Science.gov

Sample records for adult aquatic insects

  1. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  2. Influence of hydrological regime and land cover on traits and potential export capacity of adult aquatic insects from river channels.

    PubMed

    Greenwood, M J; Booker, D J

    2016-02-01

    Despite many studies highlighting the widespread occurrence and effects of resource movement between ecosystems, comparatively little is known about how anthropogenic alterations to ecosystems affect the strength, direction and importance of such fluxes. Hydrological regime and riparian land use cause well-documented changes in riverine larval invertebrate communities. Using a dataset from 66 sites collected over 20 years, we showed that such effects led to spatial and temporal differences in the density and type of larvae with winged adults within a river reach, altering the size and composition of the source pool from which adult aquatic insects can emerge. Mean annual larval densities varied 33-fold and the temporal range varied more than 20-fold between sites, associated with the hydrological regime and land cover and antecedent high and low flows, respectively. Densities of larvae with winged adults were greater in sites that had more algal coverage, agricultural land use, seasonally predictable flow regimes and faster water velocities. More interestingly, by influencing larval communities, riparian land use and the magnitude and frequency of high and low flows affected the size structure, dispersal ability and longevity of adults available to emerge from river reaches, potentially influencing the spatial extent and type of terrestrial consumers supported by aquatic prey. This suggests that anthropogenic alterations to land use or river flows will have both spatial and temporal effects on the flux and potential availability of adult aquatic insects to terrestrial consumers in many rivers.

  3. Influence of hydrological regime and land cover on traits and potential export capacity of adult aquatic insects from river channels.

    PubMed

    Greenwood, M J; Booker, D J

    2016-02-01

    Despite many studies highlighting the widespread occurrence and effects of resource movement between ecosystems, comparatively little is known about how anthropogenic alterations to ecosystems affect the strength, direction and importance of such fluxes. Hydrological regime and riparian land use cause well-documented changes in riverine larval invertebrate communities. Using a dataset from 66 sites collected over 20 years, we showed that such effects led to spatial and temporal differences in the density and type of larvae with winged adults within a river reach, altering the size and composition of the source pool from which adult aquatic insects can emerge. Mean annual larval densities varied 33-fold and the temporal range varied more than 20-fold between sites, associated with the hydrological regime and land cover and antecedent high and low flows, respectively. Densities of larvae with winged adults were greater in sites that had more algal coverage, agricultural land use, seasonally predictable flow regimes and faster water velocities. More interestingly, by influencing larval communities, riparian land use and the magnitude and frequency of high and low flows affected the size structure, dispersal ability and longevity of adults available to emerge from river reaches, potentially influencing the spatial extent and type of terrestrial consumers supported by aquatic prey. This suggests that anthropogenic alterations to land use or river flows will have both spatial and temporal effects on the flux and potential availability of adult aquatic insects to terrestrial consumers in many rivers. PMID:26453520

  4. Estimating Aquatic Insect Populations. Introduction to Sampling.

    ERIC Educational Resources Information Center

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  5. Building a better sticky trap: description of an easy-to-use trap and pole mount for quantifying the abundance of adult aquatic insects

    USGS Publications Warehouse

    Smith, Joshua T.; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.

    2014-01-01

    Insect emergence is a fundamental process in freshwaters. It is a critical life-history stage for aquatic insects and provides an important prey resource for terrestrial and aquatic consumers. Sticky traps are increasingly being used to sample these insects. The most common design consists of an acetate sheet coated with a nondrying adhesive that is attached to a wire frame or cylinder. These traps must be prepared at the deployment site, a process that can be time consuming and difficult given the vagaries of field conditions. Our goals were to develop a sturdy, low-cost sticky trap that could be prepared in advance, rapidly deployed and recovered in the field, and used to estimate the flight direction of insects. We used 150-mm Petri dishes with lids. The dishes can be coated cleanly and consistently with Tangle-Trap® adhesive. Deploying traps is simple and requires only a pole set near the body of water being sampled. Four dishes can be attached to the pole using Velcro and aligned in 4 different directions to enable quantification of insect flight direction. After sampling, Petri dishes can be taped closed, packed in boxes, and stored indefinitely. Petri traps are comparable in price to standard acetate sheet traps at ∼US$0.50/directional deployment, but they require more space for storage than acetate sheet traps. However, a major benefit of Petri traps is that field deployment times are ⅓ those of acetate traps. Our study demonstrated that large Petri dishes are an ideal platform for sampling postemergent adult aquatic insects, particularly when the study design involves estimating flight direction and when rapid deployment and recovery of traps is critical.

  6. Oviposition of aquatic insects in a tropical high altitude stream.

    PubMed

    Rios-Touma, Blanca; Encalada, A C; Prat, N

    2012-12-01

    The persistence of aquatic insect populations in streams depends on the recruitment of larval populations from egg masses deposited by adults, especially after disturbance. However, recruitment of aquatic populations by oviposition is a process that remains unstudied in streams and rivers. The objectives of our study were to document flying and oviposition patterns of aquatic insects in a high altitude tropical stream during both dry and wet seasons. In particular we studied 1) richness and abundance of adult forms of aquatic insects flying and ovipositing; 2) number of eggs (oviposition pattern), egg mass identity, and morphology; and 3) substrate preferences by ovipositing females. We found 2,383 aquatic insects corresponding to 28 families, with dipterans representing 89% of total individuals collected. Adult insects had lower richness (28 taxa) than larval diversity (up to 52 taxa) and distinct community composition. Richness and relative abundance of most taxa (adults) were not significantly different between seasons, behaviors, diel period, or all three. During both sampling periods we found females with eggs in a total of 15 different families (13 in the dry season and 14 in the wet season). There were no significant differences in the proportion of females with eggs between seasons, diel periods, or different behaviors (flying versus ovipositing traps) of the different female taxa. Few types of egg masses were found in rocks at the stream during both seasons, and most egg masses found corresponded to families Baetidae and Chironomidae. Finally, we provide the first description of eggs masses (size, shape, color, and number of eggs per female) of gravid females (10 taxa) and those found in the stream substrate (six taxa) of Andean macroinvertebrates. This is the first study reporting oviposition, adult diversity, and oviposition patterns of aquatic insects in the Andean region.

  7. Bug City: Aquatic Insects [Videotape].

    ERIC Educational Resources Information Center

    1998

    "Bug City" is a video series created to help children learn about insects and other small critters. All aspects of bug life are touched upon including body structure, food, habitat, life cycle, mating habits, camouflage, mutualism (symbiosis), adaptations, social behavior, and more. Each program features dramatic microscopic photography, fun…

  8. Why Care About Aquatic Insects: Uses, Benefits, and Services

    EPA Science Inventory

    Mayflies and other aquatic insects are common subjects of ecological research, and environmental monitoring and assessment. However, their important role in protecting and restoring aquatic ecosystems is often challenged, because their benefits and services to humans are not obv...

  9. Toxicological effects of pyrethroids on non-target aquatic insects.

    PubMed

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments.

  10. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators

    PubMed Central

    Mogren, Christina L.; Walton, William E.; Parker, David R.; Trumble, John T.

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l−1 arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g−1 of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142–290 ng g−1). Buenoa scimitra accumulated 5120±406 ng g−1 of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l−1 arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies. PMID:23826344

  11. Caddisflies assist with homicide case: determining a postmortem submersion interval using aquatic insects.

    PubMed

    Wallace, John R; Merritt, Richard W; Kimbirauskas, Ryan; Benbow, M Eric; McIntosh, Mollie

    2008-01-01

    Although few indicators of time since death for corpses found in aquatic ecosystems are comparable in precision to the insect indicators used in terrestrial cases, there are observations that can be useful in suggesting or ruling out an approximate PMSI (postmortem submersion interval). For example, the time intervals required for certain growth phases of aquatic insects, such as caddisflies, that may attach themselves to the submerged remains can be used to estimate a minimum PMSI. Approximately 8 of the 13 orders of insects containing species with aquatic or semi-aquatic stages are likely to be associated with carrion or corpses in aquatic habitats. We present a case study in which portions of a body from an adult male were discovered in a south central Michigan stream. The body was dismembered and portions were recovered from two bags floating and submerged in the stream. Insect specimens collected from mesh and plastic bags consisted of one fly larva belonging to the family Muscidae, and caddisfly larvae belonging to two families: the Limnephilidae. (case-makers) and the Hydropsychidae, (net spinners). We used unique case-building behaviors of the limnephilid caddisflies found on the remains to elucidate a PMSI range consistent with the disappearance of the victim. It is important for forensic investigators to understand that although some precision is lost in estimating a PMSI with aquatic insects, these organisms should not be ignored in gathering evidence from aquatic crime scenes, and in fact, they can provide valuable details in estimating a PMSI.

  12. Freshwater ecosystems and aquatic insects: a paradox in biological invasions.

    PubMed

    Fenoglio, Stefano; Bonada, Núria; Guareschi, Simone; López-Rodríguez, Manuel J; Millán, Andrés; Tierno de Figueroa, J Manuel

    2016-04-01

    Biological invasions have increased significantly in response to global change and constitute one of the major causes of biodiversity loss. Insects make up a large fraction of invasive species, in general, and freshwaters are among the most invaded ecosystems on our planet. However, even though aquatic insects dominate most inland waters, have unparalleled taxonomic diversity and occupy nearly all trophic niches, there are almost no invasive insects in freshwaters. We present some hypotheses regarding why aquatic insects are not common among aquatic invasive organisms, suggesting that it may be the result of a suite of biological, ecological and anthropogenic factors. Such specific knowledge introduces a paradox in the current scientific discussion on invasive species; therefore, a more in-depth understanding could be an invaluable aid to disentangling how and why biological invasions occur.

  13. Freshwater ecosystems and aquatic insects: a paradox in biological invasions.

    PubMed

    Fenoglio, Stefano; Bonada, Núria; Guareschi, Simone; López-Rodríguez, Manuel J; Millán, Andrés; Tierno de Figueroa, J Manuel

    2016-04-01

    Biological invasions have increased significantly in response to global change and constitute one of the major causes of biodiversity loss. Insects make up a large fraction of invasive species, in general, and freshwaters are among the most invaded ecosystems on our planet. However, even though aquatic insects dominate most inland waters, have unparalleled taxonomic diversity and occupy nearly all trophic niches, there are almost no invasive insects in freshwaters. We present some hypotheses regarding why aquatic insects are not common among aquatic invasive organisms, suggesting that it may be the result of a suite of biological, ecological and anthropogenic factors. Such specific knowledge introduces a paradox in the current scientific discussion on invasive species; therefore, a more in-depth understanding could be an invaluable aid to disentangling how and why biological invasions occur. PMID:27072403

  14. A review of chemosensation and related behavior in aquatic insects.

    PubMed

    Crespo, José G

    2011-01-01

    Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment. PMID:21864156

  15. A Review of Chemosensation and Related Behavior in Aquatic Insects

    PubMed Central

    Crespo, José G.

    2011-01-01

    Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment. PMID:21864156

  16. Effect of emergent aquatic insects on bat foraging in a riparian forest.

    PubMed

    Fukui, Dai; Murakami, Masashi; Nakano, Shigeru; Aoi, Toshiki

    2006-11-01

    1. Riparian zones serve several ecological functions for bats. They provide a source of prey and likely provide favourable structural habitats and shelter from predators. Many studies have shown that bats use the space above streams, ponds or riparian vegetation as feeding habitat. These studies, however, have never distinguished between the effects of habitat structure and prey availability on the foraging activities of bats. Such effects can only be distinguished by an experimental approach. We predicted that bat activity along a stream is influenced by the number of emerged aquatic insects. 2. We evaluated the response of terrestrial consumers, insectivorous bats, to changes in the abundance of emergent aquatic insects by conducting a manipulative field experiment. In a deciduous riparian forest in Japan, aquatic insect flux from the stream to the riparian zone was controlled with an insect-proof cover over a 1.2 km stream reach. 3. We estimated the abundance of emergent aquatic and flying terrestrial arthropods near the treatment and control reaches using Malaise traps. The foraging activity of bats was evaluated in both treatment and control reaches using ultrasonic detectors. 4. The insect-proof cover effectively reduced the flux of emergent aquatic insects to the riparian zone adjacent to the treatment reach. Adjacent to the control reach, adult aquatic insect biomass was highest in spring, and then decreased gradually. Terrestrial insect biomass increased gradually during the summer at both treatment and control reaches. 5. Foraging activity of bats was correlated with insect abundance. In spring, foraging activity of bats at the control reach was significantly greater than at the treatment reach, and increased at both sites with increasing terrestrial insect abundance. 6. Our result suggests that the flux of aquatic insects emerging from streams is one of the most important factors affecting the distribution of riparian-foraging bats. As is the case with

  17. Effect of emergent aquatic insects on bat foraging in a riparian forest.

    PubMed

    Fukui, Dai; Murakami, Masashi; Nakano, Shigeru; Aoi, Toshiki

    2006-11-01

    1. Riparian zones serve several ecological functions for bats. They provide a source of prey and likely provide favourable structural habitats and shelter from predators. Many studies have shown that bats use the space above streams, ponds or riparian vegetation as feeding habitat. These studies, however, have never distinguished between the effects of habitat structure and prey availability on the foraging activities of bats. Such effects can only be distinguished by an experimental approach. We predicted that bat activity along a stream is influenced by the number of emerged aquatic insects. 2. We evaluated the response of terrestrial consumers, insectivorous bats, to changes in the abundance of emergent aquatic insects by conducting a manipulative field experiment. In a deciduous riparian forest in Japan, aquatic insect flux from the stream to the riparian zone was controlled with an insect-proof cover over a 1.2 km stream reach. 3. We estimated the abundance of emergent aquatic and flying terrestrial arthropods near the treatment and control reaches using Malaise traps. The foraging activity of bats was evaluated in both treatment and control reaches using ultrasonic detectors. 4. The insect-proof cover effectively reduced the flux of emergent aquatic insects to the riparian zone adjacent to the treatment reach. Adjacent to the control reach, adult aquatic insect biomass was highest in spring, and then decreased gradually. Terrestrial insect biomass increased gradually during the summer at both treatment and control reaches. 5. Foraging activity of bats was correlated with insect abundance. In spring, foraging activity of bats at the control reach was significantly greater than at the treatment reach, and increased at both sites with increasing terrestrial insect abundance. 6. Our result suggests that the flux of aquatic insects emerging from streams is one of the most important factors affecting the distribution of riparian-foraging bats. As is the case with

  18. New North American records of aquatic insects as paratenic hosts of pheromermis (nematoda : mermithidae).

    SciTech Connect

    Molloy, D. P.; Vinikour, W. S.; Anderson, R. V.; Environmental Assessment; New York State Museum; Western Illinois Univ.

    1999-07-01

    Several species of aquatic insects in Trout Park Nature Preserve (Elgin, IL) were observed to have small, black spots (<0.1 mm diameter) visible within their bodies. Microscopic examination revealed these spots to be coiled juveniles of a mermithid (Nematoda: Mermithidae). Based on host habitat (seepage areas and rivulets), host species (aquatic insects), and size (mean diameter of coiled juveniles = 79 {mu}m), it is likely that these mermithids were in the genus Pheromermis. Since adult mermithids were not found, species determination was not feasible, and the possibility of a new species cannot be ruled out. Pheromermis pachysoma and Pheromermis vesparum, however, are two species known to use aquatic insects as paratenic (i.e., transport) hosts in order to reach their definitive hosts, vespid wasps. Wasp larvae are infected by consuming the flesh of adult aquatic insects that contain the coiled juveniles of these Pheromermis spp. Of the 19 macroinvertebrate species examined in this study, Pheromermis juveniles were found in 4 caddisfly species (Hesperophylax designatus, Lepidostoma liba, Glossosoma intermedium, and Diplectrona modesta) and in 2 stonefly species (Clioperla clio and Amphinemura delosa). In addition to all 6 insect species being new host records for Pheromermis infection, this also represents the first report of nematode infection in stoneflies within the Western Hemisphere and of a Pheromermis sp. in Illinois. Among trophic groups, insect detritivores have been frequently recorded infected with coiled Pheromermis juveniles because of their direct consumption of eggs, and we also observed this for detritivores in our investigation (e.g., L. liba and A. delosa). Because C. clio was intensively infected, however, our study also provided evidence that predatory insects can be paratenic hosts. Coiled juveniles were typically present in muscle and fat body and present in almost all body regions. Not every infected paratenic host had external signs of

  19. Aquatic insect community of lake, Phulbari anua in Cachar, Assam.

    PubMed

    Gupta, Susmita; Narzary, Rupali

    2013-05-01

    An investigation on the water quality and aquatic insect community of an oxbow lake (Phulbari anua) of south Assam, North-East India was carried out during February to April, 2010. Aquatic insect community of the oxbow lake was represented by 9 species belonging to 9 families and 4 orders during the study period. Order Ephemeroptera and Hemiptera were found to be dominant. Record of 5 species and 5 families from the order Hemiptera showed that this is the largest order in terms of aquatic insect diversity of the lake. Computation of dominance status of different species of aquatic insects of the lake based on Engelmann's Scale revealed that Anisops lundbladiana and Cloeon sp. were eudominant in the system. The Shannon- Weiner's Diversity Index (H') and Shannon evenness values (J') were found to range from 0.3-0.69 and 0.53 -0.97, respectively indicating perturbation of the system. Again in terms of physico-chemical properties of water the lake is in a satisfactory condition where all the parameters are well within the range of IS 10500. The DO values were found to range from 6.8 to 14.8 mgl(-1). Free CO2 fluctuated from 1 to 4.98 mgl(-1) and nitrate in water ranged from 0.4 to 2.1 mgl(-1). Margalef's water quality index values of most of the samplings also indicated clean water condition of the lake. Correlation coefficient analyses of the environmental variables, aquatic insect diversity and density of the lake revealed that aquatic insect diversity of the lake is mainly governed by dissolved oxygen, nitrate, and free carbon dioxide. PMID:24617147

  20. Aquatic insect community of lake, Phulbari anua in Cachar, Assam.

    PubMed

    Gupta, Susmita; Narzary, Rupali

    2013-05-01

    An investigation on the water quality and aquatic insect community of an oxbow lake (Phulbari anua) of south Assam, North-East India was carried out during February to April, 2010. Aquatic insect community of the oxbow lake was represented by 9 species belonging to 9 families and 4 orders during the study period. Order Ephemeroptera and Hemiptera were found to be dominant. Record of 5 species and 5 families from the order Hemiptera showed that this is the largest order in terms of aquatic insect diversity of the lake. Computation of dominance status of different species of aquatic insects of the lake based on Engelmann's Scale revealed that Anisops lundbladiana and Cloeon sp. were eudominant in the system. The Shannon- Weiner's Diversity Index (H') and Shannon evenness values (J') were found to range from 0.3-0.69 and 0.53 -0.97, respectively indicating perturbation of the system. Again in terms of physico-chemical properties of water the lake is in a satisfactory condition where all the parameters are well within the range of IS 10500. The DO values were found to range from 6.8 to 14.8 mgl(-1). Free CO2 fluctuated from 1 to 4.98 mgl(-1) and nitrate in water ranged from 0.4 to 2.1 mgl(-1). Margalef's water quality index values of most of the samplings also indicated clean water condition of the lake. Correlation coefficient analyses of the environmental variables, aquatic insect diversity and density of the lake revealed that aquatic insect diversity of the lake is mainly governed by dissolved oxygen, nitrate, and free carbon dioxide.

  1. Flow management for hydropower extirpates aquatic insects, undermining river food webs

    USGS Publications Warehouse

    Kennedy, Theodore; Muehlbauer, Jeffrey D.; Yackulic, Charles B.; Lytle, D.A.; Miller, S.A.; Dibble, Kimberly L.; Kortenhoeven, Eric W.; Metcalfe, Anya; Baxter, Colden V.

    2016-01-01

    Dams impound the majority of rivers and provide important societal benefits, especially daily water releases that enable on-peak hydroelectricity generation. Such “hydropeaking” is common worldwide, but its downstream impacts remain unclear. We evaluated the response of aquatic insects, a cornerstone of river food webs, to hydropeaking using a life history–hydrodynamic model. Our model predicts that aquatic-insect abundance will depend on a basic life-history trait—adult egg-laying behavior—such that open-water layers will be unaffected by hydropeaking, whereas ecologically important and widespread river-edge layers, such as mayflies, will be extirpated. These predictions are supported by a more-than-2500-sample, citizen-science data set of aquatic insects from the Colorado River in the Grand Canyon and by a survey of insect diversity and hydropeaking intensity across dammed rivers of the Western United States. Our study reveals a hydropeaking-related life history bottleneck that precludes viable populations of many aquatic insects from inhabiting regulated rivers.

  2. Using Aquatic Insects as Indicators of Water Quality

    ERIC Educational Resources Information Center

    Dyche, Steven E.

    1977-01-01

    Described is a science field activity that studies the presence of certain aquatic insects, like stoneflies, as indicators of water quality. Equipment, materials, and methods are listed in detail, including suggestions for building certain supplies. Results of previous studies on the Yellowstone River are included. (MA)

  3. Quantitative studies of Savannah River aquatic insects, 1959--1985

    SciTech Connect

    Soltis, R.; Hart, D.; Nagy, T.

    1986-10-30

    As part of a long-term study of water quality patterns, scientists from the Academy of Natural Sciences have collected aquatic insects from artificial substrates placed at several stations in Savannah River. This report presents the first detailed compilation and analysis of this substantial data base, and examines patterns of variations of insect distribution and abundance (both spatial and temporal) during the last quarter century. Data on the number of individuals of various taxa found in the insect traps were obtained from tables in the Academy's cursory reports. Computer data files created from these records were subjected to extensive statistical analyses in order to examine variation among stations, seasons and years in the abundances of major taxa and various aggregate properties of the insect assemblage. Although a total of 83 taxa were collected over the 27-year study, 10 taxa accounted for nearly 80% of the individuals collected from the traps, hence there 10 taxa were analyzed more intensively.

  4. Quantitative studies of Savannah River aquatic insects, 1959--1985

    SciTech Connect

    Soltis, R.; Hart, D.; Nagy, T.

    1986-10-30

    As part of a long-term study of water quality patterns, scientists from the Academy of Natural Sciences have collected aquatic insects from artificial substrates placed at several stations in Savannah River. This report presents the first detailed compilation and analysis of this substantial data base, and examines patterns of variations of insect distribution and abundance (both spatial and temporal) during the last quarter century. Data on the number of individuals of various taxa found in the insect traps were obtained from tables in the Academy`s cursory reports. Computer data files created from these records were subjected to extensive statistical analyses in order to examine variation among stations, seasons and years in the abundances of major taxa and various aggregate properties of the insect assemblage. Although a total of 83 taxa were collected over the 27-year study, 10 taxa accounted for nearly 80% of the individuals collected from the traps, hence there 10 taxa were analyzed more intensively.

  5. Who Eats Whom in a Pool? A Comparative Study of Prey Selectivity by Predatory Aquatic Insects

    PubMed Central

    Klecka, Jan; Boukal, David S.

    2012-01-01

    Predatory aquatic insects are a diverse group comprising top predators in small fishless water bodies. Knowledge of their diet composition is fragmentary, which hinders the understanding of mechanisms maintaining their high local diversity and of their impacts on local food web structure and dynamics. We conducted multiple-choice predation experiments using nine common species of predatory aquatic insects, including adult and larval Coleoptera, adult Heteroptera and larval Odonata, and complemented them with literature survey of similar experiments. All predators in our experiments fed selectively on the seven prey species offered, and vulnerability to predation varied strongly between the prey. The predators most often preferred dipteran larvae; previous studies further reported preferences for cladocerans. Diet overlaps between all predator pairs and predator overlaps between all prey pairs were non-zero. Modularity analysis separated all primarily nectonic predator and prey species from two groups of large and small benthic predators and their prey. These results, together with limited evidence from the literature, suggest a highly interconnected food web with several modules, in which similarly sized predators from the same microhabitat are likely to compete strongly for resources in the field (observed Pianka’s diet overlap indices >0.85). Our experiments further imply that ontogenetic diet shifts are common in predatory aquatic insects, although we observed higher diet overlaps than previously reported. Hence, individuals may or may not shift between food web modules during ontogeny. PMID:22679487

  6. Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition.

    PubMed

    Fontaneto, Diego; Tommaseo-Ponzetta, Mila; Galli, Claudio; Risé, Patrizia; Glew, Robert H; Paoletti, Maurizio G

    2011-01-01

    Edible insects may be a source of long-chain polyunsaturated fatty acids (LC-PUFA). The aim of this article is to test for differences in aquatic and terrestrial insects used in human nutrition. We implemented linear models and discovered that differences in the proportion of LC-PUFA between aquatic and terrestrial insects do exist, with terrestrial insects being significantly richer in particular omega-6 fatty acids. In conclusion, any kind of insect may provide valuable sources of LC-PUFA. Because terrestrial insects are more abundant and easier to collect, they can be considered a better source of LC-PUFA than aquatic ones.

  7. The sensitivity of aquatic insects to divalent metals: a comparative analysis of laboratory and field data.

    PubMed

    Brix, Kevin V; DeForest, David K; Adams, William J

    2011-09-15

    Laboratory studies have traditionally indicated that aquatic insects are relatively insensitive to metals while field studies have suggested them to be among the most sensitive aquatic invertebrate taxa. We reviewed and synthesized available studies in the literature to critically assess why this discrepancy exists. Despite the intense effort to study the effects of metals on aquatic biota over the past several decades, we found studies specific to insects to still be relatively limited. In general, the discrepancy between laboratory and field studies continues with few efforts having been made to elucidate the ecological and physiological mechanisms that underlie the relative sensitivity (or insensitivity) of aquatic insects to metals. However, given the limited data available, it appears that aquatic insects are indeed relatively insensitive to acute metal exposures. In contrast, we suggest that some aquatic insect taxa may be quite sensitive to chronic metal exposure and in some cases may not be protected by existing water quality criteria for metals. The discrepancy between laboratory and field studies with respect to chronic sensitivity appears to largely be driven by the relatively short exposure periods in laboratory studies as compared to field studies. It also appears that, in some cases, the sensitivity of aquatic insects in field studies may be the result of direct effects on primary producers, which lead to indirect effects via the food chain on aquatic insects. Finally, available evidence suggests that diet is an important source of metal accumulation in insects, but to date there have been no conclusive studies evaluating whether dietary metal accumulation causes toxicity. There is a clear need for developing a more mechanistic understanding of aquatic insect sensitivity to metals in long-term laboratory and field studies.

  8. Geographic analysis of thermal equilibria: A bioenergetic model for predicting thermal response of aquatic insect communities: Progress report

    SciTech Connect

    Vannote, R.L.; Sweeney, W.

    1986-11-12

    Vannote and Sweeney have presented a general hypothesis concerning the influence of temperature on the growth and development of aquatic insects. The hypothesis predicts that the size and fecundity of adult insects should vary with latitude, being greatest near the center of a species' geographic range, and diminishing near the northern and southern limits of the range. They further suggested that the predicted austral and boreal diminution is associated with a reduction in fitness that ultimately determines the geographic limits of the species. This report presents a test of Vannote and Sweeney's central prediction of geographic variation in size of aquatic insects. The analysis is based on collections of aquatic insects from streams and rivers ranging from first through eight-order along a latitudinal gradient ranging from South Carolina to Quebec in eastern North America. The analysis is based on 29 species of mayflies and stoneflies taken from a total of 54 sites. All species are univoltine at most of the study sites and emerge from late winter through midsummer. We show that among the assemblage of species taken as a whole, the hypothesis that maximum size occurs near the center of a species' range is supported. There is, however, also a significant tendency for insects to exhibit either monotonic increases or monotonic decreases in size along a latitudinal gradient. 13 refs., 6 figs., 4 tabs.

  9. Diversity of mosquitoes and the aquatic insects associated with their oviposition sites along the Pacific coast of Mexico

    PubMed Central

    2014-01-01

    Background The abundance, richness and diversity of mosquitoes and aquatic insects associated with their oviposition sites were surveyed along eight states of the Pacific coast of Mexico. Diversity was estimated using the Shannon index (H’), similarity measures and cluster analysis. Methods Oviposition sites were sampled during 2–3 months per year, over a three year period. Field collected larvae and pupae were reared and identified to species following adult emergence. Aquatic insects present at oviposition sites were also collected, counted and identified to species or genus. Results In total, 15 genera and 74 species of mosquitoes were identified: Anopheles pseudopunctipennis, An. albimanus and Aedes aegypti were the most abundant and widely-distributed species, representing 47% of total mosquito individuals sampled. New species records for certain states are reported. Anopheline diversity was lowest in Sinaloa state (H’ = 0.54) and highest in Chiapas (H’ = 1.61) and Michoacán (H’ = 1.56), whereas culicid diversity was lowest in Michoacán (H’ = 1.93), Colima (H’ = 1.95), Sinaloa (H’ = 1.99) and Jalisco (H’ = 2.01) and highest in Chiapas (H’ = 2.66). In total, 10 orders, 57 families, 166 genera and 247 species of aquatic insects were identified in samples. Aquatic insect diversity was highest in Chiapas, Oaxaca and Michoacán (H’ = 3.60-3.75). Mosquito larval/pupal abundance was not correlated with that of predatory Coleoptera and Hemiptera. Conclusion This represents the first update on the diversity and geographic distribution of the mosquitoes and aquatic insects of Mexico in over five decades. This information has been cataloged in Mexico’s National Biodiversity Information System (SNIB-CONABIO) for public inspection. PMID:24450800

  10. Aquatic insect assemblages associated with subalpine stream segment types in relict glaciated headwaters

    USGS Publications Warehouse

    Kubo, Joshua S.; Torgersen, Christian E.; Bolton, Susan M.; Weekes, Anne A.; Gara, Robert I.

    2013-01-01

    1. Aquatic habitats and biotic assemblages in subalpine headwaters are sensitive to climate and human impacts. Understanding biotic responses to such perturbations and the contribution of high-elevation headwaters to riverine biodiversity requires the assessment of assemblage composition among habitat types. We compared aquatic insect assemblages among headwater stream segment types in relict glaciated subalpine basins in Mt. Rainier National Park, Washington, USA. 2. Aquatic insects were collected during summer and autumn in three headwater basins. In each basin, three different stream segment types were sampled: colluvial groundwater sources, alluvial lake inlets, and cascade-bedrock lake outlets. Ward's hierarchical cluster analysis revealed high β diversity in aquatic insect assemblages, and non-metric multidimensional scaling indicated that spatial and temporal patterns in assemblage composition differed among headwater stream segment types. Aquatic insect assemblages showed more fidelity to stream segment types than to individual basins, and the principal environmental variables associated with assemblage structure were temperature and substrate. 3. Indicator species analyses identified specific aquatic insects associated with each stream segment type. Several rare and potentially endemic aquatic insect taxa were present, including the recently described species, Lednia borealis (Baumann and Kondratieff). 4. Our results indicate that aquatic insect assemblages in relict glaciated subalpine headwaters were strongly differentiated among stream segment types. These results illustrate the contribution of headwaters to riverine biodiversity and emphasise the importance of these habitats for monitoring biotic responses to climate change. Monitoring biotic assemblages in high-elevation headwaters is needed to prevent the potential loss of unique and sensitive biota.

  11. [Aquatic insects and water quality in Peñas Blancas watershed and reservoir].

    PubMed

    Mora, Meyer Guevara

    2011-06-01

    The aquatic insects have been used to evaluate water quality of aquatic environments. The population of aquatic insects and the water quality of the area were characterized according to the natural and human alterations present in the study site. During the monthly-survey, pH, DO, temperature, water level, DBO, PO4 and NO3 were measured. Biological indexes (abundance, species richness and the BMWP-CR) were used to evaluate the water quality. No relation between environmental and aquatic insects was detected. Temporal and spatial differences attributed to the flow events (temporal) and the presence of Peñas Blancas reservoir (spatial). In the future, the investigations in Peñas Blancas watershed need to be focused on determining the real influence of the flows, sediment release and the possible water quality degradation because of agriculture activities.

  12. Antihistamines and aquatic insects: bioconcentration and impacts on behavior in damselfly larvae (Zygoptera).

    PubMed

    Jonsson, M; Fick, J; Klaminder, J; Brodin, T

    2014-02-15

    Because aquatic insects use histamines as neurotransmitters, adverse impacts on aquatic insects living in aquatic environments that receive antihistamines with wastewater effluent are plausible. In this study, we exposed damselfly larvae to low concentrations of two commonly used antihistamines (Hydroxyzine and Fexofenadine, 360 ± 42 and 2,200 ± 43 ng l(-1), respectively), and recorded damselfly larvae behavior before and after exposure. Further, after the second set of behavioral assays was performed, we quantified bioconcentration of the antihistamines in the damselfly bodies. Our results showed significant changes in damselfly behavior following antihistamine exposure. After Hydroxyzine exposure, the damselfly larvae became less active, and they showed reduced fleeing response (i.e. increased boldness) after being exposed to Fexofenadine, the latter also being significantly different from the non-exposed (control) individuals. Further, we found high levels of bioconcentration in the damselflies; Hydroxyzine showed an average bioconcentration factor (BCF) of 2000. As such, our results indicate that low concentrations of antihistamines can have sub-lethal effects on aquatic insects manifested as behavioral changes, and that bioconcentration of these substances can be high. Therefore, the need to investigate the impact of emergent aquatic contaminants also on aquatic insects, and on behaviors that are of ecological importance, is further highlighted. PMID:24291135

  13. Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences?

    PubMed Central

    Velasco, Josefa; Millán, Andrés; Bilton, David T.; Arribas, Paula

    2016-01-01

    Background Desiccation resistance shapes the distribution of terrestrial insects at multiple spatial scales. However, responses to drying stress have been poorly studied in aquatic groups, despite their potential role in constraining their distribution and diversification, particularly in arid and semi-arid regions. Methods We examined desiccation resistance in adults of four congeneric water beetle species (Enochrus, family Hydrophilidae) with contrasting habitat specificity (lentic vs. lotic systems and different salinity optima from fresh- to hypersaline waters). We measured survival, recovery capacity and key traits related to desiccation resistance (fresh mass, % water content, % cuticle content and water loss rate) under controlled exposure to desiccation, and explored their variability within and between species. Results Meso- and hypersaline species were more resistant to desiccation than freshwater and hyposaline ones, showing significantly lower water loss rates and higher water content. No clear patterns in desiccation resistance traits were observed between lotic and lentic species. Intraspecifically, water loss rate was positively related to specimens’ initial % water content, but not to fresh mass or % cuticle content, suggesting that the dynamic mechanism controlling water loss is mainly regulated by the amount of body water available. Discussion Our results support previous hypotheses suggesting that the evolution of desiccation resistance is associated with the colonization of saline habitats by aquatic beetles. The interespecific patterns observed in Enochrus also suggest that freshwater species may be more vulnerable than saline ones to drought intensification expected under climate change in semi-arid regions such as the Mediterranean Basin. PMID:27635346

  14. Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences?

    PubMed Central

    Velasco, Josefa; Millán, Andrés; Bilton, David T.; Arribas, Paula

    2016-01-01

    Background Desiccation resistance shapes the distribution of terrestrial insects at multiple spatial scales. However, responses to drying stress have been poorly studied in aquatic groups, despite their potential role in constraining their distribution and diversification, particularly in arid and semi-arid regions. Methods We examined desiccation resistance in adults of four congeneric water beetle species (Enochrus, family Hydrophilidae) with contrasting habitat specificity (lentic vs. lotic systems and different salinity optima from fresh- to hypersaline waters). We measured survival, recovery capacity and key traits related to desiccation resistance (fresh mass, % water content, % cuticle content and water loss rate) under controlled exposure to desiccation, and explored their variability within and between species. Results Meso- and hypersaline species were more resistant to desiccation than freshwater and hyposaline ones, showing significantly lower water loss rates and higher water content. No clear patterns in desiccation resistance traits were observed between lotic and lentic species. Intraspecifically, water loss rate was positively related to specimens’ initial % water content, but not to fresh mass or % cuticle content, suggesting that the dynamic mechanism controlling water loss is mainly regulated by the amount of body water available. Discussion Our results support previous hypotheses suggesting that the evolution of desiccation resistance is associated with the colonization of saline habitats by aquatic beetles. The interespecific patterns observed in Enochrus also suggest that freshwater species may be more vulnerable than saline ones to drought intensification expected under climate change in semi-arid regions such as the Mediterranean Basin.

  15. Nutritional and Antinutritional Composition of the Five Species of Aquatic Edible Insects Consumed in Manipur, India

    PubMed Central

    Shantibala, T.; Lokeshwari, R. K.; Debaraj, H.

    2014-01-01

    The people living in Manipur have a distinct identity, culture, and food habits. They have a prototype culture of eating insects. In our study, the nutritive contents of five potentially-edible aquatic insects, Lethocerus indicus (Lepeletier and Serville) (Hemiptera: Belostomatidae), Laccotrephes maculatus (F.) (Nepidae), Hydrophilus olivaceous (F.) (Coleoptera: Dytiscidae), Cybister tripunctatus (Olivier), and Crocothemis servilia (Drury) (Odonata: Libellulidae), were analyzed to inform consumers about the nutritional quality of the insects and the suggested quantity of their intake. A good amount of protein content and high gross energy was recorded among the insects. The results showed high levels of sodium, calcium, and magnesium present in the insects, indicating that they are a good source of minerals. Antinutritional properties of these insects were below 0.52%, which is a non-toxic level. Aquatic insects, such as C. tripunctatus, also possesses strong antioxidant activity (110 µg/mL). Therefore, these insects can play a major role in food security, health, and environment management. It is essential to cultivate edible insects to maintain their population sustainability. PMID:25373161

  16. Nutritional and antinutritional composition of the five species of aquatic edible insects consumed in Manipur, India.

    PubMed

    Shantibala, T; Lokeshwari, R K; Debaraj, H

    2014-01-26

    The people living in Manipur have a distinct identity, culture, and food habits. They have a prototype culture of eating insects. In our study, the nutritive contents of five potentially-edible aquatic insects, Lethocerus indicus (Lepeletier and Serville) (Hemiptera: Belostomatidae), Laccotrephes maculatus (F.) (Nepidae), Hydrophilus olivaceous (F.) (Coleoptera: Dytiscidae), Cybister tripunctatus (Olivier), and Crocothemis servilia (Drury) (Odonata: Libellulidae), were analyzed to inform consumers about the nutritional quality of the insects and the suggested quantity of their intake. A good amount of protein content and high gross energy was recorded among the insects. The results showed high levels of sodium, calcium, and magnesium present in the insects, indicating that they are a good source of minerals. Antinutritional properties of these insects were below 0.52%, which is a non-toxic level. Aquatic insects, such as C. tripunctatus, also possesses strong antioxidant activity (110 µg/mL). Therefore, these insects can play a major role in food security, health, and environment management. It is essential to cultivate edible insects to maintain their population sustainability.

  17. Protection against Mycobacterium ulcerans Lesion Development by Exposure to Aquatic Insect Saliva

    PubMed Central

    Marot, Agnès; Wondje, Christelle Mbondji; Saint-André, Jean-Paul; Chauty, Annick; Johnson, Christian; Tekaia, Fredj; Yeramian, Edouard; Legras, Pierre; Carbonnelle, Bernard; Reysset, Gilles; Eyangoh, Sara; Milon, Geneviève; Cole, Stewart T; Aubry, Jacques

    2007-01-01

    Background Buruli ulcer is a severe human skin disease caused by Mycobacterium ulcerans. This disease is primarily diagnosed in West Africa with increasing incidence. Antimycobacterial drug therapy is relatively effective during the preulcerative stage of the disease, but surgical excision of lesions with skin grafting is often the ultimate treatment. The mode of transmission of this Mycobacterium species remains a matter of debate, and relevant interventions to prevent this disease lack (i) the proper understanding of the M. ulcerans life history traits in its natural aquatic ecosystem and (ii) immune signatures that could be correlates of protection. We previously set up a laboratory ecosystem with predatory aquatic insects of the family Naucoridae and laboratory mice and showed that (i) M. ulcerans-carrying aquatic insects can transmit the mycobacterium through bites and (ii) that their salivary glands are the only tissues hosting replicative M. ulcerans. Further investigation in natural settings revealed that 5%–10% of these aquatic insects captured in endemic areas have M. ulcerans–loaded salivary glands. In search of novel epidemiological features we noticed that individuals working close to aquatic environments inhabited by insect predators were less prone to developing Buruli ulcers than their relatives. Thus we set out to investigate whether those individuals might display any immune signatures of exposure to M. ulcerans-free insect predator bites, and whether those could correlate with protection. Methods and Findings We took a two-pronged approach in this study, first investigating whether the insect bites are protective in a mouse model, and subsequently looking for possibly protective immune signatures in humans. We found that, in contrast to control BALB/c mice, BALB/c mice exposed to Naucoris aquatic insect bites or sensitized to Naucoris salivary gland homogenates (SGHs) displayed no lesion at the site of inoculation of M. ulcerans coated with

  18. Calcium uptake in aquatic insects: influences of phylogeny and metals (Cd and Zn).

    PubMed

    Poteat, Monica D; Buchwalter, David B

    2014-04-01

    Calcium sequestration in the hypo-osmotic freshwater environment is imperative in maintaining calcium homeostasis in freshwater aquatic organisms. This uptake process is reported to have the unintended consequence of potentially toxic heavy metal (Cd, Zn) uptake in a variety of aquatic species. However, calcium uptake remains poorly understood in aquatic insects, the dominant invertebrate faunal group in most freshwater ecosystems. Here, we examined Ca uptake and interactions with heavy metals (Cd, Zn) at low ambient Ca levels (12.5 μmol l(-1)) in 12 aquatic insect species within Ephemerellidae (mayfly) and Hydropsychidae (caddisfly), two families differentially responsive to trace metal pollution. We found Ca uptake varied 70-fold across the 12 species studied. Body mass and clade (family) were found to significantly influence both Ca uptake and adsorption (P≤0.05). Zn and Cd uptake rate constants (ku) exhibited a strong correlation (r=0.96, P<0.0001), suggesting a shared transport system. Ca uptake failed to significantly correlate with either Zn or Cd ku values. Further, neither Zn nor Cd exhibited inhibitory effects toward Ca uptake. In fact, we saw evidence of modest stimulation of Ca uptake rates in some metal treatments. This work suggests that insects generally differ from other freshwater taxa in that aqueous Ca uptake does not appear to be compromised by Cd or Zn exposure. It is important to understand the trace metal and major ion physiology of aquatic insects because of their ecological importance and widespread use as ecological indicators.

  19. Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects

    USGS Publications Warehouse

    Buchwalter, D.B.; Cain, D.J.; Clements, W.H.; Luoma, S.N.

    2007-01-01

    Aquatic insects often dominate lotic ecosystems, yet these organisms are under-represented in trace metal toxicity databases. Furthermore, toxicity data for aquatic insects do not appear to reflect their actual sensitivities to metals in nature, because the concentrations required to elicit toxicity in the laboratory are considerably higher than those found to impact insect communities in the field. New approaches are therefore needed to better understand how and why insects are differentially susceptible to metal exposures. Biodynamic modeling is a powerful tool for understanding interspecific differences in trace metal bioaccumulation. Because bioaccumulation alone does not necessarily correlate with toxicity, we combined biokinetic parameters associated with dissolved cadmium exposures with studies of the subcellular compartmentalization of accumulated Cd. This combination of physiological traits allowed us to make predictions of susceptibility differences to dissolved Cd in three aquatic insect taxa: Ephemerella excrucians, Rhithrogena morrisoni, and Rhyacophila sp. We compared these predictions with long-term field monitoring data and toxicity tests with closely related taxa: Ephemerella infrequens, Rhithrogena hageni, and Rhyacophila brunea. Kinetic parameters allowed us to estimate steady-state concentrations, the time required to reach steady state, and the concentrations of Cd projected to be in potentially toxic compartments for different species. Species-specific physiological traits identified using biodynamic models provided a means for better understanding why toxicity assays with insects have failed to provide meaningful estimates for metal concentrations that would be expected to be protective in nature. ?? 2007 American Chemical Society.

  20. Effects of forest canopy on habitat selection in treefrogs and aquatic insects: implications for communities and metacommunities.

    PubMed

    Binckley, Christopher A; Resetarits, William J

    2007-10-01

    The specific dispersal/colonization strategies used by species to locate and colonize habitat patches can strongly influence both community and metacommunity structure. Habitat selection theory predicts nonrandom dispersal to and colonization of habitat patches based on their quality. We tested whether habitat selection was capable of generating patterns of diversity and abundance across a transition of canopy coverage (open and closed canopy) and nutrient addition by investigating oviposition site choice in two treefrog species (Hyla) and an aquatic beetle (Tropisternus lateralis), and the colonization dynamics of a diverse assemblage of aquatic insects (primarily beetles). Canopy cover produced dramatic patterns of presence/absence, abundance, and species richness, as open canopy ponds received 99.5% of propagules and 94.6% of adult insect colonists. Nutrient addition affected only Tropisternus oviposition, as females oviposited more egg cases at higher nutrient levels, but only in open canopy ponds. The behavioral partitioning of aquatic landscapes into suitable and unsuitable habitats via habitat selection behavior fundamentally alters how communities within larger ecological landscapes (metacommunities) are linked by dispersal and colonization. PMID:17622564

  1. Large Scale Relationship between Aquatic Insect Traits and Climate.

    PubMed

    Bhowmik, Avit Kumar; Schäfer, Ralf B

    2015-01-01

    Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices (~18 km resolution) for five insect orders (Diptera, Ephemeroptera, Odonata, Plecoptera and Trichoptera), evaluated their potential for changing distribution pattern under future climate change and identified the most influential bioclimatic indices. The data comprised 782 species and 395 genera sampled in 4,752 stream sites during 2006 and 2007 in Germany (~357,000 km² spatial extent). We quantified the variability and spatial autocorrelation in the traits and orders that are associated with the combined and individual bioclimatic indices. Traits of temperature preference grouping feature that are the products of several other underlying climate-associated traits, and the insect order Ephemeroptera exhibited the strongest response to the bioclimatic indices as well as the highest potential for changing distribution pattern. Regarding individual traits, insects in general and ephemeropterans preferring very cold temperature showed the highest response, and the insects preferring cold and trichopterans preferring moderate temperature showed the highest potential for changing distribution. We showed that the seasonal radiation and moisture are the most influential bioclimatic aspects, and thus changes in these aspects may affect the most responsive traits and orders and drive a change in their spatial distribution pattern. Our findings support the development of trait-based metrics to predict and detect climate

  2. Large Scale Relationship between Aquatic Insect Traits and Climate

    PubMed Central

    Bhowmik, Avit Kumar; Schäfer, Ralf B.

    2015-01-01

    Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices (~18 km resolution) for five insect orders (Diptera, Ephemeroptera, Odonata, Plecoptera and Trichoptera), evaluated their potential for changing distribution pattern under future climate change and identified the most influential bioclimatic indices. The data comprised 782 species and 395 genera sampled in 4,752 stream sites during 2006 and 2007 in Germany (~357,000 km² spatial extent). We quantified the variability and spatial autocorrelation in the traits and orders that are associated with the combined and individual bioclimatic indices. Traits of temperature preference grouping feature that are the products of several other underlying climate-associated traits, and the insect order Ephemeroptera exhibited the strongest response to the bioclimatic indices as well as the highest potential for changing distribution pattern. Regarding individual traits, insects in general and ephemeropterans preferring very cold temperature showed the highest response, and the insects preferring cold and trichopterans preferring moderate temperature showed the highest potential for changing distribution. We showed that the seasonal radiation and moisture are the most influential bioclimatic aspects, and thus changes in these aspects may affect the most responsive traits and orders and drive a change in their spatial distribution pattern. Our findings support the development of trait-based metrics to predict and detect climate

  3. Effects of experimental warming on survival, phenology and morphology of an aquatic insect (Odonata)

    PubMed Central

    McCauley, Shannon J.; Hammond, John I.; Frances, Dachin N.; Mabry, Karen E.

    2014-01-01

    1. Organisms can respond to changing climatic conditions in multiple ways including changes in phenology, body size or morphology, and range shifts. Understanding how developmental temperatures affect insect life-history timing and morphology is crucial because body size and morphology affect multiple aspects of life history, including dispersal ability, while phenology can shape population performance and community interactions. 2. We experimentally assessed how developmental temperatures experienced by aquatic larvae affected survival, phenology, and adult morphology of dragonflies (Pachydiplax longipennis). Larvae were reared under 3 environmental temperatures: ambient, +2.5 °C, and +5 °C, corresponding to temperature projections for our study area 50 and 100 years in the future, respectively. Experimental temperature treatments tracked naturally-occurring variation. 3. We found clear effects of temperature in the rearing environment on survival and phenology: dragonflies reared at the highest temperatures had the lowest survival rates, and emerged from the larval stage approximately 3 weeks earlier than animals reared at ambient temperatures. There was no effect of rearing temperature on overall body size. Although neither the relative wing nor thorax size was affected by warming, a non-significant trend towards an interaction between sex and warming in relative thorax size suggests that males may be more sensitive to warming than females, a pattern that should be investigated further. 4. Warming strongly affected survival in the larval stage and the phenology of adult emergence. Understanding how warming in the developmental environment affects later life-history stages is critical to interpreting the consequences of warming for organismal performance. PMID:26028806

  4. Do aquatic insects avoid cadmium-contaminated sediments?

    SciTech Connect

    Hare, L.; Shooner, F.

    1995-06-01

    The long-term colonization of profundal lake sediments having a range of spiked cadmium (Cd) concentrations (0.007 to 2.7 {mu}mol/g dry wt.) was measured in the field. Population densities of two of the most abundant colonizing insects (the chironomids Procladius [Holotanypus] sp., and Sergentia coracina) were unrelated to the Cd gradient, even though both taxa accumulated Cd in direct relation to its concentration in sediment Cd gradient Cd gradient. Cadmium concentrations in Chironomus (salinarius gp.) sp. larvae also responded positively to the sediment Cd gradient and ranged from 0.2 to 50 {mu}g/g. In contrast with the two other taxa, the abundance of Chironomus (salinarius gp.) sp. was the result of a behavioral or a toxic response, larvae of the three chironomid taxa were given a choice between field-control and Cd-spiked sediments in the laboratory. None of the taxa avoided the Cd-spiked sediments, suggesting that the lower abundance of Chironomus (salinarius gp.) sp. at high Cd concentrations in the field was due to Cd toxicity and not to avoidance of the Cd-rich sediments.

  5. Community Structure of Aquatic Insects in the Karstic Jadro River in Croatia

    PubMed Central

    Rađa, Biljana; Šantić, Mate

    2014-01-01

    This study focused on the aquatic insect community in the longitudinal gradient and temporal scales of the Jadro River. The river was sampled for a period of ten years (2000–2010), four times per year through the various seasons, along the river course. Sampling stations were selected in the upper, middle, and downstream parts of the river. A total of 21,852 specimens of aquatic insects belonging to six orders were obtained. The species determination confirmed 27 different species in the river. The data were analyzed by the multivariate methodologies of correspondence analysis and cluster analysis (unweighted pair group method with arithmetic mean) using the similarity index of Morosita for all ten years. Canonical correspondence analysis was applied to the data to check which of the mesured physicochemical variables significantly explained community variation. According to those data, significant variables for the upper station were water temperature and dissolved oxygen, and chlorides was the significant variable for the lower stations. PMID:25373201

  6. Community structure of aquatic insects in the karstic Jadro River in Croatia.

    PubMed

    Rađa, Biljana; Santić, Mate

    2014-04-19

    This study focused on the aquatic insect community in the longitudinal gradient and temporal scales of the Jadro River. The river was sampled for a period of ten years (2000- 2010), four times per year through the various seasons, along the river course. Sampling stations were selected in the upper, middle, and downstream parts of the river. A total of 21,852 specimens of aquatic insects belonging to six orders were obtained. The species determination confirmed 27 different species in the river. The data were analyzed by the multivariate methodologies of correspondence analysis and cluster analysis (unweighted pair group method with arithmetic mean) using the similarity index of Morosita for all ten years. Canonical correspondence analysis was applied to the data to check which of the mesured physicochemical variables significantly explained community variation. According to those data, significant variables for the upper station were water temperature and dissolved oxygen, and chlorides was the significant variable for the lower stations.

  7. [Responses of functional diversity of aquatic insect community to land use change in middle reach of Qiantang River, East China].

    PubMed

    Zhang, Lian-Bo; Liu, Dong-Xiao; Liu, Shuo-Ru; Zhang, Yong; Tong, Xiao-Li; Wang, Bei-Xin

    2013-10-01

    Based on the biological traits such as life history, resistance ability against environmental disturbance, and physiological characteristics of aquatic insects, and by using the fourth-corner statistical method, this paper studied the responses of the functional diversity of aquatic insect community to land use change in the middle reach of Qiantang River, Zhejiang Province of East China. For the test aquatic insect community, some of its biological traits were sensitive to land use change, and altered along human disturbance gradients as expected. With the increasing intensity of human disturbance, the maximal insect body length decreased gradually, the dominant respiration pattern evolved from gill respiration to tegument respiration, and the abundance of burrowers increased significantly. At the same time, the functional diversity measured as Rao's quadratic entropy was significantly higher in reference sites than in disturbed sites (P < 0.001), demonstrating that the changes in the functional diversity of the aquatic community were mainly induced by the land use change caused by human activities, which resulted in the decline of stream water quality and habitat quality and the variations of aquatic insect community composition and biological traits. The aquatic insect biological traits and functional diversity could be the potentially effective indicators in the stream health assessment in the future.

  8. Assessing the Fauna of Aquatic Insects for Possible Use for Malaria Vector Control in Large River, Central Iran.

    PubMed

    Shayeghi, Mansoureh; Nejati, Jalil; Shirani-Bidabadi, Leila; Koosha, Mona; Badakhshan, Mehdi; Mohammadi Bavani, Mulood; Arzamani, Kourosh; Choubdar, Nayyereh; Bagheri, Fatemeh; Saghafipour, Abedin; Veysi, Arshad; Karimian, Fateh; Akhavan, Amir Ahamd; Vatandoost, Hassan

    2015-01-01

    Insects with over 30,000 aquatic species are known as very successful arthropods in freshwater habitats. Some of them are applied as biological indicators for water quality control, as well as the main food supply for fishes and amphibians. The faunistic studies are the basic step in entomological researches; the current study was carried out emphasizing on the fauna of aquatic insects in Karaj River, northern Iran. A field study was carried out in six various sampling site of Karaj River during spring 2013. The aquatic insects were collected using several methods such as D-frame nets, dipping and direct search on river floor stones. Specimens were collected and preserved in Ethanol and identified by standard identification keys. Totally, 211 samples were collected belonging to three orders; Plecoptera, Trichoptera and Ephemeroptera. Seven genuses (Perla, Isoperla, Hydropsyche, Cheumatopsyche, Baetis, Heptagenia and Maccafferium) from five families (Perlidae, Perlodidae, Hydropsychidae, Batidae, Heptagenidae) were identified. The most predominant order was Plecoptera followed by Trichoptera. Karaj River is a main and important river, which provides almost all of water of Karaj dam. So, identification of aquatic species which exist in this river is vital and further studies about systematic and ecological investigations should be performed. Also, monitoring of aquatic biota by trained health personnel can be a critical step to describe water quality in this river. Understanding the fauna of aquatic insects will provide a clue for possible biological control of medically important aquatic insects such as Anopheles as the malaria vectors.

  9. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects.

    PubMed

    Scheibener, S A; Richardi, V S; Buchwalter, D B

    2016-02-01

    The importance of insects in freshwater ecosystems has led to their extensive use in ecological monitoring programs. As freshwater systems are increasingly challenged by salinization and metal contamination, it is important to understand fundamental aspects of aquatic insect physiology (e.g., osmoregulatory processes) that contribute to insect responses to these stressors. Here we compared the uptake dynamics of Na as NaCl, NaHCO3 and Na2SO4 in the caddisfly Hydropsyche betteni across a range of Na concentrations (0.06-15.22 mM) encompassing the vast majority of North American freshwater ecosystems. Sulfate as the major anion resulted in decreased Na uptake rates relative to the chloride and bicarbonate salts. A comparison of Na (as NaHCO3) turnover rates in the caddisfly Hydropsyche sparna and the mayfly Maccaffertium sp. revealed different patterns in the 2 species. Both species appeared to tightly regulate their whole body sodium concentrations (at ∼47±1.8 μmol/g wet wt) across a range of Na concentrations (0.06-15.22 mM) over 7 days. However, at the highest Na concentration (15.22 mM), Na uptake rates in H. sparna (419.1 μM Na g(-1) hr(-1) wet wt) appeared close to saturation while Na uptake rates in Maccaffertium sp. were considerably faster (715 g μM Na g(-1) hr(-1) wet wt) and appeared to not be close to saturation. Na efflux studies in H. sparna revealed that loss rates are commensurate with uptake rates and are responsive to changes in water Na concentrations. A comparison of Na uptake rates (at 0.57 mM Na) across 9 species representing 4 major orders (Ephemeroptera, Plecoptera, Trichoptera and Diptera) demonstrated profound physiological differences across species after accounting for the influence of body weight. Faster Na uptake rates were associated with species described as being sensitive to salinization in field studies. The metals silver (Ag) and copper (Cu), known to be antagonistic to Na uptake in other aquatic taxa did not generally

  10. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects.

    PubMed

    Scheibener, S A; Richardi, V S; Buchwalter, D B

    2016-02-01

    The importance of insects in freshwater ecosystems has led to their extensive use in ecological monitoring programs. As freshwater systems are increasingly challenged by salinization and metal contamination, it is important to understand fundamental aspects of aquatic insect physiology (e.g., osmoregulatory processes) that contribute to insect responses to these stressors. Here we compared the uptake dynamics of Na as NaCl, NaHCO3 and Na2SO4 in the caddisfly Hydropsyche betteni across a range of Na concentrations (0.06-15.22 mM) encompassing the vast majority of North American freshwater ecosystems. Sulfate as the major anion resulted in decreased Na uptake rates relative to the chloride and bicarbonate salts. A comparison of Na (as NaHCO3) turnover rates in the caddisfly Hydropsyche sparna and the mayfly Maccaffertium sp. revealed different patterns in the 2 species. Both species appeared to tightly regulate their whole body sodium concentrations (at ∼47±1.8 μmol/g wet wt) across a range of Na concentrations (0.06-15.22 mM) over 7 days. However, at the highest Na concentration (15.22 mM), Na uptake rates in H. sparna (419.1 μM Na g(-1) hr(-1) wet wt) appeared close to saturation while Na uptake rates in Maccaffertium sp. were considerably faster (715 g μM Na g(-1) hr(-1) wet wt) and appeared to not be close to saturation. Na efflux studies in H. sparna revealed that loss rates are commensurate with uptake rates and are responsive to changes in water Na concentrations. A comparison of Na uptake rates (at 0.57 mM Na) across 9 species representing 4 major orders (Ephemeroptera, Plecoptera, Trichoptera and Diptera) demonstrated profound physiological differences across species after accounting for the influence of body weight. Faster Na uptake rates were associated with species described as being sensitive to salinization in field studies. The metals silver (Ag) and copper (Cu), known to be antagonistic to Na uptake in other aquatic taxa did not generally

  11. Ubiquitous Water-Soluble Molecules in Aquatic Plant Exudates Determine Specific Insect Attraction

    PubMed Central

    Sérandour, Julien; Reynaud, Stéphane; Willison, John; Patouraux, Joëlle; Gaude, Thierry; Ravanel, Patrick; Lempérière, Guy; Raveton, Muriel

    2008-01-01

    Plants produce semio-chemicals that directly influence insect attraction and/or repulsion. Generally, this attraction is closely associated with herbivory and has been studied mainly under atmospheric conditions. On the other hand, the relationship between aquatic plants and insects has been little studied. To determine whether the roots of aquatic macrophytes release attractive chemical mixtures into the water, we studied the behaviour of mosquito larvae using olfactory experiments with root exudates. After testing the attraction on Culex and Aedes mosquito larvae, we chose to work with Coquillettidia species, which have a complex behaviour in nature and need to be attached to plant roots in order to obtain oxygen. This relationship is non-destructive and can be described as commensal behaviour. Commonly found compounds seemed to be involved in insect attraction since root exudates from different plants were all attractive. Moreover, chemical analysis allowed us to identify a certain number of commonly found, highly water-soluble, low-molecular-weight compounds, several of which (glycerol, uracil, thymine, uridine, thymidine) were able to induce attraction when tested individually but at concentrations substantially higher than those found in nature. However, our principal findings demonstrated that these compounds appeared to act synergistically, since a mixture of these five compounds attracted larvae at natural concentrations (0.7 nM glycerol, <0.5 nM uracil, 0.6 nM thymine, 2.8 nM uridine, 86 nM thymidine), much lower than those found for each compound tested individually. These results provide strong evidence that a mixture of polyols (glycerol), pyrimidines (uracil, thymine), and nucleosides (uridine, thymidine) functions as an efficient attractive signal in nature for Coquillettidia larvae. We therefore show for the first time, that such commonly found compounds may play an important role in plant-insect relationships in aquatic eco-systems. PMID:18841203

  12. Geographic analysis of thermal equilibria: A bioenergetic model for predicting thermal response of aquatic insect communities: Volume 2: Technical progress report, February 1, 1985-January 31, 1988

    SciTech Connect

    Vannote, R.L.; Sweeney, B.W.

    1987-01-01

    This report summarizes the principal research findings of both laboratory and field experiments on the effects of temperature on aquatic insects. It describes a large-scale laboratory experiment that tests the validity of a general model developed to predict the seasonal pattern of growth, development, and adult emergence of aquatic insect species at different locations in their geographic range. The report details the transition of the research program from its present focus on the ecology of stream and river insect populations to a program emphasizing the role of riparian biotic and geochemical factors in regulating the dynamics of stream systems. The long term goals are to develop the functional relationships between alluvial floodplains and its drainage network. Initially, research will focus on mechanisms regulating input storage, transformation and release of nutrients between the riparian system and streams. Volume 2 contains studies on the effects of temperature and food quality on the growth of larval insects as well as experiments on insect metabolism. 24 refs., 15 figs., 10 tabs.

  13. Identification of marine-derived lipids in juvenile coho salmon and aquatic insects through fatty acid analysis

    USGS Publications Warehouse

    Heintz, Ron A.; Wipfli, Mark S.; Hudson, John P.

    2010-01-01

    The energetic benefits enjoyed by consumers in streams with salmon runs depend on how those benefits are accrued. Adult Pacific salmon Oncorhynchus spp. deliver significant amounts of nutrients (i.e., nitrogen and phosphorus) and carbon to streams when they spawn and die; these nutrient additions can have demonstrable effects on primary production in streams. Consumption of carcass tissues or eggs provides for direct energy subsidies to consumers and may have significant effects on their condition. In this study, comparisons of juvenile coho salmon O. kisutch and aquatic insects exposed to terrestrial and marine energy sources demonstrated that direct consumption of marine-derived lipids had a significant effect on the lipid reserves of consumers. Direct consumption of marine-derived tissues was verified through fatty acid analysis. Selected aquatic insects and juvenile coho salmon were reared for 6 weeks in experimental streams supplied with terrestrial or marine energy sources. Chironomid midges, nemourid stoneflies, and juvenile coho salmon exposed to the marine energy source altered their fatty acid compositions by incorporating the long-chain polyunsaturated fatty acids that are characteristic of marine fish. The fatty acid composition of baetid mayflies was unaffected. The direct movement of specific fatty markers indicated that direct consumption of marine-derived tissues led to increased energy reserves (triacylglycerols) in consumers. Similar results were obtained for juvenile coho salmon sampled from natural streams before and after the arrival of adult salmon runs. These data indicate that marine-derived lipids from anadromous fish runs are an important source of reserve lipids for consumers that overwinter in streams.

  14. Functional Process Zones Characterizing Aquatic Insect Communities in Streams of the Brazilian Cerrado.

    PubMed

    Godoy, B S; Simião-Ferreira, J; Lodi, S; Oliveira, L G

    2016-04-01

    Stream ecology studies see to understand ecological dynamics in lotic systems. The characterization of streams into Functional Process Zones (FPZ) has been currently debated in stream ecology because aquatic communities respond to functional processes of river segments. Therefore, we tested if different functional process zones have different number of genera and trophic structure using the aquatic insect community of Neotropical streams. We also assessed whether using physical and chemical variables may complement the approach of using FPZ to model communities of aquatic insects in Cerrado streams. This study was conducted in 101 streams or rivers from the central region of the state of Goiás, Brazil. We grouped the streams into six FPZ associated to size of the river system, presence of riparian forest, and riverbed heterogeneity. We used Bayesian models to compare number of genera and relative frequency of the feeding groups between FPZs. Streams classified in different FPZs had a different number of genera, and the largest and best preserved rivers had an average of four additional genera. Trophic structure exhibited low variability among FPZs, with little difference both in the number of genera and in abundance. Using functional process zones in Cerrado streams yielded good results for Ephemeroptera, Plecoptera, and Trichoptera communities. Thus, species distribution and community structure in the river basin account for functional processes and not necessarily for the position of the community along a longitudinal dimension of the lotic system. PMID:26830433

  15. Functional Process Zones Characterizing Aquatic Insect Communities in Streams of the Brazilian Cerrado.

    PubMed

    Godoy, B S; Simião-Ferreira, J; Lodi, S; Oliveira, L G

    2016-04-01

    Stream ecology studies see to understand ecological dynamics in lotic systems. The characterization of streams into Functional Process Zones (FPZ) has been currently debated in stream ecology because aquatic communities respond to functional processes of river segments. Therefore, we tested if different functional process zones have different number of genera and trophic structure using the aquatic insect community of Neotropical streams. We also assessed whether using physical and chemical variables may complement the approach of using FPZ to model communities of aquatic insects in Cerrado streams. This study was conducted in 101 streams or rivers from the central region of the state of Goiás, Brazil. We grouped the streams into six FPZ associated to size of the river system, presence of riparian forest, and riverbed heterogeneity. We used Bayesian models to compare number of genera and relative frequency of the feeding groups between FPZs. Streams classified in different FPZs had a different number of genera, and the largest and best preserved rivers had an average of four additional genera. Trophic structure exhibited low variability among FPZs, with little difference both in the number of genera and in abundance. Using functional process zones in Cerrado streams yielded good results for Ephemeroptera, Plecoptera, and Trichoptera communities. Thus, species distribution and community structure in the river basin account for functional processes and not necessarily for the position of the community along a longitudinal dimension of the lotic system.

  16. Thermal tolerance of aquatic insects inhabiting the Tennessee River-Reservoir system

    SciTech Connect

    Tennessen, K.J.; Miller, J.L.

    1983-03-01

    The objectives were to (1) determine the short-term thermal tolerance of several important species of aquatic insects in the Tennessee River-Reservoir system, (2) investigate the effect of acclimation temperature on tolerance, and the possibility of delayed mortality, (3) determine the most sensitive stage in the life cycle, and (4) conduct field studies on growth and emergence of selected aquatic insects within actual thermal plume areas. In laboratory tests, nymphs of Hexagenia bilineata (Ephemeroptera) and larvae of Chironomus crassicaudatus (Diptera) were highly tolerant of short term thermal shocks (six hour duration, simulating entrainment in a thermal plume and drifting to ambient). TL50 values increased from 35/sup 0/C at an acclimation temperature of 5/sup 0/C to 38 to 40/sup 0/C at an acclimation temperature of 20 to 25/sup 0/C. However, survivors of these treatments experienced higher percentages of delayed mortality compared to controls after being held for ten days to four weeks at the original acclimation temperature. The most senstitive stage found in the life cycle of H. bilineata was the egg during oviposition (time of fertilization); eggs exposed to 33/sup 0/C for 15 minutes during oviposition hatched at a significantly lower percentage than controls (ambient was 28/sup 0/C). The data generated indicate that aquatic insect species inhabiting TVA's large warm-water reservoirs are living close to their thermal maximum, and that an upper limit of 33/sup 0/C would ensure the maintenance of sizeable populations of the species studied.

  17. Respiratory control in aquatic insects dictates their vulnerability to global warming.

    PubMed

    Verberk, Wilco C E P; Bilton, David T

    2013-10-23

    Forecasting species responses to climatic warming requires knowledge of how temperature impacts may be exacerbated by other environmental stressors, hypoxia being a principal example in aquatic systems. Both stressors could interact directly as temperature affects both oxygen bioavailability and ectotherm oxygen demand. Insufficient oxygen has been shown to limit thermal tolerance in several aquatic ectotherms, although, the generality of this mechanism has been challenged for tracheated arthropods. Comparing species pairs spanning four different insect orders, we demonstrate that oxygen can indeed limit thermal tolerance in tracheates. Species that were poor at regulating oxygen uptake were consistently more vulnerable to the synergistic effects of warming and hypoxia, demonstrating the importance of respiratory control in setting thermal tolerance limits.

  18. Trichomycetes living in the guts of aquatic insects of Misiones and Tierra del Fuego, Argentina.

    PubMed

    López Lastra, Claudia C; Scorsetti, Ana C; Marti, Gerardo A; Coscarón, Sixto

    2005-01-01

    Fourteen species of Trichomycetes living in the guts of aquatic insects are reported from two provinces of Argentina, Misiones and Tierra del Fuego. Twelve of the species belong to the Harpellales and two are Amoebidiales. Five harpellid species are reported from Misiones in the extreme northeast of the country (Genistellospora homothallica, Harpella tica, Smittium culisetae, Smittium sp., Stachylina sp.) and seven are from Tierra del Fuego, the southern tip of South America (H. meridianalis, Glotzia sp., S. culicis, S. cellaspora, S. imitatum, Stachylina minima, Penella simulii). Insect hosts all were immature stages of Culicidae, Simuliidae, Chironomidae, Ceratopogonidae (Insecta: Diptera), and Ephemeroptera and Plecoptera. The lower diversity of Trichomycetes found at Misiones, which has a subtropical climate and rainforest vegetation, was due possibly to the warmer temperatures of the water (15-24 C), compared to the colder streams of Tierra del Fuego (9-15 C), with forests and steppes as typical vegetation.

  19. Can activity traps assess aquatic insect abundance at the landscape level?

    USGS Publications Warehouse

    Boobar, L.R.; Gibbs, K.E.; Longcore, J.R.

    1994-01-01

    We used activity traps as designed by Riley and Bookhout (1990. Wetlands) to sample aquatic invertebrates as part of a study to characterize wetlands on a forested and an agricultural landscape (ca. 1,000 mi'2) in northern. Maine. Eight wetlands (5 from agricultural and 3 from forested landscapes) were sampled at random from 50 wetlands surveyed for waterfowl broods. At the landscape level, insect abundance (mean no./ trap), fish abundance (mean no./trap), percent vegetation, and water chemistry variables (pH, ANC, SPCOND, Ca, Mg, K, Na, Cl) were different between landscapes. Furthermore, nearly as many fish (2,112) were caught as were insects (2,443); 47% of the 332 traps contained fish, but 84 traps accounted for 94% of the fish caught. When >4 fish were in a trap fewer insects were in the trap. Differences in water temperature among wetlands and differences in rates of escape among insect orders affected the number of different taxa caught. Until capture success of activity traps is better understood, results from activity traps should be used with care.

  20. Circadian rhythms and endocrine functions in adult insects.

    PubMed

    Bloch, Guy; Hazan, Esther; Rafaeli, Ada

    2013-01-01

    Many behavioral and physiological processes in adult insects are influenced by both the endocrine and circadian systems, suggesting that these two key physiological systems interact. We reviewed the literature and found that experiments explicitly testing these interactions in adult insects have only been conducted for a few species. There is a shortage of measurements of hormone titers throughout the day under constant conditions even for the juvenile hormones (JHs) and ecdysteroids, the best studied insect hormones. Nevertheless, the available measurements of hormone titers coupled with indirect evidence for circadian modulation of hormone biosynthesis rate, and the expression of genes encoding proteins involved in hormone biosynthesis, binding or degradation are consistent with the hypothesis that the circulating levels of many insect hormones are influenced by the circadian system. Whole genome microarray studies suggest that the modulation of farnesol oxidase levels is important for the circadian regulation of JH biosynthesis in honey bees, mosquitoes, and fruit flies. Several studies have begun to address the functional significance of circadian oscillations in endocrine signaling. The best understood system is the circadian regulation of Pheromone Biosynthesis Activating Neuropeptide (PBAN) titers which is important for the temporal organization of sexual behavior in female moths. The evidence that the circadian and endocrine systems interact has important implications for studies of insect physiology and behavior. Additional studies on diverse species and physiological processes are needed for identifying basic principles underlying the interactions between the circadian and endocrine systems in insects.

  1. Responses of aquatic insects to Cu and Zn in stream microcosms: understanding differences between single species tests and field responses.

    PubMed

    Clements, William H; Cadmus, Pete; Brinkman, Stephen F

    2013-07-01

    Field surveys of metal-contaminated streams suggest that some aquatic insects, particularly mayflies (Ephemeroptera) and stoneflies (Plecoptera), are highly sensitive to metals. However, results of single species toxicity tests indicate these organisms are quite tolerant, with LC50 values often several orders of magnitude greater than those obtained using standard test organisms (e.g., cladocerans and fathead minnows). Reconciling these differences is a critical research need, particularly since water quality criteria for metals are based primarily on results of single species toxicity tests. In this research we provide evidence based on community-level microcosm experiments to support the hypothesis that some aquatic insects are highly sensitive to metals. We present results of three experiments that quantified effects of Cu and Zn, alone and in combination, on stream insect communities. EC50 values, defined as the metal concentration that reduced abundance of aquatic insects by 50%, were several orders of magnitude lower than previously published values obtained from single species tests. We hypothesize that the short duration of laboratory toxicity tests and the failure to evaluate effects of metals on sensitive early life stages are the primary factors responsible for unrealistically high LC50 values in the literature. We also observed that Cu alone was significantly more toxic to aquatic insects than the combination of Cu and Zn, despite the fact that exposure concentrations represented theoretically similar toxicity levels. Our results suggest that water quality criteria for Zn were protective of most aquatic insects, whereas Cu was highly toxic to some species at concentrations near water quality criteria. Because of the functional significance of aquatic insects in stream ecosystems and their well-established importance as indicators of water quality, reconciling differences between field and laboratory responses and understanding the mechanisms responsible

  2. Responses of aquatic insects to Cu and Zn in stream microcosms: understanding differences between single species tests and field responses.

    PubMed

    Clements, William H; Cadmus, Pete; Brinkman, Stephen F

    2013-07-01

    Field surveys of metal-contaminated streams suggest that some aquatic insects, particularly mayflies (Ephemeroptera) and stoneflies (Plecoptera), are highly sensitive to metals. However, results of single species toxicity tests indicate these organisms are quite tolerant, with LC50 values often several orders of magnitude greater than those obtained using standard test organisms (e.g., cladocerans and fathead minnows). Reconciling these differences is a critical research need, particularly since water quality criteria for metals are based primarily on results of single species toxicity tests. In this research we provide evidence based on community-level microcosm experiments to support the hypothesis that some aquatic insects are highly sensitive to metals. We present results of three experiments that quantified effects of Cu and Zn, alone and in combination, on stream insect communities. EC50 values, defined as the metal concentration that reduced abundance of aquatic insects by 50%, were several orders of magnitude lower than previously published values obtained from single species tests. We hypothesize that the short duration of laboratory toxicity tests and the failure to evaluate effects of metals on sensitive early life stages are the primary factors responsible for unrealistically high LC50 values in the literature. We also observed that Cu alone was significantly more toxic to aquatic insects than the combination of Cu and Zn, despite the fact that exposure concentrations represented theoretically similar toxicity levels. Our results suggest that water quality criteria for Zn were protective of most aquatic insects, whereas Cu was highly toxic to some species at concentrations near water quality criteria. Because of the functional significance of aquatic insects in stream ecosystems and their well-established importance as indicators of water quality, reconciling differences between field and laboratory responses and understanding the mechanisms responsible

  3. Geographic analysis of thermal equilibria: A bioenergetic model for predicting thermal response of aquatic insect communities: Volume 1: Technical progress report, February 1, 1985-January 31, 1988

    SciTech Connect

    Vannote, R.L.; Sweeney, B.W.

    1987-01-01

    This report summarizes the principal research findings of both laboratory and field experiments on the effects of temperature on aquatic insects. It describes a large-scale laboratory experiment that tests the validity of a general model developed to predict the seasonal pattern of growth, development, and adult emergence of aquatic insect species at different locations in their geographic range. The report details the transition of the research program from its present focus on the ecology of stream and river insect populations to a program emphasizing the role of riparian biotic and geochemical factors in regulating the dynamics of stream systems. The long-term goals are to develop the functional relationships between alluvial floodplains and its drainage network. Initially, research will focus on mechanisms regulating input storage, transformation and release of nutrients between the riparian system and streams. Volume 1 reports on field studies of natural and thermally modified river systems, as well as laboratory studies on electrophoretic analysis of insects. 12 refs., 17 figs., 2 tabs.

  4. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies

    USGS Publications Warehouse

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2003-01-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5??C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  5. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies.

    PubMed

    Buchwalter, David B; Jenkins, Jeffrey J; Curtis, Lawrence R

    2003-11-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5 degrees C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  6. Manganese bioconcentration in aquatic insects: Mn oxide coatings, molting loss, and Mn(II) thiol scavenging.

    PubMed

    Dittman, Elizabeth K; Buchwalter, David B

    2010-12-01

    Streams below mountaintop removal-valley fill coal mining operations often have elevated Mn concentrations, but it remains unclear if Mn plays a role in biodiversity reduction. We examined various aspects of aqueous Mn interactions with aquatic insects exposed to environmentally relevant Mn concentrations, revealing complex behavior. First, Mn accumulation rates varied widely among 9 species. A significant percentage of total Mn accrued (mean 74%, range 24-95%) was associated with the cuticle, predominantly in the form of Mn-oxides, and to a lesser degree Mn(II). Mn II is also absorbed into tissues, possibly through calcium transporters. Increased ambient calcium concentrations decreased both adsorbed and absorbed Mn accumulation from solution. Though species showed similar Mn efflux rate constants (0.032-0.072 d(-1)), the primary mode of Mn loss was through molting. Both adsorbed and absorbed Mn is lost during the molt. Subcellular compartmentalization studies revealed an overwhelming tendency for internalized Mn to associate with the heat stable cytosolic protein fraction. After short dissolved Mn exposures, intracellular glutathione and cysteine levels were markedly reduced relative to controls. These findings suggest that Mn exposure results in transient physiological stress in aquatic insects which is likely relieved, in part, during the molting process.

  7. Composition and Longitudinal Patterns of Aquatic Insect Emergence in Small Rivers of Palawan Island, the Philippines

    NASA Astrophysics Data System (ADS)

    Freitag, Hendrik

    2004-09-01

    This study presents the first emergence trap samples from streams in the Philippines and Greater Sunda. Aquatic insect emergence from two small rivers and longitudinal patterns including estuaries are compared. A decline of total emergence towards estuaries was observed, affecting all major orders. Diptera, namely Chironomidae, dominated all sites. High abundances in Ceratopogonidae, Odonata, and Coleoptera were found, compared to other emergence studies from tropical and temperate latitudes. Ephemeroptera displayed a highly variable contribution to the emergence from Palawan as well as in other comparative studies either supported by the appropriate conditions for certain functional groups or limited by environmental variables such as pH. Trichoptera are likely to tolerate a wider range of environmental conditions and they are consequently able to fill further niches where Ephemeroptera are under-represented. Except for scarce abundances of Plecoptera observed in this and other studies from the tropics, no substantial differences in emergence composition at order level existed between temperate and tropical rivers, however, with a remarkable local variation. Components of riparian and non-aquatic insects and non-emergent fauna contributing to the collections are discussed based on trap features. (

  8. Seasonal changes in the critical thermal maxima of four species of aquatic insects (Ephemeroptera, Trichoptera).

    PubMed

    Houghton, David C; Shoup, Logan

    2014-08-01

    Seasonal changes in the critical thermal maxima (CTmax) of four species of aquatic insects were determined from February 2012 to February 2013 from a first-order stream in northern Lower Michigan. Three of these species: Stenonema femoratum (Ephemeroptera: Heptageniidae), Hydropsyche slossonae (Trichoptera: Hydropsychidae), and Dolophilodes distinctus (Trichoptera: Philopotamidae) exhibited seasonal changes in CTmax, increasing through the spring and summer and then decreasing into the subsequent fall and winter. CTmax of these species correlated strongly with both the seasonal ambient stream temperature and with a series of different laboratory acclimation temperatures, suggesting that organisms adapt to laboratory acclimation in a similar manner as they adapt to seasonal changes. In contrast, the CTmax of Parapsyche apicalis (Trichoptera: Arctopsychidae) remained constant regardless of ambient or acclimation temperature. All species exhibited greater thermal sensitivity relative to ambient temperature during the summer than the winter. Our study indicates that thermal tolerance patterns can be different among species in the same environment. It also provides the first winter and year-round thermal tolerance data for aquatic insects.

  9. Community structure of aquatic insects in the Esparza River, Costa Rica.

    PubMed

    Herrera-Vásquez, Jonathan

    2009-01-01

    This study focused on the structure of the aquatic insect community in spatial and temporal scales in the Esparza River. The river was sampled for one full year throughout 2007. During the dry season low flow months, five sampling points were selected in two different habitats (currents and pools), with five replicates per sample site. During the wet season with peak rain, only the data in the "current habitat" were sampled at each site. Specimens present in the different substrates were collected and preserved in situ. A nested ANOVA was then applied to the data to determine richness and density as the response variables. The variations in temporal and spatial scales were analyzed using width, depth and discharge of the river, and then analyzed using a nested ANOVA. Only a correlation of 51% similarity in richness was found, while in spatial scale, richness showed significant variation between sampling sites, but not between habitats. However, the temporal scale showed significant differences between habitats. Density showed differences between sites and habitats during the dry season in the spatial scale, while in the temporal scale significant variation was found between sampling sites. Width varied between habitats during the dry season, but not between sampling points. Depth showed differences between sampling sites and season. This work studies the importance of community structure of aquatic insects in rivers, and its relevance for the quality of water in rivers and streams.

  10. Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarization signals.

    PubMed

    Kriska, György; Csabai, Zoltán; Boda, Pál; Malik, Péter; Horváth, Gábor

    2006-07-01

    We reveal here the visual ecological reasons for the phenomenon that aquatic insects often land on red, black and dark-coloured cars. Monitoring the numbers of aquatic beetles and bugs attracted to shiny black, white, red and yellow horizontal plastic sheets, we found that red and black reflectors are equally highly attractive to water insects, while yellow and white reflectors are unattractive. The reflection-polarization patterns of black, white, red and yellow cars were measured in the red, green and blue parts of the spectrum. In the blue and green, the degree of linear polarization p of light reflected from red and black cars is high and the direction of polarization of light reflected from red and black car roofs, bonnets and boots is nearly horizontal. Thus, the horizontal surfaces of red and black cars are highly attractive to red-blind polarotactic water insects. The p of light reflected from the horizontal surfaces of yellow and white cars is low and its direction of polarization is usually not horizontal. Consequently, yellow and white cars are unattractive to polarotactic water insects. The visual deception of aquatic insects by cars can be explained solely by the reflection-polarizational characteristics of the car paintwork.

  11. Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarization signals.

    PubMed

    Kriska, György; Csabai, Zoltán; Boda, Pál; Malik, Péter; Horváth, Gábor

    2006-07-01

    We reveal here the visual ecological reasons for the phenomenon that aquatic insects often land on red, black and dark-coloured cars. Monitoring the numbers of aquatic beetles and bugs attracted to shiny black, white, red and yellow horizontal plastic sheets, we found that red and black reflectors are equally highly attractive to water insects, while yellow and white reflectors are unattractive. The reflection-polarization patterns of black, white, red and yellow cars were measured in the red, green and blue parts of the spectrum. In the blue and green, the degree of linear polarization p of light reflected from red and black cars is high and the direction of polarization of light reflected from red and black car roofs, bonnets and boots is nearly horizontal. Thus, the horizontal surfaces of red and black cars are highly attractive to red-blind polarotactic water insects. The p of light reflected from the horizontal surfaces of yellow and white cars is low and its direction of polarization is usually not horizontal. Consequently, yellow and white cars are unattractive to polarotactic water insects. The visual deception of aquatic insects by cars can be explained solely by the reflection-polarizational characteristics of the car paintwork. PMID:16769639

  12. Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection–polarization signals

    PubMed Central

    Kriska, György; Csabai, Zoltán; Boda, Pál; Malik, Péter; Horváth, Gábor

    2006-01-01

    We reveal here the visual ecological reasons for the phenomenon that aquatic insects often land on red, black and dark-coloured cars. Monitoring the numbers of aquatic beetles and bugs attracted to shiny black, white, red and yellow horizontal plastic sheets, we found that red and black reflectors are equally highly attractive to water insects, while yellow and white reflectors are unattractive. The reflection–polarization patterns of black, white, red and yellow cars were measured in the red, green and blue parts of the spectrum. In the blue and green, the degree of linear polarization p of light reflected from red and black cars is high and the direction of polarization of light reflected from red and black car roofs, bonnets and boots is nearly horizontal. Thus, the horizontal surfaces of red and black cars are highly attractive to red-blind polarotactic water insects. The p of light reflected from the horizontal surfaces of yellow and white cars is low and its direction of polarization is usually not horizontal. Consequently, yellow and white cars are unattractive to polarotactic water insects. The visual deception of aquatic insects by cars can be explained solely by the reflection–polarizational characteristics of the car paintwork. PMID:16769639

  13. Prey preferences of aquatic insects: potential implications for the regulation of wetland mosquitoes.

    PubMed

    Saha, N; Aditya, G; Saha, G K

    2014-03-01

    Wetlands are potential sites for mosquito breeding and are thus important in the context of public health. The use of chemical and microbial controls is constrained in wetlands in view of their potential impact on the diverse biota. Biological control using generalist aquatic insects can be effective, provided a preference for mosquito larvae is exhibited. The mosquito prey preferences of water bugs and larvae of odonate species were evaluated using chironomid larvae, fish fingerlings and tadpoles as alternative prey. Manly's selectivity (αi ) values with 95% confidence intervals (CIs) were estimated to judge prey preference patterns. Multivariate analysis of variance (manova) and standardized canonical coefficients were used to test the effects of density on prey selectivity. The αi values indicated a significant preference (P < 0.05) in all of the insect predators tested for mosquito larvae over the alternative prey as a density-dependent function. On a comparative scale, chironomid larvae had the highest impact as alternative prey. In a multiple-prey experiment, predators showed a similar pattern of preference for mosquito larvae over alternative prey, reflecting a significant (P < 0.05) niche overlap. The results suggest that, in a laboratory setting, these insect predators can effectively reduce mosquito density in the presence of multiple alternative prey.

  14. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility

    PubMed Central

    Buchwalter, David B.; Cain, Daniel J.; Martin, Caitrin A.; Xie, Lingtian; Luoma, Samuel N.; Garland, Theodore

    2008-01-01

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature. PMID:18559853

  15. Prey preferences of aquatic insects: potential implications for the regulation of wetland mosquitoes.

    PubMed

    Saha, N; Aditya, G; Saha, G K

    2014-03-01

    Wetlands are potential sites for mosquito breeding and are thus important in the context of public health. The use of chemical and microbial controls is constrained in wetlands in view of their potential impact on the diverse biota. Biological control using generalist aquatic insects can be effective, provided a preference for mosquito larvae is exhibited. The mosquito prey preferences of water bugs and larvae of odonate species were evaluated using chironomid larvae, fish fingerlings and tadpoles as alternative prey. Manly's selectivity (αi ) values with 95% confidence intervals (CIs) were estimated to judge prey preference patterns. Multivariate analysis of variance (manova) and standardized canonical coefficients were used to test the effects of density on prey selectivity. The αi values indicated a significant preference (P < 0.05) in all of the insect predators tested for mosquito larvae over the alternative prey as a density-dependent function. On a comparative scale, chironomid larvae had the highest impact as alternative prey. In a multiple-prey experiment, predators showed a similar pattern of preference for mosquito larvae over alternative prey, reflecting a significant (P < 0.05) niche overlap. The results suggest that, in a laboratory setting, these insect predators can effectively reduce mosquito density in the presence of multiple alternative prey. PMID:23437887

  16. Bottom-up nutrient and top-down fish impacts on insect-mediated mercury flux from aquatic ecosystems.

    PubMed

    Jones, Taylor A; Chumchal, Matthew M; Drenner, Ray W; Timmins, Gabrielle N; Nowlin, Weston H

    2013-03-01

    Methyl mercury (MeHg) is one of the most hazardous contaminants in the environment, adversely affecting the health of wildlife and humans. Recent studies have demonstrated that aquatic insects biotransport MeHg and other contaminants to terrestrial consumers, but the factors that regulate the flux of MeHg out of aquatic ecosystems via emergent insects have not been studied. The authors used experimental mesocosms to test the hypothesis that insect emergence and the associated flux of MeHg from aquatic to terrestrial ecosystems is affected by both bottom-up nutrient effects and top-down fish consumer effects. In the present study, nutrient addition led to an increase in MeHg flux primarily by enhancing the biomass of emerging insects whose tissues were contaminated with MeHg, whereas fish decreased MeHg flux primarily by reducing the biomass of emerging insects. Furthermore, the authors found that these factors are interdependent such that the effects of nutrients are more pronounced when fish are absent, and the effects of fish are more pronounced when nutrient concentrations are high. The present study is the first to demonstrate that the flux of MeHg from aquatic to terrestrial ecosystems is strongly enhanced by bottom-up nutrient effects and diminished by top-down consumer effects. PMID:23180684

  17. Thermal tolerance of aquatic insects inhabiting the Tennessee river-reservoir system. Final report

    SciTech Connect

    Tennessen, K.J.; Miller, J.L.

    1983-05-01

    In laboratory tests, nymphs of Hexagenia bilineata (Ephemeroptera) and larvae of Chironomus crassicaudatus (Diptera) were highly tolerant of short term thermal shocks (six hour duration, simulating entrainment in a thermal plume and drifting to ambient). TL/sup 50/ values increased from 35C at an acclimation temperature of 5C to 38-40C at an acclimation temperature of 20-25C. However, survivors of these treatments experienced higher percentages of delayed mortality compared to controls after being held for ten days to four weeks at the original acclimation temperature. Field data generated indicated that aquatic insect species inhabiting TVA's large warm-water reservoirs are living close to their thermal maximu, and that an upper limit of 33C would ensure the maintenance of sizeable populations of the species studied.

  18. Successional colonization of temporary streams: An experimental approach using aquatic insects

    NASA Astrophysics Data System (ADS)

    Godoy, Bruno Spacek; Queiroz, Luciano Lopes; Lodi, Sara; Nascimento de Jesus, Jhonathan Diego; Oliveira, Leandro Gonçalves

    2016-11-01

    The metacommunity concept studies the processes that structure communities on local and regional scales. This concept is useful to assess spatial variability. However, temporal patterns (e.g., ecological succession and colonization) are neglected in metacommunity studies, since such patterns require temporally extensive, and hard to execute studies. We used experimental habitats in temporary streams located within the Brazilian Cerrado to evaluate the importance of succession for the aquatic insect metacommunity. Five artificial habitats consisting of wrapped crushed rock were set transversally to the water flow in five streams. The habitats were sampled weekly to assess community composition, and replaced after sampling to identify new potential colonizers. We analyzed the accumulation of new colonizers after each week using a logistic model. We selected pairs of experimental habitats and estimated the Bray-Curtis dissimilarity index to assess the community composition trajectory during the experiment. We used the dissimilarity values in ANOVA tests, identifying the importance of time and space for the community. The number of new taxa stabilized in the third week, and we estimated a weekly increase of 1.61 new taxa in the community after stabilization. The overall pattern was a small change on community composition, but one stream had a higher weekly turnover. Our results showed a relevant influence of time in the initial communities of aquatic insects of temporary streams. However, we must observe the temporal pattern in a spatial context, once different streams have different successional history regarding number of taxa and community turnover. We highlight the importance of aerial dispersal and movement to seek oviposition sites as an important factor in determining colonization patterns.

  19. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization

    NASA Astrophysics Data System (ADS)

    Boda, Pál; Horváth, Gábor; Kriska, György; Blahó, Miklós; Csabai, Zoltán

    2014-05-01

    Based on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground. We offered simultaneously the following visual stimuli for aerial aquatic insects: (1) lamplit matte black canvas inducing phototaxis alone, (2) unlit shiny black plastic sheet eliciting polarotaxis alone, (3) lamplit shiny black plastic sheet inducing simultaneously phototaxis and polarotaxis, and (4) unlit matte black canvas as a visually unattractive control. The unlit matte black canvas trapped only a negligible number (13) of water insects. The sum (16,432) of the total numbers of water beetles and bugs captured on the lamplit matte black canvas (7,922) and the unlit shiny black plastic sheet (8,510) was much smaller than the total catch (29,682) caught on the lamplit shiny black plastic sheet. This provides experimental evidence for the synergistic interaction of phototaxis (elicited by the unpolarized direct lamplight) and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects. Thus, horizontally polarizing artificial lamplit surfaces can function as an effective ecological trap due to this synergism of optical cues, especially in the urban environment.

  20. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization.

    PubMed

    Boda, Pál; Horváth, Gábor; Kriska, György; Blahó, Miklós; Csabai, Zoltán

    2014-05-01

    Based on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground. We offered simultaneously the following visual stimuli for aerial aquatic insects: (1) lamplit matte black canvas inducing phototaxis alone, (2) unlit shiny black plastic sheet eliciting polarotaxis alone, (3) lamplit shiny black plastic sheet inducing simultaneously phototaxis and polarotaxis, and (4) unlit matte black canvas as a visually unattractive control. The unlit matte black canvas trapped only a negligible number (13) of water insects. The sum (16,432) of the total numbers of water beetles and bugs captured on the lamplit matte black canvas (7,922) and the unlit shiny black plastic sheet (8,510) was much smaller than the total catch (29,682) caught on the lamplit shiny black plastic sheet. This provides experimental evidence for the synergistic interaction of phototaxis (elicited by the unpolarized direct lamplight) and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects. Thus, horizontally polarizing artificial lamplit surfaces can function as an effective ecological trap due to this synergism of optical cues, especially in the urban environment.

  1. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization.

    PubMed

    Boda, Pál; Horváth, Gábor; Kriska, György; Blahó, Miklós; Csabai, Zoltán

    2014-05-01

    Based on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground. We offered simultaneously the following visual stimuli for aerial aquatic insects: (1) lamplit matte black canvas inducing phototaxis alone, (2) unlit shiny black plastic sheet eliciting polarotaxis alone, (3) lamplit shiny black plastic sheet inducing simultaneously phototaxis and polarotaxis, and (4) unlit matte black canvas as a visually unattractive control. The unlit matte black canvas trapped only a negligible number (13) of water insects. The sum (16,432) of the total numbers of water beetles and bugs captured on the lamplit matte black canvas (7,922) and the unlit shiny black plastic sheet (8,510) was much smaller than the total catch (29,682) caught on the lamplit shiny black plastic sheet. This provides experimental evidence for the synergistic interaction of phototaxis (elicited by the unpolarized direct lamplight) and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects. Thus, horizontally polarizing artificial lamplit surfaces can function as an effective ecological trap due to this synergism of optical cues, especially in the urban environment. PMID:24671223

  2. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects.

    PubMed

    Phillipsen, Ivan C; Kirk, Emily H; Bogan, Michael T; Mims, Meryl C; Olden, Julian D; Lytle, David A

    2015-01-01

    Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population-level data for large numbers of species, ecologists seek to identify proximate organismal traits-such as dispersal ability, habitat preference and life history-that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape-based metrics of resistance. We found that the moderate-disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation-by-distance pattern, suggesting migration-drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong-flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best-fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale-dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities.

  3. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility

    USGS Publications Warehouse

    Buchwalter, D.B.; Cain, D.J.; Martin, C.A.; Xie, Lingtian; Luoma, S.N.; Garland, T.

    2008-01-01

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature. ?? 2008 by The National Academy of Sciences of the USA.

  4. An annotated list of aquatic insects of Fort Sill, Oklahoma, excluding diptera with notes on several new state records

    USGS Publications Warehouse

    Zuellig, R.E.; Kondratieff, B.C.; Schmidt, J.P.; Durfee, R.S.; Ruiter, D.E.; Prather, I.E.

    2006-01-01

    Qualitative collections of aquatic insects were made at Fort Sill, Lawton, Oklahoma, between 2002 and 2004. Ephemeroptera, Plecoptera, Trichoptera, Odonata, Coleoptera, aquatic Heteroptera, Neuroptera, and Megaloptera were targeted. Additional records are included from a survey that took place in 1999. More than 11,000 specimens from more than 290 collections were examined. Based on the current understanding of aquatic insect systematics, 276 taxa distributed over 8 orders, 46 families, and 141 genera were identified. Twenty-three of the 276 taxa, Plauditus texanus Wiersema, Tricorythodes allectus (Needham), Palmacorixa nana walleyi Hungerford, Climacia chapini Partin and Gurney, Oxyethira forcipata Mosely, Oxyethira janella Denning, Triaenodes helo Milne, Ylodes frontalis (Banks), Acilius fraternus Harris, Coptotomus loticus Hilsenhoff, Coptotomus venustus (Say), Desmopachria dispersa Crotch, Graphoderus liberus (Say), Hydrovatus pustulatus (Melsheimer), Hygrotus acaroides (LeConte), Liodessus flavicollis (LeConte), Uvarus texanus (Sharp), Gyrinus woodruffi Fall, Haliplus fasciatus Aube, Haliplus lewisii Crotch, Haliplus tortilipenis Brigham & Sanderson, Chaetarthria bicolor Sharp, Epimetopus costatus complex, and Hydrochus simplex LeConte are reported from Oklahoma for the first time. The three most diverse orders included Coleoptera (86 species), Odonata (67 species) and Trichoptera (59 species), and the remaining taxa were distributed among Heteroptera, (30 species), Ephemeroptera (21 species), Plecoptera (6 species), Megaloptera (4 species), and Neuroptera (3 species). Based on previous published records, many of the species collected during this study were expected to be found at Fort Sill; however, 276 taxa of aquatic insects identified from such a small geographic area is noteworthy, especially when considering local climatic conditions and the relatively small size of Fort Sill (38,300 ha). Despite agricultural practices in Oklahoma, the dust bowl days

  5. Aquatic insects in Montezuma Well, Arizona, USA: A travertine spring mound with high alkalinity and dissolved carbon dioxide

    SciTech Connect

    Blinn, D.W.; Sanderson, M.W. )

    1989-01-31

    An annotated list of aquatic insects from the high carbonate system of Montezuma Well, Arizona, USA, is presented for collections taken during 1976-1986. Fifty-seven taxa in 16 families are reported, including new distribution records for Arizona (Anacaena signaticollis, Laccobius ellipticus, and Crenitulus sp. (nr. debilis)) and the USA (Enochrus sharpi). Larval stages for Trichoptera, Lepidoptera, Megaloptera, Neuroptera, Chironomidae, and Anisoptera were absent even though the habitat lacks fish, and water temperature, dissolved oxygen, available food, and substrata appear adequate in Montezuma Well. The potential importance of alkalinity in restricting these insect groups is discussed.

  6. Evolution of aquatic insect behaviours across a gradient of disturbance predictability.

    PubMed

    Lytle, David A; Bogan, Michael T; Finn, Debra S

    2008-02-22

    Natural disturbance regimes--cycles of fire, flood, drought or other events--range from highly predictable (disturbances occur regularly in time or in concert with a proximate cue) to highly unpredictable. While theory predicts how populations should evolve under different degrees of disturbance predictability, there is little empirical evidence of how this occurs in nature. Here, we demonstrate local adaptation in populations of an aquatic insect occupying sites along a natural gradient of disturbance predictability, where predictability was defined as the ability of a proximate cue (rainfall) to signal a disturbance (flash flood). In controlled behavioural experiments, populations from predictable environments responded to rainfall events by quickly exiting the water and moving sufficiently far from the stream to escape flash floods. By contrast, populations from less predictable environments had longer response times and lower response rates, reflecting the uncertainty inherent to these environments. Analysis with signal detection theory showed that for 13 out of 15 populations, observed response times were an optimal compromise between the competing risks of abandoning versus remaining in the stream, mediated by the rainfall-flood correlation of the local environment. Our study provides the first demonstration that populations can evolve in response to differences in disturbance predictability, and provides evidence that populations can adapt to among-stream differences in flow regime.

  7. Phylogeny and size differentially influence dissolved Cd and Zn bioaccumulation parameters among closely related aquatic insects.

    PubMed

    Poteat, Monica D; Buchwalter, David B

    2014-05-01

    Evolutionarily distinct lineages can vary markedly in their accumulation of, and sensitivity to, contaminants. However, less is known about variability among closely related species. Here, we compared dissolved Cd and Zn bioaccumulation in 19 species spanning two species-rich aquatic insect families: Ephemerellidae (order Ephemeroptera (mayflies)), generalized to be metal sensitive, and Hydropsychidae (order Trichoptera (caddisflies)), generalized to be metal tolerant. Across all species, Zn and Cd uptake rate constants (k(u)s), efflux rate constants (k(e)s) and bioconcentration factors (BCFs) strongly covaried, suggesting that these metals share transport pathways in these distinct lineages. K(u)s and BCFs were substantially larger in Ephemerellidae than in Hydropsychidae, whereas k(e)s did not dramatically differ between the two families. Body size played an important role in driving ku differences among species, but had no influence on k(e)s. While familial differences in metal bioconcentration were striking, each family exhibited tremendous variability in all bioaccumulation parameters. At finer levels of taxonomic resolution (within families), phylogeny did not account for differences in metal bioaccumulation. These findings suggest that intrafamily variability can be profound and have important practical implications in that we need to better understand how well "surrogate species" represent their fellow congeners and family members.

  8. Effects of surface mining on the aquatic insects of Bear Creek, Boyd County, Kentucky

    SciTech Connect

    Adkins, D.A.

    1981-01-01

    The effects of surface mining on the aquatic insect community of Bear Creek, Boyd County, Kentucky, were examined. Sampling stations were established above the mine, near the mine and below the mine and selected biological and physiochemical factors were examined at these stations. Station 3 (above mine) had a higher pH, higher alkalinity, lower mineral hardness, less siltation and less ferric hydroxide deposition than either Station 2 (at mine) or Station 1 (below mine). The greatest number of specimens (81%) was collected at Station 3. There were 19 mayfly and stonefly taxa represented at Station 3. The Shannon-Weaver diversity index was significantly higher (P < 0.05) at Station 3 than at either Station 1 or Station 2. Examination of trophic relationships showed that shredders (chew and mine vascular plant tissue) were the most abundant group at Station 3, which may have been due to less ferric hydroxide deposition and thereby more vascular plant tissue available. Station 2 (at mine) had the least number of taxa collected, the lowest Shannon-Weaver diversity index value and predators were the most important (Importance Value) trophic group. Station 1 (below mine) was intermediate between Station 2 and Station 3, i.e., it seemed to be a recovery zone where the number of taxa collected began to increase and the physiochemical parameter values began to approach those of Station 3.

  9. Evolution of aquatic insect behaviours across a gradient of disturbance predictability

    PubMed Central

    Lytle, David A; Bogan, Michael T; Finn, Debra S

    2007-01-01

    Natural disturbance regimes—cycles of fire, flood, drought or other events—range from highly predictable (disturbances occur regularly in time or in concert with a proximate cue) to highly unpredictable. While theory predicts how populations should evolve under different degrees of disturbance predictability, there is little empirical evidence of how this occurs in nature. Here, we demonstrate local adaptation in populations of an aquatic insect occupying sites along a natural gradient of disturbance predictability, where predictability was defined as the ability of a proximate cue (rainfall) to signal a disturbance (flash flood). In controlled behavioural experiments, populations from predictable environments responded to rainfall events by quickly exiting the water and moving sufficiently far from the stream to escape flash floods. By contrast, populations from less predictable environments had longer response times and lower response rates, reflecting the uncertainty inherent to these environments. Analysis with signal detection theory showed that for 13 out of 15 populations, observed response times were an optimal compromise between the competing risks of abandoning versus remaining in the stream, mediated by the rainfall–flood correlation of the local environment. Our study provides the first demonstration that populations can evolve in response to differences in disturbance predictability, and provides evidence that populations can adapt to among-stream differences in flow regime. PMID:18055392

  10. Aquatic Insect Emergence in Post-Harvest Flooded Agricultural Fields in the Southern San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Moss, R. C.; Blumenshine, S.; Fleskes, J.

    2005-05-01

    California's Southern San Joaquin Valley is one of the most important waterbird areas in North America, but has suffered a disproportionate loss of wetlands when compared to other California regions. This project analyzes the habitat value of post-harvest flooded cropland by measuring the emergence of aquatic insects across multiple crop types. Aquatic insect emergence was sampled from post-harvest flooded fields of four crop types (alfalfa, corn, tomato, wheat), August-October, 2003-2004. Emergence was measured using traps deployed with a stratified random distribution to sample between and within field variation. Emergence rate and emergent biomass was significantly higher in flooded tomato fields. Results from corn fields indicate that flooding depth was correlated (r=0.095) with both diel temperature fluctuation and emergence rate. Chironomus dilutus larvae were grown in environmental chambers, under two thermal treatments with the same mean but different amplitudes (high: 15°-32°C, low: 20°-26°C) to investigate thermal fluctuation effects on survival and biomass. Larval survival (4x) and biomass (2x) were significantly greater in the low versus high temperature fluctuation treatment. This research has the potential to affect agricultural management throughout the 12,600 km2 region, increase aquatic insect production and aid in the recovery of declining bird populations.

  11. Respiratory strategy is a major determinant of [3H]water and [14C]chlorpyrifos uptake in aquatic insects

    USGS Publications Warehouse

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2002-01-01

    Despite the extensive use of aquatic insects to evaluate freshwater ecosystem health, little is known about the underlying factors that result in sensitivity differences between taxa. Organismal characteristics (respiratory strategy and body size) were used to explore the rates of [3H]H2O and [14)C]chlorpyrifos accumulation in aquatic insects. Ten aquatic insect taxa, including ephemeropteran, trichopteran, dipteran, hemipteran, and coleopteran species, were exposed to [14C]chlorpyrifos (240 ng??L-1) and [3H]H2O for up to 12 h. Because exchange epithelial surfaces on the)integument are permeable to water, [3H]H2O was used as a quantitative surrogate for exposed cellular surface area.) [14C]Chlorpyrifos uptake rates were highly correlated with water permeability in all 10 taxa tested and largely covaried with body size and respiratory strategy. Rates were highest among smaller organisms on a per-weight basis and in taxa with relatively large external cellular surfaces such as gills. Air-breathing taxa were significantly less permeable to both [3)HH20 and [14C)C]chlorpyrifos. A method for labeling exposed epithelial surfaces with a fluorescent dye was developed. This technique allowed discrimination between exchange epithelium and barrier tissue on the integument. Fluorescent dye distributions on the body surface provided a rapid method for estimating exposed epithelium consistent with [3H]H2O and [14)C]chlorpyrifos accumulation.

  12. Larval aquatic insect responses to cadmium and zinc in experimental streams

    USGS Publications Warehouse

    Mebane, Christopher A.; Schmidt, Travis S.; Balistrieri, Laurie S.

    2016-01-01

    To evaluate the risks of metal mixture effects to natural stream communities under ecologically relevant conditions, the authors conducted 30-d tests with benthic macroinvertebrates exposed to cadmium (Cd) and zinc (Zn) in experimental streams. The simultaneous exposures were with Cd and Zn singly and with Cd+Zn mixtures at environmentally relevant ratios. The tests produced concentration–response patterns that for individual taxa were interpreted in the same manner as classic single-species toxicity tests and for community metrics such as taxa richness and mayfly (Ephemeroptera) abundance were interpreted in the same manner as with stream survey data. Effect concentrations from the experimental stream exposures were usually 2 to 3 orders of magnitude lower than those from classic single-species tests. Relative to a response addition model, which assumes that the joint toxicity of the mixtures can be predicted from the product of their responses to individual toxicants, the Cd+Zn mixtures generally showed slightly less than additive toxicity. The authors applied a modeling approach called Tox to explore the mixture toxicity results and to relate the experimental stream results to field data. The approach predicts the accumulation of toxicants (hydrogen, Cd, and Zn) on organisms using a 2-pKa bidentate model that defines interactions between dissolved cations and biological receptors (biotic ligands) and relates that accumulation through a logistic equation to biological response. The Tox modeling was able to predict Cd+Zn mixture responses from the single-metal exposures as well as responses from field data. The similarity of response patterns between the 30-d experimental stream tests and field data supports the environmental relevance of testing aquatic insects in experimental streams.

  13. Methyl mercury and stable isotopes of nitrogen reveal that a terrestrial spider has a diet of emergent aquatic insects.

    PubMed

    Speir, Shannon L; Chumchal, Matthew M; Drenner, Ray W; Cocke, W Gary; Lewis, Megan E; Whitt, Holly J

    2014-11-01

    Terrestrial spiders transfer methyl mercury (MeHg) to terrestrial consumers such as birds, but how spiders become contaminated with MeHg is not well understood. In the present study, the authors used stable isotopes of nitrogen in combination with MeHg to determine the source of MeHg to terrestrial long-jawed orb weaver spiders (Tetragnatha sp). The authors collected spiders and a variety of other aquatic and terrestrial taxa from 10 shallow ponds in north Texas, USA. Based on MeHg concentrations and stable nitrogen isotope ratios, the authors identified distinct aquatic- and terrestrial-based food chains. Long-jawed orb weaver spiders belonged to the aquatic-based food chain, indicating that they are exposed to MeHg through their consumption of emergent aquatic insects. Additionally, the present study suggests that ecologists can use stable isotopes of nitrogen (δ(15) N) in conjunction with MeHg speciation analysis to distinguish between aquatic and terrestrial food chains.

  14. Relative acute effects of low pH and high iron on the hatching and survival of the water mite (Arrenurus manubriator) and the aquatic insect (Chironomus riparius)

    SciTech Connect

    Rousch, J.M.; Simmons, T.W.; Kerans, B.L.; Smith, B.P.

    1997-10-01

    The authors investigated the relative effects of low pH and high iron on a water mite, Arrenurus manubriator and an aquatic insect, Chironomus riparius. Eggs and active stages were exposed in static renewal toxicity tests to pH 6, 5, 4, 3, and 2, made by adding sulfuric acid to reconstituted soft water, or to iron levels of 200, 400, 600, 800, and 1,000 mg/L, made by adding ferrous sulfate to soft water at pH 4. Experiments were conducted at 22 C with a 16:8-h photoperiod, and treatments were replicated three times with at least nine individuals per treatment. Data were analyzed with a logistic response function and one-way ANOVA for pH and iron tests, respectively. Egg hatching was reduced at pH 2 for midges and at pH 3 for mites. Iron had no effect on hatching for either species. Survival of midge larvae was partially reduced at pH 4, and survival of mite deutonymphs, larvae, female and male adults was reduced at pH 3. Survival of midge larvae, and mite deutonymphs and male adults was reduced at 400, 200, and 1,000 mg Fe/L, respectively. Mite female adults and larvae were unaffected by iron. Higher metabolic requirements of unfed immature stages, the gelatinous covering of mite and insect eggs, the longer incubation period of mite eggs, and the greater osmoregulatory potential of adult mites may have contributed to the differences observed.

  15. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature.

    PubMed

    Ramírez, Alonso; Gutiérrez-Fonseca, Pablo E

    2014-04-01

    Aquatic macroinvertebrates are involved in numerous processes within aquatic ecosystems. They often have important effects on ecosystem processes such as primary production (via grazing), detritus breakdown, and nutrient mineralization and downstream spiraling. The functional feeding groups (FFG) classification was developed as a tool to facilitate the incorporation of macroinvertebrates in studies of aquatic ecosystems. This classification has the advantage of combining morphological characteristics (e.g., mouth part specialization) and behavioral mechanisms (e.g., way of feeding) used by macroinvertebrates when consuming resources. Although recent efforts have greatly advanced our ability to identify aquatic macroinvertebrates, there is limited information on FFG assignment. Furthermore, there has been some variation in the use of the FFG classification, in part due to an emphasis on using gut content analysis to assign FFG, which is more appropriate for assigning trophic guilds. Thus, the main goals of this study are to (1) provide an overview of the value of using the FFG classification, (2) make an initial attempt to summarize available information on FFG for aquatic insects in Latin America, and (3) provide general guidelines on how to assign organisms to their FFGs. FFGs are intended to reflect the potential effects of organisms in their ecosystems and the way they consume resources. Groups include scrapers that consume resources that grow attached to the substrate by removing them with their mouth parts; shredders that cut or chew pieces of living or dead plant material, including all plant parts like leaves and wood; collectors-gatherers that use modified mouth parts to sieve or collect small particles (< 1 mm) accumulated on the stream bottom; filterers that have special adaptations to remove particles directly from the water column; and predators that consume other organisms using different strategies to capture them. In addition, we provide details on

  16. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature.

    PubMed

    Ramírez, Alonso; Gutiérrez-Fonseca, Pablo E

    2014-04-01

    Aquatic macroinvertebrates are involved in numerous processes within aquatic ecosystems. They often have important effects on ecosystem processes such as primary production (via grazing), detritus breakdown, and nutrient mineralization and downstream spiraling. The functional feeding groups (FFG) classification was developed as a tool to facilitate the incorporation of macroinvertebrates in studies of aquatic ecosystems. This classification has the advantage of combining morphological characteristics (e.g., mouth part specialization) and behavioral mechanisms (e.g., way of feeding) used by macroinvertebrates when consuming resources. Although recent efforts have greatly advanced our ability to identify aquatic macroinvertebrates, there is limited information on FFG assignment. Furthermore, there has been some variation in the use of the FFG classification, in part due to an emphasis on using gut content analysis to assign FFG, which is more appropriate for assigning trophic guilds. Thus, the main goals of this study are to (1) provide an overview of the value of using the FFG classification, (2) make an initial attempt to summarize available information on FFG for aquatic insects in Latin America, and (3) provide general guidelines on how to assign organisms to their FFGs. FFGs are intended to reflect the potential effects of organisms in their ecosystems and the way they consume resources. Groups include scrapers that consume resources that grow attached to the substrate by removing them with their mouth parts; shredders that cut or chew pieces of living or dead plant material, including all plant parts like leaves and wood; collectors-gatherers that use modified mouth parts to sieve or collect small particles (< 1 mm) accumulated on the stream bottom; filterers that have special adaptations to remove particles directly from the water column; and predators that consume other organisms using different strategies to capture them. In addition, we provide details on

  17. Metabolic and Cardiovascular Responses during Aquatic Exercise in Water at Different Temperatures in Older Adults

    ERIC Educational Resources Information Center

    Bergamin, Marco; Ermolao, Andrea; Matten, Sonia; Sieverdes, John C.; Zaccaria, Marco

    2015-01-01

    Purpose: The aim of this study was to investigate the physiological responses during upper-body aquatic exercises in older adults with different pool temperatures. Method: Eleven older men (aged 65 years and older) underwent 2 identical aquatic exercise sessions that consisted of 3 upper-body exercises using progressive intensities (30, 35, and 40…

  18. Aquatic Insects of New York Salt Marsh Associated with Mosquito Larval Habitat and their Potential Utility as Bioindicators

    PubMed Central

    Rochlin, Ilia; Dempsey, Mary E.; Iwanejko, Tom; Ninivaggi, Dominick V.

    2011-01-01

    The aquatic insect fauna of salt marshes is poorly characterized, with the possible exception of biting Diptera. Aquatic insects play a vital role in salt marsh ecology, and have great potential importance as biological indicators for assessing marsh health. In addition, they may be impacted by measures to control mosquitoes such as changes to the marsh habitat, altered hydrology, or the application of pesticides. Given these concerns, the goals of this study were to conduct the first taxonomic survey of salt marsh aquatic insects on Long Island, New York, USA and to evaluate their utility for non-target pesticide impacts and environmental biomonitoring. A total of 18 species from 11 families and five orders were collected repeatedly during the five month study period. Diptera was the most diverse order with nine species from four families, followed by Coleoptera with four species from two families, Heteroptera with three species from three families, then Odonata and the hexapod Collembola with one species each. Water boatmen, Trichocorixa verticalis Fieber (Heteroptera: Corixidae) and a shore fly, Ephydra subopaca Loew (Diptera: Ephydridae), were the two most commonly encountered species. An additional six species; Anurida maritima Guérin-Méneville (Collembola: Neanuridae), Mesovelia mulsanti White (Heteroptera: Mesovelidae), Enochrus hamiltoni Horn (Coleoptera: Hydrophilidae), Tropisternus quadristriatus Horn (Coleoptera: Hydrophilidae), Dasyhelea pseudocincta Waugh and Wirth (Diptera: Ceratopogonidae), and Brachydeutera argentata Walker (Diptera: Ephydridae), were found regularly. Together with the less common Erythrodiplax berenice Drury (Odonata: Libellulidae), these nine species were identified as the most suitable candidates for pesticide and environmental impact monitoring due to abundance, position in the food chain, and extended seasonal occurrence. This study represents a first step towards developing an insectbased index of biological integrity for

  19. Persistence of Aquatic Insects across Managed Landscapes: Effects of Landscape Permeability on Re-Colonization and Population Recovery

    PubMed Central

    Galic, Nika; Hengeveld, Geerten M.; Van den Brink, Paul J.; Schmolke, Amelie; Thorbek, Pernille; Bruns, Eric; Baveco, Hans M.

    2013-01-01

    Human practices in managed landscapes may often adversely affect aquatic biota, such as aquatic insects. Dispersal is often the limiting factor for successful re-colonization and recovery of stressed habitats. Therefore, in this study, we evaluated the effects of landscape permeability, assuming a combination of riparian vegetation (edge permeability) and other vegetation (landscape matrix permeability), and distance between waterbodies on the colonization and recovery potential of weakly flying insects. For this purpose, we developed two models, a movement and a population model of the non-biting midge, Chironomus riparius, an aquatic insect with weak flying abilities. With the movement model we predicted the outcome of dispersal in a landscape with several linear water bodies (ditches) under different assumptions regarding landscape-dependent movement. Output from the movement model constituted the probabilities of encountering another ditch and of staying in the natal ditch or perishing in the landscape matrix, and was used in the second model. With this individual-based model of midge populations, we assessed the implications for population persistence and for recovery potential after an extreme stress event. We showed that a combination of landscape attributes from the movement model determines the fate of dispersing individuals and, once extrapolated to the population level, has a big impact on the persistence and recovery of populations. Population persistence benefited from low edge permeability as it reduced the dispersal mortality which was the main factor determining population persistence and viability. However, population recovery benefited from higher edge permeability, but this was conditional on the low effective distance that ensured fewer losses in the landscape matrix. We discuss these findings with respect to possible landscape management scenarios. PMID:23365675

  20. Insect Consumption to Address Undernutrition, a National Survey on the Prevalence of Insect Consumption among Adults and Vendors in Laos

    PubMed Central

    Barennes, Hubert; Phimmasane, Maniphet; Rajaonarivo, Christian

    2015-01-01

    Background Insect consumption (entomophagy) is a potentially high nutritious and healthy source of food with high fat, protein, vitamin, fiber and micronutrient content. At least 2 billion people globally eat insects (over 1900 edible species) though this habit is regarded negatively by others. There is a limited amount of data on the perception and consumption of insects. We conducted a national cross-sectional survey in the Lao People’s Democratic Republic (Laos) to assess the prevalence and characteristics of insect consumption among adult lay people and insect vendors. Methods We conducted a multi stage randomized national survey in 1303 households in 96 villages in 16 Lao provinces. Three insect vendors or collectors per village were also included. A standardized pretested questionnaire addressed the following issues: socioeconomic characteristics, type of insects consumed and frequency of consumption, reasons and trends in consumption as well as reports on side effects, over the last 10 years. Results A total of 1059 adults (Sex ratio F/M: 1.2, 30 ethnic groups), and 256 vendors were enrolled. A total of 1025 (96.8%) lay people were currently insect consumers, 135 (13.0%) daily or weekly consumers, and 322 (31.1%) consumed several times per month. For the majority (575, 55.6%) the consumption was infrequent (less than a few times per year) and only 22 (2%) had never eaten insects. Consumption started in childhood. Insect availability was seasonal (670, 63.2%) and respondents would have eaten more insects, if they had been more available (919, 86.7%). Hmong and Leu ethnic groups had significantly lower consumption levels than the general population. Eggs of weaver ants, short-tailed crickets, crickets, grasshoppers, and cicadas were the top 5 insects consumed. Consumption had decreased in the last decade, mostly due to less availability (869; 84.0%) and change of life (29; 5.5%). Of 1059, 80 (7.5%) reported allergy problems and 106 (10.0%) reported some use

  1. The rainy season increases the abundance and richness of the aquatic insect community in a Neotropical reservoir.

    PubMed

    Santana, H S; Silva, L C F; Pereira, C L; Simião-Ferreira, J; Angelini, R

    2015-01-01

    Alterations in aquatic systems and changes in water levels, whether due to rains or dam-mediated control can cause changes in community structure, forcing the community to readjust to the new environment. This study tested the hypothesis that there is an increase in the richness and abundance of aquatic insects during the rainy season in the Serra da Mesa Reservoir, with the premise that increasing the reservoir level provides greater external material input and habitat diversity, and, therefore, conditions that promote colonization by more species. We used the paired t test to test the differences in richness, beta diversity, and abundance, and a Non-metric Multidimensional Scaling (NMDS) was performed to identify patterns in the community under study. Additionally, Pearson correlations were analyzed between the richness, abundance, and beta diversity and the level of the reservoir. We collected 35,028 aquatic insect larvae (9,513 in dry period and 25,515 in the rainy season), predominantly of the Chironomidae family, followed by orders Ephemeroptera, Trichoptera, and Odonata. Among the 33 families collected, only 12 occurred in the dry season, while all occurred in the rainy season. These families are common in lentic environments, and the dominance of Chironomidae was associated with its fast colonization, their behavior of living at high densities and the great tolerance to low levels of oxygen in the environment. The hypothesis was confirmed, as the richness, beta diversity, and abundance were positively affected by the increase in water levels due to the rainy season, which most likely led to greater external material input, greater heterogeneity of habitat, and better conditions for colonization by several families. PMID:25945631

  2. The rainy season increases the abundance and richness of the aquatic insect community in a Neotropical reservoir.

    PubMed

    Santana, H S; Silva, L C F; Pereira, C L; Simião-Ferreira, J; Angelini, R

    2015-01-01

    Alterations in aquatic systems and changes in water levels, whether due to rains or dam-mediated control can cause changes in community structure, forcing the community to readjust to the new environment. This study tested the hypothesis that there is an increase in the richness and abundance of aquatic insects during the rainy season in the Serra da Mesa Reservoir, with the premise that increasing the reservoir level provides greater external material input and habitat diversity, and, therefore, conditions that promote colonization by more species. We used the paired t test to test the differences in richness, beta diversity, and abundance, and a Non-metric Multidimensional Scaling (NMDS) was performed to identify patterns in the community under study. Additionally, Pearson correlations were analyzed between the richness, abundance, and beta diversity and the level of the reservoir. We collected 35,028 aquatic insect larvae (9,513 in dry period and 25,515 in the rainy season), predominantly of the Chironomidae family, followed by orders Ephemeroptera, Trichoptera, and Odonata. Among the 33 families collected, only 12 occurred in the dry season, while all occurred in the rainy season. These families are common in lentic environments, and the dominance of Chironomidae was associated with its fast colonization, their behavior of living at high densities and the great tolerance to low levels of oxygen in the environment. The hypothesis was confirmed, as the richness, beta diversity, and abundance were positively affected by the increase in water levels due to the rainy season, which most likely led to greater external material input, greater heterogeneity of habitat, and better conditions for colonization by several families.

  3. Aquatic insects as bioindicators of trace element contamination in cobble-bottom rivers and streams

    USGS Publications Warehouse

    Cain, D.J.; Luoma, S.N.; Carter, J.L.; Fend, S.V.

    1992-01-01

    In one river, Cu, Cd, Pb, and Zn were analysed in insects and in fine bed sediments over a 381-km reach downstream of a large copper mining complex. In another river, As contamination from a gold mine was assessed in insects and bed sediments over a 40-km reach. All insect taxa collected in contaminated river reaches had elevated whole-body trace element concentrations, but few species were distributed throughout the study reaches. Comparisons of contamination at taxomic levels higher than species were complicated by element-specific differences in bioaccumulation among taxa. These differences appeared to be governed by biological and hydrogeochemical factors. Variation in element concentrations among species of the caddisfly Hydropsyche was slightly greater than within individual species. If this genus is representative of others, comparisons of contamination within genera may be a practical alternative for biomonitoring studies when single species are not available. -from Authors

  4. Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects.

    PubMed

    Ureña, Enric; Manjón, Cristina; Franch-Marro, Xavier; Martín, David

    2014-05-13

    All immature animals undergo remarkable morphological and physiological changes to become mature adults. In winged insects, metamorphic changes either are limited to a few tissues (hemimetaboly) or involve a complete reorganization of most tissues and organs (holometaboly). Despite the differences, the genetic switch between immature and adult forms in both types of insects relies on the disappearance of the antimetamorphic juvenile hormone (JH) and the transcription factors Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) during the last juvenile instar. Here, we show that the transcription factor E93 is the key determinant that promotes adult metamorphosis in both hemimetabolous and holometabolous insects, thus acting as the universal adult specifier. In the hemimetabolous insect Blattella germanica, BgE93 is highly expressed in metamorphic tissues, and RNA interference (RNAi)-mediated knockdown of BgE93 in the nymphal stage prevented the nymphal-adult transition, inducing endless reiteration of nymphal development, even in the absence of JH. We also find that BgE93 down-regulated BgKr-h1 and BgBR-C expression during the last nymphal instar of B. germanica, a key step necessary for proper adult differentiation. This essential role of E93 is conserved in holometabolous insects as TcE93 RNAi in Tribolium castaneum prevented pupal-adult transition and produced a supernumerary second pupa. In this beetle, TcE93 also represses expression of TcKr-h1 and TcBR-C during the pupal stage. Similar results were obtained in the more derived holometabolous insect Drosophila melanogaster, suggesting that winged insects use the same regulatory mechanism to promote adult metamorphosis. This study provides an important insight into the understanding of the molecular basis of adult metamorphosis.

  5. Influence of certain forces on evolution of synonymous codon usage bias in certain species of three basal orders of aquatic insects.

    PubMed

    Selva Kumar, C; Nair, Rahul R; Sivaramakrishnan, K G; Ganesh, D; Janarthanan, S; Arunachalam, M; Sivaruban, T

    2012-12-01

    Forces that influence the evolution of synonymous codon usage bias are analyzed in six species of three basal orders of aquatic insects. The rationale behind choosing six species of aquatic insects (three from Ephemeroptera, one from Plecoptera, and two from Odonata) for the present analysis is based on phylogenetic position at the basal clades of the Order Insecta facilitating the understanding of the evolution of codon bias and of factors shaping codon usage patterns in primitive clades of insect lineages and their subtle differences in some of their ecological and environmental requirements in terms of habitat-microhabitat requirements, altitudinal preferences, temperature tolerance ranges, and consequent responses to climate change impacts. The present analysis focuses on open reading frames of the 13 protein-coding genes in the mitochondrial genome of six carefully chosen insect species to get a comprehensive picture of the evolutionary intricacies of codon bias. In all the six species, A and T contents are observed to be significantly higher than G and C, and are used roughly equally. Since transcription hypothesis on codon usage demands A richness and T poorness, it is quite likely that mutation pressure may be the key factor associated with synonymous codon usage (SCU) variations in these species because the mutation hypothesis predicts AT richness and GC poorness in the mitochondrial DNA. Thus, AT-biased mutation pressure seems to be an important factor in framing the SCU variation in all the selected species of aquatic insects, which in turn explains the predominance of A and T ending codons in these species. This study does not find any association between microhabitats and codon usage variations in the mitochondria of selected aquatic insects. However, this study has identified major forces, such as compositional constraints and mutation pressure, which shape patterns of codon usage in mitochondrial genes in the primitive clades of insect lineages.

  6. Longitudinal Distribution of the Functional Feeding Groups of Aquatic Insects in Streams of the Brazilian Cerrado Savanna.

    PubMed

    Brasil, L S; Juen, L; Batista, J D; Pavan, M G; Cabette, H S R

    2014-10-01

    We demonstrate that the distribution of the functional feeding groups of aquatic insects is related to hierarchical patch dynamics. Patches are sites with unique environmental and functional characteristics that are discontinuously distributed in time and space within a lotic system. This distribution predicts that the occurrence of species will be based predominantly on their environmental requirements. We sampled three streams within the same drainage basin in the Brazilian Cerrado savanna, focusing on waterfalls and associated habitats (upstream, downstream), representing different functional zones. We collected 2,636 specimens representing six functional feeding groups (FFGs): brushers, collector-gatherers, collector-filterers, shredders, predators, and scrapers. The frequency of occurrence of these groups varied significantly among environments. This variation appeared to be related to the distinct characteristics of the different habitat patches, which led us to infer that the hierarchical patch dynamics model can best explain the distribution of functional feeding groups in minor lotic environments, such as waterfalls. PMID:27193952

  7. Longitudinal Distribution of the Functional Feeding Groups of Aquatic Insects in Streams of the Brazilian Cerrado Savanna.

    PubMed

    Brasil, L S; Juen, L; Batista, J D; Pavan, M G; Cabette, H S R

    2014-10-01

    We demonstrate that the distribution of the functional feeding groups of aquatic insects is related to hierarchical patch dynamics. Patches are sites with unique environmental and functional characteristics that are discontinuously distributed in time and space within a lotic system. This distribution predicts that the occurrence of species will be based predominantly on their environmental requirements. We sampled three streams within the same drainage basin in the Brazilian Cerrado savanna, focusing on waterfalls and associated habitats (upstream, downstream), representing different functional zones. We collected 2,636 specimens representing six functional feeding groups (FFGs): brushers, collector-gatherers, collector-filterers, shredders, predators, and scrapers. The frequency of occurrence of these groups varied significantly among environments. This variation appeared to be related to the distinct characteristics of the different habitat patches, which led us to infer that the hierarchical patch dynamics model can best explain the distribution of functional feeding groups in minor lotic environments, such as waterfalls.

  8. The impact of methoxychlor treatment of the saskatchewan river system on artificial substrate populations of aquatic insects.

    PubMed

    Dosdall, L M; Lehmkuhl, D M

    1989-01-01

    The impact of methoxychlor exposure on aquatic insects inhabiting artificial substrates was monitored at three downstream sites relative to an upstream untreated site of the North Saskatchewan River. Treatment impact was studied for selected species of Simuliidae (Diptera), Perlodidae (Plecoptera), Hydropsychidae (Trichoptera), Baetidae and Heptageniidae (Ephemeroptera). At sites subjected to methoxychlor exposure which were 21, 38, and 107 km from injection, population changes varied depending on species and distance from the injection point. Although populations of some species were not significantly affected by treatment at any downstream site (P > 0.05), others were significantly reduced at one or more of the sites (P < 0.05- P < 0.01). Nymphs of Stenonema terminatum (Walsh) and Baetis tricaudatus Dodds (Ephemeroptera) apparently recolonized after dislodgement due to methoxychlor exposure. Species are categorized on the basis of their responses to methoxychlor treatment. Factors which probably caused different treatment impacts among species are discussed.

  9. An Investigation into the Physico-chemical Factors Affecting the Abundance and Diversity of Aquatic Insects in Organically Manured Aquadams and Their Utilization by Oreochromis mossambicus (Perciformes: Cichlidae).

    PubMed

    Rapatsa, M M; Moyo, N A G

    2015-08-01

    The interaction between the fish Oreochromis mossambicus (Percifomes: Cichlidae) and aquatic insects after application of chicken, cow, and pig manure was studied in 7,000-liter plastic aquadams. Principal component analysis showed that most of the variation in water quality after application of manure was accounted for by potassium, nitrogen, dissolved oxygen, phosphate, and alkalinity. Canonical correspondence analysis showed that Gyrinidae, Elminidae, Hydrophilidae, Hydraenidae, and Athericidae were associated with high nutrient levels (nitrogen, phosphorus, and potassium) characteristic of the chicken manure. However, the most abundant aquatic insects Gerridae, Notonectidae, and Culicidae were close to the centre of the ordination and not defined by any nutrient gradient. The Shannon-Wiener diversity was highest in the aquadams treated with chicken manure. The most frequently occurring aquatic insects in the diet of O. mossambicus were culicid mosquitoes in all the treatments. However, in the laboratory, Chironomidae were the most preferred because they lacked refuge. Notonectidae and Gerridae were not recorded in the diet of O. mossambicus despite their abundance. This may be because of their anti-predation strategies. Laboratory experiments showed that Notonectidae, Gyrinidae, and Gerridae fed on Chironomidae and Culicidae. This implies that aquatic predatory insects competed for food with O. mossambicus. PMID:26314044

  10. An Investigation into the Physico-chemical Factors Affecting the Abundance and Diversity of Aquatic Insects in Organically Manured Aquadams and Their Utilization by Oreochromis mossambicus (Perciformes: Cichlidae).

    PubMed

    Rapatsa, M M; Moyo, N A G

    2015-08-01

    The interaction between the fish Oreochromis mossambicus (Percifomes: Cichlidae) and aquatic insects after application of chicken, cow, and pig manure was studied in 7,000-liter plastic aquadams. Principal component analysis showed that most of the variation in water quality after application of manure was accounted for by potassium, nitrogen, dissolved oxygen, phosphate, and alkalinity. Canonical correspondence analysis showed that Gyrinidae, Elminidae, Hydrophilidae, Hydraenidae, and Athericidae were associated with high nutrient levels (nitrogen, phosphorus, and potassium) characteristic of the chicken manure. However, the most abundant aquatic insects Gerridae, Notonectidae, and Culicidae were close to the centre of the ordination and not defined by any nutrient gradient. The Shannon-Wiener diversity was highest in the aquadams treated with chicken manure. The most frequently occurring aquatic insects in the diet of O. mossambicus were culicid mosquitoes in all the treatments. However, in the laboratory, Chironomidae were the most preferred because they lacked refuge. Notonectidae and Gerridae were not recorded in the diet of O. mossambicus despite their abundance. This may be because of their anti-predation strategies. Laboratory experiments showed that Notonectidae, Gyrinidae, and Gerridae fed on Chironomidae and Culicidae. This implies that aquatic predatory insects competed for food with O. mossambicus.

  11. Insect and meat eating among infant and adult baboons (Papio cynocephalus) of Mikumi National Park, Tanzania.

    PubMed

    Rhine, R J; Norton, G W; Wynn, G M; Wynn, R D; Rhine, H B

    1986-05-01

    It has been suggested that baboon predation upon vertebrates may tend to peak in the dry season because insect food is then less available, and that males obtain animal nutrients primarily from vertebrates whereas other troop members obtain them primarily from invertebrates. The development of meat and insect eating by 22 male and 24 female infants studied for 25 months was compared with that of 18 male and 46 female adults studied for 37 months. Systematic sampling allowed quantitative comparisons between meat and insect eating, infants and adults, and males and females. Infants ate no meat, but their insect eating began early and increased steadily during the first year of life. In comparison with insect foods, meat was a minor ingredient of the adult's diet. Insect eating occurred less during dry than during rainy months, but meat eating was spread across the year. Reliable sex differences in insect eating did not occur. The findings were related to theories offered to explain the attractiveness of animal foods to primates and to the suggestion that a sex difference in predatory inclinations of hominid ancestors may have been a preadaptation underlying the eventual emergence of male hunting and female gathering. PMID:3728648

  12. Critical tissue residue approach linking accumulated metals in aquatic insects to population and community-level effects

    USGS Publications Warehouse

    Schmidt, Travis S.; Clements, William H.; Zuellig, Robert E.; Mitchell, Katharine A.; Church, Stanley E.; Wanty, Richard B.; San Juan, Carma A.; Adams, Monique; Lamothe, Paul J.

    2011-01-01

    Whole body Zn concentrations in individuals (n = 825) from three aquatic insect taxa (mayflies Rhithrogena spp. and Drunella spp. and the caddisfly Arctopsyche grandis) were used to predict effects on populations and communities (n = 149 samples). Both mayflies accumulated significantly more Zn than the caddisfly. The presence/absence of Drunella spp. most reliably distinguished sites with low and high Zn concentrations; however, population densities of mayflies were more sensitive to increases in accumulated Zn. Critical tissue residues (634 (mu or u)g/g Zn for Drunella spp. and 267 (mu or u)g/g Zn for Rhithrogena spp.) caused a 20% reduction in maximum (90th quantile) mayfly densities. These critical tissue residues were associated with exposure to 7.0 and 3.9 (mu or u)g/L dissolved Zn for Drunella spp. and Rhithrogena spp., respectively. A threshold in a measure of taxonomic completeness (observed/expected) was observed at 5.4 (mu or u)g/L dissolved Zn. Dissolved Zn concentrations associated with critical tissue residues in mayflies were also associated with adverse effects in the aquatic community as a whole. These effects on populations and communities occurred at Zn concentrations below the U.S. EPA hardness-adjusted continuous chronic criterion.

  13. So small, so loud: extremely high sound pressure level from a pygmy aquatic insect (Corixidae, Micronectinae).

    PubMed

    Sueur, Jérôme; Mackie, David; Windmill, James F C

    2011-01-01

    To communicate at long range, animals have to produce intense but intelligible signals. This task might be difficult to achieve due to mechanical constraints, in particular relating to body size. Whilst the acoustic behaviour of large marine and terrestrial animals has been thoroughly studied, very little is known about the sound produced by small arthropods living in freshwater habitats. Here we analyse for the first time the calling song produced by the male of a small insect, the water boatman Micronecta scholtzi. The song is made of three distinct parts differing in their temporal and amplitude parameters, but not in their frequency content. Sound is produced at 78.9 (63.6-82.2) SPL rms re 2.10(-5) Pa with a peak at 99.2 (85.7-104.6) SPL re 2.10(-5) Pa estimated at a distance of one metre. This energy output is significant considering the small size of the insect. When scaled to body length and compared to 227 other acoustic species, the acoustic energy produced by M. scholtzi appears as an extreme value, outperforming marine and terrestrial mammal vocalisations. Such an extreme display may be interpreted as an exaggerated secondary sexual trait resulting from a runaway sexual selection without predation pressure.

  14. Topography and Land Cover of Watersheds Predicts the Distribution of the Environmental Pathogen Mycobacterium ulcerans in Aquatic Insects

    PubMed Central

    Carolan, Kevin; Garchitorena, Andres; García-Peña, Gabriel E.; Morris, Aaron; Landier, Jordi; Fontanet, Arnaud; Le Gall, Philippe; Texier, Gaëtan; Marsollier, Laurent; Gozlan, Rodolphe E.; Eyangoh, Sara; Lo Seen, Danny; Guégan, Jean-Francois

    2014-01-01

    Background An understanding of the factors driving the distribution of pathogens is useful in preventing disease. Often we achieve this understanding at a local microhabitat scale; however the larger scale processes are often neglected. This can result in misleading inferences about the distribution of the pathogen, inhibiting our ability to manage the disease. One such disease is Buruli ulcer, an emerging neglected tropical disease afflicting many thousands in Africa, caused by the environmental pathogen Mycobacterium ulcerans. Herein, we aim to describe the larger scale landscape process describing the distribution of M. ulcerans. Methodology Following extensive sampling of the community of aquatic macroinvertebrates in Cameroon, we select the 5 dominant insect Orders, and conduct an ecological niche model to describe how the distribution of M. ulcerans positive insects changes according to land cover and topography. We then explore the generalizability of the results by testing them against an independent dataset collected in a second endemic region, French Guiana. Principal Findings We find that the distribution of the bacterium in Cameroon is accurately described by the land cover and topography of the watershed, that there are notable seasonal differences in distribution, and that the Cameroon model does not predict the distribution of M. ulcerans in French Guiana. Conclusions/Significance Future studies of M. ulcerans would benefit from consideration of local structure of the local stream network in future sampling, and further work is needed on the reasons for notable differences in the distribution of this species from one region to another. This work represents a first step in the identification of large-scale environmental drivers of this species, for the purposes of disease risk mapping. PMID:25375173

  15. Eat to reproduce: a key role for the insulin signaling pathway in adult insects

    PubMed Central

    Badisco, Liesbeth; Van Wielendaele, Pieter; Vanden Broeck, Jozef

    2013-01-01

    Insects, like all heterotrophic organisms, acquire from their food the nutrients that are essential for anabolic processes that lead to growth (larval stages) or reproduction (adult stage). In adult females, this nutritional input is processed and results in a very specific output, i.e., the production of fully developed eggs ready for fertilization and deposition. An important role in this input-output transition is attributed to the insulin signaling pathway (ISP). The ISP is considered to act as a sensor of the organism's nutritional status and to stimulate the progression of anabolic events when the status is positive. In several insect species belonging to different orders, the ISP has been demonstrated to positively control vitellogenesis and oocyte growth. Whether or not ISP acts herein via a mediator action of lipophilic insect hormones (ecdysteroids and juvenile hormone) remains debatable and might be differently controlled in different insect orders. Most likely, insulin-related peptides, ecdysteroids and juvenile hormone are involved in a complex regulatory network, in which they mutually influence each other and in which the insect's nutritional status is a crucial determinant of the network's output. The current review will present an overview of the regulatory role of the ISP in female insect reproduction and its interaction with other pathways involving nutrients, lipophilic hormones and neuropeptides. PMID:23966944

  16. Uptake and subcellular distributions of cadmium and selenium in transplanted aquatic insect larvae.

    PubMed

    Rosabal, Maikel; Ponton, Dominic E; Campbell, Peter G C; Hare, Landis

    2014-11-01

    We transplanted larvae of the phantom midge Chaoborus punctipennis from a lake having lower concentrations of Cd and Se (Lake Dasserat) to a more contaminated lake (Lake Dufault) located near a metal smelter in Rouyn-Noranda, Quebec. Transplanted individuals were held in mesh mesocosms for up to 16 days where they were fed with indigenous contaminated zooplankton. Larval Cd and Se burdens increased over time, and came to equal those measured in indigenous C. punctipennis from contaminated Lake Dufault. Larval Se burdens increased steadily, whereas those of Cd showed an initial lag phase that we explain by a change in the efficiency with which this insect assimilated Cd from its prey. We measured Cd and Se in subcellular fractions and found that larvae sequestered the majority (60%) of the incoming Cd in a detoxified fraction containing metal-binding proteins, whereas a minority of this nonessential metal was in sensitive fractions (20%). In contrast, a much higher proportion of the essential element Se (40%) was apportioned to metabolically active sensitive fractions. Larvae took up equimolar quantities of these elements over the course of the experiment. Likewise, Cd and Se concentrations in wild larvae were equimolar, which suggests that they are exposed to equimolar bioavailable concentrations of these elements in our study lakes. PMID:25268462

  17. New species and first records of trichomycetes from immature aquatic insects in Idaho.

    PubMed

    Bench, Molly E; White, Merlin M

    2012-01-01

    Trichomycetes, or gut fungi, are currently recognized as an ecological group of fungi and protists that inhabit the guts of immature insects or other stages and types of arthropods. The geographic distribution of these endosymbionts is worldwide. However trichomycete data from the Pacific Northwest are limited and this is the first account of gut fungi in Idaho. We report on the trichomycetes from a single site, Cottonwood Creek at Military Reserve Park, Boise, Idaho, where periodic surveys for more than a year resulted in the discovery of four newly named, three probably new but unnamed and 15 previously known species. Among the Harpellales three new species, Capniomyces sasquatchoides, Harpella torus and Lancisporomyces lampetriformis, are described, with two possibly new species of Smittium detailed but unnamed at this time pending further collections. A Genistelloides cf. hibernus also is included as a possible new species. One new species of Amoebidiales, Paramoebidium hamatum, is described as well. Hosts in which the gut fungi were recovered include larvae or nymphs of Diptera (Chironomidae and Simuliidae), Ephemeroptera (Baetidae) and Plecoptera (Capniidae and Taeniopterygidae). We hope to demonstrate that future surveys or bioprospecting investigations into the biodiversity of these early-diverging fungi in this region and worldwide remain promising.

  18. Is there a risk associated with the insect repellent DEET (N,N-diethyl-m-toluamide) commonly found in aquatic environments?

    USGS Publications Warehouse

    Costanzo, S.D.; Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Sandstrom, M.W.

    2007-01-01

    DEET (N,N-diethyl-m-toluamide) is the active ingredient of most commercial insect repellents. This compound has commonly been detected in aquatic water samples from around the world indicating that DEET is both mobile and persistent, despite earlier assumptions that DEET was unlikely to enter aquatic ecosystems. DEET's registration category does not require an ecological risk assessment, thus information on the ecological toxicity of DEET is sparse. This paper reviews the presence of DEET in aqueous samples from around the world (e.g. drinking water, streams, open seawater, groundwater and treated effluent) with reported DEET concentrations ranging from 40–3000 ng L− 1. In addition, new DEET data collected from 36 sites in coastal waterways from eastern Australia (detections ranging from 8 to 1500 ng L− 1) are examined. A summary of new and existing toxicity data are discussed with an emphasis on preparing a preliminary risk assessment for DEET in the aquatic environment. Collated information on DEET in the aquatic environment suggests risk to aquatic biota at observed environmental concentrations is minimal. However, the information available was not sufficient to conduct a full risk assessment due to data deficiencies in source characterisation, transport mechanisms, fate, and ecotoxicity studies. These risks warrant further investigation due to the high frequency that this organic contaminant is detected in aquatic environments around the world.

  19. Comparative functional analyses of ultrabithorax reveal multiple steps and paths to diversification of legs in the adaptive radiation of semi-aquatic insects.

    PubMed

    Khila, Abderrahman; Abouheif, Ehab; Rowe, Locke

    2014-08-01

    Invasion of new ecological habitats is often associated with lineage diversification, yet the genetic changes underlying invasions and radiations are poorly understood. Over 200 million years ago, the semi-aquatic insects invaded water surface from a common terrestrial ancestor and diversified to exploit a wide array of niches. Here, we uncover the changes in regulation and function of the gene Ultrabithorax associated with both the invasion of water surface and the subsequent diversification of the group. In the common ancestor of the semi-aquatic insects, a novel deployment of Ubx protein in the mid-legs increased their length, thereby enhancing their role in water surface walking. In derived lineages that specialize in rowing on the open water, additional changes in the timing of Ubx expression further elongated the mid-legs thereby facilitating their function as oars. In addition, Ubx protein function was selectively reversed to shorten specific rear-leg segments, thereby enabling their function as rudders. These changes in Ubx have generated distinct niche-specialized morphologies that account for the remarkable diversification of the semi-aquatic insects. Therefore, changes in the regulation and function of a key developmental gene may facilitate both the morphological change necessary to transition to novel habitats and fuel subsequent morphological diversification.

  20. Accessory gland as a site for prothoracicotropic hormone controlled ecdysone synthesis in adult male insects.

    PubMed

    Hentze, Julie L; Moeller, Morten E; Jørgensen, Anne F; Bengtsson, Meghan S; Bordoy, Anna M; Warren, James T; Gilbert, Lawrence I; Andersen, Ole; Rewitz, Kim F

    2013-01-01

    Insect steroid hormones (ecdysteroids) are important for female reproduction in many insect species and are required for the initiation and coordination of vital developmental processes. Ecdysteroids are also important for adult male physiology and behavior, but their exact function and site of synthesis remains unclear, although previous studies suggest that the reproductive system may be their source. We have examined expression profiles of the ecdysteroidogenic Halloween genes, during development and in adults of the flour beetle Tribolium castaneum. Genes required for the biosynthesis of ecdysone (E), the precursor of the molting hormone 20-hydroxyecdysone (20E), are expressed in the tubular accessory glands (TAGs) of adult males. In contrast, expression of the gene encoding the enzyme mediating 20E synthesis was detected in the ovaries of females. Further, Spookiest (Spot), an enzyme presumably required for endowing tissues with competence to produce ecdysteroids, is male specific and predominantly expressed in the TAGs. We also show that prothoracicotropic hormone (PTTH), a regulator of E synthesis during larval development, regulates ecdysteroid levels in the adult stage in Drosophila melanogaster and the gene for its receptor Torso seems to be expressed specifically in the accessory glands of males. The composite results suggest strongly that the accessory glands of adult male insects are the main source of E, but not 20E. The finding of a possible male-specific source of E raises the possibility that E and 20E have sex-specific roles analogous to the vertebrate sex steroids, where males produce primarily testosterone, the precursor of estradiol. Furthermore this study provides the first evidence that PTTH regulates ecdysteroid synthesis in the adult stage and could explain the original finding that some adult insects are a rich source of PTTH. PMID:23383307

  1. Accessory gland as a site for prothoracicotropic hormone controlled ecdysone synthesis in adult male insects.

    PubMed

    Hentze, Julie L; Moeller, Morten E; Jørgensen, Anne F; Bengtsson, Meghan S; Bordoy, Anna M; Warren, James T; Gilbert, Lawrence I; Andersen, Ole; Rewitz, Kim F

    2013-01-01

    Insect steroid hormones (ecdysteroids) are important for female reproduction in many insect species and are required for the initiation and coordination of vital developmental processes. Ecdysteroids are also important for adult male physiology and behavior, but their exact function and site of synthesis remains unclear, although previous studies suggest that the reproductive system may be their source. We have examined expression profiles of the ecdysteroidogenic Halloween genes, during development and in adults of the flour beetle Tribolium castaneum. Genes required for the biosynthesis of ecdysone (E), the precursor of the molting hormone 20-hydroxyecdysone (20E), are expressed in the tubular accessory glands (TAGs) of adult males. In contrast, expression of the gene encoding the enzyme mediating 20E synthesis was detected in the ovaries of females. Further, Spookiest (Spot), an enzyme presumably required for endowing tissues with competence to produce ecdysteroids, is male specific and predominantly expressed in the TAGs. We also show that prothoracicotropic hormone (PTTH), a regulator of E synthesis during larval development, regulates ecdysteroid levels in the adult stage in Drosophila melanogaster and the gene for its receptor Torso seems to be expressed specifically in the accessory glands of males. The composite results suggest strongly that the accessory glands of adult male insects are the main source of E, but not 20E. The finding of a possible male-specific source of E raises the possibility that E and 20E have sex-specific roles analogous to the vertebrate sex steroids, where males produce primarily testosterone, the precursor of estradiol. Furthermore this study provides the first evidence that PTTH regulates ecdysteroid synthesis in the adult stage and could explain the original finding that some adult insects are a rich source of PTTH.

  2. Paternal signature in kin recognition cues of a social insect: concealed in juveniles, revealed in adults

    PubMed Central

    Wong, Janine W. Y.; Meunier, Joël; Lucas, Christophe; Kölliker, Mathias

    2014-01-01

    Kin recognition is a key mechanism to direct social behaviours towards related individuals or avoid inbreeding depression. In insects, recognition is generally mediated by cuticular hydrocarbon (CHC) compounds, which are partly inherited from parents. However, in social insects, potential nepotistic conflicts between group members from different patrilines are predicted to select against the expression of patriline-specific signatures in CHC profiles. Whereas this key prediction in the evolution of insect signalling received empirical support in eusocial insects, it remains unclear whether it can be generalized beyond eusociality to less-derived forms of social life. Here, we addressed this issue by manipulating the number of fathers siring clutches tended by females of the European earwig, Forficula auricularia, analysing the CHC profiles of the resulting juvenile and adult offspring, and using discriminant analysis to estimate the information content of CHC with respect to the maternal and paternal origin of individuals. As predicted, if paternally inherited cues are concealed during family life, increases in mating number had no effect on information content of CHC profiles among earwig juveniles, but significantly decreased the one among adult offspring. We suggest that age-dependent expression of patriline-specific cues evolved to limit the risks of nepotism as family-living juveniles and favour sibling-mating avoidance as group-living adults. These results highlight the role of parental care and social life in the evolution of chemical communication and recognition cues. PMID:25165768

  3. Paternal signature in kin recognition cues of a social insect: concealed in juveniles, revealed in adults.

    PubMed

    Wong, Janine W Y; Meunier, Joël; Lucas, Christophe; Kölliker, Mathias

    2014-10-22

    Kin recognition is a key mechanism to direct social behaviours towards related individuals or avoid inbreeding depression. In insects, recognition is generally mediated by cuticular hydrocarbon (CHC) compounds, which are partly inherited from parents. However, in social insects, potential nepotistic conflicts between group members from different patrilines are predicted to select against the expression of patriline-specific signatures in CHC profiles. Whereas this key prediction in the evolution of insect signalling received empirical support in eusocial insects, it remains unclear whether it can be generalized beyond eusociality to less-derived forms of social life. Here, we addressed this issue by manipulating the number of fathers siring clutches tended by females of the European earwig, Forficula auricularia, analysing the CHC profiles of the resulting juvenile and adult offspring, and using discriminant analysis to estimate the information content of CHC with respect to the maternal and paternal origin of individuals. As predicted, if paternally inherited cues are concealed during family life, increases in mating number had no effect on information content of CHC profiles among earwig juveniles, but significantly decreased the one among adult offspring. We suggest that age-dependent expression of patriline-specific cues evolved to limit the risks of nepotism as family-living juveniles and favour sibling-mating avoidance as group-living adults. These results highlight the role of parental care and social life in the evolution of chemical communication and recognition cues.

  4. Effects of Gravity on Wing Extension of Insects at Adult Eclosion

    NASA Astrophysics Data System (ADS)

    Hayashi, Fumio; Kishimoto, Naoko; Moriya, Hirofumi

    2008-06-01

    We compared the wing extensions of adult moths, Eterusia aedea, that emerged in either a horizontal plane, a vertical plane, or a vertical plane with centrifugal force generated by a rotating turntable. These studies were conducted to examine the relative importance of changes in fluid pressure from the body to the wings and gravitational force on the wings. The wings were generally crumpled when the insect emerged on the horizontal plane and became narrower when centrifugal acceleration was applied. In the future, observations of insect emergence in space at zero gravity are necessary to clarify the effects of gravity on wing extension.

  5. Relating metal exposure and chemical speciation to trace metal accumulation in aquatic insects under natural field conditions.

    PubMed

    De Jonge, Maarten; Lofts, Stephen; Bervoets, Lieven; Blust, Ronny

    2014-10-15

    The present study investigated to what extent measured dissolved metal concentrations, WHAM-predicted free metal ion activity and modulating water chemistry factors can predict Ni, Cu, Zn, Cd and Pb accumulation in various aquatic insects under natural field conditions. Total dissolved concentrations and accumulated metal levels in four taxa (Leuctra sp., Simuliidae, Rhithrogena sp. and Perlodidae) were determined and free metal ion activities were calculated in 36 headwater streams located in the north-west part of England. Observed invertebrate body burdens were strongly related to free metal ion activities and competition among cations for uptake in the biota. Taking into account competitive effects generally provided better fits than considering uptake as a function of total dissolved metal levels or the free ion alone. Due to the critical importance and large range in pH (4.09 to 8.33), the H(+) ion activity was the most dominant factor influencing metal accumulation. Adding the influence of Na(+) on Cu(2+) accumulation improved the model goodness of fit for both Rhithrogena sp. and Perlodidae. Effects of hardness ions on metal accumulation were limited, indicating the minor influence of Ca(2+) and Mg(2+) on metal accumulation in soft-water streams (0.01 to 0.94 mM Ca; 0.02 to 0.39 mM Mg). DOC levels (ranging from 0.6 to 8.9 mg L(-1)) significantly affected Cu body burdens, however not the accumulation of the other metals. Our results suggest that 1) uptake and accumulation of free metal ions are most dominantly influenced by competition of free H(+) ions in low-hardness headwaters and 2) invertebrate body burdens in natural waters can be predicted based on the free metal ion activity using speciation modelling and effects of H(+) competition.

  6. Relating metal exposure and chemical speciation to trace metal accumulation in aquatic insects under natural field conditions.

    PubMed

    De Jonge, Maarten; Lofts, Stephen; Bervoets, Lieven; Blust, Ronny

    2014-10-15

    The present study investigated to what extent measured dissolved metal concentrations, WHAM-predicted free metal ion activity and modulating water chemistry factors can predict Ni, Cu, Zn, Cd and Pb accumulation in various aquatic insects under natural field conditions. Total dissolved concentrations and accumulated metal levels in four taxa (Leuctra sp., Simuliidae, Rhithrogena sp. and Perlodidae) were determined and free metal ion activities were calculated in 36 headwater streams located in the north-west part of England. Observed invertebrate body burdens were strongly related to free metal ion activities and competition among cations for uptake in the biota. Taking into account competitive effects generally provided better fits than considering uptake as a function of total dissolved metal levels or the free ion alone. Due to the critical importance and large range in pH (4.09 to 8.33), the H(+) ion activity was the most dominant factor influencing metal accumulation. Adding the influence of Na(+) on Cu(2+) accumulation improved the model goodness of fit for both Rhithrogena sp. and Perlodidae. Effects of hardness ions on metal accumulation were limited, indicating the minor influence of Ca(2+) and Mg(2+) on metal accumulation in soft-water streams (0.01 to 0.94 mM Ca; 0.02 to 0.39 mM Mg). DOC levels (ranging from 0.6 to 8.9 mg L(-1)) significantly affected Cu body burdens, however not the accumulation of the other metals. Our results suggest that 1) uptake and accumulation of free metal ions are most dominantly influenced by competition of free H(+) ions in low-hardness headwaters and 2) invertebrate body burdens in natural waters can be predicted based on the free metal ion activity using speciation modelling and effects of H(+) competition. PMID:25051425

  7. Aquatic Insects from the Caatinga: checklists and diversity assessments of Ubajara (Ceará State) and Sete Cidades (Piauí State) National Parks, Northeastern Brazil

    PubMed Central

    Santos, Allan Paulo Moreira; Pinto, Ângelo Parise; Henriques-Oliveira, Ana Lucia; Carvalho, Alcimar do Lago; Sampaio, Brunno Henrique Lanzellotti; Clarkson, Bruno; Moreira, Felipe Ferraz Figueiredo; Avelino-Capistrano, Fernanda; Gonçalves, Inês Corrêa; Cordeiro, Isabelle da Rocha Silva; Câmara, Josenir Teixeira; Barbosa, Julianna Freires; de Souza, W. Rafael Maciel; Rafael, José Albertino

    2016-01-01

    Abstract Background Diversity and distribution of Neotropical aquatic insects is still poorly known, with many species to be recorded and many others to be described, due to the small number of taxonomists and sparse faunistic studies. This knowledge is especially poor in the Caatinga Domain in Northeastern Brazil, even though, this region may have played an important historical role in the spatial evolution of faunas of forested areas in northern South America. New information Aquatic insect checklists of 96 species from Parque Nacional de Ubajara (Ceará State, Brazil) and 112 species from Parque Nacional de Sete Cidades (Piauí State, Brazil) are presented, representing the following taxa: Elmidae, Epimetopidae, Hydrophilidae, and Torridincolidae (Coleoptera), Hemerodromiinae (Diptera: Empididae), Ephemeroptera, Gerromorpha and Nepomorpha (Hemiptera), Odonata, Plecoptera, and Trichoptera. Because of the scarce number of biological inventories in Northeastern Brazil, several new distributional records (of species, genera, and families) for Brazil, Northeastern Brazil, and Ceará and Piauí states are provided. In addition, several undescribed species were detected, being 26 from Ubajara and 20 from Sete Cidades. Results represent a significant increase to the known fauna of these states, ranging from 13%-70% increase for Ceará and 41% to 91% increase for Piauí. Although both parks are relatively close to each other and within the Caatinga domain, their aquatic fauna display a very high complementarity (89% species), possibly due to structural differences of water bodies sampled in each park. Rarefaction curves based on quantitative light trap samples suggest a much higher expected species richness of aquatic insects at Sete Cidades than at Ubajara National Park. Discussion on biogeographical affinities of this sample of the Caatinga fauna is provided.

  8. Aquatic Insects from the Caatinga: checklists and diversity assessments of Ubajara (Ceará State) and Sete Cidades (Piauí State) National Parks, Northeastern Brazil

    PubMed Central

    Santos, Allan Paulo Moreira; Pinto, Ângelo Parise; Henriques-Oliveira, Ana Lucia; Carvalho, Alcimar do Lago; Sampaio, Brunno Henrique Lanzellotti; Clarkson, Bruno; Moreira, Felipe Ferraz Figueiredo; Avelino-Capistrano, Fernanda; Gonçalves, Inês Corrêa; Cordeiro, Isabelle da Rocha Silva; Câmara, Josenir Teixeira; Barbosa, Julianna Freires; de Souza, W. Rafael Maciel; Rafael, José Albertino

    2016-01-01

    Abstract Background Diversity and distribution of Neotropical aquatic insects is still poorly known, with many species to be recorded and many others to be described, due to the small number of taxonomists and sparse faunistic studies. This knowledge is especially poor in the Caatinga Domain in Northeastern Brazil, even though, this region may have played an important historical role in the spatial evolution of faunas of forested areas in northern South America. New information Aquatic insect checklists of 96 species from Parque Nacional de Ubajara (Ceará State, Brazil) and 112 species from Parque Nacional de Sete Cidades (Piauí State, Brazil) are presented, representing the following taxa: Elmidae, Epimetopidae, Hydrophilidae, and Torridincolidae (Coleoptera), Hemerodromiinae (Diptera: Empididae), Ephemeroptera, Gerromorpha and Nepomorpha (Hemiptera), Odonata, Plecoptera, and Trichoptera. Because of the scarce number of biological inventories in Northeastern Brazil, several new distributional records (of species, genera, and families) for Brazil, Northeastern Brazil, and Ceará and Piauí states are provided. In addition, several undescribed species were detected, being 26 from Ubajara and 20 from Sete Cidades. Results represent a significant increase to the known fauna of these states, ranging from 13%-70% increase for Ceará and 41% to 91% increase for Piauí. Although both parks are relatively close to each other and within the Caatinga domain, their aquatic fauna display a very high complementarity (89% species), possibly due to structural differences of water bodies sampled in each park. Rarefaction curves based on quantitative light trap samples suggest a much higher expected species richness of aquatic insects at Sete Cidades than at Ubajara National Park. Discussion on biogeographical affinities of this sample of the Caatinga fauna is provided. PMID:27660528

  9. A landscape perspective on bat foraging ecology along rivers: does channel confinement and insect availability influence the response of bats to aquatic resources in riverine landscapes?

    PubMed

    Hagen, Elizabeth M; Sabo, John L

    2011-07-01

    River and riparian areas provide an important foraging habitat for insectivorous bats owing to high insect availability along waterways. However, structural characteristics of the riverine landscape may also influence the location of foraging bats. We used bat detectors to compare bat activity longitudinally along river reaches with contrasting channel confinement, ratio of valley floor width to active channel width, and riparian vegetation, and laterally with distance from the river along three different reach types. We measured rates of insect emergence from the river and aerial insect availability above the river and laterally up to 50-m into the riparian habitat in order to assess the relationship between food resources and insectivorous bat activity. Longitudinally, bat activity was concentrated along confined reaches in comparison to unconfined reaches but was not related to insect availability. Laterally, bats tracked exponential declines in aquatic insects with distance from the river. These data suggest that along the lateral dimension bats track food resources, but that along the longitudinal dimension channel shape and landscape structure determine bat distributions more than food resources.

  10. Selenium and other trace elements in aquatic insects in coal mine-affected streams in the Rocky Mountains of Alberta, Canada.

    PubMed

    Wayland, Mark; Crosley, Robert

    2006-05-01

    We determined levels of Se, As, Cd, Pb, and Zn in aquatic insects at coal mine-impacted and reference sites in streams in the Rocky Mountain foothills of west central Alberta from 2001-2003. Selenium levels were greater at coal mine-impacted sites than at reference sites in caddisflies but not in mayflies or stoneflies. Arsenic levels were greater at coal mine-impacted sites than at reference sites in caddisflies and stoneflies but not in mayflies. Zn levels were higher at coal mine-impacted sites than at reference sites in all three groups of insects. At coal mine-impacted sites, Se levels in mayflies and caddisflies were greater than those in stoneflies while at reference sites mayflies contained greater concentrations of Se than either caddisflies or stoneflies. Arsenic levels in mayflies were greater than those in caddisflies at reference and coal mine-impacted sites and were greater than those in stoneflies at reference sites. At both types of sites Cd differed amongst insect taxa in the order of mayflies > caddisflies > stoneflies. The same was true of Zn at coal mine-affected sites. At reference sites, stoneflies had greater concentrations of Zn than both mayflies and caddisflies. At both types of sites, Pb levels were greater in mayflies and caddisflies than they were in stoneflies. Of the five trace elements considered in this study, only Se was sufficiently elevated in aquatic invertebrates to be of potential concern for consumers such as fish and aquatic birds. Such was the case at both coal mine-impacted and reference sites. PMID:16446991

  11. Selenium and other trace elements in aquatic insects in coal mine-affected streams in the Rocky Mountains of Alberta, Canada

    SciTech Connect

    Wayland, M.; Crosley, R.

    2006-05-15

    We determined levels of Se, As, Cd, Pb, and Zn in aquatic insects at coal mine-impacted and reference sites in streams in the Rocky Mountain foothills of west central Alberta from 2001-2003. Selenium levels were greater at coal mine-impacted sites than at reference sites in caddisflies but not in mayflies or stoneflies. Arsenic levels were greater at coal mine-impacted sites than at reference sites in caddisflies and stoneflies but not in mayflies. Zn levels were higher at coal mine-impacted sites than at reference sites in all three groups of insects. At coal mine-impacted sites, Se levels in mayflies and caddisflies were greater than those in stoneflies while at reference sites mayflies contained greater concentrations of Se than either caddisflies or stoneflies. Arsenic levels in mayflies were greater than those in caddisflies at reference and coal mine-impacted sites and were greater than those in stoneflies at reference sites. At both types of sites Cd differed amongst insect taxa in the order of mayflies < caddisflies < stoneflies. The same was true of Zn at coal mine-affected sites. At reference sites, stoneflies had greater concentrations of Zn than both mayflies and caddisflies. At both types of sites, Pb levels were greater in mayflies and caddisflies than they were in stoneflies. Of the five trace elements considered in this study, only Se was sufficiently elevated in aquatic invertebrates to be of potential concern for consumers such as fish and aquatic birds. Such was the case at both coal mine-impacted and reference sites.

  12. Subacute toxicity assessment of diflubenzuron, an insect growth regulator, in adult male rats.

    PubMed

    de Barros, Aline Lima; Cavalheiro, Gabriela Finoto; de Souza, Alexsandra Vila Maior; Traesel, Giseli Karenina; Anselmo-Franci, Janete A; Kassuya, Cândida Aparecida Leite; Arena, Arielle Cristina

    2016-04-01

    Diflubenzuron (DFB), an insecticide and acaricide insect growth regulator, can be used in agriculture against insect predators and in public health programs, to control insects and vectors, mainly Aedes aegypti larvae. Due to the lack of toxicological assessments of this compound, the objective of the present study was to evaluate the toxicological effects of subacute exposure to the DFB insecticide in adult male rats. Adult male rats were exposed (gavage) to 0, 2, 4, or 8 mg/kg of DFB for 28 days. No clinical signs of toxicity were observed in the DFB-treated animals of the experimental groups. However, there was an increase in serum levels of alanine aminotransferase in the group that received 8 mg/kg/DFB/day and urea at doses of 4 and 8 mg/kg/DFB/day, without altering other biochemical or hematological parameters. The subacute exposure to the lowest dose of DFB caused significant decrease in testis weight, daily sperm production, and in number of sperm in the epididymis in relation to the control group. However, no alterations were observed in the sperm morphology, testicular, epididymis, liver and kidney histology, or testosterone levels. These findings unveiled the hazardous effects of DFB on male reproduction after the subacute exposure and special attention should be addressed to the effects of low doses of this pesticide.

  13. Fluvial geomorphology and aquatic-to-terrestrial Hg export are weakly coupled in small urban streams of Columbus, Ohio

    NASA Astrophysics Data System (ADS)

    Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie

    2016-04-01

    Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.

  14. Estimating benthic secondary production from aquatic insect emergence in streams affected by mountaintop removal coal mining, West Virginia USA

    EPA Science Inventory

    Mountaintop removal and valley fill (MTR/VF) coal mining recountours the Appalachian landscape, buries headwater stream channels, and degrades downstream water quality. The goal of this study was to compare benthic community production estimates, based on seasonal insect emergen...

  15. Aquatic insect community structure under the influence of small dams in a stream of the Mogi-Guaçu river basin, state of São Paulo.

    PubMed

    Saulino, H H L; Corbi, J J; Trivinho-Strixino, S

    2014-02-01

    The fragmentation of lotic systems caused by construction of dams has modified many aquatic communities. The objective of this study was to analyse changes in the aquatic insect community structure by discontinuity of habitat created by dams along the Ribeirão das Anhumas, a sub-basin of the Mogi-Guaçu River (state of São Paulo, Brazil). Entomofauna collection was carried out in 10 segments upstream and downstream of five dams along the longitudinal profile of the stream, with a quick sampling method using a D net (mesh 250 mm) with 2 minutes of sampling effort. The insects were sorted and identified to the lowest possible taxonomic level and analysed by the Shannon diversity index, β diversity, richness estimated by rarefaction curves and relative participation of functional feeding groups. The results showed a slight reduction in diversity in the downstream segments, as well as along the longitudinal profile of the stream. However, there were no significant differences in abundance and richness between the upstream and downstream segments, indicating that the dams did not influence these variables. Differences were observed in the functional feeding groups along the longitudinal profile. Predator and gatherer insects were dominant in all segments analysed. The feeding group of shredders was more abundant in the segment DSIII with the participation of Marilia Müller (Odontoceridae - Trichoptera), although we observed a decrease of shredders and scrapers with the decrease of the canopy cover reducing values of β diversity in the continuum of Ribeirão das Anhumas. This result demonstrated the importance of the conservation of the riparian vegetation in order to maintain the integrity of the stream. PMID:25055089

  16. Sterilization Effects of Adult-targeted Baits Containing Insect Growth Regulators on Delia antiqua.

    PubMed

    Zhou, Fangyuan; Zhu, Guodong; Zhao, Haipeng; Wang, Zheng; Xue, Ming; Li, Xianxian; Xu, Huaqiang; Ma, Xiaodan; Liu, Yanyan

    2016-01-01

    The onion maggot, Delia antiqua, is a devastating pest of liliaceous crops and current control measures fail to avert pesticide residues, threats to agroecosystem, and costly expenditures. Insect growth regulators (IGRs) are used as trypetid pest chemosterilants for their suppression on adult fertility and fecundity, but their effects on onion flies are unknown. Here, three IGRs (lufenuron, cyromazine, pyriproxyfen) were incorporated into baits to evaluate their effects on onion fly survival, fecundity, fertility, susceptibility of adults in different ages and offspring development. Lufenuron and cyromazine did not affect survival of new-emerged adults, but lufenuron inhibited adult fertility without affecting fecundity, and cyromazine reduced fertility and fecundity. Differently, pyriproxyfen enhanced fecundity within 10 days after treatment, while it reduced adult survival without affecting fertility. The fertility of younger adults was affected by lufenuron and cyromazine whereas the fecundity was affected with cyromazine and pyriproxyfen. For offspring of onion flies treated with lufenuron or cyromazine, most of larvae died within 5 days after hatch, but surviving larvae pupated and emerged normally. Pyriproxyfen did not affect offspring larval survival or pupation but affected pupal emergence. Thus, lufenuron and cyromazine could be potential chemosterilants for onion flies. PMID:27619006

  17. Sterilization Effects of Adult-targeted Baits Containing Insect Growth Regulators on Delia antiqua

    PubMed Central

    Zhou, Fangyuan; Zhu, Guodong; Zhao, Haipeng; Wang, Zheng; Xue, Ming; Li, Xianxian; Xu, Huaqiang; Ma, Xiaodan; Liu, Yanyan

    2016-01-01

    The onion maggot, Delia antiqua, is a devastating pest of liliaceous crops and current control measures fail to avert pesticide residues, threats to agroecosystem, and costly expenditures. Insect growth regulators (IGRs) are used as trypetid pest chemosterilants for their suppression on adult fertility and fecundity, but their effects on onion flies are unknown. Here, three IGRs (lufenuron, cyromazine, pyriproxyfen) were incorporated into baits to evaluate their effects on onion fly survival, fecundity, fertility, susceptibility of adults in different ages and offspring development. Lufenuron and cyromazine did not affect survival of new-emerged adults, but lufenuron inhibited adult fertility without affecting fecundity, and cyromazine reduced fertility and fecundity. Differently, pyriproxyfen enhanced fecundity within 10 days after treatment, while it reduced adult survival without affecting fertility. The fertility of younger adults was affected by lufenuron and cyromazine whereas the fecundity was affected with cyromazine and pyriproxyfen. For offspring of onion flies treated with lufenuron or cyromazine, most of larvae died within 5 days after hatch, but surviving larvae pupated and emerged normally. Pyriproxyfen did not affect offspring larval survival or pupation but affected pupal emergence. Thus, lufenuron and cyromazine could be potential chemosterilants for onion flies. PMID:27619006

  18. Levels of polycyclic aromatic hydrocarbons and dibenzothiophenes in wetland sediments and aquatic insects in the oil sands area of northeastern Alberta, Canada.

    PubMed

    Wayland, Mark; Headley, John V; Peru, Kerry M; Crosley, Robert; Brownlee, Brian G

    2008-01-01

    An immense volume of tailings and tailings water is accumulating in tailings ponds located on mine leases in the oil sands area of Alberta, Canada. Oil sands mining companies have proposed to use tailings- and tailings water-amended lakes and wetlands as part of their mine remediation plans. Polycyclic aromatic hydrocarbons (PAHs) are substances of concern in oil sands tailings and tailings water. In this study, we determined concentrations of PAHs in sediments, insect larvae and adult insects collected in or adjacent to three groups of wetlands: experimental wetlands to which tailings or tailings water had been purposely added, oil sands wetlands that were located on the mine leases but which had not been experimentally manipulated and reference wetlands located near the mine leases. Alkylated PAHs dominated the PAH profile in all types of samples in the three categories of wetlands. Median and maximum PAH concentrations, especially alkylated PAH concentrations, tended to be higher in sediments and insect larvae in experimental wetlands than in the other types of wetlands. Such was not the case for adult insects, which contained higher than expected levels of PAHs in the three types of ponds. Overlap in PAH concentrations in larvae among pond types suggests that any increase in PAH levels resulting from the addition of tailings and tailings water to wetlands would be modest. Biota-sediment accumulation factors were higher for alkylated PAHs than for their parent counterparts and were lower in experimental wetlands than in oil sands and reference wetlands. Research is needed to examine factors that affect the bioavailability of PAHs in oil sands tailings- or tailings water-amended wetlands. PMID:17380417

  19. Evolution of insect metamorphosis: a microarray-based study of larval and adult gene expression in the ant Camponotus festinatus.

    PubMed

    Goodisman, Michael A D; Isoe, Jun; Wheeler, Diana E; Wells, Michael A

    2005-04-01

    Holometabolous insects inhabit almost every terrestrial ecosystem. The evolutionary success of holometabolous insects stems partly from their developmental program, which includes discrete larval and adult stages. To gain an understanding of how development differs among holometabolous insect taxa, we used cDNA microarray technology to examine differences in gene expression between larval and adult Camponotus festinatus ants. We then compared expression patterns obtained from our study to those observed in the fruitfly Drosophila melanogaster. We found that many genes showed distinct patterns of expression between the larval and adult ant life stages, a result that was confirmed through quantitative reverse-transcriptase polymerase chain reaction. Genes involved in protein metabolism and possessing structural activity tended to be more highly expressed in larval than adult ants. In contrast, genes relatively upregulated in adults possessed a greater diversity of functions and activities. We also discovered that patterns of expression observed for homologous genes in D. melanogaster differed substantially from those observed in C. festinatus. Our results suggest that the specific molecular mechanisms involved in metamorphosis will differ substantially between insect taxa. Systematic investigation of gene expression during development of other taxa will provide additional information on how developmental pathways evolve.

  20. Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frog Xenopus laevis.

    PubMed

    Wilson, R S; James, R S; Johnston, I A

    2000-03-01

    Among amphibians, the ability to compensate for the effects of temperature on the locomotor system by thermal acclimation has only been reported in larvae of a single species of anuran. All other analyses have examined predominantly terrestrial adult life stages of amphibians and found no evidence of thermal acclimatory capacity. We examined the ability of both tadpoles and adults of the fully aquatic amphibian Xenopus laevis to acclimate their locomotor system to different temperatures. Tadpoles were acclimated to either 12 degrees C or 30 degrees C for 4 weeks and their burst swimming performance was assessed at four temperatures between 5 degrees C and 30 degrees C. Adult X. laevis were acclimated to either 10 degrees C or 25 degrees C for 6 weeks and their burst swimming performance and isolated muscle performance was determined at six temperatures between 5 degrees C and 30 degrees C. Maximum swimming performance of cold-acclimated X. laevis tadpoles was greater at cool temperatures and lower at the highest temperature in comparison with the warm-acclimated animals. At the test temperature of 12 degrees C, maximum swimming velocity of tadpoles acclimated to 12 degrees C was 38% higher than the 30 degrees C-acclimation group, while at 30 degrees C, maximum swimming velocity of the 30 degrees C-acclimation group was 41% faster than the 12 degrees C-acclimation group. Maximum swimming performance of adult X. laevis acclimated to 10 degrees C was also higher at the lower temperatures than the 25 degrees C acclimated animals, but there was no difference between the treatment groups at higher temperatures. When tested at 10 degrees C, maximum swimming velocity of the 10 degrees C-acclimation group was 67% faster than the 25 degrees C group. Isolated gastrocnemius muscle fibres from adult X. laevis acclimated to 10 degrees C produced higher relative tetanic tensions and decreased relaxation times at 10 degrees C in comparison with animals acclimated to 25 degrees C

  1. Copper, cadmium, and zinc concentrations in juvenile Chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; Thompson, Larry D.; Walsh, Daniel

    2001-01-01

    This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from river sites were examinedfor gut contents to document their consumption of variousinvertebrate taxa, whereas salmon from river sites and thehatchery were used for metal determinations. Midge(Chironomidae) and caddisfly (Trichoptera) larvae and mayfly(Ephemeroptera) nymphs were collected for metal determinationsduring April–June from river sites and from Battle and Buttecreeks. The fish hatchery and Battle and Butte creeks served asreference sites because they had no history of receiving minedrainage. Salmon consumed mostly midge larvae and pupae (44.0%,damp-dry biomass), caddisfly larvae (18.9%), Cladocera (5.8%),and mayfly nymphs (5.7%). These results demonstrated thatinsects selected for metal determinations were important as fishforage. Dry-weight concentrations of Cu, Cd, and Zn weregenerally far higher in salmon and insects from the river thanfrom reference sites. Within the river, high metalconcentrations persisted as far downstream as South Meridian (thelowermost sampling site). Maximum concentrations of Cd (30.7 μg g-1) and Zn (1230 μg g-1),but not Cu (87.4 μg g-1), in insects exceeded amounts that other investigators reported as toxic when fed for prolonged periods to juvenile salmonids.

  2. Toxicity and risk of permethrin and naled to non-target insects after adult mosquito management.

    PubMed

    Schleier, Jerome J; Peterson, Robert K D

    2010-08-01

    We derived laboratory LC50 values, assessed non-target insect risks, and conducted a field bioassay for ultra-low-volume (ULV) aerosol applications of insecticides used to manage adult mosquitoes. The house cricket, Acheta domesticus (L.), was used as an indicator species for medium- to large-bodied ground dwelling insects. The 24-h LC(50) values for Permanone (formulated product of permethrin), Permanone + piperonyl butoxide (PBO), technical grade permethrin, and technical grade permethrin + PBO ranged from 0.052 to 0.9 microg/cm(2). The 24 h LC(50) for technical grade naled and Trumpet((R)) (formulated product of naled) were 0.038 and 0.44 microg/cm(2), respectively. The synergist ratio was 2.65 for Permanone + PBO and 1.57 for technical grade permethrin + PBO. The toxicity of technical grade permethrin was about 10-fold greater than Permanone. A risk assessment using modeled estimated environmental concentrations resulted in risk quotients (RQ) that exceeded regulatory levels of concern, but when compared to field-derived actual environmental concentrations RQs did not exceed a regulatory level of concern, except in the case of technical grade naled. These results were expected because higher tiered risk assessments using field-verified data generally lead to lower risk estimates. Field bioassays using caged crickets showed no significant mortality for permethrin or naled after a single truck-mounted ULV application. The results of the risk assessment using actual environmental concentrations are supported by the field bioassays and suggest that a single ULV application of synergized or unsynergized permethrin and naled most likely will not result in population impacts on medium- to large-bodied insects. PMID:20429029

  3. Influence of environmental stimulation on neurogenesis in the adult insect brain.

    PubMed

    Scotto Lomassese, S; Strambi, C; Strambi, A; Charpin, P; Augier, R; Aouane, A; Cayre, M

    2000-11-15

    Mushroom bodies are the main integrative structures of insect brain. They receive sensory information from the eyes, the palps, and the antennae. In the house cricket, Acheta domesticus, a cluster of mushroom body neuroblasts keeps producing new interneurons during an insect's life span. The aim of the present work is to study the impact of environmental stimuli on mushroom body neurogenesis during adulthood. Crickets were reared either in an enriched environment, where they received complex environmental and congeneric stimulations or isolated in small cages and deprived of most visual, auditory, and olfactory stimuli. They then were injected with a S-phase marker, 5-bromo, 2'-deoxyuridine (BrdU) and sacrificed at different periods of their life. Neurogenesis and cell survival were estimated by counting the number of BrdU-labeled cells in the mushroom bodies. Environmentally enriched crickets were found to have an increased number of newborn cells in their mushroom bodies compared with crickets housed in cages with an impoverished environment. This effect of external factors on neurogenesis seems to be limited to the beginning of imaginal life. Furthermore, no cell loss could be detected among the newborn neurons in either environmental situation, suggesting that cell survival was not affected by the quality of the environment. Considering vertebrate studies which showed that enriched environment increases hippocampal cell survival and improves animal performances in spatial learning tests, we suggest that the increased number of interneurons produced in an integrative brain structure after exposure to enriched environment could contribute to adaptive behavioral performances in adult insects.

  4. "You feel like people are looking at you and laughing": older adults' perceptions of aquatic physical activity.

    PubMed

    Evans, A B; Sleap, M

    2012-12-01

    Older adults' participation in Physical Activity (PA) in the United Kingdom remains low. Moreover, although the subjective and narrative elements of aging are increasingly studied, promotion of healthy behaviours such as aquatic PA still frequently reduces older adults to passive recipients who rely on health professionals for their wellbeing. Using a figurational perspective, the relationship between participants' perceptions of the aging body and participation in aquatic activity was investigated. Interviews were completed with 22 adults aged over 50 years (7 men, 15 women). Participants highlighted a number of perceptual barriers that were contoured by wider social representations of older adults. Perceptions focussed upon the perceived limitations of the aging body. The need for regular participation in PA was recognised. However the potential for angst when wearing a bathing costume in the presence of 'others' was expressed, particularly amongst those considering themselves overweight. Participants objectified their bodies and compared them with those of other participants. The difficulties of managing physical (e.g. injury and illness) and environmental risk were described. At the same time, participants experienced the development of new webs of interdependence. These webs were both enabling and constraining. Some participants felt empowered. However, the exclusivity of many aquatic activity sessions re-emphasised the status of older adults as outsiders in the wider figuration of physical activity. PMID:22939548

  5. Aquatic surface respiration and swimming behaviour in adult and developing zebrafish exposed to hypoxia.

    PubMed

    Abdallah, Sara J; Thomas, Benjamin S; Jonz, Michael G

    2015-06-01

    Severe hypoxia elicits aquatic surface respiration (ASR) behaviour in many species of fish, where ventilation of the gills at the air-water interface improves O2 uptake and survival. ASR is an important adaptation that may have given rise to air breathing in vertebrates. The neural substrate of this behaviour, however, is not defined. We characterized ASR in developing and adult zebrafish (Danio rerio) to ascertain a potential role for peripheral chemoreceptors in initiation or modulation of this response. Adult zebrafish exposed to acute, progressive hypoxia (PO2 from 158 to 15 mmHg) performed ASR with a threshold of 30 mmHg, and spent more time at the surface as PO2 decreased. Acclimation to hypoxia attenuated ASR responses. In larvae, ASR behaviour was observed between 5 and 21 days postfertilization with a threshold of 16 mmHg. Zebrafish decreased swimming behaviour (i.e. distance, velocity and acceleration) as PO2 was decreased, with a secondary increase in behaviour near or below threshold PO2 . In adults that underwent a 10-day intraperitoneal injection regime of 10 μg g(-1) serotonin (5-HT) or 20 μg g(-1) acetylcholine (ACh), an acute bout of hypoxia (15 mmHg) increased the time engaged in ASR by 5.5 and 4.9 times, respectively, compared with controls. Larvae previously immersed in 10 μmol l(-1) 5-HT or ACh also displayed an increased ASR response. Our results support the notion that ASR is a behavioural response that is reliant upon input from peripheral O2 chemoreceptors. We discuss implications for the role of chemoreceptors in the evolution of air breathing.

  6. The functional organisation of glia in the adult brain of Drosophila and other insects

    PubMed Central

    Edwards, Tara N.; Meinertzhagen, Ian A.

    2010-01-01

    This review annotates and categorises the glia of adult Drosophila and other model insects and describes the developmental origins of these in the Drosophila optic lobe. The functions of glia in the adult vary depending upon their sub-type and location in the brain. The task of annotating glia is essentially complete only for the glia of the fly's lamina, which comprise: two types of surface glia - the pseudocartridge and fenestrated glia; two types of cortex glia - the distal and proximal satellite glia; and two types of neuropile glia - the epithelial and marginal glia. We advocate that the term subretinal glia, as used to refer to both pseudocartridge and fenestrated glia, be abandoned. Other neuropiles contain similar glial subtypes, but other than the antennal lobes these have not been described in detail. Surface glia form the blood brain barrier, regulating the flow of substances into and out of the nervous system, both for the brain as a whole and the optic neuropiles in particular. Cortex glia provide a second level of barrier, wrapping axon fascicles and isolating neuronal cell bodies both from neighbouring brain regions and from their underlying neuropiles. Neuropile glia can be generated in the adult and a subtype, ensheathing glia, are responsible for cleaning up cellular debris during Wallerian degeneration. Both the neuropile ensheathing and astrocyte-like glia may be involved in clearing neurotransmitters from the extracellular space, thus modifying the levels of histamine, glutamate and possibly dopamine at the synapse to ultimately affect behaviour. PMID:20109517

  7. Genotoxic effects of environmental endocrine disruptors on the aquatic insect Chironomus riparius evaluated using the comet assay.

    PubMed

    Martínez-Paz, Pedro; Morales, Mónica; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2013-12-12

    Genotoxicity is one of the most important toxic endpoints in chemical toxicity testing and environmental risk assessment. The aim of this study was to evaluate the genotoxic potential of various environmental pollutants frequently found in aquatic environments and characterized by their endocrine disrupting activity. Monitoring of DNA damage was undertaken after in vivo exposures of the aquatic larvae of the midge Chironomus riparius, a model organism that represents an abundant and ecologically relevant macroinvertebrate, widely used in freshwater toxicology. DNA-induced damage, resulting in DNA fragmentation, was quantified by the comet assay after short (24 h) and long (96 h) exposures to different concentrations of the selected toxicants: bisphenol A (BPA), nonylphenol (NP), pentachlorophenol (PCP), tributyltin (TBT) and triclosan (TCS). All five compounds were found to have genotoxic activity as demonstrated by significant increases in all the comet parameters (%DNA in tail, tail length, tail moment and Olive tail moment) at all tested concentrations. Persistent exposure did not increase the extent of DNA damage, except for TCS at the highest concentration, but generally there was a reduction in DNA damage thought to be associated with the induction of the detoxification processes and repairing mechanisms. Comparative analysis showed differences in the genotoxic potential between the chemicals, as well as significant time and concentration-dependent variations, which most likely reflect differences in the ability to repair DNA damage under the different treatments. The present report demonstrates the sensitivity of the benthic larvae of C. riparius to these environmental genotoxins suggesting its potential as biomonitor organism in freshwater ecosystems. The results obtained about the DNA-damaging potential of these environmental pollutants reinforce the need for additional studies on the genotoxicity of endocrine active substances that, by linking genotoxic

  8. Disulfide bonds in a recombinant protein modeled after a core repeat in an aquatic insect's silk protein.

    PubMed Central

    Smith, S. V.; Correia, J. J.; Case, S. T.

    1995-01-01

    We constructed a gene encoding rCAS, recombinant constant and subrepeat protein, modeled after tandem repeats found in the major silk proteins synthesized by aquatic larvae of the midge, Chironomus tentans. Bacterially synthesized rCAS was purified to near homogeneity and characterized by several biochemical and biophysical methods including amino-terminal sequencing, amino acid compositional analysis, sedimentation equilibrium ultracentrifugation, and mass spectrometry. Complementing these techniques with quantitative sulfhydryl assays, we discovered that the four cysteines present in rCAS form two intramolecular disulfide bonds. Mapping studies revealed that the disulfide bonds are heterogeneous. When reduced and denatured rCAS was allowed to refold and its disulfide bonding state monitored, it again adopted a conformation with two intramolecular disulfide bonds. The inherent ability of rCAS to quantitatively form two intramolecular disulfide bonds may reflect a previously unknown feature of the in vivo silk proteins from which it is derived. PMID:7663350

  9. [Carbohydrate restriction in the larval diet causes oxidative stress in adult insects of Drosophila melanogaster].

    PubMed

    Rovenko, B M; Lushchak, V I; Lushchak, O V

    2013-01-01

    The influence of 20 and 1% glucose and fructose, which were components of larval diet, on the level of oxidized proteins and lipids, low molecular mass antioxidant content as well as activities of antioxidant and associated enzymes in adult fruit fly Drosophila melanogaster were investigated. The restriction of carbohydrates in larval diet leads to oxidative stress in adult insects. It is supported by 40-50% increased content of protein carbonyl groups and by 60-70% decreased level of protein thiol groups as well as by a 4-fold increase of lipid peroxide content in 2-day-old flies of both sexes, developed on the diet with 1% carbohydrates. Oxidative stress, induced by carbohydrate restriction of the larval diet, caused the activation of antioxidant defence, differently exhibited in male and female fruit flies. Caloric restriction increased activity of superoxide dismutase and thioredoxin reductase associating only in males with 2-fold higher activity of NADPH-producing enzymes--glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase. Carbohydrate restriction in the larval diet caused the increase of uric acid content, but the decrease in catalase activity in males. In females the values of these parameters were changed in opposite direction compared with males. The obtained results let us conclude the different involvement of low molecular mass antioxidants, glutathione and uric acid, and antioxidant enzyme catalase in the protection of male and female fruit fly macromolecules against oxidative damages, caused by calorie restriction of larval diet.

  10. Growth and secondary production of aquatic insects along a gradient of Zn contamination in Rocky Mountain streams

    USGS Publications Warehouse

    Carlisle, D.M.; Clements, W.H.

    2003-01-01

    Secondary production estimates from several Rocky Mountain streams were used to test hypotheses about the effects of chronic metal contamination on insect populations and ecosystem processes. Quantitative samples of chemistry, habitat, and benthic insects were collected monthly during the ice-free period (May-November) from five 2nd- to 3rd-order streams that varied primarily in Zn contamination. Secondary production was estimated for the 19 dominant taxa using increment-summation, size-frequency, and P/B methods. Uncertainty was estimated by bootstrapping estimates of mean abundance, biomass, and cohort production intervals. Secondary production of metal-sensitive Heptageniidae (Rhithrogena robusta, Cinygmula spp., and Epeorus longimanus) was lower in lightly to moderately contaminated streams than in reference streams. Experiments were done to determine whether herbivore growth was influenced by food quality in contaminated streams. Growth estimates from field and microcosm experiments revealed that low mayfly production in contaminated streams was caused mostly by reduced population abundances. Production of predatory stoneflies was also lower in contaminated streams than reference streams. Estimates of the trophic basis of production revealed that, although the relative contribution to community production from various food sources was similar among streams, total production attributable to algae and animal prey declined in contaminated streams. Much of the reduction in herbivory in contaminated streams was the result of lower production of heptageniids, especially R. robusta. Assemblage and taxon-specific estimates of secondary production were sensitive to variation in metal contamination and indicated that relatively low metal concentrations may have ecosystem-wide consequences for energy flow.

  11. Corethrellonema grandispiculosum n. gen., n. sp. and Aproctonema chapmani n. sp. (Nematoda: Tetradonematidae), Parasites of the Dipterous Insect Genera, Corethrella and Culicoides in Louisiana.

    PubMed

    Nickle, W R

    1969-01-01

    Two new nematodes of the family Tetradonematidae, parasitic in aquatic dipterous insects in Louisiana, are presented. Corethrellonema grandispiculosum n. gen., n. sp., from the chaoborid fly, Corethrella brakeleyi Coquillett, and Aproctonema chapmani n. sp., from the sand fly, Culicoides arboricola Root and Hoffman, are described and illustrated. The biology and life histories of these nematodes show that the adults occur in the last larval instar of the insect host. The adult nematodes mate in the body cavity of the insect, and later the female nematode, replete with eggs, exits from the larval fly causing the death of the insect. Male nematodes usually remain in the insect cadaver.

  12. Isolation of sperm vesicles from adult male mayflies and other insects to prepare high molecular weight genomic DNA samples.

    PubMed

    Takemon, Yasuhiro; Yamamoto, Akiko; Nakashima, Masashi; Tanida, Kazumi; Kishi, Mitsuo; Kato, Mikio

    2006-03-01

    We describe here a simple and efficient protocol for genomic DNA isolation from adult males of insects: e.g., Ephemeroptera, Odonata, Orthoptera and Dictyoptera. To minimize contamination of external DNA source, the sperm vesicles were isolated from male individuals from which high molecular weight genomic DNA was extracted. According to this protocol, the genomic DNA samples obtained were high quality (intact), and abundant enough for genotyping analyses and molecular cloning. The protocol reported here enables us to process a huge number of individuals at a time with escaping from cross-contamination, and thus it is quite useful for conducting genetic studies at least in some species of insects. The large yield of high molecular weight DNA from single individual may be advantageous for non PCR-based experiments. As a case study of the protocol, partial coding sequences of histone H3 and EF-1alpha genes are determined for some insects with PCR-amplified DNA fragments.

  13. Seasonal differences in riparian consumer diet and insect communities in an Oregon Coast Range watershed food web.

    NASA Astrophysics Data System (ADS)

    Robillard, A.; Li, J.

    2005-05-01

    In riparian areas, terrestrial and aquatic habitats overlap creating zones where they interact as an aquatic-terrestrial interface. This coupling allows energy to move between systems and generates intertwining food webs. Thus, vertebrate riparian consumers, such as fish or birds, potentially have alternative prey from sources external to their habitats. The purpose of our study was to explore this reciprocal exchange in an alder dominated riparian forest of the Oregon Coast Range. Diet samples were collected from birds and fish in summer and fall 2003 with a suite of insect samples at Honeygrove Creek and two of its small tributaries. In a comparison of emerging aquatic insects and flying terrestrial insects during June and again in September, we detected seasonal differences in terrestrial and aquatic insects available to riparian consumers. Despite this availability of externally derived prey, fish depended more on resources derived from within their respective habitats during summer. Cutthroat trout (Oncorhynchus clarkii) and Coho salmon (Oncorhynchus kitsutch) ate more juvenile aquatic than adult aquatic or terrestrial insects. During fall, the same pattern was exhibited by Coho but Cutthroat trout appeared to consume a slightly greater number of terrestrial insects. The preliminary analysis of bird diet samples from commonly encountered species such as, Swainson's thrush, Song Sparrow, and Pacific-slope Flycatcher, showed more terrestrial derived prey in their diets than aquatic during the summer sampling season.

  14. The significance of ratios of detritus types and micro-organism productivity to competitive interactions between aquatic insect detritivores.

    PubMed

    Yee, Donald A; Kaufman, Michael G; Juliano, Steven A

    2007-11-01

    Investigations of competitive interactions emphasize non-detrital resources, even though detritus is a major component of most food webs. Studies of competing species focus usually on single resource types, although consumers in nature are likely to encounter mixtures of resource types that may affect whether competition results in exclusion or coexistence. The invasive mosquito Aedes albopictus is capable of excluding the native mosquito Ochlerotatus triseriatus in competition for single detritus types in laboratory and field microcosms. In this study, we used nine ratios of two detritus types (animal and leaf) common in natural containers to test whether detritus ratios affect the outcome of competition. Under intraspecific and interspecific competition, A. albopictus attained higher survival and estimated population growth rate than did O. triseriatus. Unlike past studies, both species had positive growth and high adult survival, with little evidence of competitive effects, under one resource ratio (10:1 ratio of leaf : animal detritus) regardless of mosquito densities, suggesting potential coexistence. Path analysis showed that densities of larvae had negative effects on population growth for O. triseriatus but not for A. albopictus, indicating competitive superiority of A. albopictus. Population growth of both species was affected strongly by the direct paths from animal (positive) and leaf (negative) detritus, and the indirect effect of leaf detritus via bacterial production (positive). Field sampling established that detritus entered real tree holes in ratios similar to those in our experiment, suggesting that natural variation in detritus ratios may influence local coexistence of these species. Seasonal variation in ratios of plant and animal detritus indicated that temporal as well as spatial variation in inputs may be important for potential coexistence.

  15. Aquatic Pest Control. Manual 99.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the aquatic pest control category. The text discusses various water use situations; aquatic weed identification; herbicide use and effects; and aquatic insects and their control. (CS)

  16. Ionizing irradiation of adults of Angoumois grain moth (Lepidoptera: Gelechiidae) and Indianmeal moth (Lepidoptera: Pyralidae) to prevent reproduction, and implications for a generic irradiation treatment for insects.

    PubMed

    Hallman, Guy J; Phillips, Thomas W

    2008-08-01

    Ionizing irradiation is used as a phytosanitary treatment against quarantine pests. A generic treatment of 400 Gy has been approved for commodities entering the United States against all insects except pupae and adults of Lepidoptera because some literature citations indicate that a few insects, namely, the Angoumois grain moth, Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae), and the Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), are not completely controlled at that dose. Radiotolerance in insects increases as the insects develop, so the minimum absorbed dose to prevent F1 egg hatch for these two species when irradiated as adults was examined. Also, because hypoxia is known to increase radiotolerance in insects, Angoumois grain moth radiotolerance was tested in a hypoxic atmosphere. A dose range of 336-388 Gy prevented F1 egg hatch from a total of 22,083 adult Indianmeal moths. Dose ranges of 443-505 and 590-674 Gy, respectively, prevented F1 egg hatch from a total of 15,264 and 13,677 adult Angoumois grain moths irradiated in ambient and hypoxic atmospheres. A generic dose of 600 Gy for all insects in ambient atmospheres might be efficacious, although many fresh commodities may not tolerate it when applied on a commercial scale.

  17. Geographic analysis of thermal equilibria: a bioenergetic model for predicting thermal response of aquatic insect communities. Progress report, July 1, 1979-June 30, 1980

    SciTech Connect

    Vannote, R L; Sweeney, B W

    1980-04-01

    This report summarizes the first 9 months of field and laboratory work to test our central hypothesis. Five river systems were selected for intensive studies on insect growth, metabolism, and fecundity as well as determination of community structure for distinct assemblages of insect species exploiting various trophic and habitat resources. Laboratory studies were initiated to test the relative importance of temperature and food quality on growth, size, and fecundity of insects. Our project is intended to test the hypothesis that population stability, within the geographic range of many stream species, reflects largely a dynamic equilibrium between temperature and individual growth, metabolism, reproductive potential, and generation time. We propose to delineate the significance of natural thermal variation by quantifying the bioenergetics, developmental dynamics, and spatial distribution of major representative groups of stream insects throughout their geographic range.

  18. Dynamics of a neutral delay equation for an insect population with long larval and short adult phases

    NASA Astrophysics Data System (ADS)

    Gourley, Stephen A.; Kuang, Yang

    We present a global study on the stability of the equilibria in a nonlinear autonomous neutral delay differential population model formulated by Bocharov and Hadeler. This model may be suitable for describing the intriguing dynamics of an insect population with long larval and short adult phases such as the periodical cicada. We circumvent the usual difficulties associated with the study of the stability of a nonlinear neutral delay differential model by transforming it to an appropriate non-neutral nonautonomous delay differential equation with unbounded delay. In the case that no juveniles give birth, we establish the positivity and boundedness of solutions by ad hoc methods and global stability of the extinction and positive equilibria by the method of iteration. We also show that if the time adjusted instantaneous birth rate at the time of maturation is greater than 1, then the population will grow without bound, regardless of the population death process.

  19. Elevation, Temperature, and Aquatic Connectivity All Influence the Infection Dynamics of the Amphibian Chytrid Fungus in Adult Frogs

    PubMed Central

    Sapsford, Sarah J.; Alford, Ross A.; Schwarzkopf, Lin

    2013-01-01

    Infectious diseases can cause population declines and even extinctions. The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has caused population declines and extinctions in amphibians on most continents. In the tropics, research on the dynamics of this disease has focused on amphibian populations in mountainous areas. In most of these areas, high and low elevation sites are connected by an assemblage of streams that may transport the infectious stage of the pathogen from high to low elevations, and, also, this pathogen, which grows well at cool temperatures, may persist better in cooler water flowing from high elevations. Thus, the dynamics of disease at low elevation sites without aquatic connections to higher elevation sites, i.e., non-contiguous low elevation sites, may differ from dynamics at contiguous low elevation sites. We sampled adult common mistfrogs (Litoria rheocola) at six sites of three types: two at high (> 400m) elevations, two at low elevations contiguous with high elevation streams, and two at low elevations non-contiguous with any high elevation site. Adults were swabbed for Bd diagnosis from June 2010 to June 2011 in each season, over a total of five sampling periods. The prevalence of Bd fluctuated seasonally and was highest in winter across all site types. Site type significantly affected seasonal patterns of prevalence of Bd. Prevalence remained well above zero throughout the year at the high elevation sites. Prevalence declined to lower levels in contiguous low sites, and reached near-zero at non-contiguous low sites. Patterns of air temperature fluctuation were very similar at both the low elevation site types, suggesting that differences in water connectivity to high sites may have affected the seasonal dynamics of Bd prevalence between contiguous and non-contiguous low elevation site types. Our results also suggest that reservoir hosts may be important in the persistence of disease at low elevations. PMID:24324786

  20. Energy allocation during the maturation of adults in a long-lived insect: implications for dispersal and reproduction.

    PubMed

    David, G; Giffard, B; van Halder, I; Piou, D; Jactel, H

    2015-10-01

    Energy allocation strategies have been widely documented in insects and were formalized in the context of the reproduction process by the terms 'capital breeder' and 'income breeder'. We propose here the extension of this framework to dispersal ability, with the concepts of 'capital disperser' and 'income disperser', and explore the trade-off in resource allocation between dispersal and reproduction. We hypothesized that flight capacity was sex-dependent, due to a trade-off in energy allocation between dispersal and egg production in females. We used Monochamus galloprovincialis as model organism, a long-lived beetle which is the European vector of the pine wood nematode. We estimated the flight capacity with a flight mill and used the number of mature eggs as a proxy for the investment in reproduction. We used the ratio between dry weights of the thorax and the abdomen to investigate the trade-off. The probability of flying increased with the adult weight at emergence, but was not dependent on insect age or sex. Flight distance increased with age in individuals but did not differ between sexes. It was also positively associated with energy allocation to thorax reserves, which increased with age. In females, the abdomen weight and the number of eggs also increase with age with no negative effect on flight capacity, indicating a lack of trade-off. This long-lived beetle has a complex strategy of energy allocation, being a 'capital disperser' in terms of flight ability, an 'income disperser' in terms of flight performance and an 'income breeder' in terms of egg production.

  1. Chapter 21: Microsporidia in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The science of microsporidiology encompasses a diverse assemblage of pathogens from a large and varied group of hosts. Microsporidia, pathogenic protists related to the Fungi, are considered to be primary pathogens of many aquatic and terrestrial insect species and have important roles in insect po...

  2. Dynamics of among-individual behavioral variation over adult lifespan in a wild insect

    PubMed Central

    Fisher, David N.; David, Morgan; Rodríguez-Muñoz, Rolando

    2015-01-01

    Investigating patterns of among and within-individual trait variation in populations is essential to understanding how selection shapes phenotypes. Behavior is often the most flexible aspect of the phenotype, and to understand how it is affected by selection, we need to examine how consistent individuals are. However, it is not well understood whether among-individual differences tend to remain consistent over lifetimes, or whether the behavior of individuals relative to one another varies over time. We examined the dynamics of 4 behavioral traits (tendency to leave a refuge, shyness, activity, and exploration) in a wild population of field crickets (Gryllus campestris). We tagged individuals and then temporarily removed them from their natural environment and tested them under laboratory conditions. All 4 traits showed among-individual variance in mean levels of expression across the adult lifespan, but no significant differences in how rapidly expression changed with age. For all traits, among-individual variance increased as individuals got older. Our findings reveal seldom examined changes in variance components over the adult lifetime of wild individuals. Such changes will have important implications for the relationship between behavioral traits, life-histories, and fitness and the consequences of selection on wild individuals. PMID:26167097

  3. Pond and Stream Safari: A Guide to the Ecology of Aquatic Invertebrates.

    ERIC Educational Resources Information Center

    Edelstein, Karen

    This packet includes a leader's guide, a quick reference guide to aquatic invertebrates, a checklist of common aquatic invertebrates, and activity sheets. The leader's guide includes four sections on background information and seven activities. Background sections include: Understanding Aquatic Insects; Growing Up: Aquatic Insect Forms; Adapting…

  4. Tracking contaminant flux from aquatic to terrestrial food webs

    EPA Science Inventory

    Aquatic insects provide a critical energy subsidy to riparian food webs, yet their role as vectors of contaminants to terrestrial ecosystems is poorly understood. We investigated aquatic resource utilization and contaminant exposure among riparian invertivores (spiders and herpt...

  5. Freshwater Biodiversity and Insect Diversification

    PubMed Central

    Dijkstra, Klaas-Douwe B.; Monaghan, Michael T.; Pauls, Steffen U.

    2016-01-01

    Inland waters cover less than one percent of Earth’s surface, but harbor more than six percent of all insect species: nearly 100,000 species from 12 orders spend one or more life stages in freshwater. Little is known about how this remarkable diversity arose, although allopatric speciation and ecological adaptation are thought to be primary mechanisms. Freshwater habitats are exceptionally susceptible to environmental change, and exhibit marked ecological gradients. The amphibiotic lifestyles of aquatic insects result in complex contributions of extinction and allopatric and non-allopatric speciation in species diversification. In contrast to the lack of evolutionary studies, the ecology and habitat preferences of aquatic insects have been intensively studied, in part because of their widespread use as bio-indicators. The combination of phylogenetics with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification. PMID:24160433

  6. Host Plants Identification for Adult Agrotis ipsilon, a Long-Distance Migratory Insect.

    PubMed

    Liu, Yongqiang; Fu, Xiaowei; Mao, Limi; Xing, Zhenlong; Wu, Kongming

    2016-01-01

    In this study, we determined the host relationship of Agrotis ipsilon moths by identifying pollen species adhering them during their long-distance migration. Pollen carried by A. ipsilon moths was collected from 2012 to 2014 on a small island in the center of the Bohai Strait, which is a seasonal migration pathway of this pest species. Genomic DNA of single pollen grains was amplified by using whole genome amplification technology, and a portion of the chloroplast rbcL sequence was then amplified from this material. Pollen species were identified by a combination of DNA barcoding and pollen morphology. We found 28 species of pollen from 18 families on the tested moths, mainly from Angiosperm, Dicotyledoneae. From this, we were able to determine that these moths visit woody plants more than herbaceous plants that they carry more pollen in the early and late stages of the migration season, and that the amounts of pollen transportation were related to moth sex, moth body part, and plant species. In general, 31% of female and 26% of male moths were found to be carrying pollen. Amounts of pollen on the proboscis was higher for female than male moths, while the reverse was true for pollen loads on the antennae. This work provides a new approach to study the interactions between noctuid moth and their host plants. Identification of plant hosts for adult moths furthers understanding of the coevolution processes between moths and their host plants. PMID:27271592

  7. Host Plants Identification for Adult Agrotis ipsilon, a Long-Distance Migratory Insect

    PubMed Central

    Liu, Yongqiang; Fu, Xiaowei; Mao, Limi; Xing, Zhenlong; Wu, Kongming

    2016-01-01

    In this study, we determined the host relationship of Agrotis ipsilon moths by identifying pollen species adhering them during their long-distance migration. Pollen carried by A. ipsilon moths was collected from 2012 to 2014 on a small island in the center of the Bohai Strait, which is a seasonal migration pathway of this pest species. Genomic DNA of single pollen grains was amplified by using whole genome amplification technology, and a portion of the chloroplast rbcL sequence was then amplified from this material. Pollen species were identified by a combination of DNA barcoding and pollen morphology. We found 28 species of pollen from 18 families on the tested moths, mainly from Angiosperm, Dicotyledoneae. From this, we were able to determine that these moths visit woody plants more than herbaceous plants that they carry more pollen in the early and late stages of the migration season, and that the amounts of pollen transportation were related to moth sex, moth body part, and plant species. In general, 31% of female and 26% of male moths were found to be carrying pollen. Amounts of pollen on the proboscis was higher for female than male moths, while the reverse was true for pollen loads on the antennae. This work provides a new approach to study the interactions between noctuid moth and their host plants. Identification of plant hosts for adult moths furthers understanding of the coevolution processes between moths and their host plants. PMID:27271592

  8. Measuring thermal behavior in smaller insects: A case study in Drosophila melanogaster demonstrates effects of sex, geographic origin, and rearing temperature on adult behavior.

    PubMed

    Rajpurohit, Subhash; Schmidt, Paul S

    2016-10-01

    Measuring thermal behavior in smaller insects is particularly challenging. In this study, we describe a new horizontal thermal gradient apparatus designed to study adult thermal behavior in small insects and apply it using D. melanogaster as a model and case study. Specifically, we used this apparatus and associated methodology to examine the effects of sex, geographic origin, and developmental rearing temperature on temperature preferences exhibited by adults in a controlled laboratory environment. The thermal gradient established by the apparatus was stable over diurnal and calendar time. Furthermore, the distribution of adult flies across thermal habitats within the apparatus remained stable following the period of acclimation, as evidenced by the high degree of repeatability across both biological and technical replicates. Our data demonstrate significant and predictable variation in temperature preference for all 3 assayed variables. Behaviorally, females were more sensitive than males to higher temperatures. Flies originating from high latitude, temperate populations exhibited a greater preference for cooler temperatures; conversely, flies originating from low latitude, tropical habitats demonstrated a relative preference for higher temperatures. Similarly, larval rearing temperature was positively associated with adult thermal behavior: low culture temperatures increased the relative adult preference for cooler temperatures, and this response was distinct between the sexes and for flies from the temperate and subtropical geographic regions. Together, these results demonstrate that the temperature chamber apparatus elicits robust, predictable, and quantifiable thermal preference behavior that could readily be applied to other taxa to examine the role of temperature-mediated behavior in a variety of contexts.

  9. The level of DNA damage in adult grasshoppers Chorthippus biguttulus (Orthoptera, Acrididae) following dimethoate exposure is dependent on the insects' habitat.

    PubMed

    Karpeta-Kaczmarek, Julia; Kubok, Magdalena; Dziewięcka, Marta; Sawczyn, Tomasz; Augustyniak, Maria

    2016-08-01

    The comet assay was used to study the DNA damage that was induced by dimethoate in the hemocyte cells of adult Chorthippus biguttulus grasshoppers (Insecta: Orthoptera) that originated from two sites with varying levels of pollution. The primary focus of the study was to examine whether continuous exposure to environmental stress can modify the effect of pesticides on genome stability. After three days of acclimation to laboratory conditions, the level of DNA damage in the hemocytes of Bow-winged grasshoppers was within a similar range in the insects from both areas. However, the level of DNA damage following dimethoate treatment was significantly higher in the insects from the reference area (Pogoria) than in the individuals from the heavily polluted location (Szopienice). Four hours after pesticide treatment, the Tail DNA (TDNA) in the hemocytes of the male and female specimens from Pogoria was as high as 75% and 50% respectively, whereas the values in males and females from Szopienice only reached 30% and 20%, respectively. A rapid decrease in DNA damage was observed in both populations 24 h after the pesticide application. The habitat of an insect (site), the administration of the dimethoate (treatment), and the period following the application of the pesticide (time), all significantly influenced the levels of DNA damage. No interactions related to TDNA were observed between the variables 'sex' and 'treatment'. Similarly, the variable 'sex', when analyzed alongside 'treatment' and 'site' (the area from which the insects were collected), or 'treatment' and 'time' had no influence on TL. Exposure to dimethoate undoubtedly contributed to the formation of DNA damage in the hemocytes of adult C. biguttulus. However, the level of damage was clearly dependent on the place where the insects were captured. PMID:27213568

  10. Molecular Species Delimitation and Morphology of Aquatic and Sub-Aquatic Bugs (Heteroptera) in Cameroon.

    PubMed

    Meyin A Ebong, Solange; Petit, Elsa; Le Gall, Philippe; Chen, Ping-Ping; Nieser, Nico; Guilbert, Eric; Njiokou, Flobert; Marsollier, Laurent; Guégan, Jean-François; Pluot-Sigwalt, Dominique; Eyangoh, Sara; Harry, Myriam

    2016-01-01

    Aquatic and semi-aquatic bugs (Heteroptera) represent a remarkable diversity and a resurging interest has been given to documenting at the species level these insects inhabiting Cameroon in Central Africa due to their potential implication in the transmission of the bacterium Mycobacterium ulcerans, the causal agent of Buruli ulcer, an emerging human disease. A survey was carried out over two years in Cameroon. Morphological analyses were done in two steps. A first step consisted in separating the specimens based on broadly shared characters into morphotypes. The specimens were then separated into two independent batches containing each the same representation of each morphotype. One batch (309 specimens) was used by taxonomy experts on aquatic bugs for species level identification and/or to reconcile nymph with their corresponding adult species. The second batch (188 specimens) was used to define species based on the COI DNA sequences (standard sequence used for "DNA barcoding") and using the Automatic Barcode Gap Discovery (ABGD) method. The first morphological analysis step separated the specimens into 63 different morphotypes (49 adults and 14 nymphs), which were then found to belong to 54 morphological species in the infra-orders Gerromorpha and Nepomorpha based on the species-level morphological identification, and 41-45 putative molecular species according to the gap value retained in the ABGD. Integrating morphology and "DNA barcoding" reconciled all the specimens into 62 aquatic bug species in Cameroon. Generally, we obtained a good congruence between species a priori identified based on morphology from adult morphotypes and molecular putative species. Moreover, molecular identification has allowed the association of 86% of nymphs with adults. This work illustrates the importance of integrative taxonomy.

  11. Molecular Species Delimitation and Morphology of Aquatic and Sub-Aquatic Bugs (Heteroptera) in Cameroon

    PubMed Central

    Le Gall, Philippe; Chen, Ping-Ping; Nieser, Nico; Guilbert, Eric; Njiokou, Flobert; Marsollier, Laurent; Guégan, Jean-François; Pluot-Sigwalt, Dominique; Eyangoh, Sara; Harry, Myriam

    2016-01-01

    Aquatic and semi-aquatic bugs (Heteroptera) represent a remarkable diversity and a resurging interest has been given to documenting at the species level these insects inhabiting Cameroon in Central Africa due to their potential implication in the transmission of the bacterium Mycobacterium ulcerans, the causal agent of Buruli ulcer, an emerging human disease. A survey was carried out over two years in Cameroon. Morphological analyses were done in two steps. A first step consisted in separating the specimens based on broadly shared characters into morphotypes. The specimens were then separated into two independent batches containing each the same representation of each morphotype. One batch (309 specimens) was used by taxonomy experts on aquatic bugs for species level identification and/or to reconcile nymph with their corresponding adult species. The second batch (188 specimens) was used to define species based on the COI DNA sequences (standard sequence used for “DNA barcoding”) and using the Automatic Barcode Gap Discovery (ABGD) method. The first morphological analysis step separated the specimens into 63 different morphotypes (49 adults and 14 nymphs), which were then found to belong to 54 morphological species in the infra-orders Gerromorpha and Nepomorpha based on the species-level morphological identification, and 41–45 putative molecular species according to the gap value retained in the ABGD. Integrating morphology and “DNA barcoding” reconciled all the specimens into 62 aquatic bug species in Cameroon. Generally, we obtained a good congruence between species a priori identified based on morphology from adult morphotypes and molecular putative species. Moreover, molecular identification has allowed the association of 86% of nymphs with adults. This work illustrates the importance of integrative taxonomy. PMID:27149077

  12. Expression of the mosquitocidal toxins of Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis by recombinant Caulobacter crescentus, a vehicle for biological control of aquatic insect larvae.

    PubMed Central

    Thanabalu, T; Hindley, J; Brenner, S; Oei, C; Berry, C

    1992-01-01

    In the quest for effective control of mosquitoes, attention has turned increasingly to strains of the bacteria Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis, which produce potent toxins with specific mosquitocidal activities. However, sedimentation of the bacterial spores limits the duration of effective control after field application of these bacilli. We describe here the cloning of genes encoding the 51.4- and 41.9-kDa toxins from B. sphaericus 2297, the 100-kDa toxin from B. sphaericus SSII-1, and the 130-kDa toxin from B. thuringiensis subsp. israelensis into the broad-host-range plasmid pRK248 and the transfer of these genes for expression in Caulobacter crescentus CB15. The recombinant C. crescentus cells were shown to be toxic to mosquito larvae. Caulobacter species are ubiquitous microorganisms residing in the upper regions of aquatic environments and therefore provide the potential for prolonged control by maintaining mosquitocidal toxins in larval feeding zones. PMID:1575492

  13. Warmer winters modulate life history and energy storage but do not affect sensitivity to a widespread pesticide in an aquatic insect.

    PubMed

    Arambourou, Hélène; Stoks, Robby

    2015-10-01

    Despite the increased attention for the effects of pesticides under global warming no studies tested how winter warming affects subsequent sensitivity to pesticides. Winter warming is expected to cause delayed negative effects when it increases metabolic rates and thereby depletes energy reserves. Using a common-garden experiment, we investigated the combined effect of a 4 °C increase in winter temperature and subsequent exposure to chlorpyrifos in the aquatic larvae of replicated low- and high-latitude European populations of the damselfly Ischnura elegans. The warmer winter (8 °C) resulted in a higher winter survival and higher growth rates compared to the cold winter (4 °C) commonly experienced by European high-latitude populations. Low-latitude populations were better at coping with the warmer winter, indicating thermal adaptation to the local winter temperatures. Subsequent chlorpyrifos exposure at 20 °C induced strong negative effects on survival, growth rate, lipid content and acetylcholinesterase activity while phenoloxidase activity increased. These pesticide effects were not affected by winter warming. Our results suggest that for species where winter warming has positive effects on life history, no delayed effects on the sensitivity to subsequent pesticide exposure should be expected. PMID:26261878

  14. Subfossils of extinct and extant species of Simuliidae (Diptera) from Austral and Cook Islands (Polynesia): anthropogenic extirpation of an aquatic insect?

    PubMed

    Craig, Douglas A; Porch, Nick

    2013-01-01

    Subfossil head capsules of Simuliidae larvae have been recovered from swamps on Tubuai and Raivavae of the Austral Islands, and Atiu and Mangaia of the southern Cook Islands. For Tubuai and Raivavae it is likely that the simuliids are extinct, but a single simuliid species is extant on nearby Rurutu. For Atiu and Mangaia, extant simuliids have not been reported, but are known on Rarotonga. Well-preserved head capsules indicate that the Cook Islands subfossils are those of Sinulitin (Inseliellumn) teruananga Craig and Craig, 1986. For the Austral Islands, the simuliid from Tubuai is considered a variant of Simudiunt (Inseliellumn) rurutuense Craig and Joy, 2000. That from Raivavae is morphologically distinct and is described here as a new species, Simuliun (Inseliellumn) raivavaense Craig and Porch. Humans arrived in Eastern Polynesia ca. 1,000 years ago resulting in the widespread destruction of lowland forest and conversion of wetlands to agriculture with implied consequences for the indigenous biota of these habitats. Here we consider that one such result was loss of freshwater aquatic biodiversity. PMID:26287098

  15. Observing Insects.

    ERIC Educational Resources Information Center

    Arbel, Ilil

    1991-01-01

    Describes how to observe and study the fascinating world of insects in public parks, backyards, and gardens. Discusses the activities and habits of several common insects. Includes addresses for sources of beneficial insects, seeds, and plants. (nine references) (JJK)

  16. A survey of scale insects in soil samples from Europe (Hemiptera, Coccomorpha).

    PubMed

    Kaydan, Mehmet Bora; Benedicty, Zsuzsanna Konczné; Kiss, Balázs; Szita, Éva

    2016-01-01

    In the last decades, several expeditions were organized in Europe by the researchers of the Hungarian Natural History Museum to collect snails, aquatic insects and soil animals (mites, springtails, nematodes, and earthworms). In this study, scale insect (Hemiptera: Coccomorpha) specimens extracted from Hungarian Natural History Museum soil samples (2970 samples in total), all of which were collected using soil and litter sampling devices, and extracted by Berlese funnel, were examined. From these samples, 43 scale insect species (Acanthococcidae 4, Coccidae 2, Micrococcidae 1, Ortheziidae 7, Pseudococcidae 21, Putoidae 1 and Rhizoecidae 7) were found in 16 European countries. In addition, a new species belonging to the family Pseudococcidae, Brevennia larvalis Kaydan, sp. n. and a new species of Ortheziidae, Ortheziola editae Szita & Konczné Benedicty, sp. n. are described and illustrated based on the adult female stage. Revised keys to the adult females of Brevennia and Ortheziola are presented.

  17. A survey of scale insects in soil samples from Europe (Hemiptera, Coccomorpha)

    PubMed Central

    Kaydan, Mehmet Bora; Benedicty, Zsuzsanna Konczné; Kiss, Balázs; Szita, Éva

    2016-01-01

    Abstract In the last decades, several expeditions were organized in Europe by the researchers of the Hungarian Natural History Museum to collect snails, aquatic insects and soil animals (mites, springtails, nematodes, and earthworms). In this study, scale insect (Hemiptera: Coccomorpha) specimens extracted from Hungarian Natural History Museum soil samples (2970 samples in total), all of which were collected using soil and litter sampling devices, and extracted by Berlese funnel, were examined. From these samples, 43 scale insect species (Acanthococcidae 4, Coccidae 2, Micrococcidae 1, Ortheziidae 7, Pseudococcidae 21, Putoidae 1 and Rhizoecidae 7) were found in 16 European countries. In addition, a new species belonging to the family Pseudococcidae, Brevennia larvalis Kaydan, sp. n. and a new species of Ortheziidae, Ortheziola editae Szita & Konczné Benedicty, sp. n. are described and illustrated based on the adult female stage. Revised keys to the adult females of Brevennia and Ortheziola are presented. PMID:27081335

  18. A survey of scale insects in soil samples from Europe (Hemiptera, Coccomorpha).

    PubMed

    Kaydan, Mehmet Bora; Benedicty, Zsuzsanna Konczné; Kiss, Balázs; Szita, Éva

    2016-01-01

    In the last decades, several expeditions were organized in Europe by the researchers of the Hungarian Natural History Museum to collect snails, aquatic insects and soil animals (mites, springtails, nematodes, and earthworms). In this study, scale insect (Hemiptera: Coccomorpha) specimens extracted from Hungarian Natural History Museum soil samples (2970 samples in total), all of which were collected using soil and litter sampling devices, and extracted by Berlese funnel, were examined. From these samples, 43 scale insect species (Acanthococcidae 4, Coccidae 2, Micrococcidae 1, Ortheziidae 7, Pseudococcidae 21, Putoidae 1 and Rhizoecidae 7) were found in 16 European countries. In addition, a new species belonging to the family Pseudococcidae, Brevennia larvalis Kaydan, sp. n. and a new species of Ortheziidae, Ortheziola editae Szita & Konczné Benedicty, sp. n. are described and illustrated based on the adult female stage. Revised keys to the adult females of Brevennia and Ortheziola are presented. PMID:27081335

  19. A new species of bromeliad-feeding Cephaloleia Chevrolat (Coleoptera, Chrysomelidae, Cassidinae) from Costa Rica: evidence from DNA barcodes, larval and adult morphology and insect diets.

    PubMed

    García-Robledo, Carlos; Staines, Charles L; Kress, W John

    2015-01-01

    The Neotropical genus Cephaloleia Chevrolat (Coleoptera: Chrysomelidae: Cassidinae) includes 214 species distributed from the south of Mexico to Argentina. Cephaloleia beetles feed mostly on plants from the order Zingiberales. The interactions between Cephaloleia beetles and their Zingiberales host plants is proposed as one of the oldest and most conservative associations. Here we describe a new species of Cephaloleia (Cephaloleiakuprewiczae sp. n.) that feeds on two species of bromeliads (Pitcairniaarcuata and Pitcairniabrittoniana, Bromeliaceae: Pitcairnioideae). Cephaloleiakuprewiczae was previously described as Cephaloleiahistrionica. This study includes evidence from DNA barcodes (COI), larval and adult morphology and insect diets that separates Cephaloleiakuprewiczae from Cephaloleiahistrionica as a new species. PMID:25685006

  20. A new species of bromeliad-feeding Cephaloleia Chevrolat (Coleoptera, Chrysomelidae, Cassidinae) from Costa Rica: evidence from DNA barcodes, larval and adult morphology and insect diets

    PubMed Central

    García-Robledo, Carlos; Staines, Charles L.; Kress, W. John

    2015-01-01

    Abstract The Neotropical genus Cephaloleia Chevrolat (Coleoptera: Chrysomelidae: Cassidinae) includes 214 species distributed from the south of Mexico to Argentina. Cephaloleia beetles feed mostly on plants from the order Zingiberales. The interactions between Cephaloleia beetles and their Zingiberales host plants is proposed as one of the oldest and most conservative associations. Here we describe a new species of Cephaloleia (Cephaloleia kuprewiczae sp. n.) that feeds on two species of bromeliads (Pitcairnia arcuata and Pitcairnia brittoniana, Bromeliaceae: Pitcairnioideae). Cephaloleia kuprewiczae was previously described as Cephaloleia histrionica. This study includes evidence from DNA barcodes (COI), larval and adult morphology and insect diets that separates Cephaloleia kuprewiczae from Cephaloleia histrionica as a new species. PMID:25685006

  1. Postembryonic developmental changes in photoreceptors of the stick insect Carausius morosus enhance the shift to an adult nocturnal life-style.

    PubMed

    Frolov, Roman; Immonen, Esa-Ville; Vähäsöyrinki, Mikko; Weckström, Matti

    2012-11-21

    Optimization of sensory processing during development can be studied by using photoreceptors of hemimetabolous insects (with incomplete metamorphosis) as a research model. We have addressed this topic in the stick insect Carausius morosus, where retinal growth after hatching is accompanied by a diurnal-to-nocturnal shift in behavior, by recording from photoreceptors of first instar nymphs and adult animals using the patch-clamp method. In the nymphs, ommatidia were smaller and photoreceptors were on average 15-fold less sensitive to light than in adults. The magnitude of A-type K(+) current did not increase but the delayed rectifier doubled in adults compared with nymphs, the K(+) current densities being greater in the nymphs. By contrast, the density of light-induced current did not increase, although its magnitude increased 8.6-fold, probably due to the growth of microvilli. Nymph photoreceptors performed poorly, demonstrating a peak information rate (IR) of 2.9 ± 0.7 bits/s versus 34.1 ± 5.0 bits/s in adults in response to white-noise stimulation. Strong correlations were found between photoreceptor capacitance (a proxy for cell size) and IR, and between light sensitivity and IR, with larger and more sensitive photoreceptors performing better. In adults, IR peaked at light intensities matching irradiation from the evening sky. Our results indicate that biophysical properties of photoreceptors at each age stage and visual behavior are interdependent and that developmental improvement in photoreceptor performance may facilitate the switch from the diurnal to the safer nocturnal lifestyle. This also has implications for how photoreceptors achieve optimal performance. PMID:23175835

  2. High-intensity interval training on an aquatic treadmill in adults with osteoarthritis: effect on pain, balance, function, and mobility.

    PubMed

    Bressel, Eadric; Wing, Jessica E; Miller, Andrew I; Dolny, Dennis G

    2014-08-01

    Although aquatic exercise is considered a potentially effective treatment intervention for people with osteoarthritis (OA), previous research has focused primarily on calisthenics in a shallow pool with the inherent limitations on regulating exercise intensity. The purpose of this study was to quantify the efficacy of a 6-week aquatic treadmill exercise program on measures of pain, balance, function, and mobility. Eighteen participants (age = 64.5 ± 10.2 years) with knee OA completed a non-exercise control period followed by a 6-week exercise period. Outcome measures included visual analog scales for pain, posturography for balance, sit-to-stand test for function, and a 10-m walk test for mobility. The exercise protocol included balance training and high-intensity interval training (HIT) in an aquatic treadmill using water jets to destabilize while standing and achieve high ratings of perceived exertion (14-19) while walking. In comparison with pretests, participants displayed reduced joint pain (pre = 50.3 ± 24.8 mm vs. post = 15.8 ± 10.6 mm), improved balance (equilibrium pre = 66.6 ± 11.0 vs. post = 73.5 ± 7.1), function (rising index pre = 0.49 ± 0.19% vs. post = 0.33 ± 0.11%), and mobility (walk pre = 8.6 ± 1.4 s vs. post = 7.8 ± 1.1 s) after participating in the exercise protocol (p = 0.03-0.001). The same benefits were not observed after the non-exercise control period. Adherence to the exercise protocol was exceptional and no participants reported adverse effects, suggesting that aquatic treadmill exercise that incorporates balance and HIT training was well tolerated by patients with OA and may be effective at managing symptoms of OA.

  3. Aquatic Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic microbiology can be defined as the study of microorganisms and microbial communities in water environments. Aquatic environments occupy more than 70% of the earth’s surface including oceans, estuaries, rivers, lakes, wetlands, streams, springs, and aquifers. Water is essential for life and m...

  4. AQUATIC ECOSYSTEMS,

    EPA Science Inventory

    Aquatic ecosystems are a vital part of the urban water cycle (and of urban areas more broadly), and, if healthy, provide a range of goods and services valued by humans (Meyer 1997). For example, aquatic ecosystems (e.g., rivers, lakes, wetlands) provide potable water, food resou...

  5. On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus.

    PubMed

    Kostál, V; Vambera, J; Bastl, J

    2004-04-01

    Three acclimation groups [i.e. non-diapause (LD), diapause (SD) and diapause, cold-acclimated (SDA)] of the adult bugs Pyrrhocoris apterus differed markedly in their levels of chill tolerance. Survival time at a sub-zero, but non-freezing, temperature of -5 degrees C (Lt50) extended from 7.6 days, through 35.6 days, to >60 days in the LD, SD and SDA insects, respectively. The time necessary for recovery after chill-coma increased linearly with the increasing time of exposure to -5 degrees C, and the steepness of the slope of linear regression decreased in the order LD>SD>SDA. The capacity to prevent/counteract leakage of Na(+) down the electrochemical gradient (from haemolymph to tissues) during the exposure to -5 degrees C increased in the order LDinsects (LD) showed the highest rate of body-water loss. Most of the water was lost from the haemolymph compartment. The ability to regulate a certain fraction of ion pools into the hindgut fluid was the highest in the SDA group, medium in the SD group and missing in the LD group. The adenylate energy charge in the fat body cells was constant in all three groups. The total pools of ATP, ADP and AMP, however, decreased in the SD and SDA groups but remained constant in the LD group. The inability of insects to maintain ion gradients at sub-zero temperature is discussed as an important cause of pre-freeze mortality.

  6. Assessment in situ of genotoxicity in tadpoles and adults of frog Hypsiboas cordobae (Barrio 1965) inhabiting aquatic ecosystems associated to fluorite mine.

    PubMed

    Pollo, Favio E; Grenat, Pablo R; Otero, Manuel A; Salas, Nancy E; Martino, Adolfo L

    2016-11-01

    Non-lethal biological techniques such as blood biomarkers have gained attention due to their value as early signals of anthropic effects of contamination representing significant tools to evaluate ecosystems health. We evaluate and characterize in situ genotoxicity of water samples collected from aquatic ecosystems around a fluorite mine using amphibian frogs Hypsiboas cordobae as bioindicator species complemented with 16 physicochemical parameters. Four stations associated with fluorite mine sampling were sampled: a stream running on granitic rock with natural high fluorite content; two streams both running on metamorphic rock with low fluorite content; and an artificial decantation pond containing sediments produced by fluorite flotation process with high variation in physicochemical parameters. We analyses the blood of tadpoles and adults of H. Cordobae, calculated frequencies of micronuclei, erythrocyte nuclear abnormalities, mitosis, immature and enucleated erythrocytes. Individuals were measured and weighed and body condition was calculated. The results of this study indicate that individuals of decantation pond are exposed to compounds or mixtures which are causing cell damage when compared to those that were collected of stream. Larval stage was more vulnerable than the adult phase and it could be related mainly to the higher exposure time to xenobiotics, which can penetrate easily by skin, mouth and gills; additionally this site offers a reduced availability of food than other sites. Therefore, chronic exposure to pollutants could derive in degenerative and neoplastic diseases in target organs. Moreover these individuals may experience reproductive and behavioral disturbances which could lead to population decline in the long term.

  7. Assessment in situ of genotoxicity in tadpoles and adults of frog Hypsiboas cordobae (Barrio 1965) inhabiting aquatic ecosystems associated to fluorite mine.

    PubMed

    Pollo, Favio E; Grenat, Pablo R; Otero, Manuel A; Salas, Nancy E; Martino, Adolfo L

    2016-11-01

    Non-lethal biological techniques such as blood biomarkers have gained attention due to their value as early signals of anthropic effects of contamination representing significant tools to evaluate ecosystems health. We evaluate and characterize in situ genotoxicity of water samples collected from aquatic ecosystems around a fluorite mine using amphibian frogs Hypsiboas cordobae as bioindicator species complemented with 16 physicochemical parameters. Four stations associated with fluorite mine sampling were sampled: a stream running on granitic rock with natural high fluorite content; two streams both running on metamorphic rock with low fluorite content; and an artificial decantation pond containing sediments produced by fluorite flotation process with high variation in physicochemical parameters. We analyses the blood of tadpoles and adults of H. Cordobae, calculated frequencies of micronuclei, erythrocyte nuclear abnormalities, mitosis, immature and enucleated erythrocytes. Individuals were measured and weighed and body condition was calculated. The results of this study indicate that individuals of decantation pond are exposed to compounds or mixtures which are causing cell damage when compared to those that were collected of stream. Larval stage was more vulnerable than the adult phase and it could be related mainly to the higher exposure time to xenobiotics, which can penetrate easily by skin, mouth and gills; additionally this site offers a reduced availability of food than other sites. Therefore, chronic exposure to pollutants could derive in degenerative and neoplastic diseases in target organs. Moreover these individuals may experience reproductive and behavioral disturbances which could lead to population decline in the long term. PMID:27522316

  8. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.

    PubMed

    Kautza, Adam; Mazeika, S; Sullivan, P

    2016-03-01

    Rivers are increasingly recognized as providing nutritional subsidies (i.e., energy and nutrients) to adjacent terrestrial food webs via depredation of aquatic organisms (e.g., emergent aquatic insects, crayfish, fish) by terrestrial consumers. However, because these prey organisms assimilate energy from both aquatic (e.g., benthic algae, phytoplankton, aquatic macrophytes) and terrestrial (e.g., riparian leaf detritus) primary producers, river subsidies to terrestrial consumers represent a combination of aquatically and terrestrially derived energy. To date, the explicit contribution of energy derived from aquatic primary producers to terrestrial consumers has not been fully explored yet might be expected to be quantitatively important to terrestrial food webs. At 12 reaches along a 185-km segment of the sixth-order Scioto River system (Ohio, USA), we quantified the relative contribution of energy derived from aquatic primary producers to a suite of terrestrial riparian consumers that integrate the adjacent landscape across multiple spatial scales through their foraging activities (tetragnathid spiders, rove beetles, adult coenagrionid damselflies, riparian swallows, and raccoons). We used naturally abundant stable isotopes (13C and 15N) of periphyton, phytoplankton, macrophytes, and terrestrial vegetation to evaluate the energetic contribution of aquatic primary producers to terrestrial food webs. Shoreline tetragnathid spiders were most reliant on aquatic primary producers (50%), followed by wider-ranging raccoons (48%), damselflies (44%), and riparian swallows (41%). Of the primary producers, phytoplankton (19%) provisioned the greatest nutritional contribution to terrestrial consumers (considered collectively), followed by periphyton (14%) and macrophytes (11%). Our findings provide empirical evidence that aquatic primary producers of large streams and rivers can be a critical nutritional resource for terrestrial food webs. We also show that aquatically

  9. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.

    PubMed

    Kautza, Adam; Mazeika, S; Sullivan, P

    2016-03-01

    Rivers are increasingly recognized as providing nutritional subsidies (i.e., energy and nutrients) to adjacent terrestrial food webs via depredation of aquatic organisms (e.g., emergent aquatic insects, crayfish, fish) by terrestrial consumers. However, because these prey organisms assimilate energy from both aquatic (e.g., benthic algae, phytoplankton, aquatic macrophytes) and terrestrial (e.g., riparian leaf detritus) primary producers, river subsidies to terrestrial consumers represent a combination of aquatically and terrestrially derived energy. To date, the explicit contribution of energy derived from aquatic primary producers to terrestrial consumers has not been fully explored yet might be expected to be quantitatively important to terrestrial food webs. At 12 reaches along a 185-km segment of the sixth-order Scioto River system (Ohio, USA), we quantified the relative contribution of energy derived from aquatic primary producers to a suite of terrestrial riparian consumers that integrate the adjacent landscape across multiple spatial scales through their foraging activities (tetragnathid spiders, rove beetles, adult coenagrionid damselflies, riparian swallows, and raccoons). We used naturally abundant stable isotopes (13C and 15N) of periphyton, phytoplankton, macrophytes, and terrestrial vegetation to evaluate the energetic contribution of aquatic primary producers to terrestrial food webs. Shoreline tetragnathid spiders were most reliant on aquatic primary producers (50%), followed by wider-ranging raccoons (48%), damselflies (44%), and riparian swallows (41%). Of the primary producers, phytoplankton (19%) provisioned the greatest nutritional contribution to terrestrial consumers (considered collectively), followed by periphyton (14%) and macrophytes (11%). Our findings provide empirical evidence that aquatic primary producers of large streams and rivers can be a critical nutritional resource for terrestrial food webs. We also show that aquatically

  10. Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt

    PubMed Central

    Mun, Seulgi; Young Noh, Mi; Dittmer, Neal T.; Muthukrishnan, Subbaratnam; Kramer, Karl J.; Kanost, Michael R.; Arakane, Yasuyuki

    2015-01-01

    In the insect cuticle, structural proteins (CPs) and the polysaccharide chitin are the major components. It has been hypothesized that CPs are cross-linked to other CPs and possibly to chitin by quinones or quinone methides produced by the laccase2-mediated oxidation of N-acylcatechols. In this study we investigated functions of TcCP30, the third most abundant CP in protein extracts of elytra (wing covers) from Tribolium castaneum adults. The mature TcCP30 protein has a low complexity and highly polar amino acid sequence. TcCP30 is localized with chitin in horizontal laminae and vertically oriented columnar structures in rigid cuticles, but not in soft and membranous cuticles. Immunoblot analysis revealed that TcCP30 undergoes laccase2-mediated cross-linking during cuticle maturation in vivo, a process confirmed in vitro using recombinant rTcCP30. We identified TcCPR27 and TcCPR18, the two most abundant proteins in the elytra, as putative cross-linking partners of TcCP30. RNAi for the TcCP30 gene had no effect on larval and pupal growth and development. However, during adult eclosion, ~70% of the adults were unable to shed their exuvium and died. These results support the hypothesis that TcCP30 plays an integral role as a cross-linked structural protein in the formation of lightweight rigid cuticle of the beetle. PMID:25994234

  11. Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs.

    PubMed

    Kraus, Johanna M; Walters, David M; Wesner, Jeff S; Stricker, Craig A; Schmidt, Travis S; Zuellig, Robert E

    2014-09-16

    Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ(15)N, widely used to estimate relative trophic position in biomagnification studies, was enriched by ∼ 1‰ during metamorphosis, while δ(13)C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to ∼ 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to ∼ 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.

  12. Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs

    USGS Publications Warehouse

    Kraus, Johanna M.; Walters, David M.; Wesner, Jeff S.; Stricker, Craig A.; Schmidt, Travis S.; Zuellig, Robert E.

    2014-01-01

    Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ15N, widely used to estimate relative trophic position in biomagnification studies, was enriched by 1‰ during metamorphosis, while δ13C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.

  13. Evolutionary divergence of adult body size and juvenile growth in sympatric subpopulations of a top predator in aquatic ecosystems.

    PubMed

    Tibblin, Petter; Forsman, Anders; Koch-Schmidt, Per; Nordahl, Oscar; Johannessen, Peter; Nilsson, Jonas; Larsson, Per

    2015-07-01

    Evolutionary theory predicts that different selective regimes may contribute to divergent evolution of body size and growth rate among populations, but most studies have focused on allopatric populations. Here, we studied five sympatric subpopulations of anadromous northern pike (Esox lucius) in the Baltic Sea subjected to allopatric habitats for a short period of their life cycle due to homing behavior. We report differences in adult body size among subpopulations that were in part due to variation in growth rate. Body size of emigrating juveniles also differed among subpopulations, and differences remained when individuals were reared in a common environment, thus indicating evolutionary divergence among subpopulations. Furthermore, a QST-FST comparison indicated that differences had evolved due to divergent selection rather than genetic drift, possibly in response to differences in selective mortality among spawning habitats during the allopatric life stage. Adult and juvenile size were negatively correlated across subpopulations, and reconstruction of growth trajectories of adult fishes suggested that body size differences developed gradually and became accentuated throughout the first years of life. These results represent rare evidence that sympatric subpopulations can evolve differences in key life-history traits despite being subjected to allopatric habitats during only a very short fraction of their life.

  14. The dark side of suibsidies: quantifying contaminant exposure to riparian predators via stream insects

    EPA Science Inventory

    Aquatic insects provide a critical nutrient subsidy to riparian food webs, yet their role as vectors of contaminants to terrestrial ecosystems is poorly understood. We investigated relationships between aquatic (resource utilization) and contaminant exposure for a riparian invert...

  15. An aquatic ecosystem in space.

    PubMed

    Voeste, D; Andriske, M; Paris, F; Levine, H G; Blum, V

    1999-07-01

    The Closed Equilibrated Biological Aquatic System (CEBAS) Mini-Module experiment was designed to study aquatic ecosystem performance within a middeck locker on the Space Shuttle. CEBAS was flown aboard STS-89 in January 1998 with a population of four pregnant Xiphophorus helleri female fish and eleven adult Biomphalaria glabrata snails in the first compartment and 200 juvenile X. helleri and 48 adult and juvenile B. glabrata in the second compartment. A plant compartment contained eleven snails and 53 g of the aquatic angiosperm Ceratophyllum demersum. During the flight, Ceratophyllum fresh weight increased from 53 g to 117 g. All adult fish and 65 juveniles survived the flight experiment and 37 adult snails and 40 newly laid snail spawn packs were recovered after the flight. Oxygen production and pH were as expected.

  16. Insect Allergy.

    PubMed

    Lee, Hobart; Halverson, Sara; Mackey, Regina

    2016-09-01

    Insect bites and stings are common. Risk factors are mostly associated with environmental exposure. Most insect bites and stings result in mild, local, allergic reactions. Large local reactions and systemic reactions like anaphylaxis are possible. Common insects that bite or sting include mosquitoes, ticks, flies, fleas, biting midges, bees, and wasps. The diagnosis is made clinically. Identification of the insect should occur when possible. Management is usually supportive. For anaphylaxis, patients should be given epinephrine and transported to the emergency department for further evaluation. Venom immunotherapy (VIT) has several different protocols. VIT is highly effective in reducing systemic reactions and anaphylaxis.

  17. Insect Allergy.

    PubMed

    Lee, Hobart; Halverson, Sara; Mackey, Regina

    2016-09-01

    Insect bites and stings are common. Risk factors are mostly associated with environmental exposure. Most insect bites and stings result in mild, local, allergic reactions. Large local reactions and systemic reactions like anaphylaxis are possible. Common insects that bite or sting include mosquitoes, ticks, flies, fleas, biting midges, bees, and wasps. The diagnosis is made clinically. Identification of the insect should occur when possible. Management is usually supportive. For anaphylaxis, patients should be given epinephrine and transported to the emergency department for further evaluation. Venom immunotherapy (VIT) has several different protocols. VIT is highly effective in reducing systemic reactions and anaphylaxis. PMID:27545732

  18. Insect Keepers

    ERIC Educational Resources Information Center

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  19. Incredible Insects.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1989-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes an Insect an Insect?," including…

  20. Insect phylogenomics.

    PubMed

    Behura, S K

    2015-08-01

    Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study the evolution and systematics of species. Recently, several studies employing phylogenomic tools have provided better insights into insect evolution. Next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phy-logenomic investigations help us to better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators and disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution.

  1. Assessment of Lower Missouri River physical aquatic habitat and its use by adult sturgeon (Genus Scaphirhynchus), 2005-07

    USGS Publications Warehouse

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.; DeLonay, Aaron J.

    2009-01-01

    This report presents an exploratory analysis of habitat availability and use by adult Scaphirhynchus sturgeon on the Lower Missouri River from Gavins Point Dam, South Dakota, to the junction with the Mississippi River. The analysis is based on two main data sources collected from 2005 to 2007: (1) a compilation of 153 reach-scale habitat maps (mean reach length, 2.4 kilometers) derived from boat-collected hydroacoustic data and (2) a sturgeon location dataset from which 378 sturgeon telemetry locations are associated with the maps (within 7 days of the mapping and within 10 percent of the discharge). The report focuses on: (1) longitudinal patterns of geomorphic and hydraulic characteristics revealed by the collection of reach maps; (2) assessment of environmental characteristics at sturgeon locations in the context of the mapped reaches; and (3) consideration of spatial distribution of habitat conditions that sturgeon appear to select. Longitudinal patterns of geomorphology, hydraulics, and associated habitats relate strongly to the engineered state of the river. Reaches within each of the following river sections tended to share similar geomorphic, hydrologic, and hydraulic characteristics: the Minimally Engineered section (Gavins Point Dam to Sioux City, Iowa), the Upstream Channelized section (Sioux City, Iowa, to the junction with the Kansas River), and the Downstream Channelized section (Kansas River to the junction with the Mississippi River). Adult sturgeon occupy nearly the full range of available values for each continuous variable assessed: depth, depth slope, depth-averaged velocity, velocity gradient, and Froude number (a dimensionless number relating velocity to depth). However, in the context of habitat available in a reach, sturgeon tend to select some areas over others. Reproductive female shovelnose sturgeon (Scaphirhynchus platorynchus), in particular, were often found in parts of the reach with one or more of the following characteristics: high

  2. Assessment of Lower Missouri River Physical Aquatic Habitat and Its Use by Adult Sturgeon (Genus Scaphirhynchus), 2005-07

    USGS Publications Warehouse

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.; DeLonay, Aaron J.

    2009-01-01

    This report presents an exploratory analysis of habitat availability and use by adult Scaphirhynchus sturgeon on the Lower Missouri River from Gavins Point Dam, South Dakota, to the junction with the Mississippi River. The analysis is based on two main data sources collected from 2005 to 2007: (1) a compilation of 153 reach-scale habitat maps (mean reach length, 2.4 kilometers) derived from boat-collected hydroacoustic data and (2) a sturgeon location dataset from which 378 sturgeon telemetry locations are associated with the maps (within 7 days of the mapping and within 10 percent of the discharge). The report focuses on: (1) longitudinal patterns of geomorphic and hydraulic characteristics revealed by the collection of reach maps; (2) assessment of environmental characteristics at sturgeon locations in the context of the mapped reaches; and (3) consideration of spatial distribution of habitat conditions that sturgeon appear to select. Longitudinal patterns of geomorphology, hydraulics, and associated habitats relate strongly to the engineered state of the river. Reaches within each of the following river sections tended to share similar geomorphic, hydrologic, and hydraulic characteristics: the Minimally Engineered section (Gavins Point Dam to Sioux City, Iowa), the Upstream Channelized section (Sioux City, Iowa, to the junction with the Kansas River), and the Downstream Channelized section (Kansas River to the junction with the Mississippi River). Adult sturgeon occupy nearly the full range of available values for each continuous variable assessed: depth, depth slope, depth-averaged velocity, velocity gradient, and Froude number (a dimensionless number relating velocity to depth). However, in the context of habitat available in a reach, sturgeon tend to select some areas over others. Reproductive female shovelnose sturgeon (Scaphirhynchus platorynchus), in particular, were often found in parts of the reach with one or more of the following characteristics: high

  3. Aquatic Sediments.

    ERIC Educational Resources Information Center

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  4. Responses of the aquatic midge Chironomus riparius to DEET exposure.

    PubMed

    Campos, Diana; Gravato, Carlos; Quintaneiro, Carla; Soares, Amadeu M V M; Pestana, João L T

    2016-03-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active ingredient of many commercial insect repellents. Despite being detected worldwide in effluents, surface water and groundwater, there is still limited information on DEET's toxicity toward non-target aquatic invertebrates. Thus, our main objective was to assess the effects of DEET in the life cycle of Chironomus riparius and assess its biochemical effects. Laboratory assays showed that DEET reduced developmental rates (reduced larval growth, delayed emergence) of C. riparius larvae and also caused a decrease in the size of adult midges. Concerning the biochemical responses, a short exposure to DEET caused no effects in lipid peroxidation, despite the significant inhibition of catalase and glutathione-S-transferase activities and of total glutathione contents. Moreover, inhibition of acetylcholinesterase activity was also observed showing neurotoxic effects. Environmental risk assessment of insect repellents is needed. Our results showed moderate toxicity of DEET toward C. riparius, however, due to their mode of action, indirect ecological effects of DEET and of other insect repellents cannot be excluded and should be evaluated. PMID:26773354

  5. The distance that contaminated aquatic subsidies extend into lake riparian zones

    USGS Publications Warehouse

    Raikow, D.F.; Walters, D.M.; Fritz, K.M.; Mills, M.A.

    2011-01-01

    Consumption of emergent aquatic insects by terrestrial invertebrates is a poorly resolved, but potentially important, mechanism of contaminant flux across ecosystem borders leading to contaminant exposure in terrestrial invertivores. We characterized the spatial extent and magnitude of contaminant transfer from aquatic sediments to terrestrial invertebrate predators by examining riparian araneid spiders, terrestrial insects, and emergent aquatic insects for stable isotopes and polychlorinated biphenyls (PCBs, sum of 141 congeners) at Lake Hartwell, (Clemson, South Carolina, USA). PCB concentrations in aquatic insects were orders of magnitude higher than in terrestrial insects. Aquatic insect consumption by spiders (as indicated by ??13C and ??15N), PCB concentrations in spiders, and aquatic prey availability were greatest at the shoreline and declined inland, while terrestrial prey availability was invariant with distance. These patterns indicate PCB transfer to spiders through consumption of emergent aquatic insects extending to a distance of ???5 m inland. Measurable, but much lower, PCBs were present in insect predators dominated by social wasps up to 30 m inland. These results illustrate the importance of emergent insects as vectors of contaminant transfer from lake sediments to riparian food webs, and that spiders are key predators in this process. ?? 2011 by the Ecological Society of America.

  6. The distance that contaminated aquatic subsidies extend into lake riparian zones.

    PubMed

    Raikow, David F; Walters, David M; Fritz, Ken M; Mills, Marc A

    2011-04-01

    Consumption of emergent aquatic insects by terrestrial invertebrates is a poorly resolved, but potentially important, mechanism of contaminant flux across ecosystem borders leading to contaminant exposure in terrestrial invertivores. We characterized the spatial extent and magnitude of contaminant transfer from aquatic sediments to terrestrial invertebrate predators by examining riparian araneid spiders, terrestrial insects, and emergent aquatic insects for stable isotopes and polychlorinated biphenyls (PCBs, sum of 141 congeners) at Lake Hartwell, (Clemson, South Carolina, USA). PCB concentrations in aquatic insects were orders of magnitude higher than in terrestrial insects. Aquatic insect consumption by spiders (as indicated by delta13C and delta15N), PCB concentrations in spiders, and aquatic prey availability were greatest at the shoreline and declined inland, while terrestrial prey availability was invariant with distance. These patterns indicate PCB transfer to spiders through consumption of emergent aquatic insects extending to a distance of 5 m inland. Measurable, but much lower, PCBs were present in insect predators dominated by social wasps up to 30 m inland. These results illustrate the importance of emergent insects as vectors of contaminant transfer from lake sediments to riparian food webs, and that spiders are key predators in this process.

  7. Migration strategies of insects.

    PubMed

    Dingle, H

    1972-03-24

    Physiological and ecological results from a variety of species are consistent with what seem to be valid general statements concerning insect migration. These are as follows: (i)During migration locomotory functions are enhanced and vegetative functions such as feeding and reproduction are suppressed. (ii) Migration usually occurs prereproductively in the life of the adult insect (the oogenesis-flight syndrome). (iii)Since migrant individuals are usually prereproductive, their reproductive values, and hence colonizing abilities, are at or near maximum. (iv) Migrants usually reside in temporary habitats. (v)Migrants have a high potential for population increase, r, which is also advantageous for colonizers. (vi)Both the physiological and ecological parameters of migration are modifiable by environmental factors (that is, phenotypically modifiable)to suit the prevailing conditions. Taken together, these criteria establish a comprehensive theory and adumbrate the basic strategy for migrant insects. This basic strategy is modified to suit the ecological requirements of individual species. Comparative studies of these modifications are of considerable theoretical and practical interest, the more so since most economically important insects are migrants. No satisfactory general statements can as yet be made with respect to the genotype and migration. Certainly we expect colonizing populiations to possess genotypes favoring a high r, but genotypic variation in r depends on the heritabilities of life table statistics, and such measurements are yet to be made (10, 53). The fact that flight duration can be increased by appropriate selection in Oncopeltus fasciatus, and the demonstration of additive genetic variance for this trait in Lygaeus kalmii, suggest that heritability studies of migratory behavior would also be worth pursuing. Most interesting of course, will be possible genetic correlations between migration and life history parameters. Also, migration often

  8. Insect-machine interface based neurocybernetics.

    PubMed

    Bozkurt, Alper; Gilmour, Robert F; Sinha, Ayesa; Stern, David; Lal, Amit

    2009-06-01

    We present details of a novel bioelectric interface formed by placing microfabricated probes into insect during metamorphic growth cycles. The inserted microprobes emerge with the insect where the development of tissue around the electronics during the pupal development allows mechanically stable and electrically reliable structures coupled to the insect. Remarkably, the insects do not react adversely or otherwise to the inserted electronics in the pupae stage, as is true when the electrodes are inserted in adult stages. We report on the electrical and mechanical characteristics of this novel bioelectronic interface, which we believe would be adopted by many investigators trying to investigate biological behavior in insects with negligible or minimal traumatic effect encountered when probes are inserted in adult stages. This novel insect-machine interface also allows for hybrid insect-machine platforms for further studies. As an application, we demonstrate our first results toward navigation of flight in moths. When instrumented with equipment to gather information for environmental sensing, such insects potentially can assist man to monitor the ecosystems that we share with them for sustainability. The simplicity of the optimized surgical procedure we invented allows for batch insertions to the insect for automatic and mass production of such hybrid insect-machine platforms. Therefore, our bioelectronic interface and hybrid insect-machine platform enables multidisciplinary scientific and engineering studies not only to investigate the details of insect behavioral physiology but also to control it.

  9. Anaphylaxis to insect stings.

    PubMed

    Golden, David B K

    2015-05-01

    Anaphylaxis to insect stings has occurred in 3% of adults and can be fatal even on the first reaction. Large local reactions are more frequent but rarely dangerous. The chance of a systemic reaction to a sting is 5% to 10% in large local reactors and in children with mild (cutaneous) systemic reactions, and varies between 30% and 65% in adults with previous systemic reactions, depending on the severity of previous sting reactions. Baseline serum tryptase level is increased in many patients with sting anaphylaxis. Venom immunotherapy is 75% to 98% effective in preventing sting anaphylaxis.

  10. Insect Phylogenomics

    PubMed Central

    Behura, Susanta K.

    2015-01-01

    With the advent of next-generation sequencing methods, phylogenetics has taken a new turn in the recent years. Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study systematics and evolution of species. Recently, breakthrough researches employing phylogenomic tools have provided better insights into the timing and pattern of insect evolution. The next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phylogenomic investigations help us better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators, or disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges, and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution. PMID:25963452

  11. Insects and allies associated with bromeliads: a review.

    PubMed

    Frank, J H; Lounibos, L P

    2009-01-01

    Bromeliads are a Neotropical plant family (Bromeliaceae) with about 2,900 described species. They vary considerably in architecture. Many impound water in their inner leaf axils to form phytotelmata (plant pools), providing habitat for terrestrial arthropods with aquatic larvae, while their outer axils provide terraria for an assemblage of fully terrestrial arthropods. Many bromeliads are epiphytic.Dominant terrestrial arthropods with aquatic larvae inhabiting bromeliad phytotelmata are typically larvae of Diptera, of which at least 16 families have been reported, but in some circumstances are Coleoptera, of which only three families have been reported. Other groups include crabs and the insect orders Odonata, Plecoptera, and Trichoptera, plus Hemiptera with adults active on the water surface. The hundreds of arthropod species are detritivores or predators and do not harm their host plants. Many of them are specialists to this habitat.Terrestrial arthropods with terrestrial larvae inhabiting bromeliad terraria include many more arachnid and insect orders, but relatively few specialists to this habitat. They, too, are detritivores or predators.Arthropod herbivores, especially Curculionidae (Coleoptera) and Lepidoptera, consume leaves, stems, flowers, pollen, and roots of bromeliads. Some herbivores consume nectar, and some of these and other arthropods provide pollination and even seed-dispersal.Ants have complex relationships with bromeliads, a few being herbivores, some guarding the plants from herbivory, and some merely nesting in bromeliad terraria. A few serve as food for carnivorous bromeliads, which also consume other terrestrial insects.Bromeliads are visited by far more species of arthropods than breed in them. This is especially notable during dry seasons, when bromeliads provide moist refugia.

  12. Insects and allies associated with bromeliads: a review

    PubMed Central

    Frank, J. H.; Lounibos, L. P.

    2009-01-01

    Summary Bromeliads are a Neotropical plant family (Bromeliaceae) with about 2,900 described species. They vary considerably in architecture. Many impound water in their inner leaf axils to form phytotelmata (plant pools), providing habitat for terrestrial arthropods with aquatic larvae, while their outer axils provide terraria for an assemblage of fully terrestrial arthropods. Many bromeliads are epiphytic. Dominant terrestrial arthropods with aquatic larvae inhabiting bromeliad phytotelmata are typically larvae of Diptera, of which at least 16 families have been reported, but in some circumstances are Coleoptera, of which only three families have been reported. Other groups include crabs and the insect orders Odonata, Plecoptera, and Trichoptera, plus Hemiptera with adults active on the water surface. The hundreds of arthropod species are detritivores or predators and do not harm their host plants. Many of them are specialists to this habitat. Terrestrial arthropods with terrestrial larvae inhabiting bromeliad terraria include many more arachnid and insect orders, but relatively few specialists to this habitat. They, too, are detritivores or predators. Arthropod herbivores, especially Curculionidae (Coleoptera) and Lepidoptera, consume leaves, stems, flowers, pollen, and roots of bromeliads. Some herbivores consume nectar, and some of these and other arthropods provide pollination and even seed-dispersal. Ants have complex relationships with bromeliads, a few being herbivores, some guarding the plants from herbivory, and some merely nesting in bromeliad terraria. A few serve as food for carnivorous bromeliads, which also consume other terrestrial insects. Bromeliads are visited by far more species of arthropods than breed in them. This is especially notable during dry seasons, when bromeliads provide moist refugia. PMID:20209047

  13. Colour constancy in insects.

    PubMed

    Chittka, Lars; Faruq, Samia; Skorupski, Peter; Werner, Annette

    2014-06-01

    Colour constancy is the perceptual phenomenon that the colour of an object appears largely unchanged, even if the spectral composition of the illuminating light changes. Colour constancy has been found in all insect species so far tested. Especially the pollinating insects offer a remarkable opportunity to study the ecological significance of colour constancy since they spend much of their adult lives identifying and choosing between colour targets (flowers) under continuously changing ambient lighting conditions. In bees, whose colour vision is best studied among the insects, the compensation provided by colour constancy is only partial and its efficiency depends on the area of colour space. There is no evidence for complete 'discounting' of the illuminant in bees, and the spectral composition of the light can itself be used as adaptive information. In patchy illumination, bees adjust their spatial foraging to minimise transitions between variously illuminated zones. Modelling allows the quantification of the adaptive benefits of various colour constancy mechanisms in the economy of nature. We also discuss the neural mechanisms and cognitive operations that might underpin colour constancy in insects.

  14. C3 or C4 macrophytes: a specific carbon source for the development of semi-aquatic and terrestrial arthropods in central Amazonian river-floodplains according to delta13C values.

    PubMed

    Adis, J; Victoria, R L

    2001-01-01

    C4 plant species were proposed to generally represent inferior food sources compared to C3 plants thus are avoided by herbivores, particularly insects. This was tested in semi-aquatic and terrestrial arthropods from Amazonian river-floodplains by carbon isotope discrimination (delta13C). Two semi-aquatic grasshopper species (Stenacris f. fissicauda, Tucavaca gracilis-Acrididae) obtain their carbon during development from specific C4 macrophytes and two semi-aquatic species (Cornops aquaticum-Acrididae, Paulinia acuminata-Pauliniidae) from specific C3 macrophytes. The terrestrial millipede Mestosoma hylaeicum (Paradoxosomatidae) obtains about 45% of its carbon from roots of one C4 macrophyte during the development of immatures whereas adults use other food sources, including C3 trees. Results suggest, that (1) both C4 and C3 plants represent distinct hosts for terrestrial arthropods in Amazonia; (2) immatures may use plant species with a different photosynthetic pathway than adults.

  15. Responses of Six-Weeks Aquatic Exercise on the Autonomic Nervous System, Peak Nasal Inspiratory Flow and Lung Functions in Young Adults with Allergic Rhinitis.

    PubMed

    Janyacharoen, Taweesak; Kunbootsri, Narupon; Arayawichanon, Preeda; Chainansamit, Seksun; Sawanyawisuth, Kittisak

    2015-06-01

    Allergic rhinitis is a chronic respiratory disease. Sympathetic hypofunction is identified in all of the allergic rhinitis patients. Moreover, allergic rhinitis is associated with decreased peak nasal inspiratory flow (PNIF) and impaired lung functions. The aim of this study was to investigate effects of six-week of aquatic exercise on the autonomic nervous system function, PNIF and lung functions in allergic rhinitis patients. Twenty-six allergic rhinitis patients, 12 males and 14 females were recruited in this study. Subjects were diagnosed by a physician based on history, physical examination, and positive reaction to a skin prick test. Subjects were randomly assigned to two groups. The control allergic rhinitis group received education and maintained normal life. The aquatic group performed aquatic exercise for 30 minutes a day, three days a week for six weeks. Heart rate variability, PNIF and lung functions were measured at the beginning, after three weeks and six weeks. There were statistically significant increased low frequency normal units (LF n.u.), PNIF and showed decreased high frequency normal units (HF n.u.) at six weeks after aquatic exercise compared with the control group. Six weeks of aquatic exercise could increase sympathetic activity and PNIF in allergic rhinitis patients.

  16. Insects: A nutritional alternative

    NASA Technical Reports Server (NTRS)

    Dufour, P. A.

    1981-01-01

    Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.

  17. Insect evolution.

    PubMed

    Engel, Michael S

    2015-10-01

    It goes without saying that insects epitomize diversity, and with over a million documented species they stand out as one of the most remarkable lineages in the 3.5-billion-year history of life on earth (Figure 1). This reality is passé to even the layperson and is taken for granted in the same way none of us think much of our breathing as we go about our day, and yet insects are just as vital to our existence. Insects are simultaneously familiar and foreign to us, and while a small fraction are beloved or reviled, most are simply ignored. These inexorable evolutionary overachievers outnumber us all, their segmented body plan is remarkably labile, they combine a capacity for high rates of speciation with low levels of natural extinction, and their history of successes eclipses those of the more familiar ages of dinosaurs and mammals alike. It is their evolution - persisting over vast expanses of geological time and inextricably implicated in the diversification of other lineages - that stands as one of the most expansive subjects in biology. PMID:26439349

  18. Insect evolution.

    PubMed

    Engel, Michael S

    2015-10-01

    It goes without saying that insects epitomize diversity, and with over a million documented species they stand out as one of the most remarkable lineages in the 3.5-billion-year history of life on earth (Figure 1). This reality is passé to even the layperson and is taken for granted in the same way none of us think much of our breathing as we go about our day, and yet insects are just as vital to our existence. Insects are simultaneously familiar and foreign to us, and while a small fraction are beloved or reviled, most are simply ignored. These inexorable evolutionary overachievers outnumber us all, their segmented body plan is remarkably labile, they combine a capacity for high rates of speciation with low levels of natural extinction, and their history of successes eclipses those of the more familiar ages of dinosaurs and mammals alike. It is their evolution - persisting over vast expanses of geological time and inextricably implicated in the diversification of other lineages - that stands as one of the most expansive subjects in biology.

  19. Pesticide alters habitat selection and aquatic community composition.

    PubMed

    Vonesh, James R; Kraus, Johanna M

    2009-05-01

    Anthropogenic chemical contamination is an important issue for conservation of aquatic ecosystems. While recent research highlights that community context can mediate the consequences of contaminant exposure, little is known about how contaminants themselves might determine this context by altering habitat selection and thus initial community composition. Here we show that the insecticide carbaryl and its commercial counterpart Sevin can affect aquatic community composition by differentially altering oviposition and colonization of experimental pools by amphibians and insects. On average, contaminated pools received 20-fold more adult beetle and heteropteran colonists and 12-fold more Culex mosquito and chironomid midge egg masses. On the other hand, ovipositing Anopheles mosquitoes and cricket frogs showed no preference and we have shown previously that gray treefrogs strongly avoid contaminated pools. Overall, initial richness doubled in contaminated pools compared with controls. By affecting colonizing taxa differently and increasing richness, the contaminant may alter the ecological context under which subsequent effects of exposure will unfold. Given that community context is important for evaluating toxicity effects, understanding the net effects of contaminants in natural systems requires an understanding of their effects on community assembly via shifts in habitat selection.

  20. Insect abatement system

    NASA Technical Reports Server (NTRS)

    Spiro, Clifford Lawrence (Inventor); Burnell, Timothy Brydon (Inventor); Wengrovius, Jeffrey Hayward (Inventor)

    1997-01-01

    An insect abatement system prevents adhesion of insect debris to surfaces which must be kept substantially free of insect debris. An article is coated with an insect abatement coating comprising polyorganosiloxane with a Shore A hardness of less than 50 and a tensile strength of less than 4 MPa. A method for preventing the adhesion of insect debris to surfaces includes the step of applying an insect abatement coating to a surface which must be kept substantially free of insect debris.

  1. A Field Study in Benin to Investigate the Role of Mosquitoes and Other Flying Insects in the Ecology of Mycobacterium ulcerans

    PubMed Central

    Zogo, Barnabas; Djenontin, Armel; Carolan, Kevin; Babonneau, Jeremy; Guegan, Jean-François; Eyangoh, Sara; Marion, Estelle

    2015-01-01

    Background Buruli ulcer, the third mycobacterial disease after tuberculosis and leprosy, is caused by the environmental mycobacterium M. ulcerans. There is at present no clear understanding of the exact mode(s) of transmission of M. ulcerans. Populations affected by Buruli ulcer are those living close to humid and swampy zones. The disease is associated with the creation or the extension of swampy areas, such as construction of dams or lakes for the development of agriculture. Currently, it is supposed that insects (water bugs and mosquitoes) are host and vector of M. ulcerans. The role of water bugs was clearly demonstrated by several experimental and environmental studies. However, no definitive conclusion can yet be drawn concerning the precise importance of this route of transmission. Concerning the mosquitoes, DNA was detected only in mosquitoes collected in Australia, and their role as host/vector was never studied by experimental approaches. Surprisingly, no specific study was conducted in Africa. In this context, the objective of this study was to investigate the role of mosquitoes (larvae and adults) and other flying insects in ecology of M. ulcerans. This study was conducted in a highly endemic area of Benin. Methodology/Principal Findings Mosquitoes (adults and larvae) were collected over one year, in Buruli ulcer endemic in Benin. In parallel, to monitor the presence of M. ulcerans in environment, aquatic insects were sampled. QPCR was used to detected M. ulcerans DNA. DNA of M. ulcerans was detected in around 8.7% of aquatic insects but never in mosquitoes (larvae or adults) or in other flying insects. Conclusion/Significance This study suggested that the mosquitoes don't play a pivotal role in the ecology and transmission of M. ulcerans in the studied endemic areas. However, the role of mosquitoes cannot be excluded and, we can reasonably suppose that several routes of transmission of M. ulcerans are possible through the world. PMID:26196901

  2. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species

    USGS Publications Warehouse

    Bhandari, Ramji K.; Deem, Sharon L.; Holliday, Dawn K.; Jandegian, Caitlin M.; Kassotis, Christopher D.; Nagel, Susan C.; Tillitt, Donald E.; vom Saal, Frederick S.; Rosenfeld, Cheryl S.

    2015-01-01

    Endocrine disrupting chemicals (EDCs), including the mass-produced component of plastics, bisphenol A (BPA) are widely prevalent in aquatic and terrestrial habitats. Many aquatic species, such as fish, amphibians, aquatic reptiles and mammals, are exposed daily to high concentrations of BPA and ethinyl estradiol (EE2), estrogen in birth control pills. In this review, we will predominantly focus on BPA and EE2, well-described estrogenic EDCs. First, the evidence that BPA and EE2 are detectable in almost all bodies of water will be discussed. We will consider how BPA affects sexual and neural development in these species, as these effects have been the best characterized across taxa. For instance, such chemicals have been in many cases reported to cause sex-reversal of males to females. Even if these chemicals do not overtly alter the gonadal sex, there are indications that several EDCs might demasculinize male-specific behaviors that are essential for attracting a mate. In so doing, these chemicals may reduce the likelihood that these males reproduce. If exposed males do reproduce, the concern is that they will then be passing on compromised genetic fitness to their offspring and transmitting potential transgenerational effects through their sperm epigenome. We will thus consider how diverse epigenetic changes might be a unifying mechanism of how BPA and EE2 disrupt several processes across species. Such changes might also serve as universal species diagnostic biomarkers of BPA and other EDCs exposure. Lastly, the evidence that estrogenic EDCs-induced effects in aquatic species might translate to humans will be considered.

  3. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species.

    PubMed

    Bhandari, Ramji K; Deem, Sharon L; Holliday, Dawn K; Jandegian, Caitlin M; Kassotis, Christopher D; Nagel, Susan C; Tillitt, Donald E; Vom Saal, Frederick S; Rosenfeld, Cheryl S

    2015-04-01

    Endocrine disrupting chemicals (EDCs), including the mass-produced component of plastics, bisphenol A (BPA) are widely prevalent in aquatic and terrestrial habitats. Many aquatic species, such as fish, amphibians, aquatic reptiles and mammals, are exposed daily to high concentrations of BPA and ethinyl estradiol (EE2), estrogen in birth control pills. In this review, we will predominantly focus on BPA and EE2, well-described estrogenic EDCs. First, the evidence that BPA and EE2 are detectable in almost all bodies of water will be discussed. We will consider how BPA affects sexual and neural development in these species, as these effects have been the best characterized across taxa. For instance, such chemicals have been in many cases reported to cause sex-reversal of males to females. Even if these chemicals do not overtly alter the gonadal sex, there are indications that several EDCs might demasculinize male-specific behaviors that are essential for attracting a mate. In so doing, these chemicals may reduce the likelihood that these males reproduce. If exposed males do reproduce, the concern is that they will then be passing on compromised genetic fitness to their offspring and transmitting potential transgenerational effects through their sperm epigenome. We will thus consider how diverse epigenetic changes might be a unifying mechanism of how BPA and EE2 disrupt several processes across species. Such changes might also serve as universal species diagnostic biomarkers of BPA and other EDCs exposure. Lastly, the evidence that estrogenic EDCs-induced effects in aquatic species might translate to humans will be considered. PMID:25277515

  4. The smallest insects evolve anucleate neurons.

    PubMed

    Polilov, Alexey A

    2012-01-01

    The smallest insects are comparable in size to unicellular organisms. Thus, their size affects their structure not only at the organ level, but also at the cellular level. Here we report the first finding of animals with an almost entirely anucleate nervous system. Adults of the smallest flying insects of the parasitic wasp genus Megaphragma (Hymenoptera: Trichogrammatidae) have only 339-372 nuclei in the central nervous system, i.e., their ganglia, including the brain, consist almost exclusively of processes of neurons. In contrast, their pupae have ganglia more typical of other insects, with about 7400 nuclei in the central nervous system. During the final phases of pupal development, most neuronal cell bodies lyse. As adults, these insects have many fewer nucleated neurons, a small number of cell bodies in different stages of lysis, and about 7000 anucleate cells. Although most neurons lack nuclei, these insects exhibit many important behaviors, including flight and searching for hosts.

  5. Allergies to Insect Venom

    MedlinePlus

    ... The smell of food attracts these insects.  Use insect repellents and keep insecticide available. Treatment tips:  Venom immunotherapy (allergy shots to insect venom(s) is highly effective in preventing subsequent sting ...

  6. INTER-SPECIES MODELS FOR ACUTE AQUATIC TOXICITY BASED ON MECHANISM OF ACTION

    EPA Science Inventory

    This presentation will provide interspecies QSARs for acute toxicity to 17 aquatic species, such as fish, snail, tadpole, hydrozoan, crustacean, insect larvae, and bacteria developed using 5,000 toxic effect results for approximately 2400 chemicals.

  7. The distance that contaminated aquatic subsidies extend into lake riparian zones

    EPA Science Inventory

    Consumption of emergent aquatic insects by terrestrial invertebrates is a poorly resolved, but potentially important, mechanism of contaminant flux across ecosystem borders leading to contaminant exposure in terrestrial invertevores. We characterized the spatial extent and magnit...

  8. Insect transgenesis and the sterile insect technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The establishment of broadly applicable insect transgenesis systems will enable the analyses of gene function in diverse insect species. This will greatly increase our understanding of diverse aspects of biology so far not functionally addressable. Moreover, insect transgenesis will provide novel st...

  9. What Makes an Insect an Insect?

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides background information on characteristics common to all insects, activities, and student materials (ready-to-copy games, puzzles, coloring pages, worksheets, and/or mazes) which describe: how insects are classified; how they are different from other animals; and the main insect characteristics. Activities include recommended age levels,…

  10. Edible aquatic Coleoptera of the world with an emphasis on Mexico

    PubMed Central

    Ramos-Elorduy, Julieta; Moreno, José Manuel Pino; Camacho, Victor Hugo Martínez

    2009-01-01

    Anthropoentomophagy is an ancient culinary practice wherein terrestrial and aquatic insects are eaten by humans. Of these species of insects, terrestrial insects are far more commonly used in anthropoentomophagy than aquatic insects. In this study we found that there are 22 genera and 78 species of edible aquatic beetles in the world. The family Dytiscidae hosts nine genera, Gyrinidae one, Elmidae two, Histeridae one, Hydrophilidae six, Haliplidae two and Noteridae one. Of the recorded species, 45 correspond to the family Dytiscidae, 19 to Hydrophilidae, three to Gyrinidae, four to Elmidae, two to Histeridae, four to Haliplidae and one to Noteridae. These beetles are the most prized organisms of lentic watersThe family that has the highest number of edible food insect genera and species is Dytiscidae. Here, the global geographic distribution of species in these organisms is shown, and a discussion is presented of its importance as a renewable natural resource widely used for food in various countries. PMID:19379486

  11. Edible aquatic Coleoptera of the world with an emphasis on Mexico.

    PubMed

    Ramos-Elorduy, Julieta; Moreno, José Manuel Pino; Camacho, Victor Hugo Martínez

    2009-04-20

    Anthropoentomophagy is an ancient culinary practice wherein terrestrial and aquatic insects are eaten by humans. Of these species of insects, terrestrial insects are far more commonly used in anthropoentomophagy than aquatic insects. In this study we found that there are 22 genera and 78 species of edible aquatic beetles in the world. The family Dytiscidae hosts nine genera, Gyrinidae one, Elmidae two, Histeridae one, Hydrophilidae six, Haliplidae two and Noteridae one. Of the recorded species, 45 correspond to the family Dytiscidae, 19 to Hydrophilidae, three to Gyrinidae, four to Elmidae, two to Histeridae, four to Haliplidae and one to Noteridae. These beetles are the most prized organisms of lentic waters. The family that has the highest number of edible food insect genera and species is Dytiscidae. Here, the global geographic distribution of species in these organisms is shown, and a discussion is presented of its importance as a renewable natural resource widely used for food in various countries.

  12. Selecting Species Traits for Biomonitoring Applications in light of Phylogenetic Relationships among Lotic Insects

    NASA Astrophysics Data System (ADS)

    Poff, N.; Vieira, N. K.; Simmons, M. P.; Olden, J. D.; Kondratieff, B. C.; Finn, D. S.

    2005-05-01

    The use of species traits as indicators of environmental disturbance is being considered for biomonitoring programs globally. As such, methods to select relevant and informative traits for inclusion in biometrics need to be developed. In this research, we identified 20 traits of aquatic insects within six trait groups: morphology, mobility, life-history strategy, thermal tolerance, feeding guild and ecology (e.g., habitat preference). We constructed phylogenetic trees for 1) all lotic insect species of North America and 2) all Ephemeroptera, Plecoptera and Trichoptera species based on morphology- and molecular-based analyses and classifications. We then measured variability (i.e., plasticity) of the 20 traits and six trait groups across the two phylogenetic trees. Traits with higher degrees of plasticity indicated traits that were less phylogenetically constrained, and were considered informative for biomonitoring purposes. Thermal tolerance, rheophily, body size at maturity and feeding guild showed the highest plasticity across both phylogenetic trees. Two mobility traits, occurrence in drift and adult dispersal distance, showed moderate plasticity. By contrast, adult exiting ability, degree of attachment, adult lifespan and body shape showed low variability and were thus less informative. Plastic species traits that are less phylogenetically constrained may be most useful in detecting community change along environmental gradients.

  13. Aquatic Therapy for Children

    ERIC Educational Resources Information Center

    Kucher, Greta; Moore, Kelsey; Rodia, Rachel; Moser, Christy Szczech

    2015-01-01

    Aquatic therapy has long been highlighted in the literature as a potentially powerful therapeutic intervention. This review will highlight basic definitions of aquatic therapy, review salient research, and identify specific diagnoses that may benefit from aquatic therapy. Online resources, blogs, and books that occupational therapists may find…

  14. Insect-ual Pursuits.

    ERIC Educational Resources Information Center

    Mallow, David

    1991-01-01

    Explains how insects can be used to stimulate student writing. Describes how students can create their own systems to classify and differentiate insects. Discusses insect morphology and includes three detailed diagrams. The author provides an extension activity where students hypothesize about the niche of an insect based on its anatomy. (PR)

  15. Book Review: Insect Virology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viruses that infect insects have long been of interest both as a means for controlling insect pest populations in an environmentally safe manner, and also as significant threats to beneficial insects of great value, such as honey bees and silkworms. Insect viruses also have been of intrinsic intere...

  16. 40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Fish, crustaceans, mollusks, and other... § 230.31 Fish, crustaceans, mollusks, and other aquatic organisms in the food web. (a) Aquatic organisms in the food web include, but are not limited to, finfish, crustaceans, mollusks, insects,...

  17. 40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Fish, crustaceans, mollusks, and other... § 230.31 Fish, crustaceans, mollusks, and other aquatic organisms in the food web. (a) Aquatic organisms in the food web include, but are not limited to, finfish, crustaceans, mollusks, insects,...

  18. 40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Fish, crustaceans, mollusks, and other... § 230.31 Fish, crustaceans, mollusks, and other aquatic organisms in the food web. (a) Aquatic organisms in the food web include, but are not limited to, finfish, crustaceans, mollusks, insects,...

  19. 40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Fish, crustaceans, mollusks, and other... § 230.31 Fish, crustaceans, mollusks, and other aquatic organisms in the food web. (a) Aquatic organisms in the food web include, but are not limited to, finfish, crustaceans, mollusks, insects,...

  20. 40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Fish, crustaceans, mollusks, and other... § 230.31 Fish, crustaceans, mollusks, and other aquatic organisms in the food web. (a) Aquatic organisms in the food web include, but are not limited to, finfish, crustaceans, mollusks, insects,...

  1. Bifenthrin causes trophic cascades and alters insect emergence in mesocosms: implication for small streams

    USGS Publications Warehouse

    Rogers, Holly; Schmidt, Travis S.; Dabney, Brittanie L.; Hladik, Michelle L.; Mahler, Barbara J.; VanMetre, Peter

    2016-01-01

    Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50s ranged 197.6 – 233.5 ng bifenthrin/ g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.

  2. Distribution of the Primary Endosymbiont (Candidatus Uzinura Diaspidicola) Within Host Insects from the Scale Insect Family Diaspididae.

    PubMed

    Gruwell, Matthew E; Flarhety, Meghan; Dittmar, Katharina

    2012-02-29

    It has long been known that armored scale insects harbor endosymbiotic bacteria inside specialized cells called bacteriocytes. Originally, these endosymbionts were thought to be fungal symbionts but they are now known to be bacterial and have been named Uzinura diaspidicola. Bacteriocyte and endosymbiont distribution patterns within host insects were visualized using in situ hybridization via 16S rRNA specific probes. Images of scale insect embryos, eggs and adult scale insects show patterns of localized bacteriocytes in embryos and randomly distributed bacteriocytes in adults. The symbiont pocket was not found in the armored scale insect eggs that were tested. The pattern of dispersed bacteriocytes in adult scale insects suggest that Uzinura and Blattabacteria may share some homologous traits that coincide with similar life style requirements, such as dispersal in fat bodies and uric acid recycling.

  3. Effects of Pygidial Secretion (Zoopesticide) on Histopathological Changes in the Male Accessory Reproductive Glands of Adult Male Insect Odontopus varicornis in Relation to Reproduction

    PubMed Central

    Lousia, M.; Selvisabhanayakam; Mathivanan, V.

    2010-01-01

    Indiscriminate use of pesticides for the eradication of pests causes tremendous changes to the environment and also to other nontarget organisms. To prevent such contamination of the environment and save nontarget species, zoopesticides are increasingly used as they are cost effective, eco-friendly, safe, and sustainable in the field of agriculture. The present study was undertaken to find out the effect of pygidial secretion (zoopesticide) on Odontopus varicornis. The insects were exposed to pygidial secretion for 24, 48, 72, and 96 hours and its sublethal concentration was found to be about 2.8% for 48 hours. When the insects were injected with sublethal concentration 2.8% for 48 hours, the study revealed certain remarkable changes in the histopathology of the male accessory reproductive glands (MARGs) such as disintegration of epithelial cell wall, swollen nucleus, vacuolization of cytoplasm, highly pycnotic and necrotic epithelium, enlargement of epithelial cells, and disorganized tissues. It is suggested that zoopesticide causes several histopathological damages in the MARGs of O. varicornis and affects the reproductive potentiality of O. varicornis. PMID:21042469

  4. Stoneflies and Campers: Teaching Campers about Aquatic Environments.

    ERIC Educational Resources Information Center

    Edelstein, Karen

    1994-01-01

    Summer camps can implement a biomonitoring program that determines water quality through study of aquatic insects. Such a program requires a minimum of equipment and allows campers to explore the natural world and absorb information that will affect their views of science and the environment. (LP)

  5. Induced responses to grazing by an insect herbivore (Acentria ephemerella) in an immature macrophyte (Myriophyllum spicatum): an isotopic study

    PubMed Central

    Rothhaupt, Karl-Otto; Fornoff, Felix; Yohannes, Elizabeth

    2015-01-01

    While the mechanisms by which adult terrestrial plants deploy constitutive and induced responses to grazing pressure are well known, the means by which young aquatic plants defend themselves from herbivory are little studied. This study addresses nitrogen transport in the aquatic angiosperm Myriophyllum spicatum in response to herbivore exposure. Nitrogen tracers were used to monitor nitrogen uptake and reallocation in young plants in response to grazing by the generalist insect herbivore Acentria ephemerella. Total nitrogen content (N%) and patterns of nitrogen uptake and allocation (δ15N) were assessed in various plant tissues after 24 and 48 h. Following 24 h exposure to herbivore damage (Experiment 1), nitrogen content of plant apices was significantly elevated. This rapid early reaction may be an adaptation allowing the grazer to be sated as fast as possible, or indicate the accumulation of nitrogenous defense chemicals. After 48 h (Experiment 2), plants' tips showed depletion in nitrogen levels of ca. 60‰ in stem sections vulnerable to grazing. In addition, nitrogen uptake by grazed and grazing-prone upper plant parts was reduced and nutrient allocation into the relatively secure lower parts increased. The results point to three conclusions: (1) exposure to an insect herbivore induces a similar response in immature M. spicatum as previously observed in mature terrestrial species, namely a rapid (within 48 h) reduction in the nutritional value (N%) of vulnerable tissues, (2) high grazing intensity (100% of growing tips affected) did not limit the ability of young plants to induce resistance; and (3) young plants exposed to herbivory exhibit different patterns of nutrient allocation in vulnerable and secure tissues. These results provide evidence of induced defense and resource reallocation in immature aquatic macrophytes which is in line with the responses shown for mature aquatic macrophytes and terrestrial plants. PMID:26380694

  6. Insects and Scorpions

    MedlinePlus

    ... gov . Workplace Safety and Health Topics Insects & Scorpions Bees, Wasps, and Hornets Fire Ants Scorpions Additional Resources ... to outdoor workers. Stinging or biting insects include bees, wasps, hornets, and fire ants. The health effects ...

  7. Insects: An Interdisciplinary Unit

    ERIC Educational Resources Information Center

    Leger, Heather

    2007-01-01

    The author talks about an interdisciplinary unit on insects, and presents activities that can help students practice communication skills (interpersonal, interpretive, and presentational) and learn about insects with hands-on activities.

  8. Ecophysiology and insect herbivory

    SciTech Connect

    Clancy, K.M.; Wagner, M.R.; Reich, P.B.

    1995-07-01

    The relationship of insect herbivory to conifer physiology is examined. Aspects of nutrient assimilation, nutrient distribution, water stress, and climatic change are correlated to defoliation by insects. Other factors examined include plant age, density, structure, soils, and plant genotype.

  9. Photographing Aquatic Organisms

    ERIC Educational Resources Information Center

    Olsen, Sigurd

    1977-01-01

    Techniques for effective photography of aquatic organisms in the field and laboratory are described. Photography of microscopic organisms and construction techniques of photoaquaria are described. (CS)

  10. Insects and Spiders.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of nine Audubon Nature Bulletins, providing teachers and students with informational reading on insects and spiders. The bulletins have these titles: What Good Are Insects, How Insects Benefit Man, Life of the Honey Bee, Ants and Their Fascinating Ways, Mosquitoes and Other Flies, Caterpillars, Spiders and Silk,…

  11. Sunflower insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Like other annual crops, sunflowers are fed upon by a variety of insect pests capable of reducing yields. Though there are a few insects which are considered consistent or severe (e.g., sunflower moth, banded sunflower moth, red sunflower seed weevil), many more insects are capable of causing proble...

  12. Exploring Sound with Insects

    ERIC Educational Resources Information Center

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  13. Insects and Others.

    ERIC Educational Resources Information Center

    Mills, Richard

    1984-01-01

    Several ideas for observing insects and soil animals in the classroom are provided. Also provided are: (1) procedures for making insect cages with milk cartons; (2) suggestions for collecting and feeding insects; and (3) techniques for collecting and identifying soil animals. (BC)

  14. InsectBase: a resource for insect genomes and transcriptomes

    PubMed Central

    Yin, Chuanlin; Shen, Gengyu; Guo, Dianhao; Wang, Shuping; Ma, Xingzhou; Xiao, Huamei; Liu, Jinding; Zhang, Zan; Liu, Ying; Zhang, Yiqun; Yu, Kaixiang; Huang, Shuiqing; Li, Fei

    2016-01-01

    The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96 925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22 536 pathways of 78 insects, 678 881 untranslated regions (UTR) of 84 insects and 160 905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes. PMID:26578584

  15. Conflict resolution in insect societies.

    PubMed

    Ratnieks, Francis L W; Foster, Kevin R; Wenseleers, Tom

    2006-01-01

    Although best known for cooperation, insect societies also manifest many potential conflicts among individuals. These conflicts involve both direct reproduction by individuals and manipulation of the reproduction of colony members. Here we review five major areas of reproductive conflict in insect societies: (a) sex allocation, (b) queen rearing, (c) male rearing, (d) queen-worker caste fate, and (e) breeding conflicts among totipotent adults. For each area we discuss the basis for conflict (potential conflict), whether conflict is expressed (actual conflict), whose interests prevail (conflict outcome), and the factors that reduce colony-level costs of conflict (conflict resolution), such as factors that cause workers to work rather than to lay eggs. Reproductive conflicts are widespread, sometimes having dramatic effects on the colony. However, three key factors (kinship, coercion, and constraint) typically combine to limit the effects of reproductive conflict and often lead to complete resolution.

  16. New Approach to Evaluate the Antennal Response of an Adult Predator Insect to Different Volatile Chemical Compounds by using Electroantennogram Technique

    NASA Astrophysics Data System (ADS)

    Shonouda, Mourad L.

    The antennal response of adult syrphid flies to selected plant volatile chemical compounds was investigated in the present study. The main chemical classes and their chemical compounds were aldehydes (nonanal and benzaldehyde), monoterpene-alcohols (linalool and alpha-terpineol), ketones (6-methyl-5-heptene-2-one and 2-undecanone), hydrocarbons (tetradecane) and benzoids (methyl salicylate). Electroantennogram (EAG) records showed that the syrphid antennae were strongly responded to linalool, 6-methyl-5-heptene-2-one and methyl salicylate even at low concentrations, in addition to the high dose concentration of nonanal comparably to the other chemical compounds. The antennae of old syrphid adults were more responsive and elicited higher levels of responses to all compounds rather than young syrphid adults. The antennal sensitivity may differ from one compound to another according to the sex. The difference in responses could be attributed to the sensitivity of olfactory receptors and/or the characterization of binding protein(s). The quality of biocontrol agent could be improved if the chemical interaction between beneficial natural enemies and the surrounding environment is intensively studied and we clearly understand the chemical ecology of each natural enemy.

  17. Aquatic Activities for Youth.

    ERIC Educational Resources Information Center

    Greene, H. David; And Others

    Designed to meet the diverse educational needs of youth groups, this aquatic program consists of eight individual lesson units, each devoted to one aspect of the aquatic world. Unit topics include: fish aquariums; raising earthworms; simulation of coastal planning; entomology and water; rope; calculating stream flow; saltwater aquariums; and fish…

  18. Amino acid determination in some edible Mexican insects.

    PubMed

    Ladrón de Guevara, O; Padilla, P; García, L; Pino, J M; Ramos-Elorduy, J

    1995-06-01

    The amino acid contents of edible insects from different provinces of Mexico and reference proteins were analysed by reversed-phase high-performance liquid chromatography and ion exchange chromatography. The insect amino acid contents were higher than the adult requirements indicated by the WHO/FAO pattern.

  19. A garlic substance disrupts odorant-binding protein recognition of insect pheromones released from adults of the angoumois grain moth, Sitotroga cerealella (Lepidoptera: Gelechiidae).

    PubMed

    Ma, M; Chang, M-M; Lei, C-L; Yang, F-L

    2016-10-01

    The angoumois grain moth, Sitotroga cerealella, is one of the most serious stored-grain pests worldwide. Control of this moth may be achieved by interfering with olfactory pathways to disrupt male-female communication with sex pheromones, using plant volatiles like garlic or its active substances. Here, three odorant-binding protein (OBP) genes [namely Si. cerealella general OBP 1 (ScerGOBP1), ScerGOBP2 and Si. cerealella pheromone-binding protein (ScerPBP)] were cloned from Si. cerealella antennae, and quantitative real-time PCR showed that these genes were predominantly expressed in adult antennae. ScerPBP expression was male-biased, but ScerGOBP1 and ScerGOBP2 were similar between sexes. The results of competitive binding assays indicated that a garlic substance, diallyl trisulphide (DATS), had similar or even higher binding affinity to ScerPBP than Si. cerealella sex pheromone, 7Z, 11E-hexadecadien-1-ol acetate (HDA). In olfactometer bioassays, DATS significantly reduced the response of adults to HDA when they were exposed to air filled with HDA and DATS. Surprisingly, ScerGOBP2, which is postulated to be involved in the detection of general odours, displayed higher affinity with HDA than did ScerPBP, indicating that ScerGOBP2 may also have a role in pheromone perception. These data suggest that DATS may interfere with recognition of female-produced sex pheromone, disrupting female and male mating behaviour and resulting in a new idea for controlling stored grain pests. PMID:27111111

  20. Paddling Mode of Forward Flight in Insects

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Bergou, Attila J.; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2011-04-01

    By analyzing high-speed video of the fruit fly, we discover a swimminglike mode of forward flight characterized by paddling wing motions. We develop a new aerodynamic analysis procedure to show that these insects generate drag-based thrust by slicing their wings forward at low angle of attack and pushing backwards at a higher angle. Reduced-order models and simulations reveal that the law for flight speed is determined by these wing motions but is insensitive to material properties of the fluid. Thus, paddling is as effective in air as in water and represents a common strategy for propulsion through aquatic and aerial environments.

  1. Paddling mode of forward flight in insects.

    PubMed

    Ristroph, Leif; Bergou, Attila J; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2011-04-29

    By analyzing high-speed video of the fruit fly, we discover a swimminglike mode of forward flight characterized by paddling wing motions. We develop a new aerodynamic analysis procedure to show that these insects generate drag-based thrust by slicing their wings forward at low angle of attack and pushing backwards at a higher angle. Reduced-order models and simulations reveal that the law for flight speed is determined by these wing motions but is insensitive to material properties of the fluid. Thus, paddling is as effective in air as in water and represents a common strategy for propulsion through aquatic and aerial environments.

  2. Cellulolytic systems in insects.

    PubMed

    Watanabe, Hirofumi; Tokuda, Gaku

    2010-01-01

    Despite the presence of many carbohydrolytic activities in insects, their cellulolytic mechanisms are poorly understood. Whereas cellulase genes are absent from the genomes of Drosophila melanogaster or Bombyx mori, other insects such as termites produce their own cellulases. Recent studies using molecular biological techniques have brought new insights into the mechanisms by which the insects and their microbial symbionts digest cellulose in the small intestine. DNA sequences of cellulase and associated genes, as well as physiological and morphological information about the digestive systems of cellulase-producing insects, may allow the efficient use of cellulosic biomass as a sustainable energy source.

  3. The Aquatic Systems Continuum

    NASA Astrophysics Data System (ADS)

    Winter, T. C.

    2004-12-01

    The Aquatic Systems Continuum is a proposed framework for interrelating the physical, chemical, and biological characteristics of aquatic ecosystems. The continuum can be represented by a three-dimensional matrix that relates aquatic ecosystems to their position within hydrologic flow paths (x-axis, a spatial dimension) and their response to climate variability (y-axis). The z-axis describes the structure of biological communities as they relate to the hydrological conditions defined by the x and y axes. The concept is an extension of the Wetland Continuum that was derived from field studies of a prairie pothole wetland complex in North Dakota. At that site, the hydrologic continuum in space is defined by ground-water flow systems. The wetlands are surface-water expressions of larger ground-water watersheds, in which wetlands serve recharge, flow-through, and discharge functions with respect to ground water. The water balance of the wetlands is dominated by precipitation and evaporation. However, the interaction of the wetlands with ground water, although a small part of their water budget, provides the primary control on delivery of major solutes to and from the wetlands. Having monitored these wetlands for more than 25 years, during which time the site had a complete range of climate conditions from drought to deluge, the response of the aquatic communities to a wide variety of climate conditions has been well documented. The Aquatic Systems Continuum extends the model provided by the Wetland Continuum to include rivers and their interaction with ground water. As a result, both ground water and surface water are used to describe terrestrial water flows for all types of aquatic ecosystems. By using the Aquatic Systems Continuum to describe the hydrologic flow paths in all types of terrain, including exchange with atmospheric water, it is possible to design studies, monitoring programs, and management plans for nearly any type of aquatic ecosystem.

  4. Insect flight on fluid interfaces: a chaotic interfacial oscillator

    NASA Astrophysics Data System (ADS)

    Mukundarajan, Haripriya; Prakash, Manu

    2013-11-01

    Flight is critical to the dominance of insect species on our planet, with about 98 percent of insect species having wings. How complex flight control systems developed in insects is unknown, and arboreal or aquatic origins have been hypothesized. We examine the biomechanics of aquatic origins of flight. We recently reported discovery of a novel mode of ``2D flight'' in Galerucella beetles, which skim along an air-water interface using flapping wing flight. This unique flight mode is characterized by a balance between capillary forces from the interface and biomechanical forces exerted by the flapping wings. Complex interactions on the fluid interface form capillary wave trains behind the insect, and produce vertical oscillations at the surface due to non-linear forces arising from deformation of the fluid meniscus. We present both experimental observations of 2D flight kinematics and a dynamic model explaining the observed phenomena. Careful examination of this interaction predicts the chaotic nature of interfacial flight and takeoff from the interface into airborne flight. The role of wingbeat frequency, stroke plane angle and body angle in determining transition between interfacial and fully airborne flight is highlighted, shedding light on the aquatic theory of flight evolution.

  5. Molecular ecology of aquatic microbes

    SciTech Connect

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  6. Aquatic toxicology: fact or fiction

    SciTech Connect

    Macek, K.J.

    1980-02-01

    The science of aquatic toxicology is a relatively new science. The development of the field of aquatic toxicology since 1930 is traced. The state of the art of aquatic toxicology compared with that of classical toxicology is evaluated. The science of aquatic toxicology is expected to undergo a significant period of rapid growth and development, leading ultimately to the formation of a mature science.

  7. Evolutionary ecology of periodical insects.

    PubMed

    Heliövaara, K; Väisänen, R; Simon, C

    1994-12-01

    To be periodical, a species must have a fixed life cycle length and adults must appear synchronously, reproduce only once, and die. The consequence of this life history is that, at a given location, adults of a periodical species will be absent or rare in some years and abundant in others. The relative scarcity of periodical Insect species suggests that periodicity does not evolve easily. The major obstacle to its evolution is selection favoring life cycles In which the offspring of any given female appear over a two- or three-year period. Chance events which disrupt this 'bet-hedging' strategy set the stage for periodicity. Mathematical models predict that, given certain initial conditions, intraspecific competition and predation favor its development. Recent studies suggest that periodicity is rarely perfect but that it can persist in the face of limited gene flow through time.

  8. Smads and insect hemimetabolan metamorphosis.

    PubMed

    Santos, Carolina G; Fernandez-Nicolas, Ana; Belles, Xavier

    2016-09-01

    In contrast with Drosophila melanogaster, practically nothing is known about the involvement of the TGF-β signaling pathway in the metamorphosis of hemimetabolan insects. To partially fill this gap, we have studied the role of Smad factors in the metamorphosis of the German cockroach, Blattella germanica. In D. melanogaster, Mad is the canonical R-Smad of the BMP branch of the TGF-β signaling pathway, Smox is the canonical R-Smad of the TGF-β/Activin branch and Medea participates in both branches. In insects, metamorphosis is regulated by the MEKRE93 pathway, which starts with juvenile hormone (JH), whose signal is transduced by Methoprene-tolerant (Met), which stimulates the expression of Krüppel homolog 1 (Kr-h1) that acts to repress E93, the metamorphosis trigger. In B. germanica, metamorphosis is determined at the beginning of the sixth (final) nymphal instar (N6), when JH production ceases, the expression of Kr-h1 declines, and the transcription of E93 begins to increase. The RNAi of Mad, Smox and Medea in N6 of B. germanica reveals that the BMP branch of the TGF-β signaling pathway regulates adult ecdysis and wing extension, mainly through regulating the expression of bursicon, whereas the TGF-β/Activin branch contributes to increasing E93 and decreasing Kr-h1 at the beginning of N6, crucial for triggering adult morphogenesis, as well as to regulating the imaginal molt timing. PMID:27452629

  9. Aquatic invertebrates as unlikely vectors of Buruli ulcer disease.

    PubMed

    Benbow, M Eric; Williamson, Heather; Kimbirauskas, Ryan; McIntosh, Mollie D; Kolar, Rebecca; Quaye, Charles; Akpabey, Felix; Boakye, D; Small, Pam; Merritt, Richard W

    2008-08-01

    Buruli ulcer is a necrotizing skin disease caused by Mycobacterium ulcerans and associated with exposure to aquatic habitats. To assess possible transmission of M. ulcerans by aquatic biting insects, we conducted a field examination of biting water bugs (Hemiptera: Naucoridae, Belostomatidae, Nepidae) in 15 disease-endemic and 12 non-disease-endemic areas of Ghana, Africa. From collections of 22,832 invertebrates, we compared composition, abundance, and associated M. ulcerans positivity among sites. Biting hemipterans were rare and represented a small percentage (usually <2%) of invertebrate communities. No significant differences were found in hemipteran abundance or pathogen positivity between disease-endemic and non-disease-endemic sites, and between abundance of biting hemipterans and M. ulcerans positivity. Therefore, although infection through insect bites is possible, little field evidence supports the assumption that biting hemipterans are primary vectors of M. ulcerans.

  10. Insect bites and stings

    MedlinePlus

    ... likely to cause itching than pain. Insect and spider bites cause more deaths from venom reactions than bites from snakes. ... are harmless. If possible, bring the insect or spider that bit you with you when you go for medical treatment so it can be identified.

  11. Insects and Bugs

    ERIC Educational Resources Information Center

    Sutherland, Karen

    2009-01-01

    They have been around for centuries. They sting, they bite. They cause intense itching or painful sores. They even cause allergic reactions and sometimes death. There are two types of insects that are pests to humans--those that sting and those that bite. The insects that bite do so with their mouths and include mosquitoes, chiggers, and ticks.…

  12. Corazonin in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corazonin is a peptidergic neurohormone of insects which is expressed in neurosecretory neurons of the pars lateralis of the protocerebrum and transported via nervi corpus cardiaci in the storage lobes of the corpora cardiaca. This peptide occurs with a single isofomr in all insects studied so far,...

  13. Sterile Insect Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter discusses the history of the development of quality control tchnology, the principles and philosophy of assessing insect quality, and the relative importance of the various parameters used to assess insect quality in the context of mass-rearing for the SIT. Quality control is most devel...

  14. Sugarcane insect update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect are an important group of pests affecting sugarcane production. Agricultural consultants play an important role is assisting sugarcane farmers to choose the most appropriated means of managing damaging infestations of insects in their crop. In this presentation, information will be presented ...

  15. Insects: Bugged Out!

    ERIC Educational Resources Information Center

    Piehl, Kathy

    2011-01-01

    Insects really need no introduction. They have lived on earth much longer than humans and vastly outnumber people and all other animal species combined. People encounter them daily in their houses and yards. Yet, when children want to investigate insects, books can help them start their explorations. "Paleo Bugs" carries readers back to the time…

  16. Reducing the maladaptive attractiveness of solar panels to polarotactic insects.

    PubMed

    Horváth, Gábor; Blahó, Miklós; Egri, Adám; Kriska, György; Seres, István; Robertson, Bruce

    2010-12-01

    Human-made objects (e.g., buildings with glass surfaces) can reflect horizontally polarized light so strongly that they appear to aquatic insects to be bodies of water. Insects that lay eggs in water are especially attracted to such structures because these insects use horizontal polarization of light off bodies of water to find egg-laying sites. Thus, these sources of polarized light can become ecological traps associated with reproductive failure and mortality in organisms that are attracted to them and by extension with rapid population declines or collapse. Solar panels are a new source of polarized light pollution. Using imaging polarimetry, we measured the reflection-polarization characteristics of different solar panels and in multiple-choice experiments in the field we tested their attractiveness to mayflies, caddis flies, dolichopodids, and tabanids. At the Brewster angle, solar panels polarized reflected light almost completely (degree of polarization d ≈ 100%) and substantially exceeded typical polarization values for water (d ≈ 30-70%). Mayflies (Ephemeroptera), stoneflies (Trichoptera), dolichopodid dipterans, and tabanid flies (Tabanidae) were the most attracted to solar panels and exhibited oviposition behavior above solar panels more often than above surfaces with lower degrees of polarization (including water), but in general they avoided solar cells with nonpolarizing white borders and white grates. The highly and horizontally polarizing surfaces that had nonpolarizing, white cell borders were 10- to 26-fold less attractive to insects than the same panels without white partitions. Although solar panels can act as ecological traps, fragmenting their solar-active area does lessen their attractiveness to polarotactic insects. The design of solar panels and collectors and their placement relative to aquatic habitats will likely affect populations of aquatic insects that use polarized light as a behavioral cue.

  17. Reducing the maladaptive attractiveness of solar panels to polarotactic insects.

    PubMed

    Horváth, Gábor; Blahó, Miklós; Egri, Adám; Kriska, György; Seres, István; Robertson, Bruce

    2010-12-01

    Human-made objects (e.g., buildings with glass surfaces) can reflect horizontally polarized light so strongly that they appear to aquatic insects to be bodies of water. Insects that lay eggs in water are especially attracted to such structures because these insects use horizontal polarization of light off bodies of water to find egg-laying sites. Thus, these sources of polarized light can become ecological traps associated with reproductive failure and mortality in organisms that are attracted to them and by extension with rapid population declines or collapse. Solar panels are a new source of polarized light pollution. Using imaging polarimetry, we measured the reflection-polarization characteristics of different solar panels and in multiple-choice experiments in the field we tested their attractiveness to mayflies, caddis flies, dolichopodids, and tabanids. At the Brewster angle, solar panels polarized reflected light almost completely (degree of polarization d ≈ 100%) and substantially exceeded typical polarization values for water (d ≈ 30-70%). Mayflies (Ephemeroptera), stoneflies (Trichoptera), dolichopodid dipterans, and tabanid flies (Tabanidae) were the most attracted to solar panels and exhibited oviposition behavior above solar panels more often than above surfaces with lower degrees of polarization (including water), but in general they avoided solar cells with nonpolarizing white borders and white grates. The highly and horizontally polarizing surfaces that had nonpolarizing, white cell borders were 10- to 26-fold less attractive to insects than the same panels without white partitions. Although solar panels can act as ecological traps, fragmenting their solar-active area does lessen their attractiveness to polarotactic insects. The design of solar panels and collectors and their placement relative to aquatic habitats will likely affect populations of aquatic insects that use polarized light as a behavioral cue. PMID:20455911

  18. Principal Areas of Insect Research

    ERIC Educational Resources Information Center

    Williams, Carroll M.

    1973-01-01

    Research for insect control has been quite complex. However, recent knowledge of using insect hormones against them has opened new vistas for producing insecticides which may be harmless to human population. Current areas of insect research are outlined. (PS)

  19. Extreme adaptations for aquatic ectoparasitism in a Jurassic fly larva

    PubMed Central

    Chen, Jun; Wang, Bo; Engel, Michael S; Wappler, Torsten; Jarzembowski, Edmund A; Zhang, Haichun; Wang, Xiaoli; Zheng, Xiaoting; Rust, Jes

    2014-01-01

    The reconstruction of ancient insect ectoparasitism is challenging, mostly because of the extreme scarcity of fossils with obvious ectoparasitic features such as sucking-piercing mouthparts and specialized attachment organs. Here we describe a bizarre fly larva (Diptera), Qiyia jurassica gen. et sp. nov., from the Jurassic of China, that represents a stem group of the tabanomorph family Athericidae. Q. jurassica exhibits adaptations to an aquatic habitat. More importantly, it preserves an unusual combination of features including a thoracic sucker with six radial ridges, unique in insects, piercing-sucking mouthparts for fluid feeding, and crocheted ventral prolegs with upward directed bristles for anchoring and movement while submerged. We demonstrate that Q. jurassica was an aquatic ectoparasitic insect, probably feeding on the blood of salamanders. The finding reveals an extreme morphological specialization of fly larvae, and broadens our understanding of the diversity of ectoparasitism in Mesozoic insects. DOI: http://dx.doi.org/10.7554/eLife.02844.001 PMID:24963142

  20. Feeding the insect industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article reports the use of insect colloidal artificial diets suitable for the rearing of economically important arthropods, such as Lygus lineolaris, Lygus hesperus, Coleomegilla maculata, and Phytoseiulus persimilis The different diets contain key nutrients such as proteins, carbohydrates, vit...

  1. Insect Bites and Stings

    MedlinePlus

    ... they sometimes cause discomfort. Bee, wasp, and hornet stings and fire ant bites usually hurt. Mosquito and ... have severe allergic reactions to insect bites and stings (such as anaphylaxis), carry an emergency epinephrine kit

  2. Insects and climate change

    SciTech Connect

    Elias, S.A. )

    1991-09-01

    In this article the author describes some of the significant late glacial and Holocene changes that occurred in the Rocky Mountains, including the regional extirpation of certain beetle species. The fossil data presented here summarize what is known about regional insect responses to climate change in terms of species stability and geographic distribution. To minimize potential problems of species interactions (i.e., insect-host plant relationships, host-parasite relationships, and other interactions that tie a particular insect species' distribution to that of another organism), only predators and scavengers are discussed. These insects respond most rapidly to environmental changes, because for the most part they are not tied to any particular type of vegetation.

  3. Insect hemolymph clotting.

    PubMed

    Dushay, Mitchell S

    2009-08-01

    The clot's appearance in different large-bodied insects has been described, but until recently, little was known about any insect clot's molecular makeup, and few experiments could directly test its function. Techniques have been developed in Drosophila (fruit fly) larvae to identify clotting factors that can then be tested for effects on hemostasis, healing, and immunity. This has revealed unanticipated complexity in the hemostatic mechanisms in these larvae. While the clot's molecular structure is not yet fully understood, progress is being made, and the loss of clotting factors has been shown to cause subtle immune defects. The few similarities between coagulation in different insect species and life stages, and the current state of knowledge about coagulation in insects are discussed. PMID:19418022

  4. Aquatic Microbiology Laboratory Manual.

    ERIC Educational Resources Information Center

    Cooper, Robert C.; And Others

    This laboratory manual presents information and techniques dealing with aquatic microbiology as it relates to environmental health science, sanitary engineering, and environmental microbiology. The contents are divided into three categories: (1) ecological and physiological considerations; (2) public health aspects; and (3)microbiology of water…

  5. Aquatic Resources Education Curriculum.

    ERIC Educational Resources Information Center

    Pfeiffer, C. Boyd; Sosin, Mark

    Fishing is one of the oldest and most popular outdoor activities. Like most activities, fishing requires basic knowledge and skill for success. The Aquatic Resources Education Curriculum is designed to assist beginning anglers in learning the basic concepts of how, when, and where to fish as well as what tackle to use. The manual is designed to be…

  6. Investigating Aquatic Dead Zones

    ERIC Educational Resources Information Center

    Testa, Jeremy; Gurbisz, Cassie; Murray, Laura; Gray, William; Bosch, Jennifer; Burrell, Chris; Kemp, Michael

    2010-01-01

    This article features two engaging high school activities that include current scientific information, data, and authentic case studies. The activities address the physical, biological, and chemical processes that are associated with oxygen-depleted areas, or "dead zones," in aquatic systems. Students can explore these dead zones through both…

  7. Aquatic Equipment Information.

    ERIC Educational Resources Information Center

    Sova, Ruth

    Equipment usually used in water exercise programs is designed for variety, intensity, and program necessity. This guide discusses aquatic equipment under the following headings: (1) equipment design; (2) equipment principles; (3) precautions and contraindications; (4) population contraindications; and (5) choosing equipment. Equipment is used…

  8. Aquatic plant management

    SciTech Connect

    Not Available

    1991-01-01

    Twelve fact sheets are presented which cover different forms of aquatic plant management in Guntersville Reservoir. These cover the introduction of grass carp and other biological controls, drawdown of reservoir water, herbicide use, harvesting, impacts on recreational uses, and other issues of concern. (SM)

  9. Contaminated Aquatic Sediments.

    PubMed

    Jaglal, Kendrick

    2016-10-01

    A review of the literature published in 2015 relating to the assessment, evaluation and remediation of contaminated aquatic sediments is presented. The review is divided into the following main sections: policy and guidance, methodology, distribution, fate and transport, risk, toxicity and remediation. PMID:27620103

  10. Evolution of the Insects

    NASA Astrophysics Data System (ADS)

    Grimaldi, David; Engel, Michael S.

    2005-05-01

    This book chronicles the complete evolutionary history of insects--their living diversity and relationships as well as 400 million years of fossils. Introductory sections cover the living species diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections then explore the relationships and evolution of each order of hexapods. The volume also chronicles major episodes in the evolutionary history of insects from their modest beginnings in the Devonian and the origin of wings hundreds of millions of years before pterosaurs and birds to the impact of mass extinctions and the explosive radiation of angiosperms on insects, and how they evolved into the most complex societies in nature. Whereas other volumes focus on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Illustrated with 955 photo- and electron- micrographs, drawings, diagrams, and field photos, many in full color and virtually all of them original, this reference will appeal to anyone engaged with insect diversity--professional entomologists and students, insect and fossil collectors, and naturalists. David Grimaldi and Michael S. Engel have collectively published over 200 scientific articles and monographs on the relationships and fossil record of insects, including 10 articles in the journals Science, Nature, and Proceedings of the National Academy of Sciences. David Grimaldi is curator in the Division of Invertebrate Zoology, American Museum of Natural History and adjunct professor at Cornell University, Columbia University, and the City University of New York. David Grimaldi has traveled in 40 countries on 6 continents, collecting and studying recent species of insects and conducting fossil excavations. He is the author of Amber: Window to the Past (Abrams, 2003). Michael S. Engel is an assistant professor in the

  11. Exploring Insect Vision

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2005-01-01

    A fly is buzzing around in the kitchen. You sneak up on it with a flyswatter, but just as you get close to it, it flies away. What makes flies and other insects so good at escaping from danger? The fact that insects have eyesight that can easily detect moving objects is one of the things that help them survive. In this month's Science Shorts,…

  12. Important Insect Pests of Fruit - Important Insect Pests of Nuts - Field Crop Insect Pests - Insect Pests of Vegetable Crops.

    ERIC Educational Resources Information Center

    Gesell, Stanley G.; And Others

    This document consists of four agriculture extension service publications from Pennsylvania State University. The titles are: (1) Important Insect Pests of Fruit; (2) Important Insect Pests of Nuts; (3) Field Crop Insect Pests; and (4) Insect Pests of Vegetable Crops. The first publication gives the hosts, injury, and description of 22 insect…

  13. Biomonitoring of aquatic systems.

    PubMed

    Kurelec, B; Gupta, R C

    1993-01-01

    The 32P-postlabelling analysis provides a sensitive means for detecting pollution-related DNA adducts in aquatic organisms exposed to environmental carcinogens. However, the following factors need to be taken into consideration during the data interpretation: (1) species-specific, naturally occurring DNA modifications (or I-compounds) are found in aquatic organisms at levels which are highly season-dependent; and (2) many aquatic organisms, particularly lower invertebrates, cannot form DNA adducts from common pollutants such as polycyclic aromatic hydrocarbons (PAHs). The level of natural adducts is especially high in lower invertebrates, such as sponges and sea-urchins during their reproductive phase in the spring time (March/April): in subsequent months adducts were either undetectable or present at only trace levels. These invertebrates do not metabolize PAHs such as benzo[a]pyrene but readily biotransform aromatic amines such as 2-acetylaminofluorene to DNA-reactive forms. Pollution-related DNA adducts have been found in fish living in highly polluted rivers and marine sites and in carp exposed to an artificial Diesel-2/crude oil slick. In certain fish (English sole, brown bullheads, etc.) living in polluted environments, the formation of pollution-related DNA adducts has been correlated with an increased incidence of tumours. It is concluded that, while DNA adducts detected in aquatic organisms can be used for biomonitoring and detecting pollutants, there are several confounding factors that should be taken into consideration before one attempts to determine the type and concentration of carcinogenic pollutants present in aquatic environments.

  14. Insect--plant adaptations.

    PubMed

    Southwood, T R

    1984-01-01

    The adaptation of insects to plants probably commenced in the early Permian period, though most current associations will be more recent. A major burst of adaptation must have followed the rise of the Angiosperms in the Cretaceous period, though some particular associations are as recent as this century. Living plants form a large proportion of the potential food in most habitats, though insects have had to overcome certain general hurdles to live and feed on them. Insects affect the reproduction and survival of plants, and thus the diversity of plant secondary chemicals may have evolved as a response. Where an insect species has a significant effect on a plant species that is its only host, coevolution may be envisaged. A spectacular example is provided by Heliconius butterflies and passion flower vines, studied by L.E. Gilbert and others. But such cases may be likened to 'vortices in the evolutionary stream': most plant species are influenced by a range of phytophagous insects so that selection will be for general defences--a situation termed diffuse coevolution. Evidence is presented on recent host-plant shifts to illustrate both the restrictions and the flexibility in current insect-plant associations.

  15. Transformation systems in insects.

    PubMed

    O'Brochta, David A; Atkinson, Peter W

    2004-01-01

    Genetic transformation is an important technology that provides unique opportunities to find, isolate, and analyze genes, as well as to create organisms with unique functional characteristics. Insect biologists have been developing genetic transformation technologies that rely extensively on transposable elements. A number of class II transposable elements isolated originally from insects have been converted into broad host range insect gene vectors. Class II transposable elements are particularly amenable to gene vector development, although they suffer from some limitations such as low rates of recombination. Use of these gene vectors requires the physical introduction of the vectors into developing insect embryos by microinjection. Microinjection methods vary to accommodate the unique physical and developmental characteristics of the target insects. All methods rely on the use of fine glass needles in conjunction with micromanipulators and a microscope. A serious constraint on the use of existing systems can be the inefficiency of successfully delivering the gene vectors to the germ cells of the developing embryo. The general method for vector delivery to insect germ cells is described, as well as variations that are useful under some conditions.

  16. Insect--plant adaptations.

    PubMed

    Southwood, T R

    1984-01-01

    The adaptation of insects to plants probably commenced in the early Permian period, though most current associations will be more recent. A major burst of adaptation must have followed the rise of the Angiosperms in the Cretaceous period, though some particular associations are as recent as this century. Living plants form a large proportion of the potential food in most habitats, though insects have had to overcome certain general hurdles to live and feed on them. Insects affect the reproduction and survival of plants, and thus the diversity of plant secondary chemicals may have evolved as a response. Where an insect species has a significant effect on a plant species that is its only host, coevolution may be envisaged. A spectacular example is provided by Heliconius butterflies and passion flower vines, studied by L.E. Gilbert and others. But such cases may be likened to 'vortices in the evolutionary stream': most plant species are influenced by a range of phytophagous insects so that selection will be for general defences--a situation termed diffuse coevolution. Evidence is presented on recent host-plant shifts to illustrate both the restrictions and the flexibility in current insect-plant associations. PMID:6559112

  17. Exoskeletal chitin scales isometrically with body size in terrestrial insects.

    PubMed

    Lease, Hilary M; Wolf, Blair O

    2010-06-01

    The skeletal system of animals provides the support for a variety of activities and functions. For animals such as mammals, which have endoskeletons, research has shown that skeletal investment (mass) scales with body mass to the 1.1 power. In this study, we ask how exoskeletal investment in insects scales with body mass. We measured the body mass and mass of exoskeletal chitin of 551 adult terrestrial insects of 245 species, with dry masses ranging from 0.0001 to 2.41 g (0.0002-6.13 g wet mass) to assess the allometry of exoskeletal investment. Our results showed that exoskeletal chitin mass scales isometrically with dry body mass across the Insecta as M(chitin) = a M(dry) (b), where b = 1.03 +/- 0.04, indicating that both large and small terrestrial insects allocate a similar fraction of their body mass to chitin. This isometric chitin-scaling relationship was also evident at the taxonomic level of order, for all insect orders except Coleoptera. We additionally found that the relative exoskeletal chitin investment, indexed by the coefficient, a, varies with insect life history and phylogeny. Exoskeletal chitin mass tends to be proportionally less and to increase at a lower rate with mass in flying than in nonflying insects (M(flying insect chitin) = -0.56 x M(dry) (0.97); M(nonflying insect chitin) = -0.55 x M(dry) (1.03)), and to vary with insect order. Isometric scaling (b = 1) of insect exoskeletal chitin suggests that the exoskeleton in insects scales differently than support structures of most other organisms, which have a positive allometry (b > 1) (e.g., vertebrate endoskeleton, tree secondary tissue). The isometric pattern that we document here additionally suggests that exoskeletal investment may not be the primary limit on insect body size. PMID:20235123

  18. The insect abdomen--a heartbeat manager in insects?

    PubMed

    Tartes, U; Vanatoa, A; Kuusik, A

    2002-11-01

    Different possibilities of coordination between circulation, respiration and abdominal movements were found in pupae of Pieris brassicae, Tenebrio molitor, Galleria mellonella and Leptinotarsa decemlineata. Coordination principles depend on metabolic rate: the need to support circulation with abdominal movements appears only at higher metabolic rates. Integration between different abdominal movements and circulation depends on species, on physiological state and, supposedly, on internal morphology. At low metabolic rates, there is no need for a very intensive hemolymph flow, and the dorsal vessel is capable of initiating and/or maintaining necessary hemolymph flow. Starting from a certain metabolic level, it is possible that the abdomen is used to accelerate hemolymph flow in the case of a large amount of hemolymph. When the necessary flow speed has been reached, relatively weak pulsation of the dorsal vessel with accessory pulsatile organs and diaphragms can easily maintain the necessary flow intensity. Heart activity may sometimes be initiated by abdominal movements via cardiac reflex or mechanical excitation. Sometimes, when heart function is weakened by histolysis, the abdomen may temporarily take over the main circulatory function or occasionally contribute to acceleration of low-speed hemolymph flow. In this case the functions are simultaneous and may be triggered by some mediator(s). In active adult insects the whole body is moving, and hence hemolymph circulates and the tracheal system is effectively ventilated by a whole body ensemble consisting of the dorsal vessel, moving organs, body appendages and accessory pulsatile organs. The mechanism of autocirculation (analogous to autoventilation in gas exchange) is a probable mechanism in circulation in adult insects. PMID:12443919

  19. Methods for Aquatic Resource Assessment

    EPA Science Inventory

    The Methods for Aquatic Resource Assessment (MARA) project consists of three main activities in support of assessing the conditions of the nation’s aquatic resources: 1) scientific support for EPA Office of Water’s national aquatic resource surveys; 2) spatial predications of riv...

  20. Aquatic Plants and their Control.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Natural Resources, Lansing.

    Aquatic plants can be divided into two types: algae and macrophytes. The goal of aquatic plant management is to maintain a proper balance of plants within a lake and still retain the lake's recreational and economic importance. Aquatic plant management programs have two phases: long-term management (nutrient control), and short-term management…

  1. Lethal effects of short-wavelength visible light on insects

    NASA Astrophysics Data System (ADS)

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-01

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  2. Lethal effects of short-wavelength visible light on insects.

    PubMed

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-09

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  3. Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2012-01-01

    Salinization of coastal freshwater environments is a global issue. Increased salinity from sea level rise, storm surges, or other mechanisms is common in coastal freshwater marshes of Louisiana, USA. The effects of salinity increases on aquatic macroinvertebrates in these systems have received little attention, despite the importance of aquatic macroinvertebrates for nutrient cycling, biodiversity, and as a food source for vertebrate species. We used microcosm experiments to evaluate the effects of salinity, duration of exposure, and prey availability on the relative survival of dominant aquatic macroinvertebrates (i.e., Procambarus clarkii Girard, Cambarellus puer Hobbs, Libellulidae, Dytiscidae cybister) in a freshwater marsh of southwestern Louisiana. We hypothesized that increased salinity, absence of prey, and increased duration of exposure would decrease survival of aquatic macroinvertebrates and that crustaceans would have higher survival than aquatic insect taxon. Our first hypothesis was only partially supported as only salinity increases combined with prolonged exposure duration affected aquatic macroinvertebrate survival. Furthermore, crustaceans had higher survival than aquatic insects. Salinity stress may cause mortality when acting together with other stressful conditions.

  4. Insect bite reactions.

    PubMed

    Singh, Sanjay; Mann, Baldeep Kaur

    2013-01-01

    Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK) disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr) as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some serious adverse effects

  5. Enterococci in Insects

    PubMed Central

    Martin, Jonathan D.; Mundt, J. Orvin

    1972-01-01

    Enterococci were obtained from 213 of 403 insects cultured during a 14-month period, in numbers from 103 to 3 × 107/g of insect. Insects were taken only from nonurban, wild, and cultivated fields and woods. In species of insects carrying them, enterococci were not always present in every individual cultured, and often more than one species of enterococcus occurred within a species. Enterococci were obtained from certain insects taken in the field during the dormant season, suggesting their role as overwintering agents. They were generally present in species feeding on nectar, succulent plant parts, and on and ir forest litter, but not from insects feeding on less succulent leaves and stems. Streptococcus faecalis was recovered from 32%, Streptococcus faecium from 22.4%, and Streptococcus faecium var. casseliflavus from 43.5% of members of the 37 taxa of insects. S. faecalis and S. faecium var. casseliflavus exhibit a high percent of conformity to the properties published for them. The heterogeneity in properties of S. faecium is similar to that found for the species taken from plants. Many fail to grow in broth at 45 C or in broth containing 6.5% NaCl; 50% of the cultures ferment both melezitose and melibiose, and a few ferment neither sugar. The remainder ferment melibiose only. Failure to reduce methylene blue in milk by S. faecalis and S. faecium is correlated with the inability to ferment lactose. More than 93% of the cultures of S. faecalis digest casein in milk from the top downward, following the production of a soft, flowing curd. Because this property is not characteristic of S. faecalis taken from humans, the reaction in litmus milk is suggested as a means of differentiation between cultures of remote and innocent origin in nature and recent, human pollution. PMID:4628796

  6. Insect bite reactions.

    PubMed

    Singh, Sanjay; Mann, Baldeep Kaur

    2013-01-01

    Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK) disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr) as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some serious adverse effects

  7. Pulses, linkages, and boundaries of coupled aquatic-terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Tockner, K.

    2009-04-01

    Riverine floodplains are linked ecosystems where terrestrial and aquatic habitats overlap, creating a zone where they interact, the aquatic-terrestrial interface. The interface or boundary between aquatic and terrestrial habitats is an area of transition, contact or separation; and connectivity between these habitats may be defined as the ease with which organisms, matter or energy traverse these boundaries. Coupling of aquatic and terrestrial systems generates intertwining food webs, and we may predict that coupled systems are more productive than separated ones. For example, riparian consumers (aquatic and terrestrial) have alternative prey items external to their respective habitats. Such subsidized assemblages occupy a significant higher trophic position than assemblages in unsubsidized areas. Further, cross-habitat linkages are often pulsed; and even small pulses of a driver (e.g. short-term increases in flow) can cause major resource pulses (i.e. emerging aquatic insects) that control the recipient community. For example, short-term additions of resources, simulating pulsed inputs of aquatic food to terrestrial systems, suggest that due to resource partitioning and temporal separation among riparian arthropod taxa the resource flux from the river to the riparian zone increases with increasing riparian consumer diversity. I will discuss the multiple transfer and transformation processes of matter and organisms across aquatic-terrestrial habitats. Key landscape elements along river corridors are vegetated islands that function as instream riparian areas. Results from Central European rivers demonstrate that islands are in general more natural than fringing riparian areas, contribute substantially to total ecotone length, and create diverse habitats in the aquatic and terrestrial realm. In braided rivers, vegetated islands are highly productive landscape elements compared to the adjacent aquatic area. However, aquatic habitats exhibit a much higher decomposition

  8. Scaling macroscopic aquatic locomotion

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Argentina, Médéric; Mahadevan, L.

    2014-10-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimetres to 30 metres, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα, where Re = UL/ν >> 1 and Sw = ωAL/ν, with α = 4/3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1,000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  9. Scaling macroscopic aquatic locomotion

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Argentina, Mederic; Mahadevan, Lakshminarayanan

    2014-11-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimeters to 30 meters, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα , where Re = UL / ν >> 1 and Sw = ωAL / ν , with α = 4 / 3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  10. Aquatic Acoustic Metrics Interface

    SciTech Connect

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.

  11. Aquatic Acoustic Metrics Interface

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specificallymore » designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.« less

  12. Imaging polarimetry of glass buildings: why do vertical glass surfaces attract polarotactic insects?

    PubMed

    Malik, Péter; Hegedüs, Ramón; Kriska, György; Horváth, Gábor

    2008-08-20

    Recently it was observed that the Hydropsyche pellucidula caddis flies swarm near sunset at the vertical glass surfaces of buildings standing on the bank of the Danube river in Budapest, Hungary. These aquatic insects emerge from the Danube and are lured to dark vertical panes of glass, where they swarm, land, copulate, and remain for hours. It was also shown that ovipositing H. pellucidula caddis flies are attracted to highly and horizontally polarized light stimulating their ventral eye region and thus have positive polarotaxis. The attraction of these aquatic insects to vertical reflectors is surprising, because after their aerial swarming, they must return to the horizontal surface of water bodies from which they emerge and at which they lay their eggs. Our aim is to answer the questions: Why are flying polarotactic caddis flies attracted to vertical glass surfaces? And why do these aquatic insects remain on vertical panes of glass after landing? We propose that both questions can be partly explained by the reflection-polarization characteristics of vertical glass surfaces and the positive polarotaxis of caddis flies. We measured the reflection-polarization patterns of shady and sunlit, black and white vertical glass surfaces from different directions of view under clear and overcast skies by imaging polarimetry in the red, green, and blue parts of the spectrum. Using these polarization patterns we determined which areas of the investigated glass surfaces are sensed as water by a hypothetical polarotactic insect facing and flying toward or landed on a vertical pane of glass. Our results strongly support the mentioned proposition. The main optical characteristics of "green," that is, environmentally friendly, buildings, considering the protection of polarotactic aquatic insects, are also discussed. Such "green" buildings possess features that attract only a small number of polarotactic aquatic insects when standing in the vicinity of fresh waters. Since vertical

  13. Imaging polarimetry of glass buildings: why do vertical glass surfaces attract polarotactic insects?

    PubMed

    Malik, Péter; Hegedüs, Ramón; Kriska, György; Horváth, Gábor

    2008-08-20

    Recently it was observed that the Hydropsyche pellucidula caddis flies swarm near sunset at the vertical glass surfaces of buildings standing on the bank of the Danube river in Budapest, Hungary. These aquatic insects emerge from the Danube and are lured to dark vertical panes of glass, where they swarm, land, copulate, and remain for hours. It was also shown that ovipositing H. pellucidula caddis flies are attracted to highly and horizontally polarized light stimulating their ventral eye region and thus have positive polarotaxis. The attraction of these aquatic insects to vertical reflectors is surprising, because after their aerial swarming, they must return to the horizontal surface of water bodies from which they emerge and at which they lay their eggs. Our aim is to answer the questions: Why are flying polarotactic caddis flies attracted to vertical glass surfaces? And why do these aquatic insects remain on vertical panes of glass after landing? We propose that both questions can be partly explained by the reflection-polarization characteristics of vertical glass surfaces and the positive polarotaxis of caddis flies. We measured the reflection-polarization patterns of shady and sunlit, black and white vertical glass surfaces from different directions of view under clear and overcast skies by imaging polarimetry in the red, green, and blue parts of the spectrum. Using these polarization patterns we determined which areas of the investigated glass surfaces are sensed as water by a hypothetical polarotactic insect facing and flying toward or landed on a vertical pane of glass. Our results strongly support the mentioned proposition. The main optical characteristics of "green," that is, environmentally friendly, buildings, considering the protection of polarotactic aquatic insects, are also discussed. Such "green" buildings possess features that attract only a small number of polarotactic aquatic insects when standing in the vicinity of fresh waters. Since vertical

  14. Energy flow in an arctic aquatic ecosystem

    SciTech Connect

    Schell, D.M.

    1988-01-01

    Natural isotope abundances to trace major pathways of energy flow to consumers in Imnavait Creek and the tundra ecosystem of the R4D watershed with comparative work in the coastal tundra. Our overall goals are to a determine if carbon is accumulating in upland and coastal tundra; determine the role of eroded peat carbon in the aquatic ecosystem; and to determine the distribution of carbon and nitrogen isotopes in the tundra-pond ecosystem to establish the feasibility of using natural differences as tracers. Past work on fishes, birds, and the prey species of insects and aquatic crustaceans has shown that peat carbon is very important in the energy supply supporting the food webs over the course of the year. Obligate freshwater fishes from the coastal lakes and Colville River have been shown to contain up to 60 percent peat carbon at the end of the winter season. In contrast, migratory shorebirds and passerines contained much smaller radiocarbon abundances in summer, indicating a major shift to recent in situ primary production in pond and stream ecosystems in summer months. For the past two years, we have narrowed our focus to the processes supplying carbon to the beaded stream system at MS-117 and have concentrated on determining the transfer and accumulation rates of carbon in the watershed.

  15. Energy flow in an arctic aquatic ecosystem

    SciTech Connect

    Schell, D.M.

    1988-12-31

    Natural isotope abundances to trace major pathways of energy flow to consumers in Imnavait Creek and the tundra ecosystem of the R4D watershed with comparative work in the coastal tundra. Our overall goals are to a determine if carbon is accumulating in upland and coastal tundra; determine the role of eroded peat carbon in the aquatic ecosystem; and to determine the distribution of carbon and nitrogen isotopes in the tundra-pond ecosystem to establish the feasibility of using natural differences as tracers. Past work on fishes, birds, and the prey species of insects and aquatic crustaceans has shown that peat carbon is very important in the energy supply supporting the food webs over the course of the year. Obligate freshwater fishes from the coastal lakes and Colville River have been shown to contain up to 60 percent peat carbon at the end of the winter season. In contrast, migratory shorebirds and passerines contained much smaller radiocarbon abundances in summer, indicating a major shift to recent in situ primary production in pond and stream ecosystems in summer months. For the past two years, we have narrowed our focus to the processes supplying carbon to the beaded stream system at MS-117 and have concentrated on determining the transfer and accumulation rates of carbon in the watershed.

  16. Behavioral Immunity in Insects

    PubMed Central

    de Roode, Jacobus C.; Lefèvre, Thierry

    2012-01-01

    Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied. PMID:26466629

  17. Cognition in insects

    PubMed Central

    Webb, Barbara

    2012-01-01

    A traditional view of cognition is that it involves an internal process that represents, tracks or predicts an external process. This is not a general characteristic of all complex neural processing or feedback control, but rather implies specific forms of processing giving rise to specific behavioural capabilities. In this paper, I will review the evidence for such capabilities in insect navigation and learning. Do insects know where they are, or do they only know what to do? Do they learn what stimuli mean, or do they only learn how to behave? PMID:22927570

  18. Insect Repellents: Protect Your Child from Insect Bites

    MedlinePlus

    ... Español Text Size Email Print Share Choosing an Insect Repellent for Your Child Page Content Article Body Mosquitoes , ... sunscreen needs to be reapplied often. Reactions to Insect Repellents If you suspect that your child is having ...

  19. NASDA next generation Aquatic Habitat for Space Shuttle and ISS.

    PubMed

    Masukawa, M; Ochiai, T; Kamigaichi, S; Ishioka, N; Uchida, S; Kono, Y; Sakimura, T

    2003-01-01

    The National Space Development Agency of Japan (NASDA) has more than 20 years of experience developing aquatic animal experiment facilities. We are now studying the next-generation aquatic animal experiment facility or the Aquatic Habitat (AQH) for both Space Shuttle and International Space Station use. A prototype breeding system was designed and tested. Medaka adult fish were able to mate and spawn in this closed circulatory breeding system, and the larvae grew to adult fish and spawned on the 45th day after hatching. The water quality-control system using nitrifying bacteria worked well throughout the medaka breeding test. For amphibians, we also conducted the African clawed toad (Xenopus laevis) breeding test with the same specimen chambers, although a part of circulation loop was opened to air. Xenopus larvae grew and completed metamorphosis successfully in the small specimen chamber. The first metamorphic climax started on the 30th day and was completed on the 38th day.

  20. NASDA next generation aquatic habitat for space shuttle and ISS

    NASA Astrophysics Data System (ADS)

    Masukawa, M.; Ochiai, T.; Kamigaichi, S.; Ishioka, N.; Uchida, S.; Kono, Y.; Sakimura, T.

    2003-10-01

    The National Space Development Agency of Japan (NASDA) has more than 20 years of experience developing aquatic animal experiment facilities. We are now studying the next-generation aquatic animal experiment facility or the Aquatic Habitat (AQH) for both Space Shuttle and International Space Station use. A prototype breeding system was designed and tested. Medaka adult fish were able to mate and spawn in this closed circulatory breeding system, and the larvae grewto adult fish and spawned on the 45th day after hatching. The water quality-control system using nitrifying bacteria worked well throughout the medaka breeding test. For amphibians, we also conducted the African clawed toad ( Xenopus laevis) breeding test with the same specimen chambers, although a part of circulation loop was opened to air. Xenopus larvae grew and completed metamorphosis successfully in the small specimen chamber. The first metamorphic climax started on the 30th day and was completed on the 38th day.

  1. Linking Insects with Crustacea: Physiology of the Pancrustacea: An Introduction to the Symposium.

    PubMed

    Tamone, Sherry L; Harrison, Jon F

    2015-11-01

    Insects and crustaceans represent critical, dominant animal groups (by biomass and species number) in terrestrial and aquatic systems, respectively. Insects (hexapods) and crustaceans are historically grouped under separate taxonomic classes within the Phylum Arthropoda, and the research communities studying hexapods and crustaceans are quite distinct. More recently, the hexapods have been shown to be evolutionarily derived from basal crustaceans, and the clade Pancrustacea recognizes this relationship. This recent evolutionary perspective, and the fact that the Society for Integrative and Comparative Biology has strong communities in both invertebrate biology and insect physiology, provides the motivation for this symposium. Speakers in this symposium were selected because of their expertise in a particular field of insect or crustacean physiology, and paired in such a way as to provide a comparative view of the state of the current research in their respective fields. Presenters discussed what aspects of the physiological system are clearly conserved across insects and crustaceans and how cross-talk between researchers utilizing insects and crustaceans can fertilize understanding of such conserved systems. Speakers were also asked to identify strategies that would enable improved understanding of the evolution of physiological systems of the terrestrial insects from the aquatic crustaceans. The following collection of articles describes multiple recent advances in our understanding of Pancrustacean physiology.

  2. The evolution of an annual life cycle in killifish: adaptation to ephemeral aquatic environments through embryonic diapause.

    PubMed

    Furness, Andrew I

    2016-08-01

    An annual life cycle is characterized by growth, maturity, and reproduction condensed into a single, short season favourable to development, with production of embryos (seeds, cysts, or eggs) capable of surviving harsh conditions which juveniles or adults cannot tolerate. More typically associated with plants in desert environments, or temperate-zone insects exposed to freezing winters, the evolution of an annual life cycle in vertebrates is fairly novel. Killifish, small sexually dimorphic fishes in the Order Cyprinodontiformes, have adapted to seasonally ephemeral water bodies across much of Africa and South America through the independent evolution of an annual life history. These annual killifish produce hardy desiccation-resistant eggs that undergo diapause (developmental arrest) and remain buried in the soil for long periods when fish have perished due to the drying of their habitat. Killifish are found in aquatic habitats that span a continuum from permanent and stable to seasonal and variable, thus providing a useful system in which to piece together the evolutionary history of this life cycle using natural comparative variation. I first review adaptations for life in ephemeral aquatic environments in killifish, with particular emphasis on the evolution of embryonic diapause. I then bring together available evidence from a variety of approaches and provide a scenario for how this annual life cycle evolved. There are a number of features within Aplocheiloidei killifish including their inhabitation of marginal or edge aquatic habitat, their small size and rapid attainment of maturity, and egg properties that make them particularly well suited to the colonization of ephemeral waters. PMID:25969869

  3. Protecting Yourself from Stinging Insects

    MedlinePlus

    ... at risk of being stung by flying insects (bees, wasps, and hornets) and fire ants. While most ... by several stinging insects, run to get away. (Bees release a chemical when they sting, which attracts ...

  4. Pain in aquatic animals.

    PubMed

    Sneddon, Lynne U

    2015-04-01

    Recent developments in the study of pain in animals have demonstrated the potential for pain perception in a variety of wholly aquatic species such as molluscs, crustaceans and fish. This allows us to gain insight into how the ecological pressures and differential life history of living in a watery medium can yield novel data that inform the comparative physiology and evolution of pain. Nociception is the simple detection of potentially painful stimuli usually accompanied by a reflex withdrawal response, and nociceptors have been found in aquatic invertebrates such as the sea slug Aplysia. It would seem adaptive to have a warning system that allows animals to avoid life-threatening injury, yet debate does still continue over the capacity for non-mammalian species to experience the discomfort or suffering that is a key component of pain rather than a nociceptive reflex. Contemporary studies over the last 10 years have demonstrated that bony fish possess nociceptors that are similar to those in mammals; that they demonstrate pain-related changes in physiology and behaviour that are reduced by painkillers; that they exhibit higher brain activity when painfully stimulated; and that pain is more important than showing fear or anti-predator behaviour in bony fish. The neurophysiological basis of nociception or pain in fish is demonstrably similar to that in mammals. Pain perception in invertebrates is more controversial as they lack the vertebrate brain, yet recent research evidence confirms that there are behavioural changes in response to potentially painful events. This review will assess the field of pain perception in aquatic species, focusing on fish and selected invertebrate groups to interpret how research findings can inform our understanding of the physiology and evolution of pain. Further, if we accept these animals may be capable of experiencing the negative experience of pain, then the wider implications of human use of these animals should be considered.

  5. Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects.

    PubMed

    Nguyen, Nhu H; Suh, Sung-Oui; Blackwell, Meredith

    2007-01-01

    Ascomycete yeasts are found commonly in the guts of basidioma-feeding beetles but little is known about their occurrence in the gut of other insects. In this study we isolated 95 yeasts from the gut of adult insects in five neuropteran families (Neuroptera: Corydalidae, Chrysopidae, Ascalaphidae, Mantispidae and Hemerobiidae) and a roach (Blattodea: Blattidae). Based on DNA sequence comparisons and other taxonomic characteristics, they were identified as more than 15 species of Saccharomycetes as well as occasional Cryptococcus-like basidiomycete yeasts. Yeast species such as Lachancea fermentati, Lachancea thermotolerans and Hanseniaspora vineae were isolated repeatedly from the gut of three species of corydalids, suggesting a close association of these species and their insect hosts. Among the yeasts isolated in this study 12 were identified as five novel Candida species that occurred in three phylogenetically distinct clades. Molecular phylogenetic analyses showed that Candida chauliodes sp. nov. (NRRL Y-27909T) and Candida corydali sp. nov. (NRRL Y-27910T) were sister taxa in the Candida albicans/ Lodderomyces elongisporus clade. Candida dosseyi sp. nov. (NRRL Y-27950T) and Candida blattae sp. nov. (NRRL Y-27698T) were sister taxa in the Candida intermedia clade. Candida ascalaphidarum sp. nov. (NRRL Y-27908T) fell on a basal branch in a clade containing Candida membranifaciens and many other insect-associated species. Descriptions of these novel yeast species are provided as well as discussion of their ecology in relation to their insect hosts.

  6. Dispersal of forest insects

    NASA Technical Reports Server (NTRS)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  7. Investigation--Insects!

    ERIC Educational Resources Information Center

    Fay, Janice

    2000-01-01

    Presents activities on insects for second grade students. In the first activity, students build a butterfly garden. In the second activity, students observe stimuli reactions with mealworms in the larval stage. Describes the assessment process and discusses the effects of pollution on living things. (YDS)

  8. Irradiating insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a non-technical article focusing on phytosanitary uses of irradiation. In a series of interview questions, I present information on the scope of the invasive species problem and the contribution of international trade in agricultural products to the movement of invasive insects. This is foll...

  9. Insect mass production technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects provide a very promising alternative for the future production of animal protein. Their nutritional value in conjunction with their food conversion efficiency and low water requirements, make them a more sustainable choice for the production of food and animal origin. However, to realize the...

  10. Olfactory signaling in insects.

    PubMed

    Wicher, Dieter

    2015-01-01

    The detection of volatile chemical information in insects is performed by three types of olfactory receptors, odorant receptors (ORs), specific gustatory receptor (GR) proteins for carbon dioxide perception, and ionotropic receptors (IRs) which are related to ionotropic glutamate receptors. All receptors form heteromeric assemblies; an OR complex is composed of an odor-specific OrX protein and a coreceptor (Orco). ORs and GRs have a 7-transmembrane topology as for G protein-coupled receptors, but they are inversely inserted into the membrane. Ligand-gated ion channels (ionotropic receptors) and ORs operate as IRs activated by volatile chemical cues. ORs are evolutionarily young receptors, and they first appear in winged insects and seem to be evolved to allow an insect to follow sparse odor tracks during flight. In contrast to IRs, the ORs can be sensitized by repeated subthreshold odor stimulation. This process involves metabotropic signaling. Pheromone receptors are especially sensitive and require an accessory protein to detect the lipid-derived pheromone molecules. Signaling cascades involved in pheromone detection depend on intensity and duration of stimuli and underlie a circadian control. Taken together, detection and processing of volatile information in insects involve ionotropic as well as metabotropic mechanisms. Here, I review the cellular signaling events associated with detection of cognate ligands by the different types of odorant receptors.

  11. Corn insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, the major corn insect pests in South Dakota have been the larvae of corn rootworms (northern and western), European corn borer, and black cutworm. Bt-corn hybrids are effective against most of these pests. However, there are also minor or sporadic pests of corn in South Dakota includin...

  12. Insects. Thematic Unit.

    ERIC Educational Resources Information Center

    Gosnell, Kathee

    This book is a captivating whole-language thematic unit about the study of insects, relating it to our understanding of the past and our hopes for using our knowledge in the present to balance the ecosystem in the future. It contains a wide variety of lesson ideas and reproducible pages designed for use with intermediate students. At its core,…

  13. Recycled Insect Models

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Meyer, Mary Ann

    2007-01-01

    This article presents an engaging activity in which high school students use a dichotomous key to guide the creation and classification of model insects from recycled plastic lids and containers. Besides teaching the use of a dichotomous key and the effect of evolutionary descent upon groupings of organisms, this activity focuses on an…

  14. Fluorescence in insects

    NASA Astrophysics Data System (ADS)

    Welch, Victoria L.; Van Hooijdonk, Eloise; Intrater, Nurit; Vigneron, Jean-Pol

    2012-10-01

    Fluorescent molecules are much in demand for biosensors, solar cells, LEDs and VCSEL diodes, therefore, considerable efforts have been expended in designing and tailoring fluorescence to specific technical applications. However, naturally occurring fluorescence of diverse types has been reported from a wide array of living organisms: most famously, the jellyfish Aequorea victoria, but also in over 100 species of coral and in the cuticle of scorpions, where it is the rule, rather than the exception. Despite the plethora of known insect species, comparatively few quantitative studies have been made of insect fluorescence. Because of the potential applications of natural fluorescence, studies in this field have relevance to both physics and biology. Therefore, in this paper, we review the literature on insect fluorescence, before documenting its occurrence in the longhorn beetles Sternotomis virescens, Sternotomis variabilis var. semi rufescens, Anoplophora elegans and Stellognatha maculata, the tiger beetles Cicindela maritima and Cicindela germanica and the weevil Pachyrrhynchus gemmatus purpureus. Optical features of insect fluorescence, including emitted wavelength, molecular ageing and naturally occurring combinations of fluorescence with bioluminescence and colour-producing structures are discussed.

  15. Accumulation of mercury in larvae and adults, Chironomus riparius (Meigen)

    SciTech Connect

    Not Available

    1986-09-01

    Among benthic aquatic insects there are taxa that grow abundant in sediments polluted with organic matter. Some of them also tolerate high levels of heavy metals. In this research short exposure and partial life cycle tests were carried out to evaluate the accumulation of mercury in Chironomus riparius Meigen larvae, pupal exuviae and adults from water enriched with HgCl/sub 2/. Their abundance in heavily polluted waters and the fact that it is easy to rear them suggested the use of this species for the toxicity tests considered in our present research. Short exposure tests were carried out to evaluate the LC/sub 50/ of HgCl/sub 2/ for the 4th instar larva of C. riparius Meigen.

  16. Linking the evolution of habitat choice to ecosystem functioning: direct and indirect effects of pond-reproducing fire salamanders on aquatic-terrestrial subsidies.

    PubMed

    Reinhardt, Timm; Steinfartz, Sebastian; Paetzold, Achim; Weitere, Markus

    2013-09-01

    Shifts in life history traits and in the behaviour of species can potentially alter ecosystem functioning. The reproduction of the central European fire salamander (Salamandra salamandra), which usually deposits its larvae in first-order streams, in small pool and pond-like habitats, is an example of a recent local adaptation in this species. Here we aimed to quantify the direct and indirect effects of the predatory larvae on the aquatic food webs in the ponds and on the flux of matter between the ponds and adjacent terrestrial habitats. Our estimates are based on biomass data of the present pond fauna as well as on the analysis of stomach content data, growth rates and population dynamics of the salamander larvae in pond habitats. By their deposition of larvae in early spring, female fire salamanders import between 0.07 and 2.86 g dry mass m(-2) larval biomass into the ponds. Due to high mortality rates in the larval phase and the relatively small size at metamorphosis of the pond-adapted salamanders compared to stream-adapted ones, the biomass export of the metamorphosed salamanders clearly falls below the initial biomass import. Catastrophic events such as high water temperatures and low oxygen levels may even occasionally result in mass mortalities of salamander larvae and thus in a net 100 % import of the salamander biomass into the pond food webs. Indirect effects further accelerate this net import of matter into the aquatic habitat, e.g. the feeding of salamanders on aquatic insect larvae with the emergence of terrestrial adults-thus preventing export-and on terrestrial organisms that fall on the water surface (supporting import). This study demonstrates that the adaptation of salamanders to pond reproduction can alter food web linkages across ecosystem boundaries by enhancing the flux of materials and energy from terrestrial (i.e. forest) to the aquatic (i.e. pond) habitat.

  17. Immature insects (Plecoptera, Trichoptera, and Ephemeroptera) collected from deep water in western Lake Superior

    USGS Publications Warehouse

    Selgeby, James H.

    1974-01-01

    Five species of aquatic insects - two plecopterans, two trichopterans, and one ephemeropteran - usually found in streams or ponds were collected in water 32-100 m deep in western Lake Superior. All appear to be new records for the lake and all were collected from far greater depths than previously recorded for these forms.

  18. Are insect repellents toxic to freshwater insects? A case study using caddisflies exposed to DEET.

    PubMed

    Campos, Diana; Gravato, Carlos; Quintaneiro, Carla; Koba, Olga; Randak, Tomas; Soares, Amadeu M V M; Pestana, João L T

    2016-04-01

    Stream ecosystems face ever-increasing pressures by the presence of emergent contaminants, such as, personal care products. N, N-diethyl-3-methylbenzamide (DEET) is a synthetic insect repellent that is being found in surface waters environments in concentrations up to 33.4 μg/L. Information concerning DEET's toxicity in the aquatic environment is still limited and focused only on its acute effects on model species. Our main objective was to assess the effects of DEET exposure to a caddisfly non-target species using sub-lethal endpoints. For that, we chose Sericostoma vittatum, an important shredder in Portuguese freshwaters that has been already used in different ecotoxicological assays. Besides acute tests, S. vittatum were exposed during 6 days to a gradient of DEET concentrations (8, 18 and 40.5 mg/L) to assess effects on feeding behaviour and biochemical responses, such as, lipid peroxidation levels (LPO), catalase and acetylcholinesterase (AChE) activities, and also assess effects on energy reserves and consumption. Acute tests revealed a 48 h-LC50 of 80.12 mg/L and DEET exposure caused feeding inhibition with a LOEC of 36.80 mg/L. Concerning the biochemical responses, DEET caused no effects in LPO nor on catalase activity. A non-significant decrease in AChE activity was observed. Regarding energetic reserves, exposure to DEET caused a significant reduction in S. vittatum carbohydrates levels. These results add important information for the risk assessment of insect repellents in the aquatic environment and suggest that reported environmental concentrations of DEET are not toxic to non-target freshwater insects. PMID:26855222

  19. Respiratory function of the plastron in the aquatic bug Aphelocheirus aestivalis (Hemiptera, Aphelocheiridae).

    PubMed

    Seymour, Roger S; Jones, Karl K; Hetz, Stefan K

    2015-09-01

    The river bug Aphelocheirus aestivalis is a 40 mg aquatic insect that, as an adult, relies totally on an incompressible physical gill to exchange respiratory gases with the water. The gill (called a 'plastron') consists of a stationary layer of air held in place on the body surface by millions of tiny hairs that support a permanent air-water interface, so that the insect never has to renew the gas at the water's surface. The volume of air in the plastron is extremely small (0.14 mm(3)), under slightly negative pressure and connected to the gas-filled tracheal system through spiracles on the cuticle. Here, we measure PO2 of the water and within the plastron gas with O2-sensing fibre optics to understand the effectiveness and limitations of the gas exchanger. The difference in PO2 is highest in stagnant water and decreases with increasing convection over the surface. Respiration of bugs in water-filled vials varies between 33 and 296 pmol O2 s(-1), depending on swimming activity. The effective thickness of the boundary layer around the plastron was calculated from respiration rate, PO2 difference and plastron surface area, according to the Fick diffusion equation and verified by direct measurements with the fibre-optic probes. In stagnant water, the boundary layer is approximately 500 μm thick, which nevertheless can satisfy the demands of resting bugs, even if the PO2 of the free water decreases to half that of air saturation. Active bugs require thinner boundary layers (∼ 100 μm), which are achieved by living in moving water or by swimming.

  20. Respiratory function of the plastron in the aquatic bug Aphelocheirus aestivalis (Hemiptera, Aphelocheiridae).

    PubMed

    Seymour, Roger S; Jones, Karl K; Hetz, Stefan K

    2015-09-01

    The river bug Aphelocheirus aestivalis is a 40 mg aquatic insect that, as an adult, relies totally on an incompressible physical gill to exchange respiratory gases with the water. The gill (called a 'plastron') consists of a stationary layer of air held in place on the body surface by millions of tiny hairs that support a permanent air-water interface, so that the insect never has to renew the gas at the water's surface. The volume of air in the plastron is extremely small (0.14 mm(3)), under slightly negative pressure and connected to the gas-filled tracheal system through spiracles on the cuticle. Here, we measure PO2 of the water and within the plastron gas with O2-sensing fibre optics to understand the effectiveness and limitations of the gas exchanger. The difference in PO2 is highest in stagnant water and decreases with increasing convection over the surface. Respiration of bugs in water-filled vials varies between 33 and 296 pmol O2 s(-1), depending on swimming activity. The effective thickness of the boundary layer around the plastron was calculated from respiration rate, PO2 difference and plastron surface area, according to the Fick diffusion equation and verified by direct measurements with the fibre-optic probes. In stagnant water, the boundary layer is approximately 500 μm thick, which nevertheless can satisfy the demands of resting bugs, even if the PO2 of the free water decreases to half that of air saturation. Active bugs require thinner boundary layers (∼ 100 μm), which are achieved by living in moving water or by swimming. PMID:26206357

  1. Radar cross section of insects

    NASA Astrophysics Data System (ADS)

    Riley, J. R.

    1985-02-01

    X-band measurements of radar cross section as a function of the angle between insect body axis and the plane of polarization are presented. A finding of particular interest is that in larger insects, maximum cross section occurs when the E-vector is perpendicular to the body axis. A new range of measurements on small insects (aphids, and planthoppers) is also described, and a comprehensive summary of insect cross-section data at X-band is given.

  2. Conceptual Framework for Aquatic Interfaces

    NASA Astrophysics Data System (ADS)

    Lewandowski, J.; Krause, S.

    2015-12-01

    Aquatic interfaces are generally characterized by steep gradients of physical, chemical and biological properties due to the contrast between the two adjacent environments. Innovative measurement techniques are required to study the spatially heterogeneous and temporally variable processes. Especially the different spatial and temporal scales are a large challenge. Due to the steep biogeochemical gradients and the intensive structural and compositional heterogeneity, enhanced biogeochemical processing rates are inherent to aquatic interfaces. Nevertheless, the effective turnover depends strongly on the residence time distribution along the flow paths and in sections with particular biogeochemical milieus and reaction kinetics. Thus, identification and characterization of the highly complex flow patterns in and across aquatic interfaces are crucial to understand biogeochemical processing along exchange flow paths and to quantify transport across aquatic interfaces. Hydrodynamic and biogeochemical processes are closely coupled at aquatic interfaces. However, interface processing rates are not only enhanced compared to the adjacent compartments that they connect; also completely different reactions might occur if certain thresholds are exceeded or the biogeochemical milieu differs significantly from the adjacent environments. Single events, temporal variability and spatial heterogeneity might increase overall processing rates of aquatic interfaces and thus, should not be neglected when studying aquatic interfaces. Aquatic interfaces are key zones relevant for the ecological state of the entire ecosystem and thus, understanding interface functioning and controls is paramount for ecosystem management. The overall aim of this contribution is a general conceptual framework for aquatic interfaces that is applicable to a wide range of systems, scales and processes.

  3. Effects of acidification on metal accumulation by aquatic plants and invertebrates. 2. Wetlands, ponds and small lakes

    USGS Publications Warehouse

    Albers, P.H.; Camardese, M.B.

    1993-01-01

    High concentrations of trace metals in the water of low-pH lakes and streams could result in elevated amounts of metals within or adsorbed to aquatic plants and, possibly, invertebrates. Concentrations of Al, Cd, Ca, Cu, Fe, Pb, Mg, Mn, Hg, Ni, P, and Zn were compared in water, plants, and aquatic invertebrates of wetlands, ponds, and small lakes in Maryland and Maine. The accumulation of metals by aquatic plants and insects and the concentrations of metals in water were not greatly affected by pH. None of the metal concentrations significantly correlated with metals in insects. Plant metal concentrations poorly correlated with metal concentrations in water. Concentrations of metals exceeded acceptable dietary levels more frequently in plants than in invertebrates. Concerns about metal toxicity in birds that feed on invertebrates and plants from acidified waters seem to be unwarranted. Positive correlations among pH, Ca in water, Ca in insects, and Ca in plants imply that acidification can reduce the Ca content of aquatic biota. Aquatic insects were low in Ca, but crayfishes and snails, which are adversely affected by low pH, were very high. A concern for waterfowl is Ca deprivation from decreased Ca availability in low-pH wetlands, ponds, and small lakes.

  4. Insect endosymbionts: manipulators of insect herbivore trophic interactions?

    PubMed

    Clark, Emily L; Karley, Alison J; Hubbard, Stephen F

    2010-08-01

    Throughout their evolutionary history, insects have formed multiple relationships with bacteria. Although many of these bacteria are pathogenic, with deleterious effects on the fitness of infected insects, there are also numerous examples of symbiotic bacteria that are harmless or even beneficial to their insect host. Symbiotic bacteria that form obligate or facultative associations with insects and that are located intracellularly in the host insect are known as endosymbionts. Endosymbiosis can be a strong driving force for evolution when the acquisition and maintenance of a microorganism by the insect host results in the formation of novel structures or changes in physiology and metabolism. The complex evolutionary dynamics of vertically transmitted symbiotic bacteria have led to distinctive symbiont genome characteristics that have profound effects on the phenotype of the host insect. Symbiotic bacteria are key players in insect-plant interactions influencing many aspects of insect ecology and playing a key role in shaping the diversification of many insect groups. In this review, we discuss the role of endosymbionts in manipulating insect herbivore trophic interactions focussing on their impact on plant utilisation patterns and parasitoid biology.

  5. Dietary choices by four captive slender lorises (Loris tardigradus) when presented with various insect life stages.

    PubMed

    Clayton, Jonathan B; Glander, Kenneth E

    2011-01-01

    The slender loris (Loris tardigradus) is a rare, nocturnal prosimian found only in the tropical rainforest of southern India and Sri Lanka. Little is known about their diet, though it is assumed that insects comprise a majority of their wild diet. Based on this assumption, captive lorises are offered a variety of insects or insect life stages; the species of insect or the life stage is often determined by what is easiest to buy or rear. Captive lorises at the Duke Lemur Center (DLC) were offered the opportunity to choose which life stage of mealworms (Tenebrio molito), superworms (Zophobus morio), or waxworms (Galleria mellonella) they preferred. The DLC captive lorises did not select the largest life stages of any insect offered. They preferred the larvae stage to the adult stage in all three insect species, and males and females had different insect species and life stage preferences.

  6. Dietary choices by four captive slender lorises (Loris tardigradus) when presented with various insect life stages.

    PubMed

    Clayton, Jonathan B; Glander, Kenneth E

    2011-01-01

    The slender loris (Loris tardigradus) is a rare, nocturnal prosimian found only in the tropical rainforest of southern India and Sri Lanka. Little is known about their diet, though it is assumed that insects comprise a majority of their wild diet. Based on this assumption, captive lorises are offered a variety of insects or insect life stages; the species of insect or the life stage is often determined by what is easiest to buy or rear. Captive lorises at the Duke Lemur Center (DLC) were offered the opportunity to choose which life stage of mealworms (Tenebrio molito), superworms (Zophobus morio), or waxworms (Galleria mellonella) they preferred. The DLC captive lorises did not select the largest life stages of any insect offered. They preferred the larvae stage to the adult stage in all three insect species, and males and females had different insect species and life stage preferences. PMID:20872876

  7. Insect-foraging in captive owl monkeys (Aotus nancymaae).

    PubMed

    Wolovich, Christy K; Rivera, Jeanette; Evans, Sian

    2010-08-01

    Whereas the diets of diurnal primate species vary greatly, almost all nocturnal primate species consume insects. Insect-foraging has been described in nocturnal prosimians but has not been investigated in owl monkeys (Aotus spp.). We studied 35 captive owl monkeys (Aotus nancymaae) in order to describe their foraging behavior and to determine if there were any age or sex differences in their ability to capture insect prey. Because owl monkeys cooperate in parental care and in food-sharing, we expected social interactions involving insect prey. We found that owl monkeys most often snatched flying insects from the air and immobilized crawling insects against a substrate using their hands. Immatures and adult female owl monkeys attempted to capture prey significantly more often than did adult males; however, there was no difference in the proportion of attempts that resulted in capture. Social interactions involving prey appeared similar to those with provisioned food, but possessors of prey resisted begging attempts more so than did possessors of other food. Owl monkeys attempted to capture prey often (mean = 9.5 +/- 5.8 attempts/h), and we speculate that the protein and lipid content of captured prey is important for meeting the metabolic demands for growth and reproduction.

  8. Insect-foraging in captive owl monkeys (Aotus nancymaae).

    PubMed

    Wolovich, Christy K; Rivera, Jeanette; Evans, Sian

    2010-08-01

    Whereas the diets of diurnal primate species vary greatly, almost all nocturnal primate species consume insects. Insect-foraging has been described in nocturnal prosimians but has not been investigated in owl monkeys (Aotus spp.). We studied 35 captive owl monkeys (Aotus nancymaae) in order to describe their foraging behavior and to determine if there were any age or sex differences in their ability to capture insect prey. Because owl monkeys cooperate in parental care and in food-sharing, we expected social interactions involving insect prey. We found that owl monkeys most often snatched flying insects from the air and immobilized crawling insects against a substrate using their hands. Immatures and adult female owl monkeys attempted to capture prey significantly more often than did adult males; however, there was no difference in the proportion of attempts that resulted in capture. Social interactions involving prey appeared similar to those with provisioned food, but possessors of prey resisted begging attempts more so than did possessors of other food. Owl monkeys attempted to capture prey often (mean = 9.5 +/- 5.8 attempts/h), and we speculate that the protein and lipid content of captured prey is important for meeting the metabolic demands for growth and reproduction. PMID:20523055

  9. Adapted Aquatics Programming: A Professional Guide.

    ERIC Educational Resources Information Center

    Lepore, Monica; Gayle, G. William; Stevens, Shawn F.

    This book is designed to help aquatic instructors in meeting the needs of individuals with disabilities in general or adapted aquatics programs. Part 1, "Foundations of Adapted Aquatics," introduces various philosophies and issues having to do with initiating adapted aquatics programs. Chapters address the benefits of aquatic activity, models for…

  10. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs.

    PubMed

    Nakano, S; Murakami, M

    2001-01-01

    Mutual trophic interactions between contiguous habitats have remained poorly understood despite their potential significance for community maintenance in ecological landscapes. In a deciduous forest and stream ecotone, aquatic insect emergence peaked around spring, when terrestrial invertebrate biomass was low. In contrast, terrestrial invertebrate input to the stream occurred primarily during summer, when aquatic invertebrate biomass was nearly at its lowest. Such reciprocal, across-habitat prey flux alternately subsidized both forest birds and stream fishes, accounting for 25.6% and 44.0% of the annual total energy budget of the bird and fish assemblages, respectively. Seasonal contrasts between allochthonous prey supply and in situ prey biomass determine the importance of reciprocal subsidies.

  11. Thermocouple design for measuring temperatures of small insects.

    PubMed

    Hanson, A A; Venette, R C

    2013-01-01

    Contact thermocouples often are used to measure surface body temperature changes of insects during cold exposure. However, small temperature changes of minute insects can be difficult to detect, particularly during the measurement of supercooling points. We developed two thermocouple designs, which use 0.51 mm diameter or 0.127 mm diameter copper-constantan wires, to improve our ability to resolve insect exotherms. We tested the designs with adults from three parasitoid species: Tetrastichus planipennisi, Spathius agrili, and S. floridanus. These species are <3 mm long and <0.1 mg. Mean exotherms were greater for fine-gauge thermocouples than thick-gauge thermocouples for the smallest species tested, T. planipennisi. This difference was not apparent for larger species S. agrili and S. floridanus. Thermocouple design did not affect the mean supercooling point for any of the species. The cradle thermocouple design developed with the fine gauge wire was reusable and allowed for easy insect recovery after cold exposure.

  12. Microwave radar detection of stored-product insects.

    PubMed

    Mankin, R W

    2004-06-01

    A microwave radar system that senses motion was tested for capability to detect hidden insects of different sizes and activity levels in stored products. In initial studies, movements of individual adults or groups of Lasioderma serricorne (F.), Oryzaephilus surinamensis (L.), Attagenus unicolor (Brahm), and Tribolium castaneum (Herbst) were easily detected over distances up to 30 cm in air. Boxes of corn meal mix and flour mix were artificially infested with 5-100 insects to estimate the reliability of detection. The likelihood that a box was infested was rated by the radar system on a quantitative scale. The ratings were significantly correlated with the numbers of infesting insects. The radar system has potential applications in management programs where rapid, nondestructive targeting of incipient insect infestations would be of benefit to the producers and consumers of packaged foods.

  13. Biogeochemical interactions affecting hepatic trace element levels in aquatic birds

    SciTech Connect

    Moeller, G.

    1996-07-01

    Knowledge of elemental interactions is important to the toxicological assessment of wildlife in the geochemical environment. This study determines the concentrations of Al, As, B, Ba, Be, Cd, Cr, Cu, Fe, Pb, Li, Mg, Mn, Hg, Mo, Ni, Se, Ag, V, and Zn in aquatic bird liver, fish liver, whole bivalves, insects, and waters in several aquatic ecosystems in northern California. There is evidence of strong in vivo and environmental interactions, including the observation of manganese as a possible cofactor or indicator in selenium bioaccumulation. The nearest neighbor selenium correlation in aquatic bird liver tissue that results from this work is Cd-Mn-Se-Hg-As. The correlation of liver selenium to manganese in vivo and the result that the majority of the variance in liver selenium concentration is contained in the manganese term of the regression model relating Se to Cd, Mn, and Hg is new knowledge in the study of aquatic birds. A linear relationship between liver selenium and environmental manganese (water and sediment) is found in the data, suggesting a water chemistry compartmentalization or activation of toxicants. Alternatively, the hepatic concentrations of selenium, manganese, and iron suggest induction of enzymes in response to oxidative stress.

  14. Meniscus-climbing insects

    NASA Astrophysics Data System (ADS)

    Hu, David L.; Kreider, Tim; Bush, John W. M.; Mit Department Of Mathematics Team

    2003-11-01

    Many millimetric water-walking insects are unable to climb the meniscii that border land and emerging vegetation using their traditional means of propulsion. We explore the novel means by which some insects succeed in so doing through a combined experimental and theoretical investigation. The grub Collembola ascends by distorting the free surface in order to generate a net horizontal surface tension force. The water treader Mesovelia climbs the meniscus by exploiting the Coulomb-like attraction between like-signed menisci: by lifting the free surface with its front and rear pairs of feet, it generates a tangential force that draws it up the slope. We examine the required force and torque balances on the body in order to calculate optimal leg configurations for meniscus climbers that are consistent with those observed.

  15. On quantifying insect movements

    SciTech Connect

    Wiens, J.A.; Crist, T.O. ); Milne, B.T. )

    1993-08-01

    We elaborate on methods described by Turchin, Odendaal Rausher for quantifying insect movement pathways. We note the need to scale measurement resolution to the study insects and the questions being asked, and we discuss the use of surveying instrumentation for recording sequential positions of individuals on pathways. We itemize several measures that may be used to characterize movement pathways and illustrate these by comparisons among several Eleodes beetles occurring in shortgrass steppe. The fractal dimension of pathways may provide insights not available from absolute measures of pathway configuration. Finally, we describe a renormalization procedure that may be used to remove sequential interdependence among locations of moving individuals while preserving the basic attributes of the pathway.

  16. Insect maintenance and transmission.

    PubMed

    Kingdom, Heather

    2013-01-01

    Phytoplasmas are plant pathogens of huge economic importance due to responsibility for crop yield losses worldwide. Institutions around the world are trying to understand and control this yield loss at a time when food security is high on government agendas. In order to fully understand the mechanisms of phytoplasma infection and spread, more insect vector and phytoplasma colonies will need to be established for research worldwide. Rearing and study of these colonies is essential in the research and development of phytoplasma control measures. This chapter highlights general materials and methods for raising insect vector colonies and maintenance of phytoplasmas. Specific methods of rearing the maize leafhopper and maize bushy stunt phytoplasma and the aster leafhopper and aster yellows phytoplasma strain witches' broom are also included. PMID:22987405

  17. Protection Goals for Aquatic Plants

    EPA Science Inventory

    Someone once said plants are the ugly stepchildren of the toxicological world. This was not out of lack of respect for plants, but rather reflected the common assumption that aquatic plants were less sensitive than aquatic fauna to chemicals. We now know this is not a valid gener...

  18. Tool use by aquatic animals

    PubMed Central

    Mann, Janet; Patterson, Eric M.

    2013-01-01

    Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour. PMID:24101631

  19. Evaluation of tag entanglement as a factor in harmonic radar studies of insect dispersal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The observation of insects and other small organisms entangled in the habitat after the addition of vertical or trailing electronic tags to their body has generated concerns on the suitability of harmonic radars to track the dispersal of insects. This study compared the walking behavior of adult Co...

  20. New data evaluation procedure including advanced background subtraction for radiography using the example of insect mandibles

    NASA Astrophysics Data System (ADS)

    Mangold, Stefan; van de Kamp, Thomas; Steininger, Ralph

    2016-05-01

    The usefulness of full field transmission spectroscopy is shown using the example of mandible of the stick insect Peruphasma schultei. An advanced data evaluation tool chain with an energy drift correction and highly reproducible automatic background correction is presented. The results show significant difference between the top and the bottom of the mandible of an adult stick insect.

  1. Efficacy of Dinotefuran (Alpine® spray and dust) on six species of stored product insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dinotefuran, an agonist of insect nicotinic acetylcholine receptors, was evaluated both as a 0.5% active ingredient aerosol spray and a dust combined with diatomaceous earth (DE), 5 g/m2 and 10g/m2), at 45% r.h. and 75% r.h. Target species were six adult stored product insect species: Tribolium cast...

  2. Selenium toxicosis in wild aquatic birds

    USGS Publications Warehouse

    Ohlendorf, H.M.; Kilness, A.W.; Simmons, J.L.; Stroud, R.K.; Hoffman, D.J.; Moore, J.F.

    1988-01-01

    Severe gross and microscopic lesions and other changes were found in adult aquatic birds and in embryos from Kesterson Reservoir (a portion of Kesterson National Wildlife Refuge), Merced County, Calif., during 1984. Adult birds from that area were emaciated, had subacute to extensive chronic hepatic lesions, and had excess fluid and fibrin in the peritoneal cavity. Biochemical changes in their livers included elevated glycogen and non-protein-bound sulfhydryl concentrations and glutathione peroxidase activity but lowered protein, total sulfhydryl, and protein-bound sulfhydryl concentrations. Congenital malformations observed grossly in embryos were often multiple and included anophthalmia, microphthalmia, abnormal beaks, amelia, micromelia, ectrodactyly, and hydrocephaly. Mean concentrations of selenium in livers (94.4 ppm, dry weight) and kidneys (96.6 ppm) of birds collected at the Kesterson ponds were about 10 times those found at a nearby control area (8.3 and 12.2 ppm). We conclude that selenium present in the agricultural drainage water supplied to the Kesterson ponds accumulated in the food chain of aquatic birds to toxic concentrations and caused the lesion and other changes observed.

  3. Fatigue of insect cuticle.

    PubMed

    Dirks, Jan-Henning; Parle, Eoin; Taylor, David

    2013-05-15

    Many parts of the insect exoskeleton experience repeated cyclic loading. Although the cuticle of insects and other arthropods is the second most common natural composite material in the world, so far nothing is known about its fatigue properties, despite the fact that fatigue undoubtedly limits the durability of body parts in vivo. For the first time, we here present experimental fatigue data of insect cuticle. Using force-controlled cyclic loading, we determined the number of cycles to failure for hind legs (tibiae) and hind wings of the locust Schistocerca gregaria, as a function of the applied cyclic stress. Our results show that, although both are made from cuticle, these two body parts behave very differently. Wing samples showed a large fatigue range, failing after 100,000 cycles when we applied 46% of the stress needed for instantaneous failure [the ultimate tensile strength (UTS)]. Legs, in contrast, were able to sustain a stress of 76% of the UTS for the same number of cycles to failure. This can be explained by the difference in the composition and structure of the material, two factors that, amongst others, also affect the well-known behaviour of engineering composites. Final failure of the tibiae occurred via one of two different failure modes--propagation in tension or buckling in compression--indicating that the tibia is 'optimized' by evolution to resist both failure modes equally. These results are further discussed in relation to the evolution and normal use of these two body parts.

  4. Aquatic environmental nanoparticles.

    PubMed

    Wigginton, Nicholas S; Haus, Kelly L; Hochella, Michael F

    2007-12-01

    Researchers are now discovering that naturally occurring environmental nanoparticles can play a key role in important chemical characteristics and the overall quality of natural and engineered waters. The detection of nanoparticles in virtually all water domains, including the oceans, surface waters, groundwater, atmospheric water, and even treated drinking water, demonstrates a distribution near ubiquity. Moreover, aquatic nanoparticles have the ability to influence environmental and engineered water chemistry and processes in a much different way than similar materials of larger sizes. This review covers recent advances made in identifying nanoparticles within water from a variety of sources, and advances in understanding their very interesting properties and reactivity that affect the chemical characteristics and behaviour of water. In the future, this science will be important in our vital, continuing efforts in water safety, treatment, and remediation.

  5. Insar of Aquatic Bodies

    NASA Astrophysics Data System (ADS)

    Tarikhi, P.

    2012-07-01

    Radar remote sensing is a new earth observation technology with promising results and future. InSAR is a sophisticated radar remote sensing technique for combining synthetic aperture radar (SAR) single look complex images to form interferogram and utilizing its phase contribution to land topography, surface movement and target velocity. In recent years considerable applications of Interferometric SAR technique have been developed. It is an established technique for precise assessment of land surface movements, and generating high quality digital elevation models (DEM) from space-borne and airborne data. InSAR is able to produce DEMs with the precision of a couple of ten meters whereas its movement map results have sub-centimeter precision. The technique has many applications in the context of earth sciences such as topographic mapping, environmental modelling, rainfall-runoff studies, landslide hazard zonation, and seismic source modelling. Nevertheless new developments are taking place in the application of InSAR for aquatic bodies. We have observed that using SAR Interferometry technique for aquatic bodies with the maximum temporal baseline of 16 seconds for image pairs shows considerable results enabling us to determine the direction of sea surface motion in a large area, estimate the sea surface fluctuations in the direction of sensor line-of-the-sight, detect wave pattern and the sea surface disturbance and whether the water motion is bulk and smooth or otherwise. This paper presents our experience and achievements on this new topic through discussing the facts and conditions for the use of InSAR technique. The method has been examined for Haiti, Dominican Republic, Western Chile and Western Turkey coast areas and inland lakes however ground truth data is needed for final verification. This technique scheduled to be applied in some other sites for which the proper data is available.

  6. Edible insects are the future?

    PubMed

    van Huis, Arnold

    2016-08-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect species are eaten mainly in tropical regions. The role of edible insects in the livelihoods and nutrition of people in tropical countries is discussed, but this food source is threatened. In the Western world, there is an increasing interest in edible insects, and examples are given. Insects as feed, in particular as aquafeed, have a large potential. Edible insects have about the same protein content as conventional meat and more PUFA. They may also have some beneficial health effects. Edible insects need to be processed and turned into palatable dishes. Food safety may be affected by toxicity of insects, contamination with pathogens, spoilage during conservation and allergies. Consumer attitude is a major issue in the Western world and a number of strategies are proposed to encourage insect consumption. We discuss research pathways to make insects a viable sector in food and agriculture: an appropriate disciplinary focus, quantifying its importance, comparing its nutritional value to conventional protein sources, environmental benefits, safeguarding food safety, optimising farming, consumer acceptance and gastronomy.

  7. Edible insects are the future?

    PubMed

    van Huis, Arnold

    2016-08-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect species are eaten mainly in tropical regions. The role of edible insects in the livelihoods and nutrition of people in tropical countries is discussed, but this food source is threatened. In the Western world, there is an increasing interest in edible insects, and examples are given. Insects as feed, in particular as aquafeed, have a large potential. Edible insects have about the same protein content as conventional meat and more PUFA. They may also have some beneficial health effects. Edible insects need to be processed and turned into palatable dishes. Food safety may be affected by toxicity of insects, contamination with pathogens, spoilage during conservation and allergies. Consumer attitude is a major issue in the Western world and a number of strategies are proposed to encourage insect consumption. We discuss research pathways to make insects a viable sector in food and agriculture: an appropriate disciplinary focus, quantifying its importance, comparing its nutritional value to conventional protein sources, environmental benefits, safeguarding food safety, optimising farming, consumer acceptance and gastronomy. PMID:26908196

  8. Report of the Insect Development Group

    NASA Technical Reports Server (NTRS)

    Rockstein, M.

    1985-01-01

    Drosophila metanogaster was chosen as the insect species of choice, in regard to gravity response experiments involving normal reproduction and develop different strains. The specific gravity responses which might be affected by microgravity and are exhibited in normal reproduction and development include normal flight for courtship, mating and oviposition, tropisms for pupating or emergency of the adult, and crawling for gettering food by the larval instars at the organismic level. At the suborganismic elevel, it is believed that maturation of developing eggs in the virgin female and embryonic development of the developing egg could be affected by microgravity and warrant study.

  9. [Effects of lac insect honeydew on the diversity of ground-dwelling ants in lac plantation].

    PubMed

    Lu, Zhi-Xing; Chen, You-Qing; Li, Qiao; Wang, Si-Ming; Liu, Chun-Ju; Zhang, Wei

    2012-04-01

    By the method of pitfall trapping, an investigation was conducted on the diversity of ground-dwelling ants in a lac plantation in Yayi Town of Mojiang County, Yunnan Province of Southwest China in December 2009-May 2010, aimed to understand the effects of lac insect honeydew on the diversity of ground-dwelling ants. The presence or absence of lac insect honeydew and its dynamics all affected the species composition, abundance, and diversity of ground-dwelling ants. In the lac plantation with lac insect hosting, a total of 4953 ant individuals were collected, belonging to 34 species, 23 genera, and 5 subfamilies of Formicidae; whereas in the lac plantation without lac insect hosting, a total of 2416 ant individuals were collected, belonging to 30 species, 20 genera, and 5 subfamilies of Formicidae. The relative abundance, species richness (S), and ACE index in the lac plantation with lac insect hosting were higher than those in the lac plantation without lac insect hosting, and the common species and indicator species of ground-dwelling ants in the lac plantation with lac insect hosting differed from those in the lac plantation without lac insect hosting, suggesting that lac insect hosting altered the community structure of ground-dwelling ants. The adult lac insects excreted larger quantity of honeydew than the larval lac insects, and the relative abundance, S, and ACE index of ground-dwelling ants were higher at the adult stage than at the larval stage of lac insects. The common species and indicator species of ground-dwelling ants also had great differences between the two stages of lac insects.

  10. Environmental enrichment for aquatic animals.

    PubMed

    Corcoran, Mike

    2015-05-01

    Aquatic animals are the most popular pets in the United States based on the number of owned pets. They are popular display animals and are increasingly used in research settings. Enrichment of captive animals is an important element of zoo and laboratory medicine. The importance of enrichment for aquatic animals has been slower in implementation. For a long time, there was debate over whether or not fish were able to experience pain or form long-term memories. As that debate has reduced and the consciousness of more aquatic animals is accepted, the need to discuss enrichment for these animals has increased.

  11. Aquatic toxicology: fact or fiction?

    PubMed Central

    Macek, K J

    1980-01-01

    A brief history of the development of the field of aquatic toxicology is provided. In order to provide a perspective on the state-of-the-art in aquatic toxicology relative to classical toxicology, the two fields are compared from the standpoint of the type of scientist practicing each field, the respective objectives of each, the forces which drive the activity in each field, and the major advantages and disadvantages accruing to the practitioner of aquatic toxicology as a result of the differences in objectives and driving forces. PMID:6993200

  12. Aquatic Invertebrate Development Working Group

    NASA Technical Reports Server (NTRS)

    Meyers, D.

    1985-01-01

    Little definitive evidence exists to show that gravity plays a major role in embyrogenesis of aquatic invertebrates. Two reasons for this may be: (1) few studies have been done that emphasize the role of gravity; and (2) there simply may not be any gravity effect. The buoyant nature of the aquatic environment could have obscured any evolutionary effect of gravity. The small size of most eggs and their apparent lack of orientation suggests reduced gravitational influence. Therefore, it is recommended that the term development, as applied to aquatic invertebrates, be loosely defined to encompass behavioral and morphological parameters for which baseline data already exist.

  13. Solar aquatic treatment of septage

    SciTech Connect

    Spencer, R.

    1990-05-01

    This article describes a pilot project for solar aquatic treatment of septage. The system is housed in a 42 ft by 128 ft greenhouse and consists of four parallel trains of aerated transparent tanks and constructed marshes. Each treatment tank is seeded with a mixture of bacteria, snails, algae and aquatic and woody plants that remove nitrates and pollutants such as heavy metals. Critics of solar aquatic systems point out that the heavy metals and other pollutants then become a solid waste disposal problem. Among the solutions offered are the use of hyperaccumulators of metals that produce ore-grade concentrations that can be efficiently recycled.

  14. Monitoring the aquatic toxicity of mosquito vector control spray pesticides to freshwater receiving waters.

    PubMed

    Phillips, Bryn M; Anderson, Brian S; Voorhees, Jennifer P; Siegler, Katie; Denton, Debra; TenBrook, Patti; Larsen, Karen; Isorena, Philip; Tjeerdema, Ron S

    2014-07-01

    Pesticides are applied to state and local waterways in California to control insects such as mosquitoes, which are known to serve as a vector for West Nile Virus infection of humans. The California State Water Resources Control Board adopted a National Pollutant Discharge Elimination System General Permit to address the discharge to waters of the United States of pesticides resulting from adult and larval mosquito control. Because pesticides used in spray activities have the potential to cause toxicity to nontarget organisms in receiving waters, the current study was designed to determine whether toxicity testing provides additional, useful environmental risk information beyond chemical analysis in monitoring spray pesticide applications. Monitoring included a combination of aquatic toxicity tests and chemical analyses of receiving waters from agricultural, urban, and wetland habitats. The active ingredients monitored included the organophosphate pesticides malathion and naled, the pyrethroid pesticides etofenprox, permethrin, and sumithrin, pyrethrins, and piperonyl butoxide (PBO). Approximately 15% of the postapplication water samples were significantly toxic. Toxicity of half of these samples was attributed to the naled breakdown product dichlorvos. Toxicity of 2 other water samples likely occurred when PBO synergized the effects of pyrethroid pesticides that were likely present in the receiving system. Four of 43 postapplication sediment samples were significantly more toxic than their corresponding pre-application samples, but none of the observed toxicity was attributed to the application events. These results indicate that many of the spray pesticides used for adult mosquito control do not pose significant acute toxicity risk to invertebrates in receiving systems. In the case of naled in water, analysis of only the active ingredient underestimated potential impacts to the receiving system, because toxicity was attributed to the breakdown product, dichlorvos

  15. Aircraft anti-insect system

    NASA Technical Reports Server (NTRS)

    Spiro, Clifford Lawrence (Inventor); Fric, Thomas Frank (Inventor); Leon, Ross Michael (Inventor)

    1997-01-01

    Insect debris is removed from or prevented from adhering to insect impingement areas of an aircraft, particularly on an inlet cowl of an engine, by heating the area to 180.degree.-500.degree. C. An apparatus comprising a means to bring hot air from the aircraft engine to a plenum contiguous to the insect impingement area provides for the heating of the insect impingement areas to the required temperatures. The plenum can include at least one tube with a plurality of holes contained in a cavity within the inlet cowl. It can also include an envelope with a plurality of holes on its surface contained in a cavity within the inlet cowl.

  16. Children's Aquatics: Managing the Risk.

    ERIC Educational Resources Information Center

    Langendorfer, Stephen; And Others

    1989-01-01

    This article identifies the major risks faced by young children in aquatic programs, outlines several methods for managing risk factors, and discusses the steps involved in implementing a risk-management system. (IAH)

  17. ELF communications system ecological monitoring program: Aquatic ecosystem studies

    NASA Astrophysics Data System (ADS)

    Burton, Thomas M.; Stout, R. J.; Winterstein, Scott; Coon, Thomas; Novinger, Doug

    1994-11-01

    The U.S. Navy has completed a program that monitored biota and ecological miationships for possible effects from electromagnetic (EM) fields produced by its Extremely Low Frequency (ELF) Communications System. This report documents the results and conclusions of aquatic studies conducted near its transmitting antenna in Michigan. From 1982 through 1993 researchers from the Michigan State University (MSU) monitored aquatic flora and fauna on matched reaches of the Ford River. A treatment site was located immediately adjacent to the antenna, whereas a control site was situated at a distance downstream. Functional and structural components of the periphyton, insect, and fish communities were monitored. The research team also measured ambient factors such as temperature, discharge, and water quality indicators. Data were analyzed using a variety of statistical tests; however, BACI techniques were emphasized. Results indicated a relative increase in algal biomass at the treatment site after the antenna became fully operational, but no changes in any other parameter or organism. MSU concludes that algal biomass was affected by ELF EM exposure. Since neither the other ecological characteristics of the periphyton nor the insect and fish communities showed any effects, MSU infers little EM impact to riverine habitats.

  18. Effects of acidification of metal accumulation by aquatic plants and invertebrates. 2. Wetlands, ponds and small lakes

    SciTech Connect

    Albers, P.H.; Camardese, M.B. . Patuxent Wildlife Research Center)

    1993-06-01

    Compared were concentrations of Al,Cd,Ca,Cu,Fe,Pb,Mg,Mn,Hg,Ni,P, and Zn in water, plants, and aquatic invertebrates of wetlands, ponds, and small lakes in Maryland and Maine. The accumulation of metals by aquatic plants and insects and the concentration of metals in water were not greatly affected by pH. None of the metal concentrations in water significantly correlated with metals in insects. Plant metal concentrations poorly correlated with metal concentrations in water. Concentrations of metals exceeded acceptable dietary levels more frequently in plants than in invertebrates. Concerns about metal toxicity in birds that feed on invertebrates and plants from acidified waters seems to be unwarranted. Positive correlations among pH, Ca in water, Ca in insects, and Ca in plants imply that acidification can reduce the Ca content of aquatic biota. Aquatic insects were low in Ca, but crayfishes and snails, which are adversely affected by low pH, were very high. A concern for waterfowl is Ca deprivation from decreased Ca availability in low-pH wetlands, ponds, and small lakes..

  19. Atmospheric oxygen and the evolution of insect gigantism

    NASA Astrophysics Data System (ADS)

    Dudley, R.

    2003-04-01

    Geophysical analyses suggest the presence of a late Paleozoic oxygen pulse beginning in the late Devonian and continuing through to the late Carboniferous. During this time, atmospheric oxygen levels increased to values potentially as high as 35% relative to the contemporary value of 21%. Widespread gigantism in late Paleozoic insects and other arthropods is consistent with enhanced oxygen flux within diffusion-limited tracheal systems, and thus with relaxation of constraints on maximum insect body size. Because total atmospheric pressure increases with increased oxygen partial pressure, concurrently hyperdense conditions would have augmented aerodynamic force production in early forms of flying insects. Hyperoxia of the late Paleozoic atmosphere may also have physiologically facilitated the initial evolution of insect flight metabolism. By the late Permian, evolution of decompositional microbial and fungal communities together with disequilibrium in rates of carbon deposition gradually reduced oxygen concentrations to values possibly as low as 15%. The disappearance of giant insects by the end of the Permian is consistent with extinction of these taxa for reasons of asphyxiation on a geological time scale. In modern selection experiments with Drosophila flies, substantial plasticity in body size can be evoked under conditions of variable oxygen. In particular, moderate hyperbaria (and thus hyperoxia) evokes a 20% increase in adult body size over merely five generations, suggesting ready capacity for evolutionary responses by insects to fluctuating atmospheric oxygen.

  20. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of insects is present on the portion of kernel....

  1. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture....2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of insect feeding. Metric Conversion Table...

  2. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture....2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of insect feeding. Metric Conversion Table...

  3. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of insects is present on the portion of kernel....

  4. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture... Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence of insect feeding....

  5. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture... Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence of insect feeding....

  6. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of insects is present on the portion of kernel....

  7. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture... Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence of insect feeding....

  8. 1977 Kansas Field Crop Insect Control Recommendations.

    ERIC Educational Resources Information Center

    Brooks, Leroy; Gates, Dell E.

    This publication is prepared to aid producers in selecting methods of insect population management that have proved effective under Kansas conditions. Topics covered include insect control on alfalfa, soil insects attacking corn, insects attacking above-ground parts of corn, and sorghum, wheat, and soybean insect control. The insecticides…

  9. Hydrodynamics of insect spermatozoa

    NASA Astrophysics Data System (ADS)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  10. The visual system of male scale insects.

    PubMed

    Buschbeck, Elke K; Hauser, Martin

    2009-03-01

    Animal eyes generally fall into two categories: (1) their photoreceptive array is convex, as is typical for camera eyes, including the human eye, or (2) their photoreceptive array is concave, as is typical for the compound eye of insects. There are a few rare examples of the latter eye type having secondarily evolved into the former one. When viewed in a phylogenetic framework, the head morphology of a variety of male scale insects suggests that this group could be one such example. In the Margarodidae (Hemiptera, Coccoidea), males have been described as having compound eyes, while males of some more derived groups only have two single-chamber eyes on each side of the head. Those eyes are situated in the place occupied by the compound eye of other insects. Since male scale insects tend to be rare, little is known about how their visual systems are organized, and what anatomical traits are associated with this evolutionary transition. In adult male Margarodidae, one single-chamber eye (stemmateran ocellus) is present in addition to a compound eye-like region. Our histological investigation reveals that the stemmateran ocellus has an extended retina which is formed by concrete clusters of receptor cells that connect to its own first-order neuropil. In addition, we find that the ommatidia of the compound eyes also share several anatomical characteristics with simple camera eyes. These include shallow units with extended retinas, each of which is connected by its own small nerve to the lamina. These anatomical changes suggest that the margarodid compound eye represents a transitional form to the giant unicornal eyes that have been described in more derived species.

  11. The visual system of male scale insects

    NASA Astrophysics Data System (ADS)

    Buschbeck, Elke K.; Hauser, Martin

    2009-03-01

    Animal eyes generally fall into two categories: (1) their photoreceptive array is convex, as is typical for camera eyes, including the human eye, or (2) their photoreceptive array is concave, as is typical for the compound eye of insects. There are a few rare examples of the latter eye type having secondarily evolved into the former one. When viewed in a phylogenetic framework, the head morphology of a variety of male scale insects suggests that this group could be one such example. In the Margarodidae (Hemiptera, Coccoidea), males have been described as having compound eyes, while males of some more derived groups only have two single-chamber eyes on each side of the head. Those eyes are situated in the place occupied by the compound eye of other insects. Since male scale insects tend to be rare, little is known about how their visual systems are organized, and what anatomical traits are associated with this evolutionary transition. In adult male Margarodidae, one single-chamber eye (stemmateran ocellus) is present in addition to a compound eye-like region. Our histological investigation reveals that the stemmateran ocellus has an extended retina which is formed by concrete clusters of receptor cells that connect to its own first-order neuropil. In addition, we find that the ommatidia of the compound eyes also share several anatomical characteristics with simple camera eyes. These include shallow units with extended retinas, each of which is connected by its own small nerve to the lamina. These anatomical changes suggest that the margarodid compound eye represents a transitional form to the giant unicornal eyes that have been described in more derived species.

  12. Can Oxygen Set Thermal Limits in an Insect and Drive Gigantism?

    PubMed Central

    Verberk, Wilco C. E. P.; Bilton, David T.

    2011-01-01

    Background Thermal limits may arise through a mismatch between oxygen supply and demand in a range of animal taxa. Whilst this oxygen limitation hypothesis is supported by data from a range of marine fish and invertebrates, its generality remains contentious. In particular, it is unclear whether oxygen limitation determines thermal extremes in tracheated arthropods, where oxygen limitation may be unlikely due to the efficiency and plasticity of tracheal systems in supplying oxygen directly to metabolically active tissues. Although terrestrial taxa with open tracheal systems may not be prone to oxygen limitation, species may be affected during other life-history stages, particularly if these rely on diffusion into closed tracheal systems. Furthermore, a central role for oxygen limitation in insects is envisaged within a parallel line of research focussing on insect gigantism in the late Palaeozoic. Methodology/Principal Findings Here we examine thermal maxima in the aquatic life stages of an insect at normoxia, hypoxia (14 kPa) and hyperoxia (36 kPa). We demonstrate that upper thermal limits do indeed respond to external oxygen supply in the aquatic life stages of the stonefly Dinocras cephalotes, suggesting that the critical thermal limits of such aquatic larvae are set by oxygen limitation. This could result from impeded oxygen delivery, or limited oxygen regulatory capacity, both of which have implications for our understanding of the limits to insect body size and how these are influenced by atmospheric oxygen levels. Conclusions/Significance These findings extend the generality of the hypothesis of oxygen limitation of thermal tolerance, suggest that oxygen constraints on body size may be stronger in aquatic environments, and that oxygen toxicity may have actively selected for gigantism in the aquatic stages of Carboniferous arthropods. PMID:21818347

  13. Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem.

    PubMed

    Amundrud, Sarah L; Srivastava, Diane S

    2015-07-01

    Species and trophic richness often increase with habitat size. Although many ecological processes have been evoked to explain both patterns, the environmental stress associated with small habitats has rarely been considered. We propose that larger habitats may be species rich simply because their environmental conditions are within the fundamental niche of more species; larger habitats may also have more trophic levels if traits of predators render them vulnerable to environmental stress. We test this hypothesis using the aquatic insect larvae in water-filled bromeliads. In bromeliads, the probability of desiccation is greatest in small plants. For the 10 most common bromeliad insect taxa, we ask whether differences in drought tolerance and regional abundances between taxa predict community and trophic composition over a gradient of bromeliad size. First, we used bromeliad survey data to calculate the mean habitat size of occurrence of each taxon. Comparing the observed mean habitat size of occurrence to that expected from random species assembly based on differences in their regional abundances allowed us to obtain habitat size sensitivity indices (as Z scores) for the various insect taxa. Second, we obtained drought sensitivity indices by subjecting individual insects to drought and measuring the effects on relative growth rates in a mesocosm experiment. We found that drought sensitivity strongly, predicts habitat size sensitivity in bromeliad insects. However, an increase in trophic richness with habitat size could not be explained by an increased sensitivity of predators to drought, but rather by sampling effects, as predators were rare compared to lower trophic levels. This finding suggests that physiological tolerance to environmental stress can be relevant in explaining the universal increase in species with habitat size.

  14. Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem.

    PubMed

    Amundrud, Sarah L; Srivastava, Diane S

    2015-07-01

    Species and trophic richness often increase with habitat size. Although many ecological processes have been evoked to explain both patterns, the environmental stress associated with small habitats has rarely been considered. We propose that larger habitats may be species rich simply because their environmental conditions are within the fundamental niche of more species; larger habitats may also have more trophic levels if traits of predators render them vulnerable to environmental stress. We test this hypothesis using the aquatic insect larvae in water-filled bromeliads. In bromeliads, the probability of desiccation is greatest in small plants. For the 10 most common bromeliad insect taxa, we ask whether differences in drought tolerance and regional abundances between taxa predict community and trophic composition over a gradient of bromeliad size. First, we used bromeliad survey data to calculate the mean habitat size of occurrence of each taxon. Comparing the observed mean habitat size of occurrence to that expected from random species assembly based on differences in their regional abundances allowed us to obtain habitat size sensitivity indices (as Z scores) for the various insect taxa. Second, we obtained drought sensitivity indices by subjecting individual insects to drought and measuring the effects on relative growth rates in a mesocosm experiment. We found that drought sensitivity strongly, predicts habitat size sensitivity in bromeliad insects. However, an increase in trophic richness with habitat size could not be explained by an increased sensitivity of predators to drought, but rather by sampling effects, as predators were rare compared to lower trophic levels. This finding suggests that physiological tolerance to environmental stress can be relevant in explaining the universal increase in species with habitat size. PMID:26378317

  15. Aquatic Plants Aid Sewage Filter

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1985-01-01

    Method of wastewater treatment combines micro-organisms and aquatic plant roots in filter bed. Treatment occurs as liquid flows up through system. Micro-organisms, attached themselves to rocky base material of filter, act in several steps to decompose organic matter in wastewater. Vascular aquatic plants (typically, reeds, rushes, cattails, or water hyacinths) absorb nitrogen, phosphorus, other nutrients, and heavy metals from water through finely divided roots.

  16. Science: Aquatic Toxicology Matures, Gains Importance.

    ERIC Educational Resources Information Center

    Dagani, Ron

    1980-01-01

    Reviews recent advances in aquatic toxicology, whose major goal is to protect diverse aquatic organisms and whole ecological communities from the dire effects of man-made chemicals. Current legislation is reviewed. Differences in mammalian and aquatic toxicology are listed, and examples of research in aquatic toxicology are discussed. (CS)

  17. [The fish Trachelyopterus striatulus (Siluriforms: Auchenipteridae) used to sample insects in a tropical reservoir].

    PubMed

    dos Santos, Alejandra Filippo Gonzalez Neves; Racca-Filho, Francisco; dos Santos, Luciano Neves; Araújo, Francisco Gerson

    2009-12-01

    The study of aquatic environments is sometimes difficult to do with normal sampling methods that use gears. Insectivorous fishes represent good users of these ecosystems and analyzing the aquatic organisms present in fish stomachs, is an alternative way to determine resource abundance and utilization. In this paper, the potential of Trachelyopterus striatulus as an insect sampler was examined through dietary analyses of 383 individuals caught between April 1999 and March 2000 in Lajes Reservoir, a 30 km2 oligotrophic impoundment in Southeast Brazil. We estimated frequency of occurrence and Schoener's index of similarity. Diet changes among seasons and reservoir zones were addressed with DCA and ANOVA analyses. Its diet was 92.1% insects (ten orders and nine families). Hymenoptera (57.90%), Odonata (39.76%), Trichoptera (27.41%), Ephemeroptera (26.25%) and Coleoptera (28.96%) were the most common groups. Highest insect occurrence and richness were recorded in autumn-summer, a period of greater rainfall and insect activity. Formicidae, the dominant prey item in all seasons, appeared to be especially important in spring, a season marked by shortness of food resources. Trichoptera and Ephemeroptera were the most consumed prey items in the other seasons. Highest insect occurrence and richness were recorded in the middle and upper reservoir zones, respectively. Trichoptera and Ephemeroptera prevailed in the upper zone, where small pristine rivers and tributaries are abundant, whereas Formicidae and Belostomatidae predominated in the lower and middle zones. Because of its abundance in many freshwater ecosystems of Brazil, the ubiquity of insects in its digestive tract and the low level of prey degradation, T. striatulus has potential as an insect sampler of Neotropical reservoirs. However, conventional sampling in Lajes Reservoir is necessary to compare the effectiveness of T. striatulus with other insect sampling methods.

  18. Montsechia, an ancient aquatic angiosperm.

    PubMed

    Gomez, Bernard; Daviero-Gomez, Véronique; Coiffard, Clément; Martín-Closas, Carles; Dilcher, David L

    2015-09-01

    The early diversification of angiosperms in diverse ecological niches is poorly understood. Some have proposed an origin in a darkened forest habitat and others an open aquatic or near aquatic habitat. The research presented here centers on Montsechia vidalii, first recovered from lithographic limestone deposits in the Pyrenees of Spain more than 100 y ago. This fossil material has been poorly understood and misinterpreted in the past. Now, based upon the study of more than 1,000 carefully prepared specimens, a detailed analysis of Montsechia is presented. The morphology and anatomy of the plant, including aspects of its reproduction, suggest that Montsechia is sister to Ceratophyllum (whenever cladistic analyses are made with or without a backbone). Montsechia was an aquatic angiosperm living and reproducing below the surface of the water, similar to Ceratophyllum. Montsechia is Barremian in age, raising questions about the very early divergence of the Ceratophyllum clade compared with its position as sister to eudicots in many cladistic analyses. Lower Cretaceous aquatic angiosperms, such as Archaefructus and Montsechia, open the possibility that aquatic plants were locally common at a very early stage of angiosperm evolution and that aquatic habitats may have played a major role in the diversification of some early angiosperm lineages. PMID:26283347

  19. Montsechia, an ancient aquatic angiosperm

    PubMed Central

    Gomez, Bernard; Daviero-Gomez, Véronique; Coiffard, Clément; Martín-Closas, Carles; Dilcher, David L.

    2015-01-01

    The early diversification of angiosperms in diverse ecological niches is poorly understood. Some have proposed an origin in a darkened forest habitat and others an open aquatic or near aquatic habitat. The research presented here centers on Montsechia vidalii, first recovered from lithographic limestone deposits in the Pyrenees of Spain more than 100 y ago. This fossil material has been poorly understood and misinterpreted in the past. Now, based upon the study of more than 1,000 carefully prepared specimens, a detailed analysis of Montsechia is presented. The morphology and anatomy of the plant, including aspects of its reproduction, suggest that Montsechia is sister to Ceratophyllum (whenever cladistic analyses are made with or without a backbone). Montsechia was an aquatic angiosperm living and reproducing below the surface of the water, similar to Ceratophyllum. Montsechia is Barremian in age, raising questions about the very early divergence of the Ceratophyllum clade compared with its position as sister to eudicots in many cladistic analyses. Lower Cretaceous aquatic angiosperms, such as Archaefructus and Montsechia, open the possibility that aquatic plants were locally common at a very early stage of angiosperm evolution and that aquatic habitats may have played a major role in the diversification of some early angiosperm lineages. PMID:26283347

  20. Environmental RNAi in herbivorous insects.

    PubMed

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R

    2015-05-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. PMID:25802407

  1. Environmental RNAi in herbivorous insects

    PubMed Central

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B. Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C.; Johnson, Steven; Meyer, Steve E.; Kerstetter, Randy A.; McNulty, Brian C.; Bolognesi, Renata; Heck, Gregory R.

    2015-01-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. PMID:25802407

  2. Environmental RNAi in herbivorous insects.

    PubMed

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R

    2015-05-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism.

  3. Determining host suitability of pecan for stored-product insects.

    PubMed

    Shufran, A A; Mulder, P G; Payton, M E; Shufran, K A

    2013-04-01

    A no-choice test was performed to determine survival and reproductive capacity of stored-product insect pests on pecan, Carya illinoensis (Wangenheim) Koch. Insects used were Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae); sawtoothed grain beetle, Oryzaephilus surinamensis (L.) (Coleoptera: Cucujidae); red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae); lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae); and rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Fifty adults of each beetle species or 10 reproductive pairs of P. interpunctella adults were placed in 0.5-liter containers with either whole-shell pecans, cracked-shell pecans, randomly selected in-shell pecans, pecan nutmeats, cracked wheat, or glass beads and held at 28 degrees C, 60-70% relative humidity, and 16:8 (L:D) photoperiod for 2, 4, 6, and 8 wk. Four replications of each insect-diet-interval combination were performed. Larvae of P. interpunctella, O. surinamensis, T. castaneum, C. ferrugineus, and adult P. interpunctella and O. surinamensis developed on cracked and nutmeat pecan diets. R. dominica did not complete reproduction on pecans. Knowledge that these pests can reproduce on stored pecan will assist pecan growers, accumulators, and storage facilities in preventing insect outbreaks on their product. PMID:23786103

  4. Collapse of Insect Gut Symbiosis under Simulated Climate Change

    PubMed Central

    Kikuchi, Yoshitomo; Tada, Akiyo; Musolin, Dmitry L.; Hari, Nobuhiro; Hosokawa, Takahiro; Fujisaki, Kenji

    2016-01-01

    ABSTRACT Global warming impacts diverse organisms not only directly but also indirectly via other organisms with which they interact. Recently, the possibility that elevated temperatures resulting from global warming may substantially affect biodiversity through disrupting mutualistic/parasitic associations has been highlighted. Here we report an experimental demonstration that global warming can affect a pest insect via suppression of its obligate bacterial symbiont. The southern green stinkbug Nezara viridula depends on a specific gut bacterium for its normal growth and survival. When the insects were reared inside or outside a simulated warming incubator wherein temperature was controlled at 2.5°C higher than outside, the insects reared in the incubator exhibited severe fitness defects (i.e., retarded growth, reduced size, yellowish body color, etc.) and significant reduction of symbiont population, particularly in the midsummer season, whereas the insects reared outside did not. Rearing at 30°C or 32.5°C resulted in similar defective phenotypes of the insects, whereas no adult insects emerged at 35°C. Notably, experimental symbiont suppression by an antibiotic treatment also induced similar defective phenotypes of the insects, indicating that the host’s defective phenotypes are attributable not to the heat stress itself but to the suppression of the symbiont population induced by elevated temperature. These results strongly suggest that high temperature in the midsummer season negatively affects the insects not directly but indirectly via the heat-vulnerable obligate bacterial symbiont, which highlights the practical relevance of mutualism collapse in this warming world. PMID:27703075

  5. Eicosanoids mediate insect hemocyte migration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemocyte chemotaxis toward infection and wound sites is an essential component of insect defense reactions, although the biochemical signal mechanisms responsible for mediating chemotaxis in insect cells are not well understood. Here we report on the outcomes of experiments designed to test the hyp...

  6. Plant Defense against Insect Herbivores

    PubMed Central

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  7. Polarization Imaging and Insect Vision

    ERIC Educational Resources Information Center

    Green, Adam S.; Ohmann, Paul R.; Leininger, Nick E.; Kavanaugh, James A.

    2010-01-01

    For several years we have included discussions about insect vision in the optics units of our introductory physics courses. This topic is a natural extension of demonstrations involving Brewster's reflection and Rayleigh scattering of polarized light because many insects heavily rely on optical polarization for navigation and communication.…

  8. Mosquitoes feeding on insect larvae.

    PubMed

    Harris, P; Riordan, D F; Cooke, D

    1969-04-11

    Caged Aedes aegypti and Culex tarsalis are attracted to insect larvae, engorge on their body fluids, and produce viable eggs. Attractiveness of the larvae is related to their size, shape, and color but not to their movement. The possibility that wild mosquitoes substitute insect hemolymph for vertebrate blood is discussed. PMID:5774191

  9. Reader Survey for INSECT ALERTS.

    ERIC Educational Resources Information Center

    Miller, Mason E.; Sauer, Richard J.

    To determine what might be done to improve "Insect Alerts," which is a newsletter that carries "information on insect biology, abundance, activity and interpretation of control need," put out through the Michigan Cooperative Extension Service 26 weeks a year, a survey was conducted. A mail questionnaire was sent to all 120 county extension…

  10. Population fluctuation in phytophagous insects

    SciTech Connect

    Redfearn, A.; Pimm, S.L. )

    1994-06-01

    We examined how community interactions affect year-to-year population variability in three groups of phytophagous insects: British aphids and moths, and Canadian moths. We first examined how the number of host plant species on which a given phytophagous insect species feeds affects its population variability. Specialist insect species showed a weak tendency to be more variable than generalist species. We then examined how the number of species of parasitoids from which a given phytophagous insects species suffers affects its population variability. Species that are host to few parasitoid species showed a weak tendency to be more variable than species with many parsitoid species. These relationships also depend on other aspects of the life histories of the phytophagous insect species.

  11. Insect Immunity to Entomopathogenic Fungi.

    PubMed

    Lu, H-L; St Leger, R J

    2016-01-01

    The study of infection and immunity in insects has achieved considerable prominence with the appreciation that their host defense mechanisms share many fundamental characteristics with the innate immune system of vertebrates. Studies on the highly tractable model organism Drosophila in particular have led to a detailed understanding of conserved innate immunity networks, such as Toll. However, most of these studies have used opportunistic human pathogens and may not have revealed specialized immune strategies that have arisen through evolutionary arms races with natural insect pathogens. Fungi are the commonest natural insect pathogens, and in this review, we focus on studies using Metarhizium and Beauveria spp. that have addressed immune system function and pathogen virulence via behavioral avoidance, the use of physical barriers, and the activation of local and systemic immune responses. In particular, we highlight studies on the evolutionary genetics of insect immunity and discuss insect-pathogen coevolution.

  12. Contaminants as habitat disturbers: PAH-driven drift by Andean paramo stream insects.

    PubMed

    Araújo, Cristiano V M; Moreira-Santos, Matilde; Sousa, José P; Ochoa-Herrera, Valeria; Encalada, Andrea C; Ribeiro, Rui

    2014-10-01

    Contaminants can behave as toxicants, when toxic effects are observed in organisms, as well as habitat disturbers and fragmentors, by triggering avoidance responses and generating less- or uninhabited zones. Drift by stream insects has long been considered a mechanism to avoid contamination by moving to most favorable habitats. Given that exploration and transportation of crude oil represent a threat for surrounding ecosystems, the key goal of the present study was to assess the ability of autochthonous groups of aquatic insects from the Ecuadorian paramo streams to avoid by drift different concentrations of polycyclic aromatic hydrocarbons (PAH) contained in the soluble fraction of locally transported crude oil. In the laboratory, different groups of insects were exposed to PAH for 12h. Three different assays, which varied in taxa and origin of the organisms, concentrations of PAH (0.6-38.8µgL(-1)), and environment settings (different levels of refuge and flow) were performed. For Anomalocosmoecus palugillensis (Limnephilidae), drift was a major cause of population decline in low concentration treatments but at higher concentrations mortality dominated. PAH was highly lethal, even at lower concentrations, for Chironomidae, Grypopterygidae (Claudioperla sp.) and Hydrobiosidae (Atopsyche sp.), and, therefore, no conclusion about drift can be drawn for these insects. Contamination by PAH showed to be a threat for benthic aquatic insects from Ecuadorian paramo streams as it can cause a population decline due to avoidance by drift and mortality.

  13. Contaminants as habitat disturbers: PAH-driven drift by Andean paramo stream insects.

    PubMed

    Araújo, Cristiano V M; Moreira-Santos, Matilde; Sousa, José P; Ochoa-Herrera, Valeria; Encalada, Andrea C; Ribeiro, Rui

    2014-10-01

    Contaminants can behave as toxicants, when toxic effects are observed in organisms, as well as habitat disturbers and fragmentors, by triggering avoidance responses and generating less- or uninhabited zones. Drift by stream insects has long been considered a mechanism to avoid contamination by moving to most favorable habitats. Given that exploration and transportation of crude oil represent a threat for surrounding ecosystems, the key goal of the present study was to assess the ability of autochthonous groups of aquatic insects from the Ecuadorian paramo streams to avoid by drift different concentrations of polycyclic aromatic hydrocarbons (PAH) contained in the soluble fraction of locally transported crude oil. In the laboratory, different groups of insects were exposed to PAH for 12h. Three different assays, which varied in taxa and origin of the organisms, concentrations of PAH (0.6-38.8µgL(-1)), and environment settings (different levels of refuge and flow) were performed. For Anomalocosmoecus palugillensis (Limnephilidae), drift was a major cause of population decline in low concentration treatments but at higher concentrations mortality dominated. PAH was highly lethal, even at lower concentrations, for Chironomidae, Grypopterygidae (Claudioperla sp.) and Hydrobiosidae (Atopsyche sp.), and, therefore, no conclusion about drift can be drawn for these insects. Contamination by PAH showed to be a threat for benthic aquatic insects from Ecuadorian paramo streams as it can cause a population decline due to avoidance by drift and mortality. PMID:25042250

  14. Remobilization and export of cadmium from lake sediments by emerging insects

    SciTech Connect

    Currie, R.S.; Fairchild, W.L.; Muir, D.C.G.

    1997-11-01

    Emerging insects including, Diptera, Odonata, Ephemeroptera, and Trichoptera were collected from Lake 382 (L382) in 1991 and 1992 to estimate quantitatively the export of Cd by aquatic insects from a natural system having elevated Cd concentrations in the water and sediment. L382 is a Canadian Shield lake, located within the Experimental Lakes Area in northwestern Ontario, that received experimental additions of Cd from 1987 to 1992. Emerging Diptera (mostly Chironomidae), Odonata, and Ephemeroptera had mean Cd concentrations of 1.41, 0.11, and 0.30 {micro}g/g wet weight, respectively. An estimated 1.32 to 3.90 g of Cd per year were exported from the sediments of L382 depending on the estimate of production rates used for these groups of insects. Approximately 0.05 to 0.17% of the whole-lake Cd load in L382 sediments was exported annually or 0.12 to 0.39% of the epilimnion Cd sediment load. Insect emergence may have resulted in greater Cd export from L382 relative to losses via the outflow. Cadmium exported from the sediments by insects may be remobilized and become more available to aquatic organisms or enter the terrestrial ecosystem and become available to insectivores.

  15. The aerodynamics of insect flight.

    PubMed

    Sane, Sanjay P

    2003-12-01

    The flight of insects has fascinated physicists and biologists for more than a century. Yet, until recently, researchers were unable to rigorously quantify the complex wing motions of flapping insects or measure the forces and flows around their wings. However, recent developments in high-speed videography and tools for computational and mechanical modeling have allowed researchers to make rapid progress in advancing our understanding of insect flight. These mechanical and computational fluid dynamic models, combined with modern flow visualization techniques, have revealed that the fluid dynamic phenomena underlying flapping flight are different from those of non-flapping, 2-D wings on which most previous models were based. In particular, even at high angles of attack, a prominent leading edge vortex remains stably attached on the insect wing and does not shed into an unsteady wake, as would be expected from non-flapping 2-D wings. Its presence greatly enhances the forces generated by the wing, thus enabling insects to hover or maneuver. In addition, flight forces are further enhanced by other mechanisms acting during changes in angle of attack, especially at stroke reversal, the mutual interaction of the two wings at dorsal stroke reversal or wing-wake interactions following stroke reversal. This progress has enabled the development of simple analytical and empirical models that allow us to calculate the instantaneous forces on flapping insect wings more accurately than was previously possible. It also promises to foster new and exciting multi-disciplinary collaborations between physicists who seek to explain the phenomenology, biologists who seek to understand its relevance to insect physiology and evolution, and engineers who are inspired to build micro-robotic insects using these principles. This review covers the basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well

  16. Hypoxia and hypercarbia in endophagous insects: Larval position in the plant gas exchange network is key.

    PubMed

    Pincebourde, Sylvain; Casas, Jérôme

    2016-01-01

    Gas composition is an important component of any micro-environment. Insects, as the vast majority of living organisms, depend on O2 and CO2 concentrations in the air they breathe. Low O2 (hypoxia), and high CO2 (hypercarbia) levels can have a dramatic effect. For phytophagous insects that live within plant tissues (endophagous lifestyle), gas is exchanged between ambient air and the atmosphere within the insect habitat. The insect larva contributes to the modification of this environment by expiring CO2. Yet, knowledge on the gas exchange network in endophagous insects remains sparse. Our study identified mechanisms that modulate gas composition in the habitat of endophagous insects. Our aim was to show that the mere position of the insect larva within plant tissues could be used as a proxy for estimating risk of occurrence of hypoxia and hypercarbia, despite the widely diverse life history traits of these organisms. We developed a conceptual framework for a gas diffusion network determining gas composition in endophagous insect habitats. We applied this framework to mines, galls and insect tunnels (borers) by integrating the numerous obstacles along O2 and CO2 pathways. The nature and the direction of gas transfers depended on the physical structure of the insect habitat, the photosynthesis activity as well as stomatal behavior in plant tissues. We identified the insect larva position within the gas diffusion network as a predictor of risk exposure to hypoxia and hypercarbia. We ranked endophagous insect habitats in terms of risk of exposure to hypoxia and/or hypercarbia, from the more to the less risky as cambium mines>borer tunnels≫galls>bark mines>mines in aquatic plants>upper and lower surface mines. Furthermore, we showed that the photosynthetically active tissues likely assimilate larval CO2 produced. In addition, temperature of the microhabitat and atmospheric CO2 alter gas composition in the insect habitat. We predict that (i) hypoxia indirectly favors

  17. Hypoxia and hypercarbia in endophagous insects: Larval position in the plant gas exchange network is key.

    PubMed

    Pincebourde, Sylvain; Casas, Jérôme

    2016-01-01

    Gas composition is an important component of any micro-environment. Insects, as the vast majority of living organisms, depend on O2 and CO2 concentrations in the air they breathe. Low O2 (hypoxia), and high CO2 (hypercarbia) levels can have a dramatic effect. For phytophagous insects that live within plant tissues (endophagous lifestyle), gas is exchanged between ambient air and the atmosphere within the insect habitat. The insect larva contributes to the modification of this environment by expiring CO2. Yet, knowledge on the gas exchange network in endophagous insects remains sparse. Our study identified mechanisms that modulate gas composition in the habitat of endophagous insects. Our aim was to show that the mere position of the insect larva within plant tissues could be used as a proxy for estimating risk of occurrence of hypoxia and hypercarbia, despite the widely diverse life history traits of these organisms. We developed a conceptual framework for a gas diffusion network determining gas composition in endophagous insect habitats. We applied this framework to mines, galls and insect tunnels (borers) by integrating the numerous obstacles along O2 and CO2 pathways. The nature and the direction of gas transfers depended on the physical structure of the insect habitat, the photosynthesis activity as well as stomatal behavior in plant tissues. We identified the insect larva position within the gas diffusion network as a predictor of risk exposure to hypoxia and hypercarbia. We ranked endophagous insect habitats in terms of risk of exposure to hypoxia and/or hypercarbia, from the more to the less risky as cambium mines>borer tunnels≫galls>bark mines>mines in aquatic plants>upper and lower surface mines. Furthermore, we showed that the photosynthetically active tissues likely assimilate larval CO2 produced. In addition, temperature of the microhabitat and atmospheric CO2 alter gas composition in the insect habitat. We predict that (i) hypoxia indirectly favors

  18. Diet composition and feeding patterns of adult shovelnose sturgeon (Scaphirhynchus platorynchus) in the lower Platte River, Nebraska, USA

    USGS Publications Warehouse

    Rapp, T.; Shuman, D.A.; Graeb, B.D.S.; Chipps, Steven R.; Peters, E.J.

    2011-01-01

    Two-hundred and seven adult shovelnose sturgeon ranging from 450 to 718 mm in length were sampled from June to October 2001 and May to July 2002 to determine diet composition and feeding patterns in the lower Platte River. Shovelnose sturgeon fed primarily upon aquatic insect larvae and nymphs (>99% composition by number). Diptera of the family Chironomidae were the dominant prey items in both years and composed 98.1% of the shovelnose sturgeon diet in 2001 and 96.8% in 2002. Chironomidae were primarily represented by the four genera Paracladopelma, Chernovskiia, Saetheria and Robackia accounting for 90.2% of the ingested prey items in 2001 and 83.6% in 2002. In addition, shovelnose sturgeon showed in both years a generalized feeding pattern towards Ephemeroptera of the families Isonychiidae and Caenidae, as well as Trichoptera of the family Hydropsychidae. Other aquatic insects, terrestrial invertebrates and fishes were found infrequently and in low numbers in shovelnose sturgeon diets. The four most abundant Chironomidae genera are often found on sand and the high abundance of these taxa in the diet suggests that shovelnose sturgeon feed primarily near or on this substrate type. This highlights the importance of habitats that provide sand substrate for shovelnose sturgeon foraging in the lower Platte River.

  19. The NEON Aquatic Network: Expanding the Availability of Biogeochemical Data

    NASA Astrophysics Data System (ADS)

    Vance, J. M.; Bohall, C.; Fitzgerald, M.; Utz, R.; Parker, S. M.; Roehm, C. L.; Goodman, K. J.; McLaughlin, B.

    2013-12-01

    Aquatic ecosystems are facing unprecedented pressure from climate change and land-use practices. Invasive species, whether plant, animal, insect or microbe present additional threat to aquatic ecosystem services. There are significant scientific challenges to understanding how these forces will interact to affect aquatic ecosystems, as the flow of energy and materials in the environment is driven by multivariate and non-linear biogeochemical cycles. The National Ecological Observatory Network (NEON) will collect and provide observational data across multiple scales. Sites were selected to maximize representation of major North American ecosystems using a multivariate geographic clustering method that partitioned the continental US, AK, HI, and Puerto Rico into 20 eco-climatic domains. The NEON data collection systems and methods are designed to yield standardized, near real-time data subjected to rigorous quality controls prior to public dissemination through an online data portal. NEON will collect data for 30 years to facilitate spatial-temporal analysis of environmental responses and drivers of ecosystem change, ranging from local through continental scales. Here we present the NEON Aquatic Network, a multi-parameter network consisting of a combination of in situ sensor and observational data. This network will provide data to examine biogeochemical, biological, hydrologic and geomorphic metrics at 36 sites, which are a combination of small 1st/2nd order wadeable streams, large rivers and lakes. A typical NEON Aquatic site will host up to two in-stream sensor sets designed to collect near-continuous water quality data (e.g. pH/ORP, temperature, conductivity, dissolved oxygen, CDOM) along with up to 8 shallow groundwater monitoring wells (level, temp., cond.), and a local meteorological station (e.g. 2D wind speed, PAR, barometric pressure, temperature, net radiation). These coupled sensor suites will be complemented by observational data (e.g. water

  20. Aquatic ecosystems in Central Colorado are influenced by mineral forming processes and historical mining

    USGS Publications Warehouse

    Schmidt, T.S.; Church, S.E.; Clements, W.H.; Mitchell, K.A.; Fey, D. L.; Wanty, R.B.; Verplanck, P.L.; San, Juan C.A.; Klein, T.L.; deWitt, E.H.; Rockwell, B.W.

    2009-01-01

    Stream water and sediment toxicity to aquatic insects were quantified from central Colorado catchments to distinguish the effect of geologic processes which result in high background metals concentrations from historical mining. Our sampling design targeted small catchments underlain by rocks of a single lithology, which allowed the development of biological and geochemical baselines without the complication of multiple rock types exposed in the catchment. By accounting for geologic sources of metals to the environment, we were able to distinguish between the environmental effects caused by mining and the weathering of different mineralized areas. Elevated metal concentrations in water and sediment were not restricted to mined catchments. Impairment of aquatic communities also occurred in unmined catchments influenced by hydrothermal alteration. Hydrothermal alteration style, deposit type, and mining were important determinants of water and sediment quality and aquatic community structure. Weathering of unmined porphyry Cu-Mo occurrences resulted in water (median toxic unit (TU) = 108) and sediment quality (TU = 1.9) that exceeded concentrations thought to be safe for aquatic ecosystems (TU = 1). Metalsensitive aquatic insects were virtually absent from streams draining catchments with porphyry Cu-Mo occurrences (1.1 individuals/0.1 m2 ). However, water and sediment quality (TU = 0.1, 0.5 water and sediment, respectively) and presence of metalsensitive aquatic insects (204 individuals/0.1 m2 ) for unmined polymetallic vein occurrences were indistinguishable from that for unmined and unaltered streams (TU = 0.1, 0.5 water and sediment, respectively; 201 individuals/0.1 m2 ). In catchments with mined quartz-sericite-pyrite altered polymetallic vein deposits, water (TU = 8.4) and sediment quality (TU = 3.1) were degraded and more toxic to aquatic insects (36 individuals/0.1 m2 ) than water (TU = 0.4) and sediment quality (TU = 1.7) from mined propylitically altered

  1. Tritium in the aquatic environment

    SciTech Connect

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products.

  2. Aquatic plants for removal of mevinphos from the aquatic environment

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1975-01-01

    Fragrant waterlily (Nymphaea odorata, Ait.), joint-grass (Paspalum distichum L.), and rush (Juncus repens, Michx.) were used to evaluate the effectiveness of vascular aquatic plants in removing the insecticide mevinphos (dimethyl-1-carbomethoxy-1propen-2-yl phosphate) from waters contaminated with this chemical. The emersed aquatic plants fragrant waterlily and joint-grass removed 87 and 93 ppm of mevinphos from water test systems in less than 2 weeks without apparent damage to the plants; whereas rush, a submersed plant, removed less insecticide than the water-soil controls. Water-soil control still contained toxic levels of this insecticide, as demonstrated by fish bioassay studies, after 35 days.

  3. Scale Insects (Hemiptera: Coccoidea) on Myrciaria dubia (Myrtaceae) in Brazil.

    PubMed

    Wolff, V R S; Kondo, T; Peronti, A L B G; Noronha, A C S

    2016-06-01

    Commercial cultivation of the fruit tree Myrciaria dubia (Myrtaceae) is being developed in Brazil but phytophagous insects, including scale insects (Hemiptera: Coccoidea), can become pests in plantations. The coccids Ceroplastes jamaicensis White, Coccus viridis (Green), Parasaissetia nigra (Nietner), Pseudokermes vitreus (Cockerell) (Coccidae), and the diaspidid Pseudaonidia trilobitiformis (Green) were collected on M. dubia in the municipality of Belém and Tomé-Açu, state of Pará (PA), metropolitan and Northeast Pará mesoregions, Brazil. A key to species of Coccoidea recorded on M. dubia, based on adult females, is provided. Photographs for all scale insects reported on M. dubia are provided. Ceroplastes jamaicensis is recorded for the first time for Brazil and is herein reported for the first time associated with this host.

  4. Scale Insects (Hemiptera: Coccoidea) on Myrciaria dubia (Myrtaceae) in Brazil.

    PubMed

    Wolff, V R S; Kondo, T; Peronti, A L B G; Noronha, A C S

    2016-06-01

    Commercial cultivation of the fruit tree Myrciaria dubia (Myrtaceae) is being developed in Brazil but phytophagous insects, including scale insects (Hemiptera: Coccoidea), can become pests in plantations. The coccids Ceroplastes jamaicensis White, Coccus viridis (Green), Parasaissetia nigra (Nietner), Pseudokermes vitreus (Cockerell) (Coccidae), and the diaspidid Pseudaonidia trilobitiformis (Green) were collected on M. dubia in the municipality of Belém and Tomé-Açu, state of Pará (PA), metropolitan and Northeast Pará mesoregions, Brazil. A key to species of Coccoidea recorded on M. dubia, based on adult females, is provided. Photographs for all scale insects reported on M. dubia are provided. Ceroplastes jamaicensis is recorded for the first time for Brazil and is herein reported for the first time associated with this host. PMID:26957084

  5. Peripheral olfactory signaling in insects

    PubMed Central

    Suh, Eunho; Bohbot, Jonathan; Zwiebel, Laurence J.

    2014-01-01

    Olfactory signaling is a crucial component in the life history of insects. The development of precise and parallel mechanisms to analyze the tremendous amount of chemical information from the environment and other sources has been essential to their evolutionary success. Considerable progress has been made in the study of insect olfaction fueled by bioinformatics- based utilization of genomics along with rapid advances in functional analyses. Here we review recent progress in our rapidly emerging understanding of insect peripheral sensory reception and signal transduction. These studies reveal that the nearly unlimited chemical space insects encounter is covered by distinct chemosensory receptor repertoires that are generally derived by species-specific, rapid gene gain and loss, reflecting the evolutionary consequences of adaptation to meet their specific biological needs. While diverse molecular mechanisms have been put forth, often in the context of controversial models, the characterization of the ubiquitous, highly conserved and insect-specific Orco odorant receptor co-receptor has opened the door to the design and development of novel insect control methods to target agricultural pests, disease vectors and even nuisance insects. PMID:25584200

  6. Non-target effects on aquatic decomposer organisms of imidacloprid as a systemic insecticide to control emerald ash borer in riparian trees.

    PubMed

    Kreutzweiser, David; Good, Kevin; Chartrand, Derek; Scarr, Taylor; Thompson, Dean

    2007-11-01

    Imidacloprid is effective against emerald ash borer when applied as a systemic insecticide. Following stem or soil injections to trees in riparian areas, imidacloprid residues could be indirectly introduced to aquatic systems via leaf fall or leaching. Either route of exposure may affect non-target, aquatic decomposer organisms. Leaves from ash trees treated with imidacloprid at two field rates and an intentionally-high concentration were added to aquatic microcosms. Leaves from trees treated at the two field rates contained imidacloprid concentrations of 0.8-1.3 ppm, and did not significantly affect leaf-shredding insect survival, microbial respiration or microbial decomposition rates. Insect feeding rates were significantly inhibited at foliar concentrations of 1.3 ppm but not at 0.8 ppm. Leaves from intentionally high-dose trees contained concentrations of about 80 ppm, and resulted in 89-91% mortality of leaf-shredding insects, but no adverse effects on microbial respiration and decomposition rates. Imidacloprid applied directly to aquatic microcosms to simulate leaching from soils was at least 10 times more toxic to aquatic insects than the foliar concentrations, with high mortality at 0.13 ppm and significant feeding inhibition at 0.012 ppm. PMID:17512054

  7. Non-target effects on aquatic decomposer organisms of imidacloprid as a systemic insecticide to control emerald ash borer in riparian trees.

    PubMed

    Kreutzweiser, David; Good, Kevin; Chartrand, Derek; Scarr, Taylor; Thompson, Dean

    2007-11-01

    Imidacloprid is effective against emerald ash borer when applied as a systemic insecticide. Following stem or soil injections to trees in riparian areas, imidacloprid residues could be indirectly introduced to aquatic systems via leaf fall or leaching. Either route of exposure may affect non-target, aquatic decomposer organisms. Leaves from ash trees treated with imidacloprid at two field rates and an intentionally-high concentration were added to aquatic microcosms. Leaves from trees treated at the two field rates contained imidacloprid concentrations of 0.8-1.3 ppm, and did not significantly affect leaf-shredding insect survival, microbial respiration or microbial decomposition rates. Insect feeding rates were significantly inhibited at foliar concentrations of 1.3 ppm but not at 0.8 ppm. Leaves from intentionally high-dose trees contained concentrations of about 80 ppm, and resulted in 89-91% mortality of leaf-shredding insects, but no adverse effects on microbial respiration and decomposition rates. Imidacloprid applied directly to aquatic microcosms to simulate leaching from soils was at least 10 times more toxic to aquatic insects than the foliar concentrations, with high mortality at 0.13 ppm and significant feeding inhibition at 0.012 ppm.

  8. Contaminants in aquatic systems at the Rocky Mountain arsenal. Final report

    SciTech Connect

    Rosenlund, B.; Jennings, D.; Kurey, B.

    1986-01-29

    The objective of this study, conducted from May to November, 1984, are to: document the amount of Aldrin, Dieldrin, Endrin, and Hg in various trophic levels of aquatic life throughout the lower lakes and the pathway these contaminants follow from sediment to fish; and to document the difference in Aldrin, Dieldrn, Endrin, and Hg contamination between samples captured from lake bottom locations known to be high or low in sediment contamination. The body of the report consists of data on water quality and in aquatic vegetation, aquatic insects, amphibians, and fish. Appendices: Laboratory methods, Colorado epidemiological pesticide study center; laboratory quality control; and preliminary investigation of Aldrin, Dieldrin, Endrin, and Hg residues in eggs and young of waterfowl nesting at RMA.

  9. Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands

    SciTech Connect

    Albers, P.H.; Camardese, M.B. . Patuxent Wildlife Research Center)

    1993-06-01

    Compared were concentrations of Al,Cd,Ca,Cu,Fe,Hg,Pb,Mg,Mn,Ni,P, and Zn in water, plants and aquatic insects of three acidified (pH [approximately] 5.0) and three nonacidified (pH [approximately] 6.5) constructed wetlands. Concentrations of Zn in water and bur-reed (Sparganium americanum) were higher in acidified wetlands than in nonacidified wetlands. Floating nonrooted plants contained mean concentrations of Fe, Mg, and Mn that were higher than recommended maximum levels for poultry feed. The mean concentrations of all metals in insects were below recommended maximum levels for poultry feed and below levels that cause toxic effects in wild birds. Smaller than expected increases of metal concentrations in the water of acidified wetlands were probably due to limited mobilization of metals from the sediments and insignificant changes in sedimentation of aqueous metals. Calcium was lower in acidified than in nonacidified wetland water, but the Ca content of insects and bur-reed was not lower. Low concentrations of Ca in aquatic insects from both groups of wetlands indicated that calcium-rich crustaceans and mollusks are probably important to female waterfowl and their young during the spring, when invertebrates make up the majority of the diet. Although toxic effects from metal ingestion seem to be unlikely consequences of wetland acidification, the adverse effect of low pH on the occurrence of crustaceans and mollusks could threatened egg production and development of young.

  10. When Herbivores Eat Predators: Predatory Insects Effectively Avoid Incidental Ingestion by Mammalian Herbivores

    PubMed Central

    Ben-Ari, Matan; Inbar, Moshe

    2013-01-01

    The direct trophic links between mammalian herbivores and plant-dwelling insects have been practically ignored. Insects are ubiquitous on plants consumed by mammalian herbivores and are thus likely to face the danger of being incidentally ingested by a grazing mammal. A few studies have shown that some herbivorous hemipterans are able to avoid this peril by dropping to the ground upon detecting the heat and humidity on the mammal's breath. We hypothesized that if this risk affects the entire plant-dwelling insect community, other insects that share this habitat are expected to develop similar escape mechanisms. We assessed the ability of three species (adults and larvae) of coccinellid beetles, important aphid predators, to avoid incidental ingestion. Both larvae and adults were able to avoid incidental ingestion effectively by goats by dropping to the ground, demonstrating the importance of this behavior in grazed habitats. Remarkably, all adult beetles escaped by dropping off the plant and none used their functional wings to fly away. In controlled laboratory experiments, we found that human breath caused 60–80% of the beetles to drop. The most important component of mammalian herbivore breath in inducing adult beetles and larvae to drop was the combination of heat and humidity. The fact that the mechanism of dropping in response to mammalian breath developed in distinct insect orders and disparate life stages accentuates the importance of the direct influence of mammalian herbivores on plant-dwelling insects. This direct interaction should be given its due place when discussing trophic interactions. PMID:23424674

  11. Regeneration in insects.

    PubMed

    Marsh, J L; Theisen, H

    1999-08-01

    @9cIntroduction@21T issues exhibit an impressive ability to respond to a myriad of insults by repairing and regenerating complex structures. The elegant and orderly process of regeneration provides clues to the mechanisms of pattern formation but also offers the hope that the process might one day be manipulated to replace damaged body parts. To manipulate the process, it will be necessary to understand the genetic basis of the process. In the case of the insect leg, we are coming close to such a level of understanding and many of the lessons learned are relevant to vertebrate systems. A dynamic web of gene regulatory networks appears to create a robust self-organizing system that is at once extremely intricate but also perhaps simple in its reliance on a few key signaling pathways and a few simple processes, e.g. autoactivation and lateral inhibition. Here we will summarize what has been learned about the networks of gene regulation present in the Drosophila leg discs and then we will explore how the regenerative responses to different insults can be understood as predictable responses to these networks. Each of the regulatory networks could themselves serve as the subject of a detailed review and that is beyond the scope of this discussion. Here we will focus on the interplay between the regulatory networks in patterning the tissue.

  12. Neonicotinoid insecticides can serve as inadvertent insect contraceptives

    PubMed Central

    Villamar-Bouza, Laura; Bruckner, Selina; Chantawannakul, Panuwan; Gauthier, Laurent; Khongphinitbunjong, Kitiphong; Retschnig, Gina; Troxler, Aline; Vidondo, Beatriz; Neumann, Peter; Williams, Geoffrey R.

    2016-01-01

    There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera. Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts. PMID:27466446

  13. Early metamorphic insertion technology for insect flight behavior monitoring.

    PubMed

    Verderber, Alexander; McKnight, Michael; Bozkurt, Alper

    2014-07-12

    Early Metamorphosis Insertion Technology (EMIT) is a novel methodology for integrating microfabricated neuromuscular recording and actuation platforms on insects during their metamorphic development. Here, the implants are fused within the structure and function of the neuromuscular system as a result of metamorphic tissue remaking. The implants emerge with the insect where the development of tissue around the electronics during pupal development results in a bioelectrically and biomechanically enhanced tissue interface. This relatively more reliable and stable interface would be beneficial for many researchers exploring the neural basis of the insect locomotion with alleviated traumatic effects caused during adult stage insertions. In this article, we implant our electrodes into the indirect flight muscles of Manduca sexta. Located in the dorsal-thorax, these main flight powering dorsoventral and dorsolongitudinal muscles actuate the wings and supply the mechanical power for up and down strokes. Relative contraction of these two muscle groups has been under investigation to explore how the yaw maneuver is neurophysiologically coordinated. To characterize the flight dynamics, insects are often tethered with wires and their flight is recorded with digital cameras. We also developed a novel way to tether Manduca sexta on a magnetically levitating frame where the insect is connected to a commercially available wireless neural amplifier. This set up can be used to limit the degree of freedom to yawing "only" while transmitting the related electromyography signals from dorsoventral and dorsolongitudinal muscle groups.

  14. Early metamorphic insertion technology for insect flight behavior monitoring.

    PubMed

    Verderber, Alexander; McKnight, Michael; Bozkurt, Alper

    2014-01-01

    Early Metamorphosis Insertion Technology (EMIT) is a novel methodology for integrating microfabricated neuromuscular recording and actuation platforms on insects during their metamorphic development. Here, the implants are fused within the structure and function of the neuromuscular system as a result of metamorphic tissue remaking. The implants emerge with the insect where the development of tissue around the electronics during pupal development results in a bioelectrically and biomechanically enhanced tissue interface. This relatively more reliable and stable interface would be beneficial for many researchers exploring the neural basis of the insect locomotion with alleviated traumatic effects caused during adult stage insertions. In this article, we implant our electrodes into the indirect flight muscles of Manduca sexta. Located in the dorsal-thorax, these main flight powering dorsoventral and dorsolongitudinal muscles actuate the wings and supply the mechanical power for up and down strokes. Relative contraction of these two muscle groups has been under investigation to explore how the yaw maneuver is neurophysiologically coordinated. To characterize the flight dynamics, insects are often tethered with wires and their flight is recorded with digital cameras. We also developed a novel way to tether Manduca sexta on a magnetically levitating frame where the insect is connected to a commercially available wireless neural amplifier. This set up can be used to limit the degree of freedom to yawing "only" while transmitting the related electromyography signals from dorsoventral and dorsolongitudinal muscle groups. PMID:25079130

  15. Neonicotinoid insecticides can serve as inadvertent insect contraceptives.

    PubMed

    Straub, Lars; Villamar-Bouza, Laura; Bruckner, Selina; Chantawannakul, Panuwan; Gauthier, Laurent; Khongphinitbunjong, Kitiphong; Retschnig, Gina; Troxler, Aline; Vidondo, Beatriz; Neumann, Peter; Williams, Geoffrey R

    2016-07-27

    There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts.

  16. Neonicotinoid insecticides can serve as inadvertent insect contraceptives.

    PubMed

    Straub, Lars; Villamar-Bouza, Laura; Bruckner, Selina; Chantawannakul, Panuwan; Gauthier, Laurent; Khongphinitbunjong, Kitiphong; Retschnig, Gina; Troxler, Aline; Vidondo, Beatriz; Neumann, Peter; Williams, Geoffrey R

    2016-07-27

    There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts. PMID:27466446

  17. Costs of resistance in insect-parasite and insect-parasitoid interactions.

    PubMed

    Kraaijeveld, A R; Ferrari, J; Godfray, H C J

    2002-01-01

    Most, if not all, organisms face attack by natural enemies and will be selected to evolve some form of defence. Resistance may have costs as well as its obvious benefits. These costs may be associated with actual defence or with the maintenance of the defensive machinery irrespective of whether a challenge occurs. In this paper, the evidence for costs of resistance in insect-parasite and insect-parasitoid systems is reviewed, with emphasis on two host-parasitoid systems, based on Drosophila melanogaster and pea aphids as hosts. Data from true insect-parasite systems mainly concern the costs of actual defence; evidence for the costs of standing defences is mostly circumstantial. In pea aphids, the costs of standing defences have so far proved elusive. Resistance amongst clones is not correlated with life-time fecundity, whether measured on good or poor quality plants. Successful defence by a D. melanogaster larva results in a reduction in adult size and fecundity and an increased susceptibility to pupal parasitoids. Costs of standing defences are a reduction in larval competitive ability though these costs only become important when food is limited. It is concluded that costs of resistance can play a pivotal role in the evolutionary and population dynamic interactions between hosts and their parasites.

  18. Insect symbionts in food webs

    PubMed Central

    Henry, Lee M.

    2016-01-01

    Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481779

  19. Insect symbionts in food webs.

    PubMed

    McLean, Ailsa H C; Parker, Benjamin J; Hrček, Jan; Henry, Lee M; Godfray, H Charles J

    2016-09-01

    Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated.This article is part of the themed issue 'From DNA barcodes to biomes'.

  20. Insect symbionts in food webs.

    PubMed

    McLean, Ailsa H C; Parker, Benjamin J; Hrček, Jan; Henry, Lee M; Godfray, H Charles J

    2016-09-01

    Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481779

  1. Entomopathogenic nematodes and insect management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes (genera Heterorhabditis, Steinernema, and Neosteinernema) are used as bioinsecticides. The nematodes are ubiquitous and have been isolated in soil of every continent except Antarctica. The nematodes kill insects through a mutualism with a bacterium (Photorhabdus spp. or ...

  2. Learning and cognition in insects.

    PubMed

    Giurfa, Martin

    2015-01-01

    Insects possess small brains but exhibit sophisticated behavioral performances. Recent works have reported the existence of unsuspected cognitive capabilities in various insect species, which go beyond the traditional studied framework of simple associative learning. In this study, I focus on capabilities such as attention, social learning, individual recognition, concept learning, and metacognition, and discuss their presence and mechanistic bases in insects. I analyze whether these behaviors can be explained on the basis of elemental associative learning or, on the contrary, require higher-order explanations. In doing this, I highlight experimental challenges and suggest future directions for investigating the neurobiology of higher-order learning in insects, with the goal of uncovering l architectures underlying cognitive processing.

  3. Radar Observation of Insects - Mosquitoes

    NASA Technical Reports Server (NTRS)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  4. Flight of the smallest insects

    NASA Astrophysics Data System (ADS)

    Miller, Laura; Santhanakrishnan, Arvind; Hedrick, Tyson; Robinson, Alice

    2009-11-01

    A vast body of research has described the complexity of flight in insects ranging from the fruit fly, Drosophila melanogaster, to the hawk moth, Manduca sexta. Over this range of scales, flight aerodynamics as well as the relative lift and drag forces generated are surprisingly similar. The smallest flying insects (Re˜10) have received far less attention, although previous work has shown that flight kinematics and aerodynamics can be significantly different. In this presentation, we have used a three-pronged approach that consists of measurements of flight kinematics in the tiny insect Thysanoptera (thrips), measurements of flow velocities using physical models, and direct numerical simulations to compute lift and drag forces. We find that drag forces can be an order of magnitude larger than lift forces, particularly during the clap and fling motion used by all tiny insects recorded to date.

  5. Selenium toxicity: cause and effects in aquatic birds

    USGS Publications Warehouse

    Spallholz, J.E.; Hoffman, D.J.

    2002-01-01

    There are several manners in which selenium may express its toxicity: (1) an important mechanism appears to involve the formation of CH3Se- which either enters a redox cycle and generates superoxide and oxidative stress, or forms free radicals that bind to and inhibit important enzymes and proteins. (2) Excess selenium as selenocysteine results in inhibition of selenium methylation metabolism. As a consequence, concentrations of hydrogen selenide, an intermediate metabolite, accumulate in animals and are hepatotoxic, possibly causing other selenium-related adverse effects. (3) It is also possible that the presence of excess selenium analogs of sulfur-containing enzymes and structural proteins play a role in avian teratogenesis. l-selenomethionine is the most likely major dietary form of selenium encountered by aquatic birds, with lesser amounts of l-selenocysteine ingested from aquatic animal foods. The literature is suggestive that l-selenomethionine is not any more toxic to adult birds than other animals. l-Selenomethionine accumulates in tissue protein of adult birds and in the protein of egg white as would be expected to occur in animals. There is no suggestion from the literature that the levels of l-selenomethionine that would be expected to accumulate in eggs in the absence of environmental concentration of selenium pose harm to the developing embryo. For several species of aquatic birds, levels of Se as selenomethionine in the egg above 3 ppm on a wet weight basis result in reduced hatchability and deformed embryos. The toxicity of l-selenomethionine injected directly into eggs is greater than that found from the entry of l-selenomethionine into the egg from the normal adult diet. This suggests that there is unusual if not abnormal metabolism of l-selenomethionine in the embryo not seen when l-selenomethionine is present in egg white protein where it likely serves as a source of selenium for glutathione peroxidase synthesis in the developing aquatic chick.

  6. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of...

  7. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of...

  8. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of...

  9. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  10. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  11. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  12. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of...

  13. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  14. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of...

  15. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  16. How Do Insects Help the Environment?

    ERIC Educational Resources Information Center

    Hevel, Gary

    2005-01-01

    There are some 5 to 30 million insect species estimated in the world--and the majority of these have yet to be collected or named by science! Of course, the most well known insects are those that cause disease or compete for human agricultural products, but these insects represent only a small fraction of the world's insect population. In reality,…

  17. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence...

  18. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence...

  19. Preface: Insect Pathology, 2nd ed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pathology is an essential component of entomology and provides a non-chemical alternative for insect pest management. There are several groups of organisms that can infect and kill insects including viruses, fungi, microsporidia, bacteria, protists, and nematodes. The dilemma in insect patho...

  20. Environmental manipulation for edible insect procurement: a historical perspective

    PubMed Central

    2012-01-01

    Throughout history humans have manipulated their natural environment for an increased predictability and availability of plant and animal resources. Research on prehistoric diets increasingly includes small game, but edible insects receive minimal attention. Using the anthropological and archaeological literature we show and hypothesize about the existence of such environmental manipulations related to the procurement of edible insects. As examples we use eggs of aquatic Hemiptera in Mexico which are semi-cultivated by water management and by providing egg laying sites; palm weevil larvae in the Amazon Basin, tropical Africa, and New Guinea of which the collection is facilitated by manipulating host tree distribution and abundance and which are semi-cultivated by deliberately cutting palm trees at a chosen time at a chosen location; and arboreal, foliage consuming caterpillars in sub-Saharan Africa for which the collection is facilitated by manipulating host tree distribution and abundance, shifting cultivation, fire regimes, host tree preservation, and manually introducing caterpillars to a designated area. These manipulations improve insect exploitation by increasing their predictability and availability, and most likely have an ancient origin. PMID:22264307

  1. Environmental manipulation for edible insect procurement: a historical perspective.

    PubMed

    Van Itterbeeck, Joost; van Huis, Arnold

    2012-01-21

    Throughout history humans have manipulated their natural environment for an increased predictability and availability of plant and animal resources. Research on prehistoric diets increasingly includes small game, but edible insects receive minimal attention. Using the anthropological and archaeological literature we show and hypothesize about the existence of such environmental manipulations related to the procurement of edible insects. As examples we use eggs of aquatic Hemiptera in Mexico which are semi-cultivated by water management and by providing egg laying sites; palm weevil larvae in the Amazon Basin, tropical Africa, and New Guinea of which the collection is facilitated by manipulating host tree distribution and abundance and which are semi-cultivated by deliberately cutting palm trees at a chosen time at a chosen location; and arboreal, foliage consuming caterpillars in sub-Saharan Africa for which the collection is facilitated by manipulating host tree distribution and abundance, shifting cultivation, fire regimes, host tree preservation, and manually introducing caterpillars to a designated area. These manipulations improve insect exploitation by increasing their predictability and availability, and most likely have an ancient origin.

  2. Spatial memory in insect navigation.

    PubMed

    Collett, Matthew; Chittka, Lars; Collett, Thomas S

    2013-09-01

    A wide variety of insects use spatial memories in behaviours like holding a position in air or flowing water, in returning to a place of safety, and in foraging. The Hymenoptera, in particular, have evolved life-histories requiring reliable spatial memories to support the task of provisioning their young. Behavioural experiments, primarily on social bees and ants, reveal the mechanisms by which these memories are employed for guidance to spatial goals and suggest how the memories, and the processing streams that use them, may be organized. We discuss three types of memory-based guidance which, together, can explain a large part of observed insect spatial behaviour. Two of these, alignment image-matching and positional image-matching, are based on an insect's remembered views of its surroundings: The first uses views to keep to a familiar heading and the second to head towards a familiar place. The third type of guidance is based on a process of path integration by which an insect monitors its distance and direction from its nest through odometric and compass information. To a large degree, these guidance mechanisms appear to involve modular computational systems. We discuss the lack of evidence for cognitive maps in insects, and in particular the evidence against a map based on path integration, in which view-based and path integration memories might be combined. We suggest instead that insects have a collective of separate guidance systems, which cooperate and train each other, and together provide reliable guidance over a range of conditions.

  3. Aquatic Recreation for the Blind.

    ERIC Educational Resources Information Center

    Cordellos, Harry C.

    The sixth in a series of booklets on physical education and recreation for the handicapped describes aquatic activities for blind persons. Written by a partially sighted athlete, the document discusses swimming pool characteristics and special pools for the visually impaired. Qualities of swimming instructors are reviewed, and suggestions for…

  4. Virioplankton: Viruses in Aquatic Ecosystems†

    PubMed Central

    Wommack, K. Eric; Colwell, Rita R.

    2000-01-01

    The discovery that viruses may be the most abundant organisms in natural waters, surpassing the number of bacteria by an order of magnitude, has inspired a resurgence of interest in viruses in the aquatic environment. Surprisingly little was known of the interaction of viruses and their hosts in nature. In the decade since the reports of extraordinarily large virus populations were published, enumeration of viruses in aquatic environments has demonstrated that the virioplankton are dynamic components of the plankton, changing dramatically in number with geographical location and season. The evidence to date suggests that virioplankton communities are composed principally of bacteriophages and, to a lesser extent, eukaryotic algal viruses. The influence of viral infection and lysis on bacterial and phytoplankton host communities was measurable after new methods were developed and prior knowledge of bacteriophage biology was incorporated into concepts of parasite and host community interactions. The new methods have yielded data showing that viral infection can have a significant impact on bacteria and unicellular algae populations and supporting the hypothesis that viruses play a significant role in microbial food webs. Besides predation limiting bacteria and phytoplankton populations, the specific nature of virus-host interaction raises the intriguing possibility that viral infection influences the structure and diversity of aquatic microbial communities. Novel applications of molecular genetic techniques have provided good evidence that viral infection can significantly influence the composition and diversity of aquatic microbial communities. PMID:10704475

  5. Photochemistry of environmental aquatic systems

    SciTech Connect

    Zika, R.G.; Cooper, W.F.

    1987-01-01

    This text provides an incisive look at the subject of aquatic photochemistry. It divides this topic into three main areas: fresh water, estuarine, and marine environments and discussions on natural and anthropogenic impacts. In summary it brings together a diverse selection of viewpoints.

  6. Aquatic Pest Control. Bulletin 754.

    ERIC Educational Resources Information Center

    Miller, James F.

    Four groups of aquatic weeds are described: algae, floating weeds, emersed weeds, and submersed weeds. Specific requirements for pesticide application are given for static water, limited flow, and moving water situations. The secondary effects of improper pesticide application rates are given for static, limited flow, and moving water, and the…

  7. Aquatic Exercise for the Aged.

    ERIC Educational Resources Information Center

    Daniel, Michael; And Others

    The development and implementation of aquatic exercise programs for the aged are discussed in this paper. Program development includes a discussion of training principles, exercise leadership and the setting up of safe water exercise programs for the participants. The advantages of developing water exercise programs and not swimming programs are…

  8. Aquatics and Persons with Disabilities.

    ERIC Educational Resources Information Center

    Schilling, Mary Lou

    1993-01-01

    This bulletin shares information regarding adaptive equipment, recommended interventions, precautions, and fun activities related to aquatic activities and exercise for persons with handicapping conditions. The bulletin begins with a list of 13 safety precautions and then describes instructional aids, adaptive aids, fitness-oriented devices, and…

  9. Aquatic Plant Water Quality Criteria

    EPA Science Inventory

    The USEPA, as stated in the Clean Water Act, is tasked with developing numerical Aquatic Life Critiera for various pollutants found in the waters of the United States. These criteria serve as guidance for States and Tribes to use in developing their water quality standards. The G...

  10. Allergic reactions to insect stings and bites.

    PubMed

    Moffitt, John E

    2003-11-01

    Insect stings are an important cause of anaphylaxis. Anaphylaxis can also occur from insect bites but is less common. Insect venoms contain several well-characterized allergens that can trigger anaphylactic reactions. Effective methods to diagnose insect sting allergy and assess risk of future sting reactions have been developed. Management strategies using insect avoidance measures, self-injectable epinephrine, and allergen immunotherapy are very effective in reducing insect-allergic patients' risk of reaction from future stings. Diagnostic and management strategies for patients allergic to insect bites are less developed.

  11. Same Play, Different Actors: The Aquatic Community.

    ERIC Educational Resources Information Center

    Kanis, Ira B.; Saccente, Joseph

    1988-01-01

    Provided are background information, equipment lists, and procedures for four activities for teaching aquatic ecology. Activities include "The Aquatic Food Chain Game"; "Two-Liter Aqua-Vivariums"; "A Sealed World"; and "Weaving a Web: Evaluation." (CW)

  12. Conflicts and alliances in insect families.

    PubMed

    Sundström, L; Boomsma, J J

    2001-05-01

    Hamilton's principle of inclusive fitness implies that reproductive altruism can evolve, because individuals can pass on genes not only through their own offspring, but also through the offspring of their relatives. Social insects are spectacular examples of how some individuals may be selected to forgo reproduction and instead help others reproduce. Social Hymenoptera are also special because relatedness patterns within families can be asymmetrical, so that optimal sex-ratios, preferred male parentage or preferred mating frequencies become objects of reproductive conflict. The now extensive inclusive fitness theory provides precise qualitative predictions with respect to the emergence of such conflicts. Recent advances in the power of genetic markers applied to resolve family structure in insect societies have brought about a series of studies that have tested these predictions. In support of kin selection as a major evolutionary force, the results suggest that workers frequently control sex allocation. However, the very establishment of such worker control has made new conflicts come to light, between mothers and fathers and between adult individuals and brood. Evidence for these conflicts is only just beginning to be gathered. Recent studies tend to include issues such as 'information' and 'power' (i.e. the ability to perceive signals and the opportunity to act upon this information), and to address selection for selfishness at the individual level with costs of social disruption at the colony level.

  13. A visible dominant marker for insect transgenesis.

    PubMed

    Osanai-Futahashi, Mizuko; Ohde, Takahiro; Hirata, Junya; Uchino, Keiro; Futahashi, Ryo; Tamura, Toshiki; Niimi, Teruyuki; Sezutsu, Hideki

    2012-01-01

    Transgenesis of most insects currently relies on fluorescence markers. Here we establish a transformation marker system causing phenotypes visible to the naked eye due to changes in the color of melanin pigments, which are widespread in animals. Ubiquitous overexpression of arylalkylamine-N-acetyl transferase in the silkworm, Bombyx mori, changes the color of newly hatched first-instar larvae from black to a distinctive light brown color, and can be used as a molecular marker by directly connecting to baculovirus immediate early 1 gene promoter. Suppression of black pigmentation by Bm-arylalkylamine-N-acetyl transferase can be observed throughout the larval stages and in adult animals. Alternatively, overexpression in another gene, B. mori β-alanyl-dopamine synthetase (Bm-ebony), changes the larval body color of older instars, although first-instar larvae had normal dark coloration. We further show that ectopic Bm-arylalkylamine-N-acetyl transferase expression lightens coloration in ladybird beetle Harmonia axyridis and fruit fly Drosophila melanogaster, highlighting the potential usefulness of this marker for transgenesis in diverse insect taxa. PMID:23250425

  14. Interspecific competition/facilitation among insect parasitoids.

    PubMed

    Cusumano, Antonino; Peri, Ezio; Colazza, Stefano

    2016-04-01

    Competition for limited resources is a widespread ecological interaction in animals. In the case of insect parasitoids, species can compete for host resources both at the adult stage as well as at the larval stage. Interspecific competition can play a role in sizing and shaping community structures. In addition of being relevant for basic ecological studies, understanding how interspecific competition between parasitoids affects pest suppression is important for biological control. In this opinion paper we review recent advances in the field of interspecific competition among parasitoids in a biological control perspective. We first discuss adult competition, highlighting which factors are likely to play a role in the outcome of competition when adults interact either directly or indirectly. Then we focus on the interactions occurring between competing larvae that develop within the same host taking also into account the fitness consequences of competition for the larva surviving interspecific competition. We also explore the possibility of interspecific facilitation among parasitoids in those situations in which a given species may benefit from interspecific competition.

  15. Brood care in a 100-million-year-old scale insect

    PubMed Central

    Wang, Bo; Xia, Fangyuan; Wappler, Torsten; Simon, Ewa; Zhang, Haichun; Jarzembowski, Edmund A; Szwedo, Jacek

    2015-01-01

    Behavior of extinct organisms can be inferred only indirectly, but occasionally rare fossils document particular behaviors directly. Brood care, a remarkable behavior promoting the survival of the next generation, has evolved independently numerous times among animals including insects. However, fossil evidence of such a complex behavior is exceptionally scarce. Here, we report an ensign scale insect (Hemiptera: Ortheziidae), Wathondara kotejai gen. et sp. nov., from mid-Cretaceous Burmese amber, which preserves eggs within a wax ovisac, and several freshly hatched nymphs. The new fossil is the only Mesozoic record of an adult female scale insect. More importantly, our finding represents the earliest unequivocal direct evidence of brood care in the insect fossil record and demonstrates a remarkably conserved egg-brooding reproductive strategy within scale insects in stasis for nearly 100 million years. DOI: http://dx.doi.org/10.7554/eLife.05447.001 PMID:25824055

  16. Brood care in a 100-million-year-old scale insect.

    PubMed

    Wang, Bo; Xia, Fangyuan; Wappler, Torsten; Simon, Ewa; Zhang, Haichun; Jarzembowski, Edmund A; Szwedo, Jacek

    2015-03-31

    Behavior of extinct organisms can be inferred only indirectly, but occasionally rare fossils document particular behaviors directly. Brood care, a remarkable behavior promoting the survival of the next generation, has evolved independently numerous times among animals including insects. However, fossil evidence of such a complex behavior is exceptionally scarce. Here, we report an ensign scale insect (Hemiptera: Ortheziidae), Wathondara kotejai gen. et sp. nov., from mid-Cretaceous Burmese amber, which preserves eggs within a wax ovisac, and several freshly hatched nymphs. The new fossil is the only Mesozoic record of an adult female scale insect. More importantly, our finding represents the earliest unequivocal direct evidence of brood care in the insect fossil record and demonstrates a remarkably conserved egg-brooding reproductive strategy within scale insects in stasis for nearly 100 million years.

  17. Ovariole Structure of the Cochineal Scale Insect, Dactylophis coccus

    PubMed Central

    Ramírez-Cruz, A.; Llanderal-Cázares, C.; Racotta, R.

    2008-01-01

    The ovaries of the adult cochineal scale insect, Dactylopius coccus Costa (Hemiptera: Coccoidea: Dactylopiidae) are made up of more than 400 short ovarioles of the telotrophic type. The ovarioles develop asynchronously. The ovarioles consist of a germarium with six or seven nurse cells, a vitellarium with an oocyte, and pedicel. A terminal filament is lacking. A maturing oocyte was attached to the trophic core by the trophic cord during previtellogenesis and most of vitellogenesis. PMID:20337555

  18. Ovariole structure of the cochineal scale insect, Dactylophis coccus.

    PubMed

    Ramírez-Cruz, A; Llanderal-Cázares, C; Racotta, R

    2008-01-01

    The ovaries of the adult cochineal scale insect, Dactylopius coccus Costa (Hemiptera: Coccoidea: Dactylopiidae) are made up of more than 400 short ovarioles of the telotrophic type. The ovarioles develop asynchronously. The ovarioles consist of a germarium with six or seven nurse cells, a vitellarium with an oocyte, and pedicel. A terminal filament is lacking. A maturing oocyte was attached to the trophic core by the trophic cord during previtellogenesis and most of vitellogenesis. PMID:20337555

  19. Factors influencing aquatic-to-terrestrial contaminant transport to terrestrial arthropod consumers in a multiuse river system.

    PubMed

    Alberts, Jeremy M; Sullivan, S Mažeika P

    2016-06-01

    Emerging aquatic insects are important vectors of contaminant transfer from aquatic to terrestrial food webs. However, the environmental factors that regulate contaminant body burdens in nearshore terrestrial consumers remain largely unexplored. We investigated the relative influences of riparian landscape composition (i.e., land use and nearshore vegetation structure) and contaminant flux via the emergent aquatic insect subsidy on selenium (Se) and mercury (Hg) body burdens of riparian ants (Formica subsericea) and spiders of the family Tetragnathidae along 11 river reaches spanning an urban-rural land-use gradient in Ohio, USA. Model-selection results indicated that fine-scale land cover (e.g., riparian zone width, shrub cover) in the riparian zone was positively associated with reach-wide body burdens of Se and Hg in both riparian F. subsericea and tetragnathid spiders (i.e., total magnitude of Hg and Se concentrations in ant and spider populations, respectively, for each reach). River distance downstream of Columbus, Ohio - where study reaches were impounded and flow through a large urban center - was also implicated as an important factor. Although stable-isotope analysis suggested that emergent aquatic insects were likely vectors of Se and Hg to tetragnathid spiders (but not to F. subsericea), emergent insect contaminant flux did not emerge as a significant predictor for either reach-wide body burdens of spider Hg or Se. Improved understanding of the pathways and influences that control aquatic-to-terrestrial contaminant transport will be critical for effective risk management and remediation. PMID:26874875

  20. Conference on Professional Standards for Aquatic Education.

    ERIC Educational Resources Information Center

    American Association for Health, Physical Education, and Recreation, Washington, DC.

    This report on the 1970 meeting of the Aquatics Council of the American Association for Health, Physical Education, and Recreation is divided into three sections reflecting the three phases of the Council's interest. Section One is devoted to basic aquatic education for the physical educator. Section Two concerns basic aquatic education for the…

  1. [Evaluation of plant protectants against pest insects].

    PubMed

    Pang, X; Zhang, M; Hou, Y; Jiao, Y; Cen, Y

    2000-02-01

    An interference index of population control (IIPC) was constructed for investigating the complex effects of plant protectants, including the effects of repelling insect pests away from the plant, deterring the egg laying of adults and the continuation of feeding, and causing death by toxicity. At the same time, indicated by IIPC, the alcohol extracts of some common plants, such as Eucalytus rubusta, Wedelia chinensis etc. and the neem oil gave very good results to protect the plant against Plutella xylostella. The D-C-Tron NR Petroleum Spray Oil (CALTEX) also gave an excellent effect to protect citrus against red mite. All the experiments show the important role of the repellent effect on the pests. PMID:11766564

  2. Inexpensive, floating, insect-emergence trap

    SciTech Connect

    Cushman, R.M.

    1983-11-01

    The Environmental Sciences Division of Oak Ridge National Laboratory has been investigating the usefulness of aquarium microcosms and ponds for the quantification and predictions of toxicant effects on freshwater systems. Ideally, concepts and methods applicable to both 150-L microcosms and 15,000-L ponds would bridge the gap between the two. The effort of processing the benthic samples, as well as the destructiveness of the sampling in small ponds, limited the number of samples that could be taken. Therefore, the author developed an inexpensive emergence trap appropriate for use in small outdoor ponds, as one method of increasing sampling efficiency and economy. To prevent the possibility of trapping adults from adjacent ponds, which would confound the results, the traps had to be designed such that they could only trap insects from the ponds upon which they were floating. The design of this trap is described.

  3. Electron beam treatment parameters for control of stored product insects

    NASA Astrophysics Data System (ADS)

    Cleghorn, D. A.; Nablo, S. V.; Ferro, D. N.; Hagstrum, D. W.

    2002-03-01

    The fluidized bed process (EBFB) has been evaluated for the disinfestation of cereal grains. The various life stages from egg to adult have been studied on the 225 kV pilot as a function of surface dose. Three of the most common pests were selected: the rice weevil ( S. oryzae), the lesser grain borer ( R. dominica) and the red flour beetle ( T. castaneum). The major challenge to this process lies in those "protected" life-stages active deeply within the endosperm of the grain kernel. The rice weevil is such an internal feeder in which the larvae develop through several molts during several weeks before pupation and adult emergence. Product velocities up to 2000 m/min have been used for infested hard winter wheat at dose levels up to 1000 Gy. Detailed depth of penetration studies at three life stages of S. oryzae larvae were conducted at 225-700 kV and demonstrated effective mortality at 400 kV×200 Gy. Mortality data are also presented for the radiation labile eggs of these insects as well as the (sterile) adults, which typically lived for several weeks before death. These results are compared with earlier 60Co gamma-ray studies on these same insects. Based upon these studies, the effectiveness of the fluidized bed process employing self-shielded electron beam equipment for insect control in wheat/rice at sub-kilogray dose levels has been demonstrated.

  4. Seasonal Patterns of the Insect Community Structure in Urban Rain Pools of Temperate Argentina

    PubMed Central

    Fontanarrosa, M. Soledad; Collantes, Marta B.; Bachmann, Axel O.

    2009-01-01

    Temporary aquatic environments are widespread in the world, and although there are considerable regional differences in their type and method of formation they have many physical, chemical and biological properties in common. With the aim to increase knowledge of urban temporary pool fauna, the objectives of this work were to assess the seasonal patterns of species composition, richness, and diversity of the aquatic insect community inhabiting rain pools in urban temperate Argentina, and to identify the environmental variables associated to these patterns. Four temporary pools of an urban green space in Buenos Aires City were studied throughout a 1-year period. Eleven flood cycles with very varied hydroperiods and dry periods, mainly associated with rainfall, were identified. Insect species richness in these temporary urban pools, 86 taxa were documented, was found to be within the range reported for wild temporary water bodies of other regions of the world. The present results provide evidence for the existence of a clear link between habitat and community variability. Hydroperiod and seasonality were the main environmental factors involved in structuring the insect communities of the studied water bodies. Urban pools in green spaces have the potential to act to its dwellers like corridors through the urban matrix. Taking into account these characteristics and their accessibility, urban temporary pools can be considered as promising habitats for the study of ecological processes involving the insect community. PMID:19611261

  5. Seasonal patterns of the insect community structure in urban rain pools of temperate Argentina.

    PubMed

    Fontanarrosa, M Soledad; Collantes, Marta B; Bachmann, Axel O

    2009-01-01

    Temporary aquatic environments are widespread in the world, and although there are considerable regional differences in their type and method of formation they have many physical, chemical and biological properties in common. With the aim to increase knowledge of urban temporary pool fauna, the objectives of this work were to assess the seasonal patterns of species composition, richness, and diversity of the aquatic insect community inhabiting rain pools in urban temperate Argentina, and to identify the environmental variables associated to these patterns. Four temporary pools of an urban green space in Buenos Aires City were studied throughout a 1-year period. Eleven flood cycles with very varied hydroperiods and dry periods, mainly associated with rainfall, were identified. Insect species richness in these temporary urban pools, 86 taxa were documented, was found to be within the range reported for wild temporary water bodies of other regions of the world. The present results provide evidence for the existence of a clear link between habitat and community variability. Hydroperiod and seasonality were the main environmental factors involved in structuring the insect communities of the studied water bodies. Urban pools in green spaces have the potential to act to its dwellers like corridors through the urban matrix. Taking into account these characteristics and their accessibility, urban temporary pools can be considered as promising habitats for the study of ecological processes involving the insect community.

  6. Plant Volatile Analogues Strengthen Attractiveness to Insect

    PubMed Central

    Sun, Yufeng; Yu, Hao; Zhou, Jing-Jiang; Pickett, John A.; Wu, Kongming

    2014-01-01

    Green leaf bug Apolygus lucorum (Meyer-Dür) is one of the major pests in agriculture. Management of A. lucorum was largely achieved by using pesticides. However, the increasing population of A. lucorum since growing Bt cotton widely and the increased awareness of ecoenvironment and agricultural product safety makes their population-control very challenging. Therefore this study was conducted to explore a novel ecological approach, synthetic plant volatile analogues, to manage the pest. Here, plant volatile analogues were first designed and synthesized by combining the bioactive components of β-ionone and benzaldehyde. The stabilities of β-ionone, benzaldehyde and analogue 3 g were tested. The electroantennogram (EAG) responses of A. lucorum adult antennae to the analogues were recorded. And the behavior assay and filed experiment were also conducted. In this study, thirteen analogues were acquired. The analogue 3 g was demonstrated to be more stable than β-ionone and benzaldehyde in the environment. Many of the analogues elicited EAG responses, and the EAG response values to 3 g remained unchanged during seven-day period. 3 g was also demonstrated to be attractive to A. lucorum adults in the laboratory behavior experiment and in the field. Its attractiveness persisted longer than β-ionone and benzaldehyde. This indicated that 3 g can strengthen attractiveness to insect and has potential as an attractant. Our results suggest that synthetic plant volatile analogues can strengthen attractiveness to insect. This is the first published study about synthetic plant volatile analogues that have the potential to be used in pest control. Our results will support a new ecological approach to pest control and it will be helpful to ecoenvironment and agricultural product safety. PMID:24911460

  7. Arsenic accumulation by edible aquatic macrophytes.

    PubMed

    Falinski, K A; Yost, R S; Sampaga, E; Peard, J

    2014-01-01

    Edible aquatic macrophytes grown in arsenic (As)-contaminated soil and sediment were investigated to determine the extent of As accumulation and potential risk to humans when consumed. Nasturtium officinale (watercress) and Diplazium esculentum (warabi) are two aquatic macrophytes grown and consumed in Hawaii. Neither has been assessed for potential to accumulate As when grown in As-contaminated soil. Some former sugarcane plantation soils in eastern Hawaii have been shown to have concentrations of total As over 500 mg kg(-1). It was hypothesized that both species will accumulate more As in contaminated soils than in non-contaminated soils. N. officinale and D. esculentum were collected in areas with and without As-contaminated soil and sediment. High soil As concentrations averaged 356 mg kg(-1), while low soil As concentrations were 0.75 mg kg(-1). Average N. officinale and D. esculentum total As concentrations were 0.572 mg kg(-1) and 0.075 mg kg(-1), respectively, corresponding to hazard indices of 0.12 and 0.03 for adults. Unlike previous studies where watercress was grown in As-contaminated water, N. officinale did not show properties of a hyperaccumulator, yet plant concentrations in high As areas were more than double those in low As areas. There was a slight correlation between high total As in sediment and soil and total As concentrations in watercress leaves and stems, resulting in a plant uptake factor of 0.010, an order of magnitude higher than previous studies. D. esculentum did not show signs of accumulating As in the edible fiddleheads. Hawaii is unique in having volcanic ash soils with extremely high sorption characteristics of As and P that limit release into groundwater. This study presents a case where soils and sediments were significantly enriched in total As concentration, but the water As concentration was below detection limits.

  8. Molecular characteristics of insect vitellogenins.

    PubMed

    Tufail, Muhammad; Takeda, Makio

    2008-12-01

    Vitellogenins (Vgs) are precursors of the major egg storage protein, vitellin (Vn), in many oviparous animals. Insects Vgs are large molecules ( approximately 200-kD) synthesized in the fat body in a process that involves substantial structural modifications (e.g., glycosylation, lipidation, phosphorylation, and proteolytic cleavage, etc.) of the nascent protein prior to its secretion and transport to the ovaries. However, the extent to which Vgs are processed in the fat body varies greatly among different insect groups. We provide evidence by cloning and peptide mapping of four Vg molecules from two cockroach species (Periplaneta americana and Leucophaea maderae) that, in hemimetabolous insects, the pro-Vg is cleaved into several polypeptides (ranging from 50-to 180-kD), unlike the holometabolans where the Vg precursor is cleaved into two polypeptides (one large and one small). An exception is the Vg of Apocrita (higher Hymenoptera) where the Vg gene product remains uncleaved. The yolk proteins (YPs) of higher Diptera (such as Drosophila) form a different family of proteins and are also not cleaved. So far, Vgs have been sequenced from 25 insect species; 9 of them belong to Hemimetabola and 16 to Holometabola. Alignment of the coding sequences revealed that some features, like the GL/ICG motif, cysteine residues, and a DGXR motif upstream of the GLI/CG motif, were highly conserved near the carboxy terminal of all insect Vgs. Moreover, a consensus RXXR cleavage sequence motif exists at the N-terminus of all sequences outside the Apocrita except for Lymantria dispar where it exists at the C-terminus. Phylogenetic analysis using 31 Vg sequences from 25 insect species reflects, in general, the current phylogenies of insects, suggesting that Vgs are still phylogenetically bound, although a divergence exists among them.

  9. Successful aquatic animal disease emergency programmes.

    PubMed

    Håstein, T; Hill, B J; Winton, J R

    1999-04-01

    The authors provide examples of emergency programmes which have been successful in eradicating or controlling certain diseases of aquatic animals. The paper is divided into four parts. The first part describes the initial isolation of viral haemorrhagic septicaemia (VHS) virus in North America in the autumn of 1988 from feral adult chinook (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) returning for spawning. The fish disease control policies at both State and Federal levels in the United States of America required quarantine and emergency eradication measures upon the finding of certain exotic fish pathogens, including VHS virus. The procedures for emergency plans, destruction of stocks and disinfection of facilities are described, as well as challenge experiments with the North American strains of VHS virus and the detection of the virus in marine fish species (cod [Gadus macrocephalus] and herring [Clupea harengus pallasi]) in the Pacific Ocean. The second part of the paper outlines the aquatic animal legislation in Great Britain and within the European Union, in regard to contingency plans, initial investigations, action on the suspicion of notifiable disease and action on confirmation of infection. The legal description is followed by an account of an outbreak of viral haemorrhagic septicaemia in turbot (Scophthalmus maximus) in Great Britain, including the stamping-out process at the affected farm and investigations conducted to screen other farms in the vicinity for possible infection. The third part provides a historical review of the build-up of infectious salmon anaemia (ISA) in Norway and the attempts to control the disease using legal measures in the absence of detailed knowledge of the aetiology, epizootiology, pathogenesis, etc. of the disease. The measures taken show that the spread of ISA can be controlled using restrictions on the movement of fish, disinfection procedures, etc. However, acceptance and understanding of the chosen strategy

  10. The biomechanics of fast prey capture in aquatic bladderworts.

    PubMed

    Singh, Amit K; Prabhakar, Sunil; Sane, Sanjay P

    2011-08-23

    Carnivorous plants match their animal prey for speed of movements and hence offer fascinating insights into the evolution of fast movements in plants. Here, we describe the mechanics of prey capture in aquatic bladderworts Utricularia stellaris, which prey on swimming insect larvae or nematodes to supplement their nitrogen intake. The closed Utricularia bladder develops lower-than-ambient internal pressures by pumping out water from the bladder and thus setting up an elastic instability in bladder walls. When the external sensory trigger hairs on their trapdoor are mechanically stimulated by moving prey, the trapdoor opens within 300-700 μs, causing strong inward flows that trap their prey. The opening time of the bladder trapdoor is faster than any recorded motion in carnivorous plants. Thus, Utricularia have evolved a unique biomechanical system to gain an advantage over their animal prey. PMID:21389013

  11. The biomechanics of fast prey capture in aquatic bladderworts.

    PubMed

    Singh, Amit K; Prabhakar, Sunil; Sane, Sanjay P

    2011-08-23

    Carnivorous plants match their animal prey for speed of movements and hence offer fascinating insights into the evolution of fast movements in plants. Here, we describe the mechanics of prey capture in aquatic bladderworts Utricularia stellaris, which prey on swimming insect larvae or nematodes to supplement their nitrogen intake. The closed Utricularia bladder develops lower-than-ambient internal pressures by pumping out water from the bladder and thus setting up an elastic instability in bladder walls. When the external sensory trigger hairs on their trapdoor are mechanically stimulated by moving prey, the trapdoor opens within 300-700 μs, causing strong inward flows that trap their prey. The opening time of the bladder trapdoor is faster than any recorded motion in carnivorous plants. Thus, Utricularia have evolved a unique biomechanical system to gain an advantage over their animal prey.

  12. Proposed Release Guides to Protect Aquatic Biota

    SciTech Connect

    Marter, W.L.

    2001-03-28

    At the request of South Carolina Department of Health and Environmental Control (SCDHEC) and the Department of Energy (DOE), the Savannah River Laboratory was assigned the task of developing the release guides to protect aquatic biota. A review of aquatic radioecology literature by two leading experts in the field of radioecology concludes that exposure of aquatic biota at one rad per day or less will not produce detectable deleterious effects on aquatic organisms. On the basis of this report, DOE recommends the use of one rad per day as an interim dose standard to protect aquatic biota.

  13. Drosophila's view on insect vision.

    PubMed

    Borst, Alexander

    2009-01-13

    Within the last 400 million years, insects have radiated into at least a million species, accounting for more than half of all known living organisms: they are the most successful group in the animal kingdom, found in almost all environments of the planet, ranging in body size from a mere 0.1 mm up to half a meter. Their eyes, together with the respective parts of the nervous system dedicated to the processing of visual information, have long been the subject of intense investigation but, with the exception of some very basic reflexes, it is still not possible to link an insect's visual input to its behavioral output. Fortunately for the field, the fruit fly Drosophila is an insect, too. This genetic workhorse holds great promise for the insect vision field, offering the possibility of recording, suppressing or stimulating any single neuron in its nervous system. Here, I shall give a brief synopsis of what we currently know about insect vision, describe the genetic toolset available in Drosophila and give some recent examples of how the application of these tools have furthered our understanding of color and motion vision in Drosophila.

  14. Tracing Fluxes Of Aquatic Production And Contaminants Into Terrestrial Food Webs With Nitrogen Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Rivard, A.; Cabana, G.; Rainey, W.; Power, M.

    2005-05-01

    Biomagnifying contaminants such as mercury can be transported and redistributed across the watershed by streams and rivers. Their fate and effects on consumers depend on food web transfer both within and between aquatic and terrestrial ecosystems. The Truckee River (Ca/Ne) is heavily contaminated by Hg originating from century-old upstream mining operations. We used nitrogen stable isotope analysis to trace the incorporation of Hg transported by the Truckee and transferred by emerging aquatic insects into the riparian food web. N-isotope ratios and Hg of aquatic primary consumers were significantly elevated compared to that of terrestrial arthropods (13.3 vs 5.6 % and 110 vs 17 ngg-1). Estimates of dependence on aquatics in 16 riparian passerine bird species based on blood delta 15N ranged between 0.0 and 0.95 and were significantly related to Hg in blood. Similar correlations between Hg and delta 15N measured in tail tips of western fence lizard (Sceloporus occidentalis) collected at increasing distances from the river were observed. High inter-individual variation in bird Hg was highly correlated with delta 15N. These results show how stable isotopes and contaminant fluxes can reveal important food web linkages across aquatic/terrestrial ecotones.

  15. Morbillivirus infections in aquatic mammals.

    PubMed

    Visser, I K; van Bressem, M F; Barrett, T; Osterhaus, A D

    1993-01-01

    Infections with morbilliviruses have caused heavy losses among different populations of aquatic mammals during the last 5 years. Two different morbilliviruses were isolated from disease outbreaks among seals in Europe and Siberia: phocid distemper virus-1 (PDV-1) and phocid distemper virus-2 (PDV-2) respectively. PDV-1 was characterized as a newly identified morbillivirus, most related to canine distemper virus (CDV), whereas PDV-2 most probably is a strain of CDV. Morbilliviruses were also isolated from porpoises--porpoise morbillivirus (PMV)--and dolphins--dolphin morbillivirus (DMV)--which had stranded on the coasts of Europe. PMV and DMV proved to be closely related to, but distinct from 2 ruminant morbilliviruses, rinderpest virus (RPV) and peste-des-petits-ruminants virus (PPRV). Serological surveys carried out among pinniped and cetacean species in the seas of Europe and North America indicated that infections with these newly discovered morbilliviruses or closely related viruses commonly occur among aquatic mammal species. PMID:8343804

  16. Spectroscopic studies on aquatic angiosperm

    NASA Astrophysics Data System (ADS)

    Ozawa, Atsumi; Oomizo, Nana; Fujinami, Rieko; Imaichi, Ryoko; Imai, Hajime

    2011-01-01

    Reflectance, transmittance and absorbance spectra were observed of Hydrobryum japonicum, a kind of Aquatic angiosperm, over the wavelength range from 300 to 780 nm. Three remarkable peaks were observed at 380, 430, and at 680 nm in the absorbance curve, which were assigned to the two pigments flavonoid and chlorophyll. The functions of these pigments of making photosynthesis inevitable for the botanical activity and of protecting the plant from the heat given by the sunlight were discussed.

  17. Electrohydrodynamic effects on two species of insects with economic importance to stored food products

    NASA Astrophysics Data System (ADS)

    Shayesteh, N.; Barthakur, N. N.

    1996-09-01

    An electrohydrodynamic (EHD) system which generated air ions within a strong electric field was used to study responses of stored-product insects Tribolium confusum (du Val) and Plodia interpunctella (Hübner). Larval mortality of both species generally increased with increased exposure time to ions of either polarity. The larvae and pupae of T. confusum suffered a higher mortality rate than the adults. The insects initially exhibited distinct avoiding motions away from regions of high towards low fluxes of air ions of both polarity. Insects moved vigorously, tumbled, flipped, curled up, and aggregated when the EHD system was turned on. The control insects not exposed to air ions survived and showed a total absence of such behaviour. For bipolar exposures, the insects occupied the neutral zone where the effects were minimal due to cancellation of the fields. Prolonged exposures of more than 20 min produced a quiescent state. EHD-enhanced mass transfer of the liquid component from physical objects established in fluid mechanics was invoked as a possible cause for insect mortality and avoiding behaviour to ions. Body fluid losses increased linearly with time of exposure ( R 2≥0.97) for all biological stages of insect growth. The larvae and pupae of T. confusum lost 12 and 15% of their body fluids, respectively, after 80 min of exposure to negative air ions. Fluid losses of such a magnitude are likely to have contributed to insect fatality.

  18. Endocrine disruption in aquatic vertebrates.

    PubMed

    Kloas, Werner; Urbatzka, Ralph; Opitz, Robert; Würtz, Sven; Behrends, Thomas; Hermelink, Björn; Hofmann, Frauke; Jagnytsch, Oana; Kroupova, Hana; Lorenz, Claudia; Neumann, Nadja; Pietsch, Constanze; Trubiroha, Achim; Van Ballegooy, Christoph; Wiedemann, Caterina; Lutz, Ilka

    2009-04-01

    Environmental compounds can interfere with endocrine systems of wildlife and humans. The main sink of such substances, called endocrine disrupters (ED), are surface waters. Thus, aquatic vertebrates, such as fish and amphibians, are most endangered. ED can adversely affect reproductive biology and the thyroid system. ED act by (anti)estrogenic and (anti)androgenic modes of action, resulting in abnormal sexual differentiation and impaired reproduction. These effects are mainly driven by direct interferences of ED with sex steroid receptors rather than indirectly by impacting synthesis and bioavailability of sex steroids, which in turn might affect the hypothalamic-pituitary-gonadal axis. Recent findings reveal that, in addition to the human-produced waste of ED, natural sources, such as parasites and decomposition of leaves, also might act as ED, markedly affecting sexual differentiation and reproduction in fish and amphibians. Although the thyroid system has essential functions in both fish and amphibians, amphibian metamorphosis has been introduced as the most sensitive model to detect thyroidal ED; no suitable fish model exists. Whereas ED may act primarily on only one specific endocrine target, all endocrine systems will eventually be deregulated as they are intimately connected to each other. The recent ecotoxicological issue of pharmaceutically active compounds (PhACs) present in the aquatic environment indicates a high potential for further endocrine modes of action on aquatic vertebrates by ED derived from PhACs, such as glucocorticoids, progestins, and beta-agonists.

  19. Anatomical adaptations of aquatic mammals.

    PubMed

    Reidenberg, Joy S

    2007-06-01

    This special issue of the Anatomical Record explores many of the anatomical adaptations exhibited by aquatic mammals that enable life in the water. Anatomical observations on a range of fossil and living marine and freshwater mammals are presented, including sirenians (manatees and dugongs), cetaceans (both baleen whales and toothed whales, including dolphins and porpoises), pinnipeds (seals, sea lions, and walruses), the sea otter, and the pygmy hippopotamus. A range of anatomical systems are covered in this issue, including the external form (integument, tail shape), nervous system (eye, ear, brain), musculoskeletal systems (cranium, mandible, hyoid, vertebral column, flipper/forelimb), digestive tract (teeth/tusks/baleen, tongue, stomach), and respiratory tract (larynx). Emphasis is placed on exploring anatomical function in the context of aquatic life. The following topics are addressed: evolution, sound production, sound reception, feeding, locomotion, buoyancy control, thermoregulation, cognition, and behavior. A variety of approaches and techniques are used to examine and characterize these adaptations, ranging from dissection, to histology, to electron microscopy, to two-dimensional (2D) and 3D computerized tomography, to experimental field tests of function. The articles in this issue are a blend of literature review and new, hypothesis-driven anatomical research, which highlight the special nature of anatomical form and function in aquatic mammals that enables their exquisite adaptation for life in such a challenging environment. PMID:17516440

  20. Insects as unidentified flying objects.

    PubMed

    Callahan, P S; Mankin, R W

    1978-11-01

    Five species of insects were subjected to a large electric field. Each of the insects stimulated in this manner emitted visible glows of various colors and blacklight (uv). It is postulated that the Uintah Basin, Utah, nocturnal UFO display (1965-1968) was partially due to mass swarms of spruce budworms, Choristoneura fumiferana (Clemens), stimulated to emit this type of St. Elmo's fire by flying into high electric fields caused by thunderheads and high density particulate matter in the air. There was excellent time and spatial correlation between the 1965-1968 UFO nocturnal sightings and spruce budworm infestation. It is suggested that a correlation of nocturnal UFO sightings throughout the U.S. and Canada with spruce budworm infestations might give some insight into nocturnal insect flight patterns.