD, LOQ, and rapid detection confirm the potential of applying this sensor for accurate and high-throughput detection of melamine in tap water and milk. © 2016 Institute of Food Technologists®

  12. Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus.

    PubMed

    Ali, Mohamed E M; Abd El-Aty, Azza M; Badawy, Mohamed I; Ali, Rizka K

    2018-04-30

    Pharmaceutical compounds are considered emerging environmental pollutants that have a potential harmful impact on environment and human health. In this study, the biomass of alga (Scenedesmus obliquus) was modified using alkaline solution, and used for the biosorption of tramadol (TRAM) and other pharmaceuticals. The adsorption kinetics and isotherms were investigated. The obtained results reveal high adsorption capacity of tramadol over modified algal biomass (MAB) after 45min with removal percentage of 91%. Pseudo-second order model was well fitted with the experimental data with correlation coefficient (0.999). Biosorption of tramadol on modified algal biomass proceeds with Freundlich isotherm model with correlation coefficient (0.942) that emphasized uptake of TRAM by MAB is driven by chemisorption. FTIR spectra of MAB before and after the adsorption were analyzed; some IR bands were detected with slight shift and low intensity suggesting their involving in adsorption. The tramadol biosorption by MAB is a chemical process as confirmed by Dubinin-Radushkevich. The adsorption of pharmaceutical over MAB is mainly preceded by hydrophilic interactions between amino and carbonyl groups in pharmaceutical molecules and hydroxyl and carbonyl functional groups on surface of biosorbent. It was emphasized by disappearance O-H and C-O from biomass IR spectra after adsorption. In matrix of pharmaceutical, the recorded adsorption capacities for CEFA, PARA, IBU, TRAM and CIP are 68, 58, 42, 42 and 39mg/g over MAB at natural pH and MAB dose of 0.5g/L. Furthermore, oxygen uptake by bacteria was applied for estimate the toxicity of pharmaceutical. The recorded result concluded the efficient reusability of modified algal biomass for biosorption of pharmaceuticals, as well only the adsorption efficiency decreased by 4.5% after three runs. Subsequently, the modified algal biomass is a promising reusable adsorbent for decontamination of wastewater from pharmaceuticals. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Different effects of surface heterogeneous atoms of porous and non-porous carbonaceous materials on adsorption of 1,1,2,2-tetrachloroethane in aqueous environment.

    PubMed

    Chen, Weifeng; Ni, Jinzhi

    2017-05-01

    The surface heterogeneous atoms of carbonaceous materials (CMs) play an important role in adsorption of organic pollutants. However, little is known about the surface heterogeneous atoms of CMs might generate different effect on adsorption of hydrophobic organic compounds by porous carbonaceous materials - activated carbons (ACs) and non-porous carbonaceous materials (NPCMs). In this study, we observed that the surface oxygen and nitrogen atoms could decrease the adsorption affinity of both ACs and NPCMs for 1,1,2,2-tetrachloroethane (TeCA), but the degree of decreasing effects were very different. The increasing content of surface oxygen and nitrogen ([O + N]) caused a sharper decrease in adsorption affinity of ACs (slope of lg (k d /SA) vs [O + N]: -0.098∼-0.16) than that of NPCMs (slope of lg (k d /SA) vs [O + N]: -0.025∼-0.059) for TeCA. It was due to the water cluster formed by the surface hydrophilic atoms that could block the micropores and generate massive invalid adsorption sites in the micropores of ACs, while the water cluster only occupied the surface adsorption sites of NPCMs. Furthermore, with the increasing concentration of dissolved TeCA, the effect of surface area on adsorption affinity of NPCMs for TeCA kept constant while the effect of [O + N] decreased due to the competitive adsorption between water molecule and TeCA on the surface of NPCMs, meanwhile, both the effects of micropore volume and [O + N] on adsorption affinity of ACs for TeCA were decreased due to the mechanism of micropore volume filling. These findings are valuable for providing a deep insight into the adsorption mechanisms of CMs for TeCA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    USGS Publications Warehouse

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites is reflected in decreasing equilibrium constants for selenite with increasing adsorption density and both experimental observations and modeling results suggest that manganese dioxide has fewer sites of higher energy for selenite adsorption than amorphous iron oxyhydroxide. Modeling and interpreting the adsorption of phosphate, molybdate, and silicate on the oxides are made difficult by the lack of constraint in choosing surface species and the fact that equally good fits can be obtained with different surface species. Finally, predictions of anion competition using the model results from single adsorbate systems are not very successful because the model does not account for surface site heterogeneity. Selenite adsorption data from a multi-adsorbate system could be fit if the equilibrium constant for selenite is decreased with increasing anion adsorption density. ?? 1990.

  15. Label-free, real-time interaction and adsorption analysis 2: quartz crystal microbalance.

    PubMed

    Fee, Conan J

    2013-01-01

    In this chapter, a second biosensor technique is described: the quartz crystal microbalance (QCM). The quartz crystal microbalance is a physical technique that detects changes in the resonance frequency of an electrically driven quartz crystal with changes in mass. Unlike surface plasmon resonance (SPR), QCM is affected by both the water that may be associated with the adsorbed layer and by conformational changes in the adsorbed species, while SPR is insensitive to both effects. Thus QCM can both corroborate the findings of an SPR experiment and provide some complementary information. Also, the QCM surface is highly versatile and can range from plain quartz, through gold and other metal surfaces (e.g., titanium or stainless steel) to polymeric materials. Thus, the QCM technique has wide utility in tracking interactions with a variety of materials.

  16. Thermodynamic studies for adsorption of ionizable pharmaceuticals onto soil.

    PubMed

    Maszkowska, Joanna; Wagil, Marta; Mioduszewska, Katarzyna; Kumirska, Jolanta; Stepnowski, Piotr; Białk-Bielińska, Anna

    2014-09-01

    Although pharmaceutical compounds (PCs) are being used more and more widely, and studies have been carried out to assess their presence in the environment, knowledge of their fate and behavior, especially under different environmental conditions, is still limited. The principle objective of the present work, therefore, is to evaluate the adsorption behavior of three ionizable, polar compounds occurring in different forms: cationic (propranolol - PRO), anionic (sulfisoxazole - SSX) and neutral (sulfaguanidine - SGD) onto soil under various temperature conditions. The adsorption thermodynamics of these researched compounds were extensively investigated using parameters such as enthalpy change (ΔH°), Gibbs free energy change (ΔG°) as well as entropy change (ΔS°). These calculations reveal that sorption of PRO is exothermic, spontaneous and enthalpy driven, sorption of SGD is endothermic, spontaneous and entropy driven whereas sorption of SSX is endothermic, spontaneous only above the temperature of 303.15K and entropy driven. Furthermore, we submit that the calculated values yield valuable information regarding the sorption mechanism of PRO, SGD and SSX onto soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Structural changes caused by H 2 adsorption on the Si(111)7 × 7 surface

    NASA Astrophysics Data System (ADS)

    Wolff, S. H.; Wagner, S.; Gibson, J. M.; Loretto, D.; Robinson, I. K.; Bean, J. C.

    1990-12-01

    Structural changes caused by the adsorption of molecular hydrogen adsorption onto the Si(111)7 × 7 surface reconstruction are quantified using the first structure parameter refinement on transmission electron diffraction (TED) data. We find that initial adsorption of molecular hydrogen onto the Si(111)7 × 7 surface causes a preferential decrease in the occupancy of the center adatoms. Further adsorption of hydrogen results in the breaking of the dimer bonds and the removal of the corner adatoms.

  18. Adsorption of a cationic dye molecule on polystyrene microspheres in colloids: effect of surface charge and composition probed by second harmonic generation.

    PubMed

    Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung

    2005-03-17

    Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH < or = 5, on polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.

  19. RNA and DNA interactions with zwitterionic and charged lipid membranes - a DSC and QCM-D study.

    PubMed

    Michanek, Agnes; Kristen, Nora; Höök, Fredrik; Nylander, Tommy; Sparr, Emma

    2010-04-01

    The aim of the present study is to establish under which conditions tRNA associates with phospholipid bilayers, and to explore how this interaction influences the lipid bilayer. For this purpose we have studied the association of tRNA or DNA of different sizes and degrees of base pairing with a set of model membrane systems with varying charge densities, composed of zwitterionic phosphatidylcholines (PC) in mixtures with anionic phosphatidylserine (PS) or cationic dioctadecyl-dimethyl-ammoniumbromide (DODAB), and with fluid or solid acyl-chains (oleoyl, myristoyl and palmitoyl). To prove and quantify the attractive interaction between tRNA and model-lipid membrane we used quartz crystal microbalance with dissipation (QCM-D) monitoring to study the tRNA adsorption to deposit phospholipid bilayers from solutions containing monovalent (Na(+)) or divalent (Ca(2+)) cations. The influence of the adsorbed polynucleic acids on the lipid phase transitions and lipid segregation was studied by means of differential scanning calorimetry (DSC). The basic findings are: i) tRNA adsorbs to zwitterionic liquid-crystalline and gel-phase phospholipid bilayers. The interaction is weak and reversible, and cannot be explained only on the basis of electrostatic attraction. ii) The adsorbed amount of tRNA is higher for liquid-crystalline bilayers compared to gel-phase bilayers, while the presence of divalent cations show no significant effect on the tRNA adsorption. iii) The adsorption of tRNA can lead to segregation in the mixed 1,2-dimyristoyl-sn-glycerol-3-phosphatidylcholine (DMPC)-1,2-dimyristoyl-sn-glycero-3-phosphatidylserine (DMPS) and DMPC-DODAB bilayers, where tRNA is likely excluded from the anionic DMPS-rich domains in the first system, and associated with the cationic DODAB-rich domains in the second system. iv) The addition of shorter polynucleic acids influence the chain melting transition and induce segregation in a mixed DMPC-DMPS system, while larger polynucleic acids do not influence the melting transition in these system. The results in this study on tRNA-phospholipid interactions can have implications for understanding its biological function in, e.g., the cell nuclei, as well as in applications in biotechnology and medicine. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and initially-adsorbed protein. Interphase protein concentration CI increases as VI decreases, resulting in slow reduction in interfacial energetics. Steady-state is governed by a net partition coefficient P=(/CBCI). In the process of occupying space within the interphase, adsorbing protein molecules must displace an equivalent volume of interphase water. Interphase water is itself associated with surface-bound water through a network of transient hydrogen bonds. Displacement of interphase water thus requires an amount of energy that depends on the adsorbent surface chemistry/energy. This “adsorption-dehydration” step is the significant free-energy cost of adsorption that controls the maximum amount of protein that can be adsorbed at steady state to a unit adsorbent-surface area (the adsorbent capacity). As adsorbent hydrophilicity increases, protein adsorption monotonically decreases because the energetic cost of surface dehydration increases, ultimately leading to no protein adsorption near an adsorbent water wettability (surface energy) characterized by a water contact angle θ → 65°. Consequently, protein does not adsorb (accumulate at interphase concentrations greater than bulk solution) to more hydrophilic adsorbents exhibiting θ < 65° . For adsorbents bearing strong Lewis acid/base chemistry such as ion-exchange resins, protein/surface interactions can be highly favorable, causing protein to adsorb in multilayers in a relatively thick interphase. A straightforward, three-component free energy relationship captures salient features of protein adsorption to all surfaces predicting that the overall free energy of protein adsorption ΔGadso is a relatively small multiple of thermal energy for any surface chemistry (except perhaps for bioengineered surfaces bearing specific ligands for adsorbing protein) because a surface chemistry that interacts chemically with proteins must also interact with water through hydrogen bonding. In this way, water moderates protein adsorption to any surface by competing with adsorbing protein molecules. This Leading Opinion ends by proposing several changes to the protein-adsorption paradigm that might advance answers to the three core questions that frame the “protein-adsorption problem” that is so fundamental to biomaterials surface science. PMID:22088888

  1. Evanescent wave cavity ring-down spectroscopy (EW-CRDS) as a probe of macromolecule adsorption kinetics at functionalized interfaces.

    PubMed

    O'Connell, Michael A; de Cuendias, Anne; Gayet, Florence; Shirley, Ian M; Mackenzie, Stuart R; Haddleton, David M; Unwin, Patrick R

    2012-05-01

    Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.

  2. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    PubMed

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.

  3. Study of lysozyme mobility and binding free energy during adsorption on a graphene surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, C. Masato; Ma, Heng; Wei, Tao, E-mail: twei@lamar.edu

    Understanding protein adsorption is a key to the development of biosensors and anti-biofouling materials. Hydration essentially controls the adsorption process on hydrophobic surfaces, but its effect is complicated by various factors. Here, we present an ideal model system to isolate hydration effects—lysozyme adsorption on a flat hydrophobic graphene surface. Our all-atom molecular dynamics and molecular-mechanics/Poisson-Boltzmann surface area computation study reveal that lysozyme on graphene displays much larger diffusivity than in bulk water. Protein's hydration free energy within the first hydration shell is dominated by the protein-water electrostatic interactions and acts as an energy barrier for protein adsorption. On the othermore » hand, the surface tension, especially that from the hydrophobic graphene, can effectively weaken the barrier to promote adsorption.« less

  4. Interfacial mechanisms for stability of surfactant-laden films

    PubMed Central

    Chai, Chew; Àlvarez-Valenzuela, Marco A.; Tajuelo, Javier; Fuller, Gerald G.

    2017-01-01

    Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary surfactants in the lung). A common feature in all these examples is the presence of surface-active molecules at the air-liquid interface. Though they form only molecular-thin layers, these surfactants produce complex surface stresses on the free surface, which have important consequences for the dynamics and stability of the underlying thin liquid film. Here we conduct simple thinning experiments to explore the fundamental mechanisms that allow the surfactant molecules to slow the gravity-driven drainage of the underlying film. We present a simple model that works for both soluble and insoluble surfactant systems in the limit of negligible adsorption-desorption dynamics. We show that surfactants with finite surface rheology influence bulk flow through viscoelastic interfacial stresses, while surfactants with inviscid surfaces achieve stability through opposing surface-tension induced Marangoni flows. PMID:28520734

  5. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air,more » the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.« less

  6. Peptide adsorption on the hydrophobic surface: A free energy perspective

    NASA Astrophysics Data System (ADS)

    Sheng, Yuebiao; Wang, Wei; Chen, P.

    2011-05-01

    Protein adsorption is a very attractive topic which relates to many novel applications in biomaterials, biotechnology and nanotechnology. Ionic complementary peptides are a group of novel nano-biomaterials with many biomedical applications. In this work, molecular dynamics simulations of the ionic-complementary peptide EAK16-II on a hydrophobic graphite surface were performed under neutral, acidic and basic solution conditions. Adsorption free energy contour maps were obtained by analyzing the dynamical trajectories. Hydrophobic interactions were found to govern the adsorption of the first peptide molecule, and both hydrophobic and electrostatic interactions contributed to the adsorption of the second peptide molecule. Especially under acidic and basic solution conditions, interplay existed among chain-chain hydrophobic, chain-surface hydrophobic and chain-chain electrostatic interactions during the adsorption of the second peptide molecule. Non-charged residues were found to lie on the graphite surface, while charged residue side-chains oriented towards the solution after the peptide deposited on the surface. These results provide a basis for understanding peptide adsorption on the hydrophobic surface under different solution conditions, which is useful for novel applications such as bioactive implant devices and drug delivery material design.

  7. Surface modification of pitch-based spherical activated carbon by CVD of NH 3 to improve its adsorption to uric acid

    NASA Astrophysics Data System (ADS)

    Liu, Chaojun; Liang, Xiaoyi; Liu, Xiaojun; Wang, Qin; Zhan, Liang; Zhang, Rui; Qiao, Wenming; Ling, Licheng

    2008-08-01

    Surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by chemical vapor deposition of NH 3 (NH 3-CVD) to improve the adsorption properties of uric acid. The texture and surface chemistry of PSAC were studied by N 2 adsorption, pH PZC (point of zero charge), acid-base titration and X-ray photoelectron spectroscopy (XPS). NH 3-CVD has a limited effect on carbon textural characteristics but it significantly changed the surface chemical properties, resulting in positive effects on uric acid adsorption. After modification by NH 3-CVD, large numbers of nitrogen-containing groups (especially valley-N and center-N) are introduced on the surface of PSAC, which is responsible for the increase of pH PZC, surface basicity and uric acid adsorption capacity. Pseudo-second-order kinetic model can be used to describe the dynamic adsorption of uric acid on PSAC, and the thermodynamic parameters show that the adsorption of uric acid on PSAC is spontaneous, endothermic and irreversible process in nature.

  8. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling.

    PubMed

    Wang, Zimeng; Lee, Sung-Woo; Catalano, Jeffrey G; Lezama-Pacheco, Juan S; Bargar, John R; Tebo, Bradley M; Giammar, Daniel E

    2013-01-15

    The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.

  9. Enantiomeric selectivity in adsorption of chiral β-blockers on sludge.

    PubMed

    Sanganyado, Edmond; Fu, Qiuguo; Gan, Jay

    2016-07-01

    Adsorption of weakly basic compounds by sludge is poorly understood, although it has important implications on the distribution and fate of such micropollutants in wastewater effluent and sludge. Additionally, many of these compounds are chiral, and it is likely that their interactions with sludge is stereoselective and that the process may be further modified by surfactants that coexist in these systems. Adsorption of (R) and (S)-enantiomers of five commonly used β-blockers, i.e., acebutolol, atenolol, metoprolol, pindolol and propranolol, on sludge was characterized through batch experiments. Stereoselectivity in adsorption increased with decreases in hydrophobicity of the β-blockers. The enantiomeric fraction (EF) of the amount of acebutolol, atenolol and metoprolol sorbed on sludge were 0.27, 0.55 and 0.32, respectively. Thus, Kd values of the (S)-enantiomers of acebutolol and metoprolol were approximately twice that of the (R)-enantiomer, that is, 109 ± 11 and 57 ± 8 L/kg compared to 52 ± 13 and 22 ± 8 L/kg, respectively. There was no statistically significant difference in Kd values of the enantiomers of pindolol and propranolol, suggesting stereoselectivity in adsorption was likely driven by specific polar interactions rather than hydrophobic interactions. The EF value of atenolol decreased from 0.55 ± 0.03 to 0.44 ± 0.04 after modifying the sludge with Triton X 100. These results suggested that surfactants altered adsorption of β-blockers to sludge, likely by forming ion pair complexes that promote hydrophobic interactions with the solid surfaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Grain-size segregation and levee formation in geophysical mass flows

    USGS Publications Warehouse

    Johnson, C.G.; Kokelaar, B.P.; Iverson, Richard M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.

    2012-01-01

    Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ∼2 m s−1during most of the runout. Segregation was measured by placing ∼600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ∼6–7.5 cm s−1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.

  11. Grain-size segregation and levee formation in geophysical mass flows

    USGS Publications Warehouse

    Johnson, C.G.; Kokelaar, B.P.; Iverson, R.M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.

    2012-01-01

    Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ~80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ~2 m s-1 during most of the runout. Segregation was measured by placing ~600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ~6–7.5 cm s-1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.

  12. Monolayer collapse regulating process of adsorption-desorption of palladium nanoparticles at fatty acid monolayers at the air-water interface.

    PubMed

    Goto, Thiago E; Lopez, Ricardo F; Iost, Rodrigo M; Crespilho, Frank N; Caseli, Luciano

    2011-03-15

    In this paper, we investigate the affinity of palladium nanoparticles, stabilized with glucose oxidase, for fatty acid monolayers at the air-water interface, exploiting the interaction between a planar system and spheroids coming from the aqueous subphase. A decrease of the monolayer collapse pressure in the second cycle of interface compression proved that the presence of the nanoparticles causes destabilization of the monolayer in a mechanism driven by the interpenetration of the enzyme into the bilayer/multilayer structure formed during collapse, which is not immediately reversible after monolayer expansion. Surface pressure and surface potential-area isotherms, as well as infrared spectroscopy [polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS)] and deposition onto solid plates as Langmuir-Blodgett (LB) films, were employed to construct a model in which the nanoparticle has a high affinity for the hydrophobic core of the structure formed after collapse, which provides a slow desorption rate from the interface after monolayer decompression. This may have important consequences on the interaction between the metallic particles and fatty acid monolayers, which implies the regulation of the multifunctional properties of the hybrid material.

  13. Selective adsorption of toluene-3,4-dithiol on Si(553)-Au surfaces

    NASA Astrophysics Data System (ADS)

    Suchkova, Svetlana; Hogan, Conor; Bechstedt, Friedhelm; Speiser, Eugen; Esser, Norbert

    2018-01-01

    The adsorption of small organic molecules onto vicinal Au-stabilized Si(111) surfaces is shown to be a versatile route towards controlled growth of ordered organic-metal hybrid one-dimensional nanostructures. Density functional theory is used to investigate the site-specific adsorption of toluene-3,4-dithiol (TDT) molecules onto the clean Si(553)-Au surface and onto a co-doped surface whose steps are passivated by hydrogen. We find that the most reactive sites involve bonding to silicon at the step edge or on the terraces, while gold sites are relatively unfavored. H passivation and TDT adsorption both induce a controlled charge redistribution within the surface layer, causing the surface metallicity, electronic structure, and chemical reactivity of individual adsorption sites to be substantially altered.

  14. Influence of surface morphology on adsorption of potassium stearate molecules on diamond-like carbon substrate: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Guo, Shusen; Cao, Yongzhi; Sun, Tao; Zhang, Junjie; Gu, Le; Zhang, Chuanwei; Xu, Zhiqiang

    2018-05-01

    Molecular dynamics (MD) simulations were used to provide insights into the influence of nano-scale surface morphology on adsorptive behavior of Potassium stearate molecules on diamond-like carbon (DLC) substrates. Particular focus was given to explain that how the distinctive geometric properties of different surface morphologies affect the equilibrium structures and substrate-molecules interactions of monolayers, which was achieved through adsorptive analysis methods including adsorptive process, density profile, density distribution and surface potential energy. Analysis on surface potential energy demonstrated that the adsorptivity of amorphous smooth substrate is uniformly distributed over the surface, while DLC substrates with different surface morphologies appear to be more potentially corrugated, which improves the adsorptivity significantly. Because of the large distance of molecules from carbon atoms located at the square groove bottom, substrate-molecules interactions vanish significantly, and thus potassium stearate molecules cannot penetrate completely into the square groove. It can be observed that the equilibrium substrate-molecules interactions of triangle groove and semi-circle groove are much more powerful than that of square groove due to geometrically advantageous properties. These findings provided key information of optimally design of solid substrates with controllable adsorptivity.

  15. Surface Curvature Relation to Protein Adsorption for Carbon-based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Gu, Zonglin; Yang, Zaixing; Chong, Yu; Ge, Cuicui; Weber, Jeffrey K.; Bell, David R.; Zhou, Ruhong

    2015-06-01

    The adsorption of proteins onto carbon-based nanomaterials (CBNs) is dictated by hydrophobic and π-π interactions between aliphatic and aromatic residues and the conjugated CBN surface. Accordingly, protein adsorption is highly sensitive to topological constraints imposed by CBN surface structure; in particular, adsorption capacity is thought to increase as the incident surface curvature decreases. In this work, we couple Molecular Dynamics (MD) simulations with fluorescence spectroscopy experiments to characterize this curvature dependence in detail for the model protein bovine serum albumin (BSA). By studying BSA adsorption onto carbon nanotubes of increasing radius (featuring descending local curvatures) and a flat graphene sheet, we confirm that adsorption capacity is indeed enhanced on flatter surfaces. Naïve fluorescence experiments featuring multi-walled carbon nanotubes (MWCNTs), however, conform to an opposing trend. To reconcile these observations, we conduct additional MD simulations with MWCNTs that match those prepared in experiments; such simulations indicate that increased mass to surface area ratios in multi-walled systems explain the observed discrepancies. In reduction, our work substantiates the inverse relationship between protein adsorption capacity and surface curvature and further demonstrates the need for subtle consideration in experimental and simulation design.

  16. Dislocation nucleation facilitated by atomic segregation

    NASA Astrophysics Data System (ADS)

    Zou, Lianfeng; Yang, Chaoming; Lei, Yinkai; Zakharov, Dmitri; Wiezorek, Jörg M. K.; Su, Dong; Yin, Qiyue; Li, Jonathan; Liu, Zhenyu; Stach, Eric A.; Yang, Judith C.; Qi, Liang; Wang, Guofeng; Zhou, Guangwen

    2018-01-01

    Surface segregation--the enrichment of one element at the surface, relative to the bulk--is ubiquitous to multi-component materials. Using the example of a Cu-Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface diffusion and trapping process. The resulting chemically ordered surface regions acts as an effective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associated with their nucleation, glide, climb, and annihilation at elevated temperatures. These observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.

  17. A unifying model for adsorption and nucleation of vapors on solid surfaces.

    PubMed

    Laaksonen, Ari

    2015-04-23

    Vapor interaction with solid surfaces is traditionally described with adsorption isotherms in the undersaturated regime and with heterogeneous nucleation theory in the supersaturated regime. A class of adsorption isotherms is based on the idea of vapor molecule clustering around so-called active sites. However, as the isotherms do not account for the surface curvature effects of the clusters, they predict an infinitely thick adsorption layer at saturation and do not recognize the existence of the supersaturated regime. The classical heterogeneous nucleation theory also builds on the idea of cluster formation, but describes the interactions between the surface and the cluster with a single parameter, the contact angle, which provides limited information compared with adsorption isotherms. Here, a new model of vapor adsorption on nonporous solid surfaces is derived. The basic assumption is that adsorption proceeds via formation of molecular clusters, modeled as liquid caps. The equilibrium of the individual clusters with the vapor phase is described with the Frenkel-Halsey-Hill (FHH) adsorption theory modified with the Kelvin equation that corrects for the curvature effect on vapor pressure. The new model extends the FHH adsorption isotherm to be applicable both at submonolayer surface coverages and at supersaturated conditions. It shows good agreement with experimental adsorption data from 12 different adsorbent-adsorbate systems. The model predictions are also compared against heterogeneous nucleation data, and they show much better agreement than predictions of the classical heterogeneous nucleation theory.

  18. Selective adsorption of bovine hemoglobin on functional TiO2 nano-adsorbents: surface physic-chemical properties determined adsorption activity

    NASA Astrophysics Data System (ADS)

    Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide

    2015-04-01

    Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.

  19. Adsorption and Desulfurization Mechanism of Thiophene on Layered FeS(001), (011), and (111) Surfaces: A Dispersion-Corrected Density Functional Theory Study

    PubMed Central

    2017-01-01

    Layered transition-metal chalcogenides have emerged as a fascinating new class of materials for catalysis. Here, we present periodic density functional theory (DFT) calculations of the adsorption of thiophene and the direct desulfurization reaction pathways on the (001), (011), and (111) surfaces of layered FeS. The fundamental aspects of the thiophene adsorption, including the initial adsorption geometries, adsorption energies, structural parameters, and electronic properties, are presented. From the calculated adsorption energies, we show that the flat adsorption geometries, wherein the thiophene molecule forms multiple π-bonds with the FeS surfaces, are energetically more favorable than the upright adsorption geometries, with the strength of adsorption decreasing in the order FeS(111) > FeS(011) > FeS(001). The adsorption of the thiophene onto the reactive (011) and (111) surfaces is shown to be characterized by charge transfer from the interacting Fe d-band to the π-system of the thiophene molecule, which causes changes of the intramolecular structure including loss of aromaticity and elongation of the C–S bonds. The thermodynamic and kinetic analysis of the elementary steps involved in the direct desulfurization of thiophene on the reactive FeS surfaces is also presented. Direct desulfurization of thiophene occurs preferentially on the (111) surface, as reflected by the overall exothermic reaction energy calculated for the process (ER = −0.15 eV), with an activation energy of 1.58 eV. PMID:29348782

  20. A density functional study on adsorption and dissociation of O 2 on Ir(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.

    2011-06-01

    The adsorption and the reaction barrier for the dissociation of O 2 on Ir(1 0 0) surface are studied using periodic self-consistent density functional theory (DFT) calculations. Dissociative adsorption is found to be energetically more favorable compared to molecular adsorption. Parallel approaches Prl1 and Prl2 on a hollow site with the same adsorption energy of -3.93 eV for both of them are found to have the most energetically preferred sites of adsorptions among all the studied cases. Hybridization between p-O 2 and d-metal orbitals is responsible for the dissociative adsorption. The minimum energy path is determined by using the nudge elastic band method (NEB). We found that the dissociation occurs immediately and very early in the dissociation path with a small activation barrier (0.26 eV), which means that molecular adsorption of O 2 on Ir(1 0 0) surface occurs at very low temperatures; this is consistent with previous experimental and theoretical studies on Ir surfaces.

  1. Adsorption and Exchange Kinetics of Hydrophilic and Hydrophobic Phosphorus Ligands on Gold Surface

    NASA Astrophysics Data System (ADS)

    Zhuge, X. Q.; Bian, Z. C.; Luo, Z. H.; Mu, Y. Y.; Luo, K.

    2017-02-01

    The adsorption kinetics process of hydrophobic ligand (triphenylphosphine, PPh3) and hydrophilic ligand (tris(hydroxymethyl)phosphine oxide, THPO) on the surface of gold electrode were estimated by using electrical double layer capacitance (EDLC). Results showed that the adsorption process of both ligands included fast and slow adsorption processes, and the fast adsorption process could fit the first order kinetic equation of Langmuir adsorption isotherm. During the slow adsorption process, the surface coverage (θ) of PPh3 was higher than that of THPO due to the larger adsorption kinetic constant of PPh3 than that of THPO, which implied that PPh3 could replace THPO on the gold electrode. The exchange process of both ligands on the surface of gold electrode proved that PPh3 take the place of THPO by testing the variation of EDLC which promote the preparation of Janus gold, and the theoretic simulation explained the reason of ligands exchange from the respect of energy..

  2. Creating surfactant nanoparticles for block copolymer composites through surface chemistry.

    PubMed

    Kim, Bumjoon J; Bang, Joona; Hawker, Craig J; Chiu, Julia J; Pine, David J; Jang, Se Gyu; Yang, Seung-Man; Kramer, Edward J

    2007-12-04

    A simple strategy to tailor the surface of nanoparticles for their specific adsorption to and localization at block copolymer interfaces was explored. Gold nanoparticles coated by a mixture of low molecular weight thiol end-functional polystyrene (PS-SH) (Mn = 1.5 and 3.4 kg/mol) and poly(2-vinylpyridine) homopolymers (P2VP-SH) (Mn = 1.5 and 3.0 kg/mol) were incorporated into a lamellar poly(styrene-b-2-vinylpyridine) diblock copolymer (PS-b-P2VP) (Mn = 196 kg/mol). A library of nanoparticles with varying PS and P2VP surface compositions (FPS) and high polymer ligand areal chain densities was synthesized. The location of the nanoparticles in the PS-b-P2VP block copolymer was determined by transmission electron microscopy. Sharp transitions in particle location from the PS domain to the PS/P2VP interface, and subsequently to the P2VP domain, were observed at FPS = 0.9 and 0.1, respectively. This extremely wide window of FPS values where the polymer-coated gold nanoparticles adsorb to the interface suggests a redistribution of PS and P2VP polymers on the Au surface, inducing the formation of amphiphilic nanoparticles at the PS/P2VP interface. In a second and synthetically more challenging approach, gold nanoparticles were covered with a thiol terminated random copolymer of styrene and 2-vinylpyridine synthesized by RAFT polymerization. Two different random copolymers were considered, where the molecular weight was fixed at 3.5 kg/mol and the relative incorporation of styrene and 2-vinylpyridine repeat units varied (FPS = 0.52 and 0.40). The areal chain density of these random copolymers on Au is unfortunately not high enough to preclude any contact between the P2VP block of the block copolymer and the Au surface. Interestingly, gold nanoparticles coated by the random copolymer with FPS = 0.4 were dispersed in the P2VP domain, while those with FPS = 0.52 were located at the interface. A simple calculation for the adsorption energy to the interface of the nanoparticles with different surface arrangements of PS and P2VP ligands supports evidence for the rearrangement of thiol terminated homopolymers. An upper limit estimate of the adsorption energy of nanoparticles uniformly coated with a random arrangement of PS and P2VP ligands where a 10% surface area was occupied by P2VP -mers or chains was approximately 1 kBT, which indicates that such nanoparticles are unlikely to be segregated along the interface, in contrast to the experimental results for nanoparticles with mixed ligand-coated surfaces.

  3. Adsorption of goethite onto quartz and kaolinite

    USGS Publications Warehouse

    Goldberg, M.C.; Weiner, Eugene R.; Boymel, P.M.

    1984-01-01

    The adsorption of colloidal goethite onto quartz and kaolinite substrates has been studied as a function of pH and NaCl concentration. Goethite adsorption was measured quantitatively by Fourier-transform infrared spectroscopy. The results indicate that adsorption onto both substrates is due primarily to coulombic forces; however, the pH dependence of adsorption is very different for the two substrates. This is explained by the fact that the surface charge on quartz is entirely pH-dependent, while kaolinite has surface faces which carry a permanent negative charge. Adsorption of goethite on to kaolinite increases markedly with increasing NaCl concentration, while adsorption onto quartz is relatively independent of NaCl concentration. This can be explained by the influence of NaCl concentration upon the development of surface charge on the substrates. A method is described for separating surface-bound goethite from free goethite.

  4. Modification of silicone elastomer with zwitterionic silane for durable antifouling properties.

    PubMed

    Yeh, Shiou-Bang; Chen, Chien-Sheng; Chen, Wen-Yih; Huang, Chun-Jen

    2014-09-30

    Biofouling on medical devices generally causes adverse complications, such as thrombosis, infection, and pathogenic calcification. Silicone is a widely used material for medical applications. Its surface modification typically encounters undesirable "hydrophobic recovery", leading to deterioration of surface engineering. In this study, we developed a stable superhydrophilic zwitterionic interface on polydimethylsiloxane (PDMS) elastomer by covalent silanization of sulfobetaine silane (SBSi) to resist nonspecific adsorption of bacteria, proteins, and lipids. SBSi is a zwitterionic organosilane assembly, enabling resisting surface reconstruction by forming a cross-linked network and polar segregation. Surface elemental composition was confirmed by X-ray photoelectron spectroscopy (XPS), and the long-term stability of modification was accessed using a contact angle goniometer. The biofouling tests were carried out by exposing substrates to bacterial, protein, and lipid solutions, revealing the excellent bioinertness of SBSi-tailored PDMS, even after 30 day storage in ambient. For the real-world application, we modified commercially available silicone hydrogel contact lenses with developed zwitterionic silane, presenting its antibacterial adhesion property. Moreover, the cytotoxicity of SBSi was accessed with NIH-3T3 fibroblast by the MTT assay, showing negligible cytotoxicity up to a concentration of 5 mM. Consequently, the strategy of surface engineering in this work can effectively retard the "hydrophobic recovery" occurrence and can be applied to other silicone-based medical devices in a facile way.

  5. ADSORPTION AND DISSOCIATION OF O2 ON Ti3Al (0001) STUDIED BY FIRST-PRINCIPLES

    NASA Astrophysics Data System (ADS)

    Wei, Li-Jing; Guo, Jian-Xin; Dai, Xiu-Hong; Wang, Ying-Long; Liu, Bao-Ting

    2015-05-01

    The adsorption and dissociation of oxygen molecule on Ti3Al (0001) surface have been investigated by density functional theory (DFT) with the generalized gradient approximation (GGA). All possible adsorption sites including nine vertical and fifteen parallel sites of O2 are considered on Ti3Al (0001) surface. It is found that all oxygen molecules dissociate except for three vertical adsorption sites after structure optimization. This indicates that oxygen molecules prefer to dissociate on the junction site between Ti and Al atoms. Oxygen atoms coming from dissociation of oxygen molecule tend to occupy the most stable adsorption sites of the Ti3Al (0001) surface. The distance of O-O is related to the surface dissociation distance of Ti3Al (0001) surface. The valence electron localization function (ELF) and projected density of states (DOS) show that the bonds of O-O are breakaway at parallel adsorption end structures.

  6. Internal Surface Adsorption of Methane in the Microporous and the Mesoporous Montmorillonite Models

    NASA Astrophysics Data System (ADS)

    Shao, Changjin; Nie, Dakai; Zhai, Zengqiang; Yang, Zhenqing

    2018-05-01

    Due to the rising worldwide energy demands and the shortage of natural gas resources, the development of shale gas has become the new research focus in the field of novel energy resources. To understand the adsorption mechanism of shale gas in the reservoir, we use grand canonical Monte Carlo (GCMC) method to investigate the internal surface adsorption behavior of methane (main component of shale gas) in microporous and mesoporous montmorillonite materials for changing pressure, temperature and surface spacing. The results show that the adsorption capacity of methane decreases with increasing temperature while increasing as the surface spacing increases. Especially, the adsorption isotherm of the microporous model has a mutation when the surface spacing is about 10 ˚A. According to the trend for the change in the adsorption capacity, the best scheme for the exploitation of shale gas can be selected so that the mining efficiency is greatly improved.

  7. Microcalorimetric study of the adsorption of PEGylated lysozyme and PEG on a mildly hydrophobic resin: influence of ammonium sulfate.

    PubMed

    Werner, Albert; Blaschke, Tim; Hasse, Hans

    2012-08-07

    Adsorption of native as well as mono-, di-, and tri-PEGylated lysozyme on Toyopearl PPG-600M, a mildly hydrophobic resin is studied by isothermal titration calorimetry and by independent adsorption equilibrium measurements in sodium phosphate buffer at pH 7.0 and 25 °C. For PEGylation two different PEG sizes are used (5 and 10 kDa) which leads to six different forms of PEGylated lysozyme all of which are systematically studied. Additionally, the adsorption of five pure PEGs is explored. The ammonium sulfate concentration is varied from 600 to 1200 mM. The molar enthalpy of adsorption Δh(p)(ads) is determined from the calorimetric and the adsorption equilibrium data. It is found to be endothermic in all experiments. The comparison of the adsorption of different PEGylated forms shows that the adsorption of PEGylated lysozyme is driven by the adsorption of the PEG chain. The results provide insight into the adsorption mechanisms of polymer-modified proteins on hydrophobic chromatographic resins.

  8. Fenton- and Persulfate-driven Regeneration of Contaminant-spent Granular Activated Carbon

    EPA Science Inventory

    Fenton- or persulfate-driven chemical oxidation regeneration of spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto GAC and chemical oxidation regeneration of the spent-GAC. Environmental...

  9. Stochastic phase segregation on surfaces

    PubMed Central

    Gera, Prerna

    2017-01-01

    Phase separation and coarsening is a phenomenon commonly seen in binary physical and chemical systems that occur in nature. Often, thermal fluctuations, modelled as stochastic noise, are present in the system and the phase segregation process occurs on a surface. In this work, the segregation process is modelled via the Cahn–Hilliard–Cook model, which is a fourth-order parabolic stochastic system. Coarsening is analysed on two sample surfaces: a unit sphere and a dumbbell. On both surfaces, a statistical analysis of the growth rate is performed, and the influence of noise level and mobility is also investigated. For the spherical interface, it is also shown that a lognormal distribution fits the growth rate well. PMID:28878994

  10. Nanosegregated bimetallic oxide anode catalyst for proton exchange membrane electrolyzer

    DOEpatents

    Danilovic, Nemanja; Kang, Yijin; Markovic, Nenad; Stamenkovic, Vojislav; Myers, Deborah J.; Subbaraman, Ram

    2016-08-23

    A surface segregated bimetallic composition of the formula Ru.sub.1-xIr.sub.x wherein 0.1.ltoreq.x.ltoreq.0.75, wherein a surface of the material has an Ir concentration that is greater than an Ir concentration of the material as a whole is provided. The surface segregated material may be produced by a method including heating a bimetallic composition of the formula Ru.sub.1-xIr.sub.x, wherein 0.1.ltoreq.x.ltoreq.0.75, at a first temperature in a reducing environment, and heating the composition at a second temperature in an oxidizing environment. The surface segregated material may be utilized in electrochemical devices.

  11. DENSITY FUNCTIONAL STUDY OF ELEMENTAL MERCURY ADSORPTION ON X (X=Mn, Si, Ti, Al, AND Zn)-DOPED CuO (110) SURFACE

    NASA Astrophysics Data System (ADS)

    He, Ping; Peng, Xiaolong; Zhang, Zhongzhi; Wu, Jiang; Chen, Naichao; Ren, Jianxing

    Copper oxide (CuO) is proved to be a potential adsorbent for elemental mercury in the flue gas emitted from coal-fired power plant. However, the O-terminated CuO(110) surface has relatively week adsorption capacity for Hg. In this work, the doped method is applied to enhance the mercury adsorption capacity of O-terminated CuO(110). Mn, Si, Ti, Al and Zn are selected as the doped atom. It is found that only Zn-doped CuO (110) surfaces have the higher adsorption energy than the pure O-terminated CuO(110) surface. The mercury adsorption capacity is a complex issue, which depends on a combination of oxygen and doped element. The results suggest that the lower electropositive doped element is favorable for the improvement of mercury adsorption capacity. However, the lower electronegativity of oxygen atoms does not facilitate the mercury capture, which is different from the organic material. Cu and doped metal element, rather than oxygen atom, mainly determine mercury adsorption capacity of O-terminated CuO(110) surface, which leads to the lower adsorption capacity of the O-terminated CuO(110) surface than the Cu-terminated CuO(110) surface. The conclusions can also offer a valuable reference for the other metal oxide regarding mercury capture.

  12. Adsorption of silica colloids onto like-charged silica surfaces of different roughness

    DOE PAGES

    Dylla-Spears, R.; Wong, L.; Shen, N.; ...

    2017-01-17

    Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less

  13. Cysteine and cystine adsorption on FeS2(100)

    NASA Astrophysics Data System (ADS)

    Suzuki, Teppei; Yano, Taka-aki; Hara, Masahiko; Ebisuzaki, Toshikazu

    2018-08-01

    Iron pyrite (FeS2) is the most abundant metal sulfide on Earth. Owing to its reactivity and catalytic activity, pyrite has been studied in various research fields such as surface science, geochemistry, and prebiotic chemistry. Importantly, native iron-sulfur clusters are typically coordinated by cysteinyl ligands of iron-sulfur proteins. In the present paper, we study the adsorption of L-cysteine and its oxidized dimer, L-cystine, on the FeS2 surface, using electronic structure calculations based density functional theory and Raman spectroscopy measurements. Our calculations suggest that sulfur-deficient surfaces play an important role in the adsorption of cysteine and cystine. In the thiol headgroup adsorption on the sulfur-vacancy site, dissociative adsorption is found to be energetically favorable compared with molecular adsorption. In addition, the calculations indicate that, in the cystine adsorption on the defective surface under vacuum conditions, the formation of the S-Fe bond is energetically favorable compared with molecular adsorption. Raman spectroscopic measurements suggest the formation of cystine molecules through the S-S bond on the pyrite surface in aqueous solution. Our results might have implications for chemical evolution at mineral surfaces on the early Earth and the origin of iron-sulfur proteins, which are believed to be one of the most ancient families of proteins.

  14. Fibrinogen adsorption on blocked surface of albumin.

    PubMed

    Holmberg, Maria; Hou, Xiaolin

    2011-05-01

    We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle biological samples, including protein solutions. It is based on the assumption that proteins adsorbs as a monolayer on surfaces and that proteins do not adsorb on top of each other. By labelling albumin and fibrinogen with two different radioactive iodine isotopes that emit gamma radiation with different energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer fashion on PET and that fibrinogen adsorbs on top of albumin when albumin is pre-adsorbed on the surfaces. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Surface complexation modeling of proton and Cd adsorption onto an algal cell wall.

    PubMed

    Kaulbach, Emily S; Szymanowski, Jennifer E S; Fein, Jeremy B

    2005-06-01

    This study quantifies Cd adsorption onto the cell wall of the algal species Pseudokirchneriella subcapitata by applying a surface complexation approach to model the observed adsorption behavior. We use potentiometric titrations to determine deprotonation constants and site concentrations for the functional groups on the algal cell wall. Adsorption and desorption kinetics experiments illustrate that adsorption of Cd onto the cell wall is rapid and reversible, except under low pH conditions. Adsorption experiments conducted as a function of pH and total Cd concentration yield the stoichiometry and site-specific stability constants for the important Cd-algal surface complexes. We model the acid/base properties of the algal cell wall by invoking four discrete surface functional group types, with pKa values of 3.9 +/- 0.3, 5.4 +/- 0.1, 7.6 +/- 0.3, and 9.6 +/- 0.4. The results of the Cd adsorption experiments indicate that the first, third, and fourth sites contribute to Cd adsorption under the experimental conditions, with calculated log stability constant values of 4.1 +/- 0.5, 5.4 +/- 0.5, and 6.1 +/- 0.4, respectively. Our results suggest that the stabilities of the Cd-surface complexes are high enough for algal adsorption to affect the fate and transport of Cd under some conditions and that on a per gram basis, algae and bacteria exhibit broadly similar extents of Cd adsorption.

  16. Spatial variation of charge and sulfur oxidation state in a surface gradient affects plasma proteins adsorption

    PubMed Central

    Ding, Yong-Xue; Streitmatter, Seth; Wright, Bryon E.; Hlady, Vladimir

    2010-01-01

    A gradient of negative surface charge based on 1-D spatial variation from surface sulfhydryl to mixed sulfhydryl-sulfonate moities was prepared by controlled UV oxidation of 3-mercaptopropylsilane monolayer on fused silica. Adsorption of three human plasma proteins, albumin (HSA), immunoglobulin G (IgG), and fibrinogen (Fgn) onto such surface gradient was studied using spatially-resolved total internal reflection fluorescence (TIRF) and autoradiography. Adsorption was measured from dilute solutions equivalent to 1/100 (TIRF, autoradiography), and 1/500 and 1/1000 (autoradiography) of protein’s physiological concentrations in plasma. All three proteins adsorbed more to the non-oxidized sulfhydryl region than to the oxidized, mixed sulfhydryl-sulfonate region of the gradient. In the case of HSA the adsorption contrast along the gradient was largest when the adsorption took place from more dilute protein solutions. Increasing the concentration to 1/100 of protein plasma concentration eliminated the effect of the gradient on HSA adsorption and to the lesser extent on IgG adsorption. In the case of Fgn the greatest adsorption contrast was observed at the highest concentration used. Based on adsorption kinetics, the estimated binding affinity of HSA for the sulfhydryl region what twice the affinity for the mixed sulfhydryl-sulfonate region of the gradient. For IgG and Fgn the initial adsorption was transport-limited and the initial adsorption rates approached the computed flux of the protein to the surface. PMID:20568822

  17. Adsorption Refrigeration System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kai; Vineyard, Edward Allan

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacksmore » of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.« less

  18. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    NASA Astrophysics Data System (ADS)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  19. Heterogeneous catalysis with lasers

    NASA Astrophysics Data System (ADS)

    George, T. F.

    1986-06-01

    Theoretical techniques have been developed to describe a variety of laser-induced molecular rate processes occurring at solid surfaces which are involved in heterogeneous catalysis. Such processes include adsorption, migration, chemical reactions and desorption. The role of surface phonons in laser-selective processes and laser heating has been analyzed. The importance of electronic degrees of freedom has been considered for semiconductor and metal substrates, with special emphasis on the laser excitation of surface states. Surface-modified photochemistry has also been investigated, where the effect of a metal surface on the resonance fluorescence spectrum of a laser-driven atom/molecule has been assessed by means of surface-dressed optical Bloch equations. It is seen that the spectrum can be significantly different from the gas-phase case. Two related gas-surface collision processes have also been studied. First, the feasibility of the formation of the electron-hole pairs in a semiconductor by vibrationally excited molecules has been explored. Second, charge transfer in ion-surface collisions has been examined for both one-electron and two-electron transfer processes. Work has been initiated on microstructures and rough structures, including clusters and surface gratings.

  20. Selective scanning tunnelling microscope electron-induced reactions of single biphenyl molecules on a Si(100) surface.

    PubMed

    Riedel, Damien; Bocquet, Marie-Laure; Lesnard, Hervé; Lastapis, Mathieu; Lorente, Nicolas; Sonnet, Philippe; Dujardin, Gérald

    2009-06-03

    Selective electron-induced reactions of individual biphenyl molecules adsorbed in their weakly chemisorbed configuration on a Si(100) surface are investigated by using the tip of a low-temperature (5 K) scanning tunnelling microscope (STM) as an atomic size source of electrons. Selected types of molecular reactions are produced, depending on the polarity of the surface voltage during STM excitation. At negative surface voltages, the biphenyl molecule diffuses across the surface in its weakly chemisorbed configuration. At positive surface voltages, different types of molecular reactions are activated, which involve the change of adsorption configuration from the weakly chemisorbed to the strongly chemisorbed bistable and quadristable configurations. Calculated reaction pathways of the molecular reactions on the silicon surface, using the nudge elastic band method, provide evidence that the observed selectivity as a function of the surface voltage polarity cannot be ascribed to different activation energies. These results, together with the measured threshold surface voltages and the calculated molecular electronic structures via density functional theory, suggest that the electron-induced molecular reactions are driven by selective electron detachment (oxidation) or attachment (reduction) processes.

  1. Surface chemistry of oxygen on aluminum--Performance of the density functionals: PBE, PBE0, M06, and M06-L.

    PubMed

    Lousada, Cláudio M; Korzhavyi, Pavel A

    2016-04-05

    We investigated the performance of the density functional theory (DFT) functionals PBE, PBE0, M06, and M06-L for describing the molecular and dissociative adsorption of O2 onto pure and doped Al(111) surfaces. Adsorption of O2 was studied at the perfect Al(111) surface and compared with the case where an additional Al atom was present as an adatom. Additionally, we studied how these functionals perform when different dopants are present at the Al(111) surface in two distinct geometries: as an adatom or as a substitutional atom replacing an Al atom. The performance of the different functionals is greatly affected by the surface geometry. The inclusion of Hartree-Fock exchange in the functional leads to slight differences in adsorption energies for molecular adsorption of O2 . These differences become very pronounced for dissociative adsorption, with the hybrids PBE0 and M06 predicting more exergonic adsorption than PBE and M06-L. Furthermore, PBE0 and M06 predicted trends in adsorption energies for defective and perfect surfaces which are in line with the experimental knowledge of the effects of surface defects in adsorption energies. The predictions of the non-hybrids PBE and M06-L point in the opposite direction. The analysis of the contributions of the van der Waals (vdW) forces to the adsorption energies reveals that the PBE and PBE0 functionals have similar difficulties in describing vdW interactions for molecular adsorption of O2 while the M06 functional can give a description of these forces with an accuracy which is at least similar to that of the correction of the D3 type. © 2015 Wiley Periodicals, Inc.

  2. Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on β-Ga2O3(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yunxiang; Liu, Chang-jun; Mei, Donghai

    The effects of hydration and oxygen vacancy on CO2 adsorption on the β-Ga2O3(100) surface have been studied using density functional theory slab calculations. Adsorbed CO2 is activated on the dry perfect β-Ga2O3(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect β-Ga2O3(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect β-Ga2O3(100) surface. Adsorption of CO2 on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slight repulsive interactionmore » when H2O and CO2 are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the co-adsorbed H2O to a bicarbonate species, making the overall process exothermic with an adsorption energy of -0.13 eV. The effect of defects on CO2 adsorption and activation has been examined by creating an oxygen vacancy on the dry β-Ga2O3(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O2 molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO2. In the most stable CO2 adsorption configuration on the dry defective β-Ga2O3(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO2 occupies the oxygen vacancy site and the CO2 adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is instantaneous with an adsorption energy of -0.62 eV. These results indicate that, when water and CO2 are both present in the adsorption system simultaneously, the water molecule will compete with CO2 for the oxygen vacancy sites and impact CO2 adsorption and conversion negatively. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the computing time was granted by the scientific user projects using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a DOE national scientific user facility located at PNNL, and supported by the DOE’s Office of Science, Biological and Environmental Research.« less

  3. Crystal-face-selective adsorption of Au nanoparticles onto polycrystalline diamond surfaces.

    PubMed

    Kondo, Takeshi; Aoshima, Shinsuke; Hirata, Kousuke; Honda, Kensuke; Einaga, Yasuaki; Fujishima, Akira; Kawai, Takeshi

    2008-07-15

    Crystal-face-selective adsorption of Au nanoparticles (AuNPs) was achieved on polycrystalline boron-doped diamond (BDD) surface via the self-assembly method combined with a UV/ozone treatment. To the best of our knowledge, this is the first report of crystal-face-selective adsorption on an inorganic solid surface. Hydrogen-plasma-treated BDD samples and those followed by UV/ozone treatment for 2 min or longer showed almost no adsorption of AuNP after immersion in the AuNP solution prepared by the citrate reduction method. However, the samples treated by UV/ozone for 10 s showed AuNP adsorption on their (111) facets selectively after the immersion. Moreover, the sample treated with UV/ozone for 40-60 s showed AuNP adsorption on the whole surface. These results indicate that the AuNP adsorption behavior can be controlled by UV/ozone treatment time. This phenomenon was highly reproducible and was applied to a two-step adsorption method, where AuNPs from different batches were adsorbed on the (111) and (100) surface in this order. Our findings may be of great value for the fabrication of advanced nanoparticle-based functional materials via bottom-up approaches with simple macroscale procedures.

  4. Adsorption of Cr(III) on ozonised activated carbon. Importance of Cpi-cation interactions.

    PubMed

    Rivera-Utrilla, J; Sánchez-Polo, M

    2003-08-01

    The adsorption of Cr(III) in aqueous solution was investigated on a series of ozonised activated carbons, analysing the effect of oxygenated surface groups on the adsorption process. A study was carried out to determine the adsorption isotherms and the influence of the pH on the adsorption of this metal. The adsorption capacity and affinity of the adsorbent for Cr(III) increased with the increase in oxygenated acid groups on the surface of the activated carbon. These findings imply that electrostatic-type interactions predominate in the adsorption process, although the adsorption of Cr(III) on the original (basic) carbon indicates that other forces also participate in the adsorption process. Thus, the ionic exchange of protons in the -Cpi-H3O(+) interaction for Cr(III) accounts for the adsorption of cationic species in basic carbons with positive charge density. Study of the influence of pH on the adsorption of Cr(III) showed that, in each system, the maximum adsorption occurred when the charge of the carbon surface was opposite that of the species of Cr(III) present at the pH of the experiment. These results confirmed that electrostatic interactions predominate in the adsorption process.

  5. Quantitative Comparison of Protein Adsorption and Conformational Changes on Dielectric-Coated Nanoplasmonic Sensing Arrays.

    PubMed

    Ferhan, Abdul Rahim; Jackman, Joshua A; Sut, Tun Naw; Cho, Nam-Joon

    2018-04-22

    Nanoplasmonic sensors are a popular, surface-sensitive measurement tool to investigate biomacromolecular interactions at solid-liquid interfaces, opening the door to a wide range of applications. In addition to high surface sensitivity, nanoplasmonic sensors have versatile surface chemistry options as plasmonic metal nanoparticles can be coated with thin dielectric layers. Within this scope, nanoplasmonic sensors have demonstrated promise for tracking protein adsorption and substrate-induced conformational changes on oxide film-coated arrays, although existing studies have been limited to single substrates. Herein, we investigated human serum albumin (HSA) adsorption onto silica- and titania-coated arrays of plasmonic gold nanodisks by localized surface plasmon resonance (LSPR) measurements and established an analytical framework to compare responses across multiple substrates with different sensitivities. While similar responses were recorded on the two substrates for HSA adsorption under physiologically-relevant ionic strength conditions, distinct substrate-specific behavior was observed at lower ionic strength conditions. With decreasing ionic strength, larger measurement responses occurred for HSA adsorption onto silica surfaces, whereas HSA adsorption onto titania surfaces occurred independently of ionic strength condition. Complementary quartz crystal microbalance-dissipation (QCM-D) measurements were also performed, and the trend in adsorption behavior was similar. Of note, the magnitudes of the ionic strength-dependent LSPR and QCM-D measurement responses varied, and are discussed with respect to the measurement principle and surface sensitivity of each technique. Taken together, our findings demonstrate how the high surface sensitivity of nanoplasmonic sensors can be applied to quantitatively characterize protein adsorption across multiple surfaces, and outline broadly-applicable measurement strategies for biointerfacial science applications.

  6. Adsorption of Poly(methyl methacrylate) on Concave Al2O3 Surfaces in Nanoporous Membranes

    PubMed Central

    Nunnery, Grady; Hershkovits, Eli; Tannenbaum, Allen; Tannenbaum, Rina

    2009-01-01

    The objective of this study was to determine the influence of polymer molecular weight and surface curvature on the adsorption of polymers onto concave surfaces. Poly(methyl methacrylate) (PMMA) of various molecular weights was adsorbed onto porous aluminum oxide membranes having various pore sizes, ranging from 32 to 220 nm. The surface coverage, expressed as repeat units per unit surface area, was observed to vary linearly with molecular weight for molecular weights below ~120 000 g/mol. The coverage was independent of molecular weight above this critical molar mass, as was previously reported for the adsorption of PMMA on convex surfaces. Furthermore, the coverage varied linearly with pore size. A theoretical model was developed to describe curvature-dependent adsorption by considering the density gradient that exists between the surface and the edge of the adsorption layer. According to this model, the density gradient of the adsorbed polymer segments scales inversely with particle size, while the total coverage scales linearly with particle size, in good agreement with experiment. These results show that the details of the adsorption of polymers onto concave surfaces with cylindrical geometries can be used to calculate molecular weight (below a critical molecular weight) if pore size is known. Conversely, pore size can also be determined with similar adsorption experiments. Most significantly, for polymers above a critical molecular weight, the precise molecular weight need not be known in order to determine pore size. Moreover, the adsorption developed and validated in this work can be used to predict coverage also onto surfaces with different geometries. PMID:19415910

  7. A computational study on the energetics and mechanisms for the dissociative adsorption of SiHx(x = 1-4) on W(1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Lin, Y. H.; Raghunath, P.; Lin, M. C.

    2016-01-01

    The adsorption and dissociation mechanisms of SiHx(x = 1-4) species on W(1 1 1) surface have been investigated by using the periodic density functional theory with the projector-augmented wave approach. The adsorption of all the species on four surface sites: top (T), bridge (B), shallow (S), and deep (D) sites have been analyzed. For SiH4 on a top site, T-SiH4(a), it is more stable with an adsorption energy of 2.6 kcal/mol. For SiH3, the 3-fold shallow site is most favorable with adsorption energy of 46.0 kcal/mol. For SiH2, its adsorption on a bridge site is most stable with 73.0 kcal/mol binding energy, whereas for SiH and Si the most stable adsorption configurations are on 3-fold deep sites with very high adsorption energies, 111.8 and 134.7 kcal/mol, respectively. The potential energy surfaces for the dissociative adsorption of all SiHx species on the W(1 1 1) surface have been constructed using the CINEB method. The barriers for H-atom migration from SiHx(a) to its neighboring W atoms, preferentially on B-sites, were predicted to be 0.4, 1.0, 4.5 and, 8.0 kcal/mol, respectively, for x = 4, 3, 2, and 1, respectively. The adsorption energy of the H atom on a bridge site on the clean W(1 1 1) surface was predicted to be 65.9 kcal/mol, which was found to be slightly affected by the co-adsorption of SiHx-1 within ± 1 kcal/mol.

  8. Study of the Formation Mechanism of A-Segregation Based on Microstructural Morphology

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Bao, Yuchong; Liu, Lin; Pian, Song; Li, Ri

    2018-04-01

    A model that combines a cellular automaton (CA) and lattice Boltzmann method (LBM) is presented. The mechanism of A-segregation in an Fe-0.34 wt pct C alloy ingot is analyzed on the basis of microstructural morphology calculations. The CA is used to capture the solid/liquid interface, while the LBM is used to calculate the transport phenomena. (1) The solidification of global columnar dendrites was simulated, and two obvious A-segregation bands appeared in the middle-radius region between the ingot wall surface and the centerline. In addition, the angle of deflection to the centerline increased with the increasing heat dissipation rate of the wall surface. When natural convection was ignored, the A-segregation disappeared, and only positive segregation was present in the center and bottom corner of the ingot. (2) Mixed columnar-equiaxed solidification was simulated. Many A-segregation bands appeared in the ingot. (3) Global equiaxed solidification was simulated, and no A-segregation bands were found. The results show that the upward movement of the high-concentration melt is the key to the formation of A-segregation bands, and remelting and the emergence of equiaxed grains are not necessary conditions to develop these bands. However, the appearance of equiaxed grains accelerates the formation of vortexes; thus, many A-segregation bands appear during columnar-equiaxed solidification.

  9. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features.

    PubMed

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer-Emmett-Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g(-1), respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Preferred orientation of albumin adsorption on a hydrophilic surface from molecular simulation.

    PubMed

    Hsu, Hao-Jen; Sheu, Sheh-Yi; Tsay, Ruey-Yug

    2008-12-01

    In general, non-specific protein adsorption follows a two-step procedure, i.e. first adsorption onto a surface in native form, and a subsequent conformational change on the surface. In order to predict the subsequent conformational change, it is important to determine the preferred orientation of an adsorbed protein in the first step of the adsorption. In this work, a method based on finding the global minimum of the interaction potential energy of an adsorbed protein has been developed to delineate the preferred orientations for the adsorption of human serum albumin (HSA) on a model surface with a hydrophilic self-assembled monolayer (SAM). For computational efficiency, solvation effects were greatly simplified by only including the dampening of electrostatic effects while neglecting contributions due to the competition of water molecules for the functional groups on the surface. A contour map obtained by systematic rotation of a molecule in conjunction with perpendicular motion to the surface gives the minimum interaction energy of the adsorbed molecule at various adsorption orientations. Simulation results show that for an -OH terminated SAM surface, a "back-on" orientation of HSA is the preferred orientation. The projection area of this adsorption orientation corresponds with the "triangular-side-on" adsorption of a heart shaped HSA molecule. The method proposed herein is able to provide results which are consistent with those predicted by Monte Carlo (MC) simulations with a substantially less computing cost. The high computing efficiency of the current method makes it possible to be implemented as a design tool for the control of protein adsorption on surfaces; however, before this can be fully realized, these methods must be further developed to enable interaction free energy to be calculated in place of potential energy, along with a more realistic representation of solvation effects.

  11. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    NASA Astrophysics Data System (ADS)

    López-Moreno, S.; Romero, A. H.

    2015-04-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  12. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni.

    PubMed

    López-Moreno, S; Romero, A H

    2015-04-21

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  13. Core segregation mechanism and compositional evolution of terretrial planets

    NASA Astrophysics Data System (ADS)

    Petford, N.; Rushmer, T.

    2009-04-01

    A singular event in the formation of the earth and terrestrial planets was the separation iron-rich melt from mantle silicate to form planetary cores. On Earth, and by implication other rocky planets, this process induced profound internal chemical fractionation, with siderophile elements (Ni, Co, Au, Pt, W, Re) following Fe into the core, leaving the silicate crust and mantle with strong depletions of these elements relative to primitive planetary material. Recent measurements of radiogenic 182W anomalies in the silicate Earth, Mars and differentiated meteorites imply that planetesimals segregated metallic cores within a few Myr of the origin of the solar system. Various models have been put forward to explain the physical nature of the segregation mechanism (Fe-diapirs, ‘raining' through a magma ocean), and more recently melt flow via fractures. In this contribution we present the initial results of a numerical study into Fe segregation in a deforming silicate matrix that captures the temperature-dependent effect of liquid metal viscosity on the transport rate. Flow is driven by pressure gradients associated with impact deformation in a growing planetesimal and the fracture geometry is constrained by experimental data on naturally deformed H6 chondrite. Early results suggest that under dynamic conditions, fracture-driven melt flow can in principle be extremely rapid, leading to a significant draining of the Fe-liquid metal and siderophile trace element component on a timescale of hours to days. Fluid transport in planetesimals where deformation is the driving force provides an attractive and simple way of segregating Fe from host silicate as both precursor and primary agent of core formation. The potential for flow of metal-rich melt to induce local magnetic anomalies will also be addressed.

  14. Determination of the amount of gas adsorption on SiO2/Si(100) surfaces to realize precise mass measurement

    NASA Astrophysics Data System (ADS)

    Mizushima, S.

    2004-06-01

    The adsorption isotherms on SiO2/Si(100) surfaces were measured using a vacuum mass comparator. Samples with a surface area difference of 816.6 cm2 were used for the measurement, and a substitution weighing method was adopted to reduce the uncertainty due to the drift and non-linearity of the indication of the mass comparator. We measured adsorption isotherms of water vapour on the SiO2/Si(100) surfaces outgassed at a temperature of 500 °C and found that dissociative adsorption caused an irreversible increase of 0.028 µg cm-2 with an uncertainty of 0.004 µg cm-2 (k = 1). We also found that the physical adsorption of water molecules on hydroxylated surfaces had a monolayer capacity of 0.004 µg cm-2 with an uncertainty of 0.002 µg cm-2 (k = 1). In addition, the adsorption isotherms for ethanol vapour and n-octane vapour, which were different from water vapour in adsorption properties, were measured and analysed.

  15. Opposing dorsal/ventral stream dynamics during figure-ground segregation.

    PubMed

    Wokke, Martijn E; Scholte, H Steven; Lamme, Victor A F

    2014-02-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist between the dorsal and the ventral stream. Here, we used TMS and concurrent EEG recordings to explore these interactions between the dorsal and ventral stream during figure-ground segregation. In two separate experiments, we used repetitive TMS and single-pulse TMS to disrupt processing in the dorsal (V5/HMT⁺) and the ventral (lateral occipital area) stream during a motion-defined figure discrimination task. We presented stimuli that made it possible to differentiate between relatively low-level (figure boundary detection) from higher-level (surface segregation) processing steps during figure-ground segregation. Results show that disruption of V5/HMT⁺ impaired performance related to surface segregation; this effect was mainly found when V5/HMT⁺ was perturbed in an early time window (100 msec) after stimulus presentation. Surprisingly, disruption of the lateral occipital area resulted in increased performance scores and enhanced neural correlates of surface segregation. This facilitatory effect was also mainly found in an early time window (100 msec) after stimulus presentation. These results suggest a "push-pull" interaction in which dorsal and ventral extrastriate areas are being recruited or inhibited depending on stimulus category and task demands.

  16. Theoretical study of high temperature behavior of Pb and Pb-base alloy surfaces

    NASA Astrophysics Data System (ADS)

    Landa, Alexander Ilyich

    1998-11-01

    A recent study of a Pb-Bi-Ni alloy reported a strong co-segregation of Bi and Ni at the alloy surface. The nature of this surface phenomenon has been studied by means of modern ab initio and classical simulation techniques. It was useful to begin by a study of the underlying binaries. We have performed ab initio calculations of the segregation profiles at the (111), (100) and (110) surfaces of random Pbsb{95}Bisb{05} alloys by means of the coherent potential approximation within the context of a tight-binding linear muffin-tin-orbitals method. We have found the segregation profiles to be oscillatory (this effect is most pronounced for the (111) surface) with a strong preference for Bi to segregate to the first atom layer. We have performed Monte Carlo simulations, employing Finnis-Sinclair-type empirical many-body potentials and computed the solubility limits of Pb-Bi and Pb-Ni alloys, as well as the segregation profiles at the (111) surfaces of Pbsb{95}Bisb{05} and Pb-Ni alloys. For Pb-Bi alloys, the concentration profiles have also been found to be oscillatory. Calculations on Pb-Ni showed that within the solubility limit of Ni in Pb, Ni did not segregate to the Pb(111) outermost surface layer. In the ternary Pbsb{95}Bisb{05}{+}Ni alloy ab initio calculations detected a tendency for Ni to segregate to the subsurface from layer due its strong interaction with Bi. Calculations on Pb-Bi-Ni showed strong segregation of Ni to the subsurface atom layer, accompanied by co-segregation of Bi to several of the outermost atom layers. We have also focused our attention on the high temperature behavior of the pure Pb(110) metal surface. Molecular dynamics simulations incorporating a many-body potential have been used to investigate the atomic structure and dynamics of the Pb(110) surface in the range from room temperature up to the bulk melting point. The surface starts to disorder approximately at 360 K via the generation of vacancies and the formation of an adlayer. At about 520 K, the onset of a quasiliquid region at the surface has been observed. The disordering of the surface beyond 520 K was described as premelting with a gradually developing liquid-like film, the thickness of which increased proportionally to 1n(1-T/Tsb{M}) as the bulk melting temperature (Tsb{M}) was approached. The dynamics of the equilibrium crystal-melt interface at the bulk melting point has been also studied: the interface exhibits fluctuating atomic-scale (111) facets, and, the two outermost quasiliquid layers retain a considerable degree of short range order (surface layering). The roughening transition on the Pb(110) surface has been studied using a combination of lattice-gas Monte Carlo and molecular-dynamics methods in conjunction with the same many-body glue potential. Lattice-gas Monte Carlo simulations yield a roughening transition temperature or approximately Tsbsp{R}{LGMC}≈ 1100 K. Molecular-dynamics simulations. which account for surface relaxation and lattice vibrations, detected the roughening transition at Tsbsp{R}{MD}≈ 545 K, above the high-resolution low-energy diffraction measurements of Tsbsp{R}{EXP} ≈ 415 K. The anisotropic body-centered solid-on-solid model has been used in the interpretation of these results. The time scale of local roughening was estimated approximately {˜}0.6 ns at the calculated roughening transition temperature. (Abstract shortened by UMI.)

  17. Impact of hydrophilic and hydrophobic functionalization of flat TiO2/Ti surfaces on proteins adsorption

    NASA Astrophysics Data System (ADS)

    Fabre, Héloïse; Mercier, Dimitri; Galtayries, Anouk; Portet, David; Delorme, Nicolas; Bardeau, Jean-François

    2018-02-01

    Controlling adsorption of proteins onto medical devices is a key issue for implant-related infections. As self-assembled monolayers (SAMs) on titanium oxide represent a good model to study the surface-protein interactions, TiO2 surface properties were modified by grafting bisphosphonate molecules terminated with hydrophilic poly(ethylene glycol) groups and hydrophobic perfluoropolyether ones, respectively. Characterisation of the surface chemistry and surface topography of the modified surfaces was performed using XPS and atomic force microscopy (AFM). Quartz-crystal microbalance with dissipation (QCM-D) was used to determine the mass of adsorbed proteins as well as its kinetics. Poly(ethylene glycol)-terminated SAMs were the most effective surfaces to limit the adsorption of both BSA and fibrinogen in comparison to perfluorinated-terminated SAMs and non-modified TiO2 surfaces, as expected. The adsorption was not reversible in the case of BSA, while a partial reversibility was observed with Fg, most probably due to multilayers of proteins. The grafted surfaces adsorbed about the same quantity of proteins in terms of molecules per surface area, most probably in monolayer or island-like groups of adsorbed proteins. The adsorption on pristine TiO2 reveals a more important, non-specific adsorption of proteins.

  18. Adsorption of Wine Constituents on Functionalized Surfaces.

    PubMed

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A

    2016-10-18

    The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS) and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.

  19. Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Min, Fan-fei; Liu, Lingyun; Liu, Chunfu; Lu, Fangqin

    2017-10-01

    The adsorption of four different amine/ammonium salts of DDA (Dodecyl amine), MDA (N-methyldodecyl amine), DMDA (N,N-dimethyldodecyl amine) and DTAC (Dodecyl trimethyl ammonium chloride) on kaolinite particles was investigated in the study through the measurement of contact angles, zeta potentials, aggregation observation, adsorption and sedimentation. The results show that different amine/ammonium salts can adsorb on the kaolinite surface to enhance the hydrophobicity and reduce the electronegativity of kaolinite particle surface, and thus induce a strong hydrophobic aggregation of kaolinite particles which promotes the settlement of kaolinite. To explore the adsorption mechanism of these four amine/ammonium salts on kaolinite surfaces, the adsorptions of DDA+, MDA+, DMDA+ and DTAC+ on kaolinite (001) surface and (00 1 bar) surface are calculated with DFT (Density functional theory). The DFT calculation results indicate that different amine/ammonium cations can strongly adsorbed on kaolinite (001) surface and (00 1 bar) surface by forming Nsbnd H⋯O strong hydrogen bonds or Csbnd H⋯O weak hydrogen bonds, and there are strongly electrostatic attractions between different amine/ammonium cations and kaolinite surfaces. The main adsorption mechanism of amine/ammonium cations on kaolinite is hydrogen-bond interaction and electrostatic attraction.

  20. Cd(II) removal on surface-modified activated carbon: equilibrium, kinetics and mechanism.

    PubMed

    Liang, Jianjun; Liu, Meiling; Zhang, Yufei

    2016-10-01

    Commercial pulverous activated carbon (AC-0) was modified through two steps: oxidize AC-0 acid firstly, impregnate it with iron using ferric chloride secondly. Orthogonal experiment was conducted then to prepare modified activated carbon with high Cd(II) adsorption capacity (ACNF). Batch adsorption experiments were undertaken to determine the adsorption characteristics of Cd(II) from aqueous solution onto AC-0 and ACNF and the effect of pH, contact time and initial Cd(II) concentration. The results indicate that: the adsorption behavior of Cd(II) on ACNF can be well fitted with Langmuir model, and the maximum adsorption capacity of ACNF was 2.3 times higher than that of AC-0, supporting a monolayer coverage of Cd(II) on the surface. The kinetics of the adsorption process can be described by pseudo-second-order rate equation very well, and the adsorption capacity increased from 0.810 mg/g to 0.960 mg/g after modification. Compared with AC-0, the kinetic parameters of ACNF showed a higher adsorption rate through the aqueous solution to the solid surface and a lower intraparticle diffusion rate. Surface modification resulted in a lower Brunauer-Emmett-Teller (BET) surface area and pore size because of the collapse and blockage of pores, according to the X-ray diffraction (XRD) analysis, while the total number of surface oxygen acid groups increased, and this was supposed to contribute to the enhanced adsorption capacity of modified activated carbon.

  1. Selective adsorption of a supramolecular structure on flat and stepped gold surfaces

    NASA Astrophysics Data System (ADS)

    Peköz, Rengin; Donadio, Davide

    2018-04-01

    Halogenated aromatic molecules assemble on surfaces forming both hydrogen and halogen bonds. Even though these systems have been intensively studied on flat metal surfaces, high-index vicinal surfaces remain challenging, as they may induce complex adsorbate structures. The adsorption of 2,6-dibromoanthraquinone (2,6-DBAQ) on flat and stepped gold surfaces is studied by means of van der Waals corrected density functional theory. Equilibrium geometries and corresponding adsorption energies are systematically investigated for various different adsorption configurations. It is shown that bridge sites and step edges are the preferred adsorption sites for single molecules on flat and stepped surfaces, respectively. The role of van der Waals interactions, halogen bonds and hydrogen bonds are explored for a monolayer coverage of 2,6-DBAQ molecules, revealing that molecular flexibility and intermolecular interactions stabilize two-dimensional networks on both flat and stepped surfaces. Our results provide a rationale for experimental observation of molecular carpeting on high-index vicinal surfaces of transition metals.

  2. Treatment of aqueous diethyl phthalate by adsorption using a functional polymer resin.

    PubMed

    Xu, Zhengwen; Zhang, Weiming; Pan, Bingcai; Lv, Lu; Jiang, Zhengmao

    2011-01-01

    To study the adsorptive separation efficiency, adsorption and desorption performances of diethyl phthalate (DEP) were investigated with a functional polymer resin (NDA-702). A macroporous polymer resin (XAD-4) and a coal-based granular activated carbon (AC-750) were chosen for comparison. The kinetic adsorption data obeyed the pseudo-second-order rate model, and the adsorption processes were limited by both film and intraparticle diffusions. Adsorption equilibrium data were well fitted by the Freundlich equation, and the larger uptake and higher selection of NDA-702 than AC-750 and XAD-4 was probably due to the microporous structure, phenyl rings and polar groups on NDA-702. Thermodynamic adsorption studies indicated that the test adsorbents spontaneously adsorbed DEP, driven mainly by enthalpy change. Continuous fixed-bed runs demonstrated that there no significant loss of the resin's adsorption capacity and there was complete regeneration of NDA-702. The results suggest that NDA-702 has excellent potential as an adsorption material for water treatment.

  3. Metal adsorption onto bacterial surfaces: development of a predictive approach

    NASA Astrophysics Data System (ADS)

    Fein, Jeremy B.; Martin, Aaron M.; Wightman, Peter G.

    2001-12-01

    Aqueous metal cation adsorption onto bacterial surfaces can be successfully modeled by means of a surface complexation approach. However, relatively few stability constants for metal-bacterial surface complexes have been measured. In order to determine the bacterial adsorption behavior of cations that have not been studied in the laboratory, predictive techniques are required that enable estimation of the stability constants of bacterial surface complexes. In this study, we use a linear free-energy approach to compare previously measured stability constants for Bacillus subtilis metal-carboxyl surface complexes with aqueous metal-organic acid anion stability constants. The organic acids that we consider are acetic, oxalic, citric, and tiron. We add to this limited data set by conducting metal adsorption experiments onto Bacillus subtilis, determining bacterial surface stability constants for Co, Nd, Ni, Sr, and Zn. The adsorption behavior of each of the metals studied here was described well by considering metal-carboxyl bacterial surface complexation only, except for the Zn adsorption behavior, which required carboxyl and phosphoryl complexation to obtain a suitable fit to the data. The best correlation between bacterial carboxyl surface complexes and aqueous organic acid anion stability constants was obtained by means of metal-acetate aqueous complexes, with a linear correlation coefficient of 0.97. This correlation applies only to unhydrolyzed aqueous cations and only to carboxyl binding of those cations, and it does not predict the binding behavior under conditions where metal binding to other bacterial surface site types occurs. However, the relationship derived in this study permits estimation of the carboxyl site adsorption behavior of a wide range of aqueous metal cations for which there is an absence of experimental data. This technique, coupled with the observation of similar adsorption behaviors across bacterial species (Yee and Fein, 2001), enables estimation of the effects of bacterial adsorption on metal mobilities for a large number of environmental and geologic applications.

  4. Physicochemical Study of Viral Nanoparticles at the Air/Water Interface.

    PubMed

    Torres-Salgado, Jose F; Comas-Garcia, Mauricio; Villagrana-Escareño, Maria V; Durán-Meza, Ana L; Ruiz-García, Jaime; Cadena-Nava, Ruben D

    2016-07-07

    The assembly of most single-stranded RNA (ssRNA) viruses into icosahedral nucleocapsids is a spontaneous process driven by protein-protein and RNA-protein interactions. The precise nature of these interactions results in the assembly of extremely monodisperse and structurally indistinguishable nucleocapsids. In this work, by using a ssRNA plant virus (cowpea chlorotic mottle virus [CCMV]) as a charged nanoparticle we show that the diffusion of these nanoparticles from the bulk solution to the air/water interface is an irreversible adsorption process. By using the Langmuir technique, we measured the diffusion and adsorption of viral nucleocapsids at the air/water interface at different pH conditions. The pH changes, and therefore in the net surface charge of the virions, have a great influence in the diffusion rate from the bulk solution to the air/water interface. Moreover, assembly of mesoscopic and microscopic viral aggregates at this interface depends on the net surface charge of the virions and the surface pressure. By using Brewster's angle microscopy we characterized these structures at the interface. Most common structures observed were clusters of virions and soap-frothlike micron-size structures. Furthermore, the CCMV films were compressed to form monolayers and multilayers from moderate to high surface pressures, respectively. After transferring the films from the air/water interface onto mica by using the Langmuir-Blodgett technique, their morphology was characterized by atomic force microscopy. These viral monolayers showed closed-packing nano- and microscopic arrangements.

  5. Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry

    DOE PAGES

    Ogunro, Oluwaseun O.; Burrows, Susannah M.; Elliott, Scott; ...

    2015-10-13

    Here, organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed formore » labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.« less

  6. Dynamic technique for measuring adsorption in a gas chromatograph

    NASA Technical Reports Server (NTRS)

    Deuel, C. L.; Hultgren, N. W.; Mobert, M. L.

    1973-01-01

    Gas-chromatographic procedure, together with mathematical analysis of adsorption isotherm, allows relative surface areas and adsorptive powers for trace concentrations to be determined in a few minutes. Technique may be used to evaluate relative surface areas of different adsorbates, expressed as volume of adsorbent/gram of adsorbate, and to evaluate their relative adsorptive power.

  7. Density functional study of the adsorption of aspirin on the hydroxylated (0 0 1) α-quartz surface

    NASA Astrophysics Data System (ADS)

    Abbasi, A.; Nadimi, E.; Plänitz, P.; Radehaus, C.

    2009-08-01

    In this study the adsorption geometry of aspirin molecule on a hydroxylated (0 0 1) α-quartz surface has been investigated using DFT calculations. The optimized adsorption geometry indicates that both, adsorbed molecule and substrate are strongly deformed. Strong hydrogen bonding between aspirin and surface hydroxyls, leads to the breaking of the original hydroxyl-hydroxyl hydrogen bonds (Hydrogenbridges) on the surface. In this case new hydrogen bonds on the hydroxylated (0 0 1) α-quartz surface appear which significantly differ from those at the clean surface. The 1.11 eV adsorption energy reveals that the interaction of aspirin with α-quartz is an exothermic chemical interaction.

  8. Ozone treatment of coal- and coffee grounds-based active carbons: Water vapor adsorption and surface fractal micropores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi

    1998-09-15

    Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon withmore » D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.« less

  9. Reflection high energy electron diffraction observation of surface mass transport at the two- to three-dimensional growth transition of InAs on GaAs(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, F.; Arciprete, F.; Fanfoni, M.

    2005-12-19

    We have followed by reflection high-energy electron diffraction the nucleation of InAs quantum dots on GaAs(001), grown by molecular-beam epitaxy with growth interruptions. Surface mass transport gives rise, at the critical InAs thickness, to a huge nucleation of three-dimensional islands within 0.2 monolayers (ML). Such surface mass diffusion has been evidenced by observing the transition of the reflection high-energy electron diffraction pattern from two- to three-dimensional during the growth interruption after the deposition of 1.59 ML of InAs. It is suggested that the process is driven by the As{sub 2} adsorption-desorption process and by the lowering of the In bindingmore » energy due to compressive strain. The last condition is met first in the region surrounding dots at step edges where nucleation predominantly occurs.« less

  10. Nonlinear optical probe of biopolymer adsorption on colloidal particle surface: poly-L-lysine on polystyrene sulfate microspheres.

    PubMed

    Eckenrode, Heather M; Dai, Hai-Lung

    2004-10-12

    A nonlinear optical technique--second harmonic generation (SHG)--has been applied to characterize the adsorption of poly-L-lysine on micrometer size polystyrene particles, whose surface is covered with negatively charged sulfonate groups, in aqueous solutions. Adsorption behavior of the biopolymer with two chain lengths (14 and 75 amino acid units; PL14 and PL75) has been examined. Centrifugation experiments were also performed to support the adsorption measurements made using SHG. The adsorption free energies of the two polymers PL75 and PL14 are determined as -16.57 and -14.40 kcal/mol, respectively. The small difference in the adsorption free energies of the two chain lengths, however, leads to dramatic difference in the concentration needed for saturated surface coverage: nearly 50 times higher concentration is needed for the smaller polymer. Under acidic colloidal conditions, polylysine is found to adsorb in a relatively flat conformation on the surface. The surface area that each polylysine molecule occupies is nearly 1 order of magnitude larger than the size of the molecule in its extended form. The low adsorption density is likely a result from Coulombic repulsion between the positive charges on the amino acid units of PL. The measurements demonstrate the utility of SHG as an efficient and sensitive experimental approach for measuring adsorption characteristics of bio/macromolecules on colloidal particles and define surface and colloidal conditions for achieving maximum surface coverage of a widely used biopolymer. Copyright 2004 American Chemical Society

  11. Application of surface complexation models to anion adsorption by natural materials.

    PubMed

    Goldberg, Sabine

    2014-10-01

    Various chemical models of ion adsorption are presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model, are described in the present study. Characteristics common to all the surface complexation models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Methods for determining parameter values for surface site density, capacitances, and surface complexation constants also are discussed. Spectroscopic experimental methods of establishing ion adsorption mechanisms include vibrational spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity. Experimental determinations of point of zero charge shifts and ionic strength dependence of adsorption results and molecular modeling calculations also can be used to deduce adsorption mechanisms. Applications of the surface complexation models to heterogeneous natural materials, such as soils, using the component additivity and the generalized composite approaches are described. Emphasis is on the generalized composite approach for predicting anion adsorption by soils. Continuing research is needed to develop consistent and realistic protocols for describing ion adsorption reactions on soil minerals and soils. The availability of standardized model parameter databases for use in chemical speciation-transport models is critical. Published 2014 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the in the United States of America.

  12. Polymer Electrolyte Membranes for Water Photo-Electrolysis

    PubMed Central

    Aricò, Antonino S.; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-01-01

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion® 115) and quaternary ammonium-based (Fumatech® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion®-based cell when just TiO2 anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion. PMID:28468242

  13. Polymer Electrolyte Membranes for Water Photo-Electrolysis.

    PubMed

    Aricò, Antonino S; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-04-29

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion ® 115) and quaternary ammonium-based (Fumatech ® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion ® -based cell when just TiO₂ anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion.

  14. Characterization of metal adsorption variability in a sand and gravel aquifer, Cape Cod, Massachusetts, U.S.A

    USGS Publications Warehouse

    Fuller, C.C.; Davis, J.A.; Coston, J.A.; Dixon, E.

    1996-01-01

    Several geochemical properties of an aquifer sediment that control metal-ion adsorption were investigated to determine their potential use as indicators of the spatial variability of metal adsorption. Over the length of a 4.5-m-long core from a sand and gravel aquifer, lead (Pb2+) and zinc (Zn2+) adsorption at constant chemical conditions (pH 5.3) varied by a factor of 2 and 4, respectively. Pb2+ and Zn2+ were adsorbed primarily by Fe- and Al-oxide coatings on quartz-grain surfaces. Per unit surface area, both Pb2+ and Zn2+ adsorption were significantly correlated with the amount of Fe and Al that dissolved from the aquifer material in a partial chemical extraction. The variability in conditional binding constants for Pb2+ and Zn2+ adsorption (log KADS) derived from a simple non-electrostatic surface complexation model were also predicted by extracted Fe and Al normalized to surface area. Because the abundance of Fe- and Al-oxide coatings that dominate adsorption does not vary inversely with grain size by a simple linear relationship, only a weak, negative correlation was found between the spatial variability of Pb2+ adsorption and grain size in this aquifer. The correlation between Zn2+ adsorption and grain size was not significant. Partial chemical extractions combined with surface-area measurements have potential use for estimating metal adsorption variability in other sand and gravel aquifers of negligible carbonate and organic carbon content.

  15. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH 3 with V 2O 5-WO 3/TiO 2 catalysts

    DOE PAGES

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...

    2016-04-14

    We compared the molecular structures, surface acidity and catalytic activity for NO/NH 3/O 2 SCR of V 2O 5-WO 3/TiO 2 catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH) 2 and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO 2 support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO 2(anatase) particles and that VO x and WO x do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Lowmore » Energy Ion Scattering (HS-LEIS) confirms that the VO x and WO x are surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO 3 and O = WO 4 sites on the TiO 2 supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO 4 and WO 4 sites that appear to be anchored at surface defects of the TiO 2 support. IR analysis of chemisorbed ammonia showed the presence of both surface NH 3 * on Lewis acid sites and surface NH 4 +* on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO 4 species and that the surface kinetics was independent of TiO 2 synthesis method or presence of surface WO 5 sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR reaction is controlled by the surface VO 4 sites that initiate the reaction at ~200 °C. The co-precipitated catalysts were always more active than the corresponding impregnated catalysts. Finally, we ascribe the higher activity of the co-precipitated catalysts to the presence of the new surface WO x sites associated surface defects on the TiO 2 support that increase the ammonia adsorption capacity.« less

  16. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.

    PubMed

    Shen, Jia-Wei; Wu, Tao; Wang, Qi; Kang, Yu; Chen, Xin

    2009-06-02

    Ordered hydration shells: The more ordered hydration shells outside the charged CNT surfaces prevent more compact adsorption of the peptide in the charged CNT systems [picture: see text], but peptide binding strengths on the charged CNT surfaces are stronger due to the electrostatic interaction.Studies of adsorption dynamics and stability for peptides/proteins on single-walled carbon nanotubes (SWNTs) are of great importance for a better understanding of the properties and nature of nanotube-based biosystems. Herein, the dynamics and mechanism of the adsorption of the insulin chain B peptide on different charged SWNTs are investigated by explicit solvent molecular dynamics simulations. The results show that all types of surfaces effectively attract the model peptide. Water molecules play a significant role in peptide adsorption on the surfaces of charged carbon nanotubes (CNTs). Compared to peptide adsorption on neutral CNT surfaces, the more ordered hydration shells outside the tube prevent more compact adsorption of the peptide in charged CNT systems. This shield effect leads to a smaller conformational change and van der Waals interaction between the peptide and surfaces, but peptide binding strengths on charged CNT surfaces are stronger than those on the neutral CNT surface due to the strong electrostatic interaction. The result of these simulations implies the possibility of improving the binding strength of peptides/proteins on CNT surfaces, as well as keeping the integrity of the peptide/protein conformation in peptide/protein-CNT complexes by charging the CNTs.

  17. Adsorption of different amphiphilic molecules onto polystyrene latices.

    PubMed

    Jódar-Reyes, A B; Ortega-Vinuesa, J L; Martín-Rodríguez, A

    2005-02-15

    In order to know the influence of the surface characteristics and the chain properties on the adsorption of amphiphilic molecules onto polystyrene latex, a set of experiments to study the adsorption of ionic surfactants, nonionic surfactants and an amphiphilic synthetic peptide on different latex dispersions was performed. The adsorbed amount versus the equilibrium surfactant concentration was determined. The main adsorption mechanism was the hydrophobic attraction between the nonpolar tail of the molecule and the hydrophobic regions of the latex surface. This attraction overcame the electrostatic repulsion between chains and latex surface with identical charge sign. However, the electrostatic interactions chain-surface and chain-chain also played a role. General patterns for the adsorption of ionic chains on charged latex surfaces could be established. Regarding the shape, the isotherms presented different plateaus corresponding to electrostatic effects and conformational changes. The surfactant size also affects the adsorption results: the higher the hydrophilic moiety in the surfactant molecule the lower the adsorbed amount.

  18. Enantiospecific adsorption of propranolol enantiomers on naturally chiral copper surface: A molecular dynamics simulation investigation

    NASA Astrophysics Data System (ADS)

    Sedghamiz, Tahereh; Bahrami, Maryam; Ghatee, Mohammad Hadi

    2017-04-01

    Adsorption of propranolol enantiomers on naturally chiral copper (Cu(3,1,17)S) and achiral copper (Cu(100)) surfaces were studied by molecular dynamics simulation to unravel the features of adsorbate-adsorbent enantioselectivity. Adsorption of S- and R-propranolol on Cu(3,1,17)S terraces (with 100 plane) leads mainly to endo- and exo-conformers, respectively. Simulated pair correlation function (g(r)) and mean square displacement (MSD) were analyzed to identify adsorption sites of enantiomers on Cu(3,1,17)S substrate surface, and their simulated binding energies were used to access the adsorption strength. According to (g(r)), R-propranolol adsorbs via naphtyl group while S-propranolol mainly adsorbs through chain group. R-enantiomer binds more tightly to the chiral substrate surface than S-enantiomer as indicated by a higher simulated binding energy by 2.74 kJ mol-1 per molecule. The difference in binding energies of propranolol enantiomers on naturally chiral Cu(3,1,17)S is almost six times larger than on the achiral Cu(100) surface, which substantiates the appreciably strong specific enantioselective adsorption on the former surface.

  19. Adsorption Kinetics, Conformation, and Mobility of the Growth Hormone and Lysozyme on Solid Surfaces, Studied with TIRF

    PubMed

    Buijs; Hlady

    1997-06-01

    Interactions of recombinant human growth hormone and lysozyme with solid surfaces are studied using total internal reflection fluorescence (TIRF) and monitoring the protein's intrinsic tryptophan fluorescence. The intensity, spectra, quenching, and polarization of the fluorescence emitted by the adsorbed proteins are monitored and related to adsorption kinetics, protein conformation, and fluorophore rotational mobility. To study the influence of electrostatic and hydrophobic interactions on the adsorption process, three sorbent surfaces are used which differ in charge and hydrophobicity. The chemical surface groups are silanol, methyl, and quaternary amine. Results indicate that adsorption of hGH is dominated by hydrophobic interactions. Lysozyme adsoption is strongly affected by the ionic strength. This effect is probably caused by an ionic strength dependent conformational state in solution which, in turn, influences the affinity for adsorption. Both proteins are more strongly bound to hydrophobic surfaces and this strong interaction is accompanied by a less compact conformation. Furthermore, it was seen that regardless of the characteristics of the sorbent surface, the rotational mobility of both proteins' tryptophans is largely reduced upon adsorption.

  20. Adsorption of guaiacol on Fe (110) and Pd (111) from first principles

    NASA Astrophysics Data System (ADS)

    Hensley, Alyssa J. R.; Wang, Yong; McEwen, Jean-Sabin

    2016-06-01

    The catalytic properties of surfaces are highly dependent upon the effect said surfaces have on the geometric and electronic structure of adsorbed reactants, products, and intermediates. It is therefore crucial to have a surface-level understanding of the adsorption of the key species in a reaction in order to design active and selective catalysts. Here, we study the adsorption of guaiacol on Fe (110) and Pd (111) using dispersion-corrected density functional theory calculations as both of these metals are of interest as hydrodeoxygenation catalysts for the conversion of bio-oils to useable biofuels. Both vertical (via the oxygen functional groups) and horizontal (via the aromatic ring) adsorption configurations were examined and the resulting adsorption and molecular distortion energies showed that the vertical sites were only physisorbed while the horizontal sites were chemisorbed on both metal surfaces. A comparison of guaiacol's horizontal adsorption on Fe (110) and Pd (111) showed that guaiacol had a stronger adsorption on Pd (111) while the Fe (110) surface distorted the Csbnd O bonds to a greater degree. Electronic analyses on the horizontal systems showed that the greater adsorption strength for guaiacol on Pd (111) was likely due to the greater charge transfer between the aromatic ring and the surface Pd atoms. Additionally, the greater distortion of the Csbnd O bonds in adsorbed guaiacol on Fe (110) is likely due to the greater degree of interaction between the oxygen and surface Fe atoms. Overall, our results show that the Fe (110) surface has a greater degree of interaction with the functional groups and the Pd (111) surface has a greater degree of interaction with the aromatic ring.

  1. DNA bases assembled on the Au(110)/electrolyte interface: a combined experimental and theoretical study.

    PubMed

    Salvatore, Princia; Nazmutdinov, Renat R; Ulstrup, Jens; Zhang, Jingdong

    2015-02-19

    Among the low-index single-crystal gold surfaces, the Au(110) surface is the most active toward molecular adsorption and the one with fewest electrochemical adsorption data reported. Cyclic voltammetry (CV), electrochemically controlled scanning tunneling microscopy (EC-STM), and density functional theory (DFT) calculations have been employed in the present study to address the adsorption of the four nucleobases adenine (A), cytosine (C), guanine (G), and thymine (T), on the Au(110)-electrode surface. Au(110) undergoes reconstruction to the (1 × 3) surface in electrochemical environment, accompanied by a pair of strong voltammetry peaks in the double-layer region in acid solutions. Adsorption of the DNA bases gives featureless voltammograms with lower double-layer capacitance, suggesting that all the bases are chemisorbed on the Au(110) surface. Further investigation of the surface structures of the adlayers of the four DNA bases by EC-STM disclosed lifting of the Au(110) reconstruction, specific molecular packing in dense monolayers, and pH dependence of the A and G adsorption. DFT computations based on a cluster model for the Au(110) surface were performed to investigate the adsorption energy and geometry of the DNA bases in different adsorbate orientations. The optimized geometry is further used to compute models for STM images which are compared with the recorded STM images. This has provided insight into the physical nature of the adsorption. The specific orientations of A, C, G, and T on Au(110) and the nature of the physical adsorbate/surface interaction based on the combination of the experimental and theoretical studies are proposed, and differences from nucleobase adsorption on Au(111)- and Au(100)-electrode surfaces are discussed.

  2. Steadily oscillating axial bands of binary granules in a nearly filled coaxial cylinder.

    PubMed

    Inagaki, Shio; Ebata, Hiroyuki; Yoshikawa, Kenichi

    2015-01-01

    Granular materials often segregate under mechanical agitation such as flowing, shaking, or rotating, in contrast to an expectation of mixing. It is well known that bidisperse mixtures of granular materials in a partially filled rotating cylinder exhibit monotonic coarsening dynamics of segregation. Here we report the steady oscillation of segregated axial bands under the stationary rotation of a nearly filled coaxial cylinder for O(10(3)) revolutions. The axial bands demonstrate steady back-and-forth motion along the axis of rotation. Experimental findings indicated that these axial band dynamics are driven by global convection throughout the system. The essential features of the spatiotemporal dynamics are reproduced with a simple phenomenological equation that incorporates the effect of global convection.

  3. [Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].

    PubMed

    Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei

    2016-04-15

    To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS.

  4. Adsorption of hydrophobin/β-casein mixtures at the solid-liquid interface.

    PubMed

    Tucker, I M; Petkov, J T; Penfold, J; Thomas, R K; Cox, A R; Hedges, N

    2016-09-15

    The adsorption behaviour of mixtures of the proteins β-casein and hydrophobin at the hydrophilic solid-liquid surface have been studied by neutron reflectivity. The results of measurements from sequential adsorption and co-adsorption from solution are contrasted. The adsorption properties of protein mixtures are important for a wide range of applications. Because of competing factors the adsorption behaviour of protein mixtures at interfaces is often difficult to predict. This is particularly true for mixtures containing hydrophobin as hydrophobin possesses some unusual surface properties. At β-casein concentrations ⩾0.1wt% β-casein largely displaces a pre-adsorbed layer of hydrophobin at the interface, similar to that observed in hydrophobin-surfactant mixtures. In the composition and concentration range studied here for the co-adsorption of β-casein-hydrophobin mixtures the adsorption is dominated by the β-casein adsorption. The results provide an important insight into how the competitive adsorption in protein mixtures of hydrophobin and β-casein can impact upon the modification of solid surface properties and the potential for a wide range of colloid stabilisation applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Improving the Thermodynamic Stability of Aluminate Spinel Nanoparticles with Rare Earths

    DOE PAGES

    Hasan, M. M.; Dey, Sanchita; Nafsin, Nazia; ...

    2016-06-29

    Surface energy is a key parameter to understand and predict the stability of catalysts. In this work, the surface energy of MgAl 2O 4, an important base material for catalyst support, was reduced by using dopants prone to form surface excess (surface segregation): Y 3+, Gd 3+, and La 3+. The energy reduction was predicted by atomistic simulations of spinel surfaces and experimentally demonstrated by using microcalorimetry. The surface energy of undoped MgAl 2O 4 was directly measured as 1.65 ± 0.04 J/m 2 and was reduced by adding 2 mol % of the dopants to 1.55 ± 0.04 J/mmore » 2 for Y-doping, 1.45 ± 0.05 J/m 2 for Gd-doping, and 1.26 ± 0.06 J/m 2 for La-doping. Atomistic simulations are qualitatively consistent with the experiments, reinforcing the link between the role of dopants in stabilizing the surface and the energy of segregation. Surface segregation was experimentally assessed using electron energy loss spectroscopy mapping in a scanning transmission electron microscopy image. Finally, the reduced energy resulted in coarsening inhibition for the doped samples and, hence, systematically smaller particle sizes (larger surface areas), meaning increased stability for catalytic applications. Moreover, both experiment and modeling reveal preferential dopant segregation to specific surfaces, which leads to the preponderance of {111} surface planes and suggests a strategy to enhance the area of desired surfaces in nanoparticles for better catalyst support activity.« less

  6. Drastic reduction of adsorption of CO and H2 on (111)-type Pd layers

    NASA Technical Reports Server (NTRS)

    Poppa, H.; Soria, F.

    1983-01-01

    Clean surfaces of (111)-type Pd layers, grown from the vapor phase on Mo(110) at room temperature, were used to study the adsorption of CO and H2 by temperature-programmed desorption, Auger electron spectroscopy, and low-energy electron diffraction. Mild annealing of the as-grown layers during a single desorption cycle (to about 600 K) drastically reduces the adsorption for both adsorbates. Low-dose argon-ion bombardment introduces surface imperfections which restore a high adsorption probability. The results are interpreted in terms of particular (111)-type surface structures that persist tp layer thicknesses of about four monolayers; the results raise questions with respect to the surface structure of supported thin epitaxial islands and particles of Pd and possibly also with respect to conventional methods of preparing bulk surfaces of Pd for adsorption studies.

  7. Effects of structure of fatty acid collectors on the adsorption of fluorapatite (0 0 1) surface: A first-principles calculations

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Li, Xianhai; Mao, Song; Li, Longjiang; Ke, Baolin; Zhang, Qin

    2018-06-01

    Effects of carbon chain length, carbon chain isomerism, Cdbnd C double bonds number on fatty acid adsorption on FAP (0 0 1) surface have been investigated based on DFT. The results revealed that fatty acid collector can form stable adsorption configuration at Ca1 (surf) site. Chemical adsorption was formed between O (mole) of fatty acid collector and the Ca1 (surf) of fluorapatite (0 0 1) surface; hydrogen bond adsorption was formed between the H (mole) of fatty acid and the O (surf) of-[PO4]- of FAP (0 0 1) surface. Fatty acid collectors and FAP (0 0 1) surface are bonding by means of the hybridization of O (mole) 2p and Ca (surf) 4d orbitals, H (mole) 1s and O (surf) 2p orbital. The analysis of adsorption energy, DOS, electron density, Mulliken charge population and Mulliken bond population revealed that with the carbon chain growing within certain limits, the absolute value of the adsorption energy and the overlapping area between the DOS curve of O (mole) and Ca (surf) was greater, while that of H (mole) 1s and O (surf) 2p basically remained unchanged. As Cdbnd C double bonds of fatty acids increased within certain limits, the adsorption energy and the overlapping area between the state density curve of O (mole) and Ca (surf), H (mole) and O (surf) basically remained unchanged. The substituent groups of fatty acid changed, the absolute value of the adsorption energy and the overlapping area between the state density curve had a major change. The influence of fatty acids adsorption on FAP (0 0 1) surface depends mainly on the interaction between O (mole) and Ca (surf).

  8. Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes.

    PubMed

    Yan, Jinlong; Jiang, Tao; Yao, Ying; Lu, Song; Wang, Qilei; Wei, Shiqiang

    2016-04-01

    Iron oxide (FeO) coated by natural organic matter (NOM) is ubiquitous. The associations of minerals with organic matter (OM) significantly changes their surface properties and reactivity, and thus affect the environmental fate of pollutants, including nutrients (e.g., phosphorus (P)). In this study, ferrihydrite/goethite-humic acid (FH/GE-HA) complexes were prepared and their adsorption characteristics on P at various pH and ionic strength were investigated. The results indicated that the FeO-OM complexes showed a decreased P adsorption capacity in comparison with bare FeO. The maximum adsorption capacity (Qmax) decreased in the order of FH (22.17 mg/g)>FH-HA (5.43 mg/g)>GE (4.67 mg/g)>GE-HA (3.27 mg/g). After coating with HA, the amorphous FH-HA complex still showed higher P adsorption than the crystalline GE-HA complex. The decreased P adsorption observed might be attributed to changes of the FeO surface charges caused by OM association. The dependence of P adsorption on the specific surface area of adsorbents suggests that the FeO component in the complexes is still the main contributor for the adsorption surfaces. The P adsorptions on FeO-HA complexes decreased with increasing initial pH or decreasing initial ionic strength. A strong dependence of P adsorption on ionic strength and pH may demonstrate that outer-sphere complexes between the OM component on the surface and P possibly coexist with inner-sphere surface complexes between the FeO component and P. Therefore, previous over-emphasis on the contributions of original minerals to P immobilization possibly over-estimates the P loading capacity of soils, especially in humic-rich areas. Copyright © 2015. Published by Elsevier B.V.

  9. A key parameter on the adsorption of diluted aniline solutions with activated carbons: The surface oxygen content.

    PubMed

    Pardo, Beatrice; Ferrer, Nabí; Sempere, Julià; Gonzalez-Olmos, Rafael

    2016-11-01

    A total of 11 different commercial activated carbons (AC) with well characterized textural properties and oxygen surface content were tested as adsorbents for the removal of aniline as a target water pollutant. The maximum adsorption capacity of aniline for the studied AC was from 138.9 to 257.9 mg g(-1) at 296.15 K and it was observed to be strongly related to the textural properties of the AC, mainly with the BET surface area and the micropore volume. It was not observed any influence of the oxygen surface content of the AC on the maximum adsorption capacity. However, it was found that at low aniline aqueous concentration, the presence of oxygen surface groups plays a dominant role during the adsorption. A high concentration of oxygen surface groups, mainly carboxylic and phenolic groups, decreases the aniline adsorption regardless of the surface area of the AC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors

    NASA Astrophysics Data System (ADS)

    Yi, X.; Duan, H. L.

    2009-08-01

    Surface stress is widely used to characterize the adsorption effect on the mechanical response of nanomaterials and nanodevices. However, quantitative relations between continuum-level descriptions of surface stress and molecular-level descriptions of adsorbate interactions are not well established. In this paper, we first obtain the relations between the adsorption-induced surface stress and the van der Waals and Coulomb interactions in terms of the physical and chemical interactions between adsorbates and solid surfaces. Then, we present a theoretical framework to predict the deflection and resonance frequencies of microcantilevers with the simultaneous effects of the eigenstrain, surface stress and adsorption mass. Finally, the adsorption-induced deflection and resonance frequency shift of microcantilevers are numerically analyzed for the van der Waals and Coulomb interactions. The present theoretical framework quantifies the mechanisms of the adsorption-induced surface stress, and thus provides guidelines to the analysis of the sensitivities, and the identification of the detected substance in the design and application of micro- and nanocantilever sensors.

  11. Three steps to gold: mechanism of protein adsorption revealed by Brownian and molecular dynamics simulations.

    PubMed

    Ozboyaci, M; Kokh, D B; Wade, R C

    2016-04-21

    The addition of three N-terminal histidines to β-lactamase inhibitor protein was shown experimentally to increase its binding potency to an Au(111) surface substantially but the binding mechanism was not resolved. Here, we propose a complete adsorption mechanism for this fusion protein by means of a multi-scale simulation approach and free energy calculations. We find that adsorption is a three-step process: (i) recognition of the surface predominantly by the histidine fusion peptide and formation of an encounter complex facilitated by a reduced dielectric screening of water in the interfacial region, (ii) adsorption of the protein on the surface and adoption of a specific binding orientation, and (iii) adaptation of the protein structure on the metal surface accompanied by induced fit. We anticipate that the mechanistic features of protein adsorption to an Au(111) surface revealed here can be extended to other inorganic surfaces and proteins and will therefore aid the design of specific protein-surface interactions.

  12. Adsorption of Cu(II) to Bacillus subtilis: A pH-dependent EXAFS and thermodynamic modelling study

    NASA Astrophysics Data System (ADS)

    Moon, Ellen M.; Peacock, Caroline L.

    2011-11-01

    Bacteria are very efficient sorbents of trace metals, and their abundance in a wide variety of natural aqueous systems means biosorption plays an important role in the biogeochemical cycling of many elements. We measured the adsorption of Cu(II) to Bacillus subtilis as a function of pH and surface loading. Adsorption edge and XAS experiments were performed at high bacteria-to-metal ratio, analogous to Cu uptake in natural geologic and aqueous environments. We report significant Cu adsorption to B. subtilis across the entire pH range studied (pH ˜2-7), with adsorption increasing with pH to a maximum at pH ˜6. We determine directly for the first time that Cu adsorbs to B. subtilis as a (CuO 5H n) n-8 monodentate, inner-sphere surface complex involving carboxyl surface functional groups. This Cu-carboxyl complex is able to account for the observed Cu adsorption across the entire pH range studied. Having determined the molecular adsorption mechanism of Cu to B. subtilis, we have developed a new thermodynamic surface complexation model for Cu adsorption that is informed by and consistent with EXAFS results. We model the surface electrostatics using the 1p K basic Stern approximation. We fit our adsorption data to the formation of a monodentate, inner-sphere tbnd RCOOCu + surface complex. In agreement with previous studies, this work indicates that in order to accurately predict the fate and mobility of Cu in complex biogeochemical systems, we must incorporate the formation of Cu-bacteria surface complexes in reactive transport models. To this end, this work recommends log K tbnd RCOOCu + = 7.13 for geologic and aqueous systems with generally high B. subtilis-to-metal ratio.

  13. Analysis of Surface and Bulk Behavior in Ni-Pd Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Rondald D.

    2003-01-01

    The most salient features of the surface structure and bulk behavior of Ni-Pd alloys have been studied using the BFS method for alloys. Large-scale atomistic simulations were performed to investigate surface segregation profiles as a function of temperature, crystal face, and composition. Pd enrichment of the first layer was observed in (111) and (100) surfaces, and enrichment of the top two layers occurred for (110) surfaces. In all cases, the segregation profile shows alternate planes enriched and depleted in Pd. In addition, the phase structure of bulk Ni-Pd alloys as a function of temperature and composition was studied. A weak ordering tendency was observed at low temperatures, which helps explain the compositional oscillations in the segregation profiles. Finally, based on atom-by-atom static energy calculations, a comprehensive explanation for the observed surface and bulk features will be presented in terms of competing chemical and strain energy effects.

  14. Segregation Phenomena in Size-Selected Bimetallic CuNi Nanoparticle Catalysts

    DOE PAGES

    Pielsticker, Lukas; Zegkinoglou, Ioannis; Divins, Nuria J.; ...

    2017-10-25

    Surface segregation, restructuring, and sintering phenomena in size-selected copper–nickel nanoparticles (NPs) supported on silicon dioxide substrates were systematically investigated as a function of temperature, chemical state, and reactive gas environment. Using near-ambient pressure (NAP-XPS) and ultrahigh vacuum X-ray photoelectron spectroscopy (XPS), we showed that nickel tends to segregate to the surface of the NPs at elevated temperatures in oxygen- or hydrogen-containing atmospheres. It was found that the NP pretreatment, gaseous environment, and oxide formation free energy are the main driving forces of the restructuring and segregation trends observed, overshadowing the role of the surface free energy. The depth profile ofmore » the elemental composition of the particles was determined under operando CO 2 hydrogenation conditions by varying the energy of the X-ray beam. The temperature dependence of the chemical state of the two metals was systematically studied, revealing the high stability of nickel oxides on the NPs and the important role of high valence oxidation states in the segregation behavior. Atomic force microscopy (AFM) studies revealed a remarkable stability of the NPs against sintering at temperatures as high as 700 °C. The results provide new insights into the complex interplay of the various factors which affect alloy formation and segregation phenomena in bimetallic NP systems, often in ways different from those previously known for their bulk counterparts. In conclusion, this leads to new routes for tuning the surface composition of nanocatalysts, for example, through plasma and annealing pretreatments.« less

  15. Formic Acid Dissociative Adsorption on NiO(111): Energetics and Structure of Adsorbed Formate

    DOE PAGES

    Zhao, Wei; Doyle, Andrew D.; Morgan, Sawyer E.; ...

    2017-11-21

    Here, the dissociative adsorption of carboxylic acids on oxide surfaces is important for understanding adsorbed carboxylates, which are important as intermediates in catalytic reactions, for the organo-functionalization of oxide surfaces, and in many other aspects of oxide surface chemistry. We present here the first direct experimental measurement of the heat of dissociative adsorption of any carboxylic acid on any single-crystal oxide surface. The enthalpy of the dissociative adsorption of formic acid, the simplest carboxylic acid, to produce adsorbed formate and hydrogen (as a surface hydroxyl) on a (2 × 2)-NiO(111) surface is measured by single crystal adsorption calorimetry. The differentialmore » heat of adsorption decreases with formic acid coverage from 202 to 99 kJ/mol at saturation (0.25 ML). The structure of the adsorbed products is clarified by density functional theory (DFT) calculations, which provide energies in reasonable agreement with the calorimetry. These calculations show that formic acid readily dissociates on both the oxygen and Ni terminations of the octapolar NiO(111) surfaces, donating its acid H to a surface lattice oxygen, while HCOO adsorbs preferentially with bridging-type geometry near the M-O 3/O-M 3 sites. The calculated energetics at low coverages agrees well with experimental data, while larger differences are observed at high coverage (0.25 ML). The large decrease in experimental heat of adsorption with coverage can be brought into agreement with the DFT energies if we assume that both types of octapolar surface terminations (O- and Ni-) are present on the starting surface.« less

  16. Formic Acid Dissociative Adsorption on NiO(111): Energetics and Structure of Adsorbed Formate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Wei; Doyle, Andrew D.; Morgan, Sawyer E.

    Here, the dissociative adsorption of carboxylic acids on oxide surfaces is important for understanding adsorbed carboxylates, which are important as intermediates in catalytic reactions, for the organo-functionalization of oxide surfaces, and in many other aspects of oxide surface chemistry. We present here the first direct experimental measurement of the heat of dissociative adsorption of any carboxylic acid on any single-crystal oxide surface. The enthalpy of the dissociative adsorption of formic acid, the simplest carboxylic acid, to produce adsorbed formate and hydrogen (as a surface hydroxyl) on a (2 × 2)-NiO(111) surface is measured by single crystal adsorption calorimetry. The differentialmore » heat of adsorption decreases with formic acid coverage from 202 to 99 kJ/mol at saturation (0.25 ML). The structure of the adsorbed products is clarified by density functional theory (DFT) calculations, which provide energies in reasonable agreement with the calorimetry. These calculations show that formic acid readily dissociates on both the oxygen and Ni terminations of the octapolar NiO(111) surfaces, donating its acid H to a surface lattice oxygen, while HCOO adsorbs preferentially with bridging-type geometry near the M-O 3/O-M 3 sites. The calculated energetics at low coverages agrees well with experimental data, while larger differences are observed at high coverage (0.25 ML). The large decrease in experimental heat of adsorption with coverage can be brought into agreement with the DFT energies if we assume that both types of octapolar surface terminations (O- and Ni-) are present on the starting surface.« less

  17. Precise control of surface electrostatic forces on polymer brush layers with opposite charges for resistance to protein adsorption.

    PubMed

    Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko

    2016-10-01

    Various molecular interaction forces are generated during protein adsorption process on material surfaces. Thus, it is necessary to control them to suppress protein adsorption and the subsequent cell and tissue responses. A series of binary copolymer brush layers were prepared via surface-initiated atom transfer radical polymerization, by mixing the cationic monomer unit and anionic monomer unit randomly in various ratios. Surface characterization revealed that the constructed copolymer brush layers exhibited an uniform super-hydrophilic nature and different surface potentials. The strength of the electrostatic interaction forces operating on these mixed-charge copolymer brush surfaces was evaluated quantitatively using force-versus-distance (f-d) curve measurements by atomic force microscopy (AFM) and probes modified by negatively charged carboxyl groups or positively charged amino groups. The electrostatic interaction forces were determined based on the charge ratios of the copolymer brush layers. Notably, the surface containing equivalent cationic/anionic monomer units hardly interacted with both the charged groups. Furthermore, the protein adsorption force and the protein adsorption mass on these surfaces were examined by AFM f-d curve measurement and surface plasmon resonance measurement, respectively. To clarify the influence of the electrostatic interaction on the protein adsorption behavior on the surface, three kinds of proteins having negative, positive, and relatively neutral net charges under physiological conditions were used in this study. We quantitatively demonstrated that the amount of adsorbed proteins on the surfaces would have a strong correlation with the strength of surface-protein interaction forces, and that the strength of surface-protein interaction forces would be determined from the combination between the properties of the electrostatic interaction forces on the surfaces and the charge properties of the proteins. Especially, the copolymer brush surface composed of equivalent cationic/anionic monomer units exhibited no significant interaction forces, and dramatically suppressed the adsorption of proteins regardless of their charge properties. We conclude that the established methodology could elucidate relationship between the protein adsorption behavior and molecular interaction, especially the electrostatic interaction forces, and demonstrated that the suppression of the electrostatic interactions with the ionic functional groups would be important for the development of new polymeric biomaterials with a high repellency of protein adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Infrared spectroscopic study of radiation-induced adsorption of n-hexane on a beryllium surface

    NASA Astrophysics Data System (ADS)

    Gadzhieva, N. N.

    2017-07-01

    Radiation-stimulated adsorption on a beryllium surface is studied by IR reflection-absorption spectroscopy. It is found that γ-irradiation at room temperature leads to the appearance of n-hexane adsorption centers on a beryllium surface according to molecular and dissociation mechanisms. The kinetics of n-hexane adsorption in a Be- n-hexane system is studied; activated dissociative chemisorption accompanied by formation of beryllium alkyls and surface hydrides is observed at absorbed doses 15 kGy ≤ Vγ ≤ 35 kGy. A possible mechanism of this process is suggested.

  19. Surface segregation of additives on SnO 2 based powders and their relationship with macroscopic properties

    NASA Astrophysics Data System (ADS)

    Pereira, Gilberto J.; Castro, Ricardo H. R.; Hidalgo, Pilar; Gouvêa, Douglas

    2002-07-01

    Surface properties of ceramic powders frequently play an important role in producing high-quality, high-performance, and reliable ceramic products. These properties are related to the surface bond types and interactions with the surroundings. Oxide surfaces generally contain adsorbed hydroxyl groups and modifications in the chemical composition of the surface may be studied by infrared spectroscopy. In this work, we prepared SnO 2 containing Fe or Mg ions by organic chemical route derived from Pechini's method. The prepared powders were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), dynamic electrophoretic mobility and surface area determination. Results demonstrated that the studied additives segregate onto the oxide surface and modify the hydroxyl IR bands of the adsorbed hydroxyl groups. These surface modifications change some macroscopic properties of the powder such as the isoelectric point (IEP) in aqueous suspensions and the final specific surface area. The increase of the surface area with additive concentration is supposedly due to the reduction of surface energy of the powders when additives segregate on the powder surface.

  20. Neighborhood Foreclosures, Racial/Ethnic Transitions, and Residential Segregation

    PubMed Central

    Hall, Matthew; Crowder, Kyle; Spring, Amy

    2015-01-01

    In this article, we use data on virtually all foreclosure events between 2005 and 2009 to calculate neighborhood foreclosure rates for nearly all block groups in the United States to assess the impact of housing foreclosures on neighborhood racial/ethnic change and on broader patterns of racial residential segregation. We find that the foreclosure crisis was patterned strongly along racial lines: black, Latino, and racially integrated neighborhoods had exceptionally high foreclosure rates. Multilevel models of racial/ethnic change reveal that foreclosure concentrations were linked to declining shares of whites and expanding shares of black and Latino residents. Results further suggest that these compositional shifts were driven by both white population loss and minority growth, especially from racially mixed settings with high foreclosure rates. To explore the impact of these racially selective migration streams on patterns of residential segregation, we simulate racial segregation assuming that foreclosure rates remained at their 2005 levels throughout the crisis period. Our simulations suggest that the foreclosure crisis increased racial segregation between blacks and whites by 1.1 dissimilarity points, and between Latinos and whites by 2.2 dissimilarity points. PMID:26120142

  1. Chlorine adsorption on the InAs (001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakulin, A. V.; Eremeev, S. V.; Tereshchenko, O. E.

    2011-01-15

    Chlorine adsorption on the In-stabilized InAs(001) surface with {zeta}-(4 Multiplication-Sign 2) and {beta}3 Prime -(4 Multiplication-Sign 2) reconstructions and on the Ga-stabilized GaAs (001)-{zeta}-(4 Multiplication-Sign 2) surface has been studied within the electron density functional theory. The equilibrium structural parameters of these reconstructions, surface atom positions, bond lengths in dimers, and their changes upon chlorine adsorption are determined. The electronic characteristics of the clean surface and the surface with adsorbed chlorine are calculated. It is shown that the most energetically favorable positions for chlorine adsorption are top positions over dimerized indium or gallium atoms. The mechanism of chlorine binding withmore » In(Ga)-stabilized surface is explained. The interaction of chlorine atoms with dimerized surface atoms weakens surface atom bonds and controls the initial stage of surface etching.« less

  2. Surface Segregation in Cu-Ni Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo; Ferrante, John

    1993-01-01

    Monte Carlo simulation is used to calculate the composition profiles of surface segregation of Cu-Ni alloys. The method of Bozzolo, Ferrante, and Smith is used to compute the energetics of these systems as a function of temperature, crystal face, and bulk concentration. The predictions are compared with other theoretical and experimental results.

  3. Effect of equilibration time on Pu desorption from goethite

    DOE PAGES

    Wong, Jennifer C.; Zavarin, Mavrik; Begg, James D.; ...

    2015-01-28

    Strongly sorbing ions such as plutonium may become irreversibly bound to mineral surfaces over time implicates near- and far-field transport of Pu. Batch adsorption–desorption data were collected as a function of time and pH to study the surface stability of Pu on goethite. Pu(IV) was adsorbed to goethite over the pH range 4.2 to 6.6 for different periods of time (1, 6, 15, 34 and 116 d). Moreover, following adsorption, Pu was leached from the mineral surface with desferrioxamine B (DFOB), a complexant capable of effectively competing with the goethite surface for Pu. The amount of Pu desorbed from the goethitemore » was found to vary as a function of the adsorption equilibration time, with less Pu removed from the goethite following longer adsorption periods. This effect was most pronounced at low pH. Logarithmic desorption distribution ratios for each adsorption equilibration time were fit to a pH-dependent model. Model slopes decreased between 1 and 116 d adsorption time, indicating that overall Pu(IV) surface stability on goethite surfaces becomes less dependent on pH with greater adsorption equilibration time. The combination of adsorption and desorption kinetic data suggest that non-redox aging processes affect Pu sorption behavior on goethite.« less

  4. Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel

    2014-05-01

    Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.

  5. Bovine serum albumin adsorption on titania surfaces and its relation to wettability aspects.

    PubMed

    Valagão Amadeu do Serro, A P; Fernandes, A C; de Jesus Vieira Saramago, B; Norde, W

    1999-09-05

    The adsorption of bovine serum albumin (BSA) from sodium chloride solution and Hanks' balanced salt solution (HBSS) onto TiO2-silicon surfaces is studied by reflectometry in stagnation point flow. The results are compared with those obtained by dynamic contact-angle (DCA) analysis of titanium substrates. The adsorption isotherms show that the adsorbed amount of protein always is lower in HBSS, that is, in the presence of calcium and phosphate ions. This may be related to the increase in surface hydrophilicity caused by these ions, as suggested by the authors in previous works. The rate of adsorption also is lower in HBSS solutions. Comparison of the initial adsorption rates with the rate of mass transfer to the surface reveals that in both solvents only a small fraction of the protein that arrives at the surface adsorbs onto it. Electrostatic and/or conformational effects can explain the energy barrier to adsorption. The DCA analysis of high concentration (4 mg/mL) protein solutions shows a strong reduction of the contact-angle hysteresis, both in HBSS and in NaCl solutions, which confirms that the immediate adsorption of the protein to the surface forms a stable, hydrophilic film. Copyright 1999 John Wiley & Sons, Inc.

  6. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.

    PubMed

    Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M

    2013-01-01

    Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.

  7. Surface Condensation of CO2 onto Kaolinite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; Glezakou, Vassiliki Alexandra; Owen, Antionette T.

    2014-02-11

    The fundamental adsorption behavior of gaseous and supercritical carbon dioxide (CO2) onto poorly crystalline kaolinite (KGa-2) at conditions relevant to geologic sequestration has been investigated using a quartz crystal microbalance (QCM) and density functional theory (DFT) methods. The QCM data indicated linear adsorption of CO2 (0-0.3 mmol CO2/g KGa-2) onto the kaolinite surface up through the gaseous state (0.186 g/cm3). However in the supercritical region, CO2 adsorption increases dramatically, reaching a peak (0.9-1.0 mmol CO2/g KGa-2) near 0.43 g/cm3, before declining rapidly to surface adsorption values equivalent or below gaseous CO2. This adsorption profile was not observed with He ormore » N2. Comparative density functional studies of CO2 interactions with kaolinite surface models rule out CO2 intercalation and confirm that surface adsorption is favored up to approximately 0.35 g/cm3 of CO2, showing distorted T-shaped CO2-CO2 clustering, typical of supercritical CO2 aggregation over the surface as the density increases. Beyond this point, the adsorption energy gain for any additional CO2 becomes less than the CO2 interaction energy (~0.2 eV) in the supercritical medium resulting in overall desorption of CO2 from the kaolinite surface.« less

  8. Oxygen adsorption onto pure and doped Al surfaces--the role of surface dopants.

    PubMed

    Lousada, Cláudio M; Korzhavyi, Pavel A

    2015-01-21

    Using density functional theory (DFT) with the PBE0 density functional we investigated the role of surface dopants in the molecular and dissociative adsorption of O2 onto Al clusters of types Al50, Al50Alad, Al50X and Al49X, where X represents a dopant atom of the following elements Si, Mg, Cu, Sc, Zr, and Ti. Each dopant atom was placed on the Al(111) surface as an adatom or as a substitutional atom, in the last case replacing a surface Al atom. We found that for the same dopant geometry, the closer is the ionization energy of the dopant element to that of elemental Al, the more exothermic is the dissociative adsorption of O2 and the stronger are the bonds between the resulting O atoms and the surface. Additionally we show that the Mulliken concept of electronegativity can be applied in the prediction of the dissociative adsorption energy of O2 on the doped surfaces. The Mulliken modified second-stage electronegativity of the dopant atom is proportional to the exothermicity of the dissociative adsorption of O2. For the same dopant element in an adatom position the dissociation of O2 is more exothermic when compared to the case where the dopant occupies a substitutional position. These observations are discussed in view of the overlap population densities of states (OPDOS) computed as the overlap between the electronic states of the adsorbate O atoms and the clusters. It is shown that a more covalent character in the bonding between the Al surface and the dopant atom causes a more exothermic dissociation of O2 and stronger bonding with the O atoms when compared to a more ionic character in the bonding between the dopant and the Al surface. The extent of the adsorption site reconstruction is dopant atom dependent and is an important parameter for determining the mode of adsorption, adsorption energy and electronic structure of the product of O2 adsorption. The PBE0 functional could predict the existence of the O2 molecular adsorption product for many of the cases investigated here.

  9. Atomistic Structure, Strength, and Kinetic Properties of Intergranular Films in Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garofalini, Stephen H

    2015-01-08

    Intergranular films (IGFs) present in polycrystalline oxide and nitride ceramics provide an excellent example of nanoconfined glasses that occupy only a small volume percentage of the bulk ceramic, but can significantly influence various mechanical, thermal, chemical, and optical properties. By employing molecular dynamics computer simulations, we have been able to predict structures and the locations of atoms at the crystal/IGF interface that were subsequently verified with the newest electron microscopies. Modification of the chemistry of the crystal surface in the simulations provided the necessary mechanism for adsorption of specific rare earth ions from the IGF in the liquid state tomore » the crystal surface. Such results had eluded other computational approaches such as ab-initio calculations because of the need to include not only the modified chemistry of the crystal surfaces but also an accurate description of the adjoining glassy IGF. This segregation of certain ions from the IGF to the crystal caused changes in the local chemistry of the IGF that affected fracture behavior in the simulations. Additional work with the rare earth ions La and Lu in the silicon oxynitride IGFs showed the mechanisms for their different affects on crystal growth, even though both types of ions are seen adhering to a bounding crystal surface that would normally imply equivalent affects on grain growth.« less

  10. DFT studies on H 2O adsorption and its effect on CO oxidation over spinel Co 3O 4 (110) surface

    NASA Astrophysics Data System (ADS)

    Xu, Xiang Lan; Li, Jun Qian

    2011-12-01

    Adsorption of H2O and its effect on CO oxidation over spinel Co3O4 (110) surface were studied by density functional theory calculations. H2O is adsorbed favorably at the octahedral cobalt (Cooct) site through O atom on the surface. Hydrogen bonding interaction between 1s orbitals of H atoms in H2O and the 2p orbitals of surface active oxygen sites plays a key role for H2O adsorption. The inhibition effect of H2O adsorption on the CO oxidation over the surfaces is attributed to the competition between H2O and CO molecules for the surface twofold coordinated oxygen site.

  11. Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale

    NASA Astrophysics Data System (ADS)

    Zhou, S.

    2017-12-01

    Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of the salt ion; whereas if the 1:1 type electrolyte and the symmetrical patterns are considered, then the opposite may be the case. All of these findings can be explained self-consistently from several perspectives: an excess adsorption of the salt ions (induced by the surface charge separation) serving to raise the osmotic pressure between the plates, configuration fine-tuning in the thinner ion adsorption layer driven by the energy decrease principle, direct Coulombic interactions operating between charged objects on the two face-to-face plates involved, and net charge strength in the ion adsorption layer responsible for the net electrostatic repulsion.

  12. Point defects at the ice (0001) surface

    PubMed Central

    Watkins, Matthew; VandeVondele, Joost; Slater, Ben

    2010-01-01

    Using density functional theory we investigate whether intrinsic defects in ice surface segregate. We predict that hydronium, hydroxide, and the Bjerrum L- and D-defects are all more stable at the surface. However, the energetic cost to create a D-defect at the surface and migrate it into the bulk crystal is smaller than its bulk formation energy. Absolute and relative segregation energies are sensitive to the surface structure of ice, especially the spatial distribution of protons associated with dangling hydrogen bonds. It is found that the basal plane surface of hexagonal ice increases the bulk concentration of Bjerrum defects, strongly favoring D-defects over L-defects. Dangling protons associated with undercoordinated water molecules are preferentially injected into the crystal bulk as Bjerrum D-defects, leading to a surface dipole that attracts hydronium ions. Aside from the disparity in segregation energies for the Bjerrum defects, we find the interactions between defect species to be very finely balanced; surface segregation energies for hydronium and hydroxide species and trapping energies of these ionic species with Bjerrum defects are equal within the accuracy of our calculations. The mobility of the ionic hydronium and hydroxide species is greatly reduced at the surface in comparison to the bulk due to surface sites with high trapping affinities. We suggest that, in pure ice samples, the surface of ice will have an acidic character due to the presence of hydronium ions. This may be important in understanding the reactivity of ice particulates in the upper atmosphere and at the boundary layer. PMID:20615938

  13. The effect of high ionic strength on neptunium (V) adsorption to a halophilic bacterium

    NASA Astrophysics Data System (ADS)

    Ams, David A.; Swanson, Juliet S.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Richmann, Michael; Reed, Donald T.

    2013-06-01

    The mobility of neptunium (V) in subsurface high ionic strength aqueous systems may be strongly influenced by adsorption to the cell wall of the halophilic bacteria Chromohalobacter sp. This study is the first to evaluate the adsorption of neptunium (V) to the surface of a halophilic bacterium as a function of pH from approximately 2 to 10 and at ionic strengths of 2 and 4 M. This is also the first study to evaluate the effects of carbonate complexation with neptunium (V) on adsorption to whole bacterial cells under high pH conditions. A thermodynamically-based surface complexation model was adapted to describe experimental adsorption data under high ionic strength conditions where traditional corrections for aqueous ion activity are invalid. Adsorption of neptunium (V) was rapid and reversible under the conditions of the study. Adsorption was significant over the entire pH range evaluated for both ionic strength conditions and was shown to be dependent on the speciation of the sites on the bacterial surface and neptunium (V) in solution. Adsorption behavior was controlled by the relatively strong electrostatic attraction of the positively charged neptunyl ion to the negatively charged bacterial surface at pH below circum-neutral. At pH above circum-neutral, the adsorption behavior was controlled by the presence of negatively charged neptunium (V) carbonate complexes resulting in decreased adsorption, although adsorption was still significant due to the adsorption of negatively charged neptunyl-carbonate species. Adsorption in 4 M NaClO4 was enhanced relative to adsorption in 2 M NaClO4 over the majority of the pH range evaluated, likely due to the effect of increasing aqueous ion activity at high ionic strength. The protonation/deprotonation characteristics of the cell wall of Chromohalobacter sp. were evaluated by potentiometric titrations in 2 and 4 M NaClO4. Bacterial titration results indicated that Chromohalobacter sp. exhibits similar proton buffering capacity to previously studied non-halophilic bacteria. The titration data were used to determine the number of types, concentrations, and associated deprotonation constants of functional groups on the bacterial surface; the neptunium adsorption measurements were used to constrain binding constant values for the important neptunium (V)-bacterial surface species. Together, these results can be incorporated into geochemical speciation models to aid in the prediction of neptunium (V) mobility in complex bacteria-bearing geochemical systems.

  14. Competitive adsorption of monoclonal antibodies and nonionic surfactants at solid hydrophobic surfaces.

    PubMed

    Kapp, Sebastian J; Larsson, Iben; Van De Weert, Marco; Cárdenas, Marité; Jorgensen, Lene

    2015-02-01

    Two monoclonal antibodies from the IgG subclasses one and two were compared in their adsorption behavior with hydrophobic surfaces upon dilution to 10 mg/mL with 0.9% NaCl. These conditions simulate handling of the compounds at hospital pharmacies and surfaces encountered after preparation, such as infusion bags and i.v. lines. Total internal reflection fluorescence and quartz crystal microbalance with dissipation monitoring were used to follow and quantify this. Furthermore, the influence of the nonionic surfactant polysorbate 80 (PS80) on the adsorption process of these two antibodies was investigated. Despite belonging to two different IgG subclasses, both antibodies displayed comparable adsorption behavior. Both antibodies readily adsorbed in the absence of PS80, whereas adsorption was reduced in the presence of 30 mg/L surfactant. The sequence of exposure of the surfactant and protein to the surface was found to have a major influence on the extent of protein adsorption. Although only a fraction of adsorbed protein could be removed by rinsing with 30 mg/L surfactant solution, adsorption was entirely prevented when surfaces were pre-exposed to PS80. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Theoretical Study of Trimethylacetic Acid Adsorption on CeO 2 (111) Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weina; Thevuthasan, S.; Wang, Wenliang

    We investigated trimethylacetic acid (TMAA) adsorption on stoichiometric and oxygen-deficient CeO 2(111) surfaces using density functional theory that accounts for the on-site Coulomb interaction via a Hubbard term (DFT+U) and long-range dispersion correction. Both the molecular state and dissociative state (TMAA → TMA– + H +) were identified on stoichiometric and oxygen-deficient CeO 2(111) surfaces. For the stoichiometric surface, two thermodynamically favorable configurations with adsorption energies of the order of -30 kcal/mol are identified; one is a molecule adsorption state, and the other one is a dissociative state. For the oxygen-deficient surface, dissociative states are more favorable than molecular states.more » Moreover, the most favorable configuration is the dissociative adsorption of TMAA with the adsorption energy of the order of -77 kcal/mol. The dissociated TMA moiety takes the position of oxygen vacancy, forming three Ce–O bonds. The signature vibrational frequencies for these thermodynamically stable structures are reported as well as their electronic structures. The effects of long-range dispersion interactions are found to be negligible for geometries but important for adsorption energies.« less

  16. Theoretical Study of Trimethylacetic Acid Adsorption on CeO 2 (111) Surface

    DOE PAGES

    Wang, Weina; Thevuthasan, S.; Wang, Wenliang; ...

    2016-01-11

    We investigated trimethylacetic acid (TMAA) adsorption on stoichiometric and oxygen-deficient CeO 2(111) surfaces using density functional theory that accounts for the on-site Coulomb interaction via a Hubbard term (DFT+U) and long-range dispersion correction. Both the molecular state and dissociative state (TMAA → TMA– + H +) were identified on stoichiometric and oxygen-deficient CeO 2(111) surfaces. For the stoichiometric surface, two thermodynamically favorable configurations with adsorption energies of the order of -30 kcal/mol are identified; one is a molecule adsorption state, and the other one is a dissociative state. For the oxygen-deficient surface, dissociative states are more favorable than molecular states.more » Moreover, the most favorable configuration is the dissociative adsorption of TMAA with the adsorption energy of the order of -77 kcal/mol. The dissociated TMA moiety takes the position of oxygen vacancy, forming three Ce–O bonds. The signature vibrational frequencies for these thermodynamically stable structures are reported as well as their electronic structures. The effects of long-range dispersion interactions are found to be negligible for geometries but important for adsorption energies.« less

  17. Adsorption of benzene on low index surfaces of platinum in the presence of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    K, Ayishabi P.; Chatanathodi, Raghu

    2017-10-01

    We have studied the adsorption of benzene on three low index surfaces of platinum using plane-wave Density Functional Theory (DFT) calculations, taking into consideration van der Waals (vdW) interaction. Experimentally, it is known that benzene adsorbs at the bridge site on the (111) surface, but in case of (110) and (100), this is not known yet. Our calculations show that benzene preferably adsorbs on bridge position on Pt(111) surface, whereas on Pt(110) and Pt(100) surfaces, the hollow position is energetically more favoured. The structural and electronic modifications of molecule and the surfaces are also examined. In all cases, adsorption-induced distortions of adsorbate-substrate complex are found to be modest in character, but relatively maximum in case of the (110) facet. The molecule is bound most strongly to the (110) surface. Importantly, we find that adsorption at bridge and atop positions are energetically feasible on the (110) surface, with the canting of benzene ring at a small angle from the metal plane. We study changes in electronic structure and the net charge transfer upon adsorption of benzene on all three low index planes. Inclusion of vdW interactions is important for obtaining realistic adsorption strengths for benzene on various Pt facets.

  18. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  19. First Molecular Dynamics simulation insight into the mechanism of organics adsorption from aqueous solutions on microporous carbons

    NASA Astrophysics Data System (ADS)

    Terzyk, Artur P.; Gauden, Piotr A.; Zieliński, Wojciech; Furmaniak, Sylwester; Wesołowski, Radosław P.; Klimek, Kamil K.

    2011-10-01

    The results of 84 MD simulations showing the influence of porosity and carbon surface oxidation on adsorption of three organic compounds from aqueous solutions on carbons are reported. Based on a model of 'soft' activated carbon, three carbon structures with gradually changed microporosity were created. Next, different number of surface oxygen groups was introduced. We observe quantitative agreement between simulation and experiment i.e. the decrease in adsorption from benzene down to paracetamol. Simulation results clearly demonstrate that the balance between porosity and carbon surface chemical composition in organics adsorption on carbons, and the pore blocking determine adsorption properties of carbons.

  20. Mechanisms of chain adsorption on porous substrates and critical conditions of polymer chromatography.

    PubMed

    Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V

    2016-11-01

    Polymer adsorption is a ubiquitous phenomenon with numerous technological and healthcare applications. The mechanisms of polymer adsorption on surfaces and in pores are complex owing to a competition between various entropic and enthalpic factors. Due to adsorption of monomers to the surface, the chain gains in enthalpy yet loses in entropy because of confining effects. This competition leads to the existence of critical conditions of adsorption when enthalpy gain and entropy loss are in balance. The critical conditions are controlled by the confining geometry and effective adsorption energy, which depends on the solvent composition and temperature. This phenomenon has important implications in polymer chromatography, since the retention at the critical point of adsorption (CPA) is chain length independent. However, the mechanisms of polymer adsorption in pores are poorly understood and there is an ongoing discussion in the theoretical literature about the very existence of CPA for polymer adsorption on porous substrates. In this work, we examine the mechanisms of chain adsorption on a model porous substrate using Monte Carlo (MC) simulations. We distinguish three adsorption mechanisms depending on the chain location: on external surface, completely confined in pores, and also partially confined in pores in so-called "flower" conformations. The free energies of different conformations of adsorbed chains are calculated by the incremental gauge cell MC method that allows one to determine the partition coefficient as a function of the adsorption potential, pore size, and chain length. We confirm the existence of the CPA for chain length independent separation on porous substrates, which is explained by the dominant contributions of the chain adsorption at the external surface, in particular in flower conformations. Moreover, we show that the critical conditions for porous and nonporous substrates are identical and depend only on the surface chemistry. The theoretical results are confirmed by comparison with experimental data on chromatographic separation of a series of linear polystyrenes. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Interaction of ammonia with semiconducting oxide surfaces

    NASA Astrophysics Data System (ADS)

    Nigam, Sandeep; Sahoo, Suman Kalyan; Majumder, Chiranjib

    2018-04-01

    Using density functional theory (DFT) we have investigated the adsorption of NH3 molecule on the rutile SnO2(110) and mixed Sn0.5Ti0.5O2(110) surfaces. NH3 molecule gets absorbed on the 5-coordinated Sn atom (Sn5c) of the surface in tilted mode having an additional hydrogen bond with nearby surface bridged oxygen (Obr) atom. After adsorption, 3a1 molecular orbital of ammonia undergo significant dispersal as it donates its electron to surface atoms. The adsorption energy is found to be 1.4-1.6eV. Inclusion of Ti atoms in the SnO2 lattice leads to decrease in the adsorption energy value.

  2. Sodium dodecyl sulfate-ethoxylated polyethylenimine adsorption at the air-water interface: how the nature of ethoxylation affects the pattern of adsorption.

    PubMed

    Batchelor, Stephen N; Tucker, Ian; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K

    2014-08-19

    The strong interaction between ionic surfactants and polyelectrolytes of opposite charge results in enhanced surface adsorption at the air-water interface down to low surfactant concentrations and in some cases in the formation of ordered surface structures. A notable example which exhibits such properties is the mixture of polyethylenimine, PEI, and sodium dodecyl sulfate, SDS. However, the electrostatic interaction, around charge neutralization, between the surfactant and polymer often results in precipitation or coacervation. This can be mitigated for PEI-surfactant mixtures by ethoxylation of the PEI, but this can also result in a weaker surface interaction and a significant reduction in the adsorption. It is shown here that by localizing the ethoxylation of the PEI into discrete regions of the polymer precipitation upon the addition of SDS is suppressed, the strong surface interaction and enhanced adsorption of the polymer-surfactant mixture is retained. The adsorption of SDS in the presence of ethoxylated PEI is greatly enhanced at low SDS concentrations compared to the adsorption for pure SDS. The adsorption is equally pronounced at pH 7 and 10 and is largely independent of the degree of ethoxylation. Surface ordering, more than monolayer adsorption, is observed over a relatively narrow range of SDS concentrations and is most pronounced at pH 10 and for the polymers with the lower degree of ethoxylation. The results show that ethoxylated PEI's reported here provide a suitable route to enhanced surfactant adsorption while retaining favorable solution properties in which precipitation effects are minimized.

  3. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets.

    PubMed

    Wang, Jun; Chen, Zaiming; Chen, Baoliang

    2014-05-06

    The adsorption of naphthalene, phenanthrene, and pyrene onto graphene (GNS) and graphene oxide (GO) nanosheets was investigated to probe the potential adsorptive sites and molecular mechanisms. The microstructure and morphology of GNS and GO were characterized by elemental analysis, XPS, FTIR, Raman, SEM, and TEM. Graphene displayed high affinity to the polycyclic aromatic hydrocarbons (PAHs), whereas GO adsorption was significantly reduced after oxygen-containing groups were attached to GNS surfaces. An unexpected peak was found in the curve of adsorption coefficients (Kd) with the PAH equilibrium concentrations. The hydrophobic properties and molecular sizes of the PAHs affected the adsorption of G and GO. The high affinities of the PAHs to GNS are dominated by π-π interactions to the flat surface and the sieving effect of the powerful groove regions formed by wrinkles on GNS surfaces. In contrast, the adsorptive sites of GO changed to the carboxyl groups attaching to the edges of GO because the groove regions disappeared and the polar nanosheet surfaces limited the π-π interactions. The TEM and SEM images initially revealed that after loading with PAH, the conformation and aggregation of GNS and GO nanosheets dramatically changed, which explained the observations that the potential adsorption sites of GNS and GO were unusually altered during the adsorption process.

  4. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700−925°C to remove carbon−oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  5. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    PubMed

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David

    2011-08-01

    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  6. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite.

    PubMed

    Lin, Jianwei; Zhang, Zhe; Zhan, Yanhui

    2017-05-01

    A zirconium-modified zeolite (ZrMZ) was prepared, and then, humic acid (HA) was immobilized on the ZrMZ surface to prepare HA-loaded ZrMZ (HA-ZrMZ). The obtained ZrMZ and HA-ZrMZ were characterized by energy dispersive X-ray spectroscopy, elemental analyzer, N 2 adsorption/desorption isotherms, pH at the point of zero charge, and X-ray photoelectron spectroscopy. The adsorption characteristics of phosphate on ZrMZ and HA-ZrMZ were comparatively investigated in batch mode. The adsorption mechanism of phosphate on ZrMZ and HA-ZrMZ was investigated by ionic strength effect and 31 P nuclear magnetic resonance. The mechanism for phosphate adsorption onto ZrMZ was the formation of inner-sphere phosphate complexes at the solid/solution interface. The preloading of HA on ZrMZ reduced the phosphate adsorption capacity, and the more the HA loading amount, the lower the phosphate adsorption capacity. However, the preloading of HA on ZrMZ did not change the phosphate adsorption mechanism; i.e., the formation of inner-sphere phosphate surface complexes was still responsible for the adsorption of phosphate on HA-ZrMZ. The decreased phosphate adsorption capacity for ZrMZ after HA coating could be attributed to the fact that the coating of HA on ZrMZ reduced the amount of binding active sites available for phosphate adsorption, changed the adsorbent surface charges, and reduced the specific surface areas and pore volumes of ZrMZ.

  7. Human Growth Hormone Adsorption Kinetics and Conformation on Self-Assembled Monolayers

    PubMed Central

    Buijs, Jos; Britt, David W.; Hlady, Vladimir

    2012-01-01

    The adsorption process of the recombinant human growth hormone on organic films, created by self-assembly of octadecyltrichlorosilane, arachidic acid, and dipalmitoylphosphatidylcholine, is investigated and compared to adsorption on silica and methylated silica substrates. Information on the adsorption process of human growth hormone (hGH) is obtained by using total internal reflection fluorescence (TIRF). The intensity, spectra, and quenching of the intrinsic fluorescence emitted by the growth hormone’s single tryptophan are monitored and related to adsorption kinetics and protein conformation. For the various alkylated hydrophobic surfaces with differences in surface density and conformational freedom it is observed that the adsorbed amount of growth hormone is relatively large if the alkyl chains are in an ordered structure while the amounts adsorbed are considerably lower for adsorption onto less ordered alkyl chains of fatty acid and phospholipid layers. Adsorption on methylated surfaces results in a relatively large conformational change in the growth hormone’s structure, as displayed by a 7 nm blue shift in emission wavelength and a large increase in the effectiveness of fluorescence quenching. Conformational changes are less evident for hGH adsorption onto the fatty acid and phospholipid alkyl chains. Adsorption kinetics on the hydrophilic head groups of the self-assembled monolayers are similar to those on solid hydrophilic surfaces. The relatively small conformational changes in the hGH structure observed for adsorption on silica are even further reduced for adsorption on fatty acid head groups. PMID:25125795

  8. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less

  9. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    DOE PAGES

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; ...

    2017-10-06

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less

  10. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation

    USGS Publications Warehouse

    Fuller, C.C.; Dadis, J.A.; Waychunas, G.A.

    1993-01-01

    The kinetics of As(V) adsorption by ferrihydrite was investigated in coprecipitation and postsynthesis adsorption experiments conducted in the pH range 7.5-9.0. In coprecipitation experiments, As(V) was present in solution during the hydrolysis and precipitation of iron. In adsorption experiments, a period of rapid (<5 min) As(V) uptake from solution was followed by continued uptake for at least eight days, as As(V) diffused to adsorption sites on ferrihydrite surfaces within aggregates of colloidal particles. The time dependence of As(V) adsorption is well described by a general model for diffusion into a sphere if a subset of surface sites located near the exterior of aggregates is assumed to attain adsorptive equilibrium rapidly. The kinetics of As(V) desorption after an increase in pH were also consistent with diffusion as a rate-limiting process. Aging of pure ferrihydrite prior to As(V) adsorption caused a decrease in adsorption sites on the precipitate owing to crystallite growth. In coprecipitation experiments, the initial As(V) uptake was significantly greater than in post-synthesis adsorption experiments, and the rate of uptake was not diffusion limited because As(V) was coordinated by surface sites before crystallite growth and coagulation processes could proceed. After the initial adsorption, As(V) was slowly released from coprecipitates for at least one month, as crystallite growth caused desorption of As(V). Adsorption densities as high as 0.7 mole As(V) per mole of Fe were measured in coprecipitates, in comparison to 0.25 mole As(V) per mole of Fe in post-synthesis adsorption experiments. Despite the high Concentration of As(V) in the precipitates, EXAFS spectroscopy (Waychunas et al., 1993) showed that neither ferric arsenate nor any other As-bearing surface precipitate or solid solution was formed. The high adsorption densities are possible because the ferrihydrite particles are extremely small, approaching the size of small dioctahedral chains at the highest As(V) adsorption density. The results suggest that the solid solution model proposed by Fox (1989, 1992) for control of arsenate and phosphate concentrations in natural waters may be invalid. ?? 1993.

  11. Modeling of adsorption dynamics at air-liquid interfaces using statistical rate theory (SRT).

    PubMed

    Biswas, M E; Chatzis, I; Ioannidis, M A; Chen, P

    2005-06-01

    A large number of natural and technological processes involve mass transfer at interfaces. Interfacial properties, e.g., adsorption, play a key role in such applications as wetting, foaming, coating, and stabilizing of liquid films. The mechanistic understanding of surface adsorption often assumes molecular diffusion in the bulk liquid and subsequent adsorption at the interface. Diffusion is well described by Fick's law, while adsorption kinetics is less understood and is commonly described using Langmuir-type empirical equations. In this study, a general theoretical model for adsorption kinetics/dynamics at the air-liquid interface is developed; in particular, a new kinetic equation based on the statistical rate theory (SRT) is derived. Similar to many reported kinetic equations, the new kinetic equation also involves a number of parameters, but all these parameters are theoretically obtainable. In the present model, the adsorption dynamics is governed by three dimensionless numbers: psi (ratio of adsorption thickness to diffusion length), lambda (ratio of square of the adsorption thickness to the ratio of adsorption to desorption rate constant), and Nk (ratio of the adsorption rate constant to the product of diffusion coefficient and bulk concentration). Numerical simulations for surface adsorption using the proposed model are carried out and verified. The difference in surface adsorption between the general and the diffusion controlled model is estimated and presented graphically as contours of deviation. Three different regions of adsorption dynamics are identified: diffusion controlled (deviation less than 10%), mixed diffusion and transfer controlled (deviation in the range of 10-90%), and transfer controlled (deviation more than 90%). These three different modes predominantly depend on the value of Nk. The corresponding ranges of Nk for the studied values of psi (10(-2)

  12. Facile fabrication of Ag3VO4/attapulgite composites for highly efficient visible light-driven photodegradation towards organic dyes and tetracycline hydrochloride

    NASA Astrophysics Data System (ADS)

    Luo, Yuting; Luo, Jie; Duan, Guorong; Liu, Xiaoheng

    2017-12-01

    An efficient one-dimensional attapulgite (ATP)-based photocatalyst, Ag3VO4/ATP nanocomposite, was fabricated by a facile deposition precipitation method with well-dispersed Ag3VO4 nanoparticles anchored on the surface of natural ATP fibers. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectroscopy (UV-vis DRS) were employed to investigate the morphologies, structure, and optical property of the prepared photocatalysts. The photocatalytic experiments indicated that the Ag3VO4/ATP nanocomposites exhibited enhanced visible light-driven photocatalytic activity towards the degradation of rhodamine B (RhB), methyl orange (MO), and tetracycline hydrochloride (TCH), of which the 20 wt% Ag3VO4/ATP sample showed superb photocatalytic performance. As demonstrated by N2 adsorption-desorption, photocurrent measurements, electrochemical impedance spectroscopy (EIS), and photoluminescence (PL) spectra analyses, the improved photocatalytic activity arose from the enlarged surface area, the facilitated charge transfer, and the suppressed recombination of photogenerated charge carriers in Ag3VO4/ATP system. Furthermore, radical scavengers trapping experiments and recycling tests were also conducted. This work gives a new insight into fabrication of highly efficient, stable, and cost-effective visible light-driven photocatalyst for practical application in wastewater treatment and environmental remediation.

  13. NO adsorption on ice at low concentrations

    Treesearch

    Richard A. Sommerfeld; Martha H. Conklin; S. Kay Laird

    1992-01-01

    To better understand the properties of ice surfaces at different temperatures, the adsorption of a relatively insoluble gas, NO, was studied using a continuous-flow column experiment. Adsorption isotherms for NO on the surface of ice were measured for a temperature range of-1 to -70°C and a concentration range of 10 to 250 ppbv. Very little adsorption was measured;...

  14. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption.

    PubMed

    Wibowo, N; Setyadhi, L; Wibowo, D; Setiawan, J; Ismadji, S

    2007-07-19

    The influence of surface chemistry and solution pH on the adsorption of benzene and toluene on activated carbon and its acid and heat treated forms were studied. A commercial coal-based activated carbon F-400 was chosen as carbon parent. The carbon samples were obtained by modification of F-400 by means of chemical treatment with HNO3 and thermal treatment under nitrogen flow. The treatment with nitric acid caused the introduction of a significant number of oxygenated acidic surface groups onto the carbon surface, while the heat treatment increases the basicity of carbon. The pore characteristics were not significantly changed after these modifications. The dispersive interactions are the most important factor in this adsorption process. Activated carbon with low oxygenated acidic surface groups (F-400Tox) has the best adsorption capacity.

  15. Adsorption of plasmid DNA on anion exchange chromatography media.

    PubMed

    Tarmann, Christina; Jungbauer, Alois

    2008-08-01

    Anion exchange chromatography (AEC) is a useful and effective tool for DNA purification, but due to average pore sizes between 40 and 100 nm most AEC resins lack truly useful binding capacities for plasmid DNA (pDNA). Equilibrium binding capacities and uptake kinetics of AEC media including conventional media (Source 30 Q, Q Sepharose HP), a polymer grafted medium (Fractogel EMD DEAE (M)), media with large pores (Celbeads DEAE, PL SAX 4000 A 30 microm) and a monolithic medium (CIM-DEAE) were investigated by batch uptake or shallow bed experiments at two salt concentrations. Theoretical and experimental binding capacities suggest that the shape of the pDNA molecule can be described by a rod with a length to diameter ratio of 20:1 and that the molecule binds in upright position. The arrangement of DNA like a brush at the surface can be considered as entropy driven, kind of self-assembly process which is inherent to highly and uniformly charged DNA molecules. The initial phase of adsorption is very fast and levels off, associated with a change in mass transfer mechanism. Feed concentrations higher than 0.1 mg/mL pDNA pronounce this effect. Monolithic media showed the fastest adsorption rate and highest binding capacity with 13 mg pDNA per mL.

  16. An experimental-computer modeling study of inorganic phosphates surface adsorption on hydroxyapatite particles.

    PubMed

    Rivas, Manuel; Casanovas, Jordi; del Valle, Luis J; Bertran, Oscar; Revilla-López, Guillermo; Turon, Pau; Puiggalí, Jordi; Alemán, Carlos

    2015-06-07

    The adsorption of orthophosphate, pyrophosphate, triphosphate and a trisphosphonate onto hydroxyapatite has been examined using experiments and quantum mechanical calculations. Adsorption studies with FTIR and X-ray photoelectron spectroscopies have been performed considering both crystalline hydroxyapatite (HAp) and amorphous calcium phosphate particles, which were specifically prepared and characterized for this purpose. Density functional theory (DFT) calculations have been carried out considering the (100) and (001) surfaces of HAp, which were represented using 1 × 2 × 2 and 3 × 3 × 1 slab models, respectively. The adsorption of phosphate onto the two crystallographic surfaces is very much favored from an energetic point of view, which is fully consistent with current interpretations of the HAp growing process. The structures calculated for the adsorption of pyrophosphate and triphosphate evidence that this process is easier for the latter than for the former. Thus, the adsorption of pyrophosphate is severely limited by the surface geometry while the flexibility of triphosphate allows transforming repulsive electrostatic interactions into molecular strain. On the other hand, calculations predict that the trisphosphonate only adsorbs onto the (001) surface of HAp. Theoretical predictions are fully consistent with experimental data. Thus, comparison of DFT results and spectroscopic data suggests that the experimental conditions used to prepare HAp particles promote the predominance of the (100) surface. Accordingly, experimental identification of the adsorption of trisphosphonate onto such crystalline particles is unclear while the adsorption of pyrophosphate and triphosphate is clearly observed.

  17. [Influence of surface chemical properties and pore structure characteristics of activated carbon on the adsorption of nitrobenzene from aqueous solution].

    PubMed

    Liu, Shou-Xin; Chen, Xi; Zhang, Xian-Quan

    2008-05-01

    Commercial activated carbon was treated by HNO3 oxidation and then subsequently heat treated under N2 atmosphere. Effect of surface chemical properties and pore structure on the adsorption performance of nitrobenzene was investigated. N2/77K adsorption isotherm and scanning electron microscopy (SEM) were used to characterize the pore structure and surface morphology of carbon. Boehm titration, Fourier transform infrared spectroscopy (FTIR), the point of zero charge (pH(PZC)) measurement and elemental analysis were used to characterize the surface properties. The results reveal that HNO3 oxidation can modify the surface chemical properties, increase the number of acidic surface oxygen-containing groups and has trivial effect on the pore structure of carbon. Further heat treatment can cause the decomposition of surface oxygen-containing groups, and increase the external surface area and the number of mesopores. Adsorption capacity of nitrobenzene on AC(NO-T), AC(raw) and AC(NO) was 1011.31, 483.09 and 321.54 mg x g(-1), respectively. Larger external surface area and the number of meso-pores, together with the less acid surface oxygen-containing groups were the main reason for the larger adsorption capacity AC(NO-T).

  18. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.

    2018-05-01

    High surface area nitrogen enriched carbon adsorbents were prepared from a low cost and widely available urea-formaldehyde resin using a standard chemical activation with KOH and characterized using different characterization techniques for their porous structure and surface functional groups. Maximum surface area and total pore volume of 4547 m2 g-1 and 4.50 cm3 g-1 were found by controlling the activation conditions. Nitrogen content of this sample was found to be 5.62%. Adsorption of CO2 uptake for the prepared carbon adsorbents was studied using a dynamic fixed bed adsorption system at different adsorption temperatures (30-100 °C) and at different CO2 concentrations (5-12.5%), relevant from the flue gas point application. Maximum CO2 uptake of 1.40 mmol g-1 for UFA-3-700 at 30 °C under 12.5% CO2 flow was obtained. Complete regenerability of the adsorbents over multiple adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description over all adsorption temperatures and CO2 concentrations. Heterogeneity of the adsorbent surface was confirmed from Temkin adsorption isotherm model fit and isosteric heat of adsorption values. Negative value of ΔG° and ΔH° confirms spontaneous, feasible nature and exothermic nature of adsorption process. Overall, very high surface area of carbon adsorbent makes this adsorbent a new promising carbon material for CO2 capture from power plant flue gas and for other relevant applications.

  19. Electronic structure studies of adsorbate-induced surface reconstructions: oxygen on Rh(1 0 0)

    NASA Astrophysics Data System (ADS)

    Kirsch, Janet E.; Harris, Suzanne

    2004-03-01

    Solid-state Fenske-Hall band structure calculations have been used to study the electronic structure and bonding that occur on an "asymmetric" clock reconstructed Rh(1 0 0) surface with a half-monolayer of O atom adsorbates. The displacement of the top-layer Rh atoms on reconstructed O/Rh(1 0 0) is similar to that observed when a half-monolayer of C or N atoms adsorb onto clean Ni(1 0 0). Unlike the five-coordinate C or N adsorbates that adsorb into effectively coplanar sites on the Ni(1 0 0) surface, however, O atoms sit well above the Rh surface plane and occupy three-coordinate adsorption sites. The results of these calculations show that the asymmetric clock reconstruction of O/Rh(1 0 0) increases the negative charge localized on the highly electronegative O atoms and strengthens the O-Rh bonding relative to an unreconstructed surface. This suggests that, in contrast to the C(N)/Ni(1 0 0) clock, which appears to be driven primarily by the restoration of metal-metal bonding, the asymmetric O/Rh(1 0 0) clock reconstruction is driven by the optimization of the O atom bonding environment. Comparisons of the O/Rh(1 0 0) and C(N, O)/Ni(1 0 0) surfaces further indicate that the electronegativity and electron count of the adsorbed species, as well as the electron count and physical size of the metal, all play a role in determining the preferred atomic geometries of these adsorbate-covered transition metal surfaces.

  20. Effective adsorption of phenolic compound from aqueous solutions on activated semi coke

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Dai, Yuan; Zhang, Yu; Fu, Feng

    2017-03-01

    Activated Semi coke was prepared by KOH activation and employed as adsorbent to study adsorption function of phenolic compound from aqueous solutions. The adsorption result showed that the adsorption capacity of the activated semi coke for phenolic compound increased with contact time and adsorbent dosage, and slightly affected by temperature. The surface structure property of the activated semi coke was characterized by N2 adsorption, indicating that the activated semi coke was essentially macroporous, and the BET surface area was 347.39 m2 g-1. Scanning electron microscopy indicated that the surface of the activated semi coke had a high developed pore. The adsorption kinetics were investigated according to pseudofirst order, pseudosecond order and intraparticle diffusion, and the kinetics data were fitted by pseudosecond order model, and intraparticle diffusion was not the only rate-controlling step. Adsorption isotherm was studied by Langmuir, Freundlich, Temkin, Redlich-Peterson, Sips and Toth models. The result indicated that adsorption isotherm data could fit well with Langmuir, Redlich-Peterson, Sips and Toth models.

  1. Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors.

    PubMed

    Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito

    2009-12-09

    We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.

  2. CO2 sensing properties of electro-spun Ca-doped ZnO fibres.

    PubMed

    Pantò, Fabiola; Leonardi, Salvatore Gianluca; Fazio, Enza; Frontera, Patrizia; Bonavita, Anna; Neri, Giovanni; Antonucci, Pierluigi; Neri, Fortunato; Santangelo, Saveria

    2018-07-27

    The availability of low-cost, high-performing sensors for carbon dioxide detection in the environment may play a crucial role for reducing CO 2 emissions and limiting global warming. In this study, calcium-doped zinc oxide nanofibres with different Ca to Zn loading ratios (1:40 or 1:20) are synthesised via electro-spinning, thoroughly characterised and, for the first time, tested as an active material for the detection of carbon dioxide. The results of their characterisation show that the highly porous fibres consist of interconnected grains of oxide with the hexagonal wurtzite structure of zincite. Depending on the Ca:Zn loading ratio, calcium fully or partly segregates to form calcite on the fibre surface. The high response of the sensor based on the fibres with the highest Ca-doping level can be attributed to the synergy between the fibre morphology and the basicity of Ca-ion sites, which favour the diffusion of the gas molecules within the sensing layer and the CO 2 adsorption, respectively.

  3. Adsorption of pentacene on (100) vicinal surfaces: role of coordination, surface chemistry and vdWs effects

    NASA Astrophysics Data System (ADS)

    Matos, Jeronimo; Kara, Abdelkader

    2015-03-01

    In contrast to low miller index surfaces, vicinal surfaces are characterized by steps and step edges that not only present an interesting atomic landscape for the adsorption organic molecules, but also a unique electronic structure resulting in part from the low coordinated atoms at the step edges. The adsorption of pentacene on the stepped (511), (711), (911) surfaces (respectively 3, 4 and 5-atom wide terraces) of Cu and Ag (coinage transition metals); Pt (reactive transition metal); and Ni (reactive, magnetic transition metal) are studied using density functional theory, in order to investigate the support effects arising from differing surface chemistry. We compare the adsorption energy, adsorption geometry and electronic structure predicted by the PBE functional with those obtained from one of the optimized vdW-DF methods: optB88-vdW. Work supported by the U.S. Department of Energy Basic Energy Science under Contract No. DE-FG02-11ER16243.

  4. Theoretical study of adsorption of organic phosphines on transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Lou, Shujie; Jiang, Hong

    2018-04-01

    The adsorption properties of organic phosphines on transition metal (TM) surfaces (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) have been studied to explore the possibility of building novel heterogeneous chiral catalytic systems based on organic phosphines. Preferred adsorption sites, adsorption energies and surface electronic structures of a selected set of typical organic phosphines adsorbed on TM surfaces are calculated with density-functional theory to obtain a systematic understanding on the nature of adsorption interactions. All organic phosphines considered are found to chemically adsorb on these TM surfaces with the atop site as the most preferred one, and the TM-P bond is formed via the lone-pair electrons of the P atom and the directly contacted TM atom. These findings imply that it is indeed possible to build heterogeneous chiral catalytic systems based on organic phosphines adsorbed on TM surfaces, which, however, requires a careful design of molecular structure of organic phosphines.

  5. A Modular Approach To Study Protein Adsorption on Surface Modified Hydroxyapatite.

    PubMed

    Ozhukil Kollath, Vinayaraj; Van den Broeck, Freya; Fehér, Krisztina; Martins, José C; Luyten, Jan; Traina, Karl; Mullens, Steven; Cloots, Rudi

    2015-07-13

    Biocompatible inorganic nano- and microcarriers can be suitable candidates for protein delivery. This study demonstrates facile methods of functionalization by using nanoscale linker molecules to change the protein adsorption capacity of hydroxyapatite (HA) powder. The adsorption capacity of bovine serum albumin as a model protein has been studied with respect to the surface modifications. The selected linker molecules (lysine, arginine, and phosphoserine) can influence the adsorption capacity by changing the electrostatic nature of the HA surface. Qualitative and quantitative analyses of linker-molecule interactions with the HA surface have been performed by using NMR spectroscopy, zeta-potential measurements, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Additionally, correlations to theoretical isotherm models have been calculated with respect to Langmuir and Freundlich isotherms. Lysine and arginine increased the protein adsorption, whereas phosphoserine reduced the protein adsorption. The results show that the adsorption capacity can be controlled with different functionalization, depending on the protein-carrier selections under consideration. The scientific knowledge acquired from this study can be applied in various biotechnological applications that involve biomolecule-inorganic material interfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Platelet Adhesion and Activation on Chiral Surfaces: The Influence of Protein Adsorption.

    PubMed

    Fan, Yonghong; Luo, Rifang; Han, Honghong; Weng, Yajun; Wang, Hong; Li, Jing'an; Yang, Ping; Wang, Yunbing; Huang, Nan

    2017-10-03

    Adsorbed proteins and their conformational change on blood-contacting biomaterials will determine their final hemocompatibility. It has frequently been reported that surface chirality of biomaterials may highly influence their protein adsorption behavior. Here, lysine and tartaric acid with different chirality were immobilized onto TiO 2 films respectively, and the influence of surface chirality on protein adsorption, platelet adhesion, and activation was also investigated. It showed that the l- and d-molecule grafted samples had almost the same grafting density, surface topography, chemical components, and hydrophilicity in this study. However, biological behaviors such as protein adsorption, platelet adhesion, and activation were quite different. The d-lysine grafted surface had a greater ability to inhibit both bovine serum albumin and fibrinogen adsorption, along with less degeneration of fibrinogen compared to the l-lysine anchored surface. However, the d-tartaric acid grafted surface adsorbed more protein but with less denatured fibrinogen compared to the l-tartaric acid grafted one. Further studies showed that the secondary structural change of the adsorbed albumin and fibrinogen on all surfaces with deduction of the α-helix content and increase of disordered structure, while the changing degree was apparently varied. As a result, the d-lysine immobilized surface absorbed less platelets and red blood cells and achieved slightly increased platelet activation. For tartaric acid anchored surfaces, a larger number of platelets adhered to the D-surface but were less activated compared to the L-surface. In conclusion, the surface chirality significantly influenced the adsorption and conformational change of blood plasma protein, which in turn influenced both platelet adhesion and activation.

  7. Nitrile versus isonitrile adsorption at interstellar grain surfaces. II. Carbonaceous aromatic surfaces

    NASA Astrophysics Data System (ADS)

    Bertin, M.; Doronin, M.; Michaut, X.; Philippe, L.; Markovits, A.; Fillion, J.-H.; Pauzat, F.; Ellinger, Y.; Guillemin, J.-C.

    2017-12-01

    Context. Almost 20% of the 200 different species detected in the interstellar and circumstellar media present a carbon atom linked to nitrogen by a triple bond. Of these 37 molecules, 30 are nitrile R-CN compounds, the remaining 7 belonging to the isonitrile R-NC family. How these species behave in their interactions with the grain surfaces is still an open question. Aims: In a previous work, we have investigated whether the difference between nitrile and isonitrile functional groups may induce differences in the adsorption energies of the related isomers at the surfaces of interstellar grains of various nature and morphologies. This study is a follow up of this work, where we focus on the adsorption on carbonaceous aromatic surfaces. Methods: The question is addressed by means of a concerted experimental and theoretical approach of the adsorption energies of CH3CN and CH3NC on the surface of graphite (with and without surface defects). The experimental determination of the molecule and surface interaction energies is carried out using temperature-programmed desorption in an ultra-high vacuum between 70 and 160 K. Theoretically, the question is addressed using first-principle periodic density functional theory to represent the organised solid support. Results: The adsorption energy of each compound is found to be very sensitive to the structural defects of the aromatic carbonaceous surface: these defects, expected to be present in a large numbers and great diversity on a realistic surface, significantly increase the average adsorption energies to more than 50% as compared to adsorption on perfect graphene planes. The most stable isomer (CH3CN) interacts more efficiently with the carbonaceous solid support than the higher energy isomer (CH3NC), however.

  8. Equilibrium of adsorption of mixed milk protein/surfactant solutions at the water/air interface.

    PubMed

    Kotsmar, C; Grigoriev, D O; Xu, F; Aksenenko, E V; Fainerman, V B; Leser, M E; Miller, R

    2008-12-16

    Ellipsometry and surface profile analysis tensiometry were used to study and compare the adsorption behavior of beta-lactoglobulin (BLG)/C10DMPO, beta-casein (BCS)/C10DMPO and BCS/C12DMPO mixtures at the air/solution interface. The adsorption from protein/surfactant mixed solutions is of competitive nature. The obtained adsorption isotherms suggest a gradual replacement of the protein molecules at the interface with increasing surfactant concentration for all studied mixed systems. The thickness, refractive index, and the adsorbed amount of the respective adsorption layers, determined by ellipsometry, decrease monotonically and reach values close to those for a surface covered only by surfactant molecules, indicating the absence of proteins from a certain surfactant concentration on. These results correlate with the surface tension data. A continuous increase of adsorption layer thickness was observed up to this concentration, caused by the desorption of segments of the protein and transforming the thin surface layer into a rather diffuse and thick one. Replacement and structural changes of the protein molecules are discussed in terms of protein structure and surface activity of surfactant molecules. Theoretical models derived recently were used for the quantitative description of the equilibrium state of the mixed surface layers.

  9. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation

    NASA Astrophysics Data System (ADS)

    Shafeeyan, Mohammad Saleh; Daud, Wan Mohd Ashri Wan; Houshmand, Amirhossein; Arami-Niya, Arash

    2011-02-01

    A commercial granular activated carbon (GAC) was subjected to thermal treatment with ammonia for obtaining an efficient carbon dioxide (CO2) adsorbent. In general, CO2 adsorption capacity of activated carbon can be increased by introduction of basic nitrogen functionalities onto the carbon surface. In this work, the effect of oxygen surface groups before introduction of basic nitrogen functionalities to the carbon surface on CO2 adsorption capacity was investigated. For this purpose two different approaches of ammonia treatment without preliminary oxidation and amination of oxidized samples were studied. Modified carbons were characterized by elemental analysis and Fourier Transform Infrared spectroscopy (FT-IR) to study the impact of changes in surface chemistry and formation of specific surface groups on adsorption properties. The texture of the samples was characterized by conducting N2 adsorption/desorption at -196 °C. CO2 capture performance of the samples was investigated using a thermogravimetric analysis (TGA). It was found that in both modification techniques, the presence of nitrogen functionalities on carbon surface generally increased the CO2 adsorption capacity. The results indicated that oxidation followed by high temperature ammonia treatment (800 °C) considerably enhanced the CO2 uptake at higher temperatures.

  10. A semiflexible alternating copolymer chain adsorption on a flat and a fluctuating surface.

    PubMed

    Mishra, Pramod Kumar

    2010-04-21

    A lattice model of a directed self-avoiding walk is used to investigate adsorption properties of a semiflexible alternating copolymer chain on an impenetrable flat and fluctuating surface in two (square, hexagonal and rectangular lattice) and three dimensions (cubic lattice). In the cubic lattice case the surface is two-dimensional impenetrable flat and in two dimensions the surface is a fluctuating impenetrable line (hexagonal lattice) and also flat impenetrable line (square and rectangular lattice). Walks of the copolymer chains are directed perpendicular to the plane of the surface and at a suitable value of monomer surface attraction, the copolymer chain gets adsorbed on the surface. To calculate the exact value of the monomer surface attraction, the directed walk model has been solved analytically using the generating function method to discuss results when one type of monomer of the copolymer chain has attractive, repulsive or no interaction with the surface. Results obtained in the flat surface case show that, for a stiffer copolymer chain, adsorption transition occurs at a smaller value of monomer surface attraction than a flexible copolymer chain while in the case of a fluctuating surface, the adsorption transition point is independent of bending energy of the copolymer chain. These features are similar to that of a semiflexible homopolymer chain adsorption.

  11. Insights into the activation mechanism of calcium ions on the sericite surface: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Hu, Yuehua; He, Jianyong; Zhang, Chenhu; Zhang, Chenyang; Sun, Wei; Zhao, Dongbo; Chen, Pan; Han, Haisheng; Gao, Zhiyong; Liu, Runqing; Wang, Li

    2018-01-01

    The adsorption behaviors and the activation mechanism of calcium ions (Ca2+) on sericite surface have been investigated by Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR), Micro-flotation tests and First principle calculations. Zeta potential tests results show that the sericite surface potential increases due to the adsorption of calcium ions on the surface. Micro-flotation tests demonstrate that sericite recovery remarkably rise by 10% due to the calcium ions activation on sericite surface. However, the characteristic adsorption bands of calcium oleate do not appear in the FT-IR spectrum, suggesting that oleate ions just physically adsorb on the sericite surface. The first principle calculations based on the density functional theory (DFT) further reveals the microscopic adsorption mechanism of calcium ions on the sericite surface before and after hydration.

  12. Effects of topology on the adsorption of singly tethered ring polymers to attractive surfaces.

    PubMed

    Li, Bing; Sun, Zhao-Yan; An, Li-Jia

    2015-07-14

    We investigate the effect of topology on the equilibrium behavior of singly tethered ring polymers adsorbed on an attractive surface. We focus on the change of square radius of gyration Rg(2), the perpendicular component Rg⊥(2) and the parallel component Rg‖(2) to the adsorbing surface, the mean contacting number of monomers with the surface , and the monomer distribution along z-direction during transition from desorption to adsorption. We find that both of the critical point of adsorption εc and the crossover exponent ϕ depend on the knot type when the chain length of ring ranges from 48 to 400. The behaviors of Rg(2), Rg⊥(2), and Rg‖(2) are found to be dependent on the topology and the monomer-surface attractive strength. At weak adsorption, the polymer chains with more complex topology are more adsorbable than those with simple topology. However, at strong adsorption, the polymer chains with complex topology are less adsorbable. By analyzing the distribution of monomer along z-direction, we give a possible mechanism for the effect of topology on the adsorption behavior.

  13. Experimental-Theoretical Approach to the Adsorption Mechanisms for Anionic, Cationic, and Zwitterionic Surfactants at the Calcite-Water Interface.

    PubMed

    Durán-Álvarez, Agustín; Maldonado-Domínguez, Mauricio; González-Antonio, Oscar; Durán-Valencia, Cecilia; Romero-Ávila, Margarita; Barragán-Aroche, Fernando; López-Ramírez, Simón

    2016-03-22

    The adsorption of surfactants (DTAB, SDS, and CAPB) at the calcite-water interface was studied through surface zeta potential measurements and multiscale molecular dynamics. The ground-state polarization of surfactants proved to be a key factor for the observed behavior; correlation was found between adsorption and the hard or soft charge distribution of the amphiphile. SDS exhibits a steep aggregation profile, reaching saturation and showing classic ionic-surfactant behavior. In contrast, DTAB and CAPB featured diversified adsorption profiles, suggesting interplay between supramolecular aggregation and desorption from the solid surface and alleviating charge buildup at the carbonate surface when bulk concentration approaches CMC. This manifests as an adsorption profile with a fast initial step, followed by a metastable plateau and finalizing with a sharp decrease and stabilization of surface charge. Suggesting this competition of equilibria, elicited at the CaCO3 surface, this study provides atomistic insight into the adsorption mechanism for ionic surfactants on calcite, which is in accordance with experimental evidence and which is a relevant criterion for developing enhanced oil recovery processes.

  14. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition

    NASA Astrophysics Data System (ADS)

    Mao, Yougang; Ba, Yong

    2006-09-01

    This Communication describes a mechanism to explain antifreeze protein's function to inhibit the growth of ice crystals. We propose that the adsorption of antifreeze protein (AFP) molecules on an ice surface induces a dense AFP-water layer, which can significantly decrease the mole fraction of the interfacial water and, thus, lower the temperature for a seed ice crystal to grow in a super-cooled AFP solution. This mechanism can also explain the nearly unchanged melting point for the ice crystal due to the AFP's ice-surface adsorption. A mathematical model combining the Langmuir theory of adsorption and the colligative effect of thermodynamics has been proposed to find the equilibrium constants of the ice-surface adsorptions, and the interfacial concentrations of AFPs through fitting the theoretical curves to the experimental thermal hysteresis data. This model has been demonstrated by using the experimental data of serial size-mutated beetle Tenebrio molitor (Tm) AFPs. It was found that the AFP's ice-surface adsorptions could increase the interfacial AFP's concentrations by 3 to 4 orders compared with those in the bulk AFP solutions.

  15. Study of fibrinogen adsorption on hydroxyapatite and TiO2 surfaces by electrochemical piezoelectric quartz crystal impedance and FTIR-ATR spectroscopy.

    PubMed

    Yang, Qin; Zhang, Youyu; Liu, Meiling; Ye, Min; Zhang, YuQin; Yao, Shouzhuo

    2007-07-30

    The electrochemical piezoelectric quartz crystal impedance (EQCI), a combined technique of piezoelectric quartz crystal impedance (PQCI), electrochemical impedance (EI), and Fourier transform infrared spectroscopy-attenuated total internal reflectance spectroscopy (FTIR-ATR) were used to in situ study the adsorption process of fibrinogen onto the surface of biomaterials-TiO2 and hydroxyapatite (Ca5(PO4)3OH, HAP). The equivalent circuit parameters, the resonance frequencies and the half peak width of the conductance spectrum of the two biomaterial-modified piezoelectric quartz crystal (PQC) resonances as well as the FTIR-ATR spectra of fibrinogen during fibrinogen adsorption on TiO2 and HAP particles modified electrode surface were obtained. The adsorption kinetics and mechanism of fibrinogen were investigated and discussed as well. The results suggested that two consecutive steps occurred during the adsorption of fibrinogen onto TiO2 and hydroxyapatite (HAP) surface. The fibrinogen molecules were firstly adsorbed onto the surface, and then the rearrangement of adsorbed fibrinogen or multi-layered adsorption occurred. The FTIR-ATR spectroscopy investigations showed that the secondary structure of fibrinogen molecules was altered during the adsorption and the adsorption kinetics of fibrinogen related with the variety of biomaterials. These experimental results suggest a way for enriching biological analytical science and developing new applications of analytical techniques, such as PQCI, EI, and FTIR-ATR.

  16. Combining an Optical Resonance Biosensor with Enzyme Activity Kinetics to Understand Protein Adsorption and Denaturation

    PubMed Central

    Wilson, Kerry A.; Finch, Craig A.; Anderson, Phillip; Vollmer, Frank; Hickman, James J.

    2014-01-01

    Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme’s adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces. PMID:25453976

  17. Combining an optical resonance biosensor with enzyme activity kinetics to understand protein adsorption and denaturation.

    PubMed

    Wilson, Kerry A; Finch, Craig A; Anderson, Phillip; Vollmer, Frank; Hickman, James J

    2015-01-01

    Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme's adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13 F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Destabilization of Titania Nanosheet Suspensions by Inorganic Salts: Hofmeister Series and Schulze-Hardy Rule.

    PubMed

    Rouster, Paul; Pavlovic, Marko; Szilagyi, Istvan

    2017-07-13

    Ion specific effects on colloidal stability of titania nanosheets (TNS) were investigated in aqueous suspensions. The charge of the particles was varied by the pH of the solutions, therefore, the influence of mono- and multivalent anions on the charging and aggregation behavior could be studied when they were present either as counter or co-ions in the systems. The aggregation processes in the presence of inorganic salts were mainly driven by interparticle forces of electrostatic origin, however, chemical interactions between more complex ions and the surface led to additional attractive forces. The adsorption of anions significantly changed the surface charge properties and hence, the resistance of the TNS against salt-induced aggregation. On the basis of their ability in destabilization of the dispersions, the monovalent ions could be ordered according to the Hofmeister series in acidic solutions, where they act as counterions. However, the behavior of the biphosphate anion was atypical and its adsorption induced charge reversal of the particles. The multivalent anions destabilized the oppositely charged TNS more effectively and the aggregation processes followed the Schulze-Hardy rule. Only weak or negligible interactions were observed between the anions and the particles in alkaline suspensions, where the TNS possessed negative charge.

  19. Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to Pimphales promelas: Influence of Adsorbate Molecular Size and Configuration.

    PubMed

    Linard, Erica N; Apul, Onur G; Karanfil, Tanju; van den Hurk, Peter; Klaine, Stephen J

    2017-08-15

    Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.

  20. Adsorption, aggregation, and desorption of proteins on smectite particles.

    PubMed

    Kolman, Krzysztof; Makowski, Marcin M; Golriz, Ali A; Kappl, Michael; Pigłowski, Jacek; Butt, Hans-Jürgen; Kiersnowski, Adam

    2014-10-07

    We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ≤ 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes.

  1. Removal of nitric oxide by the highly reactive anatase TiO2 (001) surface: a density functional theory study.

    PubMed

    Zhao, Wenwen; Tian, Feng Hui; Wang, Xiaobin; Zhao, Linghuan; Wang, Yun; Fu, Aiping; Yuan, Shuping; Chu, Tianshu; Xia, Linhua; Yu, Jimmy C; Duan, Yunbo

    2014-09-15

    In this paper, density functional theory (DFT) calculation was employed to study the adsorption of nitric oxide (NO) on the highly reactive anatase TiO2 (001) surface. For comparison, the adsorption of NO on the (101) surface was also considered. Different from the physical adsorption on the (101) surface, NO molecules are found to chemisorb on the TiO2 (001) surface. The twofold coordinate oxygen atoms (O2c) on the anatase (001) surface are the active sites. Where NO is oxidized into a nitrite species (NO2(-)) trapping efficiently on the surface, with one of the surface Ti5c-O2c bonds adjacent to the adsorption site broken. Our results, therefore, supply a theoretical guidance to remove NO pollutants using highly reactive anatase TiO2 (001) facets. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Adsorption and dissociation of molecular hydrogen on the (0001) surface of double hexagonal close packed americium

    NASA Astrophysics Data System (ADS)

    Dholabhai, P. P.; Ray, A. K.

    2009-01-01

    Hydrogen molecule adsorption on the (0001) surface of double hexagonal packed americium has been studied in detail within the framework of density functional theory using a full-potential all-electron linearized augmented plane wave plus local orbitals method (FP-L/APW+lo). Weak molecular hydrogen adsorptions were observed. Adsorption energies were optimized with respect to the distance of the adsorbates from the surface for three approach positions at three adsorption sites, namely t1 (one-fold top), b2 (two-fold bridge), and h3 (three-fold hollow) sites. Adsorption energies were computed at the scalar-relativistic level (no spin-orbit coupling NSOC) and at the fully relativistic level (with spin-orbit coupling SOC). The most stable configuration corresponds to a horizontal adsorption with the molecular approach being perpendicular to a lattice vector. The surface coverage is equivalent to one-fourth of a monolayer (ML), with the adsorption energies at the NSOC and SOC theoretical levels being 0.0997 eV and 0.1022 eV, respectively. The respective distance of the hydrogen molecule from the surface and hydrogen-hydrogen distance was found to be 2.645 Å and 0.789 Å, respectively. The work functions decreased and the net magnetic moments remained almost unchanged in all cases compared with the corresponding quantities of bare dhcp Am (0001) surface. The adsorbate-substrate interactions have been analyzed in detail using the partial charges inside the muffin-tin spheres, difference charge density distributions, and the local density of states. The effects of adsorption on the Am 5f electron localization-delocalization characteristics have been discussed. Reaction barrier for the dissociation of hydrogen molecule has been presented.

  3. Energetics of Mg incorporation at GaN(0001) and GaN(0001¯) surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-04-01

    By using density functional calculations in the generalized gradient approximation, we investigate the energetics of Mg adsorption and incorporation at GaN(0001) and GaN(0001¯) surfaces under various Ga and Mg coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find significant differences in Mg incorporation between Ga- and N-polar surfaces. Mg incorporation is easier at the Ga-polar surface, but high Mg coverages are found to cause important distortions which locally change the polarity from Ga to N polar. At the N-rich and moderately Ga-rich GaN(0001) surface, 0.25 ML of Mg substituting Ga in the top bilayer strongly reduce the surface diffusion barriers of Ga and N adatoms, in agreement with the surfactant effect observed in experiments. As the Mg coverage exceeds 0.5 ML, partial incorporation in the subsurface region (second bilayer) becomes favorable. A surface structure with 0.5 ML of incorporated Mg in the top bilayer and 0.25 ML in the second bilayer is found to be stable over a wide range of Ga chemical potential. At the Ga bilayer-terminated GaN(0001) surface, corresponding to Ga-rich conditions, configurations where Mg is incorporated in the interface region between the metallic Ga bilayer and the underlying GaN bilayer appear to be favored. At the N-polar surface, Mg is not incorporated under N-rich or moderately Ga-rich conditions, whereas incorporation in the adlayer may take place under Ga-rich conditions. In the presence of light or electron beam induced excitation, energy differences between Mg incorporated at the surface and in deeper layers are reduced so that the tendency toward surface segregation is also reduced.

  4. The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis.

    PubMed

    Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W

    2010-12-21

    This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.

  5. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite

    NASA Astrophysics Data System (ADS)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-12-01

    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  6. Adsorption of guanidinium collectors on aluminosilicate minerals - a density functional study.

    PubMed

    Nulakani, Naga Venkateswara Rao; Baskar, Prathab; Patra, Abhay Shankar; Subramanian, Venkatesan

    2015-10-07

    In this density functional theory based investigation, we have modelled and studied the adsorption behaviour of guanidinium cations and substituted (phenyl, methoxy phenyl, nitro phenyl and di-nitro phenyl) guanidinium cationic collectors on the basal surfaces of kaolinite and goethite. The adsorption behaviour is assessed in three different media, such as gas, explicit water and pH medium, to understand the affinity of GC collectors to the SiO4 tetrahedral and AlO6 octahedral surfaces of kaolinite. The tetrahedral siloxane surface possesses a larger binding affinity to GC collectors than the octahedral sites due to the presence of surface exposed oxygen atoms that are active in the intermolecular interactions. Furthermore, the inductive electronic effects of substituted guanidinium cations also play a key role in the adsorption mechanism. Highly positive cations result in a stronger electrostatic interaction and preferential adsorption with the kaolinite surfaces than low positive cations. Computed interaction energies and electron densities at the bond critical points suggest that the adsorption of guanidinium cations on the surfaces of kaolinite and goethite is due to the formation of intra/inter hydrogen bonding networks. Also, the electrostatic interaction favours the high adsorption ability of GC collectors in the pH medium than gas phase and water medium. The structures and energies of GC collectors pave an intuitive view for future experimental studies on mineral flotation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dylla-Spears, R.; Wong, L.; Shen, N.

    Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less

  8. Minimizing Segregation During the Controlled Directional Solidification of Dendritic Alloys Publication: Metallurgical and Materials Transactions

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Fedoseyev, A. I.; Kim, S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Gravity-driven thermosolutal convection that arises during controlled directional solidification (DS) of dendritic alloys promotes detrimental macro-segregation (e.g. freckles and steepling) in products such as turbine blades. Considerable time and effort has been spent to experimentally and theoretically investigate this phenomena; although our knowledge has advanced to the point where convection can be modeled and accurately compared to experimental results, little has been done to minimize its onset and deleterious effects. The experimental work demonstrates that segregation can be. minimized and microstructural uniformity promoted when a slow axial rotation is applied to the sample crucible during controlled directional solidification processing. Numerical modeling utilizing continuation and bifurcation methods have been employed to develop accurate physical and mathematical models with the intent of identifying and optimizing processing parameters.

  9. A flow-pulse adsorption-microcalorimetry system for studies of adsorption processes on powder catalysts

    NASA Astrophysics Data System (ADS)

    You, Rui; Li, Zhaorui; Zeng, Hongyu; Huang, Weixin

    2018-06-01

    A pulse chemisorption system combining a Tian-Calvet microcalorimeter (Setaram Sensys EVO 600) and an automated chemisorption apparatus (Micromeritics Autochem II 2920) was established to accurately measure differential adsorption heats of gas molecules' chemisorption on solid surfaces in a flow-pulse mode. Owing to high sensitivity and high degree of automation in a wide range of temperatures from -100 to 600 °C, this coupled system can present adsorption heats as a function of adsorption temperature and adsorbate coverage. The functions of this system were demonstrated by successful measurements of CO adsorption heats on Pd surfaces at various temperatures and also at different CO coverages by varying the CO concentration in the pulse dose. Key parameters, including adsorption amounts, integral adsorption heats, and differential adsorption heats of CO adsorption on a Pd/CeO2 catalyst, were acquired. Our adsorption-microcalorimetry system provides a powerful technique for the investigation of adsorption processes on powder catalysts.

  10. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells.

    PubMed

    Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J

    2016-03-15

    This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Adsorption behavior of bisphenol A on CTAB-modified graphite

    NASA Astrophysics Data System (ADS)

    Wang, Li-Cong; Ni, Xin-jiong; Cao, Yu-Hua; Cao, Guang-qun

    2018-01-01

    In this work, the adsorption behavior of BPA on CTAB-modified graphite was investigated thoroughly to develop a novel absorbent material. Atomic force microscopy revealed that conical admicelles formed on the surface of graphite. The surface area of graphite decreased significantly from 1.46 to 0.95 m2 g-1, which confirmed the formation of the larger size admicelle instead of the original smaller particle on the surface. CTAB concentration and incubation time affected the progress of admicelle formation on the surface of graphite. Adsolubilization is key in BPA adsorption by CTAB-modified graphite. An extraordinary cation-π electron interaction between CTAB and BPA, revealed by a red-shift in the ultraviolet spectrum, as well as a hydrophobic interaction contribute substantially to BPA adsolubilization. The equilibrium adsorption capacity of the modified graphite for BPA was 125.01 mg g-1. The adsorption kinetic curves of BPA on modified graphite were shown to follow a pseudosecond-order rate. The adsorption process was observed to be both spontaneous and exothermic complied with the Freundlich model.

  12. Temporal changes in nitrogen adsorption properties of single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rostam-Abadi, M.; Rood, M.J.

    2004-01-01

    Temporal evolution of N2 adsorption (77 K) properties of as-produced and purified single-walled nanotubes (SWNTs) samples is described here. The N2 adsorption isotherms are used to characterize the samples' surface areas and porosities. The as-produced samples demonstrate a temporal increase in surface area and pore volumes for up to 16 months. The purified samples, however, reached their stable values of surface area and pore volumes within four to seven months. N2 adsorption capacity of the purified SWNTs also increased when the fresh samples were subjected to thermal pre-processing, with diminishing changes in adsorption capacity with increased age. These observations indicate that the freshly prepared SWNTs, both as-produced and purified, were in an unstable state with their porosity changing with increasing sample age and thermal treatments. It is hypothesized that SWNTs undergo slow but progressive changes in their surface chemistry which causes their N2 adsorption properties to change over several months. ?? 2004 Elsevier Ltd. All rights reserved.

  13. Application of quartz crystal microbalance to study the impact of pH and ionic strength on protein-silicone oil interactions.

    PubMed

    Dixit, Nitin; Maloney, Kevin M; Kalonia, Devendra S

    2011-06-30

    In this study, we have used quartz crystal microbalance (QCM) to quantitate the adsorption of a protein on silicone oil coated surfaces as a function of protein concentration, pH and ionic strength using a 5 MHz quartz crystal. Protein adsorption isotherms were generated at different solution pH and ionic strengths. Surface saturation concentrations were selected from adsorption isotherms and used to generate adsorption profiles from pH 3.0 to 9.0, and at ionic strengths of 10 mM and 150 mM. At low ionic strength (10mM) and pH 5.0 (close to the isoelectric point of the protein), maximum adsorption of protein to the silicone oil surface was observed. At higher ionic strength (150 mM), no significant pH influence on adsorption was observed. QCM could be used as a reliable technique to study the binding of proteins to silicone oil coated surfaces. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Theoretical study on adsorption and dissociation of NO2 molecules on BNNT surface

    NASA Astrophysics Data System (ADS)

    Singla, Preeti; Singhal, Sonal; Goel, Neetu

    2013-10-01

    The adsorption of NO2 molecules on (8,0) zigzag single-walled boron nitride nanotube surface is investigated using density functional theory calculations. Two interaction modes, nitro (interacting atom is N) and nitrite (O interacts with BNNT) have been studied with increase in number of NO2 molecules. The adsorption of single NO2 molecule in both configurations is observed to be exothermic and physical in nature. However, in nitrite configuration, NO2 molecules are chemisorbed on the surface leading to the dissociation of NO2 molecules into NO and O. The density of states, natural bond orbital analysis and frontier orbital pictures provide rational understanding of the charge transfer involved in the process and predict significant enhancement in the conductivity of the BNNT after NO2 adsorption. The DFT calculations show that NO2 adsorption introduces new impurity states in the band gap of bare BNNT and expand their applications as NO2 molecule gas sensor and catalytic surface for Nsbnd O dissociation depending upon the mode of adsorption.

  15. Adsorption and dissociation of molecular oxygen on α-Pu (0 2 0) surface: A density functional study

    NASA Astrophysics Data System (ADS)

    Wang, Jianguang; Ray, Asok K.

    2011-09-01

    Molecular and dissociative oxygen adsorptions on the α-Pu (0 2 0) surface have been systematically studied using the full-potential linearized augmented-plane-wave plus local orbitals (FP-LAPW+lo) basis method and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. Chemisorption energies have been optimized for the distance of the admolecule from the Pu surface and the bond length of O-O atoms for four adsorption sites and three approaches of O 2 admolecule to the (0 2 0) surface. Chemisorption energies have been calculated at the scalar relativistic level with no spin-orbit coupling (NSOC) and at the fully relativistic level with spin-orbit coupling (SOC). Dissociative adsorptions are found at the two horizontal approaches (O 2 is parallel to the surface and perpendicular/parallel to a lattice vector). Hor2 (O 2 is parallel to the surface and perpendicular to a lattice vector) approach at the one-fold top site is the most stable adsorption site, with chemisorption energies of 8.048 and 8.415 eV for the NSOC and SOC cases, respectively, and an OO separation of 3.70 Å. Molecular adsorption occurs at the Vert (O 2 is vertical to the surface) approach of each adsorption site. The calculated work functions and net spin magnetic moments, respectively, increase and decrease in all cases upon chemisorption compared to the clean surface. The partial charges inside the muffin-tins, the difference charge density distributions, and the local density of states have been used to investigate the Pu-admolecule electronic structures and bonding mechanisms.

  16. Theoretical studies of arsenite adsorption and its oxidation mechanism on a perfect TiO 2 anatase (1 0 1) surface

    NASA Astrophysics Data System (ADS)

    Wei, Zhigang; Zhang, Shaowen; Pan, Zhanchang; Liu, Yue

    2011-11-01

    There are many areas in the world where the ground water has been contaminated by arsenic. TiO2 is one of the most promising materials that can remove arsenic from groundwater supplies by the adsorption-based processes. The TiO2 surface is capable of photo-catalytic oxidation (PCO) changing the arsenite [As(III)] to arsenate [As(V)] which is more easily absorbed by the surface, increasing the efficiency of the process. In this paper, a density functional theory calculation has been performed to investigate the adsorption of As(III) on a perfect TiO2 anatase (1 0 1) surface. All the As(III) solution species such as H3AsO3, H2AsO3-, HAsO32- and AsO33- are put onto the surface with many different possible attitudes to obtain the adsorption energy. Based on the adsorption energy and the concentration of H3AsO3, H2AsO3-, HAsO32- and AsO33- in an aqueous solution, the bidentate binuclear (BB) adsorption configurations of H2AsO3- on the surface are more favorable at low As(III) concentrations, whereas BB form and monodentate mononuclear (MM) form may coexist at higher concentrations. By calculating H2AsO3- co-adsorption with water and oxygen, we can confirm the deep acceptor character of an adsorbed O2 molecule which implies that surface superoxide (or hydroperoxyl radical) plays an important role during the PCO process of As(III) on TiO2 surface.

  17. Enhanced initial protein adsorption on engineered nanostructured cubic zirconia.

    PubMed

    Sabirianov, R F; Rubinstein, A; Namavar, F

    2011-04-14

    Motivated by experimentally-observed biocompatibility enhancement of nanoengineered cubic zirconia (ZrO(2)) coatings to mesenchymal stromal cells, we have carried out computational analysis of the initial immobilization of one known structural fragment of the adhesive protein (fibronectin) on the corresponding surface. We constructed an atomistic model of the ZrO(2) nano-hillock of 3-fold symmetry based on Atom Force Microscopy and Transmission Electron Microscopy images. First principle quantum mechanical calculations show a substantial variation of electrostatic potential at the hillock due to the presence of surface features such as edges and vertexes. Using an implemented Monte Carlo simulated annealing method, we found the orientation of the immobilized protein on the ZrO(2) surface and the contribution of the amino acid residues from the protein sequence to the adsorption energy. Accounting for the variation of the dielectric permittivity at the protein-implant interface, we used a model distance-dependent dielectric function to describe the inter-atom electrostatic interactions in the adsorption potential. We found that the initial immobilization of the rigid protein fragment on the nanostructured pyramidal ZrO(2) surface is achieved with a magnitude of adsorption energy larger than that of the protein on the smooth (atomically flat) surface. The strong attractive electrostatic interactions are a major contributing factor in the enhanced adsorption at the nanostructured surface. In the case of adsorption on the flat, uncharged surface this factor is negligible. We show that the best electrostatic and steric fit of the protein to the inorganic surface corresponds to a minimum of the adsorption energy determined by the non-covalent interactions.

  18. First principles study of surface stability and segregation of PdRuRh ternary metal alloy system

    NASA Astrophysics Data System (ADS)

    Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Nakanishi, Hiroshi; Kasai, Hideaki

    2018-05-01

    The recognized importance on the studies of alloyed materials is due to the high possibility of forming designer materials that caters to different applications. In any reaction and application, the stability and configuration of the alloy combination are important. In this study, we analyzed the surface stability and segregation of ternary metal alloy system PdRuRh through first principles calculation using density functional theory (DFT). We considered the possibility of forming phases as observed in the binary combinations of elements, i.e., completely miscible, and separating phases. With that, the model we analyzed for the ternary metal alloy slabs considers forming complete atomic miscibility, segregation of each component, and segregation of one component with mixing of the two other. Our results show that for the ternary combination of Pd, Rh and Ru, the Pd atoms have high tendency to segregate at the surface, while due to the high tendency of Ru and Rh to mix, core formation of a mixed RuRh is possible. Also, we determined that the trend of stability in the binary alloy system is a good determinant of stability in the ternary alloy system.

  19. Adenovirus type 5 intrinsic adsorption rates measured by surface plasmon resonance.

    PubMed

    Roper, D Keith; Nakra, Shamit

    2006-01-01

    Intrinsic adsorption rates of whole adenovirus type 5 (Ad5) onto a diethylaminoethyl (DEAE) anion exchange surface are measured for the first time by surface plasmon resonance (SPR). Fitting SPR sensorgrams to a two-compartment mass transport reaction model distinguishes intrinsic adsorption rates from slow diffusive Ad5 mass transport. Ad5 is a widely used viral vector for gene therapy that binds electrostatically to surfaces of cells and synthetics such as membranes, chromatographic resins, and glass. Increasing NaCl concentration from 4.8 to 14.4mM shifts binding of whole Ad5 from diffusion control to a regime where both sorption and diffusion affect binding. Intrinsic adsorption rates for Ad5-DEAE interaction are 16 times faster than intrinsic adsorption rates for Ad5 fiber knob interacting with soluble extracellular domain of coxsackievirus adenovirus receptors (s-CAR).

  20. Adsorption of normal pentane on the surface of rutile. Experimental results and simulations.

    PubMed

    Rakhmatkariev, G U; Carvalho, A J Palace; Ramalho, J P Prates

    2007-07-03

    Adsorption isotherms and differential heats of normal pentane adsorption on microcrystalline rutile were measured at 303 K. The heat of adsorption of n-pentane on rutile at zero occupancy is 64 kJ/mol. The differential heats have three descending segments, corresponding to the adsorption of n-pentane on three types of surfaces. At low coverage (first segment), the adsorption is restricted to the rows A of the (110) faces along the 5-fold coordinatively unsaturated (cus) Ti(4+) ions with differential heat showing a linear decrease with increasing occupancy. The second segment is attributed to bonding with atoms of the rows along the remaining faces exposed, (101) and (100). The third segment is related to a multilayer adsorption. The mean molar adsorption entropy of n-pentane is ca. -25 J/mol K less than the entropy of the bulk liquid, thus revealing a hindered state of motion of the n-pentane molecules on the surface of rutile. Simulations of the adsorption of n-pentane on the three most abundant crystallographic faces of rutile were also performed. The adsorption isotherm obtained from the combination of each face's isotherm weighted by the respective abundance was found to be in a good agreement with the experimental data. A structural characterization of n-pentane near the surface was also conducted, and it was found that the substrate, especially for the (110) face, strongly perturbs the distribution of n-pentane conformations, compared to those found for the gas phase. Adsorbed molecules are predominantly oriented with their long axes and their backbone zigzag planes parallel to the surface and are also characterized by fewer gauche conformations than observed in the bulk phase.

  1. A density functional theory computational study of adsorption of Di-Meta-Cyano Azobenzene molecules on Si (111) surfaces

    NASA Astrophysics Data System (ADS)

    Motevalli, Benyamin; Taherifar, Neda; Wu, Bisheng; Tang, Wenxin; Liu, Jefferson Zhe

    2017-11-01

    The adsorption of di-meta-cyano azobenzene (DMC) cis and trans isomers on non-passivated and passivated Si (111) (7 × 7) surfaces is studied using density functional theory (DFT) calculations. Our results reveal that on the non-passivated surface the 12 Si adatoms are accessible to form chemical bonds with DMC molecules. Interestingly, the trans isomer forms two chemical bonds near the corner hole atom in Si (111) (7 × 7) surface, which is not observed in the widely studied metallic surfaces. The DMC isomers show significant structural distortion in the chemisorption case. The strong chemical bonds (and high bonding energy) could be detrimental to conformation switching between these two isomers under external stimuli. The physisorption case is also examined. Monte Carlo (MC) simulations with empirical force fields were employed to search about 106 different adsorption positions and DMC molecule orientations to identify the stable adsorption sites (up to six). The DFT-PBE and DFT-D2 calculations were then carried out to obtain the relaxed atomistic structures and accurate adsorption energy. We find that it is imperative to take van der Waals (vdW) interaction into account in DFT calculations. Our results show that the adsorption sites generally are encompassed by either the Si adatoms or the passivated H atoms, which could enhance the long-range dispersion interaction between DMC molecules and Si surfaces. The molecular structures of both isomers remain unchanged compared with gas phase. The obtained adsorption energy results ΔEads are moderate (0.2-0.8 eV). At some adsorption sites on the passivated surface, both isomers have similar moderate ΔEads (0.4-0.6 eV), implying promises of molecular switching that should be examined in experiments.

  2. Development of chemically activated N-enriched carbon adsorbents from urea-formaldehyde resin for CO2 adsorption: Kinetics, isotherm, and thermodynamics.

    PubMed

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K

    2018-07-15

    Nitrogen enriched carbon adsorbents with high surface areas were successfully prepared by carbonizing the low-cost urea formaldehyde resin, followed by KOH activation. Different characterization techniques were used to determine the structure and surface functional groups. Maximum surface area and total pore volume of 4547 m 2  g -1 and 4.50 cm 3  g -1 were found by controlling activation conditions. The optimized sample denoted as UFA-3-973 possesses a remarkable surface area, which is found to be one of the best surface areas achieved so far. Nitrogen content of this sample was found to be 22.32%. Dynamic CO 2 uptake capacity of the carbon adsorbents were determined thermogravimetrically at different CO 2 concentrations (6-100%) and adsorption temperatures (303-373 K) which have a much more relevance for the flue gas application. Highest adsorption capacity of 2.43 mmol g -1 for this sample was obtained at 303 K under pure CO 2 flow. Complete regenerability of the adsorbent over four adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description of adsorption over all adsorption temperatures and CO 2 concentrations. Heterogeneity of the adsorbent surface was confirmed from the Langmuir and Freundlich isotherms fits and isosteric heat of adsorption values. Exothermic, spontaneous and feasible nature of adsorption process was confirmed from thermodynamic parameter values. The combination of high surface area and large pore volume makes the adsorbent a new promising carbon material for CO 2 capture from power plant flue gas and for other relevant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Segregation and persistence of form in the lateral occipital complex.

    PubMed

    Ferber, Susanne; Humphrey, G Keith; Vilis, Tutis

    2005-01-01

    While the lateral occipital complex (LOC) has been shown to be implicated in object recognition, it is unclear whether this brain area is responsive to low-level stimulus-driven features or high-level representational processes. We used scrambled shape-from-motion displays to disambiguate the presence of contours from figure-ground segregation and to measure the strength of the binding process for shapes without contours. We found persisting brain activation in the LOC for scrambled displays after the motion stopped indicating that this brain area subserves and maintains figure-ground segregation processes, a low-level function in the object processing hierarchy. In our second experiment, we found that the figure-ground segregation process has some form of spatial constancy indicating top-down influences. The persisting activation after the motion stops suggests an intermediate role in object recognition processes for this brain area and might provide further evidence for the idea that the lateral occipital complex subserves mnemonic functions mediating between iconic and short-term memory.

  4. Manipulating perfume delivery to the interface using polymer-surfactant interactions.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2016-03-15

    Enhanced delivery of perfumes to interfaces is an important element of their effectiveness in a range of home and personal care products. The role of polyelectrolyte-surfactant mixtures to promote perfume adsorption at interfaces is explored here. Neutron reflectivity, NR, was used to quantify the adsorption of the model perfumes phenylethanol, PE, and linalool, LL, at the air-water interface in the presence of the anionic surfactant sodium dodecylsulfate, SDS, and the cationic polyelectrolytes, poly(dimethyldiallyl ammonium chloride), polydmdaac, and poly(ethyleneimine), PEI. The strong SDS-polydmdaac interaction dominates the surface adsorption in SDS-polymer-perfume (PE, LL) mixtures, such that the PE and LL adsorption is greatly suppressed. For PEI-SDS-perfume mixtures the PEI-LL interaction competes with the SDS-PEI interaction at all pH at the surface and significant LL adsorption occurs, whereas for PE the PEI-SDS interaction dominates and the PE adsorption is greatly reduced. The use of the strong surface polyelectrolyte-ionic surfactant interaction to manipulate perfume adsorption at the air-water interface has been demonstrated. In particular the results show how the competition between polyelectrolyte, surfactant and perfume interactions at the surface and in solution affect the partitioning of perfumes to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface.

    PubMed

    Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian

    2017-05-01

    Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants. Copyright © 2017. Published by Elsevier Ltd.

  6. Adsorption of sophorolipid biosurfactants on their own and mixed with sodium dodecyl benzene sulfonate, at the air/water interface.

    PubMed

    Chen, Minglei; Dong, Chuchuan; Penfold, Jeff; Thomas, Robert K; Smyth, Thomas J P; Perfumo, Amedea; Marchant, Roger; Banat, Ibrahim M; Stevenson, Paul; Parry, Alyn; Tucker, Ian; Campbell, Richard A

    2011-07-19

    The adsorption of the lactonic (LS) and acidic (AS) forms of sophorolipid and their mixtures with the anionic surfactant sodium dodecyl benzene sulfonate (LAS) has been measured at the air/water interface by neutron reflectivity, NR. The AS and LS sophorolipids adsorb with Langmuir-like adsorption isotherms. The more hydrophobic LS is more surface active than the AS, with a lower critical micellar concentration, CMC, and stronger surface adsorption, with an area/molecule ∼70 Å(2) compared with 85 Å(2) for the AS. The acidic sophorolipid shows a maximum in its adsorption at the CMC which appears to be associated with a mixture of different isomeric forms. The binary LS/AS and LS/LAS mixtures show a strong surface partitioning in favor of the more surface active and hydrophobic LS component but are nevertheless consistent with ideal mixing at the interface. In contrast, the surface composition of the AS/LAS mixture is much closer to the solution composition, but the surface mixing is nonideal and can be accounted for by regular solution theory, RST. In the AS/LS/LAS ternary mixtures, the surface adsorption is dominated by the sophorolipid, and especially the LS component, in a way that is not consistent with the observations for the binary mixtures. The extreme partitioning in favor of the sophorolipid for the LAS/LS/AS (1:2) mixtures is attributed to a reduction in the packing constraints at the surface due to the AS component. Measurements of the surface structure reveal a compact monolayer for LS and a narrow solvent region for LS, LS/AS, and LS/LAS mixtures, consistent with the more hydrophobic nature of the LS component. The results highlight the importance of the relative packing constraints on the adsorption of multicomponent mixtures, and the impact of the lactonic form of the sophorolipid on the adsorption of the sophorolipid/LAS mixtures.

  7. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations.

    PubMed

    Greathouse, Jeffery A; Cygan, Randall T

    2006-06-15

    Molecular dynamics simulations were performed to provide a systematic study of aqueous uranyl adsorption onto the external surface of 2:1 dioctahedral clays. Our understanding of this key process is critical in predicting the fate of radioactive contaminants in natural groundwaters. These simulations provide atomistic detail to help explain experimental trends in uranyl adsorption onto natural media containing smectite clays. Aqueous uranyl concentrations ranged from 0.027 to 0.162 M. Sodium ions and carbonate ions (0.027-0.243 M) were also present in the aqueous regions to more faithfully model a stream of uranyl-containing groundwater contacting a mineral system comprised of Na-smectite. No adsorption occurred near the pyrophyllite surface, and there was little difference in uranyl adsorption onto the beidellite and montmorillonite, despite the difference in location of clay layer charge between the two. At low uranyl concentration, the pentaaquouranyl complex dominates in solution and readily adsorbs to the clay basal plane. At higher uranyl (and carbonate) concentrations, the mono(carbonato) complex forms in solution, and uranyl adsorption decreases. Sodium adsorption onto beidellite occurred both as inner- and outer-sphere surface complexes, again with little effect on uranyl adsorption. Uranyl surface complexes consisted primarily of the pentaaquo cation (85%) and to a lesser extent the mono(carbonato) species (15%). Speciation diagrams of the aqueous region indicate that the mono(carbonato)uranyl complex is abundant at high ionic strength. Oligomeric uranyl complexes are observed at high ionic strength, particularly near the pyrophyllite and montmorillonite surfaces. Atomic density profiles of water oxygen and hydrogen atoms are nearly identical near the beidellite and montmorillonite surfaces. Water structure therefore appears to be governed by the presence of adsorbed ions and not by the location of layer charge associated with the substrate. The water oxygen density near the pyrophyllite surface is similar to the other cases, but the hydrogen density profile indicates reduced hydrogen bonding between adsorbed water molecules and the surface.

  8. Adsorption and Dissociation of Molecular Hydrogen on the (0001) Surface of DHCP Americium

    NASA Astrophysics Data System (ADS)

    Dholabhai, Pratik; Ray, Asok

    2009-03-01

    Hydrogen molecule adsorption on the (0001) surface of double hexagonal closed packed americium has been studied in detail within the framework of density functional theory. Weak molecular hydrogen adsorptions were observed. The most stable configuration corresponded to a Hor2 approach molecular adsorption at the one-fold top site where the molecule's approach is perpendicular to a lattice vector. Adsorption energies and adsorption geometries for different adsorption sites will be discussed. The change in work functions, magnetic moments, partial charges inside muffin-tins, difference charge density distributions and density of states for the bare Am slab and the Am slab after adsorption of the hydrogen molecule will be discussed. Reaction barrier for the dissociation of hydrogen molecule will be presented. The implications of adsorption on Am 5f electron localization-delocalization will be summarized.

  9. Chitosan-rectorite nanospheres immobilized on polystyrene fibrous mats via alternate electrospinning/electrospraying techniques for copper ions adsorption

    NASA Astrophysics Data System (ADS)

    Tu, Hu; Huang, Mengtian; Yi, Yang; Li, Zhenshun; Zhan, Yingfei; Chen, Jiajia; Wu, Yang; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2017-12-01

    Chitosan (CS), as a kind of well characterized biopolymer, has been used for heavy metal adsorption due to its low cost and high efficacy. However, when used directly, chitosan particles had small surface area and weak mechanical strength which is unfavorable to metal adsorption and reused. Besides, it cannot be easily recycled that may cause a secondary pollution. In this paper, CS and layered silicate rectorite (REC) were fully mixed and the mixtures were subsequently electrosprayed nano-sized spheres, which were immobilized on the surface of electrospun polystyrene (PS) mats for metal adsorption. The morphology analysis taken from SEM confirmed that CS-REC nanospheres were loaded on the surface of PS fibrous mats. Small Angle X-ray diffraction patterns showed that the interlayer distance of REC in composite mats was enlarged by the intercalation of CS chains; such structure meant bigger surface area which was helpful for metal adsorption. The data of contact angle implied that PS mats coated with CS-REC nanospheres exhibited better hydrophilicity than PS mats, which was conductive to adsorption rate. Besides, the copper ions adsorption of composite mats was tested at different conditions including the adsorption time, the initial pH and the initial concentration of copper ion. The results demonstrated that PS mats coated with CS-REC nanospheres had the adsorption capacity up to 134 mg/g. In addition, the addition of REC containing Ca2+ could also improve the metal adsorption because of cation exchange. The desorption assay indicated that PS mats immobilized with CS and CS-REC still kept high adsorption ability which retained 74% and 78% after three adsorption-desorption cycles.

  10. Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process.

    PubMed

    Guo, Ziyan; Li, Jiuhai; Guo, Zhaobing; Guo, Qingjun; Zhu, Bin

    2017-06-01

    Parent and aluminum-modified eggshells were prepared and characterized with X-ray diffraction, specific surface area measurements, infrared spectroscopy, zeta potential, and scanning electron microscope, respectively. Besides, phosphorus adsorptions in these two eggshells at different temperatures and solution pH were carried out to study adsorption thermodynamics and kinetics as well as the mechanisms of phosphorus adsorption and diffusion. The results indicated that high temperature was favorable for phosphorus adsorption in parent and aluminum-modified eggshells. Alkaline solution prompted phosphorus adsorption in parent eggshell, while the maximum adsorption amount was achievable at pH 4 in aluminum-modified eggshell. Adsorption isotherms of phosphorus in these eggshells could be well described by Langmuir and Freundlich models. Phosphorus adsorption amounts in aluminum-modified eggshell were markedly higher compared to those in parent eggshell. Adsorption heat indicated that phosphorus adsorption in parent eggshell was a typically physical adsorption process, while chemical adsorption mechanism of ion exchange between phosphorus and hydroxyl groups on the surface of eggshells was dominated in aluminum-modified eggshell. The time-resolved uptake curves showed phosphorus adsorption in aluminum-modified eggshell was significantly faster than that in parent eggshell. Moreover, there existed two clear steps in time-resolved uptake curves of phosphorus in parent eggshell. Based on pseudo-second order kinetic model and intraparticle diffusion model, we inferred more than one process affected phosphorus adsorption. The first process was the diffusion of phosphorus through water to external surface and the opening of pore channel in the eggshells, and the second process was mainly related to intraparticle diffusion.

  11. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  12. Application of surface complexation models to anion adsorption by natural materials

    USDA-ARS?s Scientific Manuscript database

    Various chemical models of ion adsorption will be presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model w...

  13. pH-dependence of pesticide adsorption by wheat-residue-derived black carbon.

    PubMed

    Yang, Yaning; Chun, Yuan; Sheng, Guangyao; Huang, Minsheng

    2004-08-03

    The potential of black carbon as an adsorbent for pesticides in soils may be strongly influenced by the properties of the adsorbent and pesticides and by the environmental conditions. This study evaluated the effect of pH on the adsorption of diuron, bromoxynil, and ametryne by a wheat (Triticum aestivum L.) residue derived black carbon (WC) as compared to a commercial activated carbon (AC). The pH drift method indicated that WC had a point of zero charge of 4.2, much lower than that of 7.8 for AC. The density of oxygen-containing surface functional groups, measured by the Boehm titration, on WC was 5.4 times higher than that on AC, resulting in a pesticide adsorption by WC being 30-50% of that by AC, due to the blockage of WC surface by the waters associated with the functional groups. A small decrease (5.5%/unit pH) in diuron adsorption by WC with increase in pH resulted from increased deprotonation of surface functional groups at higher pH values. A much larger decrease (14-21%/unit pH) in bromoxynil adsorption by WC with increase in pH resulted from the deprotonation of both the adsorbate and surface functional groups of the adsorbent. The deprotonation reduced the adsorptive interaction between bromoxynil and the neutral carbon surface and increased the electrical repulsion between the negatively charged WC surface and bromoxynil anions. Deprotonation of ametryne with increase in pH over the low pH range increased its fraction of molecular form and thus adsorption on WC by 15%/unit pH. Further increase in pH resulted in a 20%/unit pH decrease in ametryne adsorption by WC due primarily to the development of a negative charge on the surface of WC. The pH-dependent adsorption of pesticides by black carbon may significantly influence their environmental fate in soils.

  14. Variable Lysozyme Transport Dynamics on Oxidatively Functionalized Polystyrene Films.

    PubMed

    Moringo, Nicholas A; Shen, Hao; Tauzin, Lawrence J; Wang, Wenxiao; Bishop, Logan D C; Landes, Christy F

    2017-10-17

    Tuning protein adsorption dynamics at polymeric interfaces is of great interest to many biomedical and material applications. Functionalization of polymer surfaces is a common method to introduce application-specific surface chemistries to a polymer interface. In this work, single-molecule fluorescence microscopy is utilized to determine the adsorption dynamics of lysozyme, a well-studied antibacterial protein, at the interface of polystyrene oxidized via UV exposure and oxygen plasma and functionalized by ligand grafting to produce varying degrees of surface hydrophilicity, surface roughness, and induced oxygen content. Single-molecule tracking indicates lysozyme loading capacities, and surface mobility at the polymer interface is hindered as a result of all functionalization techniques. Adsorption dynamics of lysozyme depend on the extent and the specificity of the oxygen functionalities introduced to the polystyrene surface. Hindered adsorption and mobility are dominated by hydrophobic effects attributed to water hydration layer formation at the functionalized polystyrene surfaces.

  15. Theoretical Studies about Adsorption on Silicon Surface

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Chen, Xiaoshuang; Zhu, Xiao Yan; Duan, He; Zhou, Xiao Hao; Lu, Wei

    In this review paper, we address the important research topic of adsorption on the silicon surface. The deposition of single Si ad-species (adatom and ad-dimer) on the p(2×2) reconstructed Si(100) surface has been simulated by the empirical tight-binding method. Using the clean and defective Si surfaces as the deposition substrates, the deposition energies are mapped out around the clean surface, dimer vacancies, steps and kink structures. The binding sites, saddle points and several possible diffusion paths are obtained from the calculated energy. With further analysis of the deposition and diffusion behaviors, the influences of the surface defects can be found. Then, by adopting the first-principle calculations, the adsorptions of the II-VI group elements on the clean and As-passivated Si(211) substrates have been calculated as the example of adsorption on the high-miller-index Si surface.

  16. Strong Electrostatic Interactions Lead to Entropically Favorable Binding of Peptides to Charged Surfaces.

    PubMed

    Sprenger, K G; Pfaendtner, Jim

    2016-06-07

    Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution, results that show the expected physical behavior, i.e., peptide binding strength that decreases with increasing temperature or is independent of temperature altogether, can be recovered on the charged surface. On the basis of this analysis, an overall free energy for the entire thermodynamic cycle for peptide adsorption on charged surfaces is constructed and validated with independent simulations.

  17. Fracture-induced flow and liquid metal transport during core formation

    NASA Astrophysics Data System (ADS)

    Jones, V.; Petford, N.; Rushmer, T.; Wertheim, D.

    2008-12-01

    The most important event in the early history of the earth was the separation of its iron-rich core. Core formation induced profound chemical fractionations and extracted into the core most of Earth's iron and siderophile elements (Ni, Co, Au, Pt, W, Re), leaving the silicate crust and mantle with strong depletions of these elements relative to primitive planetary material. Recent measurements of radiogenic 182W anomalies in the silicate Earth, Mars and differentiated meteorites imply that planetesimals segregated metallic cores within a few Myr of the origin of the solar system. Various models have been put forward to explain the physical nature of the segregation mechanism (Fe-diapirs, 'raining' through a magma ocean), and more recently melt flow via fractures. In this contribution we present the initial results of a numerical study into Fe segregation in a deforming silicate matrix that captures the temperature-dependent effect of liquid metal viscosity on the transport rate. Flow is driven by pressure gradients associated with impact deformation in a growing planetesimal and the fracture geometry is constrained by experimental data on naturally deformed H6 chondrite. Early results suggest that under dynamic conditions, fracture-driven melt flow can in principle be extremely rapid, leading to a significant draining of the Fe-liquid metal and siderophile trace element component on a timescale of hours to days. Fluid transport in planetesimals where deformation is the driving force provides an attractive and simple way of segregating Fe from host silicate as both precursor and primary agent of core formation

  18. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles.

    PubMed

    Arcibar-Orozco, Javier A; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2013-02-15

    The effect of iron particle size anchored on the surface of commercial activated carbon on the removal of SO(2) from a gas phase was studied. Nanosize iron particles were deposited using forced hydrolysis of FeCl(3) with or without H(3)PO(4) as a capping agent. Dynamic adsorption experiments were carried out on either dry or pre-humidified materials and the adsorption capacities were calculated. The surface of the initial and exhausted materials was extensively characterized by microscopic, porosity, thermogravimetric and surface chemistry. The results indicate that the SO(2) adsorption capacity increased two and half times after the prehumidification process owing to the formation of H(2)SO(4) in the porous system. Iron species enhance the SO(2) adsorption capacity only when very small nanoparticles are deposited on the pore walls as a thin layer. Large iron nanoparticles block the ultramicropores decreasing the accessibility of the active sites and consuming oxygen that rest adsorption centers for SO(2) molecules. Iron nanoparticles of about 3-4 nm provide highly dispersed adsorption sites for SO(2) molecules and thus increase the adsorption capacity of about 80%. Fe(2)(SO(4))(3) was detected on the surface of exhausted samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Effective adsorption of malachite green using magnetic barium phosphate composite from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Wei, Zhong; Zhang, Wanning; Cui, Haiyan

    2017-07-01

    Magnetic Ba3(PO4)2/Fe3O4-nanoparticle (called BPFN) was prepared, characterized, and developed as a low-cost adsorbent for malachite green (MG) from aqueous solution. Factors such as adsorption temperature, pH of solution, dosage of adsorbent, adsorption kinetics and isotherms were investigated. The maximum adsorption capacity obtained in this work was 1639 mg g- 1 at 45 °C and pH 6. The adsorption process fitted the pseudo-first-order kinetic model and Langmuir isotherm model. Evidences from zeta potential, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) data revealed that the adsorption process was driven by electrostatic attraction, the interaction between Lewis base sbnd N(CH3)2 in MG and Lewis acid Ba sites of BPFN. In addition, the BPFN could be easily regenerated by a magnet and the adsorption capacity maintained at 70% after five cycles. The present study suggests that the BPFN had high potential of removing MG from wastewater.

  20. Adsorption of ammonia at GaN(0001) surface in the mixed ammonia/hydrogen ambient - a summary of ab initio data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempisty, Paweł; Krukowski, Stanisław; Interdisciplinary Centre for Materials Modelling, Warsaw University, Pawińskiego 5a, 02-106 Warsaw

    Adsorption of ammonia at NH{sub 3}/NH{sub 2}/H-covered GaN(0001) surface was analyzed using results of ab initio calculations. The whole configuration space of partially NH{sub 3}/NH{sub 2}/H-covered GaN(0001) surface was divided into zones of differently pinned Fermi level: at the Ga broken bond state for dominantly bare surface (region I), at the valence band maximum (VBM) for NH{sub 2} and H-covered surface (region II), and at the conduction band minimum (CBM) for NH{sub 3}-covered surface (region III). The electron counting rule (ECR) extension was formulated for the case of adsorbed molecules. The extensive ab intio calculations show the validity of themore » ECR in case of all mixed H-NH{sub 2}-NH{sub 3} coverages for the determination of the borders between the three regions. The adsorption was analyzed using the recently identified dependence of the adsorption energy on the charge transfer at the surface. For region I ammonia adsorbs dissociatively, disintegrating into a H adatom and a HN{sub 2} radical for a large fraction of vacant sites, while for region II adsorption of ammonia is molecular. The dissociative adsorption energy strongly depends on the Fermi level at the surface (pinned) and in the bulk (unpinned) while the molecular adsorption energy is determined by bonding to surface only, in accordance to the recently published theory. Adsorption of Ammonia in region III (Fermi level pinned at CBM) leads to an unstable configuration both molecular and dissociative, which is explained by the fact that broken Ga-bonds are doubly occupied by electrons. The adsorbing ammonia brings 8 electrons to the surface, necessitating the transfer of these two electrons from the Ga broken bond state to the Fermi level. This is an energetically costly process. Adsorption of ammonia at H-covered site leads to the creation of a NH{sub 2} radical at the surface and escape of H{sub 2} molecule. The process energy is close to 0.12 eV, thus not large, but the direct inverse process is not possible due to the escape of the hydrogen molecule.« less

Top