Science.gov

Sample records for adult beta-globin gene

  1. Isolation and characterization of the complete chicken beta-globin gene region: frequent deletion of the adult beta-globin genes in lambda.

    PubMed Central

    Villeponteau, B; Martinson, H

    1981-01-01

    A library of bacteriophage lambda clones containing chicken chromosomal DNA was screened, using the adult beta-globin cDNA plasmid pHb 1001 as a probe. Sixteen overlapping clones were isolated containing 35 kilobase pairs (kbp) of chicken DNA. Characterization of these clones revealed four beta-like globin genes, some genomically repeated sequences, but no pseudo-genes. The four beta-like genes have an average intergenic distance of less than half of that found for the mammalian beta-like globin gene clusters so far characterized. The overall features of the map were confirmed by genomic Southern analysis. Frequent deletions were shown to occur between the various beta-like globin genes during phage propagation. The presumptive hatching gene in particular was always associated with abnormal lambda clones although we were able to find one such clone that did contain a normal copy of the hatching gene itself. Probably such deletions explain the failure to recover this gene in previous attempts. Images PMID:6269092

  2. Roles of fetal G gamma-globin promoter elements and the adult beta-globin 3' enhancer in the stage-specific expression of globin genes.

    PubMed

    Perez-Stable, C; Costantini, F

    1990-03-01

    The human fetal G gamma-globin and adult beta-globin genes are expressed in a tissue- and developmental stage-specific pattern in transgenic mice: the G gamma gene in embryonic cells and the beta gene in fetal and adult erythroid cells. Several of the cis-acting DNA sequences thought to be responsible for these patterns of expression are located 5' to the G gamma-globin gene and 3' to the beta-globin gene. To further define the locations and functional roles of these elements, we examined the effects of 5' truncations on the expression of the G gamma-globin gene, as well as the ability of G gamma-globin upstream sequences to alter the developmental regulation of a beta-globin gene, as well as the ability of G gamma-globin upstream sequences to alter the developmental regulation of a beta-globin gene. We found that sequences between -201 and -136 are essential for expression of the G gamma-globin gene, whereas those upstream of -201 have little effect on the level or tissue or stage specificity of G gamma-globin expression. The G gamma-globin upstream sequences from -201 to -136 were, furthermore, capable of activating a linked beta-globin gene in embryonic blood cells; however, a G gamma-globin fragment from -383 to -206 was similarly active in this assay, and the complete fragment from -383 to -136 was considerably more active than either of the smaller fragments, suggesting the presence of multiple cis-acting elements for embryonic blood cells. Our data also suggested the possibility of a negative regulatory element between -201 and -136. These results are discussed in relation to several DNA elements in the G gamma-globin upstream region, which have been shown to bind nuclear factors in erythroid cells. Finally, we observed that removal of the beta-globin 3'-flanking sequences, including the 3' enhancer, from the G gamma-globin upstream-beta-globin hybrid gene resulted in a 25-fold reduction in expression in embryonic blood cells. This suggests that the beta-globin

  3. Perturbation of chromatin structure in the region of the adult beta-globin gene in chicken erythrocyte chromatin.

    PubMed

    Caplan, A; Kimura, T; Gould, H; Allan, J

    1987-01-01

    An EcoRI chromatin fragment containing the adult beta-globin gene and flanking sequences, isolated from chicken erythrocyte nuclei, sediments at a reduced rate relative to bulk chromatin fragments of the same size. We show that the specific retardation cannot be reversed by adding extra linker histones to native chromatin. When the chromatin fragments are unfolded either by removing linker histones or lowering the ionic strength, the difference between globin and bulk chromatin fragments is no longer seen. The refolded chromatin obtained by restoring the linker histones to the depleted chromatin, however, exhibits the original sedimentation difference. This difference is therefore due to a special property of the histone octamers on the active gene that determines the extent of its folding into higher-order structure. That it is not due to the differential binding of linker histones in vitro is shown by measurements of the protein to DNA ratios using CsCl density-gradients. Both before and after selective removal of the linker histones, the globin gene fragment and bulk chromatin fragments exhibit only a marginal difference in buoyant density. In addition, we show that cleavage of the EcoRI fragment by digestion at the 5' and 3' nuclease hypersensitive sites flanking the globin gene liberates a fragment from between these sites that sediments normally. We conclude that the hypersensitive sites per se are responsible for the reduction in sedimentation rate. The non-nucleosomal DNA segments appear to be too long to be incorporated into the chromatin solenoid and thus create spacers between separate solenoidal elements in the chromatin, which can account for its hydrodynamic behaviour. PMID:3586025

  4. Asynchronous DNA replication within the human. beta. -globin gene locus

    SciTech Connect

    Epner, E.; Forrester, W.C.; Groudine, M. )

    1988-11-01

    The timing of DNA replication of the human {beta}-globin gene locus has been studied by blot hybridization of newly synthesized BrdUrd-substituted DNA from cells in different stages of the S phase. Using probes that span >120 kilobases across the human {beta}-globin gene locus, the authors show that the majority of this domain replicates in early S phase in the human erythroleukemia cell line K562 and in middle-to-late S phase in the lymphoid cell line Manca. However, in K562 cells three small regions display a strikingly different replication pattern than adjacent sequences. These islands, located in the inter-{gamma}-globin gene region and approximately 20 kilobases 5' to the {epsilon}-globin gene and 20 kilobases 3' to the {beta}-globin gene, replicate later and throughout S phase. A similar area is also present in the {alpha}-globin gene region in K562 cells. They suggest that these regions may represent sites of termination of replication forks.

  5. Sickle cell disorder, beta-globin gene cluster haplotypes and alpha-thalassemia in neonates and adults from Guadeloupe.

    PubMed

    Kéclard, L; Romana, M; Lavocat, E; Saint-Martin, C; Berchel, C; Mérault, G

    1997-05-01

    We have studied haplotype of beta(S) chromosome and alpha-globin gene status in 534 patients (255 adults and 279 children of whom 159 neonates) from Guadeloupe with various sickle cell-related conditions, namely SS (n = 298), SC (n = 170), S-beta-thal (n = 56), and other rare forms (n = 10). Haplotype data on beta(S) chromosomes confirm our previous observation that Benin type is the most prevalent (75%) beta(S) chromosome in Guadeloupe, in disagreement with the historical records. Comparison of the frequency of distribution of various beta(S) haplotypes between neonates and adults on the one hand and between SS and SC cases on the other shows that the current beta(S) haplotype distribution in this island is not distorted by haplotype-related differential survival. We also show that the frequency of alpha-thalassemia (-3.7 kb) in Guadeloupe is one of the highest recorded in this region involved in Atlantic slave trade and also failed to reveal any age-dependent increase in frequency. We conclude that the African component of Guadeloupe is distinct from that of Brazil and Cuba but is close to that of Jamaica. PMID:9136913

  6. Beta-globin gene cluster haplotype frequencies in Khalkhs and Buryats of Mongolia.

    PubMed

    Shimizu, Koji; Tokimasa, Kozue; Takeuchi, Yukiko; Gereksaikhan, Tudevdagva; Tanabe, Yuichi; Omoto, Keiichi; Imanishi, Tadashi; Harihara, Shinji; Hao, Luping; Jing, Feng

    2006-12-01

    Beta-globin gene cluster haplotype frequencies of 169 Khalkhs and 145 Buryats were estimated, and their characteristics were compared with those of Evenkis, Oroqens, Koreans, Japanese, and three Colombian Amerindian groups. The present study suggests that Colombian Amerindians diverged first from Asian populations and then Buryats diverged from other Asian populations. PMID:17564253

  7. Nonsense mutations in the human. beta. -globin gene affect mRNA metabolism

    SciTech Connect

    Baserga, S.J.; Benz, E.J. Jr. )

    1988-04-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.

  8. Recombination within and between the human insulin and beta-globin gene loci.

    PubMed Central

    Lebo, R V; Chakravarti, A; Buetow, K H; Cheung, M C; Cann, H; Cordell, B; Goodman, H

    1983-01-01

    We detected a large number of polymorphic insulin restriction fragments in black Americans. These different size fragments were probably generated by unequal recombination on both sides of the human insulin gene. Population genetic analysis indicates that recombination occurred 33 times more frequently than expected to generate this large number of polymorphic fragments. Specific properties of the unique repeated 14- to 16-base-pair sequences 5' to the insulin gene suggest that this sequence would promote increased unequal recombination. Additional pedigree analysis showed that the recombination rate between the structural insulin and beta-globin gene loci was 14% with strong evidence for linkage. Since both insulin and beta-globin have been mapped to the short arm of human chromosome 11, this study establishes that the genetic map distance between these genes is 14.2 centimorgans. PMID:6348773

  9. Thalassaemia mutations within the 5'UTR of the human beta-globin gene disrupt transcription.

    PubMed

    Sgourou, Argyro; Routledge, Samantha; Antoniou, Michael; Papachatzopoulou, Adamantia; Psiouri, Lambrini; Athanassiadou, Aglaia

    2004-03-01

    The mechanisms by which mutations within the 5' untranslated region (UTR) of the human beta-globin gene (HBB) cause thalassaemia are currently not well understood. We present here the first comprehensive comparative functional analysis of four 'silent' mutations in the human beta-globin 5'UTR, namely: +10(-T), +22(G --> A), +33(C --> G) and +(40-43)(-AAAC), which are present in patients with beta-thalassaemia intermedia. Expression of these genes under the control of the beta-globin locus control region in stable transfected murine erythroleukaemia cells showed that all four mutations decreased steady state levels of mRNA to 61.6%, 68%, 85.2% and 70.6%, respectively, compared with the wildtype gene. These mutations did not interfere with either mRNA transport from the nucleus to the cytoplasm, 3' end processing or mRNA stability. Nuclear run-on experiments demonstrated that mutations +10(-T) and +33(C --> G) reduced the rate of transcription to a degree that fully accounted for the observed lower level of mRNA accumulation, suggesting a disruption of downstream promoter sequences. Interestingly, mutation +22(G --> A) decreased the rate of transcription to a low degree, indicating the existence of a mechanism that acts post-transcriptionally. Generally, our data demonstrated the significance of functionally analysing mutants of this type in the presence of a full complement of transcriptional regulatory elements within a stably integrated chromatin context in an erythroid cell environment. PMID:15009072

  10. Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene.

    PubMed Central

    Sadelain, M; Wang, C H; Antoniou, M; Grosveld, F; Mulligan, R C

    1995-01-01

    Retrovirus-mediated gene transfer into hematopoietic cells may provide a means of treating both inherited and acquired diseases involving hematopoietic cells. Implementation of this approach for disorders resulting from mutations affecting the beta-globin gene (e.g., beta-thalassemia and sickle cell anemia), however, has been hampered by the inability to generate recombinant viruses able to efficiently and faithfully transmit the necessary sequences for appropriate gene expression. We have addressed this problem by carefully examining the interactions between retroviral and beta-globin gene sequences which affect vector transmission, stability, and expression. First, we examined the transmission properties of a large number of different recombinant proviral genomes which vary both in the precise nature of vector, beta-globin structural gene, and locus control region (LCR) core sequences incorporated and in the placement and orientation of those sequences. Through this analysis, we identified one specific vector, termed M beta 6L, which carries both the human beta-globin gene and core elements HS2, HS3, and HS4 from the LCR and faithfully transmits recombinant proviral sequences to cells with titers greater than 10(6) per ml. Populations of murine erythroleukemia (MEL) cells transduced by this virus expressed levels of human beta-globin transcript which, on a per gene copy basis, were 78% of the levels detected in an MEL-derived cell line, Hu11, which carries human chromosome 11, the site of the beta-globin locus. Analysis of individual transduced MEL cell clones, however, indicated that, while expression was detected in every clone tested (n = 17), the levels of human beta-globin treatment varied between 4% and 146% of the levels in Hu11. This clonal variation in expression levels suggests that small beta-globin LCR sequences may not provide for as strict chromosomal position-independent expression of beta-globin as previously suspected, at least in the context of

  11. Human beta-globin gene polymorphisms characterized in DNA extracted from ancient bones 12,000 years old.

    PubMed Central

    Béraud-Colomb, E; Roubin, R; Martin, J; Maroc, N; Gardeisen, A; Trabuchet, G; Goosséns, M

    1995-01-01

    Analyzing the nuclear DNA from ancient human bones is an essential step to the understanding of genetic diversity in current populations, provided that such systematic studies are experimentally feasible. This article reports the successful extraction and amplification of nuclear DNA from the beta-globin region from 5 of 10 bone specimens up to 12,000 years old. These have been typed for beta-globin frameworks by sequencing through two variable positions and for a polymorphic (AT) chi (T) gamma microsatellite 500 bp upstream of the beta-globin gene. These specimens of human remains are somewhat older than those analyzed in previous nuclear gene sequencing reports and considerably older than those used to study high-copy-number human mtDNA. These results show that the systematic study of nuclear DNA polymorphisms of ancient populations is feasible. Images Figure 2 Figure 3 PMID:8533755

  12. Same. beta. -globin gene mutation is present on nine different. beta. -thalassemia chromosomes in a Sardinian population

    SciTech Connect

    Pirastu, M.; Galanello, R.; Doherty, M.A.; Tuveri, T.; Cao, A.; Kan, Y.W.

    1987-05-01

    The predominant ..beta..-thalassemia in Sardinia is the ..beta../sup 0/ type in which no ..beta..-globin chains are synthesized in the homozygous state. The authors determined the ..beta..-thalassemia mutations in this population by the oligonucleotide-probe method and defined the chromosome haplotypes on which the mutation resides. The same ..beta../sup 39(CAG..-->..TAG)/ nonsense mutation was found on nine different chromosome haplotypes. Although this mutation may have arisen more than once, the multiple haplotypes could also be generated by crossing over and gene conversion events. These findings underscore the frequency of mutational events in the ..beta..-globin gene region.

  13. Characterization of a large deletion in the {beta}-globin gene cluster in a newborn with hemoglobin FE

    SciTech Connect

    Louie, E.; Dietz, L.; Shafer, F.

    1994-09-01

    A sample on a newborn with hemoglobin FE screen results was obtained to investigate whether E/E or B/{beta}{degrees} thalassemia was present using polymerase chain reaction (PCR) methodology. The newborn appeared homozygous for the hemoglobin E mutation in our initial study, but the parents` genotypes did not support this diagnosis. The father is homozygous for the absence of the hemoglobin E mutation (non E/non E) and the mother is heterozygous (E/non E) for this mutation. The limitation of PCR analysis is an assumption that the amplification of the two {beta}-globin alleles is equivalent. A large deletion on one {beta}-globin gene, which would produce E/{beta}{degrees} thalassemia, would be missed if it included part or the entire region subjected to amplification. The family results were consistent with either non-paternity, sample mix-up or such a deletion of the {beta}-globin gene in the father and child. To rule out the possibility of non-paternity, two polymorphic loci (HLA on chromosome 6 and a VNTR system of chromosome 17) that are outside of the {beta}-globin gene were analyzed and show that inheritance is consistent and the likelihood of a sample mix-up is then reduced. We therefore believe there is a gene deletion in this family. At the present time, analyses of the RFLPs that are 5{prime} of the {beta}-globin gene cluster show that the polymorphisms most distal from the 5{prime} {beta}-globin gene are not being inherited as expected. These results support our interpretation that a deletion exists in the father and was inherited by the child. The father`s clinical picture of possible HPFH (the father has 12% hemoglobin F) also supports the interpretation of a deletion in this family. Deletions of the {beta}-globin gene within this ethnic group are rare. Currently, Southern blots on the family are being probed to determine the extent of the putative deletion.

  14. Characteristic beta-globin gene cluster haplotypes of Evenkis and Oroqens in north China.

    PubMed

    Shimizu, Koji; Marubayashi, Azusa; Tokimasa, Kozue; Harihara, Shinji; Omoto, Keiichi; Imanishi, Tadashi; Hao, Luping; Jin, Feng

    2004-10-01

    Haplotype frequencies of the beta-globin gene cluster were estimated for 114 Evenkis and 81 Oroqens from northeast China, and their characteristics were compared with those in Japanese, Koreans, and three Colombian Amerindian groups of South America (Wayuu, Kamsa, and Inga tribes). A major 5' subhaplotype (5' to the delta-globin gene) was + - - - - in Evenkis, whereas + - - - -, - + + - +, and - + - + + were the major subhaplotypes in Oroqens. One possible candidate for an ancestral 5' subhaplotype, - - - - -, was found in one Evenki (0.5%) and three Oroqen chromosomes (2.0%). They were observed as heterozygous forms for + ---- and -----. Major haplotypes were +-----+, + -----+-, and + - - - - + + in Evenkis, whereas they were +-----+,-++-+-+, +----+-, and -+-++-+ in Oroqens. The lowest Nei's genetic distance values of Evenkis or Oroqens based on the 5' subhaplotype frequency distributions were observed in relation to the Wayuu or Koreans, respectively, but those of Evenkis and Oroqens based on the haplotype frequency distributions were found in relation to Koreans. PMID:15757246

  15. Total beta-globin gene deletion has high frequency in Filipinos

    SciTech Connect

    Patrick, N.; Miyakawa, F.; Hunt, J.A.

    1994-09-01

    The distribution of {beta}-thalassemia [{beta}{sup Th}] mutations is unique to each ethnic group. Most mutations affect one or a few bases; large deletions have been rare. Among families screened in Hawaii, [{beta}{sup Th}] heterozygotes were diagnosed by microcytosis, absence of abnormal hemoglobins on isoelectric focusing, and raised Hb A{sub 2} by chromatography. Gene frequency for {beta}{sup Th} was 0.02 in Filipinos. In Filipinos, polymerase chain reaction [PCR] with denaturing gradient gel electrophoresis for {beta}{sup Th} mutations detected a mutation in only 6 of 42 {beta}{sup Th} heterozygotes; an IVS2-666 C/T polymorphism showed non-heterozygosity in 37 and heterozygosity in only 5 of these {beta}{sup Th} heterozygotes. One {beta}{sup Th}/{beta}{sup Th} major patient and his mother had no mutation detected by allele-specific oligomer hybridization; PCR failed to amplify any DNA from his {beta}-globin gene. After a total {beta}-globin gene deletion [{beta}{sup Del}] was found in a Filipino family in Ontario, specific PCR amplification for {beta}{sup Del} detected this in 43 of 53 {beta}{sup Th} Filipino samples tested; the above {beta}{sup Th}/{beta}{sup Th} patient was a ({beta}{sup Del}/{beta}{sup Del}) homozygote. The {beta}{sup Del} may account for over 60% of all {beta}{sup Th} alleles in Filipinos; this is the highest proportion of a deletion {beta}{sup Th} mutation reported from any population. Most but not all {beta}{sup Del} heterozygotes had high Hb F [5.13 {plus_minus} 3.94 mean {plus_minus} 1 s.d.] compared to the codon 41/42 four base deletion common in Chinese [2.30 {plus_minus} 0.86], or to {beta}{sup Th} heterozygotes with normal {alpha}-globin genes [2.23 {plus_minus} 0.80].

  16. Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids.

    PubMed

    Chin, Joanna Y; Kuan, Jean Y; Lonkar, Pallavi S; Krause, Diane S; Seidman, Michael M; Peterson, Kenneth R; Nielsen, Peter E; Kole, Ryszard; Glazer, Peter M

    2008-09-01

    Splice-site mutations in the beta-globin gene can lead to aberrant transcripts and decreased functional beta-globin, causing beta-thalassemia. Triplex-forming DNA oligonucleotides (TFOs) and peptide nucleic acids (PNAs) have been shown to stimulate recombination in reporter gene loci in mammalian cells via site-specific binding and creation of altered helical structures that provoke DNA repair. We have designed a series of triplex-forming PNAs that can specifically bind to sequences in the human beta-globin gene. We demonstrate here that these PNAs, when cotransfected with recombinatory donor DNA fragments, can promote single base-pair modification at the start of the second intron of the beta-globin gene, the site of a common thalassemia-associated mutation. This single base pair change was detected by the restoration of proper splicing of transcripts produced from a green fluorescent protein-beta-globin fusion gene. The ability of these PNAs to induce recombination was dependent on dose, sequence, cell-cycle stage, and the presence of a homologous donor DNA molecule. Enhanced recombination, with frequencies up to 0.4%, was observed with use of the lysomotropic agent chloroquine. Finally, we demonstrate that these PNAs were effective in stimulating the modification of the endogenous beta-globin locus in human cells, including primary hematopoietic progenitor cells. This work suggests that PNAs can be effective tools to induce heritable, site-specific modification of disease-related genes in human cells. PMID:18757759

  17. An erythrocyte-specific protein that binds to the poly(dG) region of the chicken beta-globin gene promoter.

    PubMed

    Lewis, C D; Clark, S P; Felsenfeld, G; Gould, H

    1988-07-01

    The promoter region of the chicken adult beta-globin gene contains a sequence of 16 deoxyguanosine residues located at a nucleosome boundary in tissues where the gene is inactive. In definitive erythrocytes that express the beta-globin gene, the nucleosome is displaced, the G-string and adjacent sequences are occupied by sequence-specific DNA-binding proteins, and a nuclease hypersensitive domain is generated in this region. To gain insight into the role of the G-string in this series of events, we have examined the proteins that bind to it. Using the gel mobility shift assay and a monoclonal antibody that blocks specific binding to the G-string, we have identified a specific protein, BGP1, that is found only in chicken erythroid cells and appears at the same time, or shortly before, the changes in chromatin structure. The antibody interacts strongly with BGP1 and cross-reacts weakly with Sp1. Although both BGP1 and Sp1 require Zn2+ for their DNA-binding activity, these proteins differ in their binding-site specificities, chromatographic properties, and molecular weights. In contrast to Sp1, which is found in a wide variety of cell types, BGP1 is restricted to erythrocytes and is most abundant in definitive erythrocytes. Thus, its presence corresponds to the tissue- and stage-specific occupancy of the G-string in vivo. PMID:3209071

  18. Developmental changes in DNA methylation and covalent histone modifications of chromatin associated with the epsilon-, gamma-, and beta-globin gene promoters in Papio anubis.

    PubMed

    Lavelle, Donald; Vaitkus, Kestis; Hankewych, Maria; Singh, Mahipal; DeSimone, Joseph

    2006-01-01

    The baboon is a suitable and relevant animal model to study the mechanism of human globin gene switching. This investigation addresses the role of DNA methylation and histone coding in globin gene switching in the baboon, Papio anubis. Bisulfite sequencing and chromatin immunoprecipitation studies were performed in erythroid cells purified from fetuses of varying gestational ages and from adult bone marrow to analyze the manner that changes in DNA methylation of the epsilon-, gamma-, and beta-globin promoters and association of ac-H3, ac-H4, H3-dimeK4, H3-dimeK36, and H3-dimeK79 with the epsilon-, gamma-, and beta-globin promoters occur during development. Changes in DNA methylation of the epsilon- and gamma-globin gene promoters during transitional stages of globin gene switching were consistent with the stochastic model of methylation and a role of DNA methylation in gene silencing. Enrichment of ac-H3, ac-H4, and pol II at the promoters of developmentally active genes was observed, while the pattern of distribution of H3-dimeK4 and H3-dimeK79 suggests that these modifications are found near both currently and formerly active promoters. Enrichment of H3-dimeK36 at the silenced epsilon-globin gene promoter was observed. These studies demonstrate that coordinated epigenetic modifications in the chromatin structure of the beta-like globin gene promoters accompany the highly regulated changes in expression patterns of these genes during development. PMID:16527500

  19. Developmental- and differentiation-specific patterns of human gamma- and beta-globin promoter DNA methylation.

    PubMed

    Mabaera, Rodwell; Richardson, Christine A; Johnson, Kristin; Hsu, Mei; Fiering, Steven; Lowrey, Christopher H

    2007-08-15

    The mechanisms underlying the human fetal-to-adult beta-globin gene switch remain to be determined. While there is substantial experimental evidence to suggest that promoter DNA methylation is involved in this process, most data come from studies in nonhuman systems. We have evaluated human gamma- and beta-globin promoter methylation in primary human fetal liver (FL) and adult bone marrow (ABM) erythroid cells. Our results show that, in general, promoter methylation and gene expression are inversely related. However, CpGs at -162 of the gamma promoter and -126 of the beta promoter are hypomethylated in ABM and FL, respectively. We also studied gamma-globin promoter methylation during in vitro differentiation of erythroid cells. The gamma promoters are initially hypermethylated in CD34(+) cells. The upstream gamma promoter CpGs become hypomethylated during the preerythroid phase of differentiation and are then remethylated later, during erythropoiesis. The period of promoter hypomethylation correlates with transient gamma-globin gene expression and may explain the previously observed fetal hemoglobin production that occurs during early adult erythropoiesis. These results provide the first comprehensive survey of developmental changes in human gamma- and beta-globin promoter methylation and support the hypothesis that promoter methylation plays a role in human beta-globin locus gene switching. PMID:17456718

  20. Evolution of the primate beta-globin gene region: nucleotide sequence of the delta-beta-globin intergenic region of gorilla and phylogenetic relationships between African apes and man.

    PubMed

    Perrin-Pecontal, P; Gouy, M; Nigon, V M; Trabuchet, G

    1992-01-01

    A 6.0-kb DNA fragment from Gorilla gorilla including the 5' part of the beta-globin gene and about 4.5 kb of its upstream flanking region was cloned and sequenced. The sequence was compared to the human, chimpanzee, and macaque delta-beta intergenic region. This analysis reveals four tandemly repeated sequences (RS), at the same location in the four species, showing a variable number of repeats generating both intraspecific (polymorphism) and interspecific variability. These tandem arrays delimit five regions of unique sequence called IG for intergenic. The divergence for these IG sequences is 1.85 +/- 0.22% between human and gorilla, which is not significantly different from the value estimated in the same region between chimpanzee and human (1.62 +/- 0.21%). The CpG and TpA dinucleotides are avoided. CpGs evolve faster than other sequence sites but do not confuse phylogenetic inferences by producing parallel mutations in different lineages. About 75% of CpG doublets have become TpG or CpA since the common ancestor, in agreement with the methylation/deamination pattern. Comparison of this intergenic region gives information on branching order within Hominoidea. Parsimony and distance-based methods when applied to the delta-beta intergenic region provide evidence (although not statistically significant) that human and chimpanzee are more closely related to each other than to gorilla. CpG sites are indeed rich in information by carrying substitutions along the short internal branch. Combining these results with those on the psi eta-delta intergenic region, shows in a statistically significant way that chimpanzee is the closest relative of human. PMID:1556740

  1. Alternative sites of transcription initiation upstream of the canonical cap site in human gamma-globin and beta-globin genes.

    PubMed Central

    Grindlay, G J; Lanyon, W G; Allan, M; Paul, J

    1984-01-01

    Using S1 mapping and primer extension analysis, we have identified a number of human kappa-globin and beta-globin 5' RNA termini originating in the 200 bp upstream of the canonical mRNA cap sites. Upstream initiation sites have previously been reported for the human epsilon-globin gene (4,5) and the present work indicates that this is a general feature of the human beta-type globin genes. We have attempted to identify features common to such sites between the three genes. One site 170 bp upstream of the major beta-globin cap site and a site 1400 bp upstream of the major epsilon-globin cap site are located near putative PolIII promoter sequences and may therefore be transcribed by this enzyme. Alternative initiation sites located 200 bp and 50-100 bp upstream of the epsilon-globin and kappa-globin cap sites respectively are located within S1 hypersensitive regions of chromatin. Images PMID:6701091

  2. Expression of a cellular gene cloned in herpes simplex virus: rabbit beta-globin is regulated as an early viral gene in infected fibroblasts.

    PubMed Central

    Smiley, J R; Smibert, C; Everett, R D

    1987-01-01

    We constructed nondefective herpes simplex virus type 1 recombinants bearing the intact rabbit beta-globin gene inserted into the viral gene for thymidine kinase to study the expression of a cellular gene when it is present in the viral genome during lytic viral infections. The globin promoter was activated to high levels during productive infection of Vero cells, giving rise to properly spliced and processed cytoplasmic globin transcripts. Expression of globin RNA occurred with early kinetics, was not affected by blocking viral DNA replication, and was strongly inhibited by preventing viral immediate-early protein synthesis with cycloheximide. These results support the hypothesis that temporal control of herpes simplex virus early gene expression is accomplished by mechanisms that are not restricted to viral promoters. In addition, these data show that a cellular transcript can be correctly processed and can accumulate to high levels during viral infection; this indicates that the mechanisms of virally induced shutoff of host RNA accumulation and degradation of host mRNAs do not depend on sequence-specific differentiation between host and viral RNAs. These findings also suggest that herpesviruses have considerable potential as high-capacity gene transfer vectors for a variety of applications. Images PMID:3037101

  3. The phylogenetic history of New World monkey beta globin reveals a platyrrhine beta to delta gene conversion in the atelid ancestry.

    PubMed

    Prychitko, Tom; Johnson, Robert M; Wildman, Derek E; Gumucio, Deborah; Goodman, Morris

    2005-04-01

    Orthologues of the beta globin gene locus from 10 New World monkey species were sequenced and aligned against available beta and delta globin sequences from rabbit and other primates. Where needed, additional primate sequencing was performed. Phylogenetic analysis identified a beta to delta conversion in the stem of the Anthropoidea, stretching from the 3' part of the proximal promotor to the 5' start of intron 2, consistent with earlier findings. No further conversion appeared to have occurred in the descent of the catarrhines. Within the New World monkey lineage that led to spider monkey and other atelids, another shorter gene conversion was found, spanning adjacent parts of exon 1 and intron 1. The analysis also confirmed that galago beta had replaced galago delta, that an earlier loriform-specific gene conversion extended over intron 2, and that gene conversion throughout the main gene conversion region occurred in the tarsiiform lineage. Platyrrhine phylogenetic relationships were investigated with beta sequences restricted to those that were not involved in gene conversions. This phylogeny generally agreed with results from other nuclear genes. The one exception was that the beta sequences did not place the callitrichine clade within the Cebidae but weakly joined the callitrichine and atelid clades. PMID:15737593

  4. Development of a High-Resolution Melting Approach for Scanning Beta Globin Gene Point Mutations in the Greek and Other Mediterranean Populations.

    PubMed

    Chassanidis, Christos; Boutou, Effrossyni; Voskaridou, Ersi; Balassopoulou, Angeliki

    2016-01-01

    Beta-thalassaemia is one of the most common autosomal recessive disorders worldwide. The disease's high incidence, which is observed in the broader Mediterranean area has led to the establishment of molecular diagnostics' assays to prevent affected births. Therefore, the development of a reliable, cost-effective and rapid scanning method for β globin gene point mutations, easily adapted to a routine laboratory, is absolutely essential. Here, we describe, for the first time, the development of a High-Resolution Melting Analysis (HRMA) approach, suitable for scanning the particularly heterogeneous beta globin gene mutations present in the Greek population, and thus adaptable to the Mediterranean and other areas where these mutations have been identified. Within this context, β globin gene regions containing mutations frequently identified in the Greek population were divided in ten overlapping amplicons. Our reactions' setup allowed for the simultaneous amplification of multiple primer sets and partial multiplexing, thereby resulting in significant reduction of the experimental time. DNA samples from β-thalassaemia patients/carriers with defined genotypes were tested. Distinct genotypes displayed distinguishable melting curves, enabling accurate detection of mutations. The described HRMA can be adapted to a high-throughput level. It represents a rapid, simple, cost-effective, reliable, highly feasible and sensitive method for β-thalassaemia gene scanning. PMID:27351925

  5. Development of a High-Resolution Melting Approach for Scanning Beta Globin Gene Point Mutations in the Greek and Other Mediterranean Populations

    PubMed Central

    Chassanidis, Christos; Boutou, Effrossyni; Voskaridou, Ersi; Balassopoulou, Angeliki

    2016-01-01

    Beta-thalassaemia is one of the most common autosomal recessive disorders worldwide. The disease’s high incidence, which is observed in the broader Mediterranean area has led to the establishment of molecular diagnostics’ assays to prevent affected births. Therefore, the development of a reliable, cost-effective and rapid scanning method for β globin gene point mutations, easily adapted to a routine laboratory, is absolutely essential. Here, we describe, for the first time, the development of a High-Resolution Melting Analysis (HRMA) approach, suitable for scanning the particularly heterogeneous beta globin gene mutations present in the Greek population, and thus adaptable to the Mediterranean and other areas where these mutations have been identified. Within this context, β globin gene regions containing mutations frequently identified in the Greek population were divided in ten overlapping amplicons. Our reactions’ setup allowed for the simultaneous amplification of multiple primer sets and partial multiplexing, thereby resulting in significant reduction of the experimental time. DNA samples from β-thalassaemia patients/carriers with defined genotypes were tested. Distinct genotypes displayed distinguishable melting curves, enabling accurate detection of mutations. The described HRMA can be adapted to a high-throughput level. It represents a rapid, simple, cost-effective, reliable, highly feasible and sensitive method for β-thalassaemia gene scanning. PMID:27351925

  6. Genomic organization and differential signature of positive selection in the alpha and beta globin gene clusters in two cetacean species.

    PubMed

    Nery, Mariana F; Arroyo, José Ignacio; Opazo, Juan C

    2013-01-01

    The hemoglobin of jawed vertebrates is a heterotetramer protein that contains two α- and two β-chains, which are encoded by members of α- and β-globin gene families. Given the hemoglobin role in mediating an adaptive response to chronic hypoxia, it is likely that this molecule may have experienced a selective pressure during the evolution of cetaceans, which have to deal with hypoxia tolerance during prolonged diving. This selective pressure could have generated a complex history of gene turnover in these clusters and/or changes in protein structure themselves. Accordingly, we aimed to characterize the genomic organization of α- and β-globin gene clusters in two cetacean species and to detect a possible role of positive selection on them using a phylogenetic framework. Maximum likelihood and Bayesian phylogeny reconstructions revealed that both cetacean species had retained a similar complement of putatively functional genes. For the α-globin gene cluster, the killer whale presents a complement of genes composed of HBZ, HBK, and two functional copies of HBA and HBQ genes, whereas the dolphin possesses HBZ, HBK, HBA and HBQ genes, and one HBA pseudogene. For the β-globin gene cluster, both species retained a complement of four genes, two early expressed genes-HBE and HBH-and two adult expressed genes-HBD and HBB. Our natural selection analysis detected two positively selected sites in the HBB gene (56 and 62) and four in HBA (15, 21, 49, 120). Interestingly, only the genes that are expressed during the adulthood showed the signature of positive selection. PMID:24259315

  7. Confirmation of the potential usefulness of two human beta globin pseudogene markers to estimate gene flows to and from sub-Saharan Africans.

    PubMed

    Ciminelli, Bianca Maria; Pompei, Fiorenza; Relucenti, Michela; Lum, J Koji; Simporé, Jacques; Spedini, Gabriella; Martínez-Labarga, Cristina; Pardo, Miguel G

    2002-04-01

    Two polymorphic sites, -107 and -100 with respect to the "cap" site of the human beta globin pseudogene, recently discovered in our laboratory, turned out to have an ethnically complementary distribution. The first site is polymorphic in Europeans, North Africans, Indians (Hindu), and Oriental Asians, and monomorphic in sub-Saharan Africans. Conversely, the second site is polymorphic in sub-Saharan African populations and monomorphic in the aforementioned populations. Here we report the gene frequencies of these two polymorphic sites in nine additional populations (Egyptians, Spaniards, Japanese, Chinese, Filipinos, Vietnamese, Africans from Togo and from Benin, and Pygmies), confirming their ethnospecificity and, through the analysis of these two markers in Oromo and Amhara of Ethiopia (two mixed populations), their usefulness in genetic admixture studies. Moreover, we studied another marker polymorphic in sub-Saharan African populations only, a TaqI restriction fragment length polymorphism located in the same region as the present markers, demonstrating the absence of linkage disequilibrium between it and the -100 site, so that we can exclude that the information they provide is redundant. PMID:12030652

  8. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals

    PubMed Central

    Patel, Vidushi S; Cooper, Steven JB; Deakin, Janine E; Fulton, Bob; Graves, Tina; Warren, Wesley C; Wilson, Richard K; Graves, Jennifer AM

    2008-01-01

    Background Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω) in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. Results The platypus α-globin cluster (chromosome 21) contains embryonic and adult α- globin genes, a β-like ω-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-ζ-ζ'-αD-α3-α2-α1-ω-GBY-3'. The platypus β-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-ε-β-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate α-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal β-globin clusters are embedded in olfactory genes. Thus, the mammalian α- and β-globin clusters are orthologous to the bird α- and β-globin clusters respectively. Conclusion We propose that α- and β-globin clusters evolved from an ancient MPG-C16orf35-α-β-GBY-LUC7L arrangement 410 million years ago. A copy of the original β (represented by ω in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of β-globin genes with different expression profiles in different lineages. PMID:18657265

  9. Genomic Organization and Differential Signature of Positive Selection in the Alpha and Beta Globin Gene Clusters in Two Cetacean Species

    PubMed Central

    Nery, Mariana F.; Arroyo, José Ignacio; Opazo, Juan C.

    2013-01-01

    The hemoglobin of jawed vertebrates is a heterotetramer protein that contains two α- and two β-chains, which are encoded by members of α- and β-globin gene families. Given the hemoglobin role in mediating an adaptive response to chronic hypoxia, it is likely that this molecule may have experienced a selective pressure during the evolution of cetaceans, which have to deal with hypoxia tolerance during prolonged diving. This selective pressure could have generated a complex history of gene turnover in these clusters and/or changes in protein structure themselves. Accordingly, we aimed to characterize the genomic organization of α- and β-globin gene clusters in two cetacean species and to detect a possible role of positive selection on them using a phylogenetic framework. Maximum likelihood and Bayesian phylogeny reconstructions revealed that both cetacean species had retained a similar complement of putatively functional genes. For the α-globin gene cluster, the killer whale presents a complement of genes composed of HBZ, HBK, and two functional copies of HBA and HBQ genes, whereas the dolphin possesses HBZ, HBK, HBA and HBQ genes, and one HBA pseudogene. For the β-globin gene cluster, both species retained a complement of four genes, two early expressed genes—HBE and HBH—and two adult expressed genes—HBD and HBB. Our natural selection analysis detected two positively selected sites in the HBB gene (56 and 62) and four in HBA (15, 21, 49, 120). Interestingly, only the genes that are expressed during the adulthood showed the signature of positive selection. PMID:24259315

  10. Targeted cross-linking of the human beta-globin gene in living cells mediated by a triple helix forming oligonucleotide.

    PubMed

    Shahid, Kazi Abdus; Majumdar, Alokes; Alam, Rowshon; Liu, Su-Ting; Kuan, Jean Y; Sui, Xuifen; Cuenoud, Bernard; Glazer, Peter M; Miller, Paul S; Seidman, Michael M

    2006-02-14

    Triple helix forming oligonucleotides (TFOs) may have utility as gene targeting reagents for "in situ" gene therapy of genetic disorders. Triplex formation is challenged by negative charge repulsion between third strand and duplex phosphates, and destabilizing positive charge repulsion between adjacent protonated cytosines within pyrimidine motif third strands. Here we describe the synthesis of TFOs designed to target a site in the human beta-globin gene, which is the locus for mutations that underlie the beta-globinopathies, including sickle cell anemia. The target is an uninterrupted polypurine:polypyrimidine sequence, containing four adjacent cytosines, next to a psoralen cross-link site. Pyrimidine motif TFOs that contained four adjacent cytosines or 5-methylcytosines did not form stable triplexes at physiological pH, despite the introduction of otherwise stabilizing base and sugar analogues. We synthesized a series of pso-TFOs containing 2'-O-methyl (OMe) and 2'-O-aminoethoxy substitutions (AE), as well as 8-oxo-adenine (A8) and 2'-O-methylpseudoisocytidine (P) as neutral cytosine replacements. Thermal stability measurements indicated that TFOs with A8 did not meet criteria established in previous work. However, TFOs with P did form triplexes with appropriate T(m) and k(ON) values. A pso-TFO with AE and P residues was sufficiently active to permit the determination of targeting in living cells by direct measurement of cross-link formation at the target site. Our results validate the modification format described in our previous studies and indicate that P substitutions are an effective solution to the problem of targeting genomic sequences containing adjacent cytosines. PMID:16460044

  11. Hairpin-duplex equilibrium reflected in the A-->B transition in an undecamer quasi-palindrome present in the locus control region of the human beta-globin gene cluster.

    PubMed

    Kaushik, Mahima; Kukreti, Ritushree; Grover, Deepak; Brahmachari, Samir K; Kukreti, Shrikant

    2003-12-01

    Our recent work on an A-->G single nucleotide polymorphism (SNP) at the quasi-palindromic sequence d(TGGGG[A/G]CCCCA) of HS4 of the human beta-globin locus control region in an Indian population showed a significant association between the G allele and the occurrence of beta-thalassemia. Using UV-thermal denaturation, gel assay, circular dichroism (CD) and nuclease digestion experiments we have demonstrated that the undecamer quasi- palindromic sequence d(TGGGGACCCCA) (HPA11) and its reported polymorphic (SNP) version d(TGG GGGCCCCA) (HPG11) exist in hairpin-duplex equilibria. The biphasic nature of the melting profiles for both the oligonucleotides persisted at low as well as high salt concentrations. The HPG11 hairpin showed a higher T(m) than HPA11. The presence of unimolecular and bimolecular species was also shown by non-denaturating gel electrophoresis experiments. The CD spectra of both oligonucleotides showed features of the A- as well as B-type conformations and, moreover, exhibited a concentration dependence. The disappearance of the 265 nm positive CD signal in an oligomer concentration-dependent manner is indicative of an A-->B transition. The results give unprecedented insight into the in vitro structure of the quasi-palindromic sequence and provide the first report in which a hairpin-duplex equilibrium has been correlated with an A-->B interconversion of DNA. The nuclease-dependent degradation suggests that HPG11 is more resistant to nuclease than HPA11. Multiple sequence alignment of the HS4 region of the beta-globin gene cluster from different organisms revealed that this quasi-palindromic stretch is unique to Homo sapiens. We propose that quasi-palindromic sequences may form stable mini- hairpins or cruciforms in the HS4 region and might play a role in regulating beta-globin gene expression by affecting the binding of transcription factors. PMID:14627823

  12. Human {beta}-globin gene polymorphisms characterized in DNA extracted from ancient bones 12,000 years old

    SciTech Connect

    Beraud-Colomb, E. |; Maroc, N.; Roubin, R.

    1995-12-01

    Analyzing the nuclear DNA from ancient human bones is an essential step to the understanding of genetic diversity in current populations, provided that such systematic studies are experimentally feasible. This article reports the successful extraction and amplification of nuclear DNA from the P-globin region from 5 of 10 bone specimens up to 12,000 years old. These have been typed for P-globin frameworks by sequencing through two variable positions and for a polymorphic (AT){sub x}(T){sub y} microsatellite 500 bp upstream of the P-globin gene. These specimens of human remains are somewhat older than those analyzed in previous nuclear gene sequencing reports and considerably older than those used to study high-copy-number human mtDNA. These results show that the systematic study of nuclear DNA polymorphisms of ancient populations is feasible. 34 refs., 3 figs., 2 tabs.

  13. Structural analysis of the 5 prime flanking region of the. beta. -globin gene in African sickle cell anemia patients: Further evidence for three origins of the sickle cell mutation in Africa

    SciTech Connect

    Chebloune, Y.; Pagnier, J.; Trabuchet, G.; Faure, C.; Verdier, G.; Labie, D.; Nigon, V. )

    1988-06-01

    Haplotype analysis of the {beta}-globin gene cluster shows two regions of DNA characterized by nonrandom association of restriction site polymorphisms. These regions are separated by a variable segment containing the repeated sequences (ATTTT){sub n} and (AT){sub x}T{sub y}, which might be involved in recombinational events. Studies of haplotypes linked to the sickle cell gene in Africa provide strong argument for three origins of the mutation: Benin, Senegal, and the Central African Republic. The structure of the variable segment in the three African populations was studied by S1 nuclease mapping of genomic DNA, which allows a comparison of several samples. A 1080-base-pair DNA segment was sequenced for one sample from each population. S1 nuclease mapping confirmed the homogeneity of each population with regard to both (ATTTT){sub n} and (AT){sub x}T{sub y} repeats. The authors found three additional structures for (AT){sub x}T{sub y} correlating with the geographic origin of the patients. Ten other nucleotide positions, 5{prime} and 3{prime} to the (AT){sub x}T{sub y} copies, were found to be variable when compared to homologous sequences from human and monkey DNAs. These results allow us to propose an evolutionary scheme for the polymorphisms in the 5{prime} flanking region of the {beta}-globin gene. The results strongly support the hypothesis of three origins for the sickle mutation in Africa.

  14. Characteristics of the beta-globin gene cluster haplotypes of three Han Chinese populations at Beijing, Xi'an, and Kunming as compared with those of other Asian populations.

    PubMed

    Shimizu, Koji; Nagaoka, Erika; Okada, Yusuke; Takeuchi, Yukiko; Harihara, Shinji; Omoto, Keiichi; Imanishi, Tadashi; Kim, Wook; Shin, Dong-Jik; Hao, Luping; Jin, Feng

    2008-10-01

    Haplotype frequencies of the beta-globin gene cluster of Han Chinese at Beijing, Xi'an, and Kunming were estimated, and their mutual genetic relationships were examined and compared to those of Buryats, Khalkhs, Evenkis, Oroqens, Koreans, and Colombian Amerindians. A major 5' subhaplotype (5' to the delta-globin gene), a major 3' subhaplotype (in and 3' to the beta-globin gene), and a major haplotype (combination of 5' and 3' subhaplotypes) are represented as + - - - -, - +, and + - - - - - +, respectively, and found in all three Han Chinese. A rare 5' subhaplotype, - - - - -, which is one of the possible ancestral types, was found only in Han Chinese at Kunming at low frequency (0.013), and a rare 3' subhaplotype, - -, was also observed in all three Han Chinese at low frequencies (0.009-0.014). The present haplotype frequency study suggested that the highest genetic affinity was found between Han Chinese at Beijing and those at Xi'an; the next highest was between Han Chinese at Beijing and Koreans, followed by that between Han Chinese at Beijing and Khalkhs, then that between Han Chinese at Xi'an and those at Kunming or Khalkhs, and finally that between Han Chinese at Beijing and those at Kunming. A genetic boundary between northern and southern Han Chinese was not evident in the present study. PMID:18553219

  15. Polymorphism and divergence in the beta-globin replication origin initiation region.

    PubMed

    Fullerton, S M; Bond, J; Schneider, J A; Hamilton, B; Harding, R M; Boyce, A J; Clegg, J B

    2000-01-01

    DNA sequence polymorphism and divergence was examined in the vicinity of the human beta-globin gene cluster origin of replication initiation region (IR), a 1.3-kb genomic region located immediately 5' of the adult-expressed beta-globin gene. DNA sequence variation in the replication origin IR and 5 kb of flanking DNA was surveyed in samples drawn from two populations, one African (from the Gambia, West Africa) and the other European (from Oxford, England). In these samples, levels of nucleotide and length polymorphism in the IR were found to be more than two times as high as adjacent non-IR-associated regions (estimates of per-nucleotide heterozygosity were 0.30% and 0.12%, respectively). Most polymorphic positions identified in the origin IR fall within or just adjacent to a 52-bp alternating purine-pyrimidine ((RY)n) sequence repeat. Within- and between-populations divergence is highest in this portion of the IR, and interspecific divergence in the same region, determined by comparison with an orthologous sequence from the chimpanzee, is also pronounced. Higher levels of diversity in this subregion are not, however, primarily attributable to slippage-mediated repeat unit changes, as nucleotide substitution contributes disproportionately to allelic heterogeneity. An estimate of helical stability in the sequenced region suggests that the hypervariable (RY)n constitutes the major DNA unwinding element (DUE) of the replication origin IR, the location at which the DNA duplex first unwinds and new strand synthesis begins. These findings suggest that the beta-globin IR experiences a higher underlying rate of neutral mutation than do adjacent genomic regions and that enzyme fidelity associated with the initiation of DNA replication at this origin may be compromised. The significance of these findings for our understanding of eukaryotic replication origin biology is discussed. PMID:10666717

  16. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5' hypersensitive site 2 of the beta-globin locus control region.

    PubMed Central

    Gong, Q H; McDowell, J C; Dean, A

    1996-01-01

    Much of our understanding of the process by which enhancers activate transcription has been gained from transient-transfection studies in which the DNA is not assembled with histones and other chromatin proteins as it is in the cell nucleus. To study the activation of a mammalian gene in a natural chromatin context in vivo, we constructed a minichromosome containing the human epsilon-globin gene and portions of the beta-globin locus control region (LCR). The minichromosomes replicate and are maintained at stable copy number in human erythroid cells. Expression of the minichromosomal epsilon-globin gene requires the presence of beta-globin LCR elements in cis, as is the case for the chromosomal gene. We determined the chromatin structure of the epsilon-globin gene in both the active and inactive states. The transcriptionally inactive locus is covered by an array of positioned nucleosomes extending over 1,400 bp. In minichromosomes with a (mu)LCR or DNase I-hypersensitive site 2 (HS2) which actively transcribe the epsilon-globin gene, the nucleosome at the promoter is altered or disrupted while positioning of nucleosomes in the rest of the locus is retained. All or virtually all minichromosomes are simultaneously hypersensitive to DNase I both at the promoter and at HS2. Transcriptional activation and promoter remodeling, as well as formation of the HS2 structure itself, depended on the presence of the NF-E2 binding motif in HS2. The nucleosome at the promoter which is altered upon activation is positioned over the transcriptional elements of the epsilon-globin gene, i.e., the TATA, CCAAT, and CACCC elements, and the GATA-1 site at -165. The simple availability of erythroid transcription factors that recognize these motifs is insufficient to allow expression. As in the chromosomal globin locus, regulation also occurs at the level of chromatin structure. These observations are consistent with the idea that one role of the beta-globin LCR is to maintain promoters free

  17. Treatment of sickle cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with nonrandom hypomethylation of DNA around the gamma-delta-beta-globin gene complex.

    PubMed Central

    Charache, S; Dover, G; Smith, K; Talbot, C C; Moyer, M; Boyer, S

    1983-01-01

    Increased production of fetal hemoglobin (HbF) was observed in a patient with sickle cell anemia treated with 5-azacytidine. Each of four courses of therapy resulted in a rapid and prolonged increase in the percentage of HbF containing reticulocytes (F reticulocytes) and HbF containing erythrocytes (F cells). The percentage of HbF in peripheral blood rose from 1.8 to 8.9%. The rise in HbF production was accompanied by an increase in peripheral blood hemoglobin concentration from 8 to 12 g/dl and an increase in mean erythrocyte volume. Treatment with 5-azacytidine resulted in hypomethylation of total genomic and a Y-chromosome-specific DNA fragment isolated from both peripheral blood and bone marrow. Of 15 restriction enzyme sites around the gamma-delta-beta-globin gene complex, only 2 became hypomethylated: one 107 bases 5' to the gamma G and the other 107 bases 5' to the gamma A globin genes. Images PMID:6192443

  18. Frequency and origin of haplotypes associated with the beta-globin gene cluster in individuals with trait and sickle cell anemia in the Atlantic and Pacific coastal regions of Colombia.

    PubMed

    Fong, Cristian; Lizarralde-Iragorri, María Alejandra; Rojas-Gallardo, Diana; Barreto, Guillermo

    2013-12-01

    Sickle cell anemia is a genetic disease with high prevalence in people of African descent. There are five typical haplotypes associated with this disease and the haplotypes associated with the beta-globin gene cluster have been used to establish the origin of African-descendant people in America. In this work, we determined the frequency and the origin of haplotypes associated with hemoglobin S in a sample of individuals with sickle cell anemia (HbSS) and sickle cell hemoglobin trait (HbAS) in coastal regions of Colombia. Blood samples from 71 HbAS and 79 HbSS individuals were obtained. Haplotypes were determined based on the presence of variable restriction sites within the β-globin gene cluster. On the Pacific coast of Colombia the most frequent haplotype was Benin, while on the Atlantic coast Bantu was marginally higher than Benin. Eight atypical haplotypes were observed on both coasts, being more diverse in the Atlantic than in the Pacific region. These results suggest a differential settlement of the coasts, dependent on where slaves were brought from, either from the Gulf of Guinea or from Angola, where the haplotype distributions are similar. Atypical haplotypes probably originated from point mutations that lost or gained a restriction site and/or by recombination events. PMID:24385850

  19. Genetics Home Reference: methemoglobinemia, beta-globin type

    MedlinePlus

    ... blood cells. Specifically, it alters a molecule called hemoglobin within these cells. Hemoglobin within red blood cells attaches (binds) to oxygen ... in tissues throughout the body. Instead of normal hemoglobin, people with methemoglobinemia, beta-globin type have an ...

  20. Characterization of histone H3K27 modifications in the {beta}-globin locus

    SciTech Connect

    Kim, Yea Woon; Kim, AeRi

    2011-02-11

    Research highlights: {yields} The {beta}-globin locus control region is hyperacetylated and monomethylated at histone H3K27. {yields} Highly transcribed globin genes are marked by H3K27ac, but H3K27me2 is remarkable at silent globin genes in erythroid K562 cells. {yields} Association of PRC2 subunits is comparable with H3K27me3 pattern. {yields} Modifications of histone H3K27 are established in an enhancer-dependent manner. -- Abstract: Histone H3K27 is acetylated or methylated in the environment of nuclear chromatin. Here, to characterize the modification pattern of H3K27 in locus control region (LCR) and to understand the correlation of various H3K27 modifications with transcriptional activity of genes, we analyzed the human {beta}-globin locus using the ChIP assay. The LCR of the human {beta}-globin locus was enriched by H3K27ac and H3K27me1 in erythroid K562 cells. The highly transcribed globin genes were hyperacetylated at H3K27, but the repressed globin genes were highly dimethylated at this lysine in these cells. However, in non-erythroid 293FT cells, the {beta}-globin locus was marked by a high level of H3K27me3. EZH2 and SUZ12, subunits of polycomb repressive complex 2, were comparably detected with the H3K27me3 pattern in K562 and 293FT cells. In addition, H3K27ac, H3K27me1 and H3K27me3 were established in an enhancer-dependent manner in a model minichromosomal locus containing an enhancer and its target gene. Taken together, these results show that H3K27 modifications have distinctive correlations with the chromatin state or transcription level of genes and are influenced by an enhancer.

  1. Diversity of [beta]-globin mutations in Israeli ethnic groups reflects recent historic events

    SciTech Connect

    Filon, D.; Oron, V.; Krichevski, S.; Shaag, A.; Goldfarb, A.; Aker, M.; Rachmilewitz, E.A.; Rund, D.; Oppenheim, A. )

    1994-05-01

    The authors characterized nearly 500 [beta]-thalassemia genes from the Israeli population representing a variety of ethnic subgroups. They found 28 different mutations in the [beta]-globin gene, including three mutations ([beta][sup S], [beta][sup C], and [beta][sup O-Arab]) causing hemoglobinopathies. Marked genetic heterogeneity was observed in both the Arab (20 mutations) and Jewish (17 mutations) populations. On the other hand, two ethnic isolates - Druze and Samaritans - had a single mutation each. Fifteen of the [beta]-thalassemia alleles are Mediterranean in type, 5 originated in Kurdistan, 2 are of Indian origin, and 2 sporadic alleles came from Europe. Only one mutant allele-nonsense codon 37-appears to be indigenous to Israel. While human habitation in Israel dates back to early prehistory, the present-day spectrum of [beta]-globin mutations can be largely explained by migration events that occurred in the past millennium. 26 refs., 2 figs., 3 tabs.

  2. Beta-Globin Gene Haplotypes Among Cameroonians and Review of the Global Distribution: Is There a Case for a Single Sickle Mutation Origin in Africa?

    PubMed Central

    Bitoungui, Valentina J. Ngo; Pule, Gift D.; Hanchard, Neil; Ngogang, Jeanne

    2015-01-01

    Abstract Studies of hemoglobin S haplotypes in African subpopulations have potential implications for patient care and our understanding of genetic factors that have shaped the prevalence of sickle cell disease (SCD). We evaluated HBB gene cluster haplotypes in SCD patients from Cameroon, and reviewed the literature for a global distribution. We reviewed medical records to obtain pertinent socio-demographic and clinical features for 610 Cameroonian SCD patients, including hemoglobin electrophoresis and full blood counts. RFLP-PCR was used to determine the HBB gene haplotype on 1082 chromosomes. A systematic review of the current literature was undertaken to catalogue HBB haplotype frequencies in SCD populations around the world. Benin (74%; n=799) and Cameroon (19%; n=207) were the most prevalent haplotypes observed among Cameroonian patients. There was no significant association between HBB haplotypes and clinical life events, anthropometric measures, hematological parameters, or fetal hemoglobin (HbF) levels. The literature review of the global haplotype distributions was consistent with known historical migrations of the people of Africa. Previously reported data from Sudan showed a distinctly unusual pattern; all four classical haplotypes were reported, with an exceptionally high proportion of the Senegal, Cameroon, and atypical haplotypes. We did not observe any significant associations between HBB haplotype and SCD disease course in this cohort. Taken together, the data from Cameroon and from the wider literature suggest that a careful reassessment of African HBB haplotypes may shed further light on the evolutionary dynamics of the sickle allele, which could suggest a single origin of the sickle mutation. PMID:25748438

  3. Beta-globin gene haplotypes among cameroonians and review of the global distribution: is there a case for a single sickle mutation origin in Africa?

    PubMed

    Bitoungui, Valentina J Ngo; Pule, Gift D; Hanchard, Neil; Ngogang, Jeanne; Wonkam, Ambroise

    2015-03-01

    Studies of hemoglobin S haplotypes in African subpopulations have potential implications for patient care and our understanding of genetic factors that have shaped the prevalence of sickle cell disease (SCD). We evaluated HBB gene cluster haplotypes in SCD patients from Cameroon, and reviewed the literature for a global distribution. We reviewed medical records to obtain pertinent socio-demographic and clinical features for 610 Cameroonian SCD patients, including hemoglobin electrophoresis and full blood counts. RFLP-PCR was used to determine the HBB gene haplotype on 1082 chromosomes. A systematic review of the current literature was undertaken to catalogue HBB haplotype frequencies in SCD populations around the world. Benin (74%; n = 799) and Cameroon (19%; n = 207) were the most prevalent haplotypes observed among Cameroonian patients. There was no significant association between HBB haplotypes and clinical life events, anthropometric measures, hematological parameters, or fetal hemoglobin (HbF) levels. The literature review of the global haplotype distributions was consistent with known historical migrations of the people of Africa. Previously reported data from Sudan showed a distinctly unusual pattern; all four classical haplotypes were reported, with an exceptionally high proportion of the Senegal, Cameroon, and atypical haplotypes. We did not observe any significant associations between HBB haplotype and SCD disease course in this cohort. Taken together, the data from Cameroon and from the wider literature suggest that a careful reassessment of African HBB haplotypes may shed further light on the evolutionary dynamics of the sickle allele, which could suggest a single origin of the sickle mutation. PMID:25748438

  4. A five prime splice-region G yields C mutation in exon 1 of the human. beta. -globin gene inhibits pre-mRNA splicing: A mechanism for. beta. sup + -thalassemia

    SciTech Connect

    Vidaud, M.; Vidaud, D.; Amselem, S.; Rosa, J.; Goossens, M. ); Gattoni, R.; Stevenin, J. ); Chibani, J. )

    1989-02-01

    The authors have characterized a Mediterranean {beta}-thalassemia allele containing a sequence change at codon 30 that alters both {beta}-globin pre-mRNA splicing and the structure of the homoglobin product. Presumably, this G {yields} C transversion at position {minus}1 of intron 1 reduces severely the utilization of the normal 5{prime} splice site since the level of the Arg {yields} Thr mutant hemoglobin (designated hemoglobin Kairouan) found in the erythrocytes of the patient is very low (2% of total hemoglobin). Since no natural mutations of the guanine located at position {minus}1 of the CAG/GTAAGT consensus sequence had been isolated previously. They investigated the role of this nucleotide in the constitution of an active 5{prime} splice site by studying the splicing of the pre-mRNA in cell-free extracts. They demonstrate that correct splicing of the mutant pre-mRNA is 98% inhibited. Their results provide further insights into the mechanisms of pre-mRNA maturation by revealing that the last residue of the exon plays a role at least equivalent to that of the intron residue at position +5.

  5. Analysis of beta-globin mutations shows stable mixed chimerism in patients with thalassemia after bone marrow transplantation.

    PubMed

    Kapelushnik, J; Or, R; Filon, D; Nagler, A; Cividalli, G; Aker, M; Naparstek, E; Slavin, S; Oppenheim, A

    1995-10-15

    Beta-thalassemia major (TM) is caused by any of approximately 150 mutations within the beta-globin gene. To establish the degree of chimerism after bone marrow transplantation (BMT), we have performed molecular analysis of beta-globin mutations in 14 patients with TM over a period of 10 years. All patients underwent T cell-depleted allogeneic BMT from HLA-identical related donors, using either in vitro T-cell depletion with CAMPATH 1M and complement or in vivo depletion using CAMPATH 1G in the bone marrow collection bag. To date, at different time periods after BMT, seven patients have some degree of chimerism; six of these patients, all blood transfusion-independent, have donor cells in the range of 70% to 95%, with stable mixed chimerism (MC). The seventh patient has less than 10% donor cells with, surprisingly, only minimal transfusion requirements. The detection of beta-globin gene point mutation, as used here, is a highly specific and sensitive marker for engraftment and MC in patients with thalassemia. In light of its specificity, the method is applicable in all cases of TM, as it is independent of sex and other non-globin-related DNA markers. The high incidence of MC found in our patients may be a consequence of the pre-BMT T-cell depletion. Because MC was associated with transfusion independence, complete eradication of residual host cells for effective treatment of TM and possibly other genetic diseases may prove not to be essential. PMID:7579421

  6. Conservation of the primary structure, organization, and function of the human and mouse beta-globin locus-activating regions.

    PubMed Central

    Moon, A M; Ley, T J

    1990-01-01

    DNA sequences located in a region 6-18 kilobases (kb) upstream from the human epsilon-globin gene are known as the locus-activating region (LAR) or dominant control region. This region is thought to play a key role in chromatin organization of the beta-like globin gene cluster during erythroid development. The beta-globin LAR activates linked globin genes in transiently or stably transfected erythroleukemia cells and in erythroid cells of transgenic mice. Since the human beta-globin LAR is functional in mice, we reasoned that critical LAR sequence elements might be conserved between mice and humans. We therefore cloned murine genomic sequences homologous to one portion of the human LAR (site II, positions -11,054 to -10,322 with respect to the human epsilon gene). We found that this murine DNA fragment (mouse LAR site II) and sequences homologous to human LAR sites I and III are located upstream from the mouse beta-like globin gene cluster and determined that their locations relative to the cluster are similar to that of their human counterparts. The homologous site II sequences are 70% identical between mice and humans over a stretch of approximately 800 base pairs. Multiple core sequences with greater than 80% identity were present within this region. Transient and stable transfection assays of K562 erythroleukemia cells demonstrated that both human and mouse LAR elements contain enhancer activity and confer hemin inducibility on a linked human gamma-globin promoter. These results suggest that primary structural elements--and the spatial organization of these elements--are important for function of the beta-globin LAR. Images PMID:2217202

  7. The 3' noncoding region of beta-globin mRNA is not essential for in vitro translation.

    PubMed Central

    Kronenberg, M N; Roberts, B E; Efstratiadis, A

    1979-01-01

    Rabbit beta globin DNA sequence, excised from plasmid pbetaG1, directs in vitro synthesis of beta-globin in a transcription-translation cell-free system, even after specific elimination of the entire 3'-noncoding region. A DNA restriction fragment carrying this 3' noncoding region and hybridized to globin mRNA cannot arrest the cell-free translation of beta-globin mRNA. Images PMID:424286

  8. Differential expression of murine adult hemoglobins in early ontogeny

    SciTech Connect

    Wawrzyniak, C.J.; Lewis, S.E.; Popp, R.A.

    1985-01-01

    A hemoglobin mutation is described that permits study of the expression of the two adult ..beta..-globin genes throughout fetal and postnatal development. Mice with a mutation at the Hbb/sup s/, ..beta..-globin locus, were used to study the relative levels of ..beta..-s2major and ..beta..-sminor globins specified by the mutant Hbb/sup s2/ haplotype during development. At 11.5 days of gestation ..beta..-sminor comprised over 80% and ..beta..-s2major under 20% of the adult beta-globin. The relative level of ..beta..-sminor decreased through fetal development; at birth ..beta..-sminor represented 33.7% of the ..beta..-globin. The adult values of 71.0% ..beta..-s2major and 29.0% ..beta..-sminor globin are expressed in mice six days after birth. Because the two ..beta..-globin genes are expressed in mice of the Hbb/sup 2s/ haplotype, both the ..beta..-smajor and ..beta..-sminor genes must be expressed in mice of the Hbb/sup s/ haplotype. Expression of the ..beta..-sminor gene is elevated to 35.6% in Hbb/sup s2/ mice that have been bled repeatedly. Thus, the 5' ..beta..-s2major and 3' ..beta..-sminor genes of the Hbb/sup s2/ haplotype and, presumably the 5' ..beta..-smajor and 3' ..beta..-sminor genes of the Hbb/sup s/ haplotype, are regulated independently and are homologous to the 5' ..beta..-dmajor and 3' ..beta..-dminor genes of the Hbb/sup d/ haplotype. Mice of the Hbb/sup s2/ haplotype are better than mice of the Hbb/sup d/ haplotytpe for studying the mechanisms of hemoglobin switching because the Hbb/sup s2/ each of the three embryonic and two adult hemoglobins can be separated by electrophoresis. 17 refs., 3 figs.

  9. The polyoma virus enhancer cannot substitute for DNase I core hypersensitive sites 2-4 in the human beta-globin LCR.

    PubMed Central

    Tanimoto, K; Liu, Q; Bungert, J; Engel, J D

    1999-01-01

    The polyoma virus enhancer (PyE) is capable of conferring integration position-independent expression to linked genes in stably transfected erythroid cells after joining to DNase I hypersensitive site (HS) 5 of the human beta-globin locus control region (LCR). In attempting to separate the chromatin opening activity of the LCR from its enhancer activity and to investigate contributions of the individual HS core elements to LCR function, the human beta-globin LCR HS2, HS3 and HS4 core elements were replaced with the PyE within the context of a yeast artificial chromosome (YAC) bearing the whole locus. We show here that, in contrast to its function in cultured cells, the PyE is unable to replace HS core element function in vivo. We found that the PyE substitution mutant LCR is unable to provide either chromatin opening or transcriptional potentiating activity at any erythroid developmental stage in transgenic mice. These data provide direct evidence that the human beta-globin LCR core elements specify unique functions that cannot be replaced by a ubiquitous enhancer activity. PMID:10454609

  10. Allele-specific enzymatic amplification of. beta. -globin genomic DNA for diagnosis of sickle cell anemia

    SciTech Connect

    Wu, D.Y.; Ugozzoli, L.; Pal, B.K.; Wallace, B. )

    1989-04-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell {beta}-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer complementary to both alleles were used in the polymerase chain reaction with genomic DNA templates. The allele-specific primers differed from each other in their terminal 3{prime} nucleotide. Under the proper annealing temperature and polymerase chain reaction conditions, these primers only directed amplification on their complementary allele. In a single blind study of DNA samples from 12 individuals, this method correctly and unambiguously allowed for the determination of the genotypes with no false negatives or positives. If ASPCR is able to discriminate all allelic variation (both transition and transversion mutations), this method has the potential to be a powerful approach for genetic disease diagnosis, carrier screening, HLA typing, human gene mapping, forensics, and paternity testing.

  11. Fannin-Lubbock-I [α₂β₂¹¹⁹(GLY>ASP)], a rare mutation in the beta-globin gene, has been detected for the first time in a Hindu Brahmin family in West Bengal, India.

    PubMed

    Basak, Jayasri; Bhattacharyya, Deboshree M; Mukhopadhyay, Ashis

    2014-06-01

    This study aims to describe the hemoglobin Fannin-Lubbock-I, which has a rare mutation substituting the amino acid glycine with aspartic acid at codon 119 of the β-globin chain. A Bengalee Hindu Brahmin family from Kolkata in West Bengal was the focus of this study. Molecular analysis using ARMS-PCR and direct DNA sequencing revealed the presence of a GGC > GAC mutation in codon 119 of the β-globin gene in a heterozygote state in three women of the same family. This is the first report of the hemoglobin Fannin-Lubbock-I from India. Our results will help to identify this mutation, which is relatively infrequent in our population. PMID:24802353

  12. Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes.

    PubMed Central

    Cocca, E; Ratnayake-Lecamwasam, M; Parker, S K; Camardella, L; Ciaramella, M; di Prisco, G; Detrich, H W

    1995-01-01

    Alone among piscine taxa, the antarctic icefishes (family Channichthyidae, suborder Notothenioidei) have evolved compensatory adaptations that maintain normal metabolic functions in the absence of erythrocytes and the respiratory oxygen transporter hemoglobin. Although the uniquely "colorless" or "white" condition of the blood of icefishes has been recognized since the early 20th century, the status of globin genes in the icefish genomes has, surprisingly, remained unexplored. Using alpha- and beta-globin cDNAs from the antarctic rockcod Notothenia coriiceps (family Nototheniidae, suborder Notothenioidei), we have probed the genomes of three white-blooded icefishes and four red-blooded notothenioid relatives (three antarctic, one temperate) for globin-related DNA sequences. We detect specific, high-stringency hybridization of the alpha-globin probe to genomic DNAs of both white- and red-blooded species, whereas the beta-globin cDNA hybridizes only to the genomes of the red-blooded fishes. Our results suggest that icefishes retain inactive genomic remnants of alpha-globin genes but have lost, either through deletion or through rapid mutation, the gene that encodes beta-globin. We propose that the hemoglobinless phenotype of extant icefishes is the result of deletion of the single adult beta-globin locus prior to the diversification of the clade. Images Fig. 2 Fig. 3 Fig. 4 PMID:7892183

  13. Detection of two tissue-specific DNA-binding proteins with affinity for sites in the mouse beta-globin intervening sequence 2.

    PubMed Central

    Galson, D L; Housman, D E

    1988-01-01

    To identify proteins from uninduced murine erythroleukemia nuclear extracts which specifically bind to sequences from the DNase I-hypersensitive region within the mouse beta-globin intervening sequence 2 (IVS2), a gel electrophoretic mobility shift assay was used. Two distinct sequence-specific binding proteins were detected. The specific binding sites for these factors were delineated by both DNase I protection footprinting and methylation interference. Factor B1 bound specifically to two homologous sites, B1-A and B1-B, approximately 100 base pairs apart within the IVS2 and on opposite strands. These two regions could interact with factor B1 independently. Factor B1 was limited to cells of hematopoietic lineages. Factor B2 bound to a site approximately 5 base pairs away from the B1-A site and was limited to cells of the erythroid lineage. The limited tissue distribution of these factors and the locations of their binding sites suggest that one or both of these factors may be involved in the formation of the tissue-specific DNase I-hypersensitive site in the IVS2 of the mouse beta-globin gene. Images PMID:3422099

  14. In vivo binding of trimethylpsoralen detects DNA structural alterations associated with transcribing regions in the human beta-globin cluster.

    PubMed

    Jiménez-Ruiz, A; Zhang, Q; Shen, C K

    1995-12-01

    In order to increase our knowledge about the mechanisms that regulate expression of human beta-like globin genes, we have used a novel technique to analyze the chromatin structure in living cells. This approach allowed us to detect specific DNA regions in vivo where nucleosome folding or unconstrained DNA supercoiling in erythroid cells differs from that in non-erythroid cells. In this method, we use 4,5',8-trimethylpsoralen (TMP) as a probe capable of detecting altered chromatin conformations. Our results show that TMP binds to DNA with a higher affinity over the regions in the locus that are actively expressed, including both the promoter and the transcribed region. This higher affinity detected when comparing erythroid cells with non-erythroid cells does not extend to other regions inside the beta-globin cluster. Our data suggest that the observed effect is likely due to nucleosome displacement. Alternatively, it could result from localized DNA supercoiling, but not from widespread torsional stress across the entire beta-like globin locus as hypothesized previously. PMID:7499429

  15. Hemoglobin Agenogi--A rare abnormal beta globin chain variant.

    PubMed

    Sharma, Sunita; Sharma, Geetika; Chandra, Jagdish; Colah, Roshan

    2016-01-01

    Haemoglobin (Hb) Agenogi is clinically asymptomatic, rare β-globin chain variant characterized by a substitution of glutamic acid by lysine at position 90 of β-chain. It elutes in the C-window on high-performance liquid chromatography (HPLC). We report a 10-year-old male with easy fatigability, lethargy, pallor, and mild splenomegaly. Hematological parameters revealed microcytic hypochromic anemia and mildly raised red blood cells count, suggestive of thalassemia trait. On HPLC, a predominant peak was observed in the C-window (82.6%) along with raised HbA 2 level (9.3%). Based on these findings, a possibility of HbC disease/β-thalassemia trait doubly heterozygous was considered. Family studies were advised. HPLC findings in father were suggestive of β-thalassemia trait, while both his mother and brother had an abnormal peak in the C-window of 42.7% and 40.8%, respectively, with elevated HbA 2 values of 5% and 4.9%, respectively. Direct DNA sequencing revealed intervening sequences 1-5 (G ; C) in father, confirming β-thalassemia trait. His mother and brother had heterozygous gene mutation at codon 90 of β-globin chain (G ; A) suggestive of Hb Agenogi. The child carried mutations for both β-thalassemia trait as well as Hb Agenogi. PMID:26960650

  16. Glucocorticoids inhibit coordinated translation of. cap alpha. - and. beta. -globin mRNAs in Friend erythroleukemia cells

    SciTech Connect

    Papaconstantinou, J.; Stewart, J.A.; Rabek, J.P.; McClintock, P.R.; Wong, E.Y.

    1983-12-01

    The dimethylsulfoxide (Me/sub 2/SO)-mediated induction of hemoglobin synthesis in Friend erythroleukemia cells is inhibited by the glucocorticoids hydrocortisone, dexamethasone, and fluocinolone acetonide; hydrocortisone, at concentrations of 10/sup -5/ to 10/sup -8/ M inhibits by 90-30% and fluocinolone acetonide at concentrations of 10/sup -8/ to 10/sup -11/ M shows a greater than 90% inhibition. At these concentrations the hormones have no effect on cell growth or viability. In this study it has been shown that there is a group of proteins, including the ..cap alpha..- and ..beta..-globins, whose regulation is associated with the induction of Friend erythroleukemia cell differentiation, and that the expression of these, in addition to ..cap alpha..- and ..beta..-globin, is affected by glucocorticoids. It is concluded that, although the translation of ..cap alpha..- and ..beta..-globin mRNA is a major site of inhibition by glucocorticoids, there is a detectable amount of ..cap alpha..- and ..beta..-globin mRNA translation which results in unequal amounts of globin synthesis and an overall more potent inhibition of hemoglobin formation.

  17. Beta-globin mRNAs capped with m7G, m2.7(2)G or m2.2.7(3)G differ in intrinsic translation efficiency.

    PubMed Central

    Darzynkiewicz, E; Stepinski, J; Ekiel, I; Jin, Y; Haber, D; Sijuwade, T; Tahara, S M

    1988-01-01

    We examined the intramolecular effect of altered cap structures on translation efficiency of artificial beta-globin mRNAs. For these studies, synthetic dinucleotides of the form X(5')ppp(5')G [X = 7-methyl guanosine (m7G), 2,7-dimethyl guanosine (m2(2,7)G) or 2,2,7-trimethyl guanosine (m3(2,2,7)G)], were transcriptionally incorporated into mRNAs, containing rabbit beta-globin coding sequences, using T7 RNA polymerase and a beta-globin cDNA template. These synthetic mRNAs were assayed in reticulocyte lysate for activity relative to m7G-capped mRNA. m2(2,7)G-Capped mRNA was found to be 1.5-fold more active than m7G-capped mRNA. Messenger RNA capped with m3(2,2,7)G was less active with activity of 0.24 relative to its m7G-capped counterpart (activity = 1.0). These data suggest that m7G-capped mRNAs become more active as translation templates after addition of a single N2 methyl moiety, which is especially pertinent to gene expression in togaviridae. The latter are observed to synthesize m2(2,7)G and m3(2,2,7)G-capped mRNAs in addition to m7G-capped templates during the course of infection in animal cells. Images PMID:3174438

  18. Effects of increased anionic charge in the beta-globin chain on assembly of hemoglobin in vitro.

    PubMed

    Adachi, K; Yamaguchi, T; Pang, J; Surrey, S

    1998-02-15

    Studies on assembly in vitro of alpha-globin chains with recombinant beta16 Gly-->Asp, beta95 Lys-->Glu, beta120 Lys-->Glu and beta16 Gly-->Asp, 120 Lys-->Glu human beta-globin chain variants in addition to human betaA- and betaS-globin chains were performed to evaluate effects of increased anionic charge in the beta chain on hemoglobin assembly using soluble recombinant beta-globin chains expressed in bacteria. A beta112 Cys-->Asp change was also engineered to monitor effects on assembly of increased negative charge at alpha1beta1 interaction sites. Order of tetramer formation in vitro under limiting alpha-globin chain conditions showed Hb betaG16D, K120E = Hb betaK120E = Hb betaK95E > Hb betaG16D > Hb A > Hb S > Hb betaC112D. In addition, beta112 Cys-->Asp chains exist as monomers rather than beta4 tetramers in the absence of alpha chains, and the beta chain in Hb betaC112D tetramers was readily exchanged by addition of betas. These results suggest that affinity between alpha and beta chains is promoted by negatively-charged beta chains up to a maximum of two additional net negative charges and is independent of location on the surface except at the alpha1beta1 interaction site. In addition, our findings show that beta112 Cys on the G helix is critical for facilitating formation of stable alphabeta dimers, which then form functional hemoglobin tetramers, and that beta112 Cys-->Asp inhibits formation of stable alpha1beta1 and beta1beta2 interactions in alpha2beta2 and beta4 tetramers, respectively. PMID:9454775

  19. Gamma-interferon alters globin gene expression in neonatal and adult erythroid cells

    SciTech Connect

    Miller, B.A.; Perrine, S.P.; Antognetti, G.; Perlmutter, D.H.; Emerson, S.G.; Sieff, C.; Faller, D.V.

    1987-06-01

    The effect of gamma-interferon on fetal hemoglobin synthesis by purified cord blood, fetal liver, and adult bone marrow erythroid progenitors was studied with a radioligand assay to measure hemoglobin production by BFU-E-derived erythroblasts. Coculture with recombinant gamma-interferon resulted in a significant and dose-dependent decrease in fetal hemoglobin production by neonatal and adult, but not fetal, BFU-E-derived erythroblasts. Accumulation of fetal hemoglobin by cord blood BFU-E-derived erythroblasts decreased up to 38.1% of control cultures (erythropoietin only). Synthesis of both G gamma/A gamma globin was decreased, since the G gamma/A gamma ratio was unchanged. Picograms fetal hemoglobin per cell was decreased by gamma-interferon addition, but picograms total hemoglobin was unchanged, demonstrating that a reciprocal increase in beta-globin production occurred in cultures treated with gamma-interferon. No toxic effect of gamma-interferon on colony growth was noted. The addition of gamma-interferon to cultures resulted in a decrease in the percentage of HbF produced by adult BFU-E-derived cells to 45.6% of control. Fetal hemoglobin production by cord blood, fetal liver, and adult bone marrow erythroid progenitors, was not significantly affected by the addition of recombinant GM-CSF, recombinant interleukin 1 (IL-1), recombinant IL-2, or recombinant alpha-interferon. Although fetal progenitor cells appear unable to alter their fetal hemoglobin program in response to any of the growth factors added here, the interaction of neonatal and adult erythroid progenitors with gamma-interferon results in an altered expression of globin genes.

  20. Distribution of beta-globin haplotypes among the tribes of southern Gujarat, India.

    PubMed

    Aggarwal, Aastha; Khurana, Priyanka; Mitra, Siuli; Raicha, Bhavesh; Saraswathy, K N; Italia, Yazdi M; Kshatriya, Gautam K

    2013-06-01

    The present study was carried out in Indo-European speaking tribal population groups of southern Gujarat (India) to elucidate the allelic and haplotypic content of β-globin system in individuals with HbAA genotypes. 6 neutral restriction sites of the β-globin system were analysed and various statistical parameters were estimated to draw meaningful interpretations. All the 6 sites were found to be polymorphic and most were in Hardy-Weinberg Equilibrium in the studied group. Haplotypes were constructed using two different combinations of the 6 restriction sites analysed. Analysis of the 5 sites revealed a set of three predominant haplotypes, '+----', '-++-+' and '-+-++'; and haplotypes '+--', '++-' and '+++' were found to be the most frequent when the 3 sites were used to construct the haplotypes. Haplotypic heterozygosity levels (>83%) observed in the present study group were comparable to those observed in African and Afro-American populations and greater than other world populations. All the ancestral haplotypes, +-----, -++-+, -+-++ and ----+ were found in the study group. The distribution pattern of various haplotypes was consistent with the global pattern. The paucity of comparable data from other Indian populations restricted one from making interpretations about the study group's relationships with other Indian populations but the results were indicative of older population histories or experience of gene flow by the study group and their affinities with populations of southern India. PMID:23500448

  1. Detection of a major gene for heterocellular hereditary persistence of fetal hemoglobin after accounting for genetic modifiers.

    PubMed

    Thein, S L; Sampietro, M; Rohde, K; Rochette, J; Weatherall, D J; Lathrop, G M; Demenais, F

    1994-02-01

    "Heterocellular hereditary persistence of fetal hemoglobin" (HPFH) is the term used to describe the genetically determined persistence of fetal hemoglobin (Hb F) production into adult life, in the absence of any related hematological disorder. Whereas some forms are caused by mutations in the beta-globin gene cluster on chromosome 11, others segregate independently. While the latter are of particular interest with respect to the regulation of globin gene switching, it has not been possible to determine their chromosomal location, mainly because their mode of inheritance is not clear, but also because several other factors are known to modify Hb F production. We have examined a large Asian Indian pedigree which includes individuals with heterocellular HPFH associated with beta-thalassemia and/or alpha-thalassemia. Segregation analysis was conducted on the HPFH trait FC, defined to be the percentage of Hb F-containing cells (F-cells), using the class D regressive model. Our results provide evidence for the presence of a major gene, dominant or codominant, which controls the FC values with residual familial correlations. The major gene was detected when the effects of genetic modifiers, notably beta-thalassemia and the XmnI-G gamma polymorphism, are accounted for in the analysis. Linkage with the beta-globin gene cluster is excluded. The transmission of the FC values in this pedigree is informative enough to allow detection of linkage with an appropriate marker(s). The analytical approach outlined in this study, using simple regression to allow for genetic modifiers and thus allowing the mode of inheritance of a trait to be dissected out, may be useful as a model for segregation and linkage analyses of other complex phenotypes. PMID:7508182

  2. Hb Wilde and Hb Patagonia: two novel elongated beta-globin variants causing dominant beta-thalassemia.

    PubMed

    Scheps, Karen G; Hasenahuer, Marcia A; Parisi, Gustavo; Fornasari, María S; Pennesi, Sandra P; Erramouspe, Beatriz; Basack, Felisa N; Veber, Ernesto S; Aversa, Luis; Elena, Graciela; Varela, Viviana

    2015-06-01

    We describe here the molecular and hematological characteristics of novel frameshift mutations in exon 2 of the HBB gene (in heterozygous state) found in two Argentinean pediatric patients with dominant β-thalassemia-like features. In Hb Wilde, HBB:c.270_273delTGAG(p.Glu90Cysfs*67), we detected the deletion of the third base of the codon 89 (T) and the codon 90 (GAG), whereas in Hb Patagonia, HBB:c.296_297dupGT(p.Asp99Trpfs*59), the frameshift mutation was due to a duplication of a 'GT' dinucleotide after the second base of codon 98 (GTG). The Hb Patagonia and Hb Wilde mutations would result in elongated β-globin chains with modified C-terminal sequences and a total of 155 and 157 amino acids residues, respectively. Based on bioinformatics and structural analysis, as well as protein modeling, we predict that the elongated β-globins would affect the formation of the αβ dimers and their stability, which would further support the mechanism for the observed clinical features in both patients. PMID:25284604

  3. Globin gene expression in correlation with G protein-related genes during erythroid differentiation

    PubMed Central

    2013-01-01

    Background The guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) regulate cell growth, proliferation and differentiation. G proteins are also implicated in erythroid differentiation, and some of them are expressed principally in hematopoietic cells. GPCRs-linked NO/cGMP and p38 MAPK signaling pathways already demonstrated potency for globin gene stimulation. By analyzing erythroid progenitors, derived from hematopoietic cells through in vitro ontogeny, our study intends to determine early markers and signaling pathways of globin gene regulation and their relation to GPCR expression. Results Human hematopoietic CD34+ progenitors are isolated from fetal liver (FL), cord blood (CB), adult bone marrow (BM), peripheral blood (PB) and G-CSF stimulated mobilized PB (mPB), and then differentiated in vitro into erythroid progenitors. We find that growth capacity is most abundant in FL- and CB-derived erythroid cells. The erythroid progenitor cells are sorted as 100% CD71+, but we did not find statistical significance in the variations of CD34, CD36 and GlyA antigens and that confirms similarity in maturation of studied ontogenic periods. During ontogeny, beta-globin gene expression reaches maximum levels in cells of adult blood origin (176 fmol/μg), while gamma-globin gene expression is consistently up-regulated in CB-derived cells (60 fmol/μg). During gamma-globin induction by hydroxycarbamide, we identify stimulated GPCRs (PTGDR, PTGER1) and GPCRs-coupled genes known to be activated via the cAMP/PKA (ADIPOQ), MAPK pathway (JUN) and NO/cGMP (PRPF18) signaling pathways. During ontogeny, GPR45 and ARRDC1 genes have the most prominent expression in FL-derived erythroid progenitor cells, GNL3 and GRP65 genes in CB-derived cells (high gamma-globin gene expression), GPR110 and GNG10 in BM-derived cells, GPR89C and GPR172A in PB-derived cells, and GPR44 and GNAQ genes in mPB-derived cells (high beta-globin gene expression). Conclusions These results

  4. Molecular cloning and sequencing of mRNAs coding for minor adult globin polypeptides of Xenopus laevis.

    PubMed Central

    Knöchel, W; Meyerhof, W; Hummel, S; Grundmann, U

    1983-01-01

    Globin mRNA was isolated from immature red blood cells of an adult Xenopus laevis female. mRNA/cDNA hybrids were integrated in the Pst I cleavage site of pBR 322 by G/C tailing, and cloned in Escherichia coli strain HB 101. By restriction site analysis as well as hybridization behaviour we identified two clones coding for minor adult alpha and beta globin chains. Nucleotide sequence analysis and derived amino acid sequences are presented. PMID:6298748

  5. B-lymphocyte targeting of gene expression in transgenic mice with the immunoglobulin heavy-chain enhancer.

    PubMed Central

    Gerlinger, P; LeMeur, M; Irrmann, C; Renard, P; Wasylyk, C; Wasylyk, B

    1986-01-01

    A hybrid gene containing rabbit beta-globin structural sequences (-9 to +1650), and a chicken conalbumin gene promoter (+62 to -102) in the place of the beta-globin promoter (upstream from -9), was inactive in 5 different transgenic mouse line. Adding the mouse immunoglobulin heavy-chain (IgH) enhancer to this construction specifically stimulated expression in B-cells. These results show that IgH enhancer is specifically active in B-cells. Expression of the hybrid gene was low compared to the endogenous immunoglobulin heavy and light-chain genes. Substituting the mouse immunoglobulin kappa light-chain gene (Ig kappa) promoter (+4 to -800) for the heterologous conalbumin promoter was not sufficient to restore gene expression to level of the endogenous genes. In addition to the reproducible B cell expression, we also found inheritable unexpected expression in certain tissues, which varied from line to line. Images PMID:3092186

  6. Acute chest syndrome is associated with single nucleotide polymorphism-defined beta globin cluster haplotype in children with sickle cell anaemia.

    PubMed

    Bean, Christopher J; Boulet, Sheree L; Yang, Genyan; Payne, Amanda B; Ghaji, Nafisa; Pyle, Meredith E; Hooper, W Craig; Bhatnagar, Pallav; Keefer, Jeffrey; Barron-Casella, Emily A; Casella, James F; Debaun, Michael R

    2013-10-01

    Genetic diversity at the human β-globin locus has been implicated as a modifier of sickle cell anaemia (SCA) severity. However, haplotypes defined by restriction fragment length polymorphism sites across the β-globin locus have not been consistently associated with clinical phenotypes. To define the genetic structure at the β-globin locus more thoroughly, we performed high-density single nucleotide polymorphism (SNP) mapping in 820 children who were homozygous for the sickle cell mutation (HbSS). Genotyping results revealed very high linkage disequilibrium across a large region spanning the locus control region and the HBB (β-globin gene) cluster. We identified three predominant haplotypes accounting for 96% of the β(S) -carrying chromosomes in this population that could be distinguished using a minimal set of common SNPs. Consistent with previous studies, fetal haemoglobin level was significantly associated with β(S) -haplotypes. After controlling for covariates, an association was detected between haplotype and rate of hospitalization for acute chest syndrome (ACS) (incidence rate ratio 0·51, 95% confidence interval 0·29-0·89) but not incidence rate of vaso-occlusive pain or presence of silent cerebral infarct (SCI). Our results suggest that these SNP-defined β(S) -haplotypes may be associated with ACS, but not pain or SCI in a study population of children with SCA. PMID:23952145

  7. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing.

    PubMed

    Zhao, Quan; Rank, Gerhard; Tan, Yuen T; Li, Haitao; Moritz, Robert L; Simpson, Richard J; Cerruti, Loretta; Curtis, David J; Patel, Dinshaw J; Allis, C David; Cunningham, John M; Jane, Stephen M

    2009-03-01

    Mammalian gene silencing is established through methylation of histones and DNA, although the order in which these modifications occur remains contentious. Using the human beta-globin locus as a model, we demonstrate that symmetric methylation of histone H4 arginine 3 (H4R3me2s) by the protein arginine methyltransferase PRMT5 is required for subsequent DNA methylation. H4R3me2s serves as a direct binding target for the DNA methyltransferase DNMT3A, which interacts through the ADD domain containing the PHD motif. Loss of the H4R3me2s mark through short hairpin RNA-mediated knockdown of PRMT5 leads to reduced DNMT3A binding, loss of DNA methylation and gene activation. In primary erythroid progenitors from adult bone marrow, H4R3me2s marks the inactive methylated globin genes coincident with localization of PRMT5. Our findings define DNMT3A as both a reader and a writer of repressive epigenetic marks, thereby directly linking histone and DNA methylation in gene silencing. PMID:19234465

  8. The role of the erythroid-specific delta-aminolevulinate synthase gene expression in erythroid heme synthesis.

    PubMed

    Meguro, K; Igarashi, K; Yamamoto, M; Fujita, H; Sassa, S

    1995-08-01

    Using antisense technology, the effects of suppressed gene expression of the erythroid-specific delta-aminolevulinate (ALA) synthase (ALAS-E) on heme synthesis, expression of mRNAs encoding an erythroid-specific transcription factor NF-E2, other heme pathway enzymes, and beta-globin were examined in murine erythroleukemia (MEL) cells. In MEL cells in which an antisense ALAS-E RNA was expressed (AS clone), sense ALAS-E mRNA levels in both untreated and dimethylsulfoxide (DMSO)-treated cells were decreased compared with their respective controls. Heme synthesis in AS clones was decreased in proportion to the suppressed levels of ALAS-E mRNA. In addition, mRNAs for ALA dehydratase, porphobilinogen deaminase, ferrochelatase (FeC), and beta-globin were also decreased in AS clones. There was a strong correlation between the level of ALAS-E mRNA and most of the mRNAs of the heme pathway enzymes and beta-globin. There was a decrease in the mRNA level of p45, but not of mafK, which are the large and the small subunits of NF-E2, respectively, in AS clones. Treatment of AS cells with hemin and ALA in the presence of DMSO partially restored the suppressed mRNA levels for beta-globin and FeC and heme content, respectively. These findings thus indicate that heme formation, which is determined by the level of ALAS-E, plays an essential role on gene expression of many proteins necessary for erythroid development. PMID:7620186

  9. Sequencing and mapping hemoglobin gene clusters in the australian model dasyurid marsupial sminthopsis macroura

    SciTech Connect

    De Leo, A.A.; Wheeler, D.; Lefevre, C.; Cheng, Jan-Fang; Hope, R.; Kuliwaba, J.; Nicholas, K.R.; Westermanc, M.; Graves, J.A.M.

    2004-07-26

    Comparing globin genes and their flanking sequences across many species has allowed globin gene evolution to be reconstructed in great detail. Marsupial globin sequences have proved to be of exceptional significance. A previous finding of a beta-like omega gene in the alpha cluster in the tammar wallaby suggested that the alpha and beta cluster evolved via genome duplication and loss rather than tandem duplication. To confirm and extend this important finding we isolated and sequenced BACs containing the alpha and beta loci from the distantly related Australian marsupial Sminthopsis macroura. We report that the alpha gene lies in the same BAC as the beta-like omega gene, implying that the alpha-omega juxtaposition is likely to be conserved in all marsupials. The LUC7L gene was found 3' of the S. macroura alpha locus, a gene order shared with humans but not mouse, chicken or fugu. Sequencing a BAC contig that contained the S. macroura beta globin and epsilon globin loci showed that the globin cluster is flanked by olfactory genes, demonstrating a gene arrangement conserved for over 180 MY. Analysis of the region 5' to the S. macroura epsilon globin gene revealed a region similar to the eutherian LCR, containing sequences and potential transcription factor binding sites with homology to eutherian hypersensitive sites 1 to 5. FISH mapping of BACs containing S. macroura alpha and beta globin genes located the beta globin cluster on chromosome 3q and the alpha locus close to the centromere on 1q, resolving contradictory map locations obtained by previous radioactive in situ hybridization.

  10. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470

  11. Purification of an oligo(dG).oligo(dC)-binding sea urchin nuclear protein, suGF1: a family of G-string factors involved in gene regulation during development.

    PubMed

    Hapgood, J; Patterton, D

    1994-02-01

    Contiguous deoxyguanosine residues (G strings) have been implicated in regulation of gene expression in several organisms via the binding of G-string factors. Regulation of expression of the chicken adult beta-globin gene may involve the interplay between binding of an erythrocyte-specific G-string factor, BGP1, and the stability of a positioned nucleosome (C. D. Lewis, S. P. Clark, G. Felsenfeld, and H. Gould, Genes Dev. 2:863-873, 1988). We have purified a 59.5-kDa nuclear protein (suGF1) from sea urchin embryos by DNA affinity chromatography. suGF1 has high binding affinity and specificity for oligo(dG).oligo(dC). The identity of the purified protein was confirmed by renaturation of sequence-specific DNA-binding activity from a sodium dodecyl sulfate-polyacrylamide gel slice and by Southwestern (DNA-protein) blotting. suGF1 binds in vitro to a G11 string present in the H1-H4 intergenic region of a sea urchin early histone gene battery. This suGF1 DNA recognition site occurs within a homopurine-homopyrimidine stretch previously shown to be incorporated into a positioned nucleosome core in vitro. DNase I footprinting shows that suGF1 protects the same base pairs on the promoter of the chicken beta A-globin gene as does BGP1. We show that a G-string cis-regulatory element of a sea urchin cell lineage-specific gene LpS1 (M. Xiang, S.-Y. Lu, M. Musso, G. Karsenty, and W. H. Klein, Development 113:1345-1355, 1991) also represents a high-affinity recognition site for suGF1. suGF1 may be a member of a family of G-string factors involved in the regulation of expression of unrelated genes during development of a number of different organisms. PMID:8289815

  12. Purification of an oligo(dG).oligo(dC)-binding sea urchin nuclear protein, suGF1: a family of G-string factors involved in gene regulation during development.

    PubMed Central

    Hapgood, J; Patterton, D

    1994-01-01

    Contiguous deoxyguanosine residues (G strings) have been implicated in regulation of gene expression in several organisms via the binding of G-string factors. Regulation of expression of the chicken adult beta-globin gene may involve the interplay between binding of an erythrocyte-specific G-string factor, BGP1, and the stability of a positioned nucleosome (C. D. Lewis, S. P. Clark, G. Felsenfeld, and H. Gould, Genes Dev. 2:863-873, 1988). We have purified a 59.5-kDa nuclear protein (suGF1) from sea urchin embryos by DNA affinity chromatography. suGF1 has high binding affinity and specificity for oligo(dG).oligo(dC). The identity of the purified protein was confirmed by renaturation of sequence-specific DNA-binding activity from a sodium dodecyl sulfate-polyacrylamide gel slice and by Southwestern (DNA-protein) blotting. suGF1 binds in vitro to a G11 string present in the H1-H4 intergenic region of a sea urchin early histone gene battery. This suGF1 DNA recognition site occurs within a homopurine-homopyrimidine stretch previously shown to be incorporated into a positioned nucleosome core in vitro. DNase I footprinting shows that suGF1 protects the same base pairs on the promoter of the chicken beta A-globin gene as does BGP1. We show that a G-string cis-regulatory element of a sea urchin cell lineage-specific gene LpS1 (M. Xiang, S.-Y. Lu, M. Musso, G. Karsenty, and W. H. Klein, Development 113:1345-1355, 1991) also represents a high-affinity recognition site for suGF1. suGF1 may be a member of a family of G-string factors involved in the regulation of expression of unrelated genes during development of a number of different organisms. Images PMID:8289815

  13. First Spanish case of thalassemia major due to a compound heterozygosity for the IVS-II-848 (C --> A) and codon 39 (C --> T) mutations of the beta-globin gene.

    PubMed

    Ropero, Paloma; Villegas, Ana; Muñoz, Juan; Briceño, Olga; Mora, Asunción; Salvador, María; Polo, Marta; González, Fernando A

    2006-01-01

    This report describes the first case in Spain of a severe form of beta-thalassemia (thal) due to a compound heterozygosity for the IVS-II-848 (C --> A) and the nonsense codon 39 (C --> T) mutations. Five members of a family from Cadiz (southern Spain) were studied. The proband was an 8-year-old girl diagnosed as anemic at the age of 13 months. Her father had the codon 39 (C --> T) mutation and her mother the C --> A change at nucleotide (nt) 848 of IVS-II. Haplotype analysis showed that the proband was a compound heterozygote for haplotypes I [+ --> + +] and VII [+ --> +]. This is the first description in Spain of the IVS-II-848 (C --> A) mutation. It appears, from restriction fragment length polymorphism (RFLP) analysis, that this mutation has a different origin in the various populations, where it was found. This observation shows that in this case the association of a beta(0)- and a beta(+)-thal mutation does not lead to a thalassemia intermedia but to a severe thalassemia with very low hemoglobin (Hb) levels. From a therapeutic point of view, early introduction of a transfusion regimen may improve the clinical picture of these children, allowing for better development and growth. PMID:16540410

  14. Assessment of high resolution melt analysis feasibility for evaluation of beta-globin gene mutations as a reproducible, cost-efficient and fast alternative to the present conventional method

    PubMed Central

    Ramezanzadeh, Mahboubeh; Salehi, Mansour; Salehi, Rasoul

    2016-01-01

    Background: Beta-thalassemia is the most prevalent monogenic disease throughout the world. It was the first genetic disorder nominated for nation-wide prevention programs involving population screening for heterozygotes and prenatal diagnosis (PND) in Iran. Due to the high prevalence of beta-thalassemia, the shift from conventional mutation detection methods to more recently developed techniques based on novel innovative technologies are essential. We aimed to develop a real-time polymerase chain reaction (PCR) based protocol using high resolution melting (HRM) analysis for diagnosis of common beta-thalassemia mutations. Materials and Methods: Forty DNA samples extracted from peripheral blood of suspected beta-thalassemia carriers participated in this study were subjected to amplification refractory mutation system (ARMS). We then used 20 of these samples for HRM optimization. When 100% sensitivity and specificity was obtained with HRM procedure, we applied the technique for mutation detection on another remaining 20 samples as thalassemia cases with unknown mutations (detected mutations with ARMS-PCR kept confidential). Finally, the HRM procedure applied on 2 chorionic villous sample (CVS) biopsied from 12 weeks gestational age pregnant women for routine PND analysis. Results: In the first step of study, Fr 8/9 (+G), IVSI-1 (G > A), IVSI-5 (G > C), IVSI-110 (G > A), and CD44 (−C) mutations were diagnosed in samples under study using ARMS-PCR technique. Finally, the HRM procedure applied on 20 unknown samples and 2 CVS The results of HRM were in complete concordance with ARMS and confirmed by sequencing. Conclusions: The advantages of HRM analysis over conventional methods is high throughput, rapid, accurate, cost-effective, and reproducible. PMID:27169102

  15. Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults.

    PubMed

    Lissner, Michelle M; Thomas, Brandon J; Wee, Kathleen; Tong, Ann-Jay; Kollmann, Tobias R; Smale, Stephen T

    2015-01-01

    A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development. PMID:26147648

  16. A novel β-globin gene mutation HBB.c.22 G>C produces a hemoglobin variant (Hb Vellore) mimicking HbS in HPLC.

    PubMed

    Edison, E S; Sathya, M; Rajkumar, S V; Nair, S C; Srivastava, A; Shaji, R V

    2012-10-01

    Hemoglobinopathies are highly prevalent in Indian population. DNA analysis to detect causative mutations is required for identifying rare hemoglobin variants or when hematological results are discordant with the clinical phenotype. In this report, we describe a novel hemoglobin variant caused by a mutation in beta-globin gene, Codon 7 GAG→CAG (Glu→Gln) that elutes in the position of sickle haemoglobin (HbS) in cation exchange high performance liquid chromatography. This report highlights possible diagnostic pitfalls in interpreting data solely based on haemoglobin analysis and usefulness of mutation screening in definitive diagnosis of hemoglobinopathies. PMID:22471768

  17. Regulation and Function of Adult Neurogenesis. From Genes to Cognition

    DOE PAGESBeta

    Aimone, J. B.; Li, Y.; Lee, S. W.; Clemenson, G. D.; Deng, W.; Gage, F. H.

    2014-10-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. Our review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages ofmore » maturation, ultimately integrating into the adult dentate gyrus network. Furthermore, the increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.« less

  18. Regulation and Function of Adult Neurogenesis. From Genes to Cognition

    SciTech Connect

    Aimone, J. B.; Li, Y.; Lee, S. W.; Clemenson, G. D.; Deng, W.; Gage, F. H.

    2014-10-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. Our review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. Furthermore, the increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.

  19. Regulation and Function of Adult Neurogenesis: From Genes to Cognition

    PubMed Central

    Aimone, James B.; Li, Yan; Lee, Star W.; Clemenson, Gregory D.; Deng, Wei; Gage, Fred H.

    2014-01-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders. PMID:25287858

  20. Identification of a stage selector element in the human gamma-globin gene promoter that fosters preferential interaction with the 5' HS2 enhancer when in competition with the beta-promoter.

    PubMed

    Jane, S M; Ney, P A; Vanin, E F; Gumucio, D L; Nienhuis, A W

    1992-08-01

    The erythroid-specific enhancer within hypersensitivity site 2 (HS2) of the human beta-globin locus control region is required for high level globin gene expression. We investigated interaction between HS2 and the gamma- and beta-promoters using reporter constructs in transient assays in human erythroleukemia (K562) cells. The beta-promoter, usually silent in K562 cells, was activated by HS2. This activity was abolished when a gamma-promoter was linked in cis. Analysis of truncation mutants suggested that sequences conveying the competitive advantage of the gamma-promoter for HS2 included those between positions -53 and -35 relative to the transcriptional start site. This sequence, when used to replace the corresponding region of the beta-promoter, increased beta-promoter activity 10-fold when linked to HS2. The modified beta-promoter was also capable of competing with a gamma-promoter modified internally in the -53 to -35 region, when the two promoters were linked to HS2 in a single plasmid. The corresponding sequences from the Galago gamma-promoter, a species which lacks fetal gamma-gene expression, were inactive in analogous assays. We have identified and partially purified a nuclear protein found in human (fetal stage) erythroleukemia cells, but present in much lower concentration in murine (adult stage) erythroleukemia cells, that binds the -53 to -35 sequence of the gamma-promoter. We speculate that this region of the gamma-promoter functions as a stage selector element in the regulation of hemoglobin switching in humans. PMID:1639067

  1. ATM localization and gene expression in the adult mouse eye

    PubMed Central

    Leemput, Julia; Masson, Christel; Bigot, Karine; Errachid, Abdelmounaim; Dansault, Anouk; Provost, Alexandra; Gadin, Stéphanie; Aoufouchi, Said; Menasche, Maurice

    2009-01-01

    Purpose High levels of metabolism and oxygen consumption in most adult murine ocular compartments, combined with exposure to light and ultraviolet (UV) radiation, are major sources of oxidative stress, causing DNA damage in ocular cells. Of all mammalian body cells, photoreceptor cells consume the largest amount of oxygen and generate the highest levels of oxidative damage. The accumulation of such damage throughout life is a major factor of aging tissues. Several multiprotein complexes have recently been identified as the major sensors and mediators involved in the maintenance of DNA integrity. The activity of these complexes initially seemed to be restricted to dividing cells, given their ultimate role in major cell cycle checkpoints. However, it was later established that they are also active in post-mitotic cells. Recent findings demonstrate that the DNA damage response (DDR) is essential for the development, maintenance, and normal functioning of the adult central nervous system. One major molecular factor in the DDR is the protein, ataxia telangiectasia mutated (ATM). It is required for the rapid induction of cellular responses to DNA double-strand breaks. These cytotoxic DNA lesions may be caused by oxidative damage. To understand how ATM prevents oxidative stress and participates in the maintenance of genomic integrity and cell viability of the adult retina, we determined the ATM expression patterns and studied its localization in the adult mouse eye. Methods Atm gene expression was analyzed by RT–PCR experiments and its localization by in situ hybridization on adult mouse ocular and cerebellar tissue sections. ATM protein expression was determined by western blot analysis of proteins homogenates extracted from several mouse tissues and its localization by immunohistochemistry experiments performed on adult mouse ocular and cerebellar tissue sections. In addition, subcellular localization was realized by confocal microscopy imaging of ocular tissue

  2. Experience-dependent gene expression in adult visual cortex.

    PubMed

    Chen, Jiabin; Yamahachi, Homare; Gilbert, Charles D

    2010-03-01

    Experience-dependent plasticity of the adult visual cortex underlies perceptual learning and recovery of function following central nervous system lesions. To reveal the signal transduction cascades involved in adult cortical plasticity, we utilized a model of remapping of cortical topography following binocular retinal lesions. In this model, the lesion projection zone (LPZ) of primary visual cortex (V1) recovers visually driven activity by the sprouting of horizontal axonal connections originating from the cells in the surrounding region. To explore the molecular mechanism underlying this process, we used gene microarrays from an expression library prepared from Macaque V1. By microarray analysis of gene expression levels in the LPZ and the surrounding region, and subsequent confirmation with Quantitative Real-Time polymerase chain reaction and in situ hybridization, the participation of a number of genes was observed, including the Rho GTPase family. Its role in regulation of cytoskeleton assembly provides a possible link between the alteration of neural activity and cortical functional reorganization. PMID:19571270

  3. An anatomic gene expression atlas of the adult mouse brain.

    PubMed

    Ng, Lydia; Bernard, Amy; Lau, Chris; Overly, Caroline C; Dong, Hong-Wei; Kuan, Chihchau; Pathak, Sayan; Sunkin, Susan M; Dang, Chinh; Bohland, Jason W; Bokil, Hemant; Mitra, Partha P; Puelles, Luis; Hohmann, John; Anderson, David J; Lein, Ed S; Jones, Allan R; Hawrylycz, Michael

    2009-03-01

    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea). PMID:19219037

  4. Gene Test Might One Day Gauge Alzheimer's Risk in Younger Adults

    MedlinePlus

    ... 159737.html Gene Test Might One Day Gauge Alzheimer's Risk in Younger Adults But doctors say the ... day be able to predict the risk for Alzheimer's disease in young adults, a new study suggests. ...

  5. Gene amplification as a cause of inherited thyroxine-binding globulin excess in two Japanese families

    SciTech Connect

    Mori, Yuichi; Miura, Yoshitaka; Saito, Hidehiko

    1995-12-01

    T{sub 4}-binding globulin (TBG) is the major thyroid hormone transport protein in man. Inherited abnormalities in the level of serum TBG have been classified as partial deficiency, complete deficiency, and excess. Sequencing analysis of the TBG gene, located on Xq21-22, has uncovered the molecular defects causing partial and complete deficiency. However, the mechanism leading to inherited TBG excess remains unknown. In this study, two Japanese families, F-A and F-T, with inherited TBG excess were analyzed. Serum TBG levels in hemizygous males were 58 and 44 {mu}g/mL, 3- and 2-fold the normal value, respectively. The molecule had normal properties in terms of heat stability and isoelectric focussing pattern. The sequence of the coding region and the promoter activity of the TBG gene were also indistinguishable between hemizygotes and normal subjects. The gene dosage of TBG relative to that of {beta}-globin, which is located on chromosome 11, and Duchenne muscular dystropy, which is located on Xp, was evaluated by coamplification of these target genes using polymerase chain reaction and subsequent quantitation by HPLC. The TBG/{beta}-globin ratios of the affected male and female of F-A were 3.13 and 4.13 times, respectively, that in the normal males. The TBG/Duchenne muscular dystrophy ratios were 2.92 and 2.09 times the normal value, respectively. These results are compatible with three copies of TBG gene on the affected X-chromosome. Similarly, a 2-fold increase in gene dosage was demonstrated in the affected hemizygote of F-T. A 3-fold tandem amplification of the TBG gene was shown by in situ hybridization of prometaphase and interphase chromosomes from the affected male with a biotinylated genomic TBG probe, confirming the gene dosage results. Gene amplification of TBG is the cause of inherited TBG excess in these two families. 35 refs., 3 figs., 2 tabs.

  6. Metal-dependent SV40 viruses containing inducible enhancers from the upstream region of metallothionein genes.

    PubMed Central

    Serfling, E; Lübbe, A; Dorsch-Häsler, K; Schaffner, W

    1985-01-01

    We have isolated SV40 recombinant viruses which are dependent on heavy metal ions for efficient propagation. They were obtained after-co-transfection of enhancerless SV40 DNA (the so-called enhancer trap) with sonicated DNA from the mouse metallothionein-I (mMT-I) or human metallothionein-IIA (hMT-IIA) upstream regions. To substitute for the SV40 enhancer, these viruses have incorporated a segment of the immediate upstream region of the metallothionein genes. Two recombinant viruses of the SVMT-I type carry segments of the mMT-I gene from positions -73 to -187 and -39 to -194 inverted with respect to their natural configuration. The overlapping segment contains two of the four metal-responsive elements involved in the induction of the mMT-I gene by heavy metal ions. The SVMT-II recombinant virus contains a segment of the hMT-IIA gene from position -39 to -366 which harbors the metal- and hormone-responsive elements of the hMT-IIA gene. Insertion of the mMT-I segment downstream of a rabbit beta-globin test gene enhances beta-globin transcription upon metal ion stimulation. This shows that the immediate upstream region of the mouse metalliothionein-I gene, when detached from its TATA box, can act as an inducible enhancer. It may be generally true that the enhancer/promoters of inducible genes are composed of several regulatory sequence elements which are interspersed with constitutive elements. The number and spatial arrangement of these elements probably determines the basal versus induced level of expression. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2419129

  7. Gene Test Might One Day Gauge Alzheimer's Risk in Younger Adults

    MedlinePlus

    ... news/fullstory_159737.html Gene Test Might One Day Gauge Alzheimer's Risk in Younger Adults But doctors ... 2016 (HealthDay News) -- A gene test may one day be able to predict the risk for Alzheimer's ...

  8. Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects.

    PubMed

    Mansilla-Soto, Jorge; Riviere, Isabelle; Boulad, Farid; Sadelain, Michel

    2016-04-01

    The beta-thalassemias are inherited anemias caused by mutations that severely reduce or abolish expression of the beta-globin gene. Like sickle cell disease, a related beta-globin gene disorder, they are ideal candidates for performing a genetic correction in patient hematopoietic stem cells (HSCs). The most advanced approach utilizes complex lentiviral vectors encoding the human β-globin gene, as first reported by May et al. in 2000. Considerable progress toward the clinical implementation of this approach has been made in the past five years, based on effective CD34+ cell mobilization and improved lentiviral vector manufacturing. Four trials have been initiated in the United States and Europe. Of 16 evaluable subjects, 6 have achieved transfusion independence. One of them developed a durable clonal expansion, which regressed after several years without transformation. Although globin lentiviral vectors have so far proven to be safe, this occurrence suggests that powerful insulators with robust enhancer-blocking activity will further enhance this approach. The combined discovery of Bcl11a-mediated γ-globin gene silencing and advances in gene editing are the foundations for another gene therapy approach, which aims to reactivate fetal hemoglobin (HbF) production. Its clinical translation will hinge on the safety and efficiency of gene targeting in true HSCs and the induction of sufficient levels of HbF to achieve transfusion independence. Altogether, the progress achieved over the past 15 years bodes well for finding a genetic cure for severe globin disorders in the next decade. PMID:27021486

  9. Bone status of adult female butyrylcholinesterase gene-deficient mice.

    PubMed

    Haupt, Malte; Kauschke, Vivien; Sender, Jonas; Kampschulte, Marian; Kovtun, Anna; Dürselen, Lutz; Heiss, Christian; Lips, Katrin Susanne

    2015-11-01

    Butyrylcholinesterase (BChE) degrades acetylcholine in addition to acetylcholinesterase (AChE) which is involved in embryonic development of limbs. Since BChE is expressed by osteoblast-like cells we asked whether it is functional in adult bone remodeling. We addressed this issue by analyzing BChE gene-deficient mice (BChE-KO). Bones were extracted from 16-week old female BChE-KO and corresponding wild type mice (WT). Femoral bones were used for biomechanical testing and μCT evaluation of cancellous and cortical bone. Also vertebrae Th12 and L1 were investigated with μCT while L3 was used for tartrate-resistant acidic phosphatase (TRAP) histomorphometry and Th10 for gene expression analysis by means of real-time RT-PCR. BChE-KO did not reveal significant differences in biomechanical bone strength and bone mineral density determined by μCT. Microarchitecture of cancellous and cortical bone showed an increase in μCT parameters like trabecular thickness, trabecular separation, and relative cortical bone area of femoral BChE-KO bone compared to WT. In vertebrae no changes of microstructure and mRNA expression were detected. However, osteoclast histomorphometry with TRAP stained sections demonstrated a significant increase in relative osteoclast number. In conclusion, in adult murine bone the role of BChE is limited to bone specific changes in microarchitecture and to an increase in relative number of bone resorbing osteoclasts whereas the main collagen resorbing enzyme Cathepsin-K (CtsK) was stably expressed. Besides, AChE might be able to compensate the lack of BChE. Thus, further analyses using bone tissue specific AChE BChE cre-lox double knockout mice would be helpful. PMID:26138460

  10. A Digital Gene Expression-Based Bovine Gene Atlas Evaluating 92 Adult, Juvenile and Fetal Cattle Tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comprehensive transcriptome survey, or “Gene Atlas,” provides information essential for a complete understanding of the genomic biology of an organism. Using a digital gene expression approach, we developed a Gene Atlas of RNA abundance in 92 adult, juvenile and fetal cattle tissues. The samples...

  11. Gene-environment contributions to young adult sexual partnering.

    PubMed

    Halpern, Carolyn T; Kaestle, Christine E; Guo, Guang; Hallfors, Denise D

    2007-08-01

    To date, there has been relatively little work on gene-environment contributions to human sexuality, especially molecular analyses examining the potential contributions of specific polymorphisms in conjunction with life experiences. Using Wave III data from 717 heterozygous young adult sibling pairs included in the National Longitudinal Study of Adolescent Health, this article examined the combined contributions of attendance at religious services and three genetic polymorphisms (in the dopamine D4 receptor [DRD4]), dopamine D2 receptor [DRD2]), and the serotonin transporter promoter [5HTT]) to sensation seeking, a personality construct related to sexual behavior, and the number of vaginal sex partners participants had in the year before interview. Data analyses used an Allison mixed model approach to account for population stratification and correlated observations. DRD4 was unrelated to sensation seeking and to the number of sex partners in tests of both main effects and in interaction with religious attendance. Contrary to hypothesis, presence of the A1 DRD2 allele was associated with having had fewer sex partners in the past year. Associations between the 5HTT allele and sex partners varied by religious attendance, but again the patterns of associations were contrary to hypothesized relationships and were small in magnitude. These findings underscore the necessity of using more comprehensive multiple gene-multiple life experience approaches to investigations of complex behaviors such as sexual patterns. PMID:17186131

  12. Precise nucleosome positioning in the promoter of the chicken beta A globin gene.

    PubMed

    Kefalas, P; Gray, F C; Allan, J

    1988-01-25

    Histone octamers were reconstituted onto 5' end-labelled DNA fragments derived from the promoter region of the chicken beta A globin gene. The location of the reconstituted histone octamer with respect to the DNA sequence of each fragment was assessed by Exonuclease III digestion of purified nucleosome monomers. By this approach we have found a strong preference for histone octamers to be positioned over nucleotides -206 to -62 relative to the gene cap site. This stretch of DNA contains all those 5' beta globin sequences which, by DNase footprinting, bind specific protein factors and incorporates three promoter consensus sequence motifs. The upstream terminal 32 base pairs of this DNA segment contains the binding sites for the erythrocyte specific G-string binding protein and transcription factor Spl and appears to be relatively weakly bound to the histone octamer. PMID:3340546

  13. Precise nucleosome positioning in the promoter of the chicken beta A globin gene.

    PubMed Central

    Kefalas, P; Gray, F C; Allan, J

    1988-01-01

    Histone octamers were reconstituted onto 5' end-labelled DNA fragments derived from the promoter region of the chicken beta A globin gene. The location of the reconstituted histone octamer with respect to the DNA sequence of each fragment was assessed by Exonuclease III digestion of purified nucleosome monomers. By this approach we have found a strong preference for histone octamers to be positioned over nucleotides -206 to -62 relative to the gene cap site. This stretch of DNA contains all those 5' beta globin sequences which, by DNase footprinting, bind specific protein factors and incorporates three promoter consensus sequence motifs. The upstream terminal 32 base pairs of this DNA segment contains the binding sites for the erythrocyte specific G-string binding protein and transcription factor Spl and appears to be relatively weakly bound to the histone octamer. Images PMID:3340546

  14. Association study of the C3 gene with adult and childhood asthma.

    PubMed

    Inoue, Hiroki; Mashimo, Yoichi; Funamizu, Makiko; Shimojo, Naoki; Hasegawa, Koichi; Hirota, Tomomitsu; Doi, Satoru; Kameda, Makoto; Miyatake, Akihiko; Kohno, Yoichi; Okamoto, Yoshitaka; Tamari, Mayumi; Hata, Akira; Suzuki, Yoichi

    2008-01-01

    Bronchial asthma (BA) is a multifactorial disorder, the development of which is affected by both environmental and genetic factors. The complement system plays an important role in immunological response against invading microorganisms. It has been shown that complement-C3-deficient mice have reduced inflammation of asthmatic airways. Previously, we reported the association of four single nuclear proteins (SNPs) in the exons of the C3 gene with childhood and adult BA. The C3 gene, however, is a large gene, and functional SNPs associated with susceptibility to BA have not yet been identified. We analyzed 26 SNPs in the C3 gene and its promoter region to narrow down the regions showing association with childhood and adult BA. Childhood and adult atopic BA patients and healthy child and adult controls were recruited from urban cities in Japan and genotyped. In SNP analysis, an SNP (SNP24, rs11569562) located in intron 31 of the C3 gene was associated with adult BA [corrected P (Pcor) = 0.030]. In linkage disequilibrium (LD) block 4 spanning exons 24-41, the frequency of the CCC haplotype in adult BA was significantly higher than that in adult controls (Pcor = 0.038). Neither the SNP nor the haplotype showing association with adult BA demonstrated a significant association with serum total immunoglobulin E (IgE) level in BA patients and controls. Our results suggest that LD block 4 confers susceptibility to adult BA with mechanisms relevant to the effector phase of allergic inflammation. PMID:18566738

  15. The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility.

    PubMed

    Du, Hongling; Taylor, Hugh S

    2016-01-01

    HOX genes convey positional identity that leads to the proper partitioning and adult identity of the female reproductive track. Abnormalities in reproductive tract development can be caused by HOX gene mutations or altered HOX gene expression. Diethylstilbestrol (DES) and other endocrine disruptors cause Müllerian defects by changing HOX gene expression. HOX genes are also essential regulators of adult endometrial development. Regulated HOXA10 and HOXA11 expression is necessary for endometrial receptivity; decreased HOXA10 or HOXA11 expression leads to decreased implantation rates. Alternation of HOXA10 and HOXA11 expression has been identified as a mechanism of the decreased implantation associated with endometriosis, polycystic ovarian syndrome, leiomyoma, polyps, adenomyosis, and hydrosalpinx. Alteration of HOX gene expression causes both uterine developmental abnormalities and impaired adult endometrial development that prevent implantation and lead to female infertility. PMID:26552702

  16. The Drosophila Couch Potato Gene: An Essential Gene Required for Normal Adult Behavior

    PubMed Central

    Bellen, H. J.; Vaessin, H.; Bier, E.; Kolodkin, A.; D'Evelyn, D.; Kooyer, S.; Jan, Y. N.

    1992-01-01

    Through enhancer detection screens we have isolated 14 insertions in an essential gene that is expressed in embryonic sensory mother cells (SMC), in most cells of the mature embryonic peripheral nervous system (PNS), and in glial cells of the PNS and the central nervous system (CNS). Embryos homozygote for amorphic alleles die, but show no obvious defects in their cuticle, PNS or CNS. The gene has been named couch potato (cpo) because several insertional alleles alter adult behavior. Homozygous hypomorphic cpo flies recover slowly from ether anaesthesia, show aberrant flight behavior, fail to move toward light and do not exhibit normal negative geotactic behavior. However, the flies are able to groom and walk, and some are able to fly when prodded, indicating that not all processes required for behavior are severely affected. A molecular analysis shows that the 14 insertions are confined to a few hundred nucleotides which probably contain key regulatory sequences of the gene. The orientation of these insertions and their position within this DNA fragment play an important role in the couch potato phenotype. In situ hybridization to whole mount embryos suggest that some insertions affect the levels of transcription of cpo in most cells in which it is expressed. PMID:1644278

  17. Globin gene switching in primates.

    PubMed

    Johnson, Robert M; Gumucio, Deborah; Goodman, Morris

    2002-11-01

    Evolutionary approaches to the identification of DNA sequences required for transcription of the genes of the beta-globin cluster are reviewed. Sequence alignments of non-coding regions from widely divergent species revealed many conserved motifs (phylogenetic footprints) that were putative transcription factor binding sites and candidate binding proteins were identified. The differential timing of the prosimian and simian gamma-globin genes was analyzed by identifying base changes in the vicinity of the phylogenetic footprints. These differential phylogenetic footprints were shown to bind different nuclear factors, and the behavior of constructs with human or galago gamma-promoters in transgenic mice indicated that DNA motifs near the gamma-globin genes are sufficient to determine the developmental stage of expression. Locus control region alignments have identified many conserved sequence differences outside of the hypersensitive sites. Globin protein and mRNA expression profiles during embryological development in a series of catarrhine (Old World monkeys and apes) and platyrrhine (New World monkeys) primates have been determined. While all catarrhines examined to date have globin expression patterns that are highly similar to the well-established human switching behavior, platyrrhines have inactivated their gamma 1 genes by a variety of mechanisms, and have an earlier gamma-beta switch. PMID:12443943

  18. Analysis of gene expression in fetal and adult cells infected with rubella virus

    SciTech Connect

    Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.

    2008-01-05

    Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adult lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced

  19. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation

    PubMed Central

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  20. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation.

    PubMed

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  1. Gene action for adult-plant resistance to powdery mildew in wheat.

    PubMed

    Das, M K; Griffey, C A

    1995-04-01

    Gene action for adult-plant resistance to powdery mildew was studied using generation mean analyses of parents and of F1, F2, and backcross populations derived from a diallel cross of one susceptible and three adult-plant resistant wheat cultivars. Joint scaling tests showed that an additive-dominance model was sufficient to explain the variability in the expression of adult-plant resistance in one cross, while digenic epistasis was involved in the other five crosses. Additive gene effects were predominant; however, dominance was significant in four crosses, additive x additive interaction was significant in three crosses, additive x dominance interaction was significant in three crosses, and dominance x dominance interaction was significant in one cross. Therefore, selection for adult-plant resistance would likely be most effective in advanced generations derived from crosses among the adult-plant resistant cultivars Redcoat, Houser, and Massey. PMID:18470166

  2. Assessment of Virally Vectored Autoimmunity as a Biocontrol Strategy for Cane Toads

    PubMed Central

    Robinson, Anthony J.; Venables, Daryl; Voysey, Rhonda D.; Boyle, Donna G.; Shanmuganathan, Thayalini; Hardy, Christopher M.; Siddon, Nicole A.; Hyatt, Alex D.

    2011-01-01

    Background The cane toad, Bufo (Chaunus) marinus, is one of the most notorious vertebrate pests introduced into Australia over the last 200 years and, so far, efforts to identify a naturally occurring B. marinus-specific pathogen for use as a biological control agent have been unsuccessful. We explored an alternative approach that entailed genetically modifying a pathogen with broad host specificity so that it no longer caused disease, but carried a gene to disrupt the cane toad life cycle in a species specific manner. Methodology/Principal Findings The adult beta globin gene was selected as the model gene for proof of concept of autoimmunity as a biocontrol method for cane toads. A previous report showed injection of bullfrog tadpoles with adult beta globin resulted in an alteration in the form of beta globin expressed in metamorphs as well as reduced survival. In B. marinus we established for the first time that the switch from tadpole to adult globin exists. The effect of injecting B. marinus tadpoles with purified recombinant adult globin protein was then assessed using behavioural (swim speed in tadpoles and jump length in metamorphs), developmental (time to metamorphosis, weight and length at various developmental stages, protein profile of adult globin) and genetic (adult globin mRNA levels) measures. However, we were unable to detect any differences between treated and control animals. Further, globin delivery using Bohle iridovirus, an Australian ranavirus isolate belonging to the Iridovirus family, did not reduce the survival of metamorphs or alter the form of beta globin expressed in metamorphs. Conclusions/Significance While we were able to show for the first time that the switch from tadpole to adult globin does occur in B. marinus, we were not able to induce autoimmunity and disrupt metamorphosis. The short development time of B. marinus tadpoles may preclude this approach. PMID:21283623

  3. Growth factor enhanced retroviral gene transfer to the adult central nervous system.

    PubMed

    King, L A; Mitrophanous, K A; Clark, L A; Kim, V N; Rohll, J B; Kingsman, A J; Colello, R J

    2000-07-01

    The use of viral vectors for gene delivery into mammalian cells provides a new approach in the treatment of many human diseases. The first viral vector approved for human clinical trials was murine leukemia virus (MLV), which remains the most commonly used vector in clinical trials to date. However, the application of MLV vectors is limited since MLV requires cells to be actively dividing in order for transduction and therefore gene delivery to occur. This limitation precludes the use of MLV for delivering genes to the adult CNS, where very little cell division is occurring. However, we speculated that this inherent limitation of ML V may be overcome by utilizing the known mitogenic effect of growth factors on cells of the CNS. Specifically, an in vivo application of growth factor to the adult brain, if able to induce cell division, could enhance MLV-based gene transfer to the adult brain. We now show that an exogenous application of basic fibroblast growth factor induces cell division in vivo. Under these conditions, where cells of the adult brain are stimulated to divide, MLV-based gene transfer is significantly enhanced. This novel approach precludes any vector modifications and provides a simple and effective way of delivering genes to cells of the adult brain utilizing MLV-based retroviral vectors. PMID:10918476

  4. Different Gene Expression Signatures in Children and Adults with Celiac Disease.

    PubMed

    Pascual, V; Medrano, L M; López-Palacios, N; Bodas, A; Dema, B; Fernández-Arquero, M; González-Pérez, B; Salazar, I; Núñez, C

    2016-01-01

    Celiac disease (CD) is developed after gluten ingestion in genetically susceptible individuals. It can appear at any time in life, but some differences are commonly observed between individuals with onset early in life or in adulthood. We aimed to investigate the molecular basis underlying those differences. We collected 19 duodenal biopsies of children and adults with CD and compared the expression of 38 selected genes between each other and with the observed in 13 non-CD controls matched by age. A Bayesian methodology was used to analyze the differences of gene expression between groups. We found seven genes with a similarly altered expression in children and adults with CD when compared to controls (C2orf74, CCR6, FASLG, JAK2, IL23A, TAGAP and UBE2L3). Differences were observed in 13 genes: six genes being altered only in adults (IL1RL1, CD28, STAT3, TMEM187, VAMP3 and ZFP36L1) and two only in children (TNFSF18 and ICOSLG); and four genes showing a significantly higher alteration in adults (CCR4, IL6, IL18RAP and PLEK) and one in children (C1orf106). This is the first extensive study comparing gene expression in children and adults with CD. Differences in the expression level of several genes were found between groups, being notorious the higher alteration observed in adults. Further research is needed to evaluate the possible genetic influence underlying these changes and the specific functional consequences of the reported differences. PMID:26859134

  5. Different Gene Expression Signatures in Children and Adults with Celiac Disease

    PubMed Central

    López-Palacios, N.; Bodas, A.; Dema, B.; Fernández-Arquero, M.; González-Pérez, B.; Salazar, I.; Núñez, C.

    2016-01-01

    Celiac disease (CD) is developed after gluten ingestion in genetically susceptible individuals. It can appear at any time in life, but some differences are commonly observed between individuals with onset early in life or in adulthood. We aimed to investigate the molecular basis underlying those differences. We collected 19 duodenal biopsies of children and adults with CD and compared the expression of 38 selected genes between each other and with the observed in 13 non-CD controls matched by age. A Bayesian methodology was used to analyze the differences of gene expression between groups. We found seven genes with a similarly altered expression in children and adults with CD when compared to controls (C2orf74, CCR6, FASLG, JAK2, IL23A, TAGAP and UBE2L3). Differences were observed in 13 genes: six genes being altered only in adults (IL1RL1, CD28, STAT3, TMEM187, VAMP3 and ZFP36L1) and two only in children (TNFSF18 and ICOSLG); and four genes showing a significantly higher alteration in adults (CCR4, IL6, IL18RAP and PLEK) and one in children (C1orf106). This is the first extensive study comparing gene expression in children and adults with CD. Differences in the expression level of several genes were found between groups, being notorious the higher alteration observed in adults. Further research is needed to evaluate the possible genetic influence underlying these changes and the specific functional consequences of the reported differences. PMID:26859134

  6. PROGRESSION OF REGULATORY GENE EXPRESSION STATES IN FETAL AND ADULT PRO-T CELL DEVELOPMENT

    PubMed Central

    David-Fung, Elizabeth-Sharon; Yui, Mary A.; Morales, Marissa; Wang, Hua; Taghon, Tom; Diamond, Rochelle A.; Rothenberg, Ellen V.

    2014-01-01

    Precursors entering the T-cell developmental pathway traverse a progression of states characterized by distinctive patterns of gene expression. Of particular interest are regulatory genes, which ultimately control the dwell time of cells in each state and establish the mechanisms that propel them forward to subsequent states. Under particular genetic and developmental circumstances, the transitions between these states occur with different timing, and environmental feedbacks may shift the steady-state accumulations of cells in each state. The fetal transit through pro-T cell stages is faster than in the adult, and subject to somewhat different genetic requirements. To explore causes of such variation, this review presents previously unpublished data on differentiation gene activation in pro-T cells of pre-TCR deficient mutant mice, and a quantitative comparison of the profiles of transcription factor gene expression in pro-T cell subsets of fetal and adult wildtype mice. Against a background of consistent gene expression, several regulatory genes show marked differences between fetal and adult expression profiles, including those encoding two bHLH antagonist Id factors, the Ets family factor SpiB, and the Notch target gene Deltex1. The results also reveal global differences in regulatory alterations triggered by the first TCR-dependent selection events in fetal and adult thymopoiesis. PMID:16448545

  7. Analysis of Gene Expression and Ultrastructure of Stifle Menisci from Juvenile and Adult Pigs.

    PubMed

    Kreinest, Michael; Reisig, Gregor; Ströbel, Philipp; Fickert, Stefan; Brade, Joachim; Wennemuth, Gunther; Lipp, Peter; Schwarz, Markus L

    2016-01-01

    The origin of the age-associated degenerative processes in meniscal tissue is poorly understood and may be related to an imbalance of anabolic and catabolic metabolism. The aim of the current study was to compare medial menisci isolated from juvenile pigs and degenerated medial menisci from adult pigs in terms of gene expression profile and ultrastructure. Medial menisci were isolated from the knee joints of juvenile and adult pigs (n = 8 for each group). Degeneration was determined histologically according to a scoring system. In addition, the gene expression profiles of 14 genes encoding extracellular matrix proteins, catabolic matrix metalloproteinases and mediators of inflammation were analyzed. Changes in the ultrastructure of the collagen network of the meniscal tissue were analyzed by using transmission electron microscopy. The histologic analysis of menisci showed significantly higher grade of degeneration in tissue isolated from adult porcine knee joints compared with menisci isolated from juvenile knee joints. In particular, destruction of the collagen network was greater in adult menisci than in juvenile menisci. Degenerated menisci showed significantly decreased gene expression of COL1A1 and increased expression of MMP2, MMP13, and IL8. The menisci from adult porcine knee joints can serve as a model for meniscal degeneration. Degenerative changes were manifested as differences in histopathology, gene expression and ultrastructure of collagen network. PMID:26884408

  8. Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q

    SciTech Connect

    Wirtz, M.K.; Samples, J.R.; Kramer, P.L.

    1997-02-01

    Glaucoma is the third-leading cause of blindness in the world, affecting >13.5 million people. Adult-on-set primary open-angle glaucoma (POAG) is the most common form of glaucoma in the United States. We present a family in which adult-onset POAG is inherited as an autosomal dominant trait. Twelve affected family members were identified from 44 at-risk individuals. The disease-causing gene was mapped to chromosome 3q21-24, with analysis of recombinant haplotypes suggesting a total inclusion region of 11.1 cM between markers D3S3637 and D3S1744. This is the first report of mapping of an adult-onset POAG gene to chromosome 3q, gene symbol GLC1C. 57 refs., 3 figs., 3 tabs.

  9. Adipose tissue gene expression and metabolic health of obese adults.

    PubMed

    Das, S K; Ma, L; Sharma, N K

    2015-05-01

    Obese subjects with a similar body mass index (BMI) exhibit substantial heterogeneity in gluco- and cardiometabolic heath phenotypes. However, defining genes that underlie the heterogeneity of metabolic features among obese individuals and determining metabolically healthy and unhealthy phenotypes remain challenging. We conducted unsupervised hierarchical clustering analysis of subcutaneous adipose tissue transcripts from 30 obese men and women ⩾40 years old. Despite similar BMIs in all subjects, we found two distinct subgroups, one metabolically healthy (group 1) and one metabolically unhealthy (group 2). Subjects in group 2 showed significantly higher total cholesterol (P=0.005), low-density lipoprotein cholesterol (P=0.006), 2-h insulin during oral glucose tolerance test (P=0.015) and lower insulin sensitivity (SI, P=0.029) compared with group 1. We identified significant upregulation of 141 genes (for example, MMP9 and SPP1) and downregulation of 17 genes (for example, NDRG4 and GINS3) in group 2 subjects. Intriguingly, these differentially expressed transcripts were enriched for genes involved in cardiovascular disease-related processes (P=2.81 × 10(-11)-3.74 × 10(-02)) and pathways involved in immune and inflammatory response (P=8.32 × 10(-5)-0.04). Two downregulated genes, NDRG4 and GINS3, have been located in a genomic interval associated with cardiac repolarization in published GWASs and zebra fish knockout models. Our study provides evidence that perturbations in the adipose tissue gene expression network are important in defining metabolic health in obese subjects. PMID:25520251

  10. Brain-expressed imprinted genes and adult behaviour: the example of Nesp and Grb10.

    PubMed

    Dent, Claire L; Isles, Anthony R

    2014-02-01

    Imprinted genes are defined by their parent-of-origin-specific monoallelic expression. Although the epigenetic mechanisms regulating imprinted gene expression have been widely studied, their functional importance is still unclear. Imprinted genes are associated with a number of physiologies, including placental function and foetal growth, energy homeostasis, and brain and behaviour. This review focuses on genomic imprinting in the brain and on two imprinted genes in particular, Nesp and paternal Grb10, which, when manipulated in animals, have been shown to influence adult behaviour. These two genes are of particular interest as they are expressed in discrete and overlapping neural regions, recognised as key "imprinting hot spots" in the brain. Furthermore, these two genes do not appear to influence placental function and/or maternal provisioning of offspring. Consequently, by understanding their behavioural function we may begin to shed light on the evolutionary significance of imprinted genes in the adult brain, independent of the recognised role in maternal care. In addition, we discuss the potential future directions of research investigating the function of these two genes and the behavioural role of imprinted genes more generally. PMID:23974804

  11. Expression pattern of Piwi-like genes in adult Myzostoma cirriferum (Annelida).

    PubMed

    Weigert, Anne; Helm, Conrad; Hausen, Harald; Zakrzewski, Anne-C; Bleidorn, Christoph

    2013-09-01

    Piwi-like genes are a subgroup of Argonaute genes which participate as gene regulators by gene silencing. In most bilaterians, such as mouse, human, insects, and zebrafish, their expression is mostly limited to gonadal stem cells. But there are some striking exceptions to this pattern; flatworms and acoels also express Piwi-like genes in somatic stem cells, due to their unique replacement system. Annelid species like Capitella teleta and Platynereis dumerilii express these genes in cells of the posterior growth zone as well as in gonadal stem cells. To investigate the expression pattern of Piwi-like genes in another annelid, we established in situ hybridization for adult Myzostoma cirriferum. Piwi-like gene transcripts recovered in an mRNA-seq library of pooled adult stages of M. cirriferum were expanded using RACE PCR, cloned and sequenced. ML analysis confirmed the identity of both transcripts as part of the Piwi1-like or Piwi2-like subfamily of Argonaute proteins. The results of in situ hybridization studies show that the expression of both Piwi-like genes, Mc-Piwi1 and Mc-Piwi2, is clearly located only in gonadal stem cells, and as such we did not find any evidence for the existence of a posterior growth zone nor expression in somatic stem cells. PMID:23609434

  12. Gene by Neuroticism Interaction and Cognitive Function among Older Adults

    PubMed Central

    Dar-Nimrod, Ilan; Chapman, Benjamin P.; Robbins, John A.; Porsteinsson, Anton; Mapstone, Mark; Duberstein, Paul R.

    2012-01-01

    Objectives Both ApoE (apolipoprotein E) ε-4 allele(s) and elevated trait neuroticism, the tendency to experience distress, are associated with cognitive function among older adults. We predicted that neuroticism moderates the association between ApoE and cognitive function and also explored whether other personality dimensions (openness to experience, agreeableness, extraversion, and conscientiousness) affect the association between ApoE status and cognitive function. Method Five-hundred and ninety-seven older adults (mean age of 78) enrolled in the Ginkgo Evaluation of Memory (GEM) study completed the NEO-Five Factor Inventory of personality. Cognitive function was assessed via the cognitive portion of the Alzheimer’s Disease Assessment Scale (ADAS-cog), and a blood sample for ApoE genotyping was drawn. Results As hypothesized, regression analysis indicated that neuroticism moderated the relationship between the presence of ApoE ε-4 and cognitive function. Individuals with high neuroticism scores had significantly lower ADAS-cog scores compared with individual with low neuroticism scores, but this was true only among carriers of ApoE ε-4 (interaction effect β = .124, p = .028). There was scant evidence that other personality dimensions moderate the association between ApoE ε-4 and cognitive function. Conclusions Cognitive function may be affected by ApoE and neuroticism acting in tandem. Research on the underlying physiological mechanisms by which neuroticism amplifies the effect of ApoE ε-4 is warranted. The study of genotype by phenotype interactions provides an important and useful direction for the study of cognitive function among older adults and for the development of novel prevention programs. PMID:23042108

  13. Health and population effects of rare gene knockouts in adult humans with related parents.

    PubMed

    Narasimhan, Vagheesh M; Hunt, Karen A; Mason, Dan; Baker, Christopher L; Karczewski, Konrad J; Barnes, Michael R; Barnett, Anthony H; Bates, Chris; Bellary, Srikanth; Bockett, Nicholas A; Giorda, Kristina; Griffiths, Christopher J; Hemingway, Harry; Jia, Zhilong; Kelly, M Ann; Khawaja, Hajrah A; Lek, Monkol; McCarthy, Shane; McEachan, Rosie; O'Donnell-Luria, Anne; Paigen, Kenneth; Parisinos, Constantinos A; Sheridan, Eamonn; Southgate, Laura; Tee, Louise; Thomas, Mark; Xue, Yali; Schnall-Levin, Michael; Petkov, Petko M; Tyler-Smith, Chris; Maher, Eamonn R; Trembath, Richard C; MacArthur, Daniel G; Wright, John; Durbin, Richard; van Heel, David A

    2016-04-22

    Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British adults of Pakistani heritage with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of function (knockouts) in 781 genes. We observed 13.7% fewer homozygous knockout genotypes than we expected, implying an average load of 1.6 recessive-lethal-equivalent loss-of-function (LOF) variants per adult. When genetic data were linked to the individuals' lifelong health records, we observed no significant relationship between gene knockouts and clinical consultation or prescription rate. In this data set, we identified a healthy PRDM9-knockout mother and performed phased genome sequencing on her, her child, and control individuals. Our results show that meiotic recombination sites are localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform on essential genetic loci and demonstrate PRDM9 redundancy in humans. PMID:26940866

  14. Health and population effects of rare gene knockouts in adult humans with related parents

    PubMed Central

    Narasimhan, Vagheesh M.; Hunt, Karen A.; Mason, Dan; Baker, Christopher L.; Karczewski, Konrad J.; Barnes, Michael R.; Barnett, Anthony H.; Bates, Chris; Bellary, Srikanth; Bockett, Nicholas A.; Giorda, Kristina; Griffiths, Christopher J.; Hemingway, Harry; Jia, Zhilong; Kelly, M. Ann; Khawaja, Hajrah A.; Lek, Monkol; McCarthy, Shane; McEachan, Rosie; O’Donnell-Luria, Anne; Paigen, Kenneth; Parisinos, Constantinos A.; Sheridan, Eamonn; Southgate, Laura; Tee, Louise; Thomas, Mark; Xue, Yali; Schnall-Levin, Michael; Petkov, Petko M.; Tyler-Smith, Chris; Maher, Eamonn R.; Trembath, Richard C.; MacArthur, Daniel G.; Wright, John; Durbin, Richard; van Heel, David A.

    2016-01-01

    Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3,222 British Pakistani-heritage adults with high parental relatedness, discovering 1,111 rare-variant homozygous genotypes with predicted loss of gene function (knockouts) in 781 genes. We observed 13.7% fewer than expected homozygous knockout genotypes, implying an average load of 1.6 recessive-lethal-equivalent LOF variants per adult. Linking genetic data to lifelong health records, knockouts were not associated with clinical consultation or prescription rate. In this dataset we identified a healthy PRDM9 knockout mother, and performed phased genome sequencing on her, her child and controls, which showed meiotic recombination sites localised away from PRDM9-dependent hotspots. Thus, natural LOF variants inform upon essential genetic loci, and demonstrate PRDM9 redundancy in humans. PMID:26940866

  15. Hierarchy in gene expression is predictive of risk, progression, and outcome in adult acute myeloid leukemia

    NASA Astrophysics Data System (ADS)

    Tripathi, Shubham; Deem, Michael W.

    2015-02-01

    Cancer progresses with a change in the structure of the gene network in normal cells. We define a measure of organizational hierarchy in gene networks of affected cells in adult acute myeloid leukemia (AML) patients. With a retrospective cohort analysis based on the gene expression profiles of 116 AML patients, we find that the likelihood of future cancer relapse and the level of clinical risk are directly correlated with the level of organization in the cancer related gene network. We also explore the variation of the level of organization in the gene network with cancer progression. We find that this variation is non-monotonic, which implies the fitness landscape in the evolution of AML cancer cells is non-trivial. We further find that the hierarchy in gene expression at the time of diagnosis may be a useful biomarker in AML prognosis.

  16. Adult Plant Phenotype of the Rp1-DJ Compound Rust Resistance Gene in Maize.

    PubMed

    Hu, G; Webb, C A; Hulbert, S H

    1997-03-01

    ABSTRACT The complex structure of the rp1 rust resistance locus of maize allows two or more resistance genes to be recombined together in coupling phase. The phenotypic effects of the Rp1-DJ compound gene, which carries both Rp1-D and Rp1-J, were analyzed. The Rp1-DJ compound gene was associated with a chlorotic spotting phenotype in some genetic backgrounds. At the seedling stage, lines carrying Rp1-DJ are fully susceptible to Puccinia sorghi biotype HI1, which is virulent on lines with the two genes singly. At later stages of growth, however, Rp1-DJ lines show partial resistance when compared with sibling lines not carrying the compound gene. The Rp1-DJ gene also confers partial resistance to P. polysora in adult plants. PMID:18945165

  17. Hierarchy in Gene Expression is Predictive of Risk, Progression, and Outcome in Adult Acute Myeloid Leukemia

    PubMed Central

    Tripathi, Shubham; Deem, Michael W.

    2015-01-01

    Cancer progresses with a change in the structure of the gene network in normal cells. We define a measure of organizational hierarchy in gene networks of affected cells in adult acute myeloid leukemia (AML) patients. With a retrospective cohort analysis based on the gene expression profiles of 116 acute myeloid leukemia patients, we find that the likelihood of future cancer relapse and the level of clinical risk are directly correlated with the level of organization in the cancer related gene network. We also explore the variation of the level of organization in the gene network with cancer progression. We find that this variation is non-monotonic, which implies the fitness landscape in the evolution of AML cancer cells is nontrivial. We further find that the hierarchy in gene expression at the time of diagnosis may be a useful biomarker in AML prognosis. PMID:25685944

  18. Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nosema ceranae is a microsporidium parasite infecting adult honey bees (Apis mellifera) and is known to have affects at both the individual and colony level. In this study, the expression levels were measured for four antimicrobial peptide encoding genes that are associated with bee humoral immunity...

  19. Monoamine Oxidase a Promoter Gene Associated with Problem Behavior in Adults with Intellectual/Developmental Disabilities

    ERIC Educational Resources Information Center

    May, Michael E.; Srour, Ali; Hedges, Lora K.; Lightfoot, David A.; Phillips, John A., III; Blakely, Randy D.; Kennedy, Craig H.

    2009-01-01

    A functional polymorphism in the promoter of the gene encoding monoamine oxidase A has been associated with problem behavior in various populations. We examined the association of MAOA alleles in adult males with intellectual/developmental disabilities with and without established histories of problem behavior. These data were compared with a…

  20. THE EFFECTS OF HYPERTHERMIA ON SPERMATOGENESIS, APOPTOSIS, GENE EXPRESSION AND FERTILITY IN ADULT MALE MICE

    EPA Science Inventory

    The effects of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male mice
    John C. Rockett1, Faye L. Mapp1, J. Brian Garges1, J. Christopher Luft1, Chisato Mori2 and David J. Dix1.
    1Reproductive Toxicology Division, National Health and Envir...

  1. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation.

    PubMed

    Hartig, Ellen I; Zhu, Shusen; King, Benjamin L; Coffman, James A

    2016-01-01

    Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  2. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  3. Gene-environment interaction in programming hippocampal plasticity: focus on adult neurogenesis

    PubMed Central

    Koehl, Muriel

    2015-01-01

    Interactions between genes and environment are a critical feature of development and both contribute to shape individuality. They are at the core of vulnerability resiliency for mental illnesses. During the early postnatal period, several brain structures involved in cognitive and emotional processing, such as the hippocampus, still develop and it is likely that interferences with this neuronal development, which is genetically determined, might lead to long-lasting structural and functional consequences and increase the risk of developing psychopathology. One particular target is adult neurogenesis, which is involved in the regulation of cognitive and emotional processes. Insights into the dynamic interplay between genes and environmental factors in setting up individual rates of neurogenesis have come from laboratory studies exploring experience-dependent changes in adult neurogenesis as a function of individual’s genetic makeup. These studies have implications for our understanding of the mechanisms regulating adult neurogenesis, which could constitute a link between environmental challenges and psychopathology. PMID:26300723

  4. Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA.

    PubMed

    Sarro, E C; Sullivan, R M; Barr, G

    2014-01-31

    Anxiety-related disorders are among the most common psychiatric illnesses, thought to have both genetic and environmental causes. Early-life trauma, such as abuse from a caregiver, can be predictable or unpredictable, each resulting in increased prevalence and severity of a unique set of disorders. In this study, we examined the influence of early unpredictable trauma on both the behavioral expression of adult anxiety and gene expression within the amygdala. Neonatal rats were exposed to unpaired odor-shock conditioning for 5 days, which produces deficits in adult behavior and amygdala dysfunction. In adulthood, we used the Light/Dark box test to measure anxiety-related behaviors, measuring the latency to enter the lit area and quantified urination and defecation. The amygdala was then dissected and a microarray analysis was performed to examine changes in gene expression. Animals that had received early unpredictable trauma displayed significantly longer latencies to enter the lit area and more defecation and urination. The microarray analysis revealed over-represented genes related to learning and memory, synaptic transmission and trans-membrane transport. Gene ontology and pathway analysis identified highly represented disease states related to anxiety phenotypes, including social anxiety, obsessive-compulsive disorders, post-traumatic stress disorder and bipolar disorder. Addiction-related genes were also overrepresented in this analysis. Unpredictable shock during early development increased anxiety-like behaviors in adulthood with concomitant changes in genes related to neurotransmission, resulting in gene expression patterns similar to anxiety-related psychiatric disorders. PMID:24240029

  5. Comparison of tetrodotoxin uptake and gene expression in the liver between juvenile and adult tiger pufferfish, Takifugu rubripes.

    PubMed

    Kiriake, Aya; Ohta, Akira; Suga, Emi; Matsumoto, Takuya; Ishizaki, Shoichiro; Nagashima, Yuji

    2016-03-01

    Marine pufferfish of the family Tetraodontidae accumulate high levels of tetrodotoxin (TTX). The profile of TTX accumulation is reported to differ between tiger pufferfish Takifugu rubripes juveniles and adults administered TTX. Adults mainly accumulate TTX in liver, while juveniles transfer TTX from the liver to the skin. In the present study, we investigated TTX uptake into liver tissue slices of T. rubripes juveniles (4-month-old) and adults (18-month-old) in an in vitro incubation experiment, and compared their differential gene expression profiles in the liver by suppression subtracted hybridization (SSH). The tissue culture experiment revealed that TTX uptake in the liver itself was indistinguishable between the juveniles and the adults. In SSH analysis, a total of 176 clones were upregulated in the juvenile liver, the majority of which comprised hemoglobin subunit alpha-2-like gene (53 clones), hemoglobin subunit beta-like gene (40 clones), and type-4 ice-structuring protein LS-12-like gene (20 clones). A total of 211 clones were upregulated in the adult liver, including serotransferrin-like gene (84 clones), fibrinogen beta chain-like gene (15 clones), and 14 kDa apolipoprotein gene (10 clones). Based on these and previous findings on genes related to TTX intoxication in pufferfish, serotransferrin-like gene, complement C3-like gene, water-temperature-acclimation-related-65 kDa-protein-like gene, and chymotrypsin elastase family member 2A-like gene appear to be involved in TTX toxification of the T. rubripes liver. PMID:26708657

  6. Schistosoma mansoni Egg, Adult Male and Female Comparative Gene Expression Analysis and Identification of Novel Genes by RNA-Seq

    PubMed Central

    Anderson, Letícia; Amaral, Murilo S.; Beckedorff, Felipe; Silva, Lucas F.; Dazzani, Bianca; Oliveira, Katia C.; Almeida, Giulliana T.; Gomes, Monete R.; Pires, David S.; Setubal, João C.; DeMarco, Ricardo; Verjovski-Almeida, Sergio

    2015-01-01

    Background Schistosomiasis is one of the most prevalent parasitic diseases worldwide and is a public health problem. Schistosoma mansoni is the most widespread species responsible for schistosomiasis in the Americas, Middle East and Africa. Adult female worms (mated to males) release eggs in the hepatic portal vasculature and are the principal cause of morbidity. Comparative separate transcriptomes of female and male adult worms were previously assessed with using microarrays and Serial Analysis of Gene Expression (SAGE), thus limiting the possibility of finding novel genes. Moreover, the egg transcriptome was analyzed only once with limited bacterially cloned cDNA libraries. Methodology/Principal findings To compare the gene expression of S. mansoni eggs, females, and males, we performed RNA-Seq on these three parasite forms using 454/Roche technology and reconstructed the transcriptome using Trinity de novo assembly. The resulting contigs were mapped to the genome and were cross-referenced with predicted Smp genes and H3K4me3 ChIP-Seq public data. For the first time, we obtained separate, unbiased gene expression profiles for S. mansoni eggs and female and male adult worms, identifying enriched biological processes and specific enriched functions for each of the three parasite forms. Transcripts with no match to predicted genes were analyzed for their protein-coding potential and the presence of an encoded conserved protein domain. A set of 232 novel protein-coding genes with putative functions related to reproduction, metabolism, and cell biogenesis was detected, which contributes to the understanding of parasite biology. Conclusions/Significance Large-scale RNA-Seq analysis using de novo assembly associated with genome-wide information for histone marks in the vicinity of gene models constitutes a new approach to transcriptome analysis that has not yet been explored in schistosomes. Importantly, all data have been consolidated into a UCSC Genome Browser search

  7. Using intron splicing trick for preferential gene expression in transduced cells: an approach for suicide gene therapy.

    PubMed

    Pourzadegan, F; Shariati, L; Taghizadeh, R; Khanahmad, H; Mohammadi, Z; Tabatabaiefar, M A

    2016-01-01

    Suicide gene therapy is one of the most innovative approaches in which a potential toxic gene is delivered to the targeted cancer cell by different target delivery methods. We constructed a transfer vector to express green fluorescent protein (GFP) in transduced cells but not in packaging cells. We placed gfp under the control of the cytomegalovirus (CMV) promoter, which is positioned between the two long-terminal repeats in reverse direction. The intron-2 sequence of the human beta globin gene with two poly-A signals and several stop codons on the antisense strand was placed on the leading strand between the CMV promoter and gfp. For lentiviral production, the HEK293T and line were co-transfected with the PMD2G, psPAX2 and pLentiGFP-Ins2 plasmids. The HEK293T and line were transduced with this virus. PCR was performed for evaluation of intron splicing in transduced cells. The GFP expression was seen in 65% of the cells transduced. The PCR amplification of the genomic DNA of transduced cells confirmed the splicing of intron 2. The strategy is significant to accomplish our goal for preserving the packaging cells from the toxic gene expression during viral assembly and the resultant reduction in viral titration. Also it serves to address several other issues in the gene therapy. PMID:26679755

  8. Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of "germline genes" with stemness.

    PubMed

    Alié, Alexandre; Leclère, Lucas; Jager, Muriel; Dayraud, Cyrielle; Chang, Patrick; Le Guyader, Hervé; Quéinnec, Eric; Manuel, Michaël

    2011-02-01

    Stem cells are essential for animal development and adult tissue homeostasis, and the quest for an ancestral gene fingerprint of stemness is a major challenge for evolutionary developmental biology. Recent studies have indicated that a series of genes, including the transposon silencer Piwi and the translational activator Vasa, specifically involved in germline determination and maintenance in classical bilaterian models (e.g., vertebrates, fly, nematode), are more generally expressed in adult multipotent stem cells in other animals like flatworms and hydras. Since the progeny of these multipotent stem cells includes both somatic and germinal derivatives, it remains unclear whether Vasa, Piwi, and associated genes like Bruno and PL10 were ancestrally linked to stemness, or to germinal potential. We have investigated the expression of Vasa, two Piwi paralogues, Bruno and PL10 in Pleurobrachia pileus, a member of the early-diverging phylum Ctenophora, the probable sister group of cnidarians. These genes were all expressed in the male and female germlines, and with the exception of one of the Piwi paralogues, they showed similar expression patterns within somatic territories (tentacle root, comb rows, aboral sensory complex). Cytological observations and EdU DNA-labelling and long-term retention experiments revealed concentrations of stem cells closely matching these gene expression areas. These stem cell pools are spatially restricted, and each specialised in the production of particular types of somatic cells. These data unveil important aspects of cell renewal within the ctenophore body and suggest that Piwi, Vasa, Bruno, and PL10 belong to a gene network ancestrally acting in two distinct contexts: (i) the germline and (ii) stem cells, whatever the nature of their progeny. PMID:21036163

  9. Different sensitivity of PPARalpha gene expression to nutritional changes in liver of suckling and adult rats.

    PubMed

    Panadero, Maribel; Herrera, Emilio; Bocos, Carlos

    2005-01-14

    The amount of peroxisome proliferator-activated receptor-alpha (PPARalpha) protein was markedly augmented in the liver of suckling rats compared to adult rats. This different PPARalpha abundance was used to study the sensitivity to nutritional changes in the expression and activity of this receptor. Thus, 10-day-old and adult rats were orally given either glucose, Intralipid or a combination of both diets, and liver mRNA levels of PPARalpha and the PPAR related genes, acyl-CoA oxidase (ACO) and phosphoenolpyruvate carboxykinase (PEPCK), and plasma metabolites were measured. In neonates, the expression of PPARalpha and ACO was seen to increase when the level of FFA in plasma was also high, unless an elevated level of insulin was also present. However, this fatty acid-induced effect was not detected in adult rats. On the contrary, the hepatic expression of PEPCK was modulated by the nutritional changes similarly in both neonates and adult rats. Thus, it may be concluded that the expression of the PPARalpha gene in adult rats seems to be less sensitive to nutritional changes than in neonates. PMID:15607334

  10. [Expression of PRAME gene in adult acute leukemia and its significance in prognosis].

    PubMed

    Zhou, Pei-Yi; Li, Wei-Jia; Wei, Cai-Xia; Zhou, Zhi

    2007-12-01

    The study was aimed to investigate the expression of preferentially expressed antigen of melanoma (PRAME) gene in adult acute leukemia and its clinical significance. The expression of the PRAME gene of bone marrow was measured by reverse transcriptase polymerase chain reaction (RT-PCR) in 73 adult newly diagnosed acute leukemia patients, 3 relapsed patients, 7 patients with idiopathic thrombocytopenic purpura (ITP) and 8 healthy donors, as well as two AL cell-lines (K562 and U937). The results indicated that PRAME mRNA was expressed in 42.9% AML patients (n=24) and 20% ALL patients (n=4), also in two leukemia cell-lines K562 and U937, but not in eight health donors and seven ITP patients. PRAME expression not correlated to the white blood count, hemoglobin level, platelet count and the percentage of blasts at diagnosis, yet independent of age, sex, and FAB type. PRAME mRNA expression in complete remission group seems much higher than those in partial complete remission group and death group. The increased levels of expression could be found prior to the relapse in one patient being regularly monitored. PRAME gene was overexpressed in adult acute leukemia patients and leukemia cell-lines. It is concluded that the expression of PRAME is an indicator of favorable prognosis and can be a useful tool for monitoring minimal residual disease (MRD) in adult acute leukemia. Differential expression between adult acute leukemia patients and healthy volunteers suggests that the immunogenic antigens PRAME are potential candidates for immunotherapy in adult acute leukemia. PMID:18088461

  11. Dynamic Gene Expression in the Human Cerebral Cortex Distinguishes Children from Adults

    PubMed Central

    Sterner, Kirstin N.; Weckle, Amy; Chugani, Harry T.; Tarca, Adi L.; Sherwood, Chet C.; Hof, Patrick R.; Kuzawa, Christopher W.; Boddy, Amy M.; Abbas, Asad; Raaum, Ryan L.; Grégoire, Lucie; Lipovich, Leonard; Grossman, Lawrence I.; Uddin, Monica; Wildman, Derek E.

    2012-01-01

    In comparison with other primate species, humans have an extended juvenile period during which the brain is more plastic. In the current study we sought to examine gene expression in the cerebral cortex during development in the context of this adaptive plasticity. We introduce an approach designed to discriminate genes with variable as opposed to uniform patterns of gene expression and found that greater inter-individual variance is observed among children than among adults. For the 337 transcripts that show this pattern, we found a significant overrepresentation of genes annotated to the immune system process (pFDR≅0). Moreover, genes known to be important in neuronal function, such as brain-derived neurotrophic factor (BDNF), are included among the genes more variably expressed in childhood. We propose that the developmental period of heightened childhood neuronal plasticity is characterized by more dynamic patterns of gene expression in the cerebral cortex compared to adulthood when the brain is less plastic. That an overabundance of these genes are annotated to the immune system suggests that the functions of these genes can be thought of not only in the context of antigen processing and presentation, but also in the context of nervous system development. PMID:22666384

  12. A similar 5'-flanking region is required for estrogen and progesterone induction of ovalbumin gene expression.

    PubMed

    Dean, D C; Gope, R; Knoll, B J; Riser, M E; O'Malley, B W

    1984-08-25

    We have previously transferred an ovalbumin-beta-globin fusion gene (ovalglobin) into primary cultures of chick oviduct cells and demonstrated that an ovalbumin gene 5'-flanking sequence between -221 and -95 is necessary for progesterone-mediated transcriptional induction (Dean, D. C., Knoll, B. J., Riser, M. E., and O'Malley, B. W. (1983) Nature (Lond.) 305, 551-554). Here we compare 5'-flanking sequences required for induction of the ovalglobin gene by 17 beta-estradiol and progesterone. The early gene of simian virus 40 was inserted into the same plasmid as the ovalbumin fusion gene to serve as an internal control. Since transcription of the viral early gene was unaffected by the presence of steroid hormone or deletions in the ovalbumin gene 5'-flanking region, the level of its transcripts could be monitored as a reference standard for ovalglobin transcription. Ovalglobin transcripts initiated principally from the ovalbumin cap site in the presence or absence of progesterone and 17 beta-estradiol. Deletion of 5'-flanking sequences to -197 had little effect on the induction with either hormone, while successive deletions to -180, -161, and -143 resulted in a gradual decrease in the level of induction. Deletion to -95 eliminated the induction. The results of this study indicate that DNA control elements for regulation of the ovalbumin gene by estrogen and progesterone either overlap directly or are clustered in close proximity in the 5'-flanking region near the ovalbumin gene promoter. PMID:6088508

  13. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    ERIC Educational Resources Information Center

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  14. PW1 gene/paternally expressed gene 3 (PW1/Peg3) identifies multiple adult stem and progenitor cell populations

    PubMed Central

    Besson, Vanessa; Smeriglio, Piera; Wegener, Amélie; Relaix, Frédéric; Nait Oumesmar, Brahim; Sassoon, David A.; Marazzi, Giovanna

    2011-01-01

    A variety of markers are invaluable for identifying and purifying stem/progenitor cells. Here we report the generation of a murine reporter line driven by Pw1 that reveals cycling and quiescent progenitor/stem cells in all adult tissues thus far examined, including the intestine, blood, testis, central nervous system, bone, skeletal muscle, and skin. Neurospheres generated from the adult PW1-reporter mouse show near 100% reporter-gene expression following a single passage. Furthermore, epidermal stem cells can be purified solely on the basis of reporter-gene expression. These cells are clonogenic, repopulate the epidermal stem-cell niches, and give rise to new hair follicles. Finally, we demonstrate that only PW1 reporter-expressing epidermal cells give rise to follicles that are capable of self-renewal following injury. Our data demonstrate that PW1 serves as an invaluable marker for competent self-renewing stem cells in a wide array of adult tissues, and the PW1-reporter mouse serves as a tool for rapid stem cell isolation and characterization. PMID:21709251

  15. Polygenic risk for externalizing disorders: Gene-by-development and gene-by-environment effects in adolescents and young adults

    PubMed Central

    Salvatore, Jessica E.; Aliev, Fazil; Bucholz, Kathleen; Agrawal, Arpana; Hesselbrock, Victor; Hesselbrock, Michie; Bauer, Lance; Kuperman, Samuel; Schuckit, Marc A.; Kramer, John; Edenberg, Howard J.; Foroud, Tatiana M.; Dick, Danielle M.

    2014-01-01

    In this project, we aimed to bring large-scale gene identification findings into a developmental psychopathology framework. Using a family-based sample, we tested whether polygenic scores for externalizing disorders—based on single nucleotide polymorphism weights derived from genome-wide association study results in adults (n = 1,249)—predicted externalizing disorders, subclinical externalizing behavior, and impulsivity-related traits adolescents (n = 248) and young adults (n = 207), and whether parenting and peer factors in adolescence moderated polygenic risk to predict externalizing disorders. Polygenic scores predicted externalizing disorders in adolescents and young adults, even after controlling for parental externalizing disorder history. Polygenic scores also predicted subclinical externalizing behavior and impulsivity traits in the adolescents and young adults. Adolescent parental monitoring and peer substance use moderated polygenic scores to predict externalizing disorders. This illustrates how state of the science genetics can be integrated with psychological science to identify how genetic risk contributes to the development of psychopathology. PMID:25821660

  16. The nuclear receptor gene nhr-25 plays multiple roles in the C. elegans heterochronic gene network to control the larva-to-adult transition

    PubMed Central

    Hada, Kazumasa; Asahina, Masako; Hasegawa, Hiroshi; Kanaho, Yasunori; Slack, Frank J.; Niwa, Ryusuke

    2010-01-01

    Developmental timing in the nematode Caenorhabditis elegans is controlled by heterochronic genes, mutations in which cause changes in the relative timing of developmental events. One of the heterochronic genes, let-7, encodes a microRNA that is highly evolutionarily conserved, suggesting that similar genetic pathways control developmental timing across phyla. Here we report that the nuclear receptor nhr-25, which belongs to the evolutionarily conserved fushi tarazu-factor 1/nuclear receptor NR5A subfamily, interacts with heterochronic genes that regulate the larva-to-adult transition in C. elegans. We identified nhr-25 as a regulator of apl-1, a homolog of the Alzheimer’s amyloid precursor protein-like gene that is downstream of let-7 family microRNAs. NHR-25 controls not only apl-1 expression but also regulates developmental progression in the larva-to-adult transition. NHR-25 negatively regulates the expression of the adult-specific collagen gene col-19 in lateral epidermal seam cells. In contrast, NHR-25 positively regulates the larva-to-adult transition for other timed events in seam cells, such as cell fusion, cell division and alae formation. The genetic relationships between nhr-25 and other heterochronic genes are strikingly varied among several adult developmental events. We propose that nhr-25 has multiple roles in both promoting and inhibiting the C. elegans heterochronic gene pathway controlling adult differentiation programs. PMID:20678979

  17. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org). PMID:22832508

  18. Adult rat bone marrow stromal cells express genes associated with dopamine neurons

    SciTech Connect

    Kramer, Brian C.; Woodbury, Dale . E-mail: WOODBURYDL@AOL.COM; Black, Ira B.

    2006-05-19

    An intensive search is underway to identify candidates to replace the cells that degenerate in Parkinson's disease (PD). To date, no suitable substitute has been found. We have recently found that adult rat bone marrow stromal cells (MSCs) can be induced to assume a neuronal phenotype in vitro. These findings may have particular relevance to the treatment of PD. We now report that adult MSCs express multiple dopaminergic genes, suggesting that they are potential candidates for cell therapy. Using RT-PCR, we have examined families of genes that are associated with the development and/or survival of dopaminergic neurons. MSCs transcribe a variety of dopaminergic genes including patched and smoothened (components of the Shh receptor), Gli-1 (downstream mediator of Shh), and Otx-1, a gene associated with formation of the mesencephalon during development. Furthermore, Shh treatment elicits a 1.5-fold increase in DNA synthesis in cultured MSCs, suggesting the presence of a functional Shh receptor complex. We have also found that MSCs transcribe and translate Nurr-1, a nuclear receptor essential for the development of dopamine neurons. In addition, MSCs express a variety of growth factor receptors including the glycosyl-phosphatidylinositol-anchored ligand-binding subunit of the GDNF receptor, GFR{alpha}1, as well as fibroblast growth factor receptors one and four. The expression of genes that are associated with the development and survival of dopamine neurons suggests a potential role for these cells in the treatment of Parkinson's disease.

  19. Gene expression patterns underlying the reinstatement of plasticity in the adult visual system.

    PubMed

    Tiraboschi, Ettore; Guirado, Ramon; Greco, Dario; Auvinen, Petri; Maya-Vetencourt, Jose Fernando; Maffei, Lamberto; Castrén, Eero

    2013-01-01

    The nervous system is highly sensitive to experience during early postnatal life, but this phase of heightened plasticity decreases with age. Recent studies have demonstrated that developmental-like plasticity can be reactivated in the visual cortex of adult animals through environmental or pharmacological manipulations. These findings provide a unique opportunity to study the cellular and molecular mechanisms of adult plasticity. Here we used the monocular deprivation paradigm to investigate large-scale gene expression patterns underlying the reinstatement of plasticity produced by fluoxetine in the adult rat visual cortex. We found changes, confirmed with RT-PCRs, in gene expression in different biological themes, such as chromatin structure remodelling, transcription factors, molecules involved in synaptic plasticity, extracellular matrix, and excitatory and inhibitory neurotransmission. Our findings reveal a key role for several molecules such as the metalloproteases Mmp2 and Mmp9 or the glycoprotein Reelin and open up new insights into the mechanisms underlying the reopening of the critical periods in the adult brain. PMID:23936678

  20. Gene polymorphisms in association with emerging cardiovascular risk markers in adult women

    PubMed Central

    2010-01-01

    Background Evidence on the associations of emerging cardiovascular disease risk factors/markers with genes may help identify intermediate pathways of disease susceptibility in the general population. This population-based study is aimed to determine the presence of associations between a wide array of genetic variants and emerging cardiovascular risk markers among adult US women. Methods The current analysis was performed among the National Health and Nutrition Examination Survey (NHANES) III phase 2 samples of adult women aged 17 years and older (sample size n = 3409). Fourteen candidate genes within ADRB2, ADRB3, CAT, CRP, F2, F5, FGB, ITGB3, MTHFR, NOS3, PON1, PPARG, TLR4, and TNF were examined for associations with emerging cardiovascular risk markers such as serum C-reactive protein, homocysteine, uric acid, and plasma fibrinogen. Linear regression models were performed using SAS-callable SUDAAN 9.0. The covariates included age, race/ethnicity, education, menopausal status, female hormone use, aspirin use, and lifestyle factors. Results In covariate-adjusted models, serum C-reactive protein concentrations were significantly (P value controlling for false-discovery rate ≤ 0.05) associated with polymorphisms in CRP (rs3093058, rs1205), MTHFR (rs1801131), and ADRB3 (rs4994). Serum homocysteine levels were significantly associated with MTHFR (rs1801133). Conclusion The significant associations between certain gene variants with concentration variations in serum C-reactive protein and homocysteine among adult women need to be confirmed in further genetic association studies. PMID:20078877

  1. Effects of Doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo

    PubMed Central

    2012-01-01

    Background Most filarial nematodes contain Wolbachia symbionts. The purpose of this study was to examine the effects of doxycycline on gene expression in Wolbachia and adult female Brugia malayi. Methods Brugia malayi infected gerbils were treated with doxycycline for 6-weeks. This treatment largely cleared Wolbachia and arrested worm reproduction. RNA recovered from treated and control female worms was labeled by random priming and hybridized to the Version 2- filarial microarray to obtain expression profiles. Results and discussion Results showed significant changes in expression for 200 Wolbachia (29% of Wolbachia genes with expression signals in untreated worms) and 546 B. malayi array elements after treatment. These elements correspond to known genes and also to novel genes with unknown biological functions. Most differentially expressed Wolbachia genes were down-regulated after treatment (98.5%). In contrast, doxycycline had a mixed effect on B. malayi gene expression with many more genes being significantly up-regulated after treatment (85% of differentially expressed genes). Genes and processes involved in reproduction (gender-regulated genes, collagen, amino acid metabolism, ribosomal processes, and cytoskeleton) were down-regulated after doxycycline while up-regulated genes and pathways suggest adaptations for survival in response to stress (energy metabolism, electron transport, anti-oxidants, nutrient transport, bacterial signaling pathways, and immune evasion). Conclusions Doxycycline reduced Wolbachia and significantly decreased bacterial gene expression. Wolbachia ribosomes are believed to be the primary biological target for doxycycline in filarial worms. B. malayi genes essential for reproduction, growth and development were also down-regulated; these changes are consistent with doxycycline effects on embryo development and reproduction. On the other hand, many B. malayi genes involved in energy production, electron-transport, metabolism, anti

  2. Dose-Responsive Gene Expression Changes in Juvenile and Adult Mummichogs (Fundulus heteroclitus) After Arsenic Exposure

    PubMed Central

    Gonzalez, Horacio O.; Hu, Jianjun; Gaworecki, Kristen M.; Roling, Jonathan A.; Baldwin, William S.; Gardea-Torresdey, Jorge L.; Bain, Lisa J.

    2010-01-01

    The present study investigated arsenic's effects on mummichogs (Fundulus heteroclitus), while also examining what role that gender or exposure age might play. Adult male and female mummichogs were exposed to 172ppb, 575ppb, or 1,720ppb arsenic as sodium arsenite for 10 days immediately prior to spawning. No differences were noted in the number or viability of eggs between the groups, but there was a significant increase in deformities in 1,720ppb arsenic exposure group. Total RNA from adult livers or 6-week old juveniles was used to probe custom macroarrays for changes in gene expression. In females, 3% of the genes were commonly differentially expressed in the 172 and 575ppb exposure groups compared to controls. In the males, between 1.1-3% of the differentially expressed genes were in common between the exposure groups. Several genes, including apolipoprotein and serum amyloid precursor were commonly expressed in either a dose-responsive manner or were dose-specific, but consistent across genders. These patterns of regulation were confirmed by QPCR. These findings will provide us with a better understanding of the effects of dose, gender, and exposure age on the response to arsenic. PMID:20451245

  3. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9.

    PubMed

    Carroll, Kelli J; Makarewich, Catherine A; McAnally, John; Anderson, Douglas M; Zentilin, Lorena; Liu, Ning; Giacca, Mauro; Bassel-Duby, Rhonda; Olson, Eric N

    2016-01-12

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart. PMID:26719419

  4. Mammalian Fetal Cardiac Regeneration Following Myocardial Infarction is Associated with Differential Gene Expression Compared to the Adult

    PubMed Central

    Zgheib, Carlos; Allukian, Myron W.; Xu, Junwang; Morris, Michael W.; Caskey, Robert C.; Herdrich, Benjamin J.; Hu, Junyi; Gorman, Joseph H.; Gorman, Robert C.; Liechty, Kenneth W.

    2014-01-01

    Background In adults, MI results in a brisk inflammatory response, myocardium loss and scar formation. We have recently reported the first mammalian large animal model of cardiac regeneration following MI in fetal sheep. We hypothesize that the fetus ability to regenerate functional myocardium following MI is due to differential gene expression regulating the response to MI in the fetus compared to the adult. Methods MI was created in adult (n=4) or early gestation fetal (n=4) sheep. Tissue harvested after 3 or 30 days, RNA extracted for microarray, followed by PCA and global gene expression analysis for the gene ontology (GO) terms: “response to wounding”, “inflammatory response”, “extracellular matrix”, “cell cycle”, “cell migration”, “cell proliferation” and “apoptosis”. Results PCA demonstrated that the global gene expression pattern in adult infarcts was distinctly different from uninfarcted region at 3 days and remained different 30 days post-MI. In contrast, gene expression in the fetal infarct was different from the uninfarcted region at 3 days, but by 30 days it returned to a baseline expression pattern similar to the uninfarcted region. 3 days post-MI there was an increase in the expression of genes related to all GO terms in fetal and adult infarcts, but this increase was much more pronounced in adults. By 30 days, the fetal gene expression returned to baseline, whereas in the adult remained significantly elevated. Conclusions These data demonstrate that the global gene expression pattern is dramatically different in the fetal regenerative response to MI compared to the adult response and may partly be responsible for the regeneration. PMID:24792251

  5. A Stem Cell-Like Chromatin Pattern May Predispose Tumor Suppressor Genes to DNA Hypermethylation and Silencing in Adult Cancers

    PubMed Central

    Ohm, Joyce E.; McGarvey, Kelly M.; Yu, Xiaobing; Cheng, Linzhao; Schuebel, Kornel E.; Cope, Leslie; Mohammad, Helai P.; Chen, Wei; Daniel, Vincent C.; Yu, Wayne; Berman, David M.; Jenuwein, Thomas; Pruitt, Kevin; Sharkis, Saul J.; Watkins, D. Neil; Herman, James G.; Baylin, Stephen B.

    2009-01-01

    Adult cancers may derive from stem or early progenitor cells1,2. Epigenetic modulation of gene expression is essential for normal function of these early cells, but is highly abnormal in cancers, which often exhibit aberrant promoter CpG island hypermethylation and transcriptional silencing of tumor suppressor genes and pro-differentiation factors3-5. We find that, for such genes, both normal and malignant embryonic cells generally lack the gene DNA hypermethylation found in adult cancers. In embryonic stem (ES) cells, these genes are held in a “transcription ready” state mediated by a “bivalent” promoter chromatin pattern consisting of the repressive polycomb group (PcG) H3K27me mark plus the active mark, H3K4me. However, embryonic carcinoma (EC) cells add two key repressive marks, H3K9me2 and H3K9me3, both associated with DNA hypermethylated genes in adult cancers6-8. We hypothesize that cell chromatin patterns and transient silencing of these important growth regulatory genes in stem or progenitor cells of origin for cancer may leave these genes vulnerable to aberrant DNA hypermethylation and heritable gene silencing in adult tumors. PMID:17211412

  6. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs

    PubMed Central

    Miyanohara, Atsushi; Kamizato, Kota; Juhas, Stefan; Juhasova, Jana; Navarro, Michael; Marsala, Silvia; Lukacova, Nada; Hruska-Plochan, Marian; Curtis, Erik; Gabel, Brandon; Ciacci, Joseph; Ahrens, Eric T; Kaspar, Brian K; Cleveland, Don; Marsala, Martin

    2016-01-01

    Effective in vivo use of adeno-associated virus (AAV)-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal). Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i) potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii) delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii) potent retrograde transgene expression in brain motor centers (motor cortex and brain stem); and (iv) the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients. PMID:27462649

  7. Gene therapy for red-green colour blindness in adult primates.

    PubMed

    Mancuso, Katherine; Hauswirth, William W; Li, Qiuhong; Connor, Thomas B; Kuchenbecker, James A; Mauck, Matthew C; Neitz, Jay; Neitz, Maureen

    2009-10-01

    Red-green colour blindness, which results from the absence of either the long- (L) or the middle- (M) wavelength-sensitive visual photopigments, is the most common single locus genetic disorder. Here we explore the possibility of curing colour blindness using gene therapy in experiments on adult monkeys that had been colour blind since birth. A third type of cone pigment was added to dichromatic retinas, providing the receptoral basis for trichromatic colour vision. This opened a new avenue to explore the requirements for establishing the neural circuits for a new dimension of colour sensation. Classic visual deprivation experiments have led to the expectation that neural connections established during development would not appropriately process an input that was not present from birth. Therefore, it was believed that the treatment of congenital vision disorders would be ineffective unless administered to the very young. However, here we show that the addition of a third opsin in adult red-green colour-deficient primates was sufficient to produce trichromatic colour vision behaviour. Thus, trichromacy can arise from a single addition of a third cone class and it does not require an early developmental process. This provides a positive outlook for the potential of gene therapy to cure adult vision disorders. PMID:19759534

  8. Adult-Onset Presentations of Genetic Immunodeficiencies: Genes Can Throw Slow Curves

    PubMed Central

    Nelson, Katharine S.; Lewis, David B.

    2016-01-01

    Purpose of Review The molecular and genetic mechanisms behind adult presentations of primary immunodeficiency diseases are examined, with particular emphasis on cases where this was heralded by severe, recurrent or opportunistic infection. Recent Findings A detailed analysis over the last two decades of the relationship between genotype and clinical phenotype for a number of genetic immunodeficiencies has revealed multiple mechanisms that can account for the delayed presentation of genetic disorders that typically present in childhood, including hypomorphic gene mutations and X-linked gene mutations with age-related skewing in random X-chromosome inactivation. Adult-onset presentations of chronic granulomatous disease, X-linked agammaglobulinemia, interleukin-12/T helper 1/interferon-gamma and interleukin-23/T helper 17/interleukin-17 pathway defects, and X-linked lymphoproliferative disorder are used to illustrate these mechanisms. Finally, certain genetic types of common variable immunodeficiency are used to illustrate that inherited null mutations can take decades to manifest immunologically. Summary Both genetic mechanisms and environmental factors can account for adult-onset infectious and non-infectious complications as manifestations of disorders that typically present in childhood. This emphasizes the potential complexity in the relationship between genotype and phenotype with natural human mutations. PMID:20581672

  9. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs.

    PubMed

    Miyanohara, Atsushi; Kamizato, Kota; Juhas, Stefan; Juhasova, Jana; Navarro, Michael; Marsala, Silvia; Lukacova, Nada; Hruska-Plochan, Marian; Curtis, Erik; Gabel, Brandon; Ciacci, Joseph; Ahrens, Eric T; Kaspar, Brian K; Cleveland, Don; Marsala, Martin

    2016-01-01

    Effective in vivo use of adeno-associated virus (AAV)-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal). Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i) potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii) delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii) potent retrograde transgene expression in brain motor centers (motor cortex and brain stem); and (iv) the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients. PMID:27462649

  10. Correlation of a set of gene variants, life events and personality features on adult ADHD severity.

    PubMed

    Müller, Daniel J; Chiesa, Alberto; Mandelli, Laura; De Luca, Vincenzo; De Ronchi, Diana; Jain, Umesh; Serretti, Alessandro; Kennedy, James L

    2010-07-01

    Increasing evidence suggests that symptoms of attention deficit hyperactivity disorder (ADHD) could persist into adult life in a substantial proportion of cases. The aim of the present study was to investigate the impact of (1) adverse events, (2) personality traits and (3) genetic variants chosen on the basis of previous findings and (4) their possible interactions on adult ADHD severity. One hundred and ten individuals diagnosed with adult ADHD were evaluated for occurrence of adverse events in childhood and adulthood, and personality traits by the Temperament and Character Inventory (TCI). Common polymorphisms within a set of nine important candidate genes (SLC6A3, DBH, DRD4, DRD5, HTR2A, CHRNA7, BDNF, PRKG1 and TAAR9) were genotyped for each subject. Life events, personality traits and genetic variations were analyzed in relationship to severity of current symptoms, according to the Brown Attention Deficit Disorder Scale (BADDS). Genetic variations were not significantly associated with severity of ADHD symptoms. Life stressors displayed only a minor effect as compared to personality traits. Indeed, symptoms' severity was significantly correlated with the temperamental trait of Harm avoidance and the character trait of Self directedness. The results of the present work are in line with previous evidence of a significant correlation between some personality traits and adult ADHD. However, several limitations such as the small sample size and the exclusion of patients with other severe comorbid psychiatric disorders could have influenced the significance of present findings. PMID:20006992

  11. Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain

    PubMed Central

    Richards, Alexander L; Jones, Lesley; Moskvina, Valentina; Kirov, George; Gejman, Pablo V; Levinson, Douglas F; Sanders, Alan R; Purcell, Shaun; Visscher, Peter M; Craddock, Nick; Owen, Michael J; Holmans, Peter; O’Donovan, Michael C

    2016-01-01

    It is widely thought that alleles that influence susceptibility to common diseases, including schizophrenia, will frequently do so through effects on gene expression. Since only a small proportion of the genetic variance for schizophrenia has been attributed to specific loci, this remains an unproven hypothesis. The International Schizophrenia Consortium (ISC) recently reported a substantial polygenic contribution to that disorder, and that schizophrenia risk alleles are enriched among SNPs selected for marginal evidence for association (p<0.5) from genome wide association studies (GWAS). It follows that if schizophrenia susceptibility alleles are enriched for those that affect gene expression, those marginally associated SNPs which are also eQTLs should carry more true association signals compared with SNPs which are not. To test this, we identified marginally associated (p<0.5) SNPs from two of the largest available schizophrenia GWAS datasets. We assigned eQTL status to those SNPs based upon an eQTL dataset derived from adult human brain. Using the polygenic score method of analysis reported by the ISC, we observed and replicated the observation that higher probability cis-eQTLs predicted schizophrenia better than those with a lower probability for being a cis-eQTL. Our data support the hypothesis that alleles conferring risk of schizophrenia are enriched among those that affect gene expression. Moreover, our data show that notwithstanding the likely developmental origin of schizophrenia, studies of adult brain tissue can in principle allow relevant susceptibility eQTLs to be identified. PMID:21339752

  12. Catalog of gene expression in adult neural stem cells and their in vivo microenvironment

    SciTech Connect

    Williams, Cecilia; Wirta, Valtteri; Meletis, Konstantinos; Wikstroem, Lilian; Carlsson, Leif; Frisen, Jonas; Lundeberg, Joakim . E-mail: joakim.lundeberg@biotech.kth.se

    2006-06-10

    Stem cells generally reside in a stem cell microenvironment, where cues for self-renewal and differentiation are present. However, the genetic program underlying stem cell proliferation and multipotency is poorly understood. Transcriptome analysis of stem cells and their in vivo microenvironment is one way of uncovering the unique stemness properties and provides a framework for the elucidation of stem cell function. Here, we characterize the gene expression profile of the in vivo neural stem cell microenvironment in the lateral ventricle wall of adult mouse brain and of in vitro proliferating neural stem cells. We have also analyzed an Lhx2-expressing hematopoietic-stem-cell-like cell line in order to define the transcriptome of a well-characterized and pure cell population with stem cell characteristics. We report the generation, assembly and annotation of 50,792 high-quality 5'-end expressed sequence tag sequences. We further describe a shared expression of 1065 transcripts by all three stem cell libraries and a large overlap with previously published gene expression signatures for neural stem/progenitor cells and other multipotent stem cells. The sequences and cDNA clones obtained within this framework provide a comprehensive resource for the analysis of genes in adult stem cells that can accelerate future stem cell research.

  13. Pharmacological Induction of Human Fetal Globin Gene in Hydroxyurea-Resistant Primary Adult Erythroid Cells.

    PubMed

    Chou, Yu-Chi; Chen, Ruei-Lin; Lai, Zheng-Sheng; Song, Jen-Shin; Chao, Yu-Sheng; Shen, Che-Kun James

    2015-07-01

    Pharmacological induction of the fetal γ globin gene and the consequent formation of HbF (α2/γ2) in adult erythroid cells are one feasible therapeutic strategy for sickle cell disease (SCD) and severe β-thalassemias. Hydroxyurea (HU) is the current drug of choice for SCD, but serious side effects limit its clinical use. Moreover, 30 to 50% of patients are irresponsive to HU treatment. We have used high-throughput screening to identify benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one and its derivatives (compounds I to VI) as potent γ globin inducers. Of the compounds, I to V exert superior γ globin induction and have better therapeutic potential than HU, likely because of their activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway and modulation of expression levels and/or chromosome binding of γ globin gene regulators, including BCL11A, and chromatin structure over the γ globin promoter. Unlike sodium butyrate (NaB), the global levels of acetylated histones H3 and H4 are not changed by compound II treatment. Remarkably, compound II induces the γ globin gene in HU-resistant primary human adult erythroid cells, the p38 signaling pathway of which appears to be irresponsive to HU and NaB as well as compound II. This study provides a new framework for the development of new and superior compounds for treating SCD and severe β-thalassemias. PMID:25986606

  14. Identification of Susceptibility Genes of Adult Asthma in French Canadian Women

    PubMed Central

    Bérubé, Jean-Christophe; Gaudreault, Nathalie; Lavoie-Charland, Emilie; Sbarra, Laura; Henry, Cyndi; Madore, Anne-Marie; Paré, Peter D.; van den Berge, Maarten; Nickle, David; Laviolette, Michel; Laprise, Catherine; Boulet, Louis-Philippe; Bossé, Yohan

    2016-01-01

    Susceptibility genes of asthma may be more successfully identified by studying subgroups of phenotypically similar asthma patients. This study aims to identify single nucleotide polymorphisms (SNPs) associated with asthma in French Canadian adult women. A pooling-based genome-wide association study was performed in 240 allergic asthmatic and 120 allergic nonasthmatic women. The top associated SNPs were selected for individual genotyping in an extended cohort of 349 asthmatic and 261 nonasthmatic women. The functional impact of asthma-associated SNPs was investigated in a lung expression quantitative trait loci (eQTL) mapping study (n = 1035). Twenty-one of the 38 SNPs tested by individual genotyping showed P values lower than 0.05 for association with asthma. Cis-eQTL analyses supported the functional contribution of rs17801353 associated with C3AR1 (P = 7.90E − 10). The asthma risk allele for rs17801353 is associated with higher mRNA expression levels of C3AR1 in lung tissue. In silico functional characterization of the asthma-associated SNPs also supported the contribution of C3AR1 and additional genes including SYNE1, LINGO2, and IFNG-AS1. This pooling-based GWAS in French Canadian adult women followed by lung eQTL mapping suggested C3AR1 as a functional locus associated with asthma. Additional susceptibility genes were suggested in this homogenous subgroup of asthma patients.

  15. Rare Copy Number Variations in Adults with Tetralogy of Fallot Implicate Novel Risk Gene Pathways

    PubMed Central

    Costain, Gregory; Merico, Daniele; Migita, Ohsuke; Liu, Ben; Yuen, Tracy; Rickaby, Jessica; Thiruvahindrapuram, Bhooma; Marshall, Christian R.; Scherer, Stephen W.; Bassett, Anne S.

    2012-01-01

    Structural genetic changes, especially copy number variants (CNVs), represent a major source of genetic variation contributing to human disease. Tetralogy of Fallot (TOF) is the most common form of cyanotic congenital heart disease, but to date little is known about the role of CNVs in the etiology of TOF. Using high-resolution genome-wide microarrays and stringent calling methods, we investigated rare CNVs in a prospectively recruited cohort of 433 unrelated adults with TOF and/or pulmonary atresia at a single centre. We excluded those with recognized syndromes, including 22q11.2 deletion syndrome. We identified candidate genes for TOF based on converging evidence between rare CNVs that overlapped the same gene in unrelated individuals and from pathway analyses comparing rare CNVs in TOF cases to those in epidemiologic controls. Even after excluding the 53 (10.7%) subjects with 22q11.2 deletions, we found that adults with TOF had a greater burden of large rare genic CNVs compared to controls (8.82% vs. 4.33%, p = 0.0117). Six loci showed evidence for recurrence in TOF or related congenital heart disease, including typical 1q21.1 duplications in four (1.18%) of 340 Caucasian probands. The rare CNVs implicated novel candidate genes of interest for TOF, including PLXNA2, a gene involved in semaphorin signaling. Independent pathway analyses highlighted developmental processes as potential contributors to the pathogenesis of TOF. These results indicate that individually rare CNVs are collectively significant contributors to the genetic burden of TOF. Further, the data provide new evidence for dosage sensitive genes in PLXNA2-semaphorin signaling and related developmental processes in human cardiovascular development, consistent with previous animal models. PMID:22912587

  16. Apoptosis-Related Gene Expression in an Adult Cohort with Crimean-Congo Hemorrhagic Fever

    PubMed Central

    Guler, Nil; Eroglu, Cafer; Yilmaz, Hava; Karadag, Adil; Alacam, Hasan; Sunbul, Mustafa; Fletcher, Tom E.; Leblebicioglu, Hakan

    2016-01-01

    Crimean-Congo Hemorrhagic Fever (CCHF) is a life threatening acute viral infection characterized by fever, bleeding, leukopenia and thrombocytopenia. It is a major emerging infectious diseases threat, but its pathogenesis remains poorly understood and few data exist for the role of apoptosis in acute infection. We aimed to assess apoptotic gene expression in leukocytes in a cross-sectional cohort study of adults with CCHF. Twenty participants with CCHF and 10 healthy controls were recruited at a tertiary CCHF unit in Turkey; at admission baseline blood tests were collected and total RNA was isolated. The RealTime ready Human Apoptosis Panel was used for real-time PCR, detecting differences in gene expression. Participants had CCHF severity grading scores (SGS) with low risk score (10 out of 20) and intermediate or high risk scores (10 out of 20) for mortality. Five of 20 participants had a fatal outcome. Gene expression analysis showed modulation of pro-apoptotic and anti-apoptotic genes that facilitate apoptosis in the CCHF patient group. Dominant extrinsic pathway activation, mostly related with TNF family members was observed. Severe and fatal cases suggest additional intrinsic pathway activation. The clinical significance of relative gene expression is not clear, and larger longitudinal studies with simultaneous measurement of host and viral factors are recommended. PMID:27304063

  17. Apoptosis-Related Gene Expression in an Adult Cohort with Crimean-Congo Hemorrhagic Fever.

    PubMed

    Guler, Nil; Eroglu, Cafer; Yilmaz, Hava; Karadag, Adil; Alacam, Hasan; Sunbul, Mustafa; Fletcher, Tom E; Leblebicioglu, Hakan

    2016-01-01

    Crimean-Congo Hemorrhagic Fever (CCHF) is a life threatening acute viral infection characterized by fever, bleeding, leukopenia and thrombocytopenia. It is a major emerging infectious diseases threat, but its pathogenesis remains poorly understood and few data exist for the role of apoptosis in acute infection. We aimed to assess apoptotic gene expression in leukocytes in a cross-sectional cohort study of adults with CCHF. Twenty participants with CCHF and 10 healthy controls were recruited at a tertiary CCHF unit in Turkey; at admission baseline blood tests were collected and total RNA was isolated. The RealTime ready Human Apoptosis Panel was used for real-time PCR, detecting differences in gene expression. Participants had CCHF severity grading scores (SGS) with low risk score (10 out of 20) and intermediate or high risk scores (10 out of 20) for mortality. Five of 20 participants had a fatal outcome. Gene expression analysis showed modulation of pro-apoptotic and anti-apoptotic genes that facilitate apoptosis in the CCHF patient group. Dominant extrinsic pathway activation, mostly related with TNF family members was observed. Severe and fatal cases suggest additional intrinsic pathway activation. The clinical significance of relative gene expression is not clear, and larger longitudinal studies with simultaneous measurement of host and viral factors are recommended. PMID:27304063

  18. Association of VAMP-2 and Syntaxin 1A Genes with Adult Attention Deficit Hyperactivity Disorder

    PubMed Central

    Kenar, Aẙe Nur Inci; Ay, Özlem İzci; Erdal, Mehmet Emin

    2014-01-01

    Objective The etiology of attention deficit hyperactivity disorder (ADHD) has not been entirely clarified yet. Structural and metabolic differences at the prefrontal striatal cerebellary system and the interaction of gene and environment are the main factors that thought to play roles in the etiology. Genetic investigations are performed especially about the dopamine pathways and receptors. In this study; it was aimed to investigate the association of the synaptobrevin-2 (VAMP-2) gene Ins/Del polymorphism and syntaxin 1A gene intron 7 polymorphism, which take place in encoding presynaptic protein, with adult ADHD. Methods One hundred thirty-nine patients, having ADHD aging between 18 and 60 years and 106 healthy people as controls were included into the study. DNA samples were extracted from whole blood and genetic analysis were performed. Results A significant difference was determined between ADHD and VAMP-2 Ins/Del polymorphism and syntaxin 1A intron 7 polymorphism according to the control group. These polymorphisms were found not to be associated with subtypes of ADHD. Conclusion It is supposed that synaptic protein genes together with dopaminergic genes might have roles in the etiology of ADHD. PMID:24605127

  19. Molecular Mapping of Adult-Plant Race-Specific Leaf Rust Resistance Gene Lr12 in Bread Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum) gene Lr12 provides adult-plant race-specific resistance to leaf rust caused by Puccinia triticina. It is completely linked or identical to Lr31, which confers seedling resistance only when the complementary gene Lr27 is also present. F2 and F2-derived F3 families were devel...

  20. Seasonal effects of UCP1 gene polymorphism on visceral fat accumulation in Japanese adults.

    PubMed

    Nakayama, Kazuhiro; Miyashita, Hiroshi; Yanagisawa, Yoshiko; Iwamoto, Sadahiko

    2013-01-01

    Uncoupling protein 1 (UCP1) and β3 adrenergic receptor (ADRB3) genes play central roles in the thermogenesis of brown adipose tissue (BAT) in adult humans. However, the importance of single-nucleotide polymorphisms (SNPs) in both genes during the development of obesity is controversial. Although active BAT in adult humans is frequently observed in the winter season, the effects of sampling season have not been taken into consideration in previous association studies. Here, we tested the associations of UCP1 -3826A/G and ADRB3 Trp64Arg with body mass index (BMI) and visceral fat area (VFA) in 3013 Japanese adults sampled during different seasons. Association between SNPs and the obesity-related traits were assessed using multiple linear regression models, including sex, age, physical activity, and genotypes. Both SNPs did not show significant associations in the models based on the entire cohort. However, in subsets comprising individuals mainly sampled from winter to spring, UCP1 showed significant associations with VFA (P = 0.0098) and VFA adjusted for BMI (P = 0.0128). Moreover, the effects of UCP1 on VFA were strongly negatively correlated with outdoor temperature (P = 0.00011), but not with night length (P = 0.039). ADRB3 did not show these associations, but an additive effect with UCP1 was observed for VFA adjusted for BMI (P = 0.0067). Subsets sampled in the hot season did not show significant associations for both SNPs. The season-specific effects of UCP1 on VFA were consistent with a previous finding that active BAT was more frequently found in winter than in summer, and supported the importance of cold stress in BAT activation and the significance of BAT in the development of obesity in adult humans. PMID:24086366

  1. Evolution of insect metamorphosis: a microarray-based study of larval and adult gene expression in the ant Camponotus festinatus.

    PubMed

    Goodisman, Michael A D; Isoe, Jun; Wheeler, Diana E; Wells, Michael A

    2005-04-01

    Holometabolous insects inhabit almost every terrestrial ecosystem. The evolutionary success of holometabolous insects stems partly from their developmental program, which includes discrete larval and adult stages. To gain an understanding of how development differs among holometabolous insect taxa, we used cDNA microarray technology to examine differences in gene expression between larval and adult Camponotus festinatus ants. We then compared expression patterns obtained from our study to those observed in the fruitfly Drosophila melanogaster. We found that many genes showed distinct patterns of expression between the larval and adult ant life stages, a result that was confirmed through quantitative reverse-transcriptase polymerase chain reaction. Genes involved in protein metabolism and possessing structural activity tended to be more highly expressed in larval than adult ants. In contrast, genes relatively upregulated in adults possessed a greater diversity of functions and activities. We also discovered that patterns of expression observed for homologous genes in D. melanogaster differed substantially from those observed in C. festinatus. Our results suggest that the specific molecular mechanisms involved in metamorphosis will differ substantially between insect taxa. Systematic investigation of gene expression during development of other taxa will provide additional information on how developmental pathways evolve. PMID:15926695

  2. Requirements for Hedgehog, a Segmental Polarity Gene, in Patterning Larval and Adult Cuticle of Drosophila

    PubMed Central

    Mohler, J.

    1988-01-01

    Mutations of the hedgehog gene are generally embryonic lethal, resulting in a lawn of denticles on the ventral surface. In strong alleles, no segmentation is obvious and the anteroposterior polarity of ventral denticles is lost. Temperature shift analysis of a temperature-sensitive allele indicates an embryonic activity period for hedgehog between 2.5 and 6 hr of embryonic development (at 25°) and a larval/pupal period from 4 to 7 days of development (at 25°). Mosaic analysis of hedgehog mutations in the adult cuticle indicates a series of defined defects associated with the failure of appropriate hedgehog expression. In particular, defects in the distal portions of the legs and antenna occur in association with homozygous hedgehog clones in the posterior compartment of those structures. Because the defects are associated with homozygous clones, but are not co-extensive, a type of ``domineering'' nonautonomy is proposed for the activity of the hedgehog gene. PMID:3147217

  3. PRENATAL ALCOHOL EXPOSURE ALTERS STEADY-STATE AND ACTIVATED GENE EXPRESSION IN THE ADULT RAT BRAIN

    PubMed Central

    Stepien, Katarzyna A.; Lussier, Alexandre A.; Neumann, Sarah M.; Pavlidis, Paul; Kobor, Michael S.; Weinberg, Joanne

    2016-01-01

    Background Prenatal alcohol exposure (PAE) is associated with alterations in numerous physiological systems, including the stress and immune systems . We have previously shown that PAE increases the course and severity of arthritis in an adjuvant-induced arthritis (AA) model. While the molecular mechanisms underlying these effects are not fully known, changes in neural gene expression are emerging as important factors in the etiology of PAE effects. As the prefrontal cortex (PFC) and hippocampus (HPC) play key roles in neuroimmune function, PAE-induced alterations to their transcriptome may underlie abnormal steady-state functions and responses to immune challenge. The current study examined brains from adult PAE and control females from our recent AA study to determine whether PAE causes long-term alterations in gene expression and whether these mediate the altered severity and course of arthritis in PAE females Methods Adult females from PAE, pair-fed [PF], and ad libitum-fed control [C]) groups were injected with either saline or complete Freund’s adjuvant. Animals were terminated at the peak of inflammation or during resolution (days 16 and 39 post-injection, respectively); cohorts of saline-injected PAE, PF and C females were terminated in parallel. Gene expression was analyzed in the PFC and HPC using whole genome mRNA expression microarrays. Results Significant changes in gene expression in both the PFC and HPC were found in PAE compared to controls in response to ethanol exposure alone (saline-injected females), including genes involved in neurodevelopment, apoptosis, and energy metabolism. Moreover, in response to inflammation (adjuvant-injected females), PAE animals showed unique expression patterns, while failing to exhibit the activation of genes and regulators involved in the immune response observed in control and pair-fed animals. Conclusions These results support the hypothesis that PAE affects neuroimmune function at the level of gene expression

  4. Reversible suppression of an essential gene in adult mice using transgenic RNA interference

    PubMed Central

    McJunkin, Katherine; Mazurek, Anthony; Premsrirut, Prem K.; Zuber, Johannes; Dow, Lukas E.; Simon, Janelle; Stillman, Bruce; Lowe, Scott W.

    2011-01-01

    RNAi has revolutionized loss-of-function genetics by enabling sequence-specific suppression of virtually any gene. Furthermore, tetracycline response elements (TRE) can drive expression of short hairpin RNAs (shRNAs) for inducible and reversible target gene suppression. Here, we demonstrate the feasibility of transgenic inducible RNAi for suppression of essential genes. We set out to directly target cell proliferation by screening an RNAi library against DNA replication factors and identified multiple shRNAs against Replication Protein A, subunit 3 (RPA3). We generated transgenic mice with TRE-driven Rpa3 shRNAs whose expression enforced a reversible cell cycle arrest. In adult mice, the block in cell proliferation caused rapid atrophy of the intestinal epithelium which led to weight loss and lethality within 8–11 d of shRNA induction. Upon shRNA withdrawal, villus atrophy and weight loss were fully reversible. Thus, shRpa3 transgenic mice provide an interesting tool to study tissue maintenance and regeneration. Overall, we have established a robust system that serves the purpose of temperature-sensitive alleles in other model organisms, enabling inducible and reversible suppression of essential genes in a mammalian system. PMID:21482754

  5. The Protein Kinase KIS Impacts Gene Expression during Development and Fear Conditioning in Adult Mice

    PubMed Central

    Manceau, Valérie; Kremmer, Elisabeth; Nabel, Elizabeth G.; Maucuer, Alexandre

    2012-01-01

    The brain-enriched protein kinase KIS (product of the gene UHMK1) has been shown to phosphorylate the human splicing factor SF1 in vitro. This phosphorylation in turn favors the formation of a U2AF65-SF1-RNA complex which occurs at the 3′ end of introns at an early stage of spliceosome assembly. Here, we analyzed the effects of KIS knockout on mouse SF1 phosphorylation, physiology, adult behavior, and gene expression in the neonate brain. We found SF1 isoforms are differently expressed in KIS-ko mouse brains and fibroblasts. Re-expression of KIS in fibroblasts restores a wild type distribution of SF1 isoforms, confirming the link between KIS and SF1. Microarray analysis of transcripts in the neonate brain revealed a subtle down-regulation of brain specific genes including cys-loop ligand-gated ion channels and metabolic enzymes. Q-PCR analyses confirmed these defects and point to an increase of pre-mRNA over mRNA ratios, likely due to changes in splicing efficiency. While performing similarly in prepulse inhibition and most other behavioral tests, KIS-ko mice differ in spontaneous activity and contextual fear conditioning. This difference suggests that disregulation of gene expression due to KIS inactivation affects specific brain functions. PMID:22937132

  6. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice.

    PubMed

    Lee, Dong Hoon; Moon, Jihye; Ryu, Jinhyun; Jeong, Joo Yeon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Kang, Sang Soo

    2016-04-28

    Fetal alcohol syndrome (FAS) is a condition resulting from excessive drinking by pregnant women. Symptoms of FAS include abnormal facial features, stunted growth, intellectual deficits and attentional dysfunction. Many studies have investigated FAS, but its underlying mechanisms remain unknown. This study evaluated the relationship between alcohol exposure during the synaptogenesis period in postnatal mice and subsequent cognitive function in adult mice. We delivered two injections, separated by 2 h, of ethanol (3 g/kg, ethanol/saline, 20% v/v) to ICR mice on postnatal day 7. After 10 weeks, we conducted a behavioral test, sacrificed the animals, harvested brain tissue and analyzed hippocampal gene expression using a microarray. In ethanol-treated mice, there was a reduction in brain size and decreased neuronal cell number in the cortex, and also cognitive impairment. cDNA microarray results indicated that 1,548 genes showed a > 2-fold decrease in expression relative to control, whereas 974 genes showed a > 2-fold increase in expression relative to control. Many of these genes were related to signal transduction, synaptogenesis and cell membrane formation, which are highlighted in our findings. PMID:26960969

  7. Genes and Pathways Involved in Adult Onset Disorders Featuring Muscle Mitochondrial DNA Instability

    PubMed Central

    Ahmed, Naghia; Ronchi, Dario; Comi, Giacomo Pietro

    2015-01-01

    Replication and maintenance of mtDNA entirely relies on a set of proteins encoded by the nuclear genome, which include members of the core replicative machinery, proteins involved in the homeostasis of mitochondrial dNTPs pools or deputed to the control of mitochondrial dynamics and morphology. Mutations in their coding genes have been observed in familial and sporadic forms of pediatric and adult-onset clinical phenotypes featuring mtDNA instability. The list of defects involved in these disorders has recently expanded, including mutations in the exo-/endo-nuclease flap-processing proteins MGME1 and DNA2, supporting the notion that an enzymatic DNA repair system actively takes place in mitochondria. The results obtained in the last few years acknowledge the contribution of next-generation sequencing methods in the identification of new disease loci in small groups of patients and even single probands. Although heterogeneous, these genes can be conveniently classified according to the pathway to which they belong. The definition of the molecular and biochemical features of these pathways might be helpful for fundamental knowledge of these disorders, to accelerate genetic diagnosis of patients and the development of rational therapies. In this review, we discuss the molecular findings disclosed in adult patients with muscle pathology hallmarked by mtDNA instability. PMID:26251896

  8. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer

    PubMed Central

    Bernardes de Jesus, Bruno; Vera, Elsa; Schneeberger, Kerstin; Tejera, Agueda M; Ayuso, Eduard; Bosch, Fatima; Blasco, Maria A

    2012-01-01

    A major goal in aging research is to improve health during aging. In the case of mice, genetic manipulations that shorten or lengthen telomeres result, respectively, in decreased or increased longevity. Based on this, we have tested the effects of a telomerase gene therapy in adult (1 year of age) and old (2 years of age) mice. Treatment of 1- and 2-year old mice with an adeno associated virus (AAV) of wide tropism expressing mouse TERT had remarkable beneficial effects on health and fitness, including insulin sensitivity, osteoporosis, neuromuscular coordination and several molecular biomarkers of aging. Importantly, telomerase-treated mice did not develop more cancer than their control littermates, suggesting that the known tumorigenic activity of telomerase is severely decreased when expressed in adult or old organisms using AAV vectors. Finally, telomerase-treated mice, both at 1-year and at 2-year of age, had an increase in median lifespan of 24 and 13%, respectively. These beneficial effects were not observed with a catalytically inactive TERT, demonstrating that they require telomerase activity. Together, these results constitute a proof-of-principle of a role of TERT in delaying physiological aging and extending longevity in normal mice through a telomerase-based treatment, and demonstrate the feasibility of anti-aging gene therapy. PMID:22585399

  9. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms

    PubMed Central

    Li, Ben-Wen; Rush, Amy C.; Weil, Gary J.

    2015-01-01

    Acetylcholine receptors (AChRs) are required for body movement in parasitic nematodes and are targets of “classical” anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs) in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8. The genome of the filarial parasite Brugia malayi contains nine AChRs subunits including orthologues of Cel-unc-29, Cel-unc-38, and Cel-unc-63. We performed in situ hybridization with RNA probes to localize the expression of five AChR genes (Bm1_35890-Bma-unc-29, Bm1_20330-Bma-unc-38, Bm1_38195-Bma-unc-63, Bm1_48815-Bma-acr-26 and Bm1_40515-Bma-acr-12) in B. malayi adult worms. Four of these genes had similar expression patterns with signals in body muscle, developing embryos, spermatogonia, uterine wall adjacent to stretched microfilariae, wall of Vas deferens, and lateral cord. Three L-AChR subunit genes (Bma-unc-29, Bma-unc-38 and Bma-unc-63) were expressed in body muscle, which is a known target of levamisole. Bma-acr-12 was co-expressed with these levamisole subunit genes in muscle, and this suggests that its protein product may form receptors with other alpha subunits. Bma-acr-26 was expressed in male muscle but not in female muscle. Strong expression signals of these genes in early embryos and gametes in uterus and testis suggest that AChRs may have a role in nervous system development of embryogenesis and spermatogenesis. This would be consistent with embryotoxic effects of drugs that target these receptors in filarial worms. Our data show that the expression of these receptor genes is tightly regulated with regard to localization in adult worms and developmental stage in embryos and gametes. These results may help to explain the broad effects

  10. Relationship of a variant in the NTRK1 gene to white matter microstructure in young adults

    PubMed Central

    Braskie, Meredith N; Jahanshad, Neda; Stein, Jason L; Barysheva, Marina; Johnson, Kori; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Ringman, John M; Toga, Arthur W; Thompson, Paul M

    2012-01-01

    The NTRK1 gene (also known as TRKA) encodes a high affinity receptor for NGF, a neurotrophin involved in nervous system development and myelination. NTRK1 has been implicated in neurological function via links between the T allele at rs6336 (NTRK1-T) and schizophrenia risk. A variant in the neurotrophin gene, BDNF, was previously associated with white matter integrity in young adults, highlighting the importance of neurotrophins to white matter development. We hypothesized that NTRK1-T would relate to lower FA in healthy adults. We scanned 391 healthy adult human twins and their siblings (mean age: 23.6 ± 2.2 years; 31 NTRK1-T carriers, 360 non-carriers) using 105-gradient diffusion tensor imaging at 4 Tesla. We evaluated in brain white matter how NTRK1-T and NTRK1 rs4661063 allele A (rs4661063-A, which is in moderate linkage disequilibrium with rs6336) related to voxelwise fractional anisotropy – a common diffusion tensor imaging measure of white matter microstructure. We used mixed-model regression to control for family relatedness, age, and sex. The sample was split in half to test results reproducibility. The false discovery rate method corrected for voxelwise multiple comparisons. NTRK1-T and rs4661063-A correlated with lower white matter fractional anisotropy, independent of age and sex (multiple comparisons corrected: false discovery rate critical p = 0.038 for NTRK1-T and 0.013 for rs4661063-A). In each half-sample, the NTRK1-T effect was replicated in the cingulum, corpus callosum, superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculus, superior corona radiata, and uncinate fasciculus. Our results suggest that NTRK1-T is important for developing white matter microstructure. PMID:22539856

  11. Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis.

    PubMed

    Diotel, Nicolas; Beil, Tanja; Strähle, Uwe; Rastegar, Sepand

    2015-01-01

    Teleost fish display a remarkable ability to generate new neurons and to repair brain lesions during adulthood. They are, therefore, a very popular model to investigate the molecular mechanisms of constitutive and induced neurogenesis in adult vertebrates. In this study, we investigated the expression patterns of inhibitor of DNA binding (id) genes and of their potential transcriptional repressor, znf238, in the whole brain of adult zebrafish. We show that while id1 is exclusively expressed in ventricular cells in the whole brain, id2a, id3 and id4 genes are expressed in broader areas. Interestingly, znf238 was also detected in these regions, its expression overlapping with id2a, id3 and id4 expression. Further detailed characterization of the id-expressing cells demonstrated that (a) id1 is expressed in type 1 and type 2 neural progenitors as previously published, (b) id2a in type 1, 2 and 3 neural progenitors, (c) id3 in type 3 neural progenitors and (d) id4 in postmitotic neurons. Our data provide a detailed map of id and znf238 expression in the brain of adult zebrafish, supplying a framework for studies of id genes function during adult neurogenesis and brain regeneration in the zebrafish. PMID:26107416

  12. The Drosophila melanogaster Muc68E Mucin Gene Influences Adult Size, Starvation Tolerance, and Cold Recovery.

    PubMed

    Reis, Micael; Silva, Ana C; Vieira, Cristina P; Vieira, Jorge

    2016-01-01

    Mucins have been implicated in many different biological processes, such as protection from mechanical damage, microorganisms, and toxic molecules, as well as providing a luminal scaffold during development. Nevertheless, it is conceivable that mucins have the potential to modulate food absorption as well, and thus contribute to the definition of several important phenotypic traits. Here we show that the Drosophila melanogaster Muc68E gene is 40- to 60-million-yr old, and is present in Drosophila species of the subgenus Sophophora only. The central repeat region of this gene is fast evolving, and shows evidence for repeated expansions/contractions. This and/or frequent gene conversion events lead to the homogenization of its repeats. The amino acid pattern P[ED][ED][ST][ST][ST] is found in the repeat region of Muc68E proteins from all Drosophila species studied, and can occur multiple times within a single conserved repeat block, and thus may have functional significance. Muc68E is a nonessential gene under laboratory conditions, but Muc68E mutant flies are smaller and lighter than controls at birth. However, at 4 d of age, Muc68E mutants are heavier, recover faster from chill-coma, and are more resistant to starvation than control flies, although they have the same percentage of lipids as controls. Mutant flies have enlarged abdominal size 1 d after chill-coma recovery, which is associated with higher lipid content. These results suggest that Muc68E has a role in metabolism modulation, food absorption, and/or feeding patterns in larvae and adults, and under normal and stress conditions. Such biological function is novel for mucin genes. PMID:27172221

  13. The Drosophila melanogaster Muc68E Mucin Gene Influences Adult Size, Starvation Tolerance, and Cold Recovery

    PubMed Central

    Reis, Micael; Silva, Ana C.; Vieira, Cristina P.; Vieira, Jorge

    2016-01-01

    Mucins have been implicated in many different biological processes, such as protection from mechanical damage, microorganisms, and toxic molecules, as well as providing a luminal scaffold during development. Nevertheless, it is conceivable that mucins have the potential to modulate food absorption as well, and thus contribute to the definition of several important phenotypic traits. Here we show that the Drosophila melanogaster Muc68E gene is 40- to 60-million-yr old, and is present in Drosophila species of the subgenus Sophophora only. The central repeat region of this gene is fast evolving, and shows evidence for repeated expansions/contractions. This and/or frequent gene conversion events lead to the homogenization of its repeats. The amino acid pattern P[ED][ED][ST][ST][ST] is found in the repeat region of Muc68E proteins from all Drosophila species studied, and can occur multiple times within a single conserved repeat block, and thus may have functional significance. Muc68E is a nonessential gene under laboratory conditions, but Muc68E mutant flies are smaller and lighter than controls at birth. However, at 4 d of age, Muc68E mutants are heavier, recover faster from chill-coma, and are more resistant to starvation than control flies, although they have the same percentage of lipids as controls. Mutant flies have enlarged abdominal size 1 d after chill-coma recovery, which is associated with higher lipid content. These results suggest that Muc68E has a role in metabolism modulation, food absorption, and/or feeding patterns in larvae and adults, and under normal and stress conditions. Such biological function is novel for mucin genes. PMID:27172221

  14. Genes involved in thoracic exoskeleton formation during the pupal-to-adult molt in a social insect model, Apis mellifera

    PubMed Central

    2013-01-01

    Background The insect exoskeleton provides shape, waterproofing, and locomotion via attached somatic muscles. The exoskeleton is renewed during molting, a process regulated by ecdysteroid hormones. The holometabolous pupa transforms into an adult during the imaginal molt, when the epidermis synthe3sizes the definitive exoskeleton that then differentiates progressively. An important issue in insect development concerns how the exoskeletal regions are constructed to provide their morphological, physiological and mechanical functions. We used whole-genome oligonucleotide microarrays to screen for genes involved in exoskeletal formation in the honeybee thoracic dorsum. Our analysis included three sampling times during the pupal-to-adult molt, i.e., before, during and after the ecdysteroid-induced apolysis that triggers synthesis of the adult exoskeleton. Results Gene ontology annotation based on orthologous relationships with Drosophila melanogaster genes placed the honeybee differentially expressed genes (DEGs) into distinct categories of Biological Process and Molecular Function, depending on developmental time, revealing the functional elements required for adult exoskeleton formation. Of the 1,253 unique DEGs, 547 were upregulated in the thoracic dorsum after apolysis, suggesting induction by the ecdysteroid pulse. The upregulated gene set included 20 of the 47 cuticular protein (CP) genes that were previously identified in the honeybee genome, and three novel putative CP genes that do not belong to a known CP family. In situ hybridization showed that two of the novel genes were abundantly expressed in the epidermis during adult exoskeleton formation, strongly implicating them as genuine CP genes. Conserved sequence motifs identified the CP genes as members of the CPR, Tweedle, Apidermin, CPF, CPLCP1 and Analogous-to-Peritrophins families. Furthermore, 28 of the 36 muscle-related DEGs were upregulated during the de novo formation of striated fibers attached to the

  15. DAT1 and DRD4 genes involved in key dimensions of adult ADHD.

    PubMed

    Hasler, R; Salzmann, A; Bolzan, T; Zimmermann, J; Baud, P; Giannakopoulos, P; Perroud, N

    2015-06-01

    Attention-deficit hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder often persisting in adulthood. Genetic studies of ADHD mainly focused on the Dopamine Transporter (DAT1) and the Dopamine Receptor 4 (DRD4) genes. Nevertheless, polymorphisms of these genes explain only a small fraction of the assigned risk, suggesting that intermediate dimensions and environmental factors should also be considered. We investigated in 77 adult ADHD subjects compared to 474 controls, how polymorphisms within the genes coding for DAT1 (40-bp VNTR in 3'UTR), the Dopamine Receptor 2 (DRD2) (rs1799732) and DRD4 (48-bp VNTR in exon 3), may modulate the expression of the disorder. By genotyping DAT1, we detected a new 9.5R allele showing a deletion of 40 bp and also an insertion of 19 bp compared to the 10R allele. This novel allele was found to be significantly protective for ADHD (p < 0.0001). Another significant difference was found in the distribution of DRD4 48-bp VNTR 6R allele when comparing patients and controls (p = 0.0007). In addition significant results were also found for DAT1 9.5R allele, which was associated with impulsiveness (p = 1.98 × 10(-4)) and trait anger scores (p = 7.66 × 10(-4)). Moreover, impulsiveness scores were partly modulated by an interaction between the DRD4 48-bp VNTR 6R allele and childhood maltreatment (p = 0.01), however, this result did not resist correction for multiple comparisons. Altogether, our results show the putative involvement of DAT1 and DRD4 genes in the aetiology of ADHD with a main role in modulation of key dimensions of the disorder. PMID:25555995

  16. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination.

    PubMed

    Malik, Astha; Kondratov, Roman V; Jamasbi, Roudabeh J; Geusz, Michael E

    2015-01-01

    Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during

  17. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination

    PubMed Central

    Kondratov, Roman V.; Jamasbi, Roudabeh J.

    2015-01-01

    Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during

  18. A Comparison of the Olfactory Gene Repertoires of Adults and Larvae in the Noctuid Moth Spodoptera littoralis

    PubMed Central

    Poivet, Erwan; Gallot, Aurore; Montagné, Nicolas; Glaser, Nicolas; Legeai, Fabrice; Jacquin-Joly, Emmanuelle

    2013-01-01

    To better understand the olfactory mechanisms in a lepidopteran pest model species, the cotton leafworm Spodoptera littoralis, we have recently established a partial transcriptome from adult antennae. Here, we completed this transcriptome using next generation sequencing technologies, namely 454 and Illumina, on both adult antennae and larval tissues, including caterpillar antennae and maxillary palps. All sequences were assembled in 77,643 contigs. Their analysis greatly enriched the repertoire of chemosensory genes in this species, with a total of 57 candidate odorant-binding and chemosensory proteins, 47 olfactory receptors, 6 gustatory receptors and 17 ionotropic receptors. Using RT-PCR, we conducted the first exhaustive comparison of olfactory gene expression between larvae and adults in a lepidopteran species. All the 127 candidate olfactory genes were profiled for expression in male and female adult antennae and in caterpillar antennae and maxillary palps. We found that caterpillars expressed a smaller set of olfactory genes than adults, with a large overlap between these two developmental stages. Two binding proteins appeared to be larvae-specific and two others were adult-specific. Interestingly, comparison between caterpillar antennae and maxillary palps revealed numerous organ-specific transcripts, suggesting the complementary involvement of these two organs in larval chemosensory detection. Adult males and females shared the same set of olfactory transcripts, except two male-specific candidate pheromone receptors, two male-specific and two female-specific odorant-binding proteins. This study identified transcripts that may be important for sex-specific or developmental stage-specific chemosensory behaviors. PMID:23565215

  19. Embryonic Atrazine Exposure Elicits Alterations in Genes Associated with Neuroendocrine Function in Adult Male Zebrafish.

    PubMed

    Wirbisky, Sara E; Sepúlveda, Maria S; Weber, Gregory J; Jannasch, Amber S; Horzmann, Katharine A; Freeman, Jennifer L

    2016-09-01

    The developmental origins of health and disease (DOHaD) hypothesis states that exposure to environmental stressors early in life can elicit genome and epigenome changes resulting in an increased susceptibility of a disease state during adulthood. Atrazine, a common agricultural herbicide used throughout the Midwestern United States, frequently contaminates potable water supplies and is a suspected endocrine disrupting chemical. In our previous studies, zebrafish was exposed to 0, 0.3, 3, or 30 parts per billion (μg/l) atrazine through embryogenesis, rinsed, and allowed to mature to adulthood. A decrease in spawning was observed with morphological alterations in offspring. In addition, adult females displayed an increase in ovarian progesterone and follicular atresia, alterations in levels of a serotonin metabolite and serotonin turnover in brain tissue, and transcriptome changes in brain and ovarian tissue supporting neuroendocrine alterations. As reproductive dysfunction is also influenced by males, this study assessed testes histology, hormone levels, and transcriptomic profiles of testes and brain tissue in the adult males. The embryonic atrazine exposure resulted in no alterations in body or testes weight, gonadosomatic index, testes histology, or levels of 11-ketotestosterone or testosterone. To further investigate potential alterations, transcriptomic profiles of adult male testes and brain tissue was completed. This analysis demonstrated alterations in genes associated with abnormal cell and neuronal growth and morphology; molecular transport, quantity, and production of steroid hormones; and neurotransmission with an emphasis on the hypothalamus-pituitary-adrenal and hypothalamus-pituitary-thyroid axes. Overall, this data indicate future studies should focus on additional neuroendocrine endpoints to determine potential functional impairments. PMID:27413107

  20. Intermittent rhabdomyolysis with adult onset associated with a mutation in the ACADVL gene.

    PubMed

    Antunes, Ana Patrícia; Nogueira, Célia; Rocha, Hugo; Vilarinho, Laura; Evangelista, Teresinha

    2013-12-01

    Deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD) is an autosomal recessive disease. Most common phenotypes occur in the neonatal period or in childhood with cardiomyopathy, hepatomegaly, and hypoketogenic hypoglycemia. Juvenile/adult-onset is characterized by exercise intolerance and recurrent rhabdomyolysis triggered by prolonged exercise or fasting. This article reports a patient with the homozygous mutation c.1097G>A (p.R366H) in the ACADVL gene. In Portugal, VLCAD deficiency became part of the neonatal screening plan in 2004, and as of 2012, 8 early-onset cases have been diagnosed, giving an incidence rate of 1:97.238 per 737.902 newborns. This patient was diagnosed outside of the neonatal screening plan. Beta-oxidation defects pose a diagnostic challenge because of their transient clinical and laboratorial manifestations and the absence of morphological changes in muscle biopsy further complicate matters, especially in the late-onset forms of the disease. The adult phenotype of VLCAD deficiency is highlighted, emphasizing the need for a high suspicion index and the value of tandem mass spectrometry for the diagnosis. PMID:24263034

  1. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat.

    PubMed

    Cypess, Aaron M; White, Andrew P; Vernochet, Cecile; Schulz, Tim J; Xue, Ruidan; Sass, Christina A; Huang, Tian Liang; Roberts-Toler, Carla; Weiner, Lauren S; Sze, Cathy; Chacko, Aron T; Deschamps, Laura N; Herder, Lindsay M; Truchan, Nathan; Glasgow, Allison L; Holman, Ashley R; Gavrila, Alina; Hasselgren, Per-Olof; Mori, Marcelo A; Molla, Michael; Tseng, Yu-Hua

    2013-05-01

    The imbalance between energy intake and expenditure is the underlying cause of the current obesity and diabetes pandemics. Central to these pathologies is the fat depot: white adipose tissue (WAT) stores excess calories, and brown adipose tissue (BAT) consumes fuel for thermogenesis using tissue-specific uncoupling protein 1 (UCP1). BAT was once thought to have a functional role in rodents and human infants only, but it has been recently shown that in response to mild cold exposure, adult human BAT consumes more glucose per gram than any other tissue. In addition to this nonshivering thermogenesis, human BAT may also combat weight gain by becoming more active in the setting of increased whole-body energy intake. This phenomenon of BAT-mediated diet-induced thermogenesis has been observed in rodents and suggests that activation of human BAT could be used as a safe treatment for obesity and metabolic dysregulation. In this study, we isolated anatomically defined neck fat from adult human volunteers and compared its gene expression, differentiation capacity and basal oxygen consumption to different mouse adipose depots. Although the properties of human neck fat vary substantially between individuals, some human samples share many similarities with classical, also called constitutive, rodent BAT. PMID:23603815

  2. Effects of tamoxifen on autosomal genes regulating ovary maintenance in adult mice.

    PubMed

    Yu, Mingxi; Liu, Wei; Wang, Jingyun; Qin, Junwen; Wang, Yongan; Wang, Yu

    2015-12-01

    Environmental endocrine-disrupting chemicals (EDCs), known to bind to estrogen/androgen receptors and mimic native estrogens, have been implicated as a main source for increasing human reproductive and developmental deficiencies and diseases. Tamoxifen (TAM) is one of the most well-known antiestrogens with defined adverse effects on the female reproductive tract, but the mechanisms related to autosomal gene regulation governing ovary maintenance in mammals remain unclear. The expression pattern and levels of key genes and proteins involved in maintaining the ovarian phenotype in mice were analyzed. The results showed that TAM induced significant upregulation of Sox9, which is the testis-determining factor gene. The results showed that TAM induced significant upregulation of Sox9, the testis-determining factor gene, and the expression level of Sox9 mRNA in the ovaries of mice exposed to 75 or 225 mg/kg bw TAM was 2- and 10-fold that in the control group, respectively (p < 0.001). Furthermore, the testicular fibroblast growth factor gene, Fgf9, was also elevated in TAM-treated ovaries. Accordingly, expression of the ovary development marker, forkhead transcription factor (FOXL2), and WNT4/FST signaling, were depressed. The levels of protein expression changed consistently with the target genes. Moreover, the detection of platelet/endothelial cell adhesion molecule 1 (PECAM-1) in TAM-treated ovaries suggested the formation of vascular endothelial cells, which is a further evidence for the differentiation of the ovaries to a testis-like phenotype. During this period, the level of 17β-estradiol, progesterone, and luteinizing hormone decreased, while that of testosterone increased by 3.3-fold (p = 0.013). The activation of a testis-specific molecular signaling cascade was a potentially important mechanism contributing to the gender disorder induced by TAM, which resulted in the differentiation of the ovaries to a testis-like phenotype in adult mice. Limited with

  3. A six gene expression signature defines aggressive subtypes and predicts outcome in childhood and adult acute lymphoblastic leukemia

    PubMed Central

    Wang, Jin; Mi, Jian-Qing; Debernardi, Alexandra; Vitte, Anne-Laure; Emadali, Anouk; Meyer, Julia A.; Charmpi, Konstantina; Ycart, Bernard; Callanan, Mary B.; Carroll, William L.; Khochbin, Saadi; Rousseaux, Sophie

    2015-01-01

    Abnormal gene expression in cancer represents an under-explored source of cancer markers and therapeutic targets. In order to identify gene expression signatures associated with survival in acute lymphoblastic leukemia (ALL), a strategy was designed to search for aberrant gene activity, which consists of applying several filters to transcriptomic datasets from two pediatric ALL studies. Six genes whose expression in leukemic blasts was associated with prognosis were identified:three genes predicting poor prognosis (AK022211, FASTKD1 and STARD4) and three genes associated with a favorable outcome (CAMSAP1, PCGF6 and SH3RF3). Combining the expression of these 6 genes could successfully predict prognosis not only in the two discovery pediatric ALL studies, but also in two independent validation cohorts of adult patients, one from a publicly available study and one consisting of 62 newly recruited Chinese patients. Moreover, our data demonstrate that our six gene based test is particularly efficient in stratifying MLL or BCR.ABL negative patients. Finally, common biological traits characterizing aggressive forms of ALL in both children and adults were found, including features of dormant hematopoietic stem cells, suggesting new therapeutic strategies. PMID:26001296

  4. Transcriptome Analysis and Identification of Differentially Expressed Transcripts of Immune-Related Genes in Spleen of Gosling and Adult Goose

    PubMed Central

    Wang, Anqi; Liu, Fei; Chen, Shun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2015-01-01

    The goose (Anser cygnoides), having high nutritional value, high-quality feathers and high economic benefit, is an economically important poultry species. However, the molecular mechanisms underlying the higher susceptibility to pathogens in goslings than in adult geese remains poorly understood. In this study, the histological sections of spleen tissue from a two-week-old gosling and an adult goose, respectively, were subjected to comparative analysis. The spleen of gosling was mainly composed of mesenchyma, accompanied by scattered lymphocytes, whereas the spleen parenchyma was well developed in the adult goose. To investigate goose immune-related genes, we performed deep transcriptome and gene expression analyses of the spleen samples using paired-end sequencing technology (Illumina). In total, 50,390 unigenes were assembled using Trinity software and TGICL software. Moreover, these assembled unigenes were annotated with gene descriptions and gene ontology (GO) analysis was performed. Through Kyoto encyclopedia of genes and genomes (KEGG) analysis, we investigated 558 important immune-relevant unigenes and 23 predicted cytokines. In addition, 22 immune-related genes with differential expression between gosling and adult goose were identified, among which the three genes showing largest differences in expression were immunoglobulin alpha heavy chain (IgH), mannan-binding lectin serine protease 1 isoform X1 (MASP1) and C–X–C chemokine receptor type 4 (CXCR4). Finally, of these 22 differentially expressed immune-related genes, seven genes, including tumor necrosis factor receptor superfamily member 13B (TNFRSF13B), C-C motif chemokine 4-like (CCL4), CXCR4, interleukin 2 receptor alpha (IL2RA), MHC class I heavy chain (MHCIα), transporter of antigen processing 2 (TAP2) IgH, were confirmed by quantitative real-time PCR (qRT-PCR). The expression levels of all the candidate unigenes were up-regulated in adult geese other than that of TNFRSF13B. The comparative

  5. Transcriptome Analysis and Identification of Differentially Expressed Transcripts of Immune-Related Genes in Spleen of Gosling and Adult Goose.

    PubMed

    Wang, Anqi; Liu, Fei; Chen, Shun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2015-01-01

    The goose (Anser cygnoides), having high nutritional value, high-quality feathers and high economic benefit, is an economically important poultry species. However, the molecular mechanisms underlying the higher susceptibility to pathogens in goslings than in adult geese remains poorly understood. In this study, the histological sections of spleen tissue from a two-week-old gosling and an adult goose, respectively, were subjected to comparative analysis. The spleen of gosling was mainly composed of mesenchyma, accompanied by scattered lymphocytes, whereas the spleen parenchyma was well developed in the adult goose. To investigate goose immune-related genes, we performed deep transcriptome and gene expression analyses of the spleen samples using paired-end sequencing technology (Illumina). In total, 50,390 unigenes were assembled using Trinity software and TGICL software. Moreover, these assembled unigenes were annotated with gene descriptions and gene ontology (GO) analysis was performed. Through Kyoto encyclopedia of genes and genomes (KEGG) analysis, we investigated 558 important immune-relevant unigenes and 23 predicted cytokines. In addition, 22 immune-related genes with differential expression between gosling and adult goose were identified, among which the three genes showing largest differences in expression were immunoglobulin alpha heavy chain (IgH), mannan-binding lectin serine protease 1 isoform X1 (MASP1) and C-X-C chemokine receptor type 4 (CXCR4). Finally, of these 22 differentially expressed immune-related genes, seven genes, including tumor necrosis factor receptor superfamily member 13B (TNFRSF13B), C-C motif chemokine 4-like (CCL4), CXCR4, interleukin 2 receptor alpha (IL2RA), MHC class I heavy chain (MHCIα), transporter of antigen processing 2 (TAP2) IgH, were confirmed by quantitative real-time PCR (qRT-PCR). The expression levels of all the candidate unigenes were up-regulated in adult geese other than that of TNFRSF13B. The comparative

  6. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain.

    PubMed

    Deverman, Benjamin E; Pravdo, Piers L; Simpson, Bryan P; Kumar, Sripriya Ravindra; Chan, Ken Y; Banerjee, Abhik; Wu, Wei-Li; Yang, Bin; Huber, Nina; Pasca, Sergiu P; Gradinaru, Viviana

    2016-02-01

    Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer. However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics. Here we describe a capsid selection method, called Cre recombination-based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREATE to generate AAV variants that efficiently and widely transduce the adult mouse central nervous system (CNS) after intravenous injection. One variant, AAV-PHP.B, transfers genes throughout the CNS with an efficiency that is at least 40-fold greater than that of the current standard, AAV9 (refs. 14,15,16,17), and transduces the majority of astrocytes and neurons across multiple CNS regions. In vitro, it transduces human neurons and astrocytes more efficiently than does AAV9, demonstrating the potential of CREATE to produce customized AAV vectors for biomedical applications. PMID:26829320

  7. Novel Cryptic Rearrangements in Adult B-Cell Precursor Acute Lymphoblastic Leukemia Involving the MLL Gene.

    PubMed

    Othman, Moneeb A K; Grygalewicz, Beata; Pienkowska-Grela, Barbara; Rincic, Martina; Rittscher, Katharina; Melo, Joana B; Carreira, Isabel M; Meyer, Britta; Marzena, Watek; Liehr, Thomas

    2015-05-01

    MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the MLL gene at 11q23.3 was disrupted, and that the 5' region was inserted into the chromosomal sub-band 4q21; thus the aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL. PMID:25699572

  8. Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues

    PubMed Central

    Ecco, Gabriela; Cassano, Marco; Kauzlaric, Annamaria; Duc, Julien; Coluccio, Andrea; Offner, Sandra; Imbeault, Michaël; Rowe, Helen M.; Turelli, Priscilla; Trono, Didier

    2016-01-01

    Summary KRAB-containing zinc finger proteins (KRAB-ZFPs) are early embryonic controllers of transposable elements (TEs), which they repress with their cofactor KAP1 through histone and DNA methylation, a process thought to result in irreversible silencing. Using a target-centered functional screen, we matched murine TEs with their cognate KRAB-ZFP. We found the paralogs ZFP932 and Gm15446 to bind overlapping but distinguishable subsets of ERVK (endogenous retrovirus K), to repress these elements in embryonic stem cells, and to regulate secondarily the expression of neighboring genes. Most importantly, we uncovered that these KRAB-ZFPs and KAP1 control TEs in adult tissues, in cell culture and in vivo, where they partner up to modulate cellular genes. Therefore, TEs and KRAB-ZFPs establish transcriptional networks that regulate not only development but probably many physiological events. Given the high degree of species-specificity of TEs and KRAB-ZFPs, these results have important implications for understanding the biology of higher vertebrates, including humans. PMID:27003935

  9. Angiotensin-Converting Enzyme Gene Polymophism in Adult Primary Focal Segmental Glomerulosclerosis

    PubMed Central

    Mohd, Rozita; Wahab, Zaimi Abdul; Cader, Rizna; Gafor, Halim A.; Radzi, Azizah Md; Shah, Shamsul Azhar; Tong, Norella Kong Chiew

    2014-01-01

    Background Primary focal segmental glomerulosclerosis (FSGS) accounts for a third of biopsy-proven primary glomerulonephritis in Malaysia. Pediatric studies have found the insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) gene to be associated with renal disease progression. The aim of this study was to determine the prevalence of the ACE (I/D) genotypes in adult primary FSGS and its association with renal outcome on follow-up. Methods Prospective observational study involving primary FSGS patients was conducted. Biochemical and urine tests at the time of study were compared to the time of the diagnosis and disease progression analyzed. ACE gene polymorphism was identified using polymerase chain reaction amplification technique and categorized into II, ID and DD genotypes. Results Forty-five patients with a median follow-up of 3.8 years (interquartile range: 1.8 - 5.6) were recruited. The commonest genotype was II (n = 23, 51.1%) followed by ID (n = 19, 42.2%) and DD (n = 3, 6.7%). The baseline characteristics were comparable between the II and non-II groups at diagnosis and at study recruitment except that the median urine protein-creatinine index was significantly lower in the II group compared to the non-II group (0.02 vs. 0.04 g/mmol (P = 0.03). Regardless of genotypes, all parameters of renal outcome improved after treatment. Conclusion The II followed by ID genotypes were the predominant ACE gene alleles in our FSGS. Although the D allele has been reported to have a negative impact on renal outcome, treatment appeared to be more important than genotype in preserving renal function in this cohort. PMID:24883149

  10. Gene Expression Profile of Adult Human Olfactory Bulb and Embryonic Neural Stem Cell Suggests Distinct Signaling Pathways and Epigenetic Control

    PubMed Central

    Marei, Hany E. S.; Ahmed, Abd-Elmaksoud; Michetti, Fabrizio; Pescatori, Mario; Pallini, Roberto; Casalbore, Patricia; Cenciarelli, Carlo; Elhadidy, Mohamed

    2012-01-01

    Global gene expression profiling was performed using RNA from human embryonic neural stem cells (hENSC), and adult human olfactory bulb-derived neural stem cells (OBNSCs), to define a gene expression pattern and signaling pathways that are specific for each cell lineage. We have demonstrated large differences in the gene expression profile of human embryonic NSC, and adult human OBNSCs, but less variability between parallel cultures. Transcripts of genes involved in neural tube development and patterning (ALDH1A2, FOXA2), progenitor marker genes (LMX1a, ALDH1A1, SOX10), proliferation of neural progenitors (WNT1 and WNT3a), neuroplastin (NPTN), POU3F1 (OCT6), neuroligin (NLGN4X), MEIS2, and NPAS1 were up-regulated in both cell populations. By Gene Ontology, 325 out of 3875 investigated gene sets were scientifically different. 41 out of the 307 investigated Cellular Component (CC) categories, 45 out of the 620 investigated Molecular Function (MF) categories, and 239 out of the 2948 investigated Biological Process (BP) categories were significant. KEGG Pathway Class Comparison had revealed that 75 out of 171 investigated gene sets passed the 0.005 significance threshold. Levels of gene expression were explored in three signaling pathways, Notch, Wnt, and mTOR that are known to be involved in NS cell fates determination. The transcriptional signature also deciphers the role of genes involved in epigenetic modifications. SWI/SNF DNA chromatin remodeling complex family, including SMARCC1 and SMARCE1, were found specifically up-regulated in our OBNSC but not in hENSC. Differences in gene expression profile of transcripts controlling epigenetic modifications, and signaling pathways might indicate differences in the therapeutic potential of our examined two cell populations in relation to in cell survival, proliferation, migration, and differentiation following engraftments in different CNS insults. PMID:22485144

  11. Pharmacological and gene modification-based models for studying the impact of perinatal metabolic disturbances in adult life.

    PubMed

    Villarroya, Francesc; Bocos, Carlos; Giralt, Marta; Pilar Ramos, Maria; Herrera, Emilio; Sevillano, Julio; Gual, Margalida; Rosell, Meritxell; Iglesias, Roser

    2009-01-01

    Genetic modification approaches or pharmacological interventions may be useful for understanding the molecular mechanisms by which nutrient derivatives and metabolites exert their effects in the perinatal period and how they may influence longterm metabolism in adults. Examples for such experimental settings in rodents are targeted disruption of the gene for peroxisome proliferator-activated receptor (PPAR)-a, a lipid sensor and master regulator of lipid catabolism, or maternal treatment with agonists of PPARgamma, a master regulator of adipogenesis and target of insulin sensitizing drugs in adults. All these interventions show differential effects in the perinatal period compared to adults and indicate that altered activity of master regulators of metabolism results in profound metabolic alterations in the perinatal period that may influence adult metabolism. PMID:19536673

  12. New Codanin-1 Gene Mutations in a Italian Patient with Congenital Dyserythropoietic Anemia Type I and Heterozygous Beta-Thalassemia.

    PubMed

    D'Alcamo, Elena; Agrigento, V; Pitrolo, L; Sclafani, S; Barone, R; Calvaruso, G; Buffa, V; Maggio, A

    2016-06-01

    Congenital dyserythropoietic anemia type I is an autosomal recessive disorder associated with macrocytic anemia, ineffective erythropoiesis, iron overloading and characterized by abnormal chromatin ultrastructure in erythroblasts such as internuclear chromatin bridges, spongy heterochromatin and invagination of the nuclear membrane. A 58-year-old Causasian man with chronic hemolytic anemia, heterozygous for β (+) -globin IVS1, nt110 G>A mutation (causing abnormal alpha:beta globin chain ratio) showed clinical, laboratory and hematological features suggesting diagnosis of CDA1. Sequence analysis of CDA-related genes revealed compound heterozygosity for two novel mutations in the CDAN1 gene: a frameshift mutation 3367 del 4 (TTAG) in exon 25 and a missense mutation c.1811 G>T in exon 11 causing an aminoacid change from glycine to valine at codon 565 (G565V). One of the propositus' brothers showed the same gene mutations. As the CDA1 can mimic thalassemia, a frequent misdiagnosis is possible especially in countries where the prevalence of thalassemia is high. A strong clinical suspicion in patients who do not reveal a clear genetic basis for presumed thalassemia may help clinch the correct diagnosis. PMID:27408412

  13. Conservation and expression of PIWI-interacting RNA pathway genes in male and female adult gonad of amniotes.

    PubMed

    Lim, Shu Ly; Tsend-Ayush, Enkhjargal; Kortschak, R Daniel; Jacob, Reuben; Ricciardelli, Carmela; Oehler, Martin K; Grützner, Frank

    2013-12-01

    The PIWI-interacting RNA (piRNA) pathway is essential for germline development and transposable element repression. Key elements of this pathway are members of the piRNA-binding PIWI/Argonaute protein family and associated factors (e.g., VASA, MAELSTROM, and TUDOR domain proteins). PIWI-interacting RNAs have been identified in mouse testis and oocytes, but information about the expression of the different piRNA pathway genes, in particular in the mammalian ovary, remains incomplete. We investigated the evolution and expression of piRNA pathway genes in gonads of amniote species (chicken, platypus, and mouse). Database searches confirm a high level of conservation and revealed lineage-specific gain and loss of Piwi genes in vertebrates. Expression analysis in mammals shows that orthologs of Piwi-like (Piwil) genes, Mael (Maelstrom), Mvh (mouse vasa homolog), and Tdrd1 (Tudor domain-containing protein 1) are expressed in platypus adult testis. In contrast to mouse, Piwil4 is expressed in platypus and human adult testis. We found evidence for Mael and Piwil2 expression in mouse Sertoli cells. Importantly, we show mRNA expression of Piwil2, Piwil4, and Mael in oocytes and supporting cells of human, mouse, and platypus ovary. We found no Piwil1 expression in mouse and chicken ovary. The conservation of gene expression in somatic parts of the gonad and germ cells of species that diverged over 800 million yr ago indicates an important role in adult male and female gonad. PMID:24108303

  14. Pluripotent embryonic stem cells and multipotent adult germline stem cells reveal similar transcriptomes including pluripotency-related genes.

    PubMed

    Meyer, S; Nolte, J; Opitz, L; Salinas-Riester, G; Engel, W

    2010-11-01

    DNA microarray analysis was performed with mouse multipotent adult germline stem cells (maGSCs) and embryonic stem cells (ESCs) from different genetic backgrounds cultured under standard ESC-culture conditions and under differentiation-promoting conditions by the withdrawal of the leukemia inhibitory factor (LIF) and treatment with retinoic acid (RA). The analyzed undifferentiated cell lines are very similar based on their global gene expression pattern and show 97-99% identity dependent on the analyzed background. Only 621 genes are differentially expressed in cells derived from mouse 129SV-background and 72 genes show differences in expression in cells generated from transgenic Stra8-EGFP/Rosa26-LacZ-background. Both maGSCs and ESCs express the same genes involved in the regulation of pluripotency and even show no differences in the expression level of these genes. When comparing maGSCs with previously published signature genes of other pluripotent cell lines, we found that maGSCs shared a very similar gene expression pattern with embryonic germ cells (EGCs). Also after differentiation of maGSCs and ESCs the transcriptomes of the cell lines are nearly identical which suggests that both cell types differentiate spontaneously in a very similar way. This is the first study, at transcriptome level, to compare ESCs and a pluripotent cell line derived from an adult organism (maGSCs). PMID:20624824

  15. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats

    SciTech Connect

    Armenti, AnnMarie E.; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-12-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 {mu}g/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P < 0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P < 0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P < 0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor {beta} was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P < 0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P < 0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.

  16. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    PubMed

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. PMID:26890892

  17. Developmental Methoxychlor Exposure Affects Multiple Reproductive Parameters and Ovarian: Folliculogenesis and Gene Expression in Adult Rats

    PubMed Central

    Armenti, AnnMarie E.; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-01-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 μg/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post-coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P < 0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P < 0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P < 0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor β was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P < 0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P < 0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis. PMID:18848953

  18. Brain white matter structure and COMT gene are linked to second-language learning in adults.

    PubMed

    Mamiya, Ping C; Richards, Todd L; Coe, Bradley P; Eichler, Evan E; Kuhl, Patricia K

    2016-06-28

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects' grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype. PMID:27298360

  19. Brain white matter structure and COMT gene are linked to second-language learning in adults

    PubMed Central

    Mamiya, Ping C.; Richards, Todd L.; Coe, Bradley P.; Eichler, Evan E.; Kuhl, Patricia K.

    2016-01-01

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects’ grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype. PMID:27298360

  20. Desensitization and Incomplete Recovery of Hepatic Target Genes After Chronic Thyroid Hormone Treatment and Withdrawal in Male Adult Mice.

    PubMed

    Ohba, Kenji; Leow, Melvin Khee-Shing; Singh, Brijesh Kumar; Sinha, Rohit Anthony; Lesmana, Ronny; Liao, Xiao-Hui; Ghosh, Sujoy; Refetoff, Samuel; Sng, Judy Chia Ghee; Yen, Paul Michael

    2016-04-01

    Clinical symptoms may vary and not necessarily reflect serum thyroid hormone (TH) levels during acute and chronic hyperthyroidism as well as recovery from hyperthyroidism. We thus examined changes in hepatic gene expression and serum TH/TSH levels in adult male mice treated either with a single T3 (20 μg per 100 g body weight) injection (acute T3) or daily injections for 14 days (chronic T3) followed by 10 days of withdrawal. Gene expression arrays from livers harvested at these time points showed that among positively-regulated target genes, 320 were stimulated acutely and 429 chronically by T3. Surprisingly, only 69 of 680 genes (10.1%) were induced during both periods, suggesting desensitization of the majority of acutely stimulated target genes. About 90% of positively regulated target genes returned to baseline expression levels after 10 days of withdrawal; however, 67 of 680 (9.9%) did not return to baseline despite normalization of serum TH/TSH levels. Similar findings also were observed for negatively regulated target genes. Chromatin immunoprecipitation analysis of representative positively regulated target genes suggested that acetylation of H3K9/K14 was associated with acute stimulation, whereas trimethylation of H3K4 was associated with chronic stimulation. In an in vivo model of chronic intrahepatic hyperthyroidism since birth, adult male monocarboxylate transporter-8 knockout mice also demonstrated desensitization of most acutely stimulated target genes that were examined. In summary, we have identified transcriptional desensitization and incomplete recovery of gene expression during chronic hyperthyroidism and recovery. Our findings may be a potential reason for discordance between clinical symptoms and serum TH levels observed in these conditions. PMID:26866609

  1. cap alpha. -skeletal and. cap alpha. -cardiac actin genes are coexpressed in adult human skeletal muscle and heart

    SciTech Connect

    Gunning, P.; Ponte, P.; Blau, H.; Kedes, L.

    1983-11-01

    The authors determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes, derived from ..cap alpha.. skeletal, ..beta..- and ..gamma..-actin cDNAs and from an ..cap alpha..-cardiac actin genomic clone, they showed that 28 of the cDNAs correspond to ..cap alpha..-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from ..cap alpha..-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle ..cap alpha..-cardiac actin cDNAs are derived from transcripts of the cloned ..cap alpha..-cardiac actin gene. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. They conclude that ..cap alpha..-skeletal and ..cap alpha..-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (..beta.. and ..gamma..) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, they postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.

  2. A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ.

    PubMed Central

    Abdelilah-Seyfried, S; Chan, Y M; Zeng, C; Justice, N J; Younger-Shepherd, S; Sharp, L E; Barbel, S; Meadows, S A; Jan, L Y; Jan, Y N

    2000-01-01

    The Drosophila adult external sensory organ, comprising a neuron and its support cells, is derived from a single precursor cell via several asymmetric cell divisions. To identify molecules involved in sensory organ development, we conducted a tissue-specific gain-of-function screen. We screened 2293 independent P-element lines established by P. Rorth and identified 105 lines, carrying insertions at 78 distinct loci, that produced misexpression phenotypes with changes in number, fate, or morphology of cells of the adult external sensory organ. On the basis of the gain-of-function phenotypes of both internal and external support cells, we subdivided the candidate lines into three classes. The first class (52 lines, 40 loci) exhibits partial or complete loss of adult external sensory organs. The second class (38 lines, 28 loci) is associated with increased numbers of entire adult external sensory organs or subsets of sensory organ cells. The third class (15 lines, 10 loci) results in potential cell fate transformations. Genetic and molecular characterization of these candidate lines reveals that some loci identified in this screen correspond to genes known to function in the formation of the peripheral nervous system, such as big brain, extra macrochaetae, and numb. Also emerging from the screen are a large group of previously uncharacterized genes and several known genes that have not yet been implicated in the development of the peripheral nervous system. PMID:10835395

  3. Faecal Microbiota Composition in Adults Is Associated with the FUT2 Gene Determining the Secretor Status

    PubMed Central

    Wacklin, Pirjo; Tuimala, Jarno; Nikkilä, Janne; Sebastian Tims; Mäkivuokko, Harri; Alakulppi, Noora; Laine, Pia; Rajilic-Stojanovic, Mirjana; Paulin, Lars; de Vos, Willem M.; Mättö, Jaana

    2014-01-01

    The human intestine is colonised with highly diverse and individually defined microbiota, which likely has an impact on the host well-being. Drivers of the individual variation in the microbiota compositions are multifactorial and include environmental, host and dietary factors. We studied the impact of the host secretor status, encoded by fucosyltransferase 2 (FUT2) -gene, on the intestinal microbiota composition. Secretor status determines the expression of the ABH and Lewis histo-blood group antigens in the intestinal mucosa. The study population was comprised of 14 non-secretor (FUT2 rs601338 genotype AA) and 57 secretor (genotypes GG and AG) adult individuals of western European descent. Intestinal microbiota was analyzed by PCR-DGGE and for a subset of 12 non-secretor subjects and 12 secretor subjects additionally by the 16S rRNA gene pyrosequencing and the HITChip phylogenetic microarray analysis. All three methods showed distinct clustering of the intestinal microbiota and significant differences in abundances of several taxa representing dominant microbiota between the non-secretors and the secretors as well as between the FUT2 genotypes. In addition, the non-secretors had lower species richness than the secretors. The soft clustering of microbiota into enterotypes (ET) 1 and 3 showed that the non-secretors had a higher probability of belonging to ET1 and the secretors to ET3. Our study shows that secretor status and FUT2 polymorphism are associated with the composition of human intestinal microbiota, and appears thus to be one of the key drivers affecting the individual variation of human intestinal microbiota. PMID:24733310

  4. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    PubMed Central

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (−)-PCB149, and (+)-PCB149. Greater enrichment of (−)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (−)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149. PMID:26786282

  5. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149.

    PubMed

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2',3,4',5',6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (-)-PCB149, and (+)-PCB149. Greater enrichment of (-)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (-)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149. PMID:26786282

  6. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    NASA Astrophysics Data System (ADS)

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (-)-PCB149, and (+)-PCB149. Greater enrichment of (-)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (-)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149.

  7. Adult midgut expressed sequence tags from the tsetse fly Glossina morsitans morsitans and expression analysis of putative immune response genes

    PubMed Central

    Lehane, M J; Aksoy, S; Gibson, W; Kerhornou, A; Berriman, M; Hamilton, J; Soares, M B; Bonaldo, M F; Lehane, S; Hall, N

    2003-01-01

    Background Tsetse flies transmit African trypanosomiasis leading to half a million cases annually. Trypanosomiasis in animals (nagana) remains a massive brake on African agricultural development. While trypanosome biology is widely studied, knowledge of tsetse flies is very limited, particularly at the molecular level. This is a serious impediment to investigations of tsetse-trypanosome interactions. We have undertaken an expressed sequence tag (EST) project on the adult tsetse midgut, the major organ system for establishment and early development of trypanosomes. Results A total of 21,427 ESTs were produced from the midgut of adult Glossina morsitans morsitans and grouped into 8,876 clusters or singletons potentially representing unique genes. Putative functions were ascribed to 4,035 of these by homology. Of these, a remarkable 3,884 had their most significant matches in the Drosophila protein database. We selected 68 genes with putative immune-related functions, macroarrayed them and determined their expression profiles following bacterial or trypanosome challenge. In both infections many genes are downregulated, suggesting a malaise response in the midgut. Trypanosome and bacterial challenge result in upregulation of different genes, suggesting that different recognition pathways are involved in the two responses. The most notable block of genes upregulated in response to trypanosome challenge are a series of Toll and Imd genes and a series of genes involved in oxidative stress responses. Conclusions The project increases the number of known Glossina genes by two orders of magnitude. Identification of putative immunity genes and their preliminary characterization provides a resource for the experimental dissection of tsetse-trypanosome interactions. PMID:14519198

  8. Differential expression of the FMRF gene in adult and hatchling stellate ganglia of the squid Loligo pealei

    PubMed Central

    Burbach, J. Peter H.; Grant, Philip; Hellemons, Anita J. C. G. M.; Degiorgis, Joseph A.; Li, Ka Wan; Pant, Harish C.

    2014-01-01

    Summary The giant fiber system of the squid Loligo pealei mediates the escape response and is an important neurobiological model. Here, we identified an abundant transcript in the stellate ganglion (SG) that encodes a FMRFamide precursor, and characterized FMRFamide and FI/LRF-amide peptides. To determine whether FMRFamide plays a role in the adult and hatchling giant fiber system, we studied the expression of the Fmrf gene and FMRFamide peptides. In stage 29 embryos and stage 30 hatchlings, Ffmr transcripts and FMRFamide peptide were low to undetectable in the SG, in contrast to groups of neurons intensely expressing the Fmrf gene in several brain lobes, including those that innervate the SG. In the adult SG the Fmrf gene was highly expressed, but the FMRFamide peptide was in low abundance. Intense staining for FMRFamide in the adult SG was confined to microneurons and fibers in the neuropil and to small fibers surrounding giant axons in stellar nerves. This shows that the Fmrf gene in the SG is strongly regulated post-hatching, and suggests that the FMRFamide precursor is incompletely processed in the adult SG. The data suggest that the SG only employs the Fmrf gene post-hatching and restricts the biosynthesis of FMRFamide, demonstrating that this peptide is not a major transmitter of the giant fiber system. This contrasts with brain lobes that engage FMRFamide embryonically as a regulatory peptide in multiple neuronal systems, including the afferent fibers that innervate the SG. The biological significance of these mechanisms may be to generate diversity within Fmrf-expressing systems in cephalopods. PMID:24326188

  9. A comparison of the multiple oocyte maturation gene expression patterns between the newborn and adult mouse ovary

    PubMed Central

    Bahmanpour, Soghra; Talaei Khozani, Tahereh; Zarei fard, Nehleh; Jaberipour, Mansoureh; Hosseini, Ahmah; Esmaeilpour, Tahereh

    2013-01-01

    Background: The interaction between follicular cells and oocyte leads to a change in gene expression involved in oocyte maturation processes. Objective: The purpose of this study was to quantify the expression of more common genes involved in follicular growth and oocyte developmental competence. Materials and Methods: In this experimental study, the expression of genes was evaluated with qRT-PCR assay in female BALB/c mice pups at 3-day of pre-pubertal and 8 week old virgin adult ovaries. The tissue was prepared by H&E staining for normal morphological appearance. The data were calculated with the 2-∆Ct formula and assessed using non-parametric two-tailed Mann-Whitney test. The p<0.05 was considered as significant. Results: The data showed a significant increase in the level of Stra8 and GDF9 in adult compared with newborn mice ovaries (p=0.049). In contrast, a significant decrease in the level of Mvh, REC8, SCP1, SCP3, and ZP2 was observed in adult mice ovaries compared to those in the newborn mice ovaries (all p=0.049 except SCP1: p=0.046). There was no significant difference in the level of OCT4 and Cx37 expression between adult and newborn mice ovaries. Conclusion: The modifications in gene expression patterns coordinate the follicular developmental processes. Furthermore, the findings showed higher expression level of premeiotic gene (Stra8) and lower level of meiotic entry markers (SCP1, SCP3, and REC8) in juvenile than newborn mouse ovaries. This article extracted from Ph.D. thesis. (Nehleh Zarei fard) PMID:24639702

  10. The association between romantic relationship status and 5-HT1A gene in young adults.

    PubMed

    Liu, Jinting; Gong, Pingyuan; Zhou, Xiaolin

    2014-01-01

    What factors determine whether or not a young adult will fall in love? Sociological surveys and psychological studies have shown that non-genetic factors, such as socioeconomic status, external appearance, and personality attributes, are crucial components in romantic relationship formation. Here we demonstrate that genetic variants also contribute to romantic relationship formation. As love-related behaviors are associated with serotonin levels in the brain, this study investigated to what extent a polymorphism (C-1019G, rs6295) of 5-HT1A gene is related to relationship status in 579 Chinese Han people. We found that 50.4% of individuals with the CC genotype and 39.0% with CG/GG genotype were in romantic relationship. Logistic regression analysis indicated that the C-1019G polymorphism was significantly associated with the odds of being single both before and after controlling for socioeconomic status, external appearance, religious beliefs, parenting style, and depressive symptoms. These findings provide, for the first time, direct evidence for the genetic contribution to romantic relationship formation. PMID:25412229

  11. Fat brains, greedy genes, and parent power: a biobehavioural risk model of child and adult obesity.

    PubMed

    Carnell, Susan; Kim, Yale; Pryor, Katherine

    2012-06-01

    We live in a world replete with opportunities to overeat highly calorific, palatable foods - yet not everyone becomes obese. Why? We propose that individuals show differences in appetitive traits (e.g. food cue responsiveness, satiety sensitivity) that manifest early in life and predict their eating behaviours and weight trajectories. What determines these traits? Parental feeding restriction is associated with higher child adiposity, pressure to eat with lower adiposity, and both strategies with less healthy eating behaviours, while authoritative feeding styles coincide with more positive outcomes. But, on the whole, twin and family studies argue that nature has a greater influence than nurture on adiposity and eating behaviour, and behavioural investigations of genetic variants that are robustly associated with obesity (e.g. FTO) confirm that genes influence appetite. Meanwhile, a growing body of neuroimaging studies in adults, children and high risk populations suggests that structural and functional variation in brain networks associated with reward, emotion and control might also predict appetite and obesity, and show genetic influence. Together these different strands of evidence support a biobehavioural risk model of obesity development. Parental feeding recommendations should therefore acknowledge the powerful - but modifiable - contribution of genetic and neurological influences to children's eating behaviour. PMID:22724640

  12. Direct Screening of Blood by PCR and Pyrosequencing for a 16S rRNA Gene Target from Emergency Department and Intensive Care Unit Patients Being Evaluated for Bloodstream Infection

    PubMed Central

    Moore, M. S.; McCarroll, M. G.; McCann, C. D.; May, L.; Younes, N.

    2015-01-01

    Here we compared the results of PCR/pyrosequencing to those of culture for detecting bacteria directly from blood. DNA was extracted from 1,130 blood samples from 913 patients suspected of bacteremia (enrollment criteria were physician-ordered blood culture and complete blood count [CBC]), and 102 controls (healthy blood donors). Real-time PCR assays for beta-globin and Universal 16S rRNA gene targets were performed on all 1,232 extracts. Specimens identified by Universal 16S rRNA gene PCR/pyrosequencing as containing staphylococci, streptococci, or enteric Gram-negative rods had target-specific PCR/pyrosequencing performed. Amplifiable beta-globin (melting temperature [Tm], 87.2°C ± 0.2°C) occurred in 99.1% (1,120/1,130) of patient extracts and 100% (102/102) of controls. Concordance between PCR/pyrosequencing and culture was 96.9% (1,085/1,120) for Universal 16S rRNA gene targets, with positivity rates of 9.4% (105/1,120) and 11.3% (126/1,120), respectively. Bacteria cultured included staphylococci (59/126, 46.8%), Gram-negative rods (34/126, 27%), streptococci (32/126, 25.4%), and a Gram-positive rod (1/126, 0.8%). All controls screened negative by PCR/pyrosequencing. Clinical performance characteristics (95% confidence interval [CI]) for Universal 16S rRNA gene PCR/pyrosequencing included sensitivity of 77.8% (69.5 to 84.7), specificity of 99.3% (98.6 to 99.7), positive predictive value (PPV) of 93.3% (86.8 to 97.3), and negative predictive value (NPV) of 97.2% (96.0 to 98.2). Bacteria were accurately identified in 77.8% (98/126) of culture-confirmed sepsis samples with Universal 16S PCR/pyrosequencing and in 76.4% (96/126) with follow-up target-specific PCR/pyrosequencing. The initial PCR/pyrosequencing took ∼5.5 h to complete or ∼7.5 h when including target-specific PCR/pyrosequencing compared to 27.9 ± 13.6 h for Gram stain or 81.6 ± 24.0 h for phenotypic identification. In summary, this molecular approach detected the causative bacteria in over

  13. Globin gene-associated restriction-fragment-length polymorphisms in southern African peoples.

    PubMed Central

    Ramsay, M; Jenkins, T

    1987-01-01

    The combination of polymorphic restriction-enzyme sites in the 3' region of the beta-globin gene cluster shows very little variation in southern-African Bantu-speaking black and Kalahari !Kung San populations. The sites of the 5' region, on the other hand, show marked variation, and two common haplotypes are present--the "Negro" type (- - - - +) and the "San" type (- + - - +)--in frequencies of .404 and .106, respectively, in the Bantu-speakers and .262 and .405, respectively, in the San. Twenty of 23 beta s-associated haplotypes in southern-African Bantu-speaking black subjects were the same as that found commonly in the Central African Republic (CAR)--i.e., the "Bantu" type--a finding providing the first convincing biological evidence for the common ancestry of geographically widely separated speakers of languages belonging to the Bantu family. The (-alpha) haplotype has a frequency of .21 in the Venda, .07 in both the Sotho-Tswana and the Nguni, and .06 among the !Kung San. These data are interpreted in the light of Plasmodium falciparum malaria selection and population movements in the African subcontinent. PMID:2891298

  14. HbVar: A relational database of human hemoglobin variants and thalassemia mutations at the globin gene server.

    PubMed

    Hardison, Ross C; Chui, David H K; Giardine, Belinda; Riemer, Cathy; Patrinos, George P; Anagnou, Nicholas; Miller, Webb; Wajcman, Henri

    2002-03-01

    We have constructed a relational database of hemoglobin variants and thalassemia mutations, called HbVar, which can be accessed on the web at http://globin.cse.psu.edu. Extensive information is recorded for each variant and mutation, including a description of the variant and associated pathology, hematology, electrophoretic mobility, methods of isolation, stability information, ethnic occurrence, structure studies, functional studies, and references. The initial information was derived from books by Dr. Titus Huisman and colleagues [Huisman et al., 1996, 1997, 1998]. The current database is updated regularly with the addition of new data and corrections to previous data. Queries can be formulated based on fields in the database. Tables of common categories of variants, such as all those involving the alpha1-globin gene (HBA1) or all those that result in high oxygen affinity, are maintained by automated queries on the database. Users can formulate more precise queries, such as identifying "all beta-globin variants associated with instability and found in Scottish populations." This new database should be useful for clinical diagnosis as well as in fundamental studies of hemoglobin biochemistry, globin gene regulation, and human sequence variation at these loci. PMID:11857738

  15. An association analysis of the HLA gene region in latent autoimmune diabetes in adults

    PubMed Central

    2011-01-01

    Aims/hypothesis Pathophysiological similarities between latent autoimmune diabetes in adults (LADA) and type 1 diabetes indicate an overlap in genetic susceptibility. HLA-DRB1 and HLA-DQB1 are major susceptibility genes for type 1 diabetes but studies of these genes in LADA have been limited. Our aim was to define patterns of HLA-encoded susceptibility/protection in a large, well characterised LADA cohort, and to establish association with disease and age at diagnosis. Materials and methods Patients with LADA (n=387, including 211 patients from the UK Prospective Diabetes Study) and non-diabetic control subjects (n=327) were of British/Irish European origin. The HLA-DRB1 and -DQB1 genes were genotyped by sequence-specific PCR. Results As in type 1 diabetes mellitus, DRB1*0301_DQB1*0201 (odds ratio [OR]=3.08, 95% CI 2.32–4.12, p=1.2× 10−16) and DRB1*0401_DQB1*0302 (OR=2.57, 95% CI 1.80–3.73, p=4.5×10−8) were the main susceptibility haplotypes in LADA, and DRB1*1501_DQB1*0602 was protective (OR=0.21, 95% CI 0.13–0.34, p=4.2×10−13). Differential susceptibility was conferred by DR4 subtypes: DRB1*0401 was predisposing (OR=1.79, 95% CI 1.35–2.38, p=2.7×10−5) whereas DRB1*0403 was protective (OR=0.37, 95% CI 0.13–0.97, p=0.033). The highest-risk genotypes were DRB1*0301/DRB1*0401 and DQB1*0201/DQB1*0302 (OR=5.14, 95% CI 2.68–10.69, p=1.3×10−8; and OR=6.88, 95% CI 3.54–14.68, p=1.2×10−11, respectively). These genotypes and those containing DRB1*0401 and DQB1*0302 associated with a younger age at diagnosis in LADA, whereas genotypes containing DRB1*1501 and DQB1*0602 associated with an older age at diagnosis. Conclusions/interpretation Patterns of susceptibility at the HLA-DRB1 and HLA-DQB1 loci in LADA are similar to those reported for type 1 diabetes, supporting the hypothesis that autoimmune diabetes occurring in adults is an age-related extension of the pathophysiological process presenting as childhood-onset type 1 diabetes. PMID

  16. [Correlation of adult AML Npm1 mutations with prognosis and its relationship with gene mutation of FLT3 and CEBPA].

    PubMed

    Bao, Li-Yan; Wang, Ji-Shi

    2010-02-01

    This study was aimed to investigate the correlation of 12th exon mutations in the npm1 gene with prognosis of adult AML patients and to explore the relationship of 12th exon mutation with other gene mutations. The specimen of bone marrow and peripheral blood from AML patients, the informations of medical history, symptoms, related image examinations, blood routine examination, NAP, oxygen saturation level in artery blood and EPO level in serum were collected; the bcr/abl fusion gene was detected by routine examination of bone marrow + biopsy + chromosome mapping + FISH. The patients were typed according to WHO classification. The DNA in cells was extracted, the npm1 gene mutation was detected by allele specific PCR combined were the sequencing. The results indicated that the npm1 heterozygote gene mutation was found in 72 out of 150 AML patients with normal cytogenetics (48%, 72/150). 48% patients showed a frameshift mutation in the C-terminal region of the NPM1 protein. The AML patients with npm1 gene mutation had specific clinical, phenotypic and genetic characteristics. The statistical analysis demonstrated the relationship between npm1 and flt3 ITDs. The patients with npm1 mutation showed a better response to induction therapy, furthermore, the overall survival (OS) rate of patients without flt3 ITD mutation was enhanced. The multivariate analysis demonstrated that the npm1 gene mutation and cebpa mutation positively correlated to the OS rate, and the correlation of flt3 mutation to OS rate showed negative. It is concluded that npm1 mutation is a favorable independent prognostic factor for adult AML patients with normal cytogenetics under conditions without FIT3 gene mutation. PMID:20137111

  17. Comparative Transcriptomics Reveals Key Gene Expression Differences between Diapausing and Non-Diapausing Adults of Culex pipiens

    PubMed Central

    Kang, David S.; Denlinger, David L.; Sim, Cheolho

    2016-01-01

    Diapause is a critical eco-physiological adaptation for winter survival in the West Nile Virus vector, Culex pipiens, but little is known about the molecular mechanisms that distinguish diapause from non-diapause in this important mosquito species. We used Illumina RNA-seq to simultaneously identify and quantify relative transcript levels in diapausing and non-diapausing adult females. Among 65,623,095 read pairs, we identified 41 genes with significantly different transcript abundances between these two groups. Transcriptome divergences between these two phenotypes include genes related to juvenile hormone synthesis, anaerobic metabolism, innate immunity and cold tolerance. PMID:27128578

  18. The major human erythroid DNA-binding protein (GF-1): Primary sequence and localization of the gene to the X chromosome

    SciTech Connect

    Zon, L.I.; Tsai, S.F.; Burgess, S.; Orkin, S.H. Howard Hughes Medical Institute, Boston, MA ); Matsudaira, P. ); Bruns, G.A.P. )

    1990-01-01

    Genes expressed in erythroid cells contain binding sites for a cell-specific nuclear factor, GF-1 (NF-E1, Eryf 1), believed to be an important transcriptional regulator. Previously the authors characterized murine GF-1 as a 413-amino acid polypeptide containing two cysteine-cysteine regions reminiscent of zinc-finger DNA-binding domains. By cross-hybridization to the finger domain of murine GF-1 they have isolated cDNA encoding the human homolog. Peptide sequencing of purified human GF-1 confirmed the authenticity of the human cDNA. The predicted primary sequence of human GF-1 is highly similar to that of murine GF-1, particularly in the DNA-binding region. Although the DNA-binding domains of human, murine, and chicken proteins are remarkably conserved, the mammalian polypeptides are strikingly divergent from the avian counterpart in other regions, most likely those responsible for transcriptional activation. By hybridization to panels of human-rodent DNAs they have assigned the human GF-1 locus to Xp21-11. The localization of the gene to the X chromosome has important implications for hereditary persistence of fetal hemoglobin syndromes unlinked to the {beta}-globin cluster and for genetic experiments designed to test the role of the factor in erythroid cell gene expression.

  19. Autosomal, mtDNA, and Y-chromosome diversity in Amerinds: pre- and post-Columbian patterns of gene flow in South America.

    PubMed

    Mesa, N R; Mondragón, M C; Soto, I D; Parra, M V; Duque, C; Ortíz-Barrientos, D; García, L F; Velez, I D; Bravo, M L; Múnera, J G; Bedoya, G; Bortolini, M C; Ruiz-Linares, A

    2000-11-01

    To evaluate sex-specific differences in gene flow between Native American populations from South America and between those populations and recent immigrants to the New World, we examined the genetic diversity at uni- and biparental genetic markers of five Native American populations from Colombia and in published surveys from native South Americans. The Colombian populations were typed for five polymorphisms in mtDNA, five restriction sites in the beta-globin gene cluster, the DQA1 gene, and nine autosomal microsatellites. Elsewhere, we published results for seven Y-chromosome microsatellites in the same populations. Autosomal polymorphisms showed a mean G(ST) of 6.8%, in agreement with extensive classical marker studies of South American populations. MtDNA and Y-chromosome markers resulted in G(ST) values of 0.18 and 0.165, respectively. When only Y chromosomes of confirmed Amerind origin were used in the calculations (as defined by the presence of allele T at locus DYS199), G(ST) increased to 0.22. G(ST) values calculated from published data for other South American natives were 0.3 and 0.29 for mtDNA and Amerind Y chromosomes, respectively. The concordance of these estimates does not support an important difference in migration rates between the sexes throughout the history of South Amerinds. Admixture analysis of the Colombian populations suggests an asymmetric pattern of mating involving mostly immigrant men and native women. PMID:11032789

  20. Parent-of-Origin Effects of the APOB Gene on Adiposity in Young Adults.

    PubMed

    Hochner, Hagit; Allard, Catherine; Granot-Hershkovitz, Einat; Chen, Jinbo; Sitlani, Colleen M; Sazdovska, Sandra; Lumley, Thomas; McKnight, Barbara; Rice, Kenneth; Enquobahrie, Daniel A; Meigs, James B; Kwok, Pui; Hivert, Marie-France; Borecki, Ingrid B; Gomez, Felicia; Wang, Ting; van Duijn, Cornelia; Amin, Najaf; Rotter, Jerome I; Stamatoyannopoulos, John; Meiner, Vardiella; Manor, Orly; Dupuis, Josée; Friedlander, Yechiel; Siscovick, David S

    2015-10-01

    Loci identified in genome-wide association studies (GWAS) of cardio-metabolic traits account for a small proportion of the traits' heritability. To date, most association studies have not considered parent-of-origin effects (POEs). Here we report investigation of POEs on adiposity and glycemic traits in young adults. The Jerusalem Perinatal Family Follow-Up Study (JPS), comprising 1250 young adults and their mothers was used for discovery. Focusing on 18 genes identified by previous GWAS as associated with cardio-metabolic traits, we used linear regression to examine the associations of maternally- and paternally-derived offspring minor alleles with body mass index (BMI), waist circumference (WC), fasting glucose and insulin. We replicated and meta-analyzed JPS findings in individuals of European ancestry aged ≤50 belonging to pedigrees from the Framingham Heart Study, Family Heart Study and Erasmus Rucphen Family study (total N≅4800). We considered p<2.7x10-4 statistically significant to account for multiple testing. We identified a common coding variant in the 4th exon of APOB (rs1367117) with a significant maternally-derived effect on BMI (β = 0.8; 95%CI:0.4,1.1; p = 3.1x10-5) and WC (β = 2.7; 95%CI:1.7,3.7; p = 2.1x10-7). The corresponding paternally-derived effects were non-significant (p>0.6). Suggestive maternally-derived associations of rs1367117 were observed with fasting glucose (β = 0.9; 95%CI:0.3,1.5; p = 4.0x10-3) and insulin (ln-transformed, β = 0.06; 95%CI:0.03,0.1; p = 7.4x10-4). Bioinformatic annotation for rs1367117 revealed a variety of regulatory functions in this region in liver and adipose tissues and a 50% methylation pattern in liver only, consistent with allelic-specific methylation, which may indicate tissue-specific POE. Our findings demonstrate a maternal-specific association between a common APOB variant and adiposity, an association that was not previously detected in GWAS. These results provide evidence for the role of

  1. Parent-of-Origin Effects of the APOB Gene on Adiposity in Young Adults

    PubMed Central

    Hochner, Hagit; Allard, Catherine; Granot-Hershkovitz, Einat; Chen, Jinbo; Sitlani, Colleen M.; Sazdovska, Sandra; Lumley, Thomas; McKnight, Barbara; Rice, Kenneth; Enquobahrie, Daniel A.; Meigs, James B.; Kwok, Pui; Hivert, Marie-France; Borecki, Ingrid B.; Gomez, Felicia; Wang, Ting; van Duijn, Cornelia; Amin, Najaf; Rotter, Jerome I.; Stamatoyannopoulos, John; Meiner, Vardiella; Manor, Orly; Dupuis, Josée; Friedlander, Yechiel; Siscovick, David S.

    2015-01-01

    Loci identified in genome-wide association studies (GWAS) of cardio-metabolic traits account for a small proportion of the traits' heritability. To date, most association studies have not considered parent-of-origin effects (POEs). Here we report investigation of POEs on adiposity and glycemic traits in young adults. The Jerusalem Perinatal Family Follow-Up Study (JPS), comprising 1250 young adults and their mothers was used for discovery. Focusing on 18 genes identified by previous GWAS as associated with cardio-metabolic traits, we used linear regression to examine the associations of maternally- and paternally-derived offspring minor alleles with body mass index (BMI), waist circumference (WC), fasting glucose and insulin. We replicated and meta-analyzed JPS findings in individuals of European ancestry aged ≤50 belonging to pedigrees from the Framingham Heart Study, Family Heart Study and Erasmus Rucphen Family study (total N≅4800). We considered p<2.7x10-4 statistically significant to account for multiple testing. We identified a common coding variant in the 4th exon of APOB (rs1367117) with a significant maternally-derived effect on BMI (β = 0.8; 95%CI:0.4,1.1; p = 3.1x10-5) and WC (β = 2.7; 95%CI:1.7,3.7; p = 2.1x10-7). The corresponding paternally-derived effects were non-significant (p>0.6). Suggestive maternally-derived associations of rs1367117 were observed with fasting glucose (β = 0.9; 95%CI:0.3,1.5; p = 4.0x10-3) and insulin (ln-transformed, β = 0.06; 95%CI:0.03,0.1; p = 7.4x10-4). Bioinformatic annotation for rs1367117 revealed a variety of regulatory functions in this region in liver and adipose tissues and a 50% methylation pattern in liver only, consistent with allelic-specific methylation, which may indicate tissue-specific POE. Our findings demonstrate a maternal-specific association between a common APOB variant and adiposity, an association that was not previously detected in GWAS. These results provide evidence for the role of

  2. Sensitive Tumorigenic Potential Evaluation of Adult Human Multipotent Neural Cells Immortalized by hTERT Gene Transduction

    PubMed Central

    Jeong, Da Eun; Kim, Sung Soo; Song, Hye Jin; Pyeon, Hee Jang; Kang, Kyeongjin; Hong, Seung-Cheol; Nam, Do-Hyun; Joo, Kyeung Min

    2016-01-01

    Stem cells and therapeutic genes are emerging as a new therapeutic approach to treat various neurodegenerative diseases with few effective treatment options. However, potential formation of tumors by stem cells has hampered their clinical application. Moreover, adequate preclinical platforms to precisely test tumorigenic potential of stem cells are controversial. In this study, we compared the sensitivity of various animal models for in vivo stem cell tumorigenicity testing to identify the most sensitive platform. Then, tumorigenic potential of adult human multipotent neural cells (ahMNCs) immortalized by the human telomerase reverse transcriptase (hTERT) gene was examined as a stem cell model with therapeutic genes. When human glioblastoma (GBM) cells were injected into adult (4–6-week-old) Balb/c-nu, adult NOD/SCID, adult NOG, or neonate (1–2-week-old) NOG mice, the neonate NOG mice showed significantly faster tumorigenesis than that of the other groups regardless of intracranial or subcutaneous injection route. Two kinds of ahMNCs (682TL and 779TL) were primary cultured from surgical samples of patients with temporal lobe epilepsy. Although the ahMNCs were immortalized by lentiviral hTERT gene delivery (hTERT-682TL and hTERT-779TL), they did not form any detectable masses, even in the most sensitive neonate NOG mouse platform. Moreover, the hTERT-ahMNCs had no gross chromosomal abnormalities on a karyotype analysis. Taken together, our data suggest that neonate NOG mice could be a sensitive animal platform to test tumorigenic potential of stem cell therapeutics and that ahMNCs could be a genetically stable stem cell source with little tumorigenic activity to develop regenerative treatments for neurodegenerative diseases. PMID:27391353

  3. Sensitive Tumorigenic Potential Evaluation of Adult Human Multipotent Neural Cells Immortalized by hTERT Gene Transduction.

    PubMed

    Lee, Kee Hang; Nam, Hyun; Jeong, Da Eun; Kim, Sung Soo; Song, Hye Jin; Pyeon, Hee Jang; Kang, Kyeongjin; Hong, Seung-Cheol; Nam, Do-Hyun; Joo, Kyeung Min

    2016-01-01

    Stem cells and therapeutic genes are emerging as a new therapeutic approach to treat various neurodegenerative diseases with few effective treatment options. However, potential formation of tumors by stem cells has hampered their clinical application. Moreover, adequate preclinical platforms to precisely test tumorigenic potential of stem cells are controversial. In this study, we compared the sensitivity of various animal models for in vivo stem cell tumorigenicity testing to identify the most sensitive platform. Then, tumorigenic potential of adult human multipotent neural cells (ahMNCs) immortalized by the human telomerase reverse transcriptase (hTERT) gene was examined as a stem cell model with therapeutic genes. When human glioblastoma (GBM) cells were injected into adult (4-6-week-old) Balb/c-nu, adult NOD/SCID, adult NOG, or neonate (1-2-week-old) NOG mice, the neonate NOG mice showed significantly faster tumorigenesis than that of the other groups regardless of intracranial or subcutaneous injection route. Two kinds of ahMNCs (682TL and 779TL) were primary cultured from surgical samples of patients with temporal lobe epilepsy. Although the ahMNCs were immortalized by lentiviral hTERT gene delivery (hTERT-682TL and hTERT-779TL), they did not form any detectable masses, even in the most sensitive neonate NOG mouse platform. Moreover, the hTERT-ahMNCs had no gross chromosomal abnormalities on a karyotype analysis. Taken together, our data suggest that neonate NOG mice could be a sensitive animal platform to test tumorigenic potential of stem cell therapeutics and that ahMNCs could be a genetically stable stem cell source with little tumorigenic activity to develop regenerative treatments for neurodegenerative diseases. PMID:27391353

  4. Analysis of histone gene expression in adult tissues of the sea urchins Strongylocentrotus purpuratus and Lytechinus pictus: tissue-specific expression of sperm histone genes.

    PubMed Central

    Lieber, T; Weisser, K; Childs, G

    1986-01-01

    We analyzed the histone mRNA population found in several adult tissues of the sea urchin Strongylocentrotus purpuratus and in testis of Lytechinus pictus. Unique species of H1 and H2b mRNAs encoding the sperm-specific histone subtypes can be found exclusively in testis RNA. S. purpuratus contains two distinct testis-specific H1 transcripts, while L. pictus contains one such transcript. Each of these mRNAs is larger than either early or late embryonic H1 mRNAs. Other somatic adult tissues contain transcripts derived from members of the late embryonic H1 histone gene family. S. purpuratus contains one H2b transcript found exclusively in testis, while L. pictus contains two such H2b mRNAs. Similarly, in tissues other than testis, late H2b transcripts were found. While there is no sperm-specific H2a protein, a limited set of late histone H2a genes encoding primarily the H2a-beta subtype is expressed in testis. The majority of the H2a protein found in diploid adult tissues is also the H2a-beta subtype; however, the size of the H2a transcripts differs between testis and other tissues. We conclude that different members of the late H2a gene family are differentially expressed in embryos and adult tissues. We prepared and characterized cDNA clones encoding the sperm-specific H2b protein as well as the H2a-beta protein found in testis. Images PMID:3785204

  5. Patterns of differential gene expression in adult rotation-resistant and wild-type western corn rootworm digestive tracts

    PubMed Central

    Chu, Chia-Ching; Zavala, Jorge A; Spencer, Joseph L; Curzi, Matías J; Fields, Christopher J; Drnevich, Jenny; Siegfried, Blair D; Seufferheld, Manfredo J

    2015-01-01

    The western corn rootworm (WCR,Diabrotica virgifera virgifera LeConte) is an important pest of corn. Annual crop rotation between corn and soybean disrupts the corn-dependent WCR life cycle and is widely adopted to manage this pest. This strategy selected for rotation-resistant (RR) WCR with reduced ovipositional fidelity to corn. Previous studies revealed that RR-WCR adults exhibit greater tolerance of soybean diets, different gut physiology, and host–microbe interactions compared to rotation-susceptible wild types (WT). To identify the genetic mechanisms underlying these phenotypic changes, a de novo assembly of the WCR adult gut transcriptome was constructed and used for RNA-sequencing analyses of RNA libraries from different WCR phenotypes fed with corn or soybean diets. Global gene expression profiles of WT- and RR-WCR were similar when feeding on corn diets, but different when feeding on soybean. Using network-based methods, we identified gene modules transcriptionally correlated with the RR phenotype. Gene ontology enrichment analyses indicated that the functions of these modules were related to metabolic processes, immune responses, biological adhesion, and other functions/processes that appear to correlate to documented traits in RR populations. These results suggest that gut transcriptomic divergence correlated with brief soybean feeding and other physiological traits may exist between RR- and WT-WCR adults. PMID:26240606

  6. oct4-EGFP reporter gene expression marks the stem cells in embryonic development and in adult gonads of transgenic medaka.

    PubMed

    Froschauer, Alexander; Khatun, Mst Muslima; Sprott, David; Franz, Alexander; Rieger, Christiane; Pfennig, Frank; Gutzeit, Herwig O

    2013-01-01

    Maintenance of pluripotency in stem cells is tightly regulated among vertebrates. One of the key genes in this process is oct4, also referred to as pou5f1 in mammals and pou2 in teleosts. Pou5f1 evolved by duplication of pou2 early in the tetrapod lineage, but only monotremes and marsupials retained both genes. Either pou2 or pou5f1 was lost from the genomes of the other tetrapods that have been analyzed to date. Consequently, these two homologous genes are often designated oct4 in functional studies. In most vertebrates oct4 is expressed in pluripotent cells of the early embryo until the blastula stage, and later persist in germline stem cells until adulthood. The isolation and analysis of stem cells from embryo or adult individuals is hampered by the need for reliable markers that can identify and define the cell populations. Here, we report the faithful expression of EGFP under the control of endogenous pou2/oct4 promoters in transgenic medaka (Oryzias latipes). In vivo imaging in oct4-EGFP transgenic medaka reveals the temporal and spatial expression of pou2 in embryos and adults alike. We describe the temporal and spatial patterns of endogenous pou2 and oct4-EGFP expression in medaka with respect to germline and adult stem cells, and discuss applications of oct4-EGFP transgenic medaka in reproductive and stem cell biology. PMID:23139203

  7. Neofunctionalization of embryonic head patterning genes facilitates the positioning of novel traits on the dorsal head of adult beetles.

    PubMed

    Zattara, Eduardo E; Busey, Hannah A; Linz, David M; Tomoyasu, Yoshinori; Moczek, Armin P

    2016-07-13

    The origin and integration of novel traits are fundamental processes during the developmental evolution of complex organisms. Yet how novel traits integrate into pre-existing contexts remains poorly understood. Beetle horns represent a spectacular evolutionary novelty integrated within the context of the adult dorsal head, a highly conserved trait complex present since the origin of insects. We investigated whether otd1/2 and six3, members of a highly conserved gene network that instructs the formation of the anterior end of most bilaterians, also play roles in patterning more recently evolved traits. Using ablation-based fate-mapping, comparative larval RNA interference (RNAi) and transcript sequencing, we found that otd1/2, but not six3, play a fundamental role in the post-embryonic formation of the adult dorsal head and head horns of Onthophagus beetles. By contrast, neither gene appears to pattern the adult head of Tribolium flour beetles even though all are expressed in the dorsal head epidermis of both Onthophagus and Tribolium We propose that, at least in beetles, the roles of otd genes during post-embryonic development are decoupled from their embryonic functions, and that potentially non-functional post-embryonic expression in the dorsal head facilitated their co-option into a novel horn-patterning network during Onthophagus evolution. PMID:27412276

  8. Patterns of differential gene expression in adult rotation-resistant and wild-type western corn rootworm digestive tracts.

    PubMed

    Chu, Chia-Ching; Zavala, Jorge A; Spencer, Joseph L; Curzi, Matías J; Fields, Christopher J; Drnevich, Jenny; Siegfried, Blair D; Seufferheld, Manfredo J

    2015-08-01

    The western corn rootworm (WCR,Diabrotica virgifera virgifera LeConte) is an important pest of corn. Annual crop rotation between corn and soybean disrupts the corn-dependent WCR life cycle and is widely adopted to manage this pest. This strategy selected for rotation-resistant (RR) WCR with reduced ovipositional fidelity to corn. Previous studies revealed that RR-WCR adults exhibit greater tolerance of soybean diets, different gut physiology, and host-microbe interactions compared to rotation-susceptible wild types (WT). To identify the genetic mechanisms underlying these phenotypic changes, a de novo assembly of the WCR adult gut transcriptome was constructed and used for RNA-sequencing analyses of RNA libraries from different WCR phenotypes fed with corn or soybean diets. Global gene expression profiles of WT- and RR-WCR were similar when feeding on corn diets, but different when feeding on soybean. Using network-based methods, we identified gene modules transcriptionally correlated with the RR phenotype. Gene ontology enrichment analyses indicated that the functions of these modules were related to metabolic processes, immune responses, biological adhesion, and other functions/processes that appear to correlate to documented traits in RR populations. These results suggest that gut transcriptomic divergence correlated with brief soybean feeding and other physiological traits may exist between RR- and WT-WCR adults. PMID:26240606

  9. CONVECTION-ENHANCED DELIVERY AND SYSTEMIC MANNITOL INCREASE GENE PRODUCT DISTRIBUTION OF AAV VECTORS 5, 8, AND 9 AND INCREASE GENE PRODUCT IN THE ADULT MOUSE BRAIN

    PubMed Central

    Carty, Nikisha; Lee, Daniel; Dickey, Chad; Ceballos-Diaz, Carolina; Jansen-West, Karen; Golde, Todd E.; Gordon, Marcia N.; Morgan, Dave; Nash, Kevin

    2010-01-01

    The use of recombinant adeno-associated viral (rAAV) vectors as a means of gene delivery to the central nervous system has emerged as a potentially viable method for the treatment of several types of degenerative brain diseases. However, a limitation of typical intracranial injections into the adult brain parenchyma is the relatively restricted distribution of the delivered gene to large brain regions such as the cortex, presumably due to confined dispersion of the injected particles. Optimizing the administration techniques to maximize gene distribution and gene expression is an important step in developing gene therapy studies. Here, we have found additive increases in distribution when 3 methods to increase brain distribution of rAAV were combined. The convection enhanced delivery (CED) method with the step-design cannula was used to deliver rAAV vector serotypes 5, 8 and 9 encoding GFP into the hippocampus of the mouse brain. While the CED method improved distribution of all 3 serotypes, the combination of rAAV9 and CED was particularly effective. Systemic mannitol administration, which reduces intracranial pressure, also further expanded distribution of GFP expression, in particular, increased expression on the contralateral hippocampi. These data suggest that combining advanced injection techniques with newer rAAV serotypes greatly improves viral vector distribution, which could have significant benefits for implementation of gene therapy strategies. PMID:20951738

  10. The primary structure of hemoglobin D from the Aldabra giant tortoise, Geochelone gigantea.

    PubMed

    Shishikura, Fumio

    2002-02-01

    The complete primary structures of alpha D-2- and beta-globin of hemoglobin D (Hb D) from the Aldabra giant tortoise, Geochelone gigantea, have been constructed by amino acid sequencing analysis in assistance with nucleotide sequencing analysis of PCR fragments amplified using degenerate oligonucleotide primers. Using computer-assisted sequence comparisons, the alpha D-2-globin shared a 92.0% sequence identity versus alpha D-globin of Geochelone carbonaria, a 75.2% versus alpha D-globin of Aves (Rhea americana) and a 62.4% versus alpha A-globin of Hb A expressed in adult red blood cells of Geochelone gigantea. Additionally, judging from their primary structures, an identical beta-globin was common to the two hemoglobin components, Hb A and Hb D. The alpha D-2- and beta-globin genes contained the three-exon and two-intron configurations and showed the characteristic of all functional vertebrate hemoglobin genes except an abnormal GC dinucleotide instead of the invariant GT at the 5' end of the second intron sequence. The introns of alpha D-2-globin gene were both small (224-bp/first intron, 227-bp/second intron) such that they were quite similar to those of adult alpha-type globins; the beta-globin gene has one small intron (approximately 130-bp) and one large intron (approximately 1590-bp). A phylogenetic tree constructed on primary structures of 7 alpha D-globins from Reptilia (4 species of turtles, 2 species of squamates, and 1 species of sphenodontids) and two embryonic alpha-like globins from Aves (Gullus gullus) and Mammals (Homo sapiens) showed the following results: (1) alpha D-globins except those of squamates were clustered, in which Sphenodon punctatus was a closer species to birds than turtles; (2) separation of the alpha A- and alpha D-globin genes occurred approximately 250 million years ago after the embryonic alpha-type globin-genes (pi' and zeta) first split off from the ancestor of alpha-type globin gene family. PMID:12012783

  11. Enlarged striatal volume in adults with ADHD carrying the 9-6 haplotype of the dopamine transporter gene DAT1.

    PubMed

    Onnink, A Marten H; Franke, Barbara; van Hulzen, Kimm; Zwiers, Marcel P; Mostert, Jeanette C; Schene, Aart H; Heslenfeld, Dirk J; Oosterlaan, Jaap; Hoekstra, Pieter J; Hartman, Catharina A; Vasquez, Alejandro Arias; Kan, Cornelis C; Buitelaar, Jan; Hoogman, Martine

    2016-08-01

    The dopamine transporter gene, DAT1 (SLC6A3), has been studied extensively as a candidate gene for attention-deficit/hyperactivity disorder (ADHD). Different alleles of variable number of tandem repeats (VNTRs) in this gene have been associated with childhood ADHD (10/10 genotype and haplotype 10-6) and adult ADHD (haplotype 9-6). This suggests a differential association depending on age, and a role of DAT1 in modulating the ADHD phenotype over the lifespan. The DAT1 gene may mediate susceptibility to ADHD through effects on striatal volumes, where it is most highly expressed. In an attempt to clarify its mode of action, we examined the effect of three DAT1 alleles (10/10 genotype, and the haplotypes 10-6 and 9-6) on bilateral striatal volumes (nucleus accumbens, caudate nucleus, and putamen) derived from structural magnetic resonance imaging scans using automated tissue segmentation. Analyses were performed separately in three cohorts with cross-sectional MRI data, a childhood/adolescent sample (NeuroIMAGE, 301 patients with ADHD and 186 healthy participants) and two adult samples (IMpACT, 118 patients with ADHD and 111 healthy participants; BIG, 1718 healthy participants). Regression analyses revealed that in the IMpACT cohort, and not in the other cohorts, carriers of the DAT1 adult ADHD risk haplotype 9-6 had 5.9 % larger striatum volume relative to participants not carrying this haplotype. This effect varied by diagnostic status, with the risk haplotype affecting striatal volumes only in patients with ADHD. An explorative analysis in the cohorts combined (N = 2434) showed a significant gene-by-diagnosis-by-age interaction suggesting that carriership of the 9-6 haplotype predisposes to a slower age-related decay of striatal volume specific to the patient group. This study emphasizes the need of a lifespan approach in genetic studies of ADHD. PMID:26935821

  12. DNA repair gene polymorphisms and risk of adult meningioma, glioma, and acoustic neuroma.

    PubMed

    Rajaraman, Preetha; Hutchinson, Amy; Wichner, Sara; Black, Peter M; Fine, Howard A; Loeffler, Jay S; Selker, Robert G; Shapiro, William R; Rothman, Nathaniel; Linet, Martha S; Inskip, Peter D

    2010-01-01

    Although the etiology of primary brain tumors is largely unknown, prior studies suggest that DNA repair polymorphisms may influence risk of glioma. Altered DNA repair is also likely to affect the risk of meningioma and acoustic neuroma, but these tumors have not been well studied. We estimated the risk of glioma (n = 362), meningioma (n = 134), and acoustic neuroma (n = 69) in non-Hispanic whites with respect to 36 single nucleotide polymorphisms from 26 genes involved in DNA repair in a hospital-based, case-control study conducted by the National Cancer Institute. We observed significantly increased risk of meningioma with the T variant of GLTSCR1 rs1035938 (OR(CT/TT) = 3.5; 95% confidence interval: 1.8-6.9; P(trend) .0006), which persisted after controlling for multiple comparisons (P = .019). Significantly increased meningioma risk was also observed for the minor allele variants of ERCC4 rs1800067 (P(trend) .01); MUTYH rs3219466 (P(trend) .02), and PCNA rs25406 (P(trend) .03). The NBN rs1805794 minor allele variant was associated with decreased meningioma risk (P(trend) .006). Risk of acoustic neuroma was increased for the ERCC2 rs1799793 (P(trend) .03) and ERCC5 rs17655 (P(trend) .05) variants and decreased for the PARP1 rs1136410 (P(trend) .03). Decreased glioma risk was observed with the XRCC1 rs1799782 variant (P(trend) .04). Our results suggest that common DNA repair variants may affect the risk of adult brain tumors, especially meningioma. PMID:20150366

  13. Association of autophagy related gene polymorphisms with neutrophilic airway inflammation in adult asthma

    PubMed Central

    Pham, Duy Le; Kim, Seung-Hyun; Losol, Purevsuren; Yang, Eun-Mi; Shin, Yoo Seob; Ye, Young-Min; Park, Hae-Sim

    2016-01-01

    Background/Aims: Role of autophagy in neutrophil function and the association of autophagy and autophagy related (ATG) gene polymorphisms with asthma susceptibility were suggested. In this study, we investigated the genetic association of ATG5 and ATG7 polymorphisms with asthma risk, severity and neutrophilic airway inflammation. Methods: We recruited 408 asthma patients and 201 healthy controls. Sputum neutrophil counts were determined by H&E staining. Serum interleukin 8 (IL-8) levels were measured by enzyme-linked immunosorbent assay (ELISA). Genetic polymorphisms of ATG5 (–769T>C, –335G>A, and 8830C>T) and ATG7 (–100A>G and 25108G>C) were genotyped. The functional activities of ATG5 –769T>C and –335G>A variants were investigated by luciferase reporter assays. Results: No associations of ATG5 and ATG7 polymorphisms with asthma susceptibility and severity were found. ATG5 –769T>C and –335G>A were in complete linkage disequilibrium. In the asthma group, GA/AA genotypes at ATG5 –335G>A were associated with higher neutrophil counts in sputum (p < 0.05); CC/TT genotype at ATG5 8830C>T associated with lower FEV1% predicted value (p < 0.05). DNA fragments containing ATG5 –769T and –335G alleles had higher promoter activities compared to those with –769C and –335A in both human airway epithelial cells (A549, p < 0.01) and human mast cell (HMC-1, p < 0.001). GG and CC genotype at ATG7 –100A>G and 25108G>C were significantly associated with high serum levels of IL-8 (p < 0.05 for both variants). Conclusions: Genetic polymorphisms of ATG5 and ATG7 could contribute to neutrophilic airway inflammation in the pathogenesis of adult asthma. PMID:26701229

  14. Sequence and regulation of a gene encoding a human 89-kilodalton heat shock protein

    SciTech Connect

    Hickey, E.; Brandon, S.E.; Weber, L.A.; Lloyd, D.

    1989-06-01

    Vertebrate cells synthesize two forms of the 82- to 90-kilodalton heat shock protein that are encoded by distinct gene families. In HeLa cells, both proteins (hsp89/alpha/ and hspio/beta/) are abundant under normal growth conditions and are synthesized at increased rates in response to heat stress. Only the larger form, hsp89/alpha/, is induced by the adenovirus E1A gene product. The authors have isolated a human hsp89/alpha/ gene that shows complete sequence identity with heat- and E1A-inducible cDNA used as a hybridization probe. The 5'-flanking region contained overlapping and inverted consensus heat shock control elements that can confer heat-inducible expression n a /beta/-globin reporter gene. The gene contained 10 intervening sequences. The first intron was located adjacent to the translation start codon, an arrangement also found in the Drosophila hsp82 gene. The spliced mRNA sequence contained a single open reading frame encoding an 84,564-dalton polypeptide showing high homology with the hsp82 to hsp90 proteins of other organisms. The deduced hsp89/alpha/ protein sequence differed from the human hsp89/beta/ sequence reported elsewhere in at least 99 out of the 732 amino acids. Transcription of the hsp89/alpha/ gene was induced by serum during normal cell growth, but expression did not appear to be restricted to a particular stage of the cell cycles. hsp89/alpha/ mRNA was considerably more stable than the mRNA encoding hsp70, which can account for the higher constitutive rate of hsp89 synthesis in unstressed cells.

  15. Expression of fully functional tetrameric human hemoglobin in Escherichia coli.

    PubMed Central

    Hoffman, S J; Looker, D L; Roehrich, J M; Cozart, P E; Durfee, S L; Tedesco, J L; Stetler, G L

    1990-01-01

    Synthetic genes encoding the human alpha- and beta-globin polypeptides have been expressed from a single operon in Escherichia coli. The alpha- and beta-globin polypeptides associate into soluble tetramers, incorporate heme, and accumulate to greater than 5% of the total cellular protein. Purified recombinant hemoglobin has the correct stoichiometry of alpha- and beta-globin chains and contains a full complement of heme. Each globin chain also contains an additional methionine as an extension to the amino terminus. The recombinant hemoglobin has a C4 reversed-phase HPLC profile essentially identical to that of human hemoglobin A0 and comigrates with hemoglobin A0 on SDS/PAGE. The visible spectrum and oxygen affinity are similar to that of native human hemoglobin A0. The recombinant protein shows a reduction in Bohr and phosphate effects, which may be attributed to the presence of methionine at the amino termini of the alpha and beta chains. We have also expressed the alpha- and beta-globin genes separately and found that the expression of the alpha-globin gene alone results in a marked decrease in the accumulation of alpha-globin in the cell. Separate expression of the beta-globin gene results in high levels of insoluble beta-globin. These observations suggest that the presence of alpha- and beta-globin in the same cell stabilizes alpha-globin and aids the correct folding of beta-globin. This system provides a simple method for expressing large quantities of recombinant hemoglobin and allows facile manipulation of the genes encoding hemoglobin to produce functionally altered forms of this protein. Images PMID:2236062

  16. Modulation of retinoblastoma gene in normal adult hematopoiesis: peak expression and functional role in advanced erythroid differentiation.

    PubMed Central

    Condorelli, G L; Testa, U; Valtieri, M; Vitelli, L; De Luca, A; Barberi, T; Montesoro, E; Campisi, S; Giordano, A; Peschle, C

    1995-01-01

    The retinoblastoma (RB) gene specifies a nuclear phosphoprotein (pRb 105), which is a prototype tumor suppressor inactivated in a variety of human tumors. Recent studies suggest that RB is also involved in embryonic development of murine central nervous and hematopoietic systems. We have investigated RB expression and function in human adult hematopoiesis--i.e., in liquid suspension culture of purified quiescent hematopoietic progenitor cells (HPCs) induced by growth factor stimulus to proliferation and unilinage differentiation/maturation through the erythroid or granulocytic lineage. In the initial HPC differentiation stages, the RB gene is gradually induced at the mRNA and protein level in both erythroid and granulopoietic cultures. In late HPC differentiation and then precursor maturation, RB gene expression is sustained in the erythroid lineage, whereas it is sharply downmodulated in the granulocytic series. Functional studies were performed by treatment of HPC differentiation culture with phosphorothioate antisense oligomer targeting Rb mRNA; coherent with the expression pattern, oligomer treatment of late HPCs causes a dose-dependent and selective inhibition of erythroid colony formation. These observations suggest that the RB gene plays an erythroid- and stage-specific functional role in normal adult hematopoiesis, particularly at the level of late erythroid HPCs. Images Fig. 2 Fig. 3 Fig. 4 PMID:7761404

  17. The promoter polymorphism of the interleukin-6 gene regulates interleukin-6 production in neonates but not in adults.

    PubMed

    Kilpinen, S; Hulkkonen, J; Wang, X Y; Hurme, M

    2001-03-01

    In the promoter region of the IL-6 gene there is a single base exchange (G --> C) polymorphism at position -174. Recent findings suggest that this polymorphism may affect the transcription rate of the IL-6 gene and IL-6 plasma levels. To analyse its biological significance, we examined IL-6 plasma levels in cord blood and IL-6 production by neonatal cells after LPS-stimulation in relation to the presence of the IL-6G and IL-6C alleles. We hypothesized that since healthy neonates lack a previous exposure to exogenous antigens, their cytokine production could be genetically regulated. We also assumed that the normal labour-related stress could provide a physiological stimulus for IL-6 production. Cord blood was collected from 50 healthy, full-term neonates after normal vaginal delivery (VD) and from 42 healthy, full-term neonates after elective caesarean section (ECS). Adult samples were obtained from 450 healthy adult controls. The -174 polymorphism was analysed using PCR. IL-6 plasma levels and in vitro IL-6 production were measured using an ELISA method. Generally, IL-6 plasma levels in neonates were significantly higher than those in adults (neonates born by VD versus adults p < 0.001 and neonates born by ECS versus adults p < 0.001); the median value for neonates born by VD was 11.4 pg/ml (4.5-45.9), for neonates born by ECS 2.9 pg/ml (1.9-6.4) and for adults, 1.2 pg/ml (0.7-2.0). Surprisingly, cord blood IL-6 levels after VD differed significantly from those after ECS (p < 0.001). An analysis was carried out to ascertain if there was a genetic association between different IL-6 genotypes and IL-6 plasma levels in neonates. In the group of VD neonates with the CC genotype, non-carriers of the G allele, secreted significantly more IL-6 than carriers of the G allele (p < 0.03); 21.4 pg/ml (9.5-81.3) and 9.6 pg/ml (3.5-36.2) respectively. In line with this, ECS newborns with the CC genotype had higher IL-6 plasma levels than carriers of the G allele (p < 0

  18. Deletion and deletion/insertion mutations in the juxtamembrane domain of the FLT3 gene in adult acute myeloid leukemia

    PubMed Central

    Deeb, Kristin K.; Smonskey, Matthew T.; DeFedericis, HanChun; Deeb, George; Sait, Sheila N.J.; Wetzler, Meir; Wang, Eunice S.; Starostik, Petr

    2014-01-01

    In contrast to FLT3 ITD mutations, in-frame deletions in the FLT3 gene have rarely been described in adult acute leukemia. We report two cases of AML with uncommon in-frame mutations in the juxtamembrane domain of the FLT3 gene: a 3-bp (c.1770_1774delCTACGinsGT; p.F590_V592delinsLF) deletion/insertion and a 12-bp (c.1780_1791delTTCAGAGAATAT; p.F594_Y597del) deletion. We verified by sequencing that the reading frame of the FLT3 gene was preserved and by cDNA analysis that the mRNA of the mutant allele was expressed in both cases. Given the recent development of FLT3 inhibitors, our findings may be of therapeutic value for AML patients harboring similar FLT3 mutations. PMID:25379410

  19. Gene polymorphisms and gene scores linked to low serum carotenoid status and their associations with metabolic disturbance and depressive symptoms in African-American adults

    PubMed Central

    Beydoun, May A.; Nalls, Michael A.; Canas, J. Atilio; Evans, Michele K.; Zonderman, Alan B.

    2016-01-01

    Gene polymorphisms provide means to obtain unconfounded associations between carotenoids and various health outcomes. We tested whether gene polymophorisms and gene scores linked to serum carotenoid status are related to metabolic disturbance and depressive symptoms in African-American adults residing in Baltimore city, MD, using cross-sectional data from the Healthy Aging in Neighborhood of Diversity Across the Lifespan (HANDLS) study (Age range:30–64y, N=873–994). We examined 24 single nucleotide polymorphisms of various gene loci that were previously shown to be associated with low serum carotenoid status (SNPlcar). Genetic risk scores (5 low specific-carotenoid risk scores (LSCRS: α-carotene, β-carotene, lutein+zeaxanthin, β-cryptoxanthin, lycopene) and 1 low total-carotenoid risk score (LTCRS: total carotenoids)) were created. SNPlcar, LSCRS and LTCRS were entered as predictors for a number of health outcomes. Those included obesity, National Cholesterol Education Program (NCEP) Adult Treatment Panel (ATP) III metabolic syndrome (MetS) and its components, elevated homeostatic model assessment, Insulin Resistance (HOMA-IR), C-reactive protein (CRP), hyperuricemia and elevated depressive symptoms (EDS, Center for Epidemiologic Studies-Depression (CES-D) score≥16). Among key findings, SNPlcar were not associated with the main outcomes after correction for multiple testing. However, an inverse association was found between LTCRS and HDL-C dyslipidemia. Specifically, the α-carotene and β-cryptoxanthin LSCRS were associated with lower odds of HDL-C dyslipidemia. However, the β-cryptoxanthin LSCRS was linked to a higher odds of EDS, with a linear dose-response relationship. In sum, gene risk scores linked to low serum carotenoids had mixed effects on HDL-C dyslipidemia and EDS. Further studies using larger African-American samples are needed. PMID:25201307

  20. Lack of Association between a 3'UTR VNTR Polymorphism of Dopamine Transporter Gene (SLC6A3) and ADHD in a Brazilian Sample of Adult Patients

    ERIC Educational Resources Information Center

    Aperecida da Silva, Maria; Cordeiro, Quirino; Louza, Mario; Vallada, Homero

    2011-01-01

    Objective: To investigate a possible association between a 3'UTR VNTR polymorphism of the dopamine transporter gene (SLC6A3) and ADHD in a Brazilian sample of adult patients. Method: Study Case-control with 102 ADHD adult outpatients ("DSM-IV" criteria) and 479 healthy controls. The primers' sequence used were: 3'UTR-Forward: 5' TGT GGT GAT GGG…

  1. Mature mRNAs accumulated in the nucleus are neither the molecules in transit to the cytoplasm nor constitute a stockpile for gene expression.

    PubMed Central

    Weil, D; Boutain, S; Audibert, A; Dautry, F

    2000-01-01

    In higher eukaryotes, the regulation of pre-mRNA processing is still poorly known. The accumulation of various mature mRNAs, which can be observed in the nuclei of mammalian cells, is suggestive of a regulatory role of transport. However, the significance of these nuclear mRNA is presently unknown. We have used a tetracycline-regulated promoter to investigate the dynamics of these pools of mRNAs upon arrest of transcription. We observed, for beta-globin and LT-alpha genes, a slow disappearance of these mRNA from the nucleus, with an apparent half-life that is similar to their cytoplasmic half-life. In view of these dynamics, these mRNA cannot simply be mature mRNAs in transit to the cytoplasm. They could be mRNAs retained in the nucleus, provided that the regulation of mRNA stability is comparable in the nucleus and the cytoplasm. But, because of their limited stability, these nuclear mRNAs cannot constitute a significant stock for gene expression. Alternatively, they could reflect a bidirectional transport of mRNA, that is, to and from the cytoplasm, which would provide a direct explanation for the similarity in both compartments of their half-life and poly(A) tail shortening over time. PMID:10917593

  2. The Drosophila Hand gene is required for remodeling of the developing adult heart and midgut during metamorphosis

    PubMed Central

    Lo, Patrick C.H.; Zaffran, Stéphane; Sénatore, Sébastien; Frasch, Manfred

    2007-01-01

    The Hand proteins of the bHLH family of transcriptional factors play critical roles in vertebrate cardiogenesis. In Drosophila, the single orthologous Hand gene is expressed in the developing embryonic dorsal vessel (heart), lymph glands, circular visceral musculature, and a subset of CNS cells. We demonstrate that the absence of Hand activity causes semilethality during the early larval instars. The dorsal vessel and midgut musculature are unaffected in null mutant embryos, but in a large fraction the lymph glands are missing. However, homozygous adult flies lacking Hand possess morphologically abnormal dorsal vessels characterized by a disorganized myofibrillar structure, reduced systolic and diastolic diameter, abnormal heartbeat contractions, and suffer from premature lethality. In addition, their midguts are highly deformed; in the most severe cases, there is midgut blockage and a massive excess of ectopic peritrophic membrane tubules exiting a rupture in an anterior midgut bulge. Nevertheless, the visceral musculature appears to be relatively normal. Based on these phenotypes, we conclude that the expression of the Drosophila Hand gene in the dorsal vessel and circular visceral muscles is mainly required during pupal stages, when Hand participates in the proper hormone-dependent remodeling of the larval aorta into the adult heart and in the normal morphogenesis of the adult midgut endoderm during metamorphosis. PMID:17904115

  3. Interactions between beta-2 adrenoceptor gene variation, cardiovascular control and dietary sodium in healthy young adults

    PubMed Central

    Eisenach, John H; Schroeder, Darrell R; Pavey, Emily S; Penheiter, Alan R; Knutson, Jean N; Turner, Stephen T; Joyner, Michael J

    2014-01-01

    Dietary sodium affects function of the beta-2 adrenoceptor (ADRB2). We tested the hypothesis that haplotype variation in the ADRB2 gene would influence the cardiovascular and regional vasodilator responses to sympathoexcitatory manoeuvres following low, normal and high sodium diets, and ADRB2-mediated forearm vasodilation in the high sodium condition. Seventy-one healthy young adults were grouped by double homozygous haplotypes: Arg16+Gln27 (n = 31), the rare Gly16+Gln27 (n = 10) and Gly16+Glu27 (n = 30). Using a randomized cross-over design, subjects were studied following 5 days of controlled low, normal and high sodium with 1 month or longer between diets (and low hormone phase of the menstrual cycle). All three visits utilized ECG and finger plethysmography for haemodynamic measures, and the high sodium visit included a brachial arterial catheter for forearm vasodilator responses to isoprenaline with plethysmography. Lymphocytes were sampled for ex vivo analysis of ADRB2 density and binding conformation. We found a main effect of haplotype on ADRB2 density (P = 0.03) with the Gly16+Glu27 haplotype having the greatest density (low, normal, high sodium: 12.9 ± 0.9, 13.5 ± 0.9 and 13.6 ± 0.8 fmol mg−1 protein, respectively) and Arg16+Gln27 having the least (9.3 ± 0.6, 10.1 ± 0.5 and 10.3 ± 0.6  fmol mg−1 protein, respectively), but there were no sodium or haplotype effects on receptor binding conformation. In the mental stress trial, there was a main effect of haplotype on cardiac output (P = 0.04), as Arg16+Gln27 had the lowest responses. Handgrip and forearm vasodilation yielded no haplotype differences, and no correlations were present for ADRB2 density and haemodynamics. Our findings support cell-based evidence that ADRB2 haplotype influences ADRB2 protein expression independent of dietary sodium, yet the haemodynamic consequences appear modest in healthy humans. PMID:25260632

  4. Expression and Regulation of the Fkbp5 Gene in the Adult Mouse Brain

    PubMed Central

    Scharf, Sebastian H.; Liebl, Claudia; Binder, Elisabeth B.

    2011-01-01

    Background Chronic stress has been found to be a major risk factor for various human pathologies. Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, which is tightly regulated via, among others, the glucocorticoid receptor (GR). The activity of the GR is modulated by a variety of proteins, including the co-chaperone FK506 binding protein 51 (FKBP5). Although FKBP5 has been associated with risk for affective disorders and has been implicated in GR sensitivity, previous studies focused mainly on peripheral blood, while information about basal distribution and induction in the central nervous system are sparse. Methodology/Principal Findings In the present study, we describe the basal expression pattern of Fkbp5 mRNA in the brain of adult male mice and show the induction of Fkbp5 mRNA via dexamethasone treatment or different stress paradigms. We could show that Fkbp5 is often, but not exclusively, expressed in regions also known for GR expression, for example the hippocampus. Furthermore, we were able to induce Fkbp5 expression via dexamethasone in the CA1 and DG subregions of the hippocampus, the paraventricular nucleus (PVN) and the central amygdala (CeA). Increase of Fkbp5 mRNA was also found after restrained stress and 24 hours of food deprivation in the PVN and the CeA, while in the hippocampus only food deprivation caused an increase in Fkbp5 mRNA. Conclusions/Significance Interestingly, regions with a low basal expression showed higher increase in Fkbp5 mRNA following induction than regions with high basal expression, supporting the hypothesis that GR sensitivity is, at least partly, mediated via Fkbp5. In addition, this also supports the use of Fkbp5 gene expression as a marker for GR sensitivity. In summary, we were able to give an overview of the basal expression of fkbp5 mRNA as well as to extend the findings of induction of Fkbp5 and its regulatory influence on GR sensitivity from peripheral blood to the brain. PMID:21347384

  5. Circadian regulation gene polymorphisms are associated with sleep disruption and duration, and circadian phase and rhythm in adults with HIV.

    PubMed

    Lee, Kathryn A; Gay, Caryl; Byun, Eeeseung; Lerdal, Anners; Pullinger, Clive R; Aouizerat, Bradley E

    2015-01-01

    Genes involved in circadian regulation, such as circadian locomotor output cycles kaput [CLOCK], cryptochrome [CRY1] and period [PER], have been associated with sleep outcomes in prior animal and human research. However, it is unclear whether polymorphisms in these genes are associated with the sleep disturbances commonly experienced by adults living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Thus, the purpose of this study was to describe polymorphisms in selected circadian genes that are associated with sleep duration or disruption as well as the sleep-wake rhythm strength and phase timing among adults living with HIV/AIDS. A convenience sample of 289 adults with HIV/AIDS was recruited from HIV clinics and community sites in the San Francisco Bay Area. A wrist actigraph was worn for 72 h on weekdays to estimate sleep duration or total sleep time (TST), sleep disruption or percentage of wake after sleep onset (WASO) and several circadian rhythm parameters: mesor, amplitude, the ratio of mesor to amplitude (circadian quotient), and 24-h autocorrelation. Circadian phase measures included clock time for peak activity (acrophase) from actigraphy movement data, and bed time and final wake time from actigraphy and self-report. Genotyping was conducted for polymorphisms in five candidate genes involved in circadian regulation: CLOCK, CRY1, PER1, PER2 and PER3. Demographic and clinical variables were evaluated as potential covariates. Interactions between genotype and HIV variables (i.e. viral load, years since HIV diagnosis) were also evaluated. Controlling for potentially confounding variables (e.g. race, gender, CD4+ T-cell count, waist circumference, medication use, smoking and depressive symptoms), CLOCK was associated with WASO, 24-h autocorrelation and objectively-measured bed time; CRY1 was associated with circadian quotient; PER1 was associated with mesor and self-reported habitual wake time; PER2 was associated with TST

  6. Molecular Epidemiology of ESBL Genes and Multi-Drug Resistance in Diarrheagenic Escherichia Coli Strains Isolated from Adults in Iran.

    PubMed

    Ghorbani-Dalini, Sadegh; Kargar, Mohammad; Doosti, Abbas; Abbasi, Pejman; Sarshar, Meysam

    2015-01-01

    Resistance to oxyimino cephalosporins antibiotics in Enterobacteriaceae is primarily done by the extended spectrum β-lactamases (ESBLs). Clear identification of risk factors for ESBLs-producing infections is necessary. Therefore, efficient strategies can be developed to decrease outbreak of these infections. The aim of this study was to determine the antibacterial susceptibility and ESBLs pattern of diarrhogenic Escherichia coli (E. coli) strains isolated from adult patients. In the present study, diarrheogenic E. coli strains were isolated from 54 patients from the University of Medical Sciences hospitals in Shiraz. Antimicrobial susceptibility testing was done by disk diffusion method by CLSI criteria. The presence of bla TEM , bla SHV and bla CTX-M genes was investigated by PCR using designated primers. The prevalence of ESBLs-producer E. coli strains was 12.96%. Antimicrobial resistance testing showed a high resistance to cefexime, trimethoprim-sulfamethoxazole, ampicillin and penicillin. Overall, β-lactamase genes were identified in 52 (96.30%) isolates which were identified as 45 (83.33%) bla TEM, 17 (31.48%) blaSHV and 11 (20.37%) blaCTX-M. ESBLs-producer E. coli is very prevalent in Diarrheogenic strains isolated from adult patients. Also, this study clearly showed that the bla TEM gene for ESBLs-producer E. coli was widespread in Iran. PMID:26664394

  7. Molecular Epidemiology of ESBL Genes and Multi-Drug Resistance in Diarrheagenic Escherichia Coli Strains Isolated from Adults in Iran

    PubMed Central

    Ghorbani-Dalini, Sadegh; Kargar, Mohammad; Doosti, Abbas; Abbasi, Pejman; Sarshar, Meysam

    2015-01-01

    Resistance to oxyimino cephalosporins antibiotics in Enterobacteriaceae is primarily done by the extended spectrum β-lactamases (ESBLs). Clear identification of risk factors for ESBLs-producing infections is necessary. Therefore, efficient strategies can be developed to decrease outbreak of these infections. The aim of this study was to determine the antibacterial susceptibility and ESBLs pattern of diarrhogenic Escherichia coli (E. coli) strains isolated from adult patients. In the present study, diarrheogenic E. coli strains were isolated from 54 patients from the University of Medical Sciences hospitals in Shiraz. Antimicrobial susceptibility testing was done by disk diffusion method by CLSI criteria. The presence of blaTEM, blaSHV and blaCTX-M genes was investigated by PCR using designated primers. The prevalence of ESBLs-producer E. coli strains was 12.96%. Antimicrobial resistance testing showed a high resistance to cefexime, trimethoprim-sulfamethoxazole, ampicillin and penicillin. Overall, β-lactamase genes were identified in 52 (96.30%) isolates which were identified as 45 (83.33%) blaTEM, 17 (31.48%) blaSHV and 11 (20.37%) blaCTX-M. ESBLs-producer E. coli is very prevalent in Diarrheogenic strains isolated from adult patients. Also, this study clearly showed that the blaTEM gene for ESBLs-producer E. coli was widespread in Iran. PMID:26664394

  8. Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus

    NASA Technical Reports Server (NTRS)

    Kitajima, T.; Tomita, M.; Killian, C. E.; Akasaka, K.; Wilt, F. H.

    1996-01-01

    We have isolated a cDNA clone for spicule matrix protein, SM30, from sea urchin Hemicentrotus pulcherrimus and have studied the expression of this gene in comparison with that of another spicule matrix protein gene, SM50. In cultured micromeres as well as in intact embryos transcripts of SM30 were first detectable around the onset of spicule formation and rapidly increased with the growth of spicules, which accompanied accumulation of glycosylated SM30 protein(s). When micromeres were cultured in the presence of Zn2+, spicule formation and SM30 expression were suppressed, while both events resumed concurrently after the removal of Zn2+ from the culture medium. Expression of SM50, in contrast, started before the appearance of spicules and was not sensitive to Zn2+. Differences were also observed in adult tissues; SM30 mRNA was detected in spines and tube feet but not in the test, while SM50 mRNA was apparent in all of these mineralized tissues at similar levels. These results strongly suggest that the SM30 gene is regulated by a different mechanism to that of the SM50 gene and that the products of these two genes are differently involved in sea urchin biomineralization. A possible role of SM30 protein in skeleton formation is discussed.

  9. Association between rs9930506 polymorphism of the fat mass & obesity-associated (FTO) gene & onset of obesity in Polish adults

    PubMed Central

    Wrzosek, Małgorzata; Zakrzewska, Anna; Ruczko, Lech; Jabłonowska-Lietz, Beata; Nowicka, Grażyna

    2016-01-01

    Background & objectives: The fat mass and obesity-associated (FTO) gene is known to be associated with obesity. However, no data are available on the relation between FTO rs9930506 polymorphism and obesity in Polish population. The aim of this study was to evaluate an association between rs9930506 variants of the FTO gene and obesity in Polish adults. Methods: The study group consisted of 442 adults, aged 33.9 ±12.7 yr, with mean BMI 27.2 ± 5.4 kg/m2. The following variables were determined for each subject: fasting blood glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglycerides. Real-time PCR was used to detect the A/G alleles of the rs9939506 polymorphism in the FTO gene. An association between the rs9930506 polymorphism and obesity was determined using codominant, dominant, and recessive models. The odds ratio (OR) was calculated to determine the risk of obesity associated with this polymorphism. Results: It was observed that the presence of FTO rs9939506 G allele was associated with increased risk for obesity and this association was found significant in both recessive (OR = 1.72, P = 0.014) and co-dominant (OR = 1.36, P = 0.031) models of inheritance. The FTO rs9939506 GG homozygotes had a significantly higher BMI than those with other genotypes. Interpretation & conclusions: This study shows that FTO rs9939506 GG genotype is related to higher BMI and is associated with obesity in Polish adults. PMID:27241640

  10. Recombinant adeno-associated virus (rAAV)-mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells.

    PubMed Central

    Miller, J L; Donahue, R E; Sellers, S E; Samulski, R J; Young, N S; Nienhuis, A W

    1994-01-01

    Effective gene therapy for the severe hemoglobin (Hb) disorders, sickle-cell anemia and thalassemia, will require an efficient method to transfer, integrate, and express a globin gene in primary erythroid cells. To evaluate recombinant adeno-associated virus (rAAV) for this purpose, we constructed a rAAV vector encoding a human gamma-globin gene (pJM24/vHS432A gamma). Its 4725-nucleotide genome consists of two 180-bp AAV inverted terminal repeats flanking the core elements of hypersensitive sites 2, 3, and 4 from the locus control region of the beta-globin gene cluster, linked to a mutationally marked A gamma-globin gene (A gamma) containing native promoter and RNA processing signals. CD34+ human hematopoietic cells were exposed to rAAV particles at a multiplicity of infection of 500-1000 and cultured in semisolid medium containing several cytokines. A reverse transcriptase polymerase chain reaction assay distinguished mRNA signals derived from transduced and endogenous human gamma-globin genes. Twenty to 40% of human erythroid burst-forming unit-derived colonies expressed the rAAV-transduced A gamma-globin gene at levels 4-71% that of the endogenous gamma-globin genes. The HbF content of pooled control colonies was 26%, whereas HbF was 40% of the total in pooled colonies derived from rAAV transduced progenitors. These data establish that rAAV containing elements from the locus control region linked to a gamma-globin gene are capable of transferring and expressing that gene in primary human hematopoietic cells resulting in a substantial increase in HbF content. Images PMID:7524085

  11. Unraveling the estrogen receptor (er) genes in Atlantic salmon (Salmo salar) reveals expression differences between the two adult life stages but little impact from polychlorinated biphenyl (PCB) load.

    PubMed

    Nikoleris, Lina; Hansson, Maria C

    2015-01-15

    Estrogen receptors (ers) not only are activated by hormones but also interact with many human-derived environmental contaminants. Here, we present evidence for four expressed er genes in Atlantic salmon cDNA - two more ers (erα2 and erβ2) than previously published. To determine if er gene expression differs between two adult life-stages we sampled 20 adult salmon from the feeding phase in the Baltic Sea and during migration in the River Mörrum, Sweden. Results show that all four er genes are present in the investigated tissues, except for erα2 not appearing in the spleen. Overall, a profile analysis reveals the erα1 gene to be the most highly expressed er gene in both female and male Baltic Sea salmon tissues, and also in female River Mörrum salmon. In contrast, this gene has the lowest gene expression level of the four er genes in male salmon from the River Mörrum. The erα2 gene is expressed at the lowest levels in both female/male Baltic Sea salmon and in female River Mörrum salmon. Statistical analyses indicate a significant and complex interaction where both sex and adult life stage can impact er gene expression. Regression analyses did not demonstrate any significant relationship between polychlorinated biphenyl (PCB) body burden and er gene expression level, suggesting that accumulated pollutants from the Baltic Sea may be deactivated inside the salmon's lipid tissues and have limited impact on er activity. This study is the first comprehensive analysis of four er gene expression levels in two wild salmon populations from two different adult life stages where information about PCB load is also available. PMID:25451980

  12. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity

    PubMed Central

    Frayling, Timothy M.; Timpson, Nicholas J.; Weedon, Michael N.; Zeggini, Eleftheria; Freathy, Rachel M.; Lindgren, Cecilia M.; Perry, John R. B.; Elliott, Katherine S.; Lango, Hana; Rayner, Nigel W.; Shields, Beverley; Harries, Lorna W.; Barrett, Jeffrey C.; Ellard, Sian; Groves, Christopher J.; Knight, Bridget; Patch, Ann-Marie; Ness, Andrew R.; Ebrahim, Shah; Lawlor, Debbie A.; Ring, Susan M.; Ben-Shlomo, Yoav; Jarvelin, Marjo-Riitta; Sovio, Ulla; Bennett, Amanda J.; Melzer, David; Ferrucci, Luigi; Loos, Ruth J. F.; Barroso, Inês; Wareham, Nicholas J.; Karpe, Fredrik; Owen, Katharine R.; Cardon, Lon R.; Walker, Mark; Hitman, Graham A.; Palmer, Colin N. A.; Doney, Alex S. F.; Morris, Andrew D.; Smith, George Davey; Hattersley, Andrew T.; McCarthy, Mark I.

    2009-01-01

    Obesity is a serious international health problem that increases the risk of several common diseases. The genetic factors predisposing to obesity are poorly understood. A genome-wide search for type 2 diabetes–susceptibility genes identified a common variant in the FTO (fat mass and obesity associated) gene that predisposes to diabetes through an effect on body mass index (BMI). An additive association of the variant with BMI was replicated in 13 cohorts with 38,759 participants. The 16% of adults who are homozygous for the risk allele weighed about 3 kilograms more and had 1.67-fold increased odds of obesity when compared with those not inheriting a risk allele. This association was observed from age 7 years upward and reflects a specific increase in fat mass. PMID:17434869

  13. Gene Expression Profiling of Shoot-Derived Calli from Adult Radiata Pine and Zygotic Embryo-Derived Embryonal Masses

    PubMed Central

    Garcia-Mendiguren, O.; Montalbán, I. A.; Stewart, D.; Moncaleán, P.; Klimaszewska, K.; Rutledge, R. G.

    2015-01-01

    Background Although somatic embryogenesis has an unprecedented potential for large-scale clonal propagation of conifers, the ability to efficiently induce the embryonal cultures required for somatic embryo production has long been a challenge. Furthermore, because early stage zygotic embryos remain the only responsive explants for pines, it is not possible to clone individual trees from vegetative explants at a commercial scale. This is of particular interest for adult trees because many elite characteristics only become apparent following sexual maturation. Findings Shoot explants collected from adult radiata pine trees were cultured on four induction media differing in plant growth regulator composition, either directly after collection or from in vitro-generated axillary shoots. Six callus lines were selected for microscopic examination, which failed to reveal any embryonal masses (EM). qPCR expression profiling of five of these lines indicated that explant type influenced the absolute level of gene expression, but not the type of genes that were expressed. The analysis, which also included three EM lines induced from immature zygotic embryos, encompassed five categories of genes reflective of metabolic, mitotic and meristematic activity, along with putative markers of embryogenicity. Culture medium was found to have no significant impact on gene expression, although differences specific to the explant’s origin were apparent. Expression of transcriptional factors associated with vegetative meristems further suggested that all of the callus lines possessed a substantive vegetative character. Most notable, however, was that they all also expressed a putative embryogenic marker (LEC1). Conclusions While limited in scope, these results illustrate the utility of expression profiling for characterizing tissues in culture. For example, although the biological significance of LEC1 expression is unclear, it does present the possibility that these callus lines possess

  14. Temporal patterns of odorant receptor gene expression in adult and aged mice.

    PubMed

    Khan, Mona; Vaes, Evelien; Mombaerts, Peter

    2013-11-01

    In the mouse, the sense of smell relies predominantly on the expression of ~1200 odorant receptor (OR) genes in the main olfactory epithelium (MOE). Each mature olfactory sensory neuron (OSN) in the MOE is thought to express just one of these OR genes; conversely, an OR gene is expressed in thousands to tens of thousands of OSNs per mouse. Here, we have characterized temporal patterns of OR gene expression in a cohort of inbred C57BL6/N mice from the Aged Rodent Colonies of the National Institute on Aging. We applied the NanoString multiplex platform to quantify RNA abundance for 531 OR genes in whole olfactory mucosa (WOM) tissue samples. The five study groups were females aged 2, 6, 12, 18, and 31 months (mo). We classified the 531 temporal patterns using a step-down quadratic regression method for time course analysis. The majority of OR genes (58.4%) are classified as flat: there is no significant difference from a horizontal line within this time window. There are 32.8% of OR genes with a downward profile, 7.2% with an upward profile, and 1.7% with a convex or concave profile. But the magnitude of these decreases and increases tends to be small: only 4.3% of OR genes are differentially expressed (DE) at 31 mo compared to 2 mo. Interestingly, the variances of NanoString counts for individual OR genes are homogeneous among the age groups. Our analyses of these 15,930 OR gene expression data of C57BL6/N mice that were raised and housed under well-controlled conditions indicate that OR gene expression at the MOE level is intrinsically stable. PMID:23962816

  15. Thyroid hormone action in the adult brain: gene expression profiling of the effects of single and multiple doses of triiodo-L-thyronine in the rat striatum.

    PubMed

    Diez, Diego; Grijota-Martinez, Carmen; Agretti, Patrizia; De Marco, Giuseppina; Tonacchera, Massimo; Pinchera, Aldo; de Escobar, Gabriella Morreale; Bernal, Juan; Morte, Beatriz

    2008-08-01

    Thyroid hormones have profound effects on mood and behavior, but the molecular basis of thyroid hormone action in the adult brain is relatively unknown. In particular, few thyroid hormone-dependent genes have been identified in the adult brain despite extensive work carried out on the developing brain. In this work we performed global analysis of gene expression in the adult rat striatum in search for genomic changes taking place after administration of T(3) to hypothyroid rats. The hormone was administered in two different schedules: 1) a single, large dose of 25 microg per 100 g body weight (SD) or 2) 1.5 microg per 100 g body weight once daily for 5 d (RD). Twenty-four hours after the single or last of multiple doses, gene expression in the striatum was analyzed using Codelink microarrays. SD caused up-regulation of 149 genes and down-regulation of 88 genes. RD caused up-regulation of 18 genes and down-regulation of one gene. The results were confirmed by hybridization to Affymetrix microarrays and by TaqMan PCR. Among the genes identified are genes involved in circadian regulation and the regulation of signaling pathways in the striatum. These results suggest that thyroid hormone is involved in regulation of striatal physiology at multiple control points. In addition, they may explain the beneficial effects of large doses of thyroid hormone in bipolar disorders. PMID:18467437

  16. Association of the Estrogen Receptor 1 (ESR1) Gene with Body Height in Adult Males from Two Swedish Population Cohorts

    PubMed Central

    Dahlgren, Andreas; Lundmark, Per; Axelsson, Tomas; Lind, Lars; Syvänen, Ann-Christine

    2008-01-01

    Human body height is a complex genetic trait with high heritability. We performed an association study of 17 candidate genes for height in the Uppsala Longitudinal Study of Adult Men (ULSAM) that consists of 1153 elderly men of age 70 born in the central region of Sweden. First we genotyped a panel of 137 single nucleotide polymorphism (SNPs) evenly distributed across the candidate genes in the ULSAM cohort. We identified 4 SNPs in the estrogen receptor gene (ESR1) on chromosome 6q25.1 with suggestive signals of association (p<0.05) with standing body height. This result was followed up by genotyping the same 25 SNPs in the ESR1 gene as in ULSAM in a second population cohort, the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort that consist of 507 males and 509 females of age 70 from the same geographical region as ULSAM. One SNP, rs2179922 located in intron 4 of ESR1 showed and association signal (p = 0.0056) in the male samples from the PIVUS cohort. Homozygote carriers of the G-allele of the SNP rs2179922 were on average 0.90 cm taller than individuals with the two other genotypes at this SNP in the ULSAM cohort and 2.3 cm taller in the PIVUS cohort. No association was observed for the females in the PIVUS cohort. PMID:18350145

  17. Clock gene expression in adult primate suprachiasmatic nuclei and adrenal: is the adrenal a peripheral clock responsive to melatonin?

    PubMed

    Valenzuela, F J; Torres-Farfan, C; Richter, H G; Mendez, N; Campino, C; Torrealba, F; Valenzuela, G J; Serón-Ferré, M

    2008-04-01

    The circadian production of glucocorticoids involves the concerted action of several factors that eventually allow an adequate adaptation to the environment. Circadian rhythms are controlled by the circadian timing system that comprises peripheral oscillators and a central rhythm generator located in the suprachiasmatic nucleus (SCN) of the hypothalamus, driven by the self-regulatory interaction of a set of proteins encoded by genes named clock genes. Here we describe the phase relationship between the SCN and adrenal gland for the expression of selected core clock transcripts (Per-2, Bmal-1) in the adult capuchin monkey, a New World, diurnal nonhuman primate. In the SCN we found a higher expression of Bmal-1 during the h of darkness (2000-0200 h) and Per-2 during daytime h (1400 h). The adrenal gland expressed clock genes in oscillatory fashion, with higher values for Bmal-1 during the day (1400-2000 h), whereas Per-2 was higher at nighttime (about 0200 h), resulting in a 9- to 12-h antiphase pattern. In the adrenal gland, the oscillation of clock genes was accompanied by rhythmic expression of a functional output, the steroidogenic enzyme 3beta-hydroxysteroid dehydrogenase. Furthermore, we show that adrenal explants maintained oscillatory expression of Per-2 and Bmal-1 for at least 36 h in culture. The acrophase of both transcripts, but not its overall expression along the incubation, was blunted by 100 nm melatonin. Altogether, these results demonstrate oscillation of clock genes in the SCN and adrenal gland of a diurnal primate and support an oscillation of clock genes in the adrenal gland that may be modulated by the neurohormone melatonin. PMID:18187542

  18. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs

    SciTech Connect

    Bredow, Sebastian . E-mail: sbredow@LRRI.org; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-06-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE), these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m{sup 3} for 5 days at 6 h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease.

  19. Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila

    PubMed Central

    Auer, Jasmin S.; Nagel, Anja C.; Schulz, Adriana; Wahl, Vanessa; Preiss, Anette

    2015-01-01

    In Drosophila, Notch and EGFR signalling pathways are closely intertwined. Their relationship is mostly antagonistic, and may in part be based on the phosphorylation of the Notch signal transducer Suppressor of Hairless [Su(H)] by MAPK. Su(H) is a transcription factor that together with several cofactors regulates the expression of Notch target genes. Here we address the consequences of a local induction of three Su(H) variants on Notch target gene expression. To this end, wild-type Su(H), a phospho-deficient Su(H)MAPK-ko and a phospho-mimetic Su(H)MAPK-ac isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(spl)m8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(spl)m8-lacZ, vgBE-lacZ). In general, Su(H)MAPK-ko induced a stronger response than wild-type Su(H), whereas the response to Su(H)MAPK-ac was very weak. Notch target genes cut, wingless and vgBE-lacZ were ectopically activated, whereas E(spl)m8-lacZ was repressed by overexpression of Su(H) proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DERact) or the MAPK (rlSEM) and individual Su(H) variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes) as well as to assay the response of the Notch target gene cut in cell clones. PMID:26702412

  20. Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila.

    PubMed

    Auer, Jasmin S; Nagel, Anja C; Schulz, Adriana; Wahl, Vanessa; Preiss, Anette

    2015-12-01

    In Drosophila, Notch and EGFR signalling pathways are closely intertwined. Their relationship is mostly antagonistic, and may in part be based on the phosphorylation of the Notch signal transducer Suppressor of Hairless [Su(H)] by MAPK. Su(H) is a transcription factor that together with several cofactors regulates the expression of Notch target genes. Here we address the consequences of a local induction of three Su(H) variants on Notch target gene expression. To this end, wild-type Su(H), a phospho-deficient Su(H) (MAPK-) (ko) and a phospho-mimetic Su(H) (MAPK-ac) isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(spl)m8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(spl)m8-lacZ, vg (BE) -lacZ). In general, Su(H) (MAPK-) (ko) induced a stronger response than wild-type Su(H), whereas the response to Su(H) (MAPK-ac) was very weak. Notch target genes cut, wingless and vg (BE) -lacZ were ectopically activated, whereas E(spl)m8-lacZ was repressed by overexpression of Su(H) proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DER (act) ) or the MAPK (rl (SEM) ) and individual Su(H) variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes) as well as to assay the response of the Notch target gene cut in cell clones. PMID:26702412

  1. Population structure and uropathogenic virulence-associated genes of faecal Escherichia coli from healthy young and elderly adults.

    PubMed

    Vollmerhausen, Tara L; Ramos, Nubia L; Gündogdu, Aycan; Robinson, Wayne; Brauner, Annelie; Katouli, Mohammad

    2011-05-01

    We investigated the population structures of faecal Escherichia coli in 30 healthy young adults (13 males and 17 females) aged between 20 and 45 years and 29 elderly adults (14 females and 15 males) aged between 65 and 77 years. In all, 1566 strains were typed with the PhPlate system and grouped into biochemical phenotypes (BPTs). Strains with shared BPTs were further typed using randomly amplified polymorphic DNA analysis. Forty-four per cent of the strains were shared between two or more age and gender groups. Elders had a significantly higher (P<0.001) number of BPTs (mean±standard error 3.3±0.27) than younger groups (1.82±0.27). Phylogenetic affiliation and virulence-associated genes (VAGs) of the strains showed that more than 80 % of the strains belonging to dominant types belonged to phylogroups B2 and D. Amongst dominant BPTs, phylogenetic group A was significantly associated with females (P<0.0001), and elders were more likely to carry group D (P<0.0124). Elderly males had a higher prevalence of VAGs than young males (P<0.0001) and young females (P<0.0005). We conclude that there is a lower prevalence of E. coli with uropathogenic properties in healthy young adults than in elders. PMID:21292854

  2. Rearranged Anaplastic Lymphoma Kinase (ALK) Gene in Adult-Onset Papillary Thyroid Cancer Amongst Atomic Bomb Survivors

    PubMed Central

    Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro

    2012-01-01

    Background We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAFV600E) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. Methods The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription–polymerase chain reaction and 5′ rapid amplification of cDNA ends (5′ RACE). Results We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK

  3. Illumina sequencing of green stink bug nymph and adult cdna to identify potential rnai gene targets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole-body transcriptomes for nymphs and adults of the green stink bug, Acrosternum hilare (Say), were sequenced on an Illumina® Genome Analyzer IIx sequencer. The insects were collected from sites in North Carolina and Virginia, USA. The cDNA library for each sample was sequenced on one lane of an...

  4. Gene expression in adult blue-green sharpshooters, Graphocephala atropunctata (Signoret) (Hemiptera: Cicadellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We provide valuable, new information on the genetic basis for the biology of the adult blue-green sharpshooters, BGSS, Graphocephala atropunctata, which transmit the plant pathogenic bacterium, Xylella fastidiosa, the cause of Pierce’s disease of grapes, and other ‘Scorch-like’ diseases of tree crop...

  5. Efficient central nervous system AAVrh10-mediated intrathecal gene transfer in adult and neonate rats.

    PubMed

    Hordeaux, J; Dubreil, L; Deniaud, J; Iacobelli, F; Moreau, S; Ledevin, M; Le Guiner, C; Blouin, V; Le Duff, J; Mendes-Madeira, A; Rolling, F; Cherel, Y; Moullier, P; Colle, M-A

    2015-04-01

    Intracerebral administration of recombinant adeno-associated vector (AAV) has been performed in several clinical trials. However, delivery into the brain requires multiple injections and is not efficient to target the spinal cord, thus limiting its applications. To assess widespread and less invasive strategies, we tested intravenous (IV) or intrathecal (that is, in the cerebrospinal fluid (CSF)) delivery of a rAAVrh10-egfp vector in adult and neonate rats and studied the effect of the age at injection on neurotropism. IV delivery is more efficient in neonates and targets predominantly Purkinje cells of the cerebellum and sensory neurons of the spinal cord and dorsal root ganglia. A single intra-CSF administration of AAVrh10, single strand or oversized self-complementary, is efficient for the targeting of neurons in the cerebral hemispheres, cerebellum, brainstem and spinal cord. Green fluorescent protein (GFP) expression is more widespread in neonates when compared with adults. More than 50% of motor neurons express GFP in the three segments of the spinal cord in neonates and in the cervical and thoracic regions in adults. Neurons are almost exclusively transduced in neonates, whereas neurons, astrocytes and rare oligodendrocytes are targeted in adults. These results expand the possible routes of delivery of AAVrh10, a serotype that has shown efficacy and safety in clinical trials concerning neurodegenerative diseases. PMID:25588740

  6. Sudden unexpected fatal encephalopathy in adults with OTC gene mutations-Clues for early diagnosis and timely treatment

    PubMed Central

    2014-01-01

    Background X-linked Ornithine Transcarbamylase deficiency (OTCD) is often unrecognized in adults, as clinical manifestations are non-specific, often episodic and unmasked by precipitants, and laboratory findings can be normal outside the acute phase. It may thus be associated with significant mortality if not promptly recognized and treated. The aim of this study was to provide clues for recognition of OTCD in adults and analyze the environmental factors that, interacting with OTC gene mutations, might have triggered acute clinical manifestations. Methods We carried out a clinical, biochemical and molecular study on five unrelated adult patients (one female and four males) with late onset OTCD, who presented to the Emergency Department (ED) with initial fatal encephalopathy. The molecular study consisted of OTC gene sequencing in the probands and family members and in silico characterization of the newly detected mutations. Results We identified two new, c.119G>T (p.Arg40Leu) and c.314G>A (p.Gly105Glu), and three known OTC mutations. Both new mutations were predicted to cause a structural destabilization, correlating with late onset OTCD. We also identified, among the family members, 8 heterozygous females and 2 hemizygous asymptomatic males. Patients' histories revealed potential environmental triggering factors, including steroid treatment, chemotherapy, diet changes and hormone therapy for in vitro fertilization. Conclusions This report raises awareness of the ED medical staff in considering OTCD in the differential diagnosis of sudden neurological and behavioural disorders associated with hyperammonemia at any age and in both genders. It also widens the knowledge about combined effect of genetic and environmental factors in determining the phenotypic expression of OTCD. PMID:25026867

  7. A candidate gene investigation of methylphenidate response in adult attention-deficit/hyperactivity disorder patients: results from a naturalistic study.

    PubMed

    Hegvik, Tor-Arne; Jacobsen, Kaya Kvarme; Fredriksen, Mats; Zayats, Tetyana; Haavik, Jan

    2016-08-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common childhood onset neuropsychiatric disorder with a complex and heterogeneous symptomatology. Persistence of ADHD symptoms into adulthood is common. Methylphenidate (MPH) is a widely prescribed stimulant compound that may be effective against ADHD symptoms in children and adults. However, MPH does not exert satisfactory effect in all patients. Several genetic variants have been proposed to predict either treatment response or adverse effects of stimulants. We conducted a literature search to identify previously reported variants associated with MPH response and additional variants that were biologically plausible candidates for MPH response. The response to MPH was assessed by the treating clinicians in 564 adult ADHD patients and 20 genetic variants were successfully genotyped. Logistic regression was used to test for association between these polymorphisms and treatment response. Nominal associations (p < 0.05) were meta-analysed with published data from previous comparable studies. In our analyses, rs1800544 in the ADRA2A gene was associated with MPH response at a nominal significance level (OR 0.560, 95 % CI 0.329-0.953, p = 0.033). However, this finding was not affirmed in the meta-analysis. No genetic variants revealed significant associations after correction for multiple testing (p < 0.00125). Our results suggest that none of the studied variants are strong predictors of MPH response in adult ADHD as judged by clinician ratings, potentially except for rs1800544. Consequently, pharmacogenetic testing in routine clinical care is not supported by our analyses. Further studies on the pharmacogenetics of adult ADHD are warranted. PMID:27091191

  8. Hepatic reference gene selection in adult and juvenile female Atlantic salmon at normal and elevated temperatures

    PubMed Central

    2012-01-01

    Background The use of quantitative real-time polymerase chain reaction (qPCR) has become widespread due to its specificity, sensitivity and apparent ease of use. However, experimental error can be introduced at many stages during sample processing and analysis, and for this reason qPCR data are often normalised to an internal reference gene. The present study used three freely available algorithms (GeNorm, NormFinder and BestKeeper) to assess the stability of hepatically expressed candidate reference genes (Hprt1, Tbp, Ef1α and β-tubulin) in two experiments. In the first, female Atlantic salmon (Salmo salar) broodstock of different ages were reared at either 14 or 22°C for an entire reproductive season, therefore a reference gene that does not respond to thermal challenge or reproductive condition was sought. In the second, estrogen treated juvenile salmon were maintained at the same temperatures for 14 days and a reference gene that does not respond to temperature or estrogen was required. Additionally, we performed independent statistic analysis to validate the outputs obtained from the program based analysis. Results Based on the independent statistical analysis performed the stability of the genes tested was Tbp > Ef1α > Hprt1 > β-tubulin for the temperature/reproductive development experiment and Ef1α > Hprt1 > Tbp for the estrogen administration experiment (β-tubulin was not analysed). Results from the algorithms tested were quite ambiguous for both experiments; however all programs consistently identified the least stable candidate gene. BestKeeper provided rankings that were consistent with the independent analysis for both experiments. When an inappropriate candidate reference gene was used to normalise the expression of a hepatically expressed target gene, the ability to detect treatment-dependent changes in target gene expression was lost for multiple groups in both experiments. Conclusions We have highlighted the need to independently validate

  9. PPARδ expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer

    PubMed Central

    Lunde, Ida G; Ekmark, Merete; Rana, Zaheer A; Buonanno, Andres; Gundersen, Kristian

    2007-01-01

    The effects of exercise on skeletal muscle are mediated by a coupling between muscle electrical activity and gene expression. Several activity correlates, such as intracellular Ca2+, hypoxia and metabolites like free fatty acids (FFAs), might initiate signalling pathways regulating fibre-type-specific genes. FFAs can be sensed by lipid-dependent transcription factors of the peroxisome proliferator-activated receptor (PPAR) family. We found that the mRNA for the predominant muscle isoform, PPARδ, was three-fold higher in the slow/oxidative soleus compared to the fast/glycolytic extensor digitorum longus (EDL) muscle. In histological sections of the soleus, the most oxidative fibres display the highest levels of PPARδ protein. When the soleus muscle was stimulated electrically by a pattern mimicking fast/glycolytic IIb motor units, the mRNA level of PPARδ was reduced to less than half within 24 h. In the EDL, a three-fold increase was observed after slow type I-like electrical stimulation. When a constitutively active form of PPARδ was overexpressed for 14 days in normally active adult fibres after somatic gene transfer, the number of I/IIa hybrids in the EDL more than tripled, IIa fibres increased from 14% to 25%, and IIb fibres decreased from 55% to 45%. The level of succinate dehydrogenase activity increased and size decreased, also when compared to normal fibres of the same type. Thus PPARδ can change myosin heavy chain, oxidative enzymes and size locally in muscle cells in the absence of general exercise. Previous studies on PPARδ in muscle have been performed in transgenic animals where the transgene has been present during muscle development. Our data suggest that PPARδ can mediate activity effects acutely in pre-existing adult fibres, and thus is an important link in excitation–transcription coupling. PMID:17463039

  10. Interaction of the ADRB2 Gene Polymorphism With Childhood Trauma in Predicting Adult Symptoms of Posttraumatic Stress Disorder

    PubMed Central

    Liberzon, Israel; King, Anthony P.; Ressler, Kerry J.; Almli, Lynn M.; Zhang, Peng; Ma, Sean T.; Cohen, Gregory H.; Tamburrino, Marijo B.; Calabrese, Joseph R.; Galea, Sandro

    2015-01-01

    IMPORTANCE Posttraumatic stress disorder (PTSD), while highly prevalent (7.6% over a lifetime), develops only in a subset of trauma-exposed individuals. Genetic risk factors in interaction with trauma exposure have been implicated in PTSD vulnerability. OBJECTIVE To examine the association of 3755 candidate gene single-nucleotide polymorphisms with PTSD development in interaction with a history of childhood trauma. DESIGN, SETTING, AND PARTICIPANTS Genetic association study in an Ohio National Guard longitudinal cohort (n = 810) of predominantly male soldiers of European ancestry, with replication in an independent Grady Trauma Project (Atlanta, Georgia) cohort (n = 2083) of predominantly female African American civilians. MAIN OUTCOMES AND MEASURES Continuous measures of PTSD severity, with a modified (interview) PTSD checklist in the discovery cohort and the PTSD Symptom Scale in the replication cohort. RESULTS Controlling for the level of lifetime adult trauma exposure, we identified the novel association of a single-nucleotide polymorphism within the promoter region of the ADRB2 (Online Mendelian Inheritance in Man 109690) gene with PTSD symptoms in interaction with childhood trauma (rs2400707, P = 1.02 × 10−5, significant after correction for multiple comparisons). The rs2400707 A allele was associated with relative resilience to childhood adversity. An rs2400707 × childhood trauma interaction predicting adult PTSD symptoms was replicated in the independent predominantly female African American cohort. CONCLUSIONS AND RELEVANCE Altered adrenergic and noradrenergic function has been long believed to have a key etiologic role in PTSD development; however, direct evidence of this link has been missing. The rs2400707 polymorphism has been linked to function of the adrenergic system, but, to our knowledge, this is the first study to date linking the ADRB2 gene to PTSD or any psychiatric disorders. These findings have important implications for PTSD etiology

  11. Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori.

    PubMed

    Wanner, K W; Anderson, A R; Trowell, S C; Theilmann, D A; Robertson, H M; Newcomb, R D

    2007-02-01

    Olfaction plays an important role in the life history of insects, including key behaviours such as host selection, oviposition and mate recognition. Odour perception by insects is primarily mediated by the large diverse family of odourant receptors (Ors) that are expressed on the dendrites of olfactory neurones housed within chemosensilla. However, few Or sequences have been identified from the Lepidoptera, an insect order that includes some of the most important pest species worldwide. We have identified 41 Or gene sequences from the silkworm (Bombyx mori) genome, more than double the number of published Or sequences from the Lepidoptera. Many silkworm Ors appear to be orthologs of the 17 published tobacco budworm (Heliothis virescens) Ors indicating that many Or lineages may be conserved within the Lepidoptera. The majority of the Or genes are expressed in adult female and male antennae (determined by quantitative real-time PCR analysis), supporting their probable roles in adult olfaction. Several Or genes are expressed at high levels in both male and female antennae, suggesting they mediate the perception of common host or conspecific volatiles important to both sexes. BmOrs 45-47 group together in the same phylogenetic branch and all three are expressed at moderate female-biased ratios, six to eight times higher in female compared to male moth antennae. Interestingly, BmOrs19 and 30 appear to be expressed predominantly in female antennae, opposite to that of the published silkworm pheromone receptors BmOrs 1 and 3 that are specific to male antennae. These results suggest that BmOr19 and 30 may detect odours critical to female behaviour, such as oviposition cues or male-produced courtship pheromones. PMID:17257213

  12. Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat.

    PubMed

    Chhuneja, Parveen; Kaur, Satinder; Garg, Tosh; Ghai, Meenu; Kaur, Simarjit; Prashar, M; Bains, N S; Goel, R K; Keller, Beat; Dhaliwal, H S; Singh, Kuldeep

    2008-02-01

    Stripe rust, caused by Puccinia striiformis West. f.sp. tritici, is one of the most damaging diseases of wheat worldwide. Forty genes for stripe rust resistance have been catalogued so far, but the majority of them are not effective against emerging pathotypes. Triticum monococcum and T. boeoticum have excellent levels of resistance to rusts, but so far, no stripe rust resistance gene has been identified or transferred from these species. A set of 121 RILs generated from a cross involving T. monococcum (acc. pau14087) and T. boeoticum (acc. pau5088) was screened for 3 years against a mixture of pathotypes under field conditions. The parental accessions were susceptible to all the prevalent pathotypes at the seedling stage, but resistant at the adult plant stage. Genetic analysis of the RIL population revealed the presence of two genes for stripe rust resistance, with one gene each being contributed by each of the parental lines. A linkage map with 169 SSR and RFLP loci generated from a set of 93 RILs was used for mapping these resistance genes. Based on phenotypic data for 3 years and the pooled data, two QTLs, one each in T. monococcum acc. pau14087 and T. boeoticum acc. pau5088, were detected for resistance in the RIL population. The QTL in T. monococcum mapped on chromosome 2A in a 3.6 cM interval between Xwmc407 and Xwmc170, whereas the QTL from T. boeoticum mapped on 5A in 8.9 cM interval between Xbarc151 and Xcfd12 and these were designated as QYrtm.pau-2A and QYrtb.pau-5A, respectively. Based on field data for 3 years, their R2 values were 14 and 24%, respectively. T. monococcum acc. pau14087 and three resistant RILs were crossed to hexaploid wheat cvs WL711 and PBW343, using T. durum as a bridging species with the objective of transferring these genes into hexaploid wheat. The B genome of T. durum suppressed resistance in the F1 plants, but with subsequent backcrossing one resistance gene could be transferred from one of the RILs to the hexaploid wheat

  13. RNA interference suppression of the receptor tyrosine kinase Torso gene impaired pupation and adult emergence in Leptinotarsa decemlineata.

    PubMed

    Zhu, Tao-Tao; Meng, Qing-Wei; Guo, Wen-Chao; Li, Guo-Qing

    2015-12-01

    In Drosophila melanogaster prothoracic gland (PG) cells, Torso mediates prothoracicotropic hormone (PTTH)-triggered mitogen activated protein kinase (MAPK) pathway (consisting of four core components Ras, Raf, MEK and ERK) to stimulate ecdysteroidogenesis. In this study, LdTorso, LdRas, LdRaf and LdERK were cloned in Leptinotarsa decemlineata. The four genes were highly or moderately expressed in the larval prothoracic glands. At the first- to third-instar stages, their expression levels were higher just before and right after the molt, and were lower in the mid instars. At the fourth-instar stage, their transcript levels were higher before prepupal stage. RNA interference-mediated knockdown of LdTorso delayed larval development, increased pupal weight, and impaired pupation and adult emergence. Moreover, knockdown of LdTorso decreased the mRNA levels of LdRas, LdRaf and LdERK, repressed the transcription of two ecdysteroidogenesis genes (LdPHM and LdDIB), lowered 20E titer, and downregulated the expression of several 20E-response genes (LdEcR, LdUSP, LdHR3 and LdFTZ-F1). Furthermore, silencing of LdTorso induced the expression of a JH biosynthesis gene LdJHAMT, increased JH titer, and activated the transcription of a JH early-inducible gene LdKr-h1. Thus, our results suggest that Torso transduces PTTH-triggered MAPK signal to regulate ecdysteroidogenesis in the PGs in a non-drosophiline insect. PMID:26518287

  14. Altered Stress-Induced Regulation of Genes in Monocytes in Adults with a History of Childhood Adversity.

    PubMed

    Schwaiger, Marion; Grinberg, Marianna; Moser, Dirk; Zang, Johannes C S; Heinrichs, Markus; Hengstler, Jan G; Rahnenführer, Jörg; Cole, Steve; Kumsta, Robert

    2016-09-01

    Exposure to serious or traumatic events early in life can lead to persistent alterations in physiological stress response systems, including enhanced cross talk between the neuroendocrine and immune system. These programming effects may be mechanistically involved in mediating the effects of adverse childhood experience on disease risk in adulthood. We investigated hormonal and genome-wide mRNA expression responses in monocytes to acute stress exposure, in a sample of healthy adults (n=30) with a history of early childhood adversity, and a control group (n=30) without trauma experience. The early adversity group showed altered hypothalamus-pituitary-adrenal axis responses to stress, evidenced by lower ACTH and cortisol responses. Analyses of gene expression patterns showed that stress-responsive transcripts were enriched for genes involved in cytokine activity, cytokine-cytokine receptor interaction, chemokine activity, and G-protein coupled receptor binding. Differences between groups in stress-induced regulation of gene transcription were observed for genes involved in steroid binding, hormone activity, and G-protein coupled receptor binding. Transcription factor binding motif analysis showed an increased activity of pro-inflammatory upstream signaling in the early adversity group. We also identified transcripts that were differentially correlated with stress-induced cortisol increases between the groups, enriched for genes involved in cytokine-cytokine receptor interaction and glutamate receptor signaling. We suggest that childhood adversity leads to persistent alterations in transcriptional control of stress-responsive pathways, which-when chronically or repeatedly activated-might predispose individuals to stress-related psychopathology. PMID:27091381

  15. Temporal Gene Expression Profiles of Pre Blood-Fed Adult Females Immediately Following Eclosion in the Southern House Mosquito Culex Quinquefasciatus

    PubMed Central

    Reid, William R.; Zhang, Lee; Liu, Nannan

    2015-01-01

    Prior to acquisition of the first host blood meal, the anautogenous mosquito Culex quinquefasciatus requires a period of time in order to prepare for the blood feeding and, later, vitellogenesis. In the current study, we conducted whole transcriptome analyses of adult female Culex mosquitoes to identify genes that may be necessary for both taking of the blood meal, and processing of the blood meal in adult female mosquitoes Cx. quinquefasciatus. We examined temporal expression of genes for the periods of post eclosion and prior to the female freely taking a blood meal. We further evaluated the temporal expression of certain genes for the periods after the taking of a blood meal to identify genes that may be necessary for both the taking of the blood meal, and the processing of the blood meal. We found that adult females required a minimum of 48 h post-eclosion before they freely took their first blood meal. We hypothesized that gene expression signatures were altered in the mosquitoes before blood feeding in preparation for the acquisition of the blood meal through changes in multiple gene expression. To identify the genes involved in the acquisition of blood feeding, we quantified the gene expression levels of adult female Cx. quinquefasciatus using RNA Seq throughout a pre-blooding period from 2 to 72 h post eclosion at 12 h intervals. A total of 325 genes were determined to be differentially-expressed throughout the pre-blooding period, with the majority of differentially-expressed genes occurring between the 2 h and 12 h post-eclosion time points. Among the up-regulated genes were salivary proteins, cytochrome P450s, odorant-binding proteins, and proteases, while the majority of the down-regulated genes were hypothetical or cuticular genes. In addition, Trypsin was found to be up-regulated immediately following blood feeding, while trypsin and chymotrypsin were up-regulated at 48h and 60h post blood-feeding, respectively, suggesting that these proteases are

  16. Association and Interactions between DNA Repair Gene Polymorphisms and Adult Glioma

    PubMed Central

    Liu, Yanhong; Scheurer, Michael E.; El-Zein, Randa; Cao, Yumei; Do, Kim-Anh; Gilbert, Mark; Aldape, Kenneth D.; Wei, Qingyi; Etzel, Carol; Bondy, Melissa L.

    2010-01-01

    It is generally accepted that glioma develops through accumulation of genetic alterations. We hypothesized that polymorphisms of candidate genes involved in the DNA repair pathways may contribute to susceptibility to glioma. To address this possibility, we conducted a study of 373 Caucasian glioma cases and 365 cancer-free Caucasian controls to assess associations between glioma risk and 18 functional SNPs in DNA repair genes. We evaluated potential gene-gene and gene-environment interactions using a multi-analytic strategy combining logistic regression, multifactor dimensionality reduction (MDR), and classification and regression tree (CART) approaches. In the single-locus analysis, six SNPs (ERCC1 3’ UTR, XRCC1 R399Q, APEX1 E148D, PARP1 A762V, MGMT F84L, and LIG1 5’UTR) showed a significant association with glioma risk. In the analysis of cumulative genetic risk of multiple SNPs, a significant gene-dosage effect was found for increased glioma risk with increasing numbers of adverse genotypes involving the above-mentioned six SNPs (P trend = 0.0004). Further, both the MDR and CART analyses identified MGMT F84L as the predominant risk factor for glioma, and revealed strong interactions among ionizing radiation (IR) exposure, PARP1 A762V, MGMT F84L and APEX1 E148D. Interestingly, the risk for glioma was dramatically increased in IR exposure individuals who had the wild-type genotypes of both MGMT F84L and PARP1 A762V [adjusted odds ratios (OR), 5.95; 95% confidence intervals (CI), 2.21–16.65]. Taken together, these results suggest that polymorphisms in DNA repair genes may act individually or together to contribute to glioma risk. PMID:19124499

  17. A lacZ reporter gene expression atlas for 313 adult KOMP mutant mouse lines.

    PubMed

    West, David B; Pasumarthi, Ravi K; Baridon, Brian; Djan, Esi; Trainor, Amanda; Griffey, Stephen M; Engelhard, Eric K; Rapp, Jared; Li, Bowen; de Jong, Pieter J; Lloyd, K C Kent

    2015-04-01

    Expression of the bacterial beta-galactosidase reporter gene (lacZ) in the vector used for the Knockout Mouse Project (KOMP) is driven by the endogenous promoter of the target gene. In tissues from KOMP mice, histochemical staining for LacZ enzyme activity can be used to determine gene expression patterns. With this technique, we have produced a comprehensive resource of gene expression using both whole mount (WM) and frozen section (FS) LacZ staining in 313 unique KOMP mutant mouse lines. Of these, ∼ 80% of mutants showed specific staining in one or more tissues, while ∼ 20% showed no specific staining, ∼ 13% had staining in only one tissue, and ∼ 25% had staining in >6 tissues. The highest frequency of specific staining occurred in the brain (∼ 50%), male gonads (42%), and kidney (39%). The WM method was useful for rapidly identifying whole organ and some substructure staining, while the FS method often revealed substructure and cellular staining specificity. Both staining methods had >90% repeatability in biological replicates. Nonspecific LacZ staining occurs in some tissues due to the presence of bacteria or endogenous enzyme activity. However, this can be effectively distinguished from reporter gene activity by the combination of the WM and FS methods. After careful annotation, LacZ staining patterns in a high percentage of mutants revealed a unique structure-function not previously reported for many of these genes. The validation of methods for LacZ staining, annotation, and expression analysis reported here provides unique insights into the function of genes for which little is currently known. PMID:25591789

  18. A lacZ reporter gene expression atlas for 313 adult KOMP mutant mouse lines

    PubMed Central

    Pasumarthi, Ravi K.; Baridon, Brian; Djan, Esi; Trainor, Amanda; Griffey, Stephen M.; Engelhard, Eric K.; Rapp, Jared; Li, Bowen; de Jong, Pieter J.; Lloyd, K.C. Kent

    2015-01-01

    Expression of the bacterial beta-galactosidase reporter gene (lacZ) in the vector used for the Knockout Mouse Project (KOMP) is driven by the endogenous promoter of the target gene. In tissues from KOMP mice, histochemical staining for LacZ enzyme activity can be used to determine gene expression patterns. With this technique, we have produced a comprehensive resource of gene expression using both whole mount (WM) and frozen section (FS) LacZ staining in 313 unique KOMP mutant mouse lines. Of these, ∼80% of mutants showed specific staining in one or more tissues, while ∼20% showed no specific staining, ∼13% had staining in only one tissue, and ∼25% had staining in >6 tissues. The highest frequency of specific staining occurred in the brain (∼50%), male gonads (42%), and kidney (39%). The WM method was useful for rapidly identifying whole organ and some substructure staining, while the FS method often revealed substructure and cellular staining specificity. Both staining methods had >90% repeatability in biological replicates. Nonspecific LacZ staining occurs in some tissues due to the presence of bacteria or endogenous enzyme activity. However, this can be effectively distinguished from reporter gene activity by the combination of the WM and FS methods. After careful annotation, LacZ staining patterns in a high percentage of mutants revealed a unique structure-function not previously reported for many of these genes. The validation of methods for LacZ staining, annotation, and expression analysis reported here provides unique insights into the function of genes for which little is currently known. PMID:25591789

  19. Working memory performance in young adults is associated to the AATn polymorphism of the CNR1 gene.

    PubMed

    Ruiz-Contreras, Alejandra E; Carrillo-Sánchez, Karol; Gómez-López, Nardhy; Vadillo-Ortega, Felipe; Hernández-Morales, Salvador; Carnevale-Cantoni, Alessandra; Espejel-Núñez, Aurora; Méndez-Díaz, Mónica; Prospéro-García, Oscar

    2013-01-01

    Working memory (WM) depends on several neural networks and neurochemical systems. One of them is the endocannabinoid (eCB) system, which CB1 receptor (CB1R) is widely distributed all over the brain. The stimulation of CB1R by agonists reduces WM efficiency. The CNR1 human gene (6q14-15) encodes the CB1R. AATn polymorphism of the CNR1 gene has been related to psychiatric disorders, and to procedural learning and attention in healthy subjects. The aim of this exploratory research was to test whether AATn polymorphism of the CNR1 is related to the WM performance, by measuring n-back task. Mexican healthy young adults (n = 94) performed the WM n-back task. One of the most frequent AATn allele in our sample was the AAT12. We formed three groups, as a function of the AATn genotype: AAT ≤ 12/AAT≤12, AAT ≤ 12/AAT > 12 and AAT > 12/AAT > 12, and their accuracy on the n-back task was compared. WM accuracy differed among genotypes (P=0.03): AAT ≤ 12/AAT≤12 group had a higher performance than the AAT > 12/AAT > 12 group (statistical power: 0.65, f(2) = 0.20, P<0.05). These results suggest that the fewer AATn repeats of the CNR1 gene, the better WM performance, and sustain the idea that eCB system participates in the modulation of the human brain network involved in WM. PMID:22944513

  20. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  1. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse.

    PubMed

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2016-03-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood-brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  2. Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells.

    PubMed

    van Arensbergen, Joris; García-Hurtado, Javier; Maestro, Miguel Angel; Correa-Tapia, Miguel; Rutter, Guy A; Vidal, Miguel; Ferrer, Jorge

    2013-01-01

    Polycomb-mediated gene repression is essential for embryonic development, yet its precise role in lineage-specific programming is poorly understood. Here we inactivated Ring1b, encoding a polycomb-repressive complex 1 subunit, in pancreatic multipotent progenitors (Ring1b(progKO)). This caused transcriptional derepression of a subset of direct Ring1b target genes in differentiated pancreatic islet cells. Unexpectedly, Ring1b inactivation in differentiated islet β cells (Ring1b(βKO)) did not cause derepression, even after multiple rounds of cell division, suggesting a role for Ring1b in the establishment but not the maintenance of repression. Consistent with this notion, derepression in Ring1b(progKO) islets occurred preferentially in genes that were targeted de novo by Ring1b during pancreas development. The results support a model in which Ring1b bookmarks its target genes during embryonic development, and these genes are maintained in a repressed state through Ring1b-independent mechanisms in terminally differentiated cells. This work provides novel insights into how epigenetic mechanisms contribute to shaping the transcriptional identity of differentiated lineages. PMID:23271347

  3. Increased lubricin/proteoglycan 4 gene expression and decreased modulus in medial collateral ligaments following ovariohysterectomy in the adult rabbit: Evidence consistent with aging.

    PubMed

    Lemmex, Devin B; Ono, Yohei; Reno, Carol R; Hart, David A; Lo, Ian K Y; Thornton, Gail M

    2016-02-01

    This study investigated whether ovariohysterectomy (OVH) surgery to induce menopause resulted in changes to modulus, failure strain and lubricin/proteoglycan 4 (PRG4) gene expression in rabbit medial collateral ligaments (MCLs), similar to aging (Thornton et al., 2015a). The MCLs from adult rabbits that underwent OVH surgery as adolescents (15-week-old) and adults (1-year-old) were compared by evaluating mechanical behaviour (adolescent OVH, n=8; adult OVH, n=7; normal, n=7), gene expression (adolescent OVH, n=9; adult OVH, n=8; normal, n=8), and collagen and glycosaminoglycan (adolescent OVH, n=9; adult OVH, n=8; normal, n=8) and water (adolescent OVH, n=9; adult OVH, n=8; normal, n=8) content. Mechanical behaviour evaluated cyclic, static and total creep strain, and ultimate tensile strength, modulus and failure strain. The RT-qPCR assessed mRNA levels for matrix regulatory genes. Adult OVH MCLs exhibited increased cyclic creep and failure strain, and decreased modulus with increased mRNA levels for lubricin/PRG4 and collagen I compared with normal MCLs. Adolescent OVH MCLs exhibited increased cyclic, static and total creep strain with decreased mRNA levels for the progesterone receptor. Lubricin/PRG4 plays a role in the lubrication of collagen fascicles which is likely related to the decreased modulus and increased failure strain observed in ligaments from adult OVH rabbits. Progesterone and its receptor are thought to play a role in the stretching of ligaments in pelvic organ prolapse and pregnancy which is likely related to the increase in creep strain observed in ligaments from adolescent OVH rabbits. Ovariohysterectomy in adult rabbits resulted in changes that were consistent with the aging MCL. PMID:26776933

  4. Gene silencing in adult Aedes aegypti mosquitoes through oral delivery of double-stranded RNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The induction of the naturally occurring phenomenon of RNA interference (RNAi) to study gene function in insects is now common practice. With appropriately chosen targets, the RNAi pathway has also been exploited for insect control, typically through oral delivery of dsRNA. To determine if such an a...

  5. Psyllid biology: expressed genes in adult Asian citrus psyllids, Diaphorina citri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    These results advance the field of psyllid research by identifying genes and their proteins which function in: physiology, feeding, disease transmission, and the development of insecticide resistance. This was accomplished by using the molecular approach of a large-scale 5' end sequencing project of...

  6. Resistance training alters cytokine gene expression in skeletal muscle of adults with type 2 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance training results in muscle hypertrophy and improves glycemic control in patients with type 2 diabetes. Whether resistance training modulates inflammation in muscles of diabetic patients remains unknown. We examined the expression of genes encoding the cytokines, tumor necrosis factor-al...

  7. Phylogenetic comparisons suggest that distance from the locus control region guides developmental expression of primate beta-type globin genes.

    PubMed

    Johnson, Robert M; Prychitko, Tom; Gumucio, Deborah; Wildman, Derek E; Uddin, Monica; Goodman, Morris

    2006-02-28

    Phylogenetic inferences drawn from comparative data on mammalian beta-globin gene clusters indicate that the ancestral primate cluster contained a locus control region (LCR) and five paralogously related beta-type globin loci (5'-LCR-epsilon-gamma-psieta-delta-beta-3'), with epsilon and gamma expressed solely during embryonic life. A gamma locus tandem duplication (5'-gamma(1)-gamma(2)-3') triggered gamma's evolution toward fetal expression but by a different trajectory in platyrrhines (New World monkeys) than in catarrhines (Old World monkeys and apes, including humans). In platyrrhine (e.g., Cebus) fetuses, gamma(1) at the ancestral distance from epsilon is down-regulated, whereas gamma(2) at increased distance is up-regulated. Catarrhine gamma(1) and gamma(2) acquired longer distances from epsilon (14 and 19 kb, respectively), and both are up-regulated throughout fetal life with gamma(1)'s expression predominating over gamma(2)'s. On enlarging the platyrrhine expression data, we find Aotus gamma is embryonic, Alouatta gamma is inactive at term, and in Callithrix, gamma(1) is down-regulated fetally, whereas gamma(2) is up-regulated. Of eight mammalian taxa now represented per taxon by embryonic, fetal, and postnatal beta-type globin gene expression data, four taxa are primates, and data for three of these primates are from this laboratory. Our results support a model in which a short distance (<10 kb) between epsilon and the adjacent gamma is a plesiomorphic character that allows the LCR to drive embryonic expression of both genes, whereas a longer distance (>10 kb) impedes embryonic activation of the downstream gene. PMID:16488971

  8. Association of body fat distribution with proinflammatory gene expression in peripheral blood mononuclear cells from young adult subjects.

    PubMed

    Hermsdorff, Helen Hermana Miranda; Puchau, Blanca; Zulet, María Angeles; Martínez, José Alfredo

    2010-06-01

    Peripheral blood mononuclear cells (PBMC) measurements have proved useful in recent studies to discern peripheral biomarkers for common complex diseases and for understanding host responses to drugs and nutrition in personalized medicine. Despite the initial promising data from PBMC, there is little information, however, on inflammatory and immune gene regulation in the context of body fat distribution and metabolic features in healthy adults. We investigated the putative association of body fat distribution and related-metabolic features with mRNA levels of proinflammatory markers in PBMC. This study enrolled 136 healthy subjects (85 females/51 males; age: 21.5 +/- 2.5 years). Anthropometrical, clinical, metabolic, and proinflammatory variables were assessed with validated tools. Interestingly, in normal-weight subjects with lower truncal fat (TF) values, mRNA levels of ICAM1, IL1R1, IL6, and TNF-alpha in PBMC were lower (p < 0.05), compared to normal-weight individuals with higher TF (>58.5/50.2% for men/women, respectively) and overweight/obese subjects [body mass index (BMI) >25 kg/m(2)]. After regression analyses were performed, individuals with the highest tertiles of TF and waist circumference displayed higher mRNA gene expressions as well as circulating proinflammatory (C-reactive protein and IL6) and metabolic (blood pressure, HOMA-IR, and LDL-c:HDL-c ratio) variables values (p < 0.05), independent from gender. Our findings collectively suggest that the mRNA expression of certain proinflammatory markers in PBMC is associated with body fat distribution in healthy adult subjects, which in turn, was also related to metabolic features and plasma proinflammatory markers concentrations. PMID:20450441

  9. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    PubMed Central

    Ieraci, Alessandro; Mallei, Alessandra; Popoli, Maurizio

    2016-01-01

    Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI) mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH) mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice. PMID:26881124

  10. The Sox gene Dichaete is expressed in local interneurons and functions in development of the Drosophila adult olfactory circuit

    PubMed Central

    Melnattur, Krishna V.; Berdnik, Daniela; Rusan, Zeid; Ferreira, Christopher J.; Nambu, John R.

    2012-01-01

    In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest non-cell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry. PMID:22648855

  11. The sox gene Dichaete is expressed in local interneurons and functions in development of the Drosophila adult olfactory circuit.

    PubMed

    Melnattur, Krishna V; Berdnik, Daniela; Rusan, Zeid; Ferreira, Christopher J; Nambu, John R

    2013-02-01

    In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry. PMID:22648855

  12. Chemosensory Gene Families in Adult Antennae of Anomala corpulenta Motschulsky (Coleoptera: Scarabaeidae: Rutelinae)

    PubMed Central

    Jie, Wencai; Li, Fei; Jiang, Xiaojing; Hu, Jingjing; Qu, Mingjing

    2015-01-01

    Background The metallic green beetle, Anomala corpulenta (Coleoptera: Scarabaeidae: Rutelinae), is a destructive pest in agriculture and horticulture throughout Asia, including China. Olfaction plays a crucial role in the survival and reproduction of A. corpulenta. As a non-model species, A. corpulenta is poorly understood, and information regarding the molecular mechanisms underlying olfaction in A. corpulenta and other scarab species is scant. Methodology/Principle Findings We assembled separate antennal transcriptome for male and female A. corpulenta using Illumina sequencing technology. The relative abundance of transcripts with gene ontology annotations, including those related to olfaction in males and females was highly similar. Transcripts encoding 15 putative odorant binding proteins, five chemosensory proteins, one sensory neuron membrane protein, 43 odorant receptors, eight gustatory receptors, and five ionotropic receptors were identified. The sequences of all of these chemosensory-related transcripts were confirmed using reverse transcription polymerase chain reaction (RT-PCR), and direct DNA sequencing. The expression patterns of 54 putative chemosensory genes were analyzed using quantitative real time RT-PCR (qRT-PCR). Antenna-specific expression was detected for many of these genes, suggesting that they may have important functions in semiochemical detection. Conclusions The identification of a large number of chemosensory proteins provides a major resource for the study of the molecular mechanism of odorant detection in A. corpulenta and its chemical ecology. The genes identified, especially those that were expressed at high levels in the antennae may represent novel molecular targets for the development of population control strategies based on the manipulation of chemoreception-driven behaviors. PMID:25856077

  13. Mutations in mammalian tolloid-like 1 gene detected in adult patients with ASD

    PubMed Central

    Stańczak, Paweł; Witecka, Joanna; Szydło, Anna; Gutmajster, Ewa; Lisik, Małgorzata; Auguściak-Duma, Aleksandra; Tarnowski, Maciej; Czekaj, Tomasz; Czekaj, Hanna; Sieroń, Aleksander L

    2009-01-01

    Atrial septal defect (ASD) is an incomplete septation of atria in human heart causing circulatory problems. Its frequency is estimated at one per 10 000. Actions of numerous genes have been linked to heart development. However, no single gene defect causing ASD has yet been identified. Incomplete heart septation similar to ASD was reported in transgenic mice with both inactive alleles of gene encoding mammalian zinc metalloprotease a mammalian tolloid-like 1 (tll1). Here, we have screened 19 ASD patients and 15 healthy age-matched individuals for mutations in TLL1 gene. All 22 exons were analyzed exon by exon for heteroduplex formation. Subsequently, DNA fragments forming heteroduplexes were sequenced. In four nonrelated patients, three missense mutations in coding sequence, and one single base change in the 5′UTR have been detected. Two mutations (Met182Leu, and Ala238Val) were detected in ASD patients with the same clinical phenotype. As the second mutation locates immediately upstream of the catalytic zinc-binding signature, it might change the enzyme substrate specificity. The third change, Leu627Val in the CUB3 domain, has been found in an ASD patient with interatrial septum aneurysm in addition to ASD. The CUB3 domain is important for substrate-specific recognition. In the remaining 15 patients as well as in 15 reference samples numerous base substitutions, deletions, and insertions have been detected, but no mutations changing the coding sequence have been found. Lack of mutations in relation to ASD of these patients could possibly be because of genetic heterogeneity of the syndrome. PMID:18830233

  14. Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins.

    PubMed

    Xuan, Ning; Guo, Xia; Xie, Hong-Yan; Lou, Qi-Nian; Lu, Xing-Bo; Liu, Guo-Xia; Picimbon, Jean-François

    2015-04-01

    We analyzed 20 chemosensory protein (CSP) genes of the silkworm Bombyx mori. We found a high number of retrotransposons inserted in introns. We then analyzed expression of the 20 BmorCSP genes across tissues using quantitative real-time polymerase chain reaction (PCR). Relatively low expression levels of BmorCSPs were found in the gut and fat body tissues. We thus tested the effects of endectocyte insecticide abamectin (B1a and B1b avermectins) on BmorCSP gene expression. Quantitative real-time PCR experiments showed that a single brief exposure to insecticide abamectin increased dramatically CSP expression not only in the antennae but in most tissues, including gut and fat body. Furthermore, our study showed coordinate expression of CSPs and metabolic cytochrome P450 enzymes in a tissue-dependent manner in response to the insecticide. The function of CSPs remains unknown. Based on our results, we suggest a role in detecting xenobiotics that are then detoxified by cytochrome P450 anti-xenobiotic enzymes. PMID:24677614

  15. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water

    SciTech Connect

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V.; Costa, Max

    2015-05-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p < 0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. - Highlights: • Males and females exhibit unique gene expression changes in response to arsenic. • Only 23 genes are common among the differentially expressed genes for the sexes. • Male and female gene lists exhibit common biological

  16. Association of peroxisome proliferator-activated receptor-gamma gene polymorphisms and gene-gene interaction with asthma risk in a Chinese adults population

    PubMed Central

    Li, Wancheng; Dai, Wenjing; Sun, Jian; Zhang, Wei; Jiang, Yi; Ma, Chunlan; Wang, Chunmao; He, Jie

    2015-01-01

    Aims: To investigate the association between single nucleotide polymorphism (SNP) of peroxisome proliferator-activated receptors γ (PPAR γ) and additional gene-gene interactions on asthma risk. Methods: A total of 882 subjects (602 males, 280 females), with a mean age of 61.3±14.8 years old, including 430 asthma patients and 452 normal subjects were selected in this study, including the genotyping of polymorphisms. Logistic regression was performed to investigate association between SNP and asthma. Generalized MDR (GMDR) was used to analysis the interaction among four SNP. Results: Asthma risk was significantly lower in carriers of Ala allele of the rs1805192 polymorphism than those with Pro/Pro (Pro/Ala+ Ala/Ala versus Pro/Pro, adjusted OR (95% CI)=0.70 (0.51-0.94). In addition, we also found a significant association between rs10865710 and asthma, asthma risk was significantly lower in carriers of G allele of the rs10865710 polymorphism than those with CC (CG+ GG versus CC, adjusted OR (95% CI)=0.68 (0.55-0.95). There was a significant three-locus model (P=0.0107) involving rs1805192, rs10865710 and rs709158, indicating a potential gene-gene interaction among rs1805192, rs10865710 and rs709158. Overall, the three-locus models had a cross-validation consistency of 10 of 10, and had the testing accuracy of 60.72% after covariates adjustment. Conclusions: Our results support an important association of rs1805192 and rs10865710 with asthma, and additional interaction among rs1805192, rs10865710 and rs709158. PMID:26770574

  17. UPRT, a suicide-gene therapy candidate in higher eukaryotes, is required for Drosophila larval growth and normal adult lifespan.

    PubMed

    Ghosh, Arpan C; Shimell, MaryJane; Leof, Emma R; Haley, Macy J; O'Connor, Michael B

    2015-01-01

    Uracil phosphoribosyltransferase (UPRT) is a pyrimidine salvage pathway enzyme that catalyzes the conversion of uracil to uridine monophosphate (UMP). The enzyme is highly conserved from prokaryotes to humans and yet phylogenetic evidence suggests that UPRT homologues from higher-eukaryotes, including Drosophila, are incapable of binding uracil. Purified human UPRT also do not show any enzymatic activity in vitro, making microbial UPRT an attractive candidate for anti-microbial drug development, suicide-gene therapy, and cell-specific mRNA labeling techniques. Nevertheless, the enzymatic site of UPRT remains conserved across the animal kingdom indicating an in vivo role for the enzyme. We find that the Drosophila UPRT homologue, krishah (kri), codes for an enzyme that is required for larval growth, pre-pupal/pupal viability and long-term adult lifespan. Our findings suggest that UPRT from all higher eukaryotes is likely enzymatically active in vivo and challenges the previous notion that the enzyme is non-essential in higher eukaryotes and cautions against targeting the enzyme for therapeutic purposes. Our findings also suggest that expression of the endogenous UPRT gene will likely cause background incorporation when using microbial UPRT as a cell-specific mRNA labeling reagent in higher eukaryotes. PMID:26271729

  18. ALK-positive inflammatory myofibroblastic tumor harboring ALK gene rearrangement, occurring after allogeneic stem cell transplant in an adult male.

    PubMed

    Vroobel, Katherine; Judson, Ian; Dainton, Melissa; McCormick, Alison; Fisher, Cyril; Thway, Khin

    2016-08-01

    Inflammatory myofibroblastic tumor arose as a defined neoplasm from the disparate group of tumors (both neoplastic and inflammatory) originally described as inflammatory pseudotumors. The morphologic features are well described, and 50-60% of cases are associated with fusions of the anaplastic lymphoma kinase (ALK) gene. We describe an inflammatory myofibroblastic tumor in the lower abdominal wall of an adult male, which occurred 88days after he received an allogeneic stem cell transplant for T-lymphoblastic lymphoma, and which was positive for ALK immunohistochemistry and showed ALK gene rearrangement by fluorescence in situ hybridization. Two other cases are reported in the post-stem cell transplant setting, but both occurred in children and did not have molecular analysis performed. The etiology remains unclear, but may be due to immune dysregulation caused by any combination of prior chemotherapy, radiotherapy and immune suppression. These neoplasms should be considered as a rare consequence of allogeneic stem cell transplantation and referral to a specialist sarcoma center for further management may be required. PMID:27155927

  19. Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration.

    PubMed Central

    Kapadia, S; Lee, J; Torre-Amione, G; Birdsall, H H; Ma, T S; Mann, D L

    1995-01-01

    TNF alpha mRNA and protein biosynthesis were examined in the adult feline heart after stimulation with endotoxin. When freshly isolated hearts were stimulated with endotoxin in vitro, de novo TNF alpha mRNA expression occurred within 30 min, and TNF alpha protein production was detected within 60-75 min; however, TNF alpha mRNA and protein production were not detected in diluent-treated hearts. Immunohistochemical studies localized TNF alpha to endothelial cells, smooth muscle cells, and cardiac myocytes in the endotoxin-treated hearts, whereas TNF alpha immunostaining was absent in the diluent-treated hearts. To determine whether the cardiac myocyte was a source for TNF alpha production, two studies were performed. First, in situ hybridization studies, using highly specific biotinylated probes, demonstrated TNF alpha mRNA in cardiac myocytes from endotoxin-stimulated hearts; in contrast, TNF alpha mRNA was not expressed in myocytes from diluent-treated hearts. Second, TNF alpha protein production was observed when cultured cardiac myocytes were stimulated with endotoxin, whereas TNF alpha protein production was not detected in the diluent-treated cells. The functional significance of the intramyocardial production of TNF alpha was determined by examining cell motion in isolated cardiac myocytes treated with superfusates from endotoxin- and diluent-stimulated hearts. These studies showed that cell motion was depressed in myocytes treated with superfusates from the endotoxin-treated hearts, but was normal with the superfusates from the diluent-treated hearts; moreover, the negative inotropic effects of the superfusates from the endotoxin-treated hearts could be abrogated completely by pretreatment with an anti-TNF alpha antibody. Finally, endotoxin stimulation was also shown to result in the intramyocardial production of TNF alpha mRNA and protein in vivo. Thus, this study shows for the first time that the adult mammalian myocardium synthesizes biologically active

  20. The dissection and SSR mapping of a high-temperature adult-plant stripe rust resistance gene in American spring wheat cultivar Alturas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stripe rust is one of major diseases in wheat production worldwide. The best economic and efficient method is to utilize resistant varieties. Alturas has high-temperature adult-plant resistance. In order to determine stripe rust resistance characteristics, resistance gene combination and molecular m...

  1. SPOCK3, a risk gene for adult ADHD and personality disorders.

    PubMed

    Weber, Heike; Scholz, Claus-Jürgen; Jacob, Christian P; Heupel, Julia; Kittel-Schneider, Sarah; Erhardt, Angelika; Hempel, Susanne; Schmidt, Brigitte; Kiel, Tilman; Gessner, Alexandra; Lesch, Klaus-Peter; Reif, Andreas

    2014-08-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most frequent psychiatric disorder in children, where it displays a global prevalence of 5 %. In up to 50 % of the cases, ADHD may persist into adulthood (aADHD), where it is often comorbid with personality disorders. Due to a potentially heritable nature of this comorbidity, we hypothesized that their genetic framework may contain common risk-modifying genes. SPOCK3, a poorly characterized, putatively Ca(2+)-binding extracellular heparan/chondroitin sulfate proteoglycan gene encoded by the human chromosomal region 4q32.3, was found to be associated with polymorphisms among the top ranks in a genome-wide association study (GWAS) on ADHD and a pooled GWAS on personality disorder (PD). We therefore genotyped 48 single nucleotide polymorphisms (SNPs) representative of the SPOCK3 gene region in 1,790 individuals (n aADHD = 624, n PD = 630, n controls = 536). In this analysis, we found two SNPs to be nominally associated with aADHD (rs7689440, rs897511) and four PD-associated SNPs (rs7689440, rs897511, rs17052671 and rs1485318); the latter even reached marginal significance after rigorous Bonferroni correction. Bioinformatics tools predicted a possible influence of rs1485318 on transcription factor binding, whereas the other candidate SNPs may have effects on alternative splicing. Our results suggest that SPOCK3 may modify the genetic risk for ADHD and PD; further studies are, however, needed to identify the underlying mechanisms. PMID:24292267

  2. A common gene for juvenile and adult-onset primary open-angle glaucomas confined on chromosome 1q

    SciTech Connect

    Morissette, J.; Plante, M.; Raymond, V.

    1995-06-01

    Primary open-angle glaucoma (POAG), which causes progressive loss of the visual fields, was subdivided into two groups according to age at onset: (1) chronic open-angle glaucoma (COAG) diagnosed after 40 years and (2) juvenile open-angle glaucoma (JOAG) diagnosed between 3 years of age and early adulthood. A JOAG gene (GLC1A) was recently mapped to chromosome 1q. We studied 142 members of a huge multigenerational French Canadian family affected with autosomal dominant POAG. Either JOAG or COAG was diagnosed with ocular hypertension (OHT), which may lead to POAG. To localize a common disease gene that might be responsible for both glaucoma subsets, we performed linkage analysis considering JOAG and COAG under the same phenotypic category. JOAG/COAG was tightly linked to seven microsatellite markers on chromosome 1q23-q25; a maximum lod score of 6.62 was obtained with AF-M278ye5. To refine the disease locus, we exploited a recombination mapping strategy based on a unique founder effect. The same characteristic haplotype, composed of 14 markers spanning 12 cM between loci D1S196 and D1S212, was recognized in all persons affected by JOAG, COAG, or OHT, but it did not occur in unaffected spouses and in normal family members >35 years of age, except for three obligatory carriers. Key combination events confined the disease region within a 9-cM interval between loci D1S445 and D1S416/D1S480. These observations demonstrate that the GLC1A gene is responsible for both adult-onset and juvenile glaucomas and suggest that the JOAG and COAG categories within this family may be part of a clinical continuum artificially divided at age 40 years. 49 refs., 4 figs., 2 tabs.

  3. Differential Expression Patterns of occ1-Related Genes in Adult Monkey Visual Cortex

    PubMed Central

    Takahata, Toru; Komatsu, Yusuke; Watakabe, Akiya; Hashikawa, Tsutomu; Tochitani, Shiro

    2009-01-01

    We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins. PMID:19073625

  4. Mindfulness-Based Stress Reduction Training Reduces Loneliness and Pro-Inflammatory Gene Expression in Older Adults: A Small Randomized Controlled Trial

    PubMed Central

    Creswell, J. David; Irwin, Michael R.; Burklund, Lisa J.; Lieberman, Matthew D.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W.

    2013-01-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N=40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35)=7.86, p=.008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33)=3.39, p=.075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. PMID:22820409

  5. Telomerase Gene (hTERT) and Survival: Results From Two Swedish Cohorts of Older Adults.

    PubMed

    Kalpouzos, Grégoria; Rizzuto, Debora; Keller, Lina; Fastbom, Johan; Santoni, Giola; Angleman, Sara; Graff, Caroline; Bäckman, Lars; Fratiglioni, Laura

    2016-02-01

    Telomere length has been associated with longevity. As telomere length is partly determined by the human telomerase reverse transcriptase (hTERT), we investigated the association between an hTERT polymorphism located in its promoter region ((-) (1327)T/C) and longevity in two cohorts of older adults. Participants from the Kungsholmen project (KP; n = 1,205) and the Swedish National study of Aging and Care in Kungsholmen (SNAC-K; n = 2,764) were followed for an average period of 7.5 years. The main outcomes were hazard ratios (HR) of mortality and median age at death. In both cohorts, mortality was lower in female T/T carriers, aged 75+ years in KP (HR = 0.8, 95% CI: 0.5-0.9) and 78+ years in SNAC-K (HR = 0.6, 95% CI: 0.4-0.8) compared with female C/C carriers. T/T carriers died 1.8-3 years later than the C/C carriers. This effect was not present in men, neither in SNAC-K women aged 60-72 years. The association was not modified by presence of cancer, cardiovascular diseases, number of chronic diseases, or markers of inflammation, and did not interact with APOE genotype or estrogen replacement therapy. The gender-specific increased survival in T/T carriers can be due to a synergistic effect between genetic background and the life-long exposure to endogenous estrogen. PMID:25452402

  6. Comparative transcriptomic analysis by RNA-seq to discern differential expression of genes in liver and muscle tissues of adult Berkshire and Jeju Native Pig.

    PubMed

    Sodhi, Simrinder Singh; Song, Ki-Duk; Ghosh, Mrinmoy; Sharma, Neelesh; Lee, Sung Jin; Kim, Jeong Hyun; Kim, Nameun; Mongre, Raj Kumar; Adhikari, Pradeep; Kim, Jin Young; Hong, Sang Pyo; Oh, Sung Jong; Jeong, Dong Kee

    2014-08-10

    RNA-seq is being rapidly adopted for the profiling of the transcriptomes in different areas of biology, especially in the studies related to gene regulation. The discovery of differentially expressed genes (DEGs) between adult animals of Jeju Native Pig (JNP) and Berkshire breeds of Sus scrofa, is of particular interest for the current study. For the better understanding of the gene expression profiles of the liver and longissimus dorsi muscle, DEGs were identified via RNA-seq. Sequence reads were obtained from Illumina HiSeq2000 and mapped to the pig reference genome (Sscrofa10.2) using Tophat2. We identified 169 and 39 DEGs in the liver and muscle of JNP respectively, by comparison with Berkshire breed. Out of all identified genes, 41 genes in the liver and 9 genes in the muscle have given significant expression. Gene ontology (GO) terms of developmental process and KEGG pathway analysis showed that metabolic, immune response and protein binding were commonly enriched pathways in the two tissues. Further the heat map analysis by ArrayStar has shown the different levels of expression in JNP with respect to the Berkshire breed. The validation through real time PCR and western blotting also confirmed the differential expression of genes in both breeds. Genes pertaining to metabolic process and inflammatory and immune system are more enriched in Berkshire breed. This comparative transcriptome analysis of two tissues suggests a subset of novel marker genes which expressed differently between the JNP and Berkshire. PMID:24910116

  7. Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain

    PubMed Central

    2012-01-01

    Background Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted. PMID:22695063

  8. Common Variants in CYP2R1 and GC Genes Predict Vitamin D Concentrations in Healthy Danish Children and Adults

    PubMed Central

    Nissen, Janna; Rasmussen, Lone Banke; Ravn-Haren, Gitte; Andersen, Elisabeth Wreford; Hansen, Bettina; Andersen, Rikke; Mejborn, Heddie; Madsen, Katja Howarth; Vogel, Ulla

    2014-01-01

    Environmental factors such as diet, intake of vitamin D supplements and exposure to sunlight are known to influence serum vitamin D concentrations. Genetic epidemiology of vitamin D is in its infancy and a better understanding on how genetic variation influences vitamin D concentration is needed. We aimed to analyse previously reported vitamin D-related polymorphisms in relation to serum 25(OH)D concentrations in 201 healthy Danish families with dependent children in late summer in Denmark. Serum 25(OH)D concentrations and a total of 25 SNPs in GC, VDR, CYP2R1, CYP24A1, CYP27B1, C10or88 and DHCR7/NADSYN1 genes were analysed in 758 participants. Genotype distributions were in Hardy–Weinberg equilibrium for the adult population for all the studied polymorphisms. Four SNPs in CYP2R1 (rs1562902, rs7116978, rs10741657 and rs10766197) and six SNPs in GC (rs4588, rs842999, rs2282679, rs12512631, rs16846876 and rs17467825) were statistically significantly associated with serum 25(OH)D concentrations in children, adults and all combined. Several of the SNPs were in strong linkage disequilibrium, and the associations were driven by CYP2R1-rs10741657 and rs10766197, and by GC-rs4588 and rs842999. Genetic risk score analysis showed that carriers with no risk alleles of CYP2R1-rs10741657 and rs10766197, and/or GC rs4588 and rs842999 had significantly higher serum 25(OH)D concentrations compared to carriers of all risk alleles. To conclude, our results provide supporting evidence that common polymorphisms in GC and CYP2R1 are associated with serum 25(OH)D concentrations in the Caucasian population and that certain haplotypes may predispose to lower 25(OH)D concentrations in late summer in Denmark. PMID:24587115

  9. Selective Life-Long Skeletal Myofiber-Targeted VEGF Gene Ablation Impairs Exercise Capacity in Adult Mice.

    PubMed

    Tang, Kechun; Gu, Yusu; Dalton, Nancy D; Wagner, Harrieth; Peterson, Kirk L; Wagner, Peter D; Breen, Ellen C

    2016-02-01

    Exercise is dependent on adequate oxygen supply for mitochondrial respiration in both cardiac and locomotor muscle. To determine whether skeletal myofiber VEGF is critical for regulating exercise capacity, independent of VEGF function in the heart, ablation of the VEGF gene was targeted to skeletal myofibers (skmVEGF-/-) during embryogenesis (∼ E9.5), leaving intact VEGF expression by all other cells in muscle. In adult mice, VEGF levels were decreased in the soleus (by 65%), plantaris (94%), gastrocnemius (74%), EDL (99%) and diaphragm (64%) (P < 0.0001, each muscle). VEGF levels were unchanged in the heart. Treadmill speed (WT 86 ± 4 cm/sec, skmVEGF-/- 70 ± 5 cm/sec, P = 0.006) and endurance (WT 78 ± 24 min, skmVEGF-/- 18 ± 4 min, P = 0.0004) were severely limited in skmVEGF-/- mice in contrast to minor effect of conditional skmVEGF gene deletion in the adult. Body weight was also reduced (WT 22.8 ± 1.6 g, skmVEGF-/-, 21.1 ± 1.5, P = 0.02), but the muscle mass/body weight ratio was unchanged. The capillary/fiber ratio was lower in skmVEGF-/- plantaris (WT 1.51 ± 0.12, skmVEGF-/- 1.16 ± 0.20, P = 0.01), gastrocnemius (WT 1.61 ± 0.08, skmVEGF-/- 1.39 ± 0.08, P = 0.01), EDL (WT 1.36 ± 0.07, skmVEGF-/- 1.14 ± 0.13, P = 0.03) and diaphragm (WT 1.39 ±  0.18, skmVEGF-/- 0.79 ± 0.16, P = 0.0001) but, not in soleus. Cardiac function (heart rate, maximal pressure, maximal dP/dt, minimal dP/dt,) in response to dobutamine was not impaired in anesthetized skmVEGF-/- mice. Isolated soleus and EDL fatigue times were 16% and 20% (P < 0.02) longer, respectively, in skmVEGF-/- mice than the WT group. These data suggest that skeletal myofiber VEGF expressed during development is necessary to establish capillary networks that allow maximal exercise capacity. PMID:26201683

  10. Regulatory elements of the EKLF gene that direct erythroid cell-specific expression during mammalian development.

    PubMed

    Xue, Li; Chen, Xiaoyong; Chang, Yanjie; Bieker, James J

    2004-06-01

    Erythroid Krüppel-like factor (EKLF) plays an essential role in enabling beta-globin expression during erythroid ontogeny. It is first expressed in the extraembryonic mesoderm of the yolk sac within the morphologically unique cells that give rise to the blood islands, and then later within the hepatic primordia. The BMP4/Smad pathway plays a critical role in the induction of EKLF, and transient transfection analyses demonstrate that sequences located within less than 1 kb of its transcription initiation site are sufficient for high-level erythroid-specific transcription. We have used transgenic analyses to verify that 950 bp located adjacent to the EKLF start site of transcription is sufficient to generate lacZ expression within the blood islands as well as the fetal liver during embryonic development. Of particular importance are 3 regions, 2 of which overlap endogenous erythroid-specific DNase hypersensitive sites, and 1 of which includes the proximal promoter region. The onset of transgene expression mimics that of endogenous EKLF as it begins by day 7.5 (d7.5) to d8.0. In addition, it exhibits a strict hematopoietic specificity, localized only to these cells and not to the adjacent vasculature at all stages examined. Finally, expression is heterocellular, implying that although these elements are sufficient for tissue-specific expression, they do not shield against the position effects of adjacent chromatin. These analyses demonstrate that a surprisingly small DNA segment contains all the information needed to target a linked gene to the hematopoietic compartment at both early and later stages of development, and may be a useful cassette for this purpose. PMID:14764531

  11. Heterozygosis deficit of polymorphic markers linked to the β-globin gene cluster region in the Iranian population

    PubMed Central

    Moradi, Tahereh; Vallian, Reihaneh; Fazeli, Zahra; Haghighatnia, Asieh; Vallian, Sadeq

    2015-01-01

    Objective(s): Iran is considered as one of the high-prevalence areas for β-thalassemia with a rate of about 10% carrier frequency. Molecular diagnosis of the disease is performed both by direct sequencing and indirectly by the use of polymorphic markers present in the beta globin gene cluster. However, to date there is no reliable information on the application of the markers in the Iranian population. Here we report the results of an extended molecular analysis of five RFLP markers, XmnI, HindIIIA, HindIIIG, RsaI and HinfI, located within the β-globin gene cluster region in four subpopulations of Iran. Materials and Methods: A total of 552 blood samples taken from the Iranian subpopulations including Isfahan, Chaharmahal-O-Bakhtiari, Khuzestan and Hormozgan were genotyped using PCR-RFLP and sequencing. The allele frequency, the expected and observed heterozygosity, and Shannon’s information index (I) of these markers were calculated. Results: Distribution of the allele frequencies for XmnI, HindIIIA, HindIIIG, RsaI and HinfI polymorphic markers did not differ significantly among the subpopulations examined. Overall observed heterozygosity ranged from 0.1706 for HindIIIA to 0.4484 for RsaI. The Shannon index was <1 for all the polymorphic markers in the populations studied. The data indicated that heterozygosity of these markers was low in the Iranian population. Conclusion: The results suggested that genotyping of these markers is not informative enough once used as single markers for prenatal diagnosis and carrier detection of β-thalassemia in the Iranian population. However, haplotyping of these markers may provide more useful data in linkage analysis and prenatal diagnosis as well as carrier detections for β-thalassemia in Iranians. PMID:26229579

  12. Adult Onset Global Loss of the Fto Gene Alters Body Composition and Metabolism in the Mouse

    PubMed Central

    Wells, Sara; Teboul, Lydia; Tung, Y. C. Loraine; Rimmington, Debra; Bosch, Fatima; Jimenez, Veronica; Yeo, Giles S. H.; O'Rahilly, Stephen; Ashcroft, Frances M.; Coll, Anthony P.; Cox, Roger D.

    2013-01-01

    The strongest BMI–associated GWAS locus in humans is the FTO gene. Rodent studies demonstrate a role for FTO in energy homeostasis and body composition. The phenotypes observed in loss of expression studies are complex with perinatal lethality, stunted growth from weaning, and significant alterations in body composition. Thus understanding how and where Fto regulates food intake, energy expenditure, and body composition is a challenge. To address this we generated a series of mice with distinct temporal and spatial loss of Fto expression. Global germline loss of Fto resulted in high perinatal lethality and a reduction in body length, fat mass, and lean mass. When ratio corrected for lean mass, mice had a significant increase in energy expenditure, but more appropriate multiple linear regression normalisation showed no difference in energy expenditure. Global deletion of Fto after the in utero and perinatal period, at 6 weeks of age, removed the high lethality of germline loss. However, there was a reduction in weight by 9 weeks, primarily as loss of lean mass. Over the subsequent 10 weeks, weight converged, driven by an increase in fat mass. There was a switch to a lower RER with no overall change in food intake or energy expenditure. To test if the phenotype can be explained by loss of Fto in the mediobasal hypothalamus, we sterotactically injected adeno-associated viral vectors encoding Cre recombinase to cause regional deletion. We observed a small reduction in food intake and weight gain with no effect on energy expenditure or body composition. Thus, although hypothalamic Fto can impact feeding, the effect of loss of Fto on body composition is brought about by its actions at sites elsewhere. Our data suggest that Fto may have a critical role in the control of lean mass, independent of its effect on food intake. PMID:23300482

  13. Two distinct genes for ADP/ATP translocase are expressed at the mRNA level in adult human liver

    SciTech Connect

    Houldsworth, J.; Attardi, G.

    1988-01-01

    Several clones hybridizing with a bovine ADP/ATP translocase cDNA were isolated from an adult human liver cDNA library in the vector pEX1. DNA sequence analysis revealed that these clones encode two distinct forms of translocase. In particular, two clones specifying the COOH-end-proximal five-sixths of the protein exhibit a 9% amino acid sequence divergence and totally dissimilar 3' untranslated regions. One of these cDNAs is nearly identical in sequence to an ADP/ATP translocase clone (hp2F1) recently isolated from a human fibroblast cDNA library with three amino acid changes and a few differences in the 3' untranslated region. Another clone isolated from the pEX1 library contains a reading frame encoding the remaining, NH/sub 2/-end-proximal, 37 amino acids of the translocase. This sequence differs significantly (14% amino acid sequence divergence) from the corresponding segment of hp2F1, and the 5' untranslated regions of the two clones are totally dissimilar. RNA transfer hybridization experiments utilizing the clones isolated from the pEX1 library revealed the presence in HeLa cells of three distinct mRNA species. The pattern of hybridization and the sizes of these mRNAs suggest a greater complexity of organization and expression of the ADP/ATP translocase genes in human cells than indicated by the analysis of the cDNA clones.

  14. Vasopressin inhibits type-I collagen and albumin gene expression in primary cultures of adult rat hepatocytes

    SciTech Connect

    Chojkier, M.; Brenner, D.A.; Leffert, H.L.

    1989-06-05

    The mechanisms that regulate collagen gene expression in hepatic cells are poorly understood. Accelerated Ca2+ fluxes are associated with inhibiting collagen synthesis selectively in human fibroblasts. In suspension cultures of isolated hepatocytes, the Ca2+ agonist vasopressin increases cytosolic levels of free Ca2+. However, whether vasopressin's interactions with plasma membrane V1 receptors attenuate hepatic collagen production is unknown. We investigated this problem by studying vasopressin's effects on collagen synthesis and Ca2+ efflux in long-term primary cultures of differentiated and proliferation-competent adult rat hepatocytes. Twelve-day-old quiescent cultures were exposed to test substances and labeled with (5-3H)proline. Determinations of radioactivity in collagenase-sensitive and collagenase-resistant proteins were used to calculate the relative levels of collagen production. Synthetic (8-arg)vasopressin stimulated 45Ca2+ efflux within 1 min and inhibited hepatocyte collagen production within 3 h by 50%; overall rates of protein synthesis were not affected significantly. In cultures labeled with (35S)methionine, vasopressin also decreased the levels of newly synthesized and secreted albumin, but not fibrinogen, detected in specific immunoprecipitates analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Northern blot analyses using specific (32P)cDNA probes revealed 70% decreases in hybridizable levels of collagen alpha 1(I) mRNA in hepatocyte cultures treated with either vasopressin or Ca2+ ionophore A23187; hybridizable levels of albumin mRNA also fell approximately 50% following vasopressin treatment.

  15. Transfer and expression of the human multiple drug resistance gene into live mice.

    PubMed Central

    Podda, S; Ward, M; Himelstein, A; Richardson, C; de la Flor-Weiss, E; Smith, L; Gottesman, M; Pastan, I; Bank, A

    1992-01-01

    The human multiple drug resistance (MDR) gene has been used as a selectable marker to increase the proportion of bone marrow cells that contain and express this gene by drug selection. By constructing retroviral vectors containing and expressing the MDR gene and a nonselectable gene such as the beta-globin gene, enrichment for cells containing both of these genes can be achieved. A retroviral construct containing MDR cDNA in a Harvey virus-based vector has been used to transfect our ecotropic 3T3 retroviral packaging line GP+E86. Clones have been isolated by exposure of the retrovirally transfected cells (MDR producer cells) to colchicine (60 ng/ml), a selective agent that kills MDR-negative cells. Flow cytometry analysis (fluorescence-activated cell sorting) with an antibody to MDR demonstrates expression of human MDR protein on the surface of these colchicine-resistant producer clones. Untransfected GP+E86 cells are negative. Colchicine-resistant clones were titered using clone supernatants and the highest titer clone (4 x 10(4) viral particles per ml) was cocultured with 10(6) donor mouse bone marrow cells for 24-48 hr. The donor cells were then injected into congenic irradiated mice, and the presence of the MDR gene was assayed by the polymerase chain reaction (PCR) analysis using MDR-specific primers. In one experiment eight of nine transduced mice were positive for MDR by PCR of peripheral blood 14 and 50 days posttransplantation; after 240 days three of nine transduced mice were positive. Bone marrow obtained from one of these positive animals was stained with the MDR monoclonal antibody and the granulocyte population was analyzed by FACS. Approximately 14% of the total granulocyte pool contain increased levels of MDR protein. In addition, the bone marrow cells of several mice initially positive for MDR gene by PCR, and subsequently negative, were exposed to taxol, a drug whose detoxification depends on MDR gene expression; a positive signal was obtained in

  16. Moderation of Adult Depression by a Polymorphism in the FKBP5 Gene and Childhood Physical Abuse in the General Population

    PubMed Central

    Appel, Katja; Schwahn, Christian; Mahler, Jessie; Schulz, Andrea; Spitzer, Carsten; Fenske, Kristin; Stender, Jan; Barnow, Sven; John, Ulrich; Teumer, Alexander; Biffar, Reiner; Nauck, Matthias; Völzke, Henry; Freyberger, Harald J; Grabe, Hans J

    2011-01-01

    Childhood maltreatment and depressive disorders have both been associated with a dysregulation of the hypothalamic–pituitary–adrenal axis. The FKBP5 gene codes for a co-chaperone regulating the glucocorticoid-receptor sensitivity. Previous evidence suggests that subjects carrying the TT genotype of the FKBP5 gene single-nucleotide polymorphism (SNP) rs1360780 have an increased susceptibility to adverse effects of experimental stress. We therefore tested the hypothesis of an interaction of childhood abuse with rs1360780 in predicting adult depression. In all, 2157 Caucasian subjects from the Study of Health in Pomerania (German general population) completed the Beck Depression Inventory (BDI-II) and Childhood Trauma Questionnaire. The DSM-IV diagnosis of major depressive disorder (MDD) was assessed by interview. Genotypes of rs1360780 were taken from the Affymetrix Human SNP Array 6.0. Significant interaction (p=0.006) of physical abuse with the TT genotype of rs1360780 was found increasing the BDI-II score to 17.4 (95% confidence interval (CI)=12.0–22.9) compared with 10.0 (8.2–11.7) in exposed CC/CT carriers. Likewise, the adjusted odds ratio for MDD in exposed TT carriers was 8.2 (95% CI=1.9–35.0) compared with 1.3 (0.8–2.3) in exposed subjects with CC/CT genotypes. Relative excess risk due to interaction (RERI) analyses confirmed a significant additive interaction effect (RERI=6.8; 95% CI=0.64–33.7; p<0.05). In explorative analyses, the most severe degree of sexual and emotional abuse also yielded significant interaction effects (p<0.05). This study revealed interactions between physical abuse and rs1360780 of the FKBP5 gene, confirming its role in the individual susceptibility to depression. Given the large effect sizes, rs1360780 could be included into prediction models for depression in individuals exposed to childhood abuse. PMID:21654733

  17. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    SciTech Connect

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F.

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  18. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water1

    PubMed Central

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V.; Costa, Max

    2015-01-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50–1000 µg/ L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p<0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic’s possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. PMID:25759245

  19. Erythroid-Specific Expression of LIN28A Is Sufficient for Robust Gamma-Globin Gene and Protein Expression in Adult Erythroblasts

    PubMed Central

    Byrnes, Colleen; Kaushal, Megha; Rabel, Antoinette; Tumburu, Laxminath; Allwardt, Joshua M.; Miller, Jeffery L.

    2015-01-01

    Increasing fetal hemoglobin (HbF) levels in adult humans remains an active area in hematologic research. Here we explored erythroid-specific LIN28A expression for its effect in regulating gamma-globin gene expression and HbF levels in cultured adult erythroblasts. For this purpose, lentiviral transduction vectors were produced with LIN28A expression driven by erythroid-specific gene promoter regions of the human KLF1 or SPTA1 genes. Transgene expression of LIN28A with a linked puromycin resistance marker was restricted to the erythroid lineage as demonstrated by selective survival of erythroid colonies (greater than 95% of all colonies). Erythroblast LIN28A over-expression (LIN28A-OE) did not significantly affect proliferation or inhibit differentiation. Greater than 70% suppression of total let-7 microRNA levels was confirmed in LIN28A-OE cells. Increases in gamma-globin mRNA and protein expression with HbF levels reaching 30–40% were achieved. These data suggest that erythroblast targeting of LIN28A expression is sufficient for increasing fetal hemoglobin expression in adult human erythroblasts. PMID:26675483

  20. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure

    PubMed Central

    Chater-Diehl, Eric J.; Castellani, Christina A.; Alberry, Bonnie L.; Singh, Shiva M.

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse’s lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as “Free radical scavenging”. We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was “Peroxisome biogenesis”; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  1. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan. PMID:25964428

  2. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan

    PubMed Central

    Weismann, Cara M.; Ferreira, Jennifer; Keeler, Allison M.; Su, Qin; Qui, Linghua; Shaffer, Scott A.; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-01-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal−/−) at 1 × 1011 or 3 × 1011 vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36–76% reduction in GM1-ganglioside content in the brain and 75–86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 1011 vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 1011 vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316–576 days) was significantly increased over controls (250–264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan. PMID:25964428

  3. Variants in the Adiponectin Gene and Serum Adiponectin: The Coronary Artery Development in Young Adults (CARDIA) Study

    PubMed Central

    Wassel, Christina L.; Pankow, James S.; Jacobs, David R.; Steffes, Michael W.; Li, Na; Schreiner, Pamela J.

    2016-01-01

    Circulating adiponectin is involved in the atherosclerotic process and has been associated with cardiovascular disease as well as obesity, insulin resistance, metabolic syndrome, and type 2 diabetes. The adiponectin gene (ADIPOQ) encodes the circulating protein adiponectin and affects its expression. Only a small proportion of all known ADIPOQ polymorphisms have been investigated in relation to circulating adiponectin concentrations. Using data from 3,355 African-American and white men and women aged 33–45 at the year 15 examination from the Coronary Artery Development in Young Adults (CARDIA) Study the association between 10 single-nucleotide polymorphisms (SNPs) within ADIPOQ and serum adiponectin was examined using linear regression. SNPs were chosen based on a tagSNP approach. Models were stratified by self-reported race to control for population stratification, and Bonferroni corrected for multiple comparisons. ADIPOQ SNPs rs17300539 (P < 0.0001), rs182052 (P = 0.0013), rs822393 (P = 0.0005), rs9882205 (P = 0.0001), and rs3774261 (P = 0.0001) were strongly associated with serum adiponectin concentrations in whites. In general, there was a dose–response relationship of adjusted mean adiponectin concentrations across genotypes. Only one SNP, rs17300539 was marginally associated with serum adiponectin concentrations (P = 0.0087) in African Americans. Significant interactions were found between waist and rs182052 (P = 0.0029) and between rs9882505 and smoking (P = 0.001) in whites. Many ADIPOQ SNPs have not yet been examined, and additional studies are needed to determine whether these may be functional variants. PMID:20395949

  4. IL-1beta, but not BMP-7 leads to a dramatic change in the gene expression pattern of human adult articular chondrocytes--portraying the gene expression pattern in two donors.

    PubMed

    Saas, J; Haag, J; Rueger, D; Chubinskaya, S; Sohler, F; Zimmer, R; Bartnik, E; Aigner, T

    2006-10-01

    Anabolic and catabolic cytokines and growth factors such as BMP-7 and IL-1beta play a central role in controlling the balance between degradation and repair of normal and (osteo)arthritic articular cartilage matrix. In this report, we investigated the response of articular chondrocytes to these factors IL-1beta and BMP-7 in terms of changes in gene expression levels. Large scale analysis was performed on primary human adult articular chondrocytes isolated from two human, independent donors cultured in alginate beads (non-stimulated and stimulated with IL-1beta and BMP-7 for 48 h) using Affymetrix gene chips (oligo-arrays). Biostatistical and bioinformatic evaluation of gene expression pattern was performed using the Resolver software (Rosetta). Part of the results were confirmed using real-time PCR. IL-1beta modulated significantly 909 out of 3459 genes detectable, whereas BMP-7 influenced only 36 out of 3440. BMP-7 induced mainly anabolic activation of chondrocytes including classical target genes such as collagen type II and aggrecan, while IL-1beta, both, significantly modulated the gene expression levels of numerous genes; namely, IL-1beta down-regulated the expression of anabolic genes and induced catabolic genes and mediators. Our data indicate that BMP-7 has only a limited effect on differentiated cells, whereas IL-1beta causes a dramatic change in gene expression pattern, i.e. induced or repressed much more genes. This presumably reflects the fact that BMP-7 signaling is effected via one pathway only (i.e. Smad-pathway) whereas IL-1beta is able to signal via a broad variety of intracellular signaling cascades involving the JNK, p38, NFkB and Erk pathways and even influencing BMP signaling. PMID:17161615

  5. Retinoid Homeostatic Gene Expression in Liver, Lung and Kidney: Ontogeny and Response to Vitamin A-Retinoic Acid (VARA) Supplementation from Birth to Adult Age

    PubMed Central

    Owusu, Sarah A.; Ross, A. Catharine

    2016-01-01

    Vitamin A (VA, retinol) metabolism is homeostatically controlled, but little is known of its regulation in the postnatal period. Here, we determined the postnatal trajectory of VA storage and metabolism in major compartments of VA metabolism–plasma, liver, lung, and kidney from postnatal (P) day 1 to adulthood. We also investigated the response to supplementation with VARA, a combination of VA and 10% all-trans-retinoic acid that previously was shown to synergistically increase retinol uptake and storage in lung. Nursling pups of dams fed a VA-marginal diet received an oral dose of oil (placebo) or VARA on each of four neonatal days: P1, P4, P7, and P10; and again as adults. Tissues were collected 6 h after the final dosing on P1, P4, P10, and at adult age. Gene transcripts for Lrat and Rbp4 in liver and Raldh-1 and Raldh-3 in lung, did not differ in the neonatal period but were higher, P<0.05, in adults, while Cyp26B1, Stra6, megalin, and Raldh-2 in lung did not differ from perinatal to adult ages. VARA supplementation increased total retinol in plasma, liver and lung, with a dose-by-dose accumulation in neonatal liver and lung, while transcripts for Lrat in liver, megalin in kidney, Cyp26A1/B1 in liver and lung, respectively, and Stra6 in lung, were all increased, suggesting pathways of VA uptake, storage and RA oxidation were each augmented after VARA. VARA decreased hepatic expression of Rbp4, responsible for VA trafficking from liver to plasma, and, in lung, of Raldh-1 and Raldh-2, which function in RA production. Our results define retinoid homeostatic gene expression from neonatal and adult age and show that while supplementation with VARA acutely alters retinol content and retinoid homeostatic gene expression in neonatal and adult lung, liver and kidney, VARA supplementation of neonates increased adult-age VA content only in the liver. PMID:26731668

  6. Retinoid Homeostatic Gene Expression in Liver, Lung and Kidney: Ontogeny and Response to Vitamin A-Retinoic Acid (VARA) Supplementation from Birth to Adult Age.

    PubMed

    Owusu, Sarah A; Ross, A Catharine

    2016-01-01

    Vitamin A (VA, retinol) metabolism is homeostatically controlled, but little is known of its regulation in the postnatal period. Here, we determined the postnatal trajectory of VA storage and metabolism in major compartments of VA metabolism-plasma, liver, lung, and kidney from postnatal (P) day 1 to adulthood. We also investigated the response to supplementation with VARA, a combination of VA and 10% all-trans-retinoic acid that previously was shown to synergistically increase retinol uptake and storage in lung. Nursling pups of dams fed a VA-marginal diet received an oral dose of oil (placebo) or VARA on each of four neonatal days: P1, P4, P7, and P10; and again as adults. Tissues were collected 6 h after the final dosing on P1, P4, P10, and at adult age. Gene transcripts for Lrat and Rbp4 in liver and Raldh-1 and Raldh-3 in lung, did not differ in the neonatal period but were higher, P<0.05, in adults, while Cyp26B1, Stra6, megalin, and Raldh-2 in lung did not differ from perinatal to adult ages. VARA supplementation increased total retinol in plasma, liver and lung, with a dose-by-dose accumulation in neonatal liver and lung, while transcripts for Lrat in liver, megalin in kidney, Cyp26A1/B1 in liver and lung, respectively, and Stra6 in lung, were all increased, suggesting pathways of VA uptake, storage and RA oxidation were each augmented after VARA. VARA decreased hepatic expression of Rbp4, responsible for VA trafficking from liver to plasma, and, in lung, of Raldh-1 and Raldh-2, which function in RA production. Our results define retinoid homeostatic gene expression from neonatal and adult age and show that while supplementation with VARA acutely alters retinol content and retinoid homeostatic gene expression in neonatal and adult lung, liver and kidney, VARA supplementation of neonates increased adult-age VA content only in the liver. PMID:26731668

  7. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males

    SciTech Connect

    Zucchi, Sara; Bluethgen, Nancy; Ieronimo, Andrea; Fent, Karl

    2011-01-15

    Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 {mu}g/L. In eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 {mu}g/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.

  8. Silencing of Aγ-Globin Gene Expression during Adult Definitive Erythropoiesis Mediated by GATA-1-FOG-1-Mi2 Complex Binding at the −566 GATA Site▿ †

    PubMed Central

    Harju-Baker, Susanna; Costa, Flávia C.; Fedosyuk, Halyna; Neades, Renee; Peterson, Kenneth R.

    2008-01-01

    Autonomous silencing of γ-globin transcription is an important developmental regulatory mechanism controlling globin gene switching. An adult stage-specific silencer of the Aγ-globin gene was identified between −730 and −378 relative to the mRNA start site. A marked copy of the Aγ-globin gene inserted between locus control region 5′ DNase I-hypersensitive site 1 and the ɛ-globin gene was transcriptionally silenced in adult β-globin locus yeast artificial chromosome (β-YAC) transgenic mice, but deletion of the 352-bp region restored expression. This fragment reduced reporter gene expression in K562 cells, and GATA-1 was shown to bind within this sequence at the −566 GATA site. Further, the Mi2 protein, a component of the NuRD complex, was observed in erythroid cells with low γ-globin levels, whereas only a weak signal was detected when γ-globin was expressed. Chromatin immunoprecipitation of fetal liver tissue from β-YAC transgenic mice demonstrated that GATA-1, FOG-1, and Mi2 were recruited to the Aγ-globin −566 or Gγ-globin −567 GATA site when γ-globin expression was low (day 18) but not when γ-globin was expressed (day 12). These data suggest that during definitive erythropoiesis, γ-globin gene expression is silenced, in part, by binding a protein complex containing GATA-1, FOG-1, and Mi2 at the −566/−567 GATA sites of the proximal γ-globin promoters. PMID:18347053

  9. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: Effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure wo...

  10. Expression of Genes Related to Germ Cell Lineage and Pluripotency in Single Cells and Colonies of Human Adult Germ Stem Cells.

    PubMed

    Conrad, Sabine; Azizi, Hossein; Hatami, Maryam; Kubista, Mikael; Bonin, Michael; Hennenlotter, Jörg; Sievert, Karl-Dietrich; Skutella, Thomas

    2016-01-01

    The aim of this study was to elucidate the molecular status of single human adult germ stem cells (haGSCs) and haGSC colonies, which spontaneously developed from the CD49f MACS and matrix- (collagen-/laminin+ binding-) selected fraction of enriched spermatogonia. Single-cell transcriptional profiling by Fluidigm BioMark system of a long-term cultured haGSCs cluster in comparison to human embryonic stem cells (hESCs) and human fibroblasts (hFibs) revealed that haGSCs showed a characteristic germ- and pluripotency-associated gene expression profile with some similarities to hESCs and with a significant distinction from somatic hFibs. Genome-wide comparisons with microarray analysis confirmed that different haGSC colonies exhibited gene expression heterogeneity with more or less pluripotency. The results of this study confirm that haGSCs are adult stem cells with a specific molecular gene expression profile in vitro, related but not identical to true pluripotent stem cells. Under ES-cell conditions haGSC colonies could be selected and maintained in a partial pluripotent state at the molecular level, which may be related to their cell plasticity and potential to differentiate into cells of all germ layers. PMID:26649052

  11. The Effect of Pro-Neurogenic Gene Expression on Adult Subventricular Zone Precursor Cell Recruitment and Fate Determination After Excitotoxic Brain Injury

    PubMed Central

    Jones, Kathryn S; Connor, Bronwen J

    2016-01-01

    Despite the presence of on-going neurogenesis in the adult mammalian brain, neurons are generally not replaced after injury. Using a rodent model of excitotoxic cell loss and retroviral (RV) lineage tracing, we previously demonstrated transient recruitment of precursor cells from the subventricular zone (SVZ) into the lesioned striatum. In the current study we determined that these cells included migratory neuroblasts and oligodendrocyte precursor cells (OPC), with the predominant response from glial cells. We attempted to override this glial response by ectopic expression of the pro-neurogenic genes Pax6 or Dlx2 in the adult rat SVZ following quinolinic acid lesioning. RV-Dlx2 over-expression stimulated repair at a previously non-neurogenic time point by enhancing neuroblast recruitment and the percentage of cells that retained a neuronal fate within the lesioned area, compared to RV-GFP controls. RV-Pax6 expression was unsuccessful at inhibiting glial fate and intriguingly, increased OPC cell numbers with no change in neuronal recruitment. These findings suggest that gene choice is important when attempting to augment endogenous repair as the lesioned environment can overcome pro-neurogenic gene expression. Dlx2 over-expression however was able to partially overcome an anti-neuronal environment and therefore is a promising candidate for further study of striatal regeneration. PMID:27397999

  12. Expression of Genes Related to Germ Cell Lineage and Pluripotency in Single Cells and Colonies of Human Adult Germ Stem Cells

    PubMed Central

    Conrad, Sabine; Azizi, Hossein; Hatami, Maryam; Kubista, Mikael; Bonin, Michael; Hennenlotter, Jörg; Sievert, Karl-Dietrich; Skutella, Thomas

    2016-01-01

    The aim of this study was to elucidate the molecular status of single human adult germ stem cells (haGSCs) and haGSC colonies, which spontaneously developed from the CD49f MACS and matrix- (collagen−/laminin+ binding-) selected fraction of enriched spermatogonia. Single-cell transcriptional profiling by Fluidigm BioMark system of a long-term cultured haGSCs cluster in comparison to human embryonic stem cells (hESCs) and human fibroblasts (hFibs) revealed that haGSCs showed a characteristic germ- and pluripotency-associated gene expression profile with some similarities to hESCs and with a significant distinction from somatic hFibs. Genome-wide comparisons with microarray analysis confirmed that different haGSC colonies exhibited gene expression heterogeneity with more or less pluripotency. The results of this study confirm that haGSCs are adult stem cells with a specific molecular gene expression profile in vitro, related but not identical to true pluripotent stem cells. Under ES-cell conditions haGSC colonies could be selected and maintained in a partial pluripotent state at the molecular level, which may be related to their cell plasticity and potential to differentiate into cells of all germ layers. PMID:26649052

  13. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders.

    PubMed

    Tyrka, A R; Parade, S H; Welch, E S; Ridout, K K; Price, L H; Marsit, C; Philip, N S; Carpenter, L L

    2016-01-01

    Early adversity increases risk for developing psychopathology. Epigenetic modification of stress reactivity genes is a likely mechanism contributing to this risk. The glucocorticoid receptor (GR) gene is of particular interest because of the regulatory role of the GR in hypothalamic-pituitary-adrenal (HPA) axis function. Mounting evidence suggests that early adversity is associated with GR promoter methylation and gene expression. Few studies have examined links between GR promoter methylation and psychopathology, and findings to date have been mixed. Healthy adult participants (N=340) who were free of psychotropic medications reported on their childhood experiences of maltreatment and parental death and desertion. Lifetime depressive and anxiety disorders and past substance-use disorders were assessed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Methylation of exon 1F of the GR gene (NR3C1) was examined in leukocyte DNA via pyrosequencing. On a separate day, a subset of the participants (n=231) completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Childhood adversity and a history of past substance-use disorder and current or past depressive or anxiety disorders were associated with lower levels of NR3C1 promoter methylation across the region as a whole and at individual CpG sites (P<0.05). The number of adversities was negatively associated with NR3C1 methylation in participants with no lifetime disorder (P=0.018), but not in those with a lifetime disorder. GR promoter methylation was linked to altered cortisol responses to the Dex/CRH test (P<0.05). This study presents evidence of reduced methylation of NR3C1 in association with childhood maltreatment and depressive, anxiety and substance-use disorders in adults. This finding stands in contrast to our prior work, but is consistent with emerging findings, suggesting complexity in the regulation of this gene. PMID

  14. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders

    PubMed Central

    Tyrka, A R; Parade, S H; Welch, E S; Ridout, K K; Price, L H; Marsit, C; Philip, N S; Carpenter, L L

    2016-01-01

    Early adversity increases risk for developing psychopathology. Epigenetic modification of stress reactivity genes is a likely mechanism contributing to this risk. The glucocorticoid receptor (GR) gene is of particular interest because of the regulatory role of the GR in hypothalamic–pituitary–adrenal (HPA) axis function. Mounting evidence suggests that early adversity is associated with GR promoter methylation and gene expression. Few studies have examined links between GR promoter methylation and psychopathology, and findings to date have been mixed. Healthy adult participants (N=340) who were free of psychotropic medications reported on their childhood experiences of maltreatment and parental death and desertion. Lifetime depressive and anxiety disorders and past substance-use disorders were assessed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Methylation of exon 1F of the GR gene (NR3C1) was examined in leukocyte DNA via pyrosequencing. On a separate day, a subset of the participants (n=231) completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Childhood adversity and a history of past substance-use disorder and current or past depressive or anxiety disorders were associated with lower levels of NR3C1 promoter methylation across the region as a whole and at individual CpG sites (P<0.05). The number of adversities was negatively associated with NR3C1 methylation in participants with no lifetime disorder (P=0.018), but not in those with a lifetime disorder. GR promoter methylation was linked to altered cortisol responses to the Dex/CRH test (P<0.05). This study presents evidence of reduced methylation of NR3C1 in association with childhood maltreatment and depressive, anxiety and substance-use disorders in adults. This finding stands in contrast to our prior work, but is consistent with emerging findings, suggesting complexity in the regulation of this gene. PMID

  15. Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice.

    PubMed

    Lantinga-van Leeuwen, Irma S; Leonhard, Wouter N; van der Wal, Annemieke; Breuning, Martijn H; de Heer, Emile; Peters, Dorien J M

    2007-12-15

    Autosomal dominant polycystic kidney disease, caused by mutations in the PKD1 gene, is characterized by progressive deterioration of kidney function due to the formation of thousands of cysts leading to kidney failure in mid-life or later. How cysts develop and grow is currently unknown, although extensive research revealed a plethora of cellular changes in cyst lining cells. We have constructed a tamoxifen-inducible, kidney epithelium-specific Pkd1-deletion mouse model. Upon administration of tamoxifen to these mice, a genomic fragment containing exons 2-11 of the Pkd1-gene is specifically deleted in the kidneys and cysts are formed. Interestingly, the timing of Pkd1-deletion has strong effects on the phenotype. At 1 month upon gene disruption, adult mice develop only a very mild cystic phenotype showing some small cysts and dilated tubules. Young mice, however, show massive cyst formation. In these mice, at the moment of gene disruption, cell proliferation takes place to elongate the nephron. Our data indicate that Pkd1 gene deficiency does not initiate sufficient autonomous cell proliferation leading to cyst formation and that additional stimuli are required. Furthermore, we show that one germ-line mutation of Pkd1 is already associated with increased proliferation. PMID:17932118

  16. The gene encoding the VP16-accessory protein HCF (HCFC1) resides in human Xq28 and is highly expressed in fetal tissues and the adult kidney

    SciTech Connect

    Wilson, A.C.; Herr, W.; Parrish, J.E.; Massa, H.F.

    1995-01-20

    After herpes simplex virus (HSV) infection, the viral regulatory protein VP16 activates transcription of the HSV immediate-early promoters by directing complex formation with two cellular proteins, the POU-homeodomain transcription factor Oct-1 and the host cell factor HCF. The function of HCF in uninfected cells is unknown. Here we show by fluorescence in situ hybridization and somatic cell hybrid analysis that the gene encoding human HCF, HCFC1, maps to the q28 region of the X chromosome. Yeast artificial chromosome and cosmid mapping localizes the HCFC1 gene within 100 kb distal of the renal vasopressin type-2 receptor (V2R) gene and adjacent to the renin-binding protein gene (RENBP). The HCFC1 gene is apparently unique. HCF transcripts and protein are most abundant in fetal and placental tissues and cell lines, suggesting a role in cell proliferation. In adults, HCF protein is abundant in the kidney, but not in the brain, a site of latent HSV infection and where HCF levels may influence progression of HSV infection. 42 refs., 3 figs.

  17. Common Variants at Putative Regulatory Sites of the Tissue Nonspecific Alkaline Phosphatase Gene Influence Circulating Pyridoxal 5′-Phosphate Concentration in Healthy Adults123

    PubMed Central

    Carter, Tonia C; Pangilinan, Faith; Molloy, Anne M; Fan, Ruzong; Wang, Yifan; Shane, Barry; Gibney, Eileen R; Midttun, Øivind; Ueland, Per M; Cropp, Cheryl D; Kim, Yoonhee; Wilson, Alexander F; Bailey-Wilson, Joan E; Brody, Lawrence C; Mills, James L

    2015-01-01

    Background: Vitamin B-6 interconversion enzymes are important for supplying pyridoxal 5′-phosphate (PLP), the co-enzyme form, to tissues. Variants in the genes for these enzymes [tissue nonspecific alkaline phosphatase (ALPL), pyridoxamine 5′-phosphate oxidase, pyridoxal kinase, and pyridoxal phosphatase] could affect enzyme function and vitamin B-6 status. Objectives: We tested whether single-nucleotide polymorphisms (SNPs) in these genes influence vitamin B-6 status markers [plasma PLP, pyridoxal (PL), and 4-pyridoxic acid (PA)], and explored potential functional effects of the SNPs. Methods: Study subjects were young, healthy adults from Ireland (n = 2345). We measured plasma PLP, PL, and PA with liquid chromatography–tandem mass spectrometry and genotyped 66 tag SNPs in the 4 genes. We tested for associations with single SNPs in candidate genes and also performed genome-wide association study (GWAS) and gene-based analyses. Results: Seventeen SNPs in ALPL were associated with altered plasma PLP in candidate gene analyses (P < 1.89 × 10−4). In the GWAS, 5 additional ALPL SNPs were associated with altered plasma PLP (P < 5.0 × 10−8). Gene-based analyses that used the functional linear model β-spline (P = 4.04 × 10−15) and Fourier spline (P = 5.87 × 10−15) methods also showed associations between ALPL and altered plasma PLP. No SNPs in other genes were associated with plasma PLP. The association of the minor CC genotype of 1 ALPL SNP, rs1256341, with reduced ALPL expression in the HapMap Northern European ancestry population is consistent with the positive association between the CC genotype and plasma PLP in our study (P = 0.008). No SNP was associated with altered plasma PL or PA. Conclusions: In healthy adults, common variants in ALPL influence plasma PLP concentration, the most frequently used biomarker for vitamin B-6 status. Whether these associations are indicative of functional changes in vitamin B-6 status requires more investigation

  18. Adolescent and adult responsiveness to the incentive value of cocaine reward in mice: role of neuronal nitric oxide synthase (nNOS) gene.

    PubMed

    Balda, Mara A; Anderson, Karen L; Itzhak, Yossef

    2006-08-01

    A major concern in adolescent psychostimulant abuse is the long-term consequence of this practice, because early drug exposure may cause long-term adaptations, which render the organism more susceptible to drug abuse later in life. The incentive value of drug and natural reward in rodents is commonly assessed by the conditioned place preference (CPP) paradigm, which involves Pavlovian learning. The aims of the present study were to investigate: a) the acquisition, expression, maintenance and reinstatement of cocaine CPP from periadolescence (PD24-45) through adulthood (PD70); b) potential sexual dimorphism in adolescence and adulthood in response to cocaine-induced CPP; and c) the role of the neuronal nitric oxide synthase (nNOS) gene in long-term neural plasticity underlying responsiveness to cocaine and cocaine-associated cues. Adolescent wild type (WT) mice acquired significant cocaine (20 mg/kg) CPP that was maintained from PD24 through PD43. Upon extinction, CPP was reinstated in adulthood (PD70) following a priming injection of cocaine (5 mg/kg). In contrast, cocaine CPP acquired between PD26 and PD31 in adolescent nNOS knockout (KO) mice, was neither maintained nor reinstated by cocaine. There was no sexual dimorphism in adolescent WT and KO mice. Genotype differences and sexual dimorphism were observed in adult mice. Cocaine CPP in adult WT males (PD89-94) was maintained for 4 weeks post training, and subsequently reinstated by cocaine priming; the magnitude of CPP in adult WT males was lower than in female counterparts. CPP in adult KO males (PD88-93) was neither maintained nor reinstated by cocaine priming; in contrast, CPP in adult KO females was not significantly different from adult WT females. Results suggest that the nNOS gene is essential during adolescence of both sexes for the development of long-term neural plasticity underlying responsiveness to the incentive value of cocaine reward. Sexual dimorphism in response to cocaine CPP emerges in

  19. Homozygous beta zero-39 mutation with thalassemia intermedia in northern Sardinia: clinical, hematological and molecular analysis.

    PubMed

    Oggiano, L; Dore, F; Pistidda, P; Guiso, L; Manca, L; Masala, B; Pirastu, M; Rosatelli, C; Cao, A; Longinotti, M

    1988-01-01

    In this study, we investigated the clinical and hematological features and carried out alpha- and beta-globin gene analyses in 11 Sardinian adult beta zero-thalassemia homozygotes from Northern Sardinia who were not transfusion-dependent. Oligonucleotide analysis revealed in nine out of 11 patients the nonsense mutation at codon 39, which was associated either with haplotype II or IX (14/16 and 2/16 chromosomes, respectively). Haplotype II was linked to the A gamma T mutation. The G gamma globin level ranged from 50 to 70%. Four out of nine patients (44%) were heterozygous and 3/9 (33%) homozygous for the rightward deletional type of alpha-thalassemia; two (22%) had the normal alpha-gene complement. Patients who were alpha-thalassemia homozygotes (-alpha/-alpha) showed a more balanced globin chain synthesis ratio. This study confirms that alpha-thalassemia may ameliorate the clinical picture of homozygous beta zero-thalassemia. PMID:2905346

  20. Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (HSV-1) and electroporation: methods and optogenetic applications

    PubMed Central

    Zou, Ming; De Koninck, Paul; Neve, Rachael L.; Friedrich, Rainer W.

    2014-01-01

    The zebrafish has various advantages as a model organism to analyze the structure and function of neural circuits but efficient viruses or other tools for fast gene transfer are lacking. We show that transgenes can be introduced directly into the adult zebrafish brain by herpes simplex type I viruses (HSV-1) or electroporation. We developed a new procedure to target electroporation to defined brain areas and identified promoters that produced strong long-term expression. The fast workflow of electroporation was exploited to express multiple channelrhodopsin-2 variants and genetically encoded calcium indicators in telencephalic neurons for measurements of neuronal activity and synaptic connectivity. The results demonstrate that HSV-1 and targeted electroporation are efficient tools for gene delivery into the zebrafish brain, similar to adeno-associated viruses and lentiviruses in other species. These methods fill an important gap in the spectrum of molecular tools for zebrafish and are likely to have a wide range of applications. PMID:24834028

  1. Activation of Sox3 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cell During Xenopus Metamorphosis

    PubMed Central

    Sun, Guihong; Fu, Liezhen; Wen, Luan

    2014-01-01

    The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells. PMID:25211587

  2. The Reference Transcriptome of the Adult Female Biting Midge (Culicoides sonorensis) and Differential Gene Expression Profiling during Teneral, Blood, and Sucrose Feeding Conditions

    PubMed Central

    Nayduch, Dana; Lee, Matthew B.; Saski, Christopher A.

    2014-01-01

    Unlike other important vectors such as mosquitoes and sandflies, genetic and genomic tools for Culicoides biting midges are lacking, despite the fact that they vector a large number of arboviruses and other pathogens impacting humans and domestic animals world-wide. In North America, female Culicoides sonorensis midges are important vectors of bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), orbiviruses that cause significant disease in livestock and wildlife. Libraries of tissue-specific transcripts expressed in response to feeding and oral orbivirus challenge in C. sonorensis have previously been reported, but extensive genome-wide expression profiling in the midge has not. Here, we successfully used deep sequencing technologies to construct the first adult female C. sonorensis reference transcriptome, and utilized genome-wide expression profiling to elucidate the genetic response to blood and sucrose feeding over time. The adult female midge unigene consists of 19,041 genes, of which less than 7% are differentially expressed during the course of a sucrose meal, while up to 52% of the genes respond significantly in blood-fed midges, indicating hematophagy induces complex physiological processes. Many genes that were differentially expressed during blood feeding were associated with digestion (e.g. proteases, lipases), hematophagy (e.g., salivary proteins), and vitellogenesis, revealing many major metabolic and biological factors underlying these critical processes. Additionally, key genes in the vitellogenesis pathway were identified, which provides the first glimpse into the molecular basis of anautogeny for C. sonorensis. This is the first extensive transcriptome for this genus, which will serve as a framework for future expression studies, RNAi, and provide a rich dataset contributing to the ultimate goal of informing a reference genome assembly and annotation. Moreover, this study will serve as a foundation for subsequent studies of

  3. Antibacterial activities of multi drug resistant Myroides odoratimimus bacteria isolated from adult flesh flies (Diptera: sarcophagidae) are independent of metallo beta-lactamase gene

    PubMed Central

    Dharne, M.S.; Gupta, A.K.; Rangrez, A.Y.; Ghate, H.V.; Patole, M.S.; Shouche, Y.S.

    2008-01-01

    Flesh flies (Diptera: Sarcophagidae) are well known cause of myiasis and their gut bacteria have never been studied for antimicrobial activity against bacteria. Antimicrobial studies of Myroides spp. are restricted to nosocomial strains. A Gram-negative bacterium, Myroides sp., was isolated from the gut of adult flesh flies (Sarcophaga sp.) and submitted to evaluation of nutritional parameters using Biolog GN, 16S rRNA gene sequencing, susceptibility to various antimicrobials by disc diffusion method and detection of metallo β-lactamase genes (TUS/MUS). The antagonistic effects were tested on Gram-negative and Gram-positive bacteria isolated from human clinical specimens, environmental samples and insect mid gut. Bacterial species included were Aeromonas hydrophila, A. culicicola, Morganella morganii subsp. sibonii, Ochrobactrum anthropi, Weissella confusa, Escherichia coli, Ochrobactrum sp., Serratia sp., Kestersia sp., Ignatzschineria sp., Bacillus sp. The Myroides sp. strain was resistant to penicillin-G, erythromycin, streptomycin, amikacin, kanamycin, gentamycin, ampicillin, trimethoprim and tobramycin. These strain showed antibacterial action against all bacterial strains except W. confusa, Ignatzschineria sp., A. hydrophila and M. morganii subsp. sibonii. The multidrug resistance of the strain was similar to the resistance of clinical isolates, inhibiting growth of bacteria from clinical, environmental and insect gut samples. The metallo β-lactamase (TUS/MUS) genes were absent, and resistance due to these genes was ruled out, indicating involvement of other secretion machinery. PMID:24031236

  4. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, impaired adult social behavior and activity patterns

    PubMed Central

    Wise, Alexandra; Tenezaca, Luis; Fernandez, Robert W.; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F.; Venkatesh, Tadmiri

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions and hyperactivity. ASD exhibits a strong genetic component with underlying multi-gene interactions. Candidate gene studies have shown that the neurobeachin gene is disrupted in human patients with idiopathic autism (Castermans et al., 2003). The gene for neurobeachin (NBEA) spans the common fragile site FRA 13A and encodes a signal scaffold protein (Savelyeva et al., 2006). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. (Medrihan et al., 2009; Savelyeva, Sagulenko, Schmitt, & Schwab, 2006). rugose (rg) is the Drosophila homologue of the mammalian and human neurobeachin. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the EGFR and Notch mediated signaling pathways, facilitating cross-talk between these and other pathways (Shamloula et al., 2002). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion and hyperactivity. These results demonstrate that Drosophila neurobeachin (rugose) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying autism spectrum disorders. PMID:26100104

  5. Reference Genes for qPCR Analysis in Resin-Tapped Adult Slash Pine As a Tool to Address the Molecular Basis of Commercial Resinosis.

    PubMed

    de Lima, Júlio C; de Costa, Fernanda; Füller, Thanise N; Rodrigues-Corrêa, Kelly C da Silva; Kerber, Magnus R; Lima, Mariano S; Fett, Janette P; Fett-Neto, Arthur G

    2016-01-01

    Pine oleoresin is a major source of terpenes, consisting of turpentine (mono- and sesquiterpenes) and rosin (diterpenes) fractions. Higher oleoresin yields are of economic interest, since oleoresin derivatives make up a valuable source of materials for chemical industries. Oleoresin can be extracted from living trees, often by the bark streak method, in which bark removal is done periodically, followed by application of stimulant paste containing sulfuric acid and other chemicals on the freshly wounded exposed surface. To better understand the molecular basis of chemically-stimulated and wound induced oleoresin production, we evaluated the stability of 11 putative reference genes for the purpose of normalization in studying Pinus elliottii gene expression during oleoresinosis. Samples for RNA extraction were collected from field-grown adult trees under tapping operations using stimulant pastes with different compositions and at various time points after paste application. Statistical methods established by geNorm, NormFinder, and BestKeeper softwares were consistent in pointing as adequate reference genes HISTO3 and UBI. To confirm expression stability of the candidate reference genes, expression profiles of putative P. elliottii orthologs of resin biosynthesis-related genes encoding Pinus contorta β-pinene synthase [PcTPS-(-)β-pin1], P. contorta levopimaradiene/abietadiene synthase (PcLAS1), Pinus taeda α-pinene synthase [PtTPS-(+)αpin], and P. taeda α-farnesene synthase (PtαFS) were examined following stimulant paste application. Increased oleoresin yields observed in stimulated treatments using phytohormone-based pastes were consistent with higher expression of pinene synthases. Overall, the expression of all genes examined matched the expected profiles of oleoresin-related transcript changes reported for previously examined conifers. PMID:27379135

  6. Reference Genes for qPCR Analysis in Resin-Tapped Adult Slash Pine As a Tool to Address the Molecular Basis of Commercial Resinosis

    PubMed Central

    de Lima, Júlio C.; de Costa, Fernanda; Füller, Thanise N.; Rodrigues-Corrêa, Kelly C. da Silva; Kerber, Magnus R.; Lima, Mariano S.; Fett, Janette P.; Fett-Neto, Arthur G.

    2016-01-01

    Pine oleoresin is a major source of terpenes, consisting of turpentine (mono- and sesquiterpenes) and rosin (diterpenes) fractions. Higher oleoresin yields are of economic interest, since oleoresin derivatives make up a valuable source of materials for chemical industries. Oleoresin can be extracted from living trees, often by the bark streak method, in which bark removal is done periodically, followed by application of stimulant paste containing sulfuric acid and other chemicals on the freshly wounded exposed surface. To better understand the molecular basis of chemically-stimulated and wound induced oleoresin production, we evaluated the stability of 11 putative reference genes for the purpose of normalization in studying Pinus elliottii gene expression during oleoresinosis. Samples for RNA extraction were collected from field-grown adult trees under tapping operations using stimulant pastes with different compositions and at various time points after paste application. Statistical methods established by geNorm, NormFinder, and BestKeeper softwares were consistent in pointing as adequate reference genes HISTO3 and UBI. To confirm expression stability of the candidate reference genes, expression profiles of putative P. elliottii orthologs of resin biosynthesis-related genes encoding Pinus contorta β-pinene synthase [PcTPS-(−)β-pin1], P. contorta levopimaradiene/abietadiene synthase (PcLAS1), Pinus taeda α-pinene synthase [PtTPS-(+)αpin], and P. taeda α-farnesene synthase (PtαFS) were examined following stimulant paste application. Increased oleoresin yields observed in stimulated treatments using phytohormone-based pastes were consistent with higher expression of pinene synthases. Overall, the expression of all genes examined matched the expected profiles of oleoresin-related transcript changes reported for previously examined conifers. PMID:27379135

  7. Conservation and expression of IQ-domain-containing calpacitin gene products (Neuromodulin/GAP-43, Neurogranin/RC3) in the adult and developing oscine song control system

    PubMed Central

    Clayton, David F.; George, Julia M.; Mello, Claudio V.; Siepka, Sandra M.

    2009-01-01

    Songbirds are appreciated for the insights they provide into regulated neural plasticity. Here we describe the comparative analysis and brain expression of two gene sequences encoding probable regulators of synaptic plasticity in songbirds: Neuromodulin (GAP-43) and Neurogranin (RC3). Both are members of the calpacitin family and share a distinctive conserved core domain that mediates interactions between calcium, calmodulin and protein kinase C signaling pathways. Comparative sequence analysis is consistent with known phylogenetic relationships, with songbirds most closely related to chicken and progressively more distant from mammals and fish. The C-terminus of Neurogranin is different in birds and mammals, and antibodies to the protein reveal high expression in adult zebra finches in cerebellar Purkinje cells, which has not been observed in other species. RNAs for both proteins are generally abundant in the telencephalon yet markedly reduced in certain nuclei of the song control system in adult canaries and zebra finches: Neuromodulin RNA is very low in RA and HVC (relative to the surrounding pallial areas), whereas Neurogranin RNA is conspicuously low in Area X (relative to surrounding striatum). In both cases, this selective down-regulation develops in the zebra finch during the juvenile song learning period, 25–45 days after hatching. These results suggest molecular parallels to the robust stability of the adult avian song control circuit. PMID:19023859

  8. The Drosophila melanogaster importin alpha3 locus encodes an essential gene required for the development of both larval and adult tissues.

    PubMed Central

    Mason, D Adam; Máthé, Endre; Fleming, Robert J; Goldfarb, David S

    2003-01-01

    The nuclear transport of classical nuclear localization signal (cNLS)-containing proteins is mediated by the cNLS receptor importin alpha. The conventional importin alpha gene family in metazoan animals is composed of three clades that are conserved between flies and mammals and are referred to here as alpha1, alpha2, and alpha3. In contrast, plants and fungi contain only alpha1 genes. In this study we report that Drosophila importin alpha3 is required for the development of both larval and adult tissues. Importin alpha3 mutant flies die around the transition from first to second instar larvae, and homozygous importin alpha3 mutant eyes are defective. The transition to second instar larvae was rescued with importin alpha1, alpha2, or alpha3 transgenes, indicating that Importin alpha3 is normally required at this stage for an activity shared by all three importin alpha's. In contrast, an alpha3-specific biochemical activity(s) of Importin alpha3 is probably required for development to adults and photoreceptor cell development, since only an importin alpha3 transgene rescued these processes. These results are consistent with the view that the importin alpha's have both overlapping and distinct functions and that their role in animal development involves the spatial and temporal control of their expression. PMID:14704178

  9. Candidate Genes from Molecular Pathways Related to Appetite Regulatory Neural Network and Adipocyte Homeostasis and Obesity: the Coronary Artery Risk Development in Young Adults (CARDIA) Study

    PubMed Central

    Friedlander, Yechiel; Li, Guo; Fornage, Myriam; Williams, O. Dale; Lewis, Cora E.; Schreiner, Pamela; Pletcher, Mark J.; Enquobahrie, Daniel; Williams, Michelle; Siscovick, David S.

    2010-01-01

    Background Appetite regulatory neural network and adipocyte homeostasis molecular pathways are critical to long-term weight maintenance. Genetic variation in these pathways may explain variability of obesity in the general population. Aims The associations of four genes in these pathways (leptin (LEP), leptin receptor (LEPR), neuropeptide Y2 receptor (NPY2R) and peptide YY (PYY)) with obesity-related phenotypes were examined among participants in the CARDIA Study. Participants were 18-30 years old upon recruitment (1985-86). Weight, BMI and waist circumference were measured at baseline and at years 2, 5, 7, 10, 15, and 20. Genotyping was conducted using tag SNPs that characterize the common pattern of genetic variation in these genes. Race-specific linear regression models were used to examine associations of the various SNPs with obesity-related measurements, controlling for sex and age. The overall association based on the 7 repeated anthropometric measurements was tested with GEE. False discovery rate was used to adjust for multiple testing. Results In African-Americans, SNPs across the LEP gene demonstrated significant overall associations with obesity-related phenotypes. The associations between rs17151919 in LEP gene with weight tended to increase with time (SNP × time interaction p=0.0193). The difference in weight levels associated with each additional minor allele ranged from 2.6 kg at entry to 4.8 kg at year 20. Among African-American men, the global tests indicated that SNPs across the NPY2R gene were also associated with waist circumference measurements (p=0.0462). In Caucasians, SNPs across the LEP gene also tended to be associated with weight measurements (p=0.0471) and rs11684664 in PYY gene was associated with obesity-related phenotypes (p= 0.010-0.026) in women only. Conclusions Several SNPs in the LEP, NPY2R and PYY but not the LEPR genes were associated with obesity-related phenotypes in young adults. The associations were more prominent for the

  10. Crystal structure of the trithorax group protein ASH2L reveals a forkhead-like DNA binding domain

    SciTech Connect

    Sarvan, Sabina; Avdic, Vanja; Tremblay, Véronique; Chaturvedi, Chandra-Prakash; Zhang, Pamela; Lanouette, Sylvain; Blais, Alexandre; Brunzelle, Joseph S; Brand, Marjorie; Couture, Jean-François

    2012-05-02

    Absent, small or homeotic discs-like 2 (ASH2L) is a trithorax group (TrxG) protein and a regulatory subunit of the SET1 family of lysine methyltransferases. Here we report that ASH2L binds DNA using a forkhead-like helix-wing-helix (HWH) domain. In vivo, the ASH2L HWH domain is required for binding to the {beta}-globin locus control region, histone H3 Lys4 (H3K4) trimethylation and maximal expression of the {beta}-globin gene (Hbb-1), validating the functional importance of the ASH2L DNA binding domain.

  11. Comparative Analysis of AhR-Mediated TCDD-Elicited Gene Expression in Human Liver Adult Stem Cells

    PubMed Central

    Kim, Suntae; Dere, Edward; Burgoon, Lyle D.; Chang, Chia-Cheng; Zacharewski, Timothy R.

    2009-01-01

    Time course and dose-response studies were conducted in HL1-1 cells, a human liver cell line with stem cell–like characteristics, to assess the differential gene expression elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) compared with other established models. Cells were treated with 0.001, 0.01, 0.1, 1, 10, or 100nM TCDD or dimethyl sulfoxide vehicle control for 12 h for the dose-response study, or with 10nM TCDD or vehicle for 1, 2, 4, 8, 12, 24, or 48 h for the time course study. Elicited changes were monitored using a human cDNA microarray with 6995 represented genes. Empirical Bayes analysis identified 144 genes differentially expressed at one or more time points following treatment. Most genes exhibited dose-dependent responses including CYP1A1, CYP1B1, ALDH1A3, and SLC7A5 genes. Comparative analysis of HL1-1 differential gene expression to human HepG2 data identified 74 genes with comparable temporal expression profiles including 12 putative primary responses. HL1-1–specific changes were related to lipid metabolism and immune responses, consistent with effects elicited in vivo. Furthermore, comparative analysis of HL1-1 cells with mouse Hepa1c1c7 hepatoma cell lines and C57BL/6 hepatic tissue identified 18 and 32 commonly regulated orthologous genes, respectively, with functions associated with signal transduction, transcriptional regulation, metabolism and transport. Although some common pathways are affected, the results suggest that TCDD elicits species- and model-specific gene expression profiles. PMID:19684285

  12. Gene-Specific Differential DNA Methylation and Chronic Arsenic Exposure in an Epigenome-Wide Association Study of Adults in Bangladesh

    PubMed Central

    Argos, Maria; Chen, Lin; Jasmine, Farzana; Tong, Lin; Pierce, Brandon L.; Roy, Shantanu; Paul-Brutus, Rachelle; Gamble, Mary V.; Harper, Kristin N.; Parvez, Faruque; Rahman, Mahfuzar; Rakibuz-Zaman, Muhammad; Slavkovich, Vesna; Baron, John A.; Graziano, Joseph H.; Kibriya, Muhammad G.

    2014-01-01

    Background: Inorganic arsenic is one of the most common naturally occurring contaminants found in the environment. Arsenic is associated with a number of health outcomes, with epigenetic modification suggested as a potential mechanism of toxicity. Objective: Among a sample of 400 adult participants, we evaluated the association between arsenic exposure, as measured by blood and urinary total arsenic concentrations, and epigenome-wide white blood cell DNA methylation. Methods: We used linear regression models to examine the associations between arsenic exposure and methylation at each CpG site, adjusted for sex, age, and batch. Differentially methylated loci were subsequently examined in relation to corresponding gene expression for functional evidence of gene regulation. Results: In adjusted analyses, we observed four differentially methylated CpG sites with urinary total arsenic concentration and three differentially methylated CpG sites with blood arsenic concentration, based on the Bonferroni-corrected significance threshold of p < 1 × 10–7. Methylation of PLA2G2C (probe cg04605617) was the most significantly associated locus in relation to both urinary (p = 3.40 × 10–11) and blood arsenic concentrations (p = 1.48 × 10–11). Three additional novel methylation loci—SQSTM1 (cg01225779), SLC4A4 (cg06121226), and IGH (cg13651690)—were also significantly associated with arsenic exposure. Further, there was evidence of methylation-related gene regulation based on gene expression for a subset of differentially methylated loci. Conclusions: We observed significant associations between arsenic exposure and gene-specific differential white blood cell DNA methylation, suggesting that epigenetic modifications may be an important pathway underlying arsenic toxicity. The specific differentially methylated loci identified may inform potential pathways for future interventions. Citation: Argos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S, Paul-Brutus R, Gamble MV

  13. Screening of early antigen genes of adult-stage Trichinella spiralis using pig serum from different stages of early infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this work was to identify novel, early antigens present in Trichinella spiralis. To this end, a cDNA library generated from 3-day old adult worms (Ad3) was immunologically screened using serum from a pig infected with 20,000 muscle larvae. The serum was obtained from multiple, time cours...

  14. A functional variant in MIR137, a candidate gene for schizophrenia, affects Stroop test performance in young adults.

    PubMed

    González-Giraldo, Yeimy; González-Reyes, Rodrigo E; Forero, Diego A

    2016-02-28

    MIR137, a brain expressed miRNA, has been identified as a top novel susceptibility gene for schizophrenia (SZ). 230 healthy participants completed the Stroop test and were genotyped for a functional Variable Number Tandem Repeat (VNTR) in MIR137 gene. MIR137 VNTR genotypes were associated with differences in Stroop facilitation and accuracies in congruent trials and for the total number of errors. This is the first study of the functional VNTR in MIR137 gene and Stroop test performance in healthy subjects. Our results could have important implications for the identification of genetic candidates for endophenotypes for SZ. PMID:26778630

  15. A transmission disequilibrium test of the Ser9/Gly dopamine D3 receptor gene polymorphism in adult attention-deficit hyperactivity disorder.

    PubMed

    Muglia, Pierandrea; Jain, Umesh; Kennedy, James L

    2002-03-10

    Convincing data support the hypothesis that genetic factors are involved in the etiology of attention-deficit hyperactivity disorder (ADHD). Various lines of evidence have shown that the dopamine system plays a crucial role in the pathophysiology of ADHD. The dopamine D3 receptor gene (DRD3) represents a promising candidate to examine in ADHD. Animal studies have shown that DRD3 mRNA is highly expressed in the ventral striatum suggesting an involvement of this receptor in the control of motor behaviour. Manipulation of DRD3 in rodents has led to a mouse model with nonfunctional D3 receptors that displays hyperactive behaviour in various environmental conditions. Furthermore, administration of 7-OH-DPAT, a dopaminergic agonist that binds preferentially to D3 receptors exerts an inhibitory effect on locomotor activity while D3 antagonists induce hyperactivity. Among various polymorphisms described for DRD3, the BalI polymorphism is most interesting because it codes for an aminoacid substitution in the N-terminus of the receptor. The receptor products of the two alleles (Ser/Gly) exhibit differential affinity for dopamine. To determine if DRD3 Ser9/Gly is involved in the susceptibility to ADHD we genotyped 39 adults with ADHD and their respective parents (trios). Adult ADHD represents a promising phenotype for studying the genetic component of the disorder. In fact, a recent family study has shown that relatives of adult ADHD patients have a higher rate of ADHD compared to relatives of children with ADHD suggesting a stronger genetic component for the adult version. The results of genotyping in the 39 trios analyzed with the transmission disequilibrium test showed no excess of transmission for DRD3 MscI/BalI alleles (chi(2) = 0.360; df = 1; P = 0.54). This result, although from a relatively small sample, indicates that it is unlikely that DRD3 is playing a major role in the etiology of ADHD in our sample. PMID:11864723

  16. Association of atrial fibrillation with gene polymorphisms of connexin 40 and angiotensin II receptor type 1 in Chongming adults of Shanghai

    PubMed Central

    Hou, Shuxin; Lu, Yingmin; Huang, Damin; Luo, Xiaohan; Yue, Dongmei; Zhang, Jinchun

    2015-01-01

    Objective: To characterized the gene polymorphisms of connexin 40 (cx40) and angiotensin II receptor type 1 (AT1R) in Chongming adults with atrial fibrillation (AF) and to explore their relationships with AF. Methods: 82 patients with AF, and 82 subjects without AF were enrolled. Polymorphisms of cx40 G-44A and AT1 A1166C were detected. Moreover, several samples were randomly selected to validate the gene polymorphisms of cx40 and AT1. Results: Genotypes AA, AG and GG of cx40 G-44A were found in both AF patients and controls. The frequencies of genotypes AA, AG and GG were 39%, 29% and 32%, respectively, in AF patients and 31%, 35% and 34%, respectively in controls. The frequencies of alleles A and G were 54% and 46%, respectively in AF patients and 48% and 52%, respectively, in controls (P < 0.05). The risk for AF in patients with allele A increased 1.31 times (OR = 1.31, P < 0.05). The frequencies of genotypes AA, AC and CC were 88%, 8% and 4%, respectively in AF patients and 93%, 6% and 1%, respectively in controls. The frequencies of alleles A and C were 92% and 8%, respectively in AF patients and 96% and 4%, respectively in controls (P < 0.05). More AF patients had allele C as compared to controls. The risk for AF increased by 1.43 times in patients with allele C (OR = 1.43, P < 0.05). Conclusion: There were relationships between gene polymorphisms of cx40 and AT1 and AF in Chongming adults. Allele A of cx40 G-44A and allele C of AT1 A1166C significantly increase the risk for AF. PMID:26380021

  17. Genome-wide association data suggest ABCB1 and immune-related gene sets may be involved in adult antisocial behavior.

    PubMed

    Salvatore, J E; Edwards, A C; McClintick, J N; Bigdeli, T B; Adkins, A; Aliev, F; Edenberg, H J; Foroud, T; Hesselbrock, V; Kramer, J; Nurnberger, J I; Schuckit, M; Tischfield, J A; Xuei, X; Dick, D M

    2015-01-01

    Adult antisocial behavior (AAB) is moderately heritable, relatively common and has adverse consequences for individuals and society. We examined the molecular genetic basis of AAB in 1379 participants from a case-control study in which the cases met criteria for alcohol dependence. We also examined whether genes of interest were expressed in human brain. AAB was measured using a count of the number of Antisocial Personality Disorder criteria endorsed under criterion A from the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV). Participants were genotyped on the Illumina Human 1M BeadChip. In total, all single-nucleotide polymorphisms (SNPs) accounted for 25% of the variance in AAB, although this estimate was not significant (P=0.09). Enrichment tests indicated that more significantly associated genes were over-represented in seven gene sets, and most were immune related. Our most highly associated SNP (rs4728702, P=5.77 × 10(-7)) was located in the protein-coding adenosine triphosphate-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1). In a gene-based test, ABCB1 was genome-wide significant (q=0.03). Expression analyses indicated that ABCB1 was robustly expressed in the brain. ABCB1 has been implicated in substance use, and in post hoc tests we found that variation in ABCB1 was associated with DSM-IV alcohol and cocaine dependence criterion counts. These results suggest that ABCB1 may confer risk across externalizing behaviors, and are consistent with previous suggestions that immune pathways are associated with externalizing behaviors. The results should be tempered by the fact that we did not replicate the associations for ABCB1 or the gene sets in a less-affected independent sample. PMID:25918995

  18. Genome-wide association data suggest ABCB1 and immune-related gene sets may be involved in adult antisocial behavior

    PubMed Central

    Salvatore, J E; Edwards, A C; McClintick, J N; Bigdeli, T B; Adkins, A; Aliev, F; Edenberg, H J; Foroud, T; Hesselbrock, V; Kramer, J; Nurnberger, J I; Schuckit, M; Tischfield, J A; Xuei, X; Dick, D M

    2015-01-01

    Adult antisocial behavior (AAB) is moderately heritable, relatively common and has adverse consequences for individuals and society. We examined the molecular genetic basis of AAB in 1379 participants from a case–control study in which the cases met criteria for alcohol dependence. We also examined whether genes of interest were expressed in human brain. AAB was measured using a count of the number of Antisocial Personality Disorder criteria endorsed under criterion A from the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV). Participants were genotyped on the Illumina Human 1M BeadChip. In total, all single-nucleotide polymorphisms (SNPs) accounted for 25% of the variance in AAB, although this estimate was not significant (P=0.09). Enrichment tests indicated that more significantly associated genes were over-represented in seven gene sets, and most were immune related. Our most highly associated SNP (rs4728702, P=5.77 × 10−7) was located in the protein-coding adenosine triphosphate-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1). In a gene-based test, ABCB1 was genome-wide significant (q=0.03). Expression analyses indicated that ABCB1 was robustly expressed in the brain. ABCB1 has been implicated in substance use, and in post hoc tests we found that variation in ABCB1 was associated with DSM-IV alcohol and cocaine dependence criterion counts. These results suggest that ABCB1 may confer risk across externalizing behaviors, and are consistent with previous suggestions that immune pathways are associated with externalizing behaviors. The results should be tempered by the fact that we did not replicate the associations for ABCB1 or the gene sets in a less-affected independent sample. PMID:25918995

  19. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia.

    PubMed

    Yasuda, T; Yamaguchi, N; Kobayashi, K; Nishi, I; Horinouchi, H; Jalil, M A; Li, M X; Ushikai, M; Iijima, M; Kondo, I; Saheki, T

    2000-12-01

    Adult-onset type II citrullinemia (CTLN2) is characterized by a liver-specific deficiency of argininosuccinate synthetase (ASS) protein. We have recently identified the gene responsible for CTLN2, viz., SLC25A13, which encodes a calcium-binding mitochondrial carrier protein, designated citrin, and found five mutations of the SLC25A13 gene in CTLN2 patients. In the present study, we have identified two novel mutations, 1800ins1 and R605X, in SLC25A13 mRNA and the SLC25A13 gene. Diagnostic analysis for the seven mutations in 103 CTLN2 patients diagnosed by biochemical and enzymatic studies has revealed that 102 patients had one or two of the seven mutations and 93 patients were homozygotes or compound heterozygotes. These results indicate that CTLN2 is caused by an abnormality in the SLC25A13 gene, and that our criteria for CTLN2 before DNA diagnosis are correct. Five of 22 patients from consanguineous unions have been shown to be compound heterozygotes, suggesting a high frequency of the mutated genes. The frequency of homozygotes is calculated to be more than 1 in 20,000 from carrier detection (6 in 400 individuals tested) in the Japanese population. We have detected no cross-reactive immune materials in the liver of CTLN2 patients with any of the seven mutations by Western blot analysis with anti-human citrin antibody. From these findings, we hypothesize that CTLN2 is caused by a complete deletion of citrin, although the mechanism of ASS deficiency is still unknown. PMID:11153906

  20. Single Cell Quantification of Reporter Gene Expression in Live Adult Caenorhabditis elegans Reveals Reproducible Cell-Specific Expression Patterns and Underlying Biological Variation

    PubMed Central

    Mendenhall, Alexander R.; Tedesco, Patricia M.; Sands, Bryan; Johnson, Thomas E.; Brent, Roger

    2015-01-01

    In multicellular organisms such as Caenorhabditis elegans, differences in complex phenotypes such as lifespan correlate with the level of expression of particular engineered reporter genes. In single celled organisms, quantitative understanding of responses to extracellular signals and of cell-to-cell variation in responses has depended on precise measurement of reporter gene expression. Here, we developed microscope-based methods to quantify reporter gene expression in cells of Caenorhabditis elegans with low measurement error. We then quantified expression in strains that carried different configurations of Phsp-16.2-fluorescent-protein reporters, in whole animals, and in all 20 cells of the intestine tissue, which is responsible for most of the fluorescent signal. Some animals bore more recently developed single copy Phsp-16.2 reporters integrated at defined chromosomal sites, others, “classical” multicopy reporter gene arrays integrated at random sites. At the level of whole animals, variation in gene expression was similar: strains with single copy reporters showed the same amount of animal-to-animal variation as strains with multicopy reporters. At the level of cells, in animals with single copy reporters, the pattern of expression in cells within the tissue was highly stereotyped. In animals with multicopy reporters, the cell-specific expression pattern was also stereotyped, but distinct, and somewhat more variable. Our methods are rapid and gentle enough to allow quantification of expression in the same cells of an animal at different times during adult life. They should allow investigators to use changes in reporter expression in single cells in tissues as quantitative phenotypes, and link those to molecular differences. Moreover, by diminishing measurement error, they should make possible dissection of the causes of the remaining, real, variation in expression. Understanding such variation should help reveal its contribution to differences in complex

  1. Functional polymorphisms in the gene encoding macrophage migration inhibitory factor are associated with Gram-negative bacteremia in older adults.

    PubMed

    Das, Rituparna; Subrahmanyan, Lakshman; Yang, Ivana V; van Duin, David; Levy, Rebecca; Piecychna, Marta; Leng, Lin; Montgomery, Ruth R; Shaw, Albert; Schwartz, David A; Bucala, Richard

    2014-03-01

    Macrophage migration inhibitory factor (MIF) is an immune mediator encoded in a functionally polymorphic locus. We found the genotype conferring low expression of MIF to be enriched in a cohort of 180 patients with gram-negative bacteremia, compared with 229 healthy controls (odds ratio [OR], 2.4; P = .04), an association that was more pronounced in older adults (OR, 4.6; P = .01). Among older subjects, those with low expression of MIF demonstrated 20% reduced MIF production from lipopolysaccharide-stimulated peripheral blood monocytes and 30% lower monocyte surface Toll-like receptor 4, compared with those with high expression. Our work suggests that older adults with low expression of MIF may be predisposed to hyporesponsiveness to lipopolysaccharide and gram-negative bacterial infection. PMID:24158957

  2. Functional Polymorphisms in the Gene Encoding Macrophage Migration Inhibitory Factor Are Associated With Gram-Negative Bacteremia in Older Adults

    PubMed Central

    Das, Rituparna; Subrahmanyan, Lakshman; Yang, Ivana V.; van Duin, David; Levy, Rebecca; Piecychna, Marta; Leng, Lin; Montgomery, Ruth R.; Shaw, Albert; Schwartz, David A.; Bucala, Richard

    2014-01-01

    Macrophage migration inhibitory factor (MIF) is an immune mediator encoded in a functionally polymorphic locus. We found the genotype conferring low expression of MIF to be enriched in a cohort of 180 patients with gram-negative bacteremia, compared with 229 healthy controls (odds ratio [OR], 2.4; P = .04), an association that was more pronounced in older adults (OR, 4.6; P = .01). Among older subjects, those with low expression of MIF demonstrated 20% reduced MIF production from lipopolysaccharide-stimulated peripheral blood monocytes and 30% lower monocyte surface Toll-like receptor 4, compared with those with high expression. Our work suggests that older adults with low expression of MIF may be predisposed to hyporesponsiveness to lipopolysaccharide and gram-negative bacterial infection. PMID:24158957

  3. Timing of Expression of a Gene in the Adult Drosophila Is Regulated by Mechanisms Independent of Temperature and Metabolic Rate

    PubMed Central

    Rogina, B.; Helfand, S. L.

    1996-01-01

    The examination of β-galactosidase (β-gal) expression in the third segment of the antenna of the 2216 enhancer trap line in Drosophila melanogaster reveals two distinct spatial and temporal regulatory patterns of expression during adult life. Type I expression is characterized by a decline in the level of β-gal expression with increasing age. Starting from a maximal level of expression at the time of adult emergence, there is a decrease in the number of cells that express β-gal so that by 40-50 days of adult life few cells express β-gal. Varying the ambient temperature and using hyperactivity mutants (Hyperkinetic(1), Shaker(5)) demonstrates that the rate of this decline is independent of temperature and metabolic rate. Type II expression is distinctly different in spatial distribution and temporal regulation from the first pattern. Type II expression is restricted in the antenna to a small (<20-30) set of cells whose level of expression changes in a periodic manner with time. The regulation of this periodicity appears to be linked to ambient temperature. PMID:8844152

  4. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  5. Cardiac AAV9 Gene Delivery Strategies in Adult Canines: Assessment by Long-term Serial SPECT Imaging of Sodium Iodide Symporter Expression

    PubMed Central

    Moulay, Gilles; Ohtani, Tomohito; Ogut, Ozgur; Guenzel, Adam; Behfar, Atta; Zakeri, Rosita; Haines, Philip; Storlie, Jimmy; Bowen, Lorna; Pham, Linh; Kaye, David; Sandhu, Gurpreet; O'Connor, Michael; Russell, Stephen; Redfield, Margaret

    2015-01-01

    Heart failure is a leading cause of morbidity and mortality, and cardiac gene delivery has the potential to provide novel therapeutic approaches. Adeno-associated virus serotype 9 (AAV9) transduces the rodent heart efficiently, but cardiotropism, immune tolerance, and optimal delivery strategies in large animals are unclear. In this study, an AAV9 vector encoding canine sodium iodide symporter (NIS) was administered to adult immunocompetent dogs via epicardial injection, coronary infusion without and with cardiac recirculation, or endocardial injection via a novel catheter with curved needle and both end- and side-holes. As NIS mediates cellular uptake of clinical radioisotopes, expression was tracked by single-photon emission computerized tomography (SPECT) imaging in addition to Western blot and immunohistochemistry. Direct epicardial or endocardial injection resulted in strong cardiac expression, whereas expression after intracoronary infusion or cardiac recirculation was undetectable. A threshold myocardial injection dose that provides robust nonimmunogenic expression was identified. The extent of transmural myocardial expression was greater with the novel catheter versus straight end-hole needle delivery. Furthermore, the authors demonstrate that cardiac NIS reporter gene expression and duration can be quantified using serial noninvasive SPECT imaging up to 1 year after vector administration. These data are relevant to efforts to develop cardiac gene delivery as heart failure therapy. PMID:25915925

  6. Cardiac AAV9 Gene Delivery Strategies in Adult Canines: Assessment by Long-term Serial SPECT Imaging of Sodium Iodide Symporter Expression.

    PubMed

    Moulay, Gilles; Ohtani, Tomohito; Ogut, Ozgur; Guenzel, Adam; Behfar, Atta; Zakeri, Rosita; Haines, Philip; Storlie, Jimmy; Bowen, Lorna; Pham, Linh; Kaye, David; Sandhu, Gurpreet; O'Connor, Michael; Russell, Stephen; Redfield, Margaret

    2015-07-01

    Heart failure is a leading cause of morbidity and mortality, and cardiac gene delivery has the potential to provide novel therapeutic approaches. Adeno-associated virus serotype 9 (AAV9) transduces the rodent heart efficiently, but cardiotropism, immune tolerance, and optimal delivery strategies in large animals are unclear. In this study, an AAV9 vector encoding canine sodium iodide symporter (NIS) was administered to adult immunocompetent dogs via epicardial injection, coronary infusion without and with cardiac recirculation, or endocardial injection via a novel catheter with curved needle and both end- and side-holes. As NIS mediates cellular uptake of clinical radioisotopes, expression was tracked by single-photon emission computerized tomography (SPECT) imaging in addition to Western blot and immunohistochemistry. Direct epicardial or endocardial injection resulted in strong cardiac expression, whereas expression after intracoronary infusion or cardiac recirculation was undetectable. A threshold myocardial injection dose that provides robust nonimmunogenic expression was identified. The extent of transmural myocardial expression was greater with the novel catheter versus straight end-hole needle delivery. Furthermore, the authors demonstrate that cardiac NIS reporter gene expression and duration can be quantified using serial noninvasive SPECT imaging up to 1 year after vector administration. These data are relevant to efforts to develop cardiac gene delivery as heart failure therapy. PMID:25915925

  7. A dataset for assessing temporal changes in gene expression during the aging process of adult Drosophila melanogaster.

    PubMed

    Carlson, Kimberly A; Zhang, Chi; Harshman, Lawrence G

    2016-06-01

    A Drosophila melanogaster genome-wide transcriptome dataset is available for studies on temporal patterns of gene expression. Gene expression was measured using two-dye color oligonucleotide arrays derived from Version 2 of the Drosophila Genomics Resource Center. A total of 15,158 oligonucleotide probes corresponded to a high proportion of the coding genes in the genome. The source of the flies was a highly genetically heterogeneous population maintained in an overlapping generation population regime. This regime was designed to maintain life history traits so that they were similar to those found in natural populations. Flies collected for the cohorts were obtained in a short period of time in a carefully controlled manner before virgin females and males were allowed to mate. Mated females were introduced into two large population cages in unusually high numbers (approximately 12,000 per cage) for a Drosophila laboratory longevity study. Samples were taken weekly from each cohort for 11 weeks; only a small proportion of surviving flies were present at the last two collection time points and thus they were exceptionally old compared to those collected in early-to-midlife samples. The data set is useful for studies of temporal patterns of gene expression as flies age. The very large size of each cohort, and relatively frequent incidence of temporal samples, allows for a fine-scale study of gene expression from young to very old flies. PMID:27252981

  8. Polymorphisms in the angiotensin-converting enzyme gene region predict coping styles in healthy adults and depressed patients.

    PubMed

    Heck, Angela; Lieb, Roselind; Ellgas, Andrea; Pfister, Hildegard; Lucae, Susanne; Erhardt, Angelika; Himmerich, Hubertus; Horstmann, Sonja; Kloiber, Stefan; Ripke, Stephan; Müller-Myhsok, Bertram; Bettecken, Thomas; Uhr, Manfred; Holsboer, Florian; Ising, Marcus

    2009-01-01

    Dispositional coping styles are important moderators of the stress reaction and are altered in stress-related disorders like cardiovascular diseases and affective disorders. Heritability studies suggest a considerable genetic contribution to the interindividual variability in coping styles. Since the angiotensin-converting enzyme (ACE) gene has been described to be associated with the vulnerability for stress-related disorders and with altered stress hormone regulation, we investigated the ACE gene as potential candidate gene for coping styles. Five hundred forty one mentally healthy subjects and 194 patients suffering from depression participating in the Munich Antidepressant Response Signature (MARS) project were examined. Coping styles were assessed with a self-report questionnaire (German Stress Coping Questionnaire SVF78) measuring the individual coping style pattern in response to stressful situations. We genotyped 15 single nucleotide polymorphisms (SNPs) and the insertion/Deletion (I/D)-polymorphism in the ACE gene region and investigated their associations with coping styles. In healthy subjects, the highest association was observed between rs8066276, an intronic SNP of the ACE gene, and the coping factor Distraction. A further intronic SNP rs4305, not in linkage disequilibrium with rs8066276, showed an association with Devaluation/Defense. All associated copying styles can be categorized as potentially stress reducing factors (positive coping). Both SNPs were also found to be associated with positive coping styles in the patient sample; rs8066276 was associated with Devaluation/Defense, and rs4305 showed associations with Control. These results suggest that the ACE gene is involved in the development of coping strategies. PMID:18484085

  9. Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults

    PubMed Central

    Zaldivar, Frank; Haddad, Fadia; Cooper, Dan M.

    2013-01-01

    Natural killers (NK) cells are unique innate immune cells that increase up to fivefold in the circulating blood with brief exercise and are known to play a key role in first-response defense against pathogens and cancer immunosurveillance. Whether exercise alters NK cell gene and microRNA (miRNA) expression is not known. Thirteen healthy men (20–29 yr old) performed ten 2-min bouts of cycle ergometer exercise at a constant work equivalent to an average of 77% of maximum O2 consumption interspersed with 1-min rest. Blood was drawn before and immediately after the exercise challenge. NK cells were isolated from peripheral blood mononuclear cells using a negative magnetic cell separation method. We used Affymetrix U133+2.0 arrays for gene expression and Agilent Human miRNA V2 Microarray for miRNAs. A stringent statistical approach (false discovery rate < 0.05) was used to determine that exercise significantly altered the expression of 986 genes and 23 miRNAs. Using in silico analysis, we found exercise-related gene pathways where there was a high likelihood of gene-miRNA interactions. These pathways were predominantly associated with cancer and cell communication, including p53 signaling pathway, melanoma, glioma, prostate cancer, adherens junction, and focal adhesion. These data support the hypothesis that exercise affects the gene and miRNA expression pattern in the population of NK cells in the circulation and suggest mechanisms through which physical activity could alter health through the innate immune system. PMID:23288554

  10. Differences in B7 and CD28 family gene expression in the peripheral blood between newly diagnosed young-onset and adult-onset type 1 diabetes patients.

    PubMed

    Pruul, K; Kisand, K; Alnek, K; Metsküla, K; Reimand, K; Heilman, K; Peet, A; Varik, K; Peetsalu, M; Einberg, Ü; Tillmann, V; Uibo, R

    2015-09-01

    Type-1 diabetes (T1D) is a heterogeneous autoimmune disease, and there are pathogenetic differences between young- and adult-onset T1D patients. We hypothesized that the expressions of genes involved in costimulatory immune system pathways in peripheral blood are differently regulated in young- and adult-onset T1D. Study group I consisted of 80 children, adolescents, and young adults (age range 1.4-21.4 y; 31 controls and 49 T1D patients). Study group II consisted of 48 adults (age range 22.0-78.4 y; 30 controls and 18 T1D patients). The mRNA expression levels of CD86, CD28, CD25, CD226, CD40, BTLA, GITR, PDCD1, FoxP3, TGF-β, ICOS, sCTLA4, flCTLA4, and CD80 were measured in peripheral blood. Genetic polymorphisms (HLA haplotypes; rs231806, rs231775, and rs3087243 in CTLA4; rs763361 in CD226; and rs706778 in CD25) and T1D-associated autoantibodies were analyzed. In group I, there was significantly lower expression of CD226 in T1D patients than in the controls. In group II, there were significantly higher expression levels of CD86 and TGF-β in T1D patients than in the controls. In the T1D patients in group I, the upregulated CD80 expression correlated with the expression of both CTLA4 splice variants (sCTLA4 and flCTLA4). In contrast, in group II, upregulated CD86 correlated with TGF-β and CD25. In group I, the inhibitory CD80-CTLA4 pathway was activated, whereas, in group II, the activation CD86-CD28 pathway and TGF-β production were activated. These results emphasize the differences between young-onset and adult-onset T1D in the regulation of costimulatory pathways. These differences should be considered when developing novel treatments for T1D. PMID:25980680

  11. V(D)J RECOMBINASE-MEDIATED DELETION OF THE HPRT GENE IN T-LYMPHOCYTES FROM ADULT HUMANS

    EPA Science Inventory

    The hprt T-cell cloning assay allows the detection of mutations occurring in vivo in the hypoxanthine guanine phosphoribosyltransferase (hprt) gene of T-lymphocytes. e have shown previously that the illegitimate activity of V(D)J recombinase accounts for about 40% of the hprt mut...

  12. Gene expression in Asian citrus psyllid adults feeding from Florida citrus: Application to biology and vector control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used a genomics approach to identify some of the genetic basis of D. citri biology, identifying in particular genes associated with feeding, reproduction, pathology, and insecticide resistance. The Asian citrus psyllid (AsCP), Diaphorina citri (Hemiptera: Psyllidae), is a highly competent vector ...

  13. Induction of vitellogenin gene expression in adult male fathead minnows for select EDCs in 48-hour exposures

    EPA Science Inventory

    Endocrine disrupting chemicals have been shown to be present in surface waters, sediments and sludge, and are known to induce vitellogenin gene liver transcripts in male fathead minnows. The purpose of our study was to establish the lowest concentrations of estrogenic chemicals ...

  14. Birth weight modifies the association between central-nervous-system gene variation and adult body mass index

    PubMed Central

    Ruiz-Narváez, Edward A.; Haddad, Stephen A.; Rosenberg, Lynn; Palmer, Julie R.

    2015-01-01

    Genome wide association studies (GWAS) have identified approximately 100 loci associated with body mass index (BMI). Persons with low birth-weight have an increased risk of metabolic disorders. We postulate that normal mechanisms of body weight regulation are disrupted in subjects with low birth-weight. The present analyses included 2215 African American women from the Black Women’s Health Study, and were based on genotype data on twenty BMI-associated loci and self-reported data on birth-weight, weight at age 18, and adult weight. We used general linear models to assess the association of individual SNPs with BMI at age 18 and later in adulthood within strata of birth-weight (above and below the median, 3200 g). Three SNPs (rs1320330 near TMEM18, rs261967 near PCSK1, and rs17817964 in FTO), and a genetic score combining these three variants, showed significant interactions with birth-weight in relation to BMI. Among women with birth-weight <3200 g, there was an inverse association between genetic score and BMI; beta-coefficient = −0.045 (95% CI −0.104, 0.013) for BMI at age 18, and −0.055 (95% CI −0.112, 0.002) for adult BMI. Among women with birth-weight ≥3,200 g, genetic score was positively associated with BMI: beta-coefficient = 0.110 (95% CI 0.051, 0.169) for BMI at age 18 (P for interaction = 0.0002), and 0.112 (95% CI 0.054, 0.170) for adult BMI (P for interaction < 0.0001). Because TMEM18, PCSK1, and FTO are highly expressed in the central nervous system (CNS), our results suggest that low birth-weight may disrupt mechanisms of CNS body weight regulation. PMID:26582267

  15. Juvenile hormone facilitates the antagonism between adult reproduction and diapause through the methoprene-tolerant gene in the female Colaphellus bowringi.

    PubMed

    Liu, Wen; Li, Yi; Zhu, Li; Zhu, Fen; Lei, Chao-Liang; Wang, Xiao-Ping

    2016-07-01

    In insects, the process whereby juvenile hormone (JH) regulates short-day (SD)-induced reproductive diapause has been previously investigated. However, we still do not understand the mechanism by which JH regulates long-day (LD)-induced reproductive diapause. In this study, we use a cabbage beetle, Colaphellus bowringi, which is a serious pest of cruciferous vegetables in Asia capable of entering reproductive diapause under LD conditions, as a model to test whether JH regulates female reproductive diapause similar to the mechanism of SD-induced diapause. Our results showed that the JH analog (JHA) methoprene significantly induced ovarian development but inhibited lipid accumulation of diapause-destined adults. Meanwhile, the transcripts of the vitellogenin (Vg) genes were upregulated, whereas the expression of the fat synthesis and stress tolerance genes were downregulated. RNA interference of the JH candidate receptor gene methoprene-tolerant (Met) blocked JH-induced ovarian development and Vg transcription, suggesting a positive regulatory function for JH-Met signaling in reproduction. Furthermore, under reproduction-inducing conditions, Met depletion promoted a diapause-like phenotype, including arrested ovarian development and increased lipid storage, and stimulated the expression of diapause-related genes involved in lipid synthesis and stress tolerance, suggesting JH-Met signaling plays an important role in the inhibition of diapause. Accordingly, our data indicate that JH acts through Met to facilitate development of the reproductive system by upregulating Vg expression while inhibiting diapause by suppressing lipid synthesis and stress tolerance in the cabbage beetle. Combined with previous studies in SD-induced reproductive diapause, we conclude that JH may regulate female reproductive diapause using a conserved Met-dependent pathway, regardless of the length of the photoperiod inducing diapause in insects. PMID:27180724

  16. Genome-Wide Tissue-Specific Gene Expression, Co-expression and Regulation of Co-expressed Genes in Adult Nematode Ascaris suum

    PubMed Central

    Rosa, Bruce A.; Jasmer, Douglas P.; Mitreva, Makedonka

    2014-01-01

    Background Caenorhabditis elegans has traditionally been used as a model for studying nematode biology, but its small size limits the ability for researchers to perform some experiments such as high-throughput tissue-specific gene expression studies. However, the dissection of individual tissues is possible in the parasitic nematode Ascaris suum due to its relatively large size. Here, we take advantage of the recent genome sequencing of Ascaris suum and the ability to physically dissect its separate tissues to produce a wide-scale tissue-specific nematode RNA-seq datasets, including data on three non-reproductive tissues (head, pharynx, and intestine) in both male and female worms, as well as four reproductive tissues (testis, seminal vesicle, ovary, and uterus). We obtained fundamental information about the biology of diverse cell types and potential interactions among tissues within this multicellular organism. Methodology/Principal Findings Overexpression and functional enrichment analyses identified many putative biological functions enriched in each tissue studied, including functions which have not been previously studied in detail in nematodes. Putative tissue-specific transcriptional factors and corresponding binding motifs that regulate expression in each tissue were identified, including the intestine-enriched ELT-2 motif/transcription factor previously described in nematode intestines. Constitutively expressed and novel genes were also characterized, with the largest number of novel genes found to be overexpressed in the testis. Finally, a putative acetylcholine-mediated transcriptional network connecting biological activity in the head to the male reproductive system is described using co-expression networks, along with a similar ecdysone-mediated system in the female. Conclusions/Significance The expression profiles, co-expression networks and co-expression regulation of the 10 tissues studied and the tissue-specific analysis presented here are a

  17. HPA Axis Gene Expression and DNA Methylation Profiles in Rats Exposed to Early Life Stress, Adult Voluntary Ethanol Drinking and Single Housing

    PubMed Central

    Todkar, Aniruddha; Granholm, Linnea; Aljumah, Mujtaba; Nilsson, Kent W.; Comasco, Erika; Nylander, Ingrid

    2016-01-01

    The neurobiological basis of early life stress (ELS) impact on vulnerability to alcohol use disorder is not fully understood. The effect of ELS, adult ethanol consumption and single housing, on expression of stress and DNA methylation regulatory genes as well as blood corticosterone levels was investigated in the hypothalamus and pituitary of adult out-bred Wistar rats subjected to different rearing conditions. A prolonged maternal separation (MS) of 360 min (MS360) was used to study the effect of ELS, and a short MS of 15 min (MS15) was used as a control. Voluntary ethanol drinking was assessed using a two-bottle free choice paradigm to simulate human episodic drinking. The effects of single housing and ethanol were assessed in conventional animal facility rearing (AFR) conditions. Single housing in adulthood was associated with lower Crhr1 and higher Pomc expression in the pituitary, whereas ethanol drinking was associated with higher expression of Crh in the hypothalamus and Crhr1 in the pituitary, accompanied by lower corticosterone levels. As compared to controls with similar early life handling, rats exposed to ELS displayed lower expression of Pomc in the hypothalamus, and higher Dnmt1 expression in the pituitary. Voluntary ethanol drinking resulted in lower Fkbp5 expression in the pituitary and higher Crh expression in the hypothalamus, independently of rearing conditions. In rats exposed to ELS, water and ethanol drinking was associated with higher and lower corticosterone levels, respectively. The use of conventionally reared rats as control group yielded more significant results than the use of rats exposed to short MS. Positive correlations, restricted to the hypothalamus and ELS group, were observed between the expression of the hypothalamus-pituitary-adrenal receptor and the methylation-related genes. Promoter DNA methylation and expression of respective genes did not correlate suggesting that other loci are involved in transcriptional regulation

  18. ACE and UCP2 gene polymorphisms and their association with baseline and exercise-related changes in the functional performance of older adults

    PubMed Central

    Palmer, Barry R.; Taylor, Denise; Kilding, Andrew E.

    2015-01-01

    Maintaining high levels of physical function is an important aspect of successful ageing. While muscle mass and strength contribute to functional performance in older adults, little is known about the possible genetic basis for the heterogeneity of physical function in older adults and in how older adults respond to exercise. Two genes that have possible roles in determining levels of muscle mass, strength and function in young and older adults are angiotensin-converting enzyme (ACE) and mitochondrial uncoupling protein 2 (UCP2). This study examined whether polymorphisms in these two individual genes were associated with baseline functional performance levels and/or the training-related changes following exercise in previously untrained older adults. Five-eight Caucasian older adults (mean age 69.8 years) with no recent history of resistance training enrolled in a 12 week program of resistance, balance and cardiovascular exercises aimed at improving functional performance. Performance in 6 functional tasks was recorded at baseline and after 12 weeks. Genomic DNA was assayed for the ACE intron 16 insertion/deletion (I/D) and the UCP2 G-866A polymorphism. Baseline differences among genotype groups were tested using analysis of variance. Genotype differences in absolute and relative changes in physical function among the exercisers were tested using a general linear model, adjusting for age and gender. The genotype frequencies for each of the studied polymorphisms conformed to the Hardy-Weinberg equilibrium. The ACE I/D genotype was significantly associated with mean baseline measures of handgrip strength (II 30.9 ± 3.01 v. ID 31.7 ± 1.48 v. DD 29.3 ± 2.18 kg, p < 0.001), 8ft Up and Go time (II 6.45 ± 0.48 v. ID/DD 4.41 ± 0.19 s, p < 0.001) and 6 min walk distance (II 458 ± 28.7 v. ID/DD 546 ± 12.1m, p = 0.008). The UCP2 G-866A genotype was also associated with baseline 8ft Up and Go time (GG 5.45 ± 0.35 v. GA 4.47 ± 0.26 v. AA 3.89 ± 0.71 s, p = 0

  19. Association of major histocompatibility complex class 1 chain-related gene a dimorphism with type 1 diabetes and latent autoimmune diabetes in adults in the Algerian population.

    PubMed

    Raache, Rachida; Belanteur, Khadidja; Amroun, Habiba; Benyahia, Amel; Heniche, Amel; Azzouz, Malha; Mimouni, Safia; Gervais, Thibaud; Latinne, Dominique; Boudiba, Aissa; Attal, Nabila; Abbadi, Mohamed Cherif

    2012-04-01

    Major histocompatibility complex class I chain-related gene A (MICA-129) dimorphism was investigated in 73 autoimmune diabetes patients (type 1 diabetes and latent autoimmune diabetes in adults) and 75 controls from Algeria. Only MICA-129 Val allele and MICA-129 Val/Val genotype frequencies were higher among patients than in the control group. Statistical analysis of the estimated extended HLA-DR-DQ-MICA haplotypes shown that individual effects of MICA alleles on HLA-DQ2-DR3-MICA-129 Val/Val and HLA-DQ8-DR4-MICA-129 Val/Val haplotypes were significantly higher in patients than in the control groups. These preliminary data might suggest a relevant role of MICA-129 Val/Val single nucleotide polymorphism (weak/weak binders of NKG2D receptor) in the pathogenesis of T1D and LADA. PMID:22323559

  20. Association of Major Histocompatibility Complex Class 1 Chain-Related Gene A Dimorphism with Type 1 Diabetes and Latent Autoimmune Diabetes in Adults in the Algerian Population

    PubMed Central

    Belanteur, Khadidja; Amroun, Habiba; Benyahia, Amel; Heniche, Amel; Azzouz, Malha; Mimouni, Safia; Gervais, Thibaud; Latinne, Dominique; Boudiba, Aissa; Attal, Nabila; Abbadi, Mohamed Cherif

    2012-01-01

    Major histocompatibility complex class I chain-related gene A (MICA-129) dimorphism was investigated in 73 autoimmune diabetes patients (type 1 diabetes and latent autoimmune diabetes in adults) and 75 controls from Algeria. Only MICA-129 Val allele and MICA-129 Val/Val genotype frequencies were higher among patients than in the control group. Statistical analysis of the estimated extended HLA-DR-DQ-MICA haplotypes shown that individual effects of MICA alleles on HLA-DQ2-DR3-MICA-129 Val/Val and HLA-DQ8-DR4-MICA-129 Val/Val haplotypes were significantly higher in patients than in the control groups. These preliminary data might suggest a relevant role of MICA-129 Val/Val single nucleotide polymorphism (weak/weak binders of NKG2D receptor) in the pathogenesis of T1D and LADA. PMID:22323559

  1. Embryonic----Fetal Hb switch in humans: studies on erythroid bursts generated by embryonic progenitors from yolk sac and liver.

    PubMed

    Peschle, C; Migliaccio, A R; Migliaccio, G; Petrini, M; Calandrini, M; Russo, G; Mastroberardino, G; Presta, M; Gianni, A M; Comi, P

    1984-04-01

    The synthesis of embryonic (zeta, epsilon), fetal (alpha, gamma), and adult (beta) globin was evaluated in human yolk sacs (YS) and livers at different ontogenic stages (i.e., from 6 through 10-12 wk of age) by means of analytical isoelectric focusing. Globin production was comparatively evaluated in vivo (i.e., in directly labeled erythroblasts from YS and liver) and in vitro [i.e., in erythroid bursts generated in culture by erythroid burst-forming units (BFU-E) from the same erythropoietic tissues]. Erythroid bursts generated in vitro by BFU-E from 6-wk livers and YS show essentially a "fetal" globin synthetic pattern: this is in sharp contrast to the "embryonic" pattern in corresponding liver and YS erythroblasts directly labeled in vivo. The invitro phenomenon suggests that (i) 6-wk BFU-E constitute a new generation of progenitors, which have already switched from an embryonic to a fetal program, and/or (ii) expression of their fetal program is induced by unknown in vitro factor(s), which may underlie the in vivo switch at later ontogenic stages. It is emphasized that 6- to 7-wk BFU-E are endowed with the potential for in vitro synthesis of not only epsilon- and gamma-chains but also some beta-globin. In general, we observed an inverse correlation between the levels of epsilon- and beta-chain synthesis. These results, together with previous studies on fetal, perinatal, and adult BFU-E, are compatible with models suggesting that in ontogeny the chromatin configuration is gradually modified at the level of the non-alpha gene cluster, thus leading to a 5'----3' activation of globin genes in a balanced fashion. PMID:6201856

  2. Differential methylation of genes in the medial prefrontal cortex of developing and adult rats following exposure to maltreatment or nurturing care during infancy

    PubMed Central

    Blaze, Jennifer; Scheuing, Lisa; Roth, Tania L.

    2013-01-01

    Quality of maternal care in infancy is an important contributing factor in the development of behavior and psychopathology. One way maternal care could affect behavioral trajectories is through environmentally-induced epigenetic alterations within brain regions known to play prominent roles in cognition, emotion regulation, and stress responsivity. Whereas such research has largely focused on the hippocampus or hypothalamus, the prefrontal cortex (PFC) has only begun to receive attention. The current study was designed to determine whether exposure to maltreatment or nurturing care is associated with differential methylation of candidate gene loci (bdnf and reelin) within the medial PFC (mPFC) of developing and adult rats. Using a within-litter design, infant male and female rats were exposed to an adverse or nurturing caregiving environment outside their homecage for 30 minutes per day during the first postnatal week. Additional littermates remained with their biological caregiver within the homecage during the manipulations. We observed that infant rats subjected to caregiver maltreatment emitted more audible and ultrasonic vocalizations than littermates subjected to nurturing care either within or outside of the homecage. While we found no maltreatment-induced changes in bdnf DNA methylation present in infancy, sex-specific alterations were present in the mPFC of adolescents and adults that had been exposed to maltreatment. Furthermore, while maltreated-females showed differences in reelin DNA methylation that were transient, males exposed to maltreatment and both males and females exposed to nurturing care outside the homecage showed differences in reelin methylation that emerged by adulthood. Our results demonstrate the ability of infant-caregiver interactions to epigenetically mark genes known to play a prominent role in cognition and psychiatric disorders within the mPFC. Furthermore, our data indicate the remarkable complexity of alterations that can occur

  3. A novel IGH@ gene rearrangement associated with CDKN2A/B deletion in young adult B-cell acute lymphoblastic leukemia

    PubMed Central

    OTHMAN, MONEEB A.K.; GRYGALEWICZ, BEATA; PIENKOWSKA-GRELA, BARBARA; RYGIER, JOLANTA; EJDUK, ANNA; RINCIC, MARTINA; MELO, JOANA B.; CARREIRA, ISABEL M.; MEYER, BRITTA; LIEHR, THOMAS

    2016-01-01

    Acquired copy number changes are common in acute leukemia. They are reported as recurrent amplifications or deletions (del), and may be indicative of involvement of oncogenes or tumor suppressor genes in acquired disease, as well as serving as potential biomarkers for prognosis or as targets for molecular therapy. The present study reported a gain of copy number of 14q13 to 14q32, leading to immunoglobulin heavy chain locus splitting in a young adult female. To the best of our knowledge, this rearrangement has not been previously reported in B-cell acute lymphoblastic leukemia (ALL). Low resolution banding cytogenetics performed at the time of diagnosis revealed a normal karyotype. However, retrospective application of fluorescence in situ hybridization (FISH) banding and locus-specific FISH probes, as well as multiplex ligation-dependent probe amplification and high resolution array-comparative genomic hybridization, revealed previously hidden aberrations. Overall, a karyotype of 46, XX, del(9) (p21.3 p21.3),derivative(14) (pter-> q32.33:: q32.33-> q13 ::q32.33-> qter) was determined. The patient was treated according to the Polish Adult Leukemia Group protocol and achieved complete remission. The results of the present study indicate that a favorable prognosis is associated with these aberrations when the aforementioned treatment is administered. PMID:26998132

  4. A single early postnatal estradiol injection affects morphology and gene expression of the ovary and parametrial adipose tissue in adult female rats.

    PubMed

    Alexanderson, Camilla; Stener-Victorin, Elisabet; Kullberg, Joel; Nilsson, Staffan; Levin, Max; Cajander, Stefan; Lönn, Lars; Lönn, Malin; Holmäng, Agneta

    2010-10-01

    Events during early life can affect reproductive and metabolic functions in adulthood. We evaluated the programming effects of a single early postnatal estradiol injection (within 3h after birth) in female rats. We assessed ovarian and parametrial adipose tissue morphology, evaluated gene expression related to follicular development and adipose tissue metabolism, and developed a non-invasive volumetric estimation of parametrial adipose tissue by magnetic resonance imaging. Estradiol reduced ovarian weight, increased antral follicle size and number of atretic antral follicles, and decreased theca interna thickness in atretic antral follicles. Adult estradiol-injected rats also had malformed vaginal openings and lacked corpora lutea, confirming anovulation. Estradiol markedly reduced parametrial adipose tissue mass. Adipocyte size was unchanged, suggesting reduced adipocyte number. Parametrial adipose tissue lipoprotein lipase activity was increased. In ovaries, estradiol increased mRNA expression of adiponectin, complement component 3, estrogen receptor α, and glucose transporter 3 and 4; in parametrial adipose tissue, expression of complement component 3 was increased, expression of estrogen receptor α was decreased, and expression of leptin, lipoprotein lipase, and hormone-sensitive lipase was unaffected. These findings suggest that early postnatal estradiol exposure of female rats result in long-lasting effects on the ovary and parametrial adipose tissue at adult age. PMID:19857573

  5. Archaic African and Asian lineages in the genetic ancestry of modern humans.

    PubMed Central

    Harding, R M; Fullerton, S M; Griffiths, R C; Bond, J; Cox, M J; Schneider, J A; Moulin, D S; Clegg, J B

    1997-01-01

    A 3-kb region encompassing the beta-globin gene has been analyzed for allelic sequence polymorphism in nine populations from Africa, Asia, and Europe. A unique gene tree was constructed from 326 sequences of 349 in the total sample. New maximum-likelihood methods for analyzing gene trees on the basis of coalescence theory have been used. The most recent common ancestor of the beta-globin gene tree is a sequence found only in Africa and estimated to have arisen approximately 800,000 years ago. There is no evidence for an exponential expansion out of a bottlenecked founding population, and an effective population size of approximately 10,000 has been maintained. Modest differences in levels of beta-globin diversity between Africa and Asia are better explained by greater African effective population size than by greater time depth. There may have been a reduction of Asian effective population size in recent evolutionary history. Characteristically Asian ancestry is estimated to be older than 200,000 years, suggesting that the ancestral hominid population at this time was widely dispersed across Africa and Asia. Patterns of beta-globin diversity suggest extensive worldwide late Pleistocene gene flow and are not easily reconciled with a unidirectional migration out of Africa 100,000 years ago and total replacement of archaic populations in Asia. PMID:9106523

  6. Effects of Long-Term Odanacatib Treatment on Bone Gene Expression in Ovariectomized Adult Rhesus Monkeys: Differentiation From Alendronate.

    PubMed

    Muise, Eric S; Podtelezhnikov, Alexei A; Pickarski, Maureen; Loboda, Andrey; Tan, Yejun; Hu, Guanghui; Thomspon, John R; Duong, Le T

    2016-04-01

    Similar efficacy of the cathepsin K inhibitor odanacatib (ODN) and the bisphosphonate alendronate (ALN) in reducing bone turnover markers and increasing bone mineral density in spine and hip were previously demonstrated in ovariectomized (OVX)-monkeys treated for 20 months in prevention mode. Here, we profiled RNA from tibial metaphysis and diaphysis of the same study using Affymetrix microarrays, and selected 204 probe sets (p < 0.001, three-group ANOVA) that were differentially regulated by ODN or ALN versus vehicle. Both drugs produced strikingly different effects on known bone-related genes and pathways at the transcriptional level. Although ALN either reduced or had neutral effects on bone resorption-related genes, ODN significantly increased the expression of osteoclast genes (eg, APC5, TNFRSF11A, CTSK, ITGB3, and CALCR), consistent with previous findings on the effects of this agent in enhancing the number of nonresorbing osteoclasts. Conversely, ALN reduced the expression of known bone formation-related genes (eg, TGFBR1, SPP1, RUNX2, and PTH1R), whereas ODN either increased or had neutral effects on their expression. These differential effects of ODN versus ALN on bone resorption and formation were highly correlative to the changes in bone turnover markers, cathepsin K (Catk) target engagement marker serum C-terminal cross-linked telopeptide (1-CTP) and osteoclast marker tartrate resistant acid phosphatase isoform 5b (TRAP5b) in the same monkeys. Overall, the molecular profiling results are consistent with the known pharmacological actions of these agents on bone remodeling and clearly differentiate the molecular mechanisms of ODN from the bisphosphonates. © 2016 American Society for Bone and Mineral Research. PMID:26587671

  7. Expression of c-fos gene in central nervous system of adult medaka (Oryzias latipes) after hypergravity stimulation

    NASA Astrophysics Data System (ADS)

    Shimomura, S.; Ijiri, K.

    The immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brain. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3G hypergravity by centrifugation. Investigation of c-fos mRNA expression showed that c-fos mRNA significantly increased 30 minutes after a start of 3G exposure. The distribution of its transcripts within brains was analyzed by an in situ hybridization method. The 3G-treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, posterior octavu nucleus, nucleus tangentialis and inferior olive. Our results established the method to trace the activated area in the fish brain following gravity stimulation. The method will be a useful tool for understanding gravity perception in the brain.

  8. Expression of Foxp2, a gene involved in speech and language, in the developing and adult striatum.

    PubMed

    Takahashi, Kaoru; Liu, Fu-Chin; Hirokawa, Katsuiku; Takahashi, Hiroshi

    2003-07-01

    Many members of the forkhead/winged helix transcriptional factors are known to be regulators of embryogenesis. Mutations of the Fox gene family have been implicated in a range of human developmental disorders. Foxp2, a member of the Fox gene family, has recently been identified as the first gene that is linked to an inherited form of language and speech disorder. To elucidate the anatomical basis of language processing in the brain, we have examined the expression pattern of Foxp2 gene and its homologous gene, Foxp1, in the rat brain through development. Expression of Foxp2 mRNA was detected in the ventral telencephalon as early as embryonic day 13. Foxp2 mRNA was expressed primarily in differentiated cells of the lateral ganglionic eminence (striatal primordium). Of particular interest was that the developmental expression of Foxp2 followed a compartmental order in the striatum. Patches containing high levels of Foxp2 were aligned with patches enriched in mu-opoid receptor, a marker for striosomal cells, in the striatum through postnatal development. Conversely, Foxp2-positive patches were devoid of calbindin-D28k, a maker for striatal matrix cells. Therefore, Foxp2 was preferentially expressed in striosomal compartment in the striatum during development. In the mature striatum, Foxp2 expression was maintained in striosomes, although its expression level was reduced. In contrast to Foxp2, Foxp1 was expressed in both the striosomal and matrix compartments in the striatum through development. The striatum is known to be involved in the process of procedural memory, and mutation of Foxp2 results in neurological disorders of language and speech. Given the preferential expression of Foxp2 in the striosomal compartment, the striatum, particularly the striosomal system, may participate in neural information processing for language and speech. Our suggestion is consistent with the declarative/procedural model proposed by Ullman and colleagues (Ullman et al. [1997] J. Cogn

  9. Allelic Variation in TAS2R Bitter Receptor Genes Associates with Variation in Sensations from and Ingestive Behaviors toward Common Bitter Beverages in Adults

    PubMed Central

    Hayes, John E.; Wallace, Margaret R.; Knopik, Valerie S.; Herbstman, Deborah M.; Bartoshuk, Linda M.

    2011-01-01

    The 25 human bitter receptors and their respective genes (TAS2Rs) contain unusually high levels of allelic variation, which may influence response to bitter compounds in the food supply. Phenotypes based on the perceived bitterness of single bitter compounds were first linked to food preference over 50 years ago. The most studied phenotype is propylthiouracil bitterness, which is mediated primarily by the TAS2R38 gene and possibly others. In a laboratory-based study, we tested for associations between TAS2R variants and sensations, liking, or intake of bitter beverages among healthy adults who were primarily of European ancestry. A haploblock across TAS2R3, TAS2R4, and TAS2R5 explained some variability in the bitterness of espresso coffee. For grapefruit juice, variation at a TAS2R19 single nucleotide polymorphism (SNP) was associated with increased bitterness and decreased liking. An association between a TAS2R16 SNP and alcohol intake was identified, and the putative TAS2R38–alcohol relationship was confirmed, although these polymorphisms did not explain sensory or hedonic responses to sampled scotch whisky. In summary, TAS2R polymorphisms appear to influence the sensations, liking, or intake of common and nutritionally significant beverages. Studying perceptual and behavioral differences in vivo using real foods and beverages may potentially identify polymorphisms related to dietary behavior even in the absence of known ligands. PMID:21163912

  10. Obesity-related gene ADRB2, ADRB3 and GHRL polymorphisms and the response to a weight loss diet intervention in adult women.

    PubMed

    Saliba, Louise F; Reis, Rodrigo S; Brownson, Ross C; Hino, Adriano A; Tureck, Luciane V; Valko, Cheryl; de Souza, Ricardo L R; Furtado-Alle, Lupe

    2014-03-01

    The individual response to diet may be influenced by gene polymorphisms. This study hypothesized that ADRB2 (Gln27Glu, rs1042714 and Arg16Gly, rs1042713), ADRB3 (Trp64Arg, rs4994) and GHRL (Leu72Met, rs696217) polymorphisms moderate weight loss. The study was a seven weeks dietary weight loss intervention with Brazilian adult obese women (n = 109). The body mass index (BMI) was calculated and polymorphisms in these genes were assessed by real-time PCR assays. Two-way repeated-measures ANOVA (2 × 2) were used to analyze the intervention effect between polymorphisms and BMI over the period and after stratification for age and socioeconomic status (SES). The weight loss intervention resulted in decreased BMI over the seven-week period (p < 0.001), for high and low SES (p < 0.05) and mainly for participants with 30-49 y. The intervention did not result in a statistically significant difference in weight loss between polymorphism carriers and non-carriers, and although, the ADRB2, ADRB3 and GHRL polymorphisms did not moderate weight loss, the Gln27Glu polymorphism carriers showed a lower BMI compared to non-carriers in the low SES (p = 0.018) and the 30-39 y (p = 0.036) groups, suggesting a role for this polymorphism related to BMI control. PMID:24688286

  11. Obesity-related gene ADRB2, ADRB3 and GHRL polymorphisms and the response to a weight loss diet intervention in adult women

    PubMed Central

    Saliba, Louise F.; Reis, Rodrigo S.; Brownson, Ross C.; Hino, Adriano A.; Tureck, Luciane V.; Valko, Cheryl; de Souza, Ricardo L.R.; Furtado-Alle, Lupe

    2014-01-01

    The individual response to diet may be influenced by gene polymorphisms. This study hypothesized that ADRB2 (Gln27Glu, rs1042714 and Arg16Gly, rs1042713), ADRB3 (Trp64Arg, rs4994) and GHRL (Leu72Met, rs696217) polymorphisms moderate weight loss. The study was a seven weeks dietary weight loss intervention with Brazilian adult obese women (n = 109). The body mass index (BMI) was calculated and polymorphisms in these genes were assessed by real-time PCR assays. Two-way repeated-measures ANOVA (2 × 2) were used to analyze the intervention effect between polymorphisms and BMI over the period and after stratification for age and socioeconomic status (SES). The weight loss intervention resulted in decreased BMI over the seven-week period (p < 0.001), for high and low SES (p < 0.05) and mainly for participants with 30–49 y. The intervention did not result in a statistically significant difference in weight loss between polymorphism carriers and non-carriers, and although, the ADRB2, ADRB3 and GHRL polymorphisms did not moderate weight loss, the Gln27Glu polymorphism carriers showed a lower BMI compared to non-carriers in the low SES (p = 0.018) and the 30–39 y (p = 0.036) groups, suggesting a role for this polymorphism related to BMI control. PMID:24688286

  12. Genetic Labeling Reveals Novel Cellular Targets of Schizophrenia Susceptibility Gene: Distribution of GABA and Non-GABA ErbB4-Positive Cells in Adult Mouse Brain

    PubMed Central

    Bean, Jonathan C.; Lin, Thiri W.; Sathyamurthy, Anupama; Liu, Fang; Yin, Dong-Min; Xiong, Wen-Cheng

    2014-01-01

    Neuregulin 1 (NRG1) and its receptor ErbB4 are schizophrenia risk genes. NRG1-ErbB4 signaling plays a critical role in neural development and regulates neurotransmission and synaptic plasticity. Nevertheless, its cellular targets remain controversial. ErbB4 was thought to express in excitatory neurons, although recent studies disputed this view. Using mice that express a fluorescent protein under the promoter of the ErbB4 gene, we determined in what cells ErbB4 is expressed and their identity. ErbB4 was widely expressed in the mouse brain, being highest in amygdala and cortex. Almost all ErbB4-positive cells were GABAergic in cortex, hippocampus, basal ganglia, and most of amygdala in neonatal and adult mice, suggesting GABAergic transmission as a major target of NRG1-ErbB4 signaling in these regions. Non-GABAergic, ErbB4-positive cells were present in thalamus, hypothalamus, midbrain, and hindbrain. In particular, ErbB4 is expressed in serotoninergic neurons of raphe nuclei but not in norepinephrinergic neurons of the locus ceruleus. In hypothalamus, ErbB4 is present in neurons that express oxytocin. Finally, ErbB4 is expressed in a group of cells in the subcortical areas that are positive for S100 calcium binding protein β. These results identify novel cellular targets of NRG1-ErbB4 signaling. PMID:25274830

  13. The Sp185/333 immune response genes and proteins are expressed in cells dispersed within all major organs of the adult purple sea urchin.

    PubMed

    Majeske, Audrey J; Oleksyk, Taras K; Smith, L Courtney

    2013-12-01

    Purple sea urchins (Strongylocentrotus purpuratus) express a highly variable set of immune genes called Sp185/333 by two subtypes of coelomocytes: the polygonal and small phagocytes. We report that the Sp185/333 genes and their encoded proteins are also expressed in all of the major organs in the adult sea urchin, including the axial organ, pharynx, esophagus, intestine and gonads. After immune challenge, there is an increase in the level of Sp185/333 mRNA in cells associated with the intestine and axial organ. The Sp185/333 proteins increase in the axial organ, pharynx, esophagus and intestine after challenge. However, the proportion of Sp185/333-positive cells only increases in the axial organ, while there is no change in that proportion in the other organs after challenge. The size range of the major Sp185/333 proteins expressed by organs is broader (5 kDa to > 250 kDa) compared with those in coelomocytes (∼40 kDa to < 250 kDa). Images of the different organs do not clarify whether coelomocytes or parenchymal cells express the Sp185/333 proteins. The increase in levels of Sp185/333 transcripts, protein expression and Sp185/333-positive cells in the axial organ in response to challenge suggests that this organ may have an important role in immunity for this species. PMID:23405032

  14. Expression of the Troponin C at 41C Gene in Adult Drosophila Tubular Muscles Depends upon Both Positive and Negative Regulatory Inputs

    PubMed Central

    Chechenova, Maria B.; Maes, Sara; Cripps, Richard M.

    2015-01-01

    Most animals express multiple isoforms of structural muscle proteins to produce tissues with different physiological properties. In Drosophila, the adult muscles include tubular-type muscles and the fibrillar indirect flight muscles. Regulatory processes specifying tubular muscle fate remain incompletely understood, therefore we chose to analyze the transcriptional regulation of TpnC41C, a Troponin C gene expressed in the tubular jump muscles, but not in the fibrillar flight muscles. We identified a 300-bp promoter fragment of TpnC41C sufficient for the fiber-specific reporter expression. Through an analysis of this regulatory element, we identified two sites necessary for the activation of the enhancer. Mutations in each of these sites resulted in 70% reduction of enhancer activity. One site was characterized as a binding site for Myocyte Enhancer Factor-2. In addition, we identified a repressive element that prevents activation of the enhancer in other muscle fiber types. Mutation of this site increased jump muscle-specific expression of the reporter, but more importantly reporter expression expanded into the indirect flight muscles. Our findings demonstrate that expression of the TpnC41C gene in jump muscles requires integration of multiple positive and negative transcriptional inputs. Identification of the transcriptional regulators binding the cis-elements that we identified will reveal the regulatory pathways controlling muscle fiber differentiation. PMID:26641463

  15. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms. PMID:26844865

  16. Effect of Neuronal Nicotinic Acetylcholine Receptor Genes (CHRN) on Longitudinal Cigarettes per Day in Adolescents and Young Adults

    PubMed Central

    2014-01-01

    Introduction: Few studies have sought to identify specific genetic markers associated with cigarettes per day (CPD) during adolescence and young adulthood, the period of greatest vulnerability for the development of nicotine dependence. Methods: We used a longitudinal design to investigate the effect of neuronal nicotinic acetylcholine receptor (CHRN) subunit genes on CPD from 15 to 21 years of age in young smokers of European descent (N = 439, 59% female). The number of CPD typically smoked during the previous 30 days was self-reported. Single nucleotide polymorphisms (SNPs) from CHRN genes were genotyped using DNA extracted from saliva samples collected at the 5-year assessment. Mixed-model analyses of SNP effects were computed across age at the time of assessment using log-transformed CPD as the phenotype. Data from the 1000 Genomes Project were used to clarify the architecture of CHRN genes to inform SNP selection and interpretation of results. Results: CPD was associated with a CHRNB3A6 region tagged by rs2304297, with CHRNA5A3B4 haplotype C (tagged by rs569207), and with the CHRNA2 SNP rs2271920, ps < .004. The reliability of single-SNP associations was supported by the correspondence between a more extensive set of SNP signals and the underlying genetic architecture. The 3 signals identified in this study appear to make independent contributions to CPD, and their combined effect accounts for 5.5% of the variance in log-transformed CPD. Conclusions: Level of CPD during adolescence and young adulthood is associated with CHRNB3A6, CHRNA5A3B4, and CHRNA2. PMID:23943838

  17. CDKN2 Gene Deletion as Poor Prognosis Predictor Involved in the Progression of Adult B-Lineage Acute Lymphoblastic Leukemia Patients

    PubMed Central

    Xu, Na; Li, Yu-ling; Zhou, Xuan; Cao, Rui; Li, Huan; Lu, Qi-si; Li, Lin; Lu, Zi-yuan; Huang, Ji-xian; Sun, Jing; Liu, Qi-fa; Du, Qing-feng; Liu, Xiao-li

    2015-01-01

    Deletion of cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) is well known in many hematologic malignancies, but only few reports have investigated this deletion effect on clinical prognosis. This study performed analysis of the CDKN2 deletion in 215 adult B- lineage acute lymphoblastic leukemia (B-ALL) patients, and related cytogenetic prognostic factors (BCR/ABL; E2A/PBXl; TEL/AML1; Mixed Lineage Leukemia (MLL) rearrangement; MYC, Immunoglobulin heavy locus (IGH) translocation). The prevalence of CDKN2 deletions in all study populations was 28.4%. There is no difference between patients with CDKN2 deletion and wild-type patients in sex, age, white blood cells (WBC) count, BM blast percentage, extra infiltration and induction complete remission (CR) rate. Analysis in relapse patients revealed that the distribution of CDKN2 deletion is higher in relapse patients (44.6%) than all patients (28.4%, P=0.006). Deletion of CDKN2 was significantly associated with poor outcomes including decreased overall survival (OS) (P<0.001), lower disease free-survival (DFS) (P<0.001), and increased cumulative incidence of relapse (P=0.002); Also, CDKN2 deletion was strongly associated with IGH translocation (P=0.021); and had an adverse effect on patients with BCR-ABL fusion gene or with MLL rearrangement. Patients with CDKN2 gene deletion benefited from allogenic hematopoietic stem cell transplantation (Allo-HSCT). Deletion of CDKN2 gene was commonly observed through leukemia progression and was poor prognostic marker in long-term outcomes. PMID:26516359

  18. Lead induces similar gene expression changes in brains of gestationally exposed adult mice and in neurons differentiated from mouse embryonic stem cells.

    PubMed

    Sánchez-Martín, Francisco Javier; Fan, Yunxia; Lindquist, Diana M; Xia, Ying; Puga, Alvaro

    2013-01-01

    Exposure to environmental toxicants during embryonic life causes changes in the expression of developmental genes that may last for a lifetime and adversely affect the exposed individual. Developmental exposure to lead (Pb), an ubiquitous environmental contaminant, causes deficits in cognitive functions and IQ, behavioral effects, and attention deficit hyperactivity disorder (ADHD). Long-term effects observed after early life exposure to Pb include reduction of gray matter, alteration of myelin structure, and increment of criminal behavior in adults. Despite growing research interest, the molecular mechanisms responsible for the effects of lead in the central nervous system are still largely unknown. To study the molecular changes due to Pb exposure during neurodevelopment, we exposed mice to Pb in utero and examined the expression of neural markers, neurotrophins, transcription factors and glutamate-related genes in hippocampus, cortex, and thalamus at postnatal day 60. We found that hippocampus was the area where gene expression changes due to Pb exposure were more pronounced. To recapitulate gestational Pb exposure in vitro, we differentiated mouse embryonic stem cells (ESC) into neurons and treated ESC-derived neurons with Pb for the length of the differentiation process. These neurons expressed the characteristic neuronal markers Tubb3, Syp, Gap43, Hud, Ngn1, Vglut1 (a marker of glutamatergic neurons), and all the glutamate receptor subunits, but not the glial marker Gafp. Importantly, several of the changes observed in Pb-exposed mouse brains in vivo were also observed in Pb-treated ESC-derived neurons, including those affecting expression of Ngn1, Bdnf exon IV, Grin1, Grin2D, Grik5, Gria4, and Grm6. We conclude that our ESC-derived model of toxicant exposure during neural differentiation promises to be a useful model to analyze mechanisms of neurotoxicity induced by Pb and other environmental agents. PMID:24260418

  19. Increased expression of axogenesis-related genes and mossy fibre length in dentate granule cells from adult HuD overexpressor mice.

    PubMed

    Perrone-Bizzozero, Nora I; Tanner, Daniel C; Mounce, Joanna; Bolognani, Federico

    2011-01-01

    The neuronal RNA-binding protein HuD plays a critical role in the post-transcriptional regulation of short-lived mRNAs during the initial establishment and remodelling of neural connections. We have generated transgenic mice overexpressing this protein (HuD-Tg) in adult DGCs (dentate granule cells) and shown that their mossy fibres contain high levels of GAP-43 (growth-associated protein 43) and exhibit distinct morphological and electrophysiological properties. To investigate the basis for these changes and identify other molecular targets of HuD, DGCs from HuD-Tg and control mice were collected by LCM (laser capture microscopy) and RNAs analysed using DNA microarrays. Results show that 216 known mRNAs transcripts and 63 ESTs (expressed sequence tags) are significantly up-regulated in DGCs from these transgenic mice. Analyses of the 3'-UTRs (3'-untranslated regions) of these transcripts revealed an increased number of HuD-binding sites and the presence of several known instability-conferring sequences. Among these, the mRNA for TTR (transthyretin) shows the highest level of up-regulation, as confirmed by qRT-PCR (quantitative reverse transcription-PCR) and ISH (in situ hybridization). GO (gene ontology) analyses of up-regulated transcripts revealed a large over-representation of genes associated with neural development and axogenesis. In correlation with these gene expression changes, we found an increased length of the infrapyramidal mossy fibre bundle in HuD-Tg mice. These results support the notion that HuD stabilizes a number of developmentally regulated mRNAs in DGCs, resulting in increased axonal elongation. PMID:22004431

  20. Lead Induces Similar Gene Expression Changes in Brains of Gestationally Exposed Adult Mice and in Neurons Differentiated from Mouse Embryonic Stem Cells

    PubMed Central

    Sánchez-Martín, Francisco Javier; Fan, Yunxia; Lindquist, Diana M.; Xia, Ying; Puga, Alvaro

    2013-01-01

    Exposure to environmental toxicants during embryonic life causes changes in the expression of developmental genes that may last for a lifetime and adversely affect the exposed individual. Developmental exposure to lead (Pb), an ubiquitous environmental contaminant, causes deficits in cognitive functions and IQ, behavioral effects, and attention deficit hyperactivity disorder (ADHD). Long-term effects observed after early life exposure to Pb include reduction of gray matter, alteration of myelin structure, and increment of criminal behavior in adults. Despite growing research interest, the molecular mechanisms responsible for the effects of lead in the central nervous system are still largely unknown. To study the molecular changes due to Pb exposure during neurodevelopment, we exposed mice to Pb in utero and examined the expression of neural markers, neurotrophins, transcription factors and glutamate-related genes in hippocampus, cortex, and thalamus at postnatal day 60. We found that hippocampus was the area where gene expression changes due to Pb exposure were more pronounced. To recapitulate gestational Pb exposure in vitro, we differentiated mouse embryonic stem cells (ESC) into neurons and treated ESC-derived neurons with Pb for the length of the differentiation process. These neurons expressed the characteristic neuronal markers Tubb3, Syp, Gap43, Hud, Ngn1, Vglut1 (a marker of glutamatergic neurons), and all the glutamate receptor subunits, but not the glial marker Gafp. Importantly, several of the changes observed in Pb-exposed mouse brains in vivo were also observed in Pb-treated ESC-derived neurons, including those affecting expression of Ngn1, Bdnf exon IV, Grin1, Grin2D, Grik5, Gria4, and Grm6. We conclude that our ESC-derived model of toxicant exposure during neural differentiation promises to be a useful model to analyze mechanisms of neurotoxicity induced by Pb and other environmental agents. PMID:24260418

  1. Perceived Parental Rejection Mediates the Influence of Serotonin Transporter Gene (5-HTTLPR) Polymorphisms on Impulsivity in Japanese Adults

    PubMed Central

    Nishikawa, Saori; Nishitani, Shota; Fujisawa, Takashi X.; Noborimoto, Ippei; Kitahara, Takayuki; Takamura, Tsunehiko; Shinohara, Kazuyuki

    2012-01-01

    This study examined (1) the interrelationships among 5-HTTLPR genotype, perceived parental rejection, and impulsivity, and (2) meditational models in which perceived paternal/maternal rejection mediates the relationship between the 5-HTTLPR genotype and impulsive behaviour. Participants included 403 adults (152 males and 252 females, mean age = 24.20) who provided genetic data and a set of the questionnaires (BIS11; Barratt Impulsiveness Scale-11 and EMBU; Egna Minnen av Bätraffande Uppfostran). Using SEM (Structural Equation Modeling), we evaluated 3 models for both direct and indirect relationships between 5-HTTLPR (5HTT) and Impulsivity (IMP), via maternal/fraternal rejection (MAT/FAT). In model 1, the direct path from 5HTT and IMP was not significant across the mother’s and father’s analysis. Models 2 and 3 assessed the indirect influence of 5HTT on IMP through MOT/FAT. The paths of models 2 and 3 were all significant and showed a good fit between the hypothesized model and data. Furthermore, the effects of the 5-HTTLPR genotype on impulsiveness in this Japanese sample were particularly accounted for by perceived rejection from the mother or father. The effects from the parents appeared to be robust especially among males. These results may help elucidate the specific pathways of risk in relation to genetic and environment influences on impulsive phenotypes. PMID:23112823

  2. Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression

    PubMed Central

    Marqués-Torrejón, M. Ángeles; Porlan, Eva; Banito, Ana; Gómez-Ibarlucea, Esther; Fernández-Capetillo, Óscar; Vidal, Anxo; Gil, Jesús; Torres, Josema; Fariñas, Isabel

    2013-01-01

    Summary In the adult brain, continual neurogenesis of olfactory neurons is sustained by the existence of neural stem cells (NSCs) in the subependymal niche. Elimination of the cyclin-dependent kinase inhibitor 1A (p21) leads to premature exhaustion of the subependymal NSC pool, suggesting a relationship between cell cycle control and long-term self-renewal, but the molecular mechanisms underlying NSC maintenance by p21 remain unexplored. Here we identify a novel function of p21 in the direct regulation of the expression of pluripotency factor Sox2, a key regulator of the specification and maintenance of neural progenitors. We observe that p21 directly binds a Sox2 enhancer and negatively regulates Sox2 expression in NSCs. Augmented levels of Sox2 in p21-null cells induces replicative stress and a DNA damage response that leads to cell growth arrest mediated by increased levels of p19Arf and p53. Our results show a novel regulation of NSC expansion driven by a p21/Sox2/p53 axis. PMID:23260487

  3. LCR/MEL: a versatile system for high-level expression of heterologous proteins in erythroid cells.

    PubMed

    Needham, M; Gooding, C; Hudson, K; Antoniou, M; Grosveld, F; Hollis, M

    1992-03-11

    We have used the human globin locus control region (LCR) to assemble an expression system capable of high-level, integration position-independent expression of heterologous genes and cDNAs in murine erythroleukaemia (MEL) cells. The cDNAs are inserted between the human beta-globin promoter and the second intron of the human beta-globin gene, and this expression cassette is then placed downstream of the LCR and transfected into MEL cells. The cDNAs are expressed at levels similar to those of the murine beta-globin in the induced MEL cells. Heterologous genomic sequences can also be expressed at similar levels when linked to to the LCR and beta-globin promoter. In addition we demonstrate that, after induction of differentiation, MEL cells are capable of secreting heterologous proteins over a prolonged time period, making this system suitable for use in continuous production systems such as hollow fibre bioreactors. The utility of the LCR/MEL cell system is demonstrated by the expression of growth hormone at high levels (greater than 100 mg/l) 7 days after induction. Since the expression levels seen do not depend upon gene amplification and are independent of the integration position of the expression cassette, it is possible to obtain clones with stable high-level expression within 3-4 weeks after transfection. PMID:1549512

  4. Association of adverse childhood experiences, age of menarche, and adult reproductive behavior: does the androgen receptor gene play a role?

    PubMed

    Jorm, Anthony F; Christensen, Helen; Rodgers, Bryan; Jacomb, Patricia A; Easteal, Simon

    2004-02-15

    Previous research has reported associations between adverse childhood experiences, early menarche, and early sexual activity. One hypothesis to account for these findings is that an X-linked androgen receptor GGC-repeat polymorphism predisposes fathers to behaviors which include family abandonment and their daughters to earlier menarche and sexual activity and less stable relationships. Retrospective data relevant to this theory were examined from a community survey involving 3,702 women in the age groups 20-24, 40-44, and 60-64 years, and another involving 908 women aged 18-79 years. Earlier age of menarche was found to be associated with adverse childhood experiences and earlier sexual activity. However, the androgen receptor gene polymorphism was unrelated to adverse fathering behavior or to marital breakdown. PMID:14755454

  5. Modulation of schizophrenia-related genes in the forebrain of adolescent and adult rats exposed to maternal immune activation.

    PubMed

    Hemmerle, Ann M; Ahlbrand, Rebecca; Bronson, Stefanie L; Lundgren, Kerstin H; Richtand, Neil M; Seroogy, Kim B

    2015-10-01

    Maternal immune activation (MIA) is an environmental risk factor for schizophrenia, and may contribute to other developmental disorders including autism and epilepsy. Activation of pro-inflammatory cytokine systems by injection of the synthetic double-stranded RNA polyriboinosinic-polyribocytidilic acid (Poly I:C) mediates important neurochemical and behavioral corollaries of MIA, which have relevance to deficits observed in schizophrenia. We examined the consequences of MIA on forebrain expression of neuregulin-1 (NRG-1), brain-derived neurotrophic factor (BDNF) and their receptors, ErbB4 and trkB, respectively, genes associated with schizophrenia. On gestational day 14, pregnant rats were injected with Poly I:C or vehicle. Utilizing in situ hybridization, expression of NRG-1, ErbB4, BDNF, and trkB was examined in male rat offspring at postnatal day (P) 14, P30 and P60. ErbB4 mRNA expression was significantly increased at P30 in the anterior cingulate (AC Ctx), frontal, and parietal cortices, with increases in AC Ctx expression continuing through P60. ErbB4 expression was also elevated in the prefrontal cortex (PFC) at P14. In contrast, NRG-1 mRNA was decreased in the PFC at P60. Expression of BDNF mRNA was significantly upregulated in the PFC at P60 and decreased in the AC Ctx at P14. Expression of trkB was increased in two regions, the piriform cortex at P14 and the striatum at P60. These findings demonstrate developmentally and regionally selective alterations in the expression of schizophrenia-related genes as a consequence of MIA. Further study is needed to determine contributions of these effects to the development of alterations of relevance to neuropsychiatric diseases. PMID:26206493

  6. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice

    PubMed Central

    Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly

    2013-01-01

    We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.—Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V., Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. PMID:23729587

  7. C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: effect on methotrexate-related toxicity in adult acute lymphoblastic leukaemia.

    PubMed

    Eissa, Deena Samir; Ahmed, Tamer Mohamed

    2013-03-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme involved in folate metabolism. Two polymorphisms, C677T and A1298C, were described leading to reduced enzyme activity. Methotrexate (MTX) is an antifolate agent of consolidation and maintenance therapy of acute lymphoblastic leukaemia (ALL). Despite its clinical success, MTX can be associated with serious toxicities resulting in treatment interruption or discontinuation, impacting disease outcome. There is evidence that MTX toxicity can be affected by polymorphisms in genes encoding for drug-metabolizing enzymes such as MTHFR. Therefore, we aimed to investigate the influence of MTHFR C677T and A1298C polymorphisms on the frequency of MTX-related toxicity, disease outcome and patients' survival. MTHFR polymorphisms were assessed in 50 adult patients with de novo ALL using real-time PCR. Patients were followed-up for the development of haematologic and/or nonhaematologic toxicity and assessment of clinical outcome. Frequency of C677T polymorphisms was 42% for TT, 24% for CT and 34% for CC; A1298C polymorphisms were 28, 6 and 66% for CC, AC and AA, respectively. MTX therapy was significantly associated with neutropaenia, hepatic and gastrointestinal toxicities, unfavourable response at day 14 of induction therapy, increased relapse and mortality rates and shorter survival in patients with 677 TT genotype than in those with CC and CT, whereas 1298 CC genotype patients had lower frequency of neutropaenia, hepatic toxicity and relapse than in those with AA and AC. Our study suggests MTHFR polymorphism as an attractive predictor of MTX-related toxicity in adult ALL, considering it a potential prognostic factor influencing disease outcome. PMID:23183238

  8. Helicobacter pylori Infection Induces Anemia, Depletes Serum Iron Storage, and Alters Local Iron-Related and Adult Brain Gene Expression in Male INS-GAS Mice

    PubMed Central

    Burns, Monika; Muthupalani, Sureshkumar; Ge, Zhongming; Wang, Timothy C.; Bakthavatchalu, Vasudevan; Cunningham, Catriona; Ennis, Kathleen; Georgieff, Michael; Fox, James G.

    2015-01-01

    of Hp SS1-infected INS-GAS mice will be an appropriate animal model for further study of the effects of concurrent H. pylori infection and anemia on iron homeostasis and adult iron-dependent brain gene expression. PMID:26575645

  9. Analysis of anamnestic immune responses in adult horses and priming in neonates induced by a DNA vaccine expressing the vapA gene of Rhodococcus equi.

    PubMed

    Lopez, A Marianela; Hines, Melissa T; Palmer, Guy H; Knowles, Donald P; Alperin, Debra C; Hines, Stephen A

    2003-09-01

    Rhodococcus equi remains one of the most important pathogens of early life in horses, yet conventional vaccines to prevent rhodococcal pneumonia have not been successful. DNA vaccination offers an alternative to conventional vaccines with specific advantages for immunization of neonates. We developed a DNA vaccine expressing the vapA gene (pVR1055vapA) that induced an anamnestic response characterized by virulence associated protein A (VapA)-specific IgG antibodies in sera and bronchoalveolar lavage fluid (BALF) as well as VapA-specific proliferation of pulmonary lymphocytes when tested in adult ponies. In contrast, none of the adults receiving the control plasmid responded. To determine if pVR1055vapA induced VapA-specific responses in the foal, the targeted age group for vaccination against R. equi, 10 naïve foals were randomly assigned at birth to two groups of five. At 8-15 days of age (day 1), foals were vaccinated by intranasal and intradermal (i.d.) routes with either pVR1055vapA or the negative control pVR1055vapA_rev. All foals were DNA boosted at day 14 and protein boosted at day 30 with either recombinant VapA or recombinant CAT (control group). Prior to the protein boost, neither group developed VapA-specific immune responses. However, at day 45, two of the VR1055vapA-vaccinated foals had increased titers of VapA-specific IgGb, IgM and IgGa in the sera, and IgG in the BALF. The induction of the opsonizing isotypes IgGa and IgGb has been previously shown to be associated with protection against R. equi. No VapA-specific immune responses were detected in the control group. This study indicates that the DNA vaccine effectively stimulates anamnestic systemic and pulmonary immune responses in adult horses. The results in foals suggest that the DNA vaccine also primed a subset of immunized neonates. These data support further development and modification to produce a DNA vaccine to more effectively prime neonatal foals. PMID:12922115

  10. Hair Cell Regeneration after ATOH1 Gene Therapy in the Cochlea of Profoundly Deaf Adult Guinea Pigs

    PubMed Central

    Atkinson, Patrick J.; Wise, Andrew K.; Flynn, Brianna O.; Nayagam, Bryony A.; Richardson, Rachael T.

    2014-01-01

    The degeneration of hair cells in the mammalian cochlea results in permanent sensorineural hearing loss. This study aimed to promote the regeneration of sensory hair cells in the mature cochlea and their reconnection with auditory neurons through the introduction of ATOH1, a transcription factor known to be necessary for hair cell development, and the introduction of neurotrophic factors. Adenoviral vectors containing ATOH1 alone, or with neurotrophin-3 and brain derived neurotrophic factor were injected into the lower basal scala media of guinea pig cochleae four days post ototoxic deafening. Guinea pigs treated with ATOH1 gene therapy, alone, had a significantly greater number of cells expressing hair cell markers compared to the contralateral non-treated cochlea when examined 3 weeks post-treatment. This increase, however, did not result in a commensurate improvement in hearing thresholds, nor was there an increase in synaptic ribbons, as measured by CtBP2 puncta after ATOH1 treatment alone, or when combined with neurotrophins. However, hair cell formation and synaptogenesis after co-treatment with ATOH1 and neurotrophic factors remain inconclusive as viral transduction was reduced due to the halving of viral titres when the samples were combined. Collectively, these data suggest that, whilst ATOH1 alone can drive non-sensory cells towards an immature sensory hair cell phenotype in the mature cochlea, this does not result in functional improvements after aminoglycoside-induced deafness. PMID:25036727

  11. Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio)

    PubMed Central

    McClelland, Grant B; Craig, Paul M; Dhekney, Kalindi; Dipardo, Shawn

    2006-01-01

    Both exercise training and cold acclimatization induce muscle remodelling in vertebrates, producing a more aerobic phenotype. In ectothermic species exercise training and cold-acclimatization represent distinct stimuli. It is currently unclear if these stimuli act through a common mechanism or if different mechanisms lead to a common phenotype. The goal of this study was to survey responses that represent potential mechanisms responsible for contraction- and temperature-induced muscle remodelling, using an ectothermic vertebrate. Separate groups of adult zebrafish (Danio rerio) were either swim trained or cold acclimatized for 4 weeks. We found that the mitochondrial marker enzyme citrate synthase (CS) was increased by 1.5× in cold and by 1.3× with exercise (P < 0.05). Cytochrome c oxidase (COx) was increased by 1.2× following exercise training (P < 0.05) and 1.2× (P = 0.07) with cold acclimatization. However, only cold acclimatization increased β-hydroxyacyl-CoA dehydrogenase (HOAD) compared to exercise-trained (by 1.3×) and pyruvate kinase (PK) relative to control zebrafish. We assessed the whole-animal performance outcomes of these treatments. Maximum absolute sustained swimming speed (Ucrit) was increased in the exercise trained group but not in the cold acclimatized group. Real-time PCR analysis indicated that increases in CS are primarily transcriptionally regulated with exercise but not with cold treatments. Both treatments showed increases in nuclear respiratory factor (NRF)-1 mRNA which was increased by 2.3× in cold-acclimatized and 4× in exercise-trained zebrafish above controls. In contrast, peroxisome proliferator-activated receptor (PPAR)-α mRNA levels were decreased in both experimental groups while PPAR-β1 declined in exercise training only. Moreover, PPAR-γ coactivator (PGC)-1α mRNA was not changed by either treatment. In zebrafish, both temperature and exercise produce a more aerobic phenotype, but there are stimulus-dependent responses

  12. Stress induced hippocampal mineralocorticoid and estrogen receptor β gene expression and long-term potentiation in male adult rats is sensitive to early-life stress experience.

    PubMed

    Wang, Han; Meyer, Katrin; Korz, Volker

    2013-02-01

    Glucocorticoid hormones and their receptors have been identified to be involved in emotional and cognitive disorders in early stressed subjects during adulthood. However, the impact of other steroid hormones and receptors has been considered less. Especially, functional roles of estrogen and estrogen receptors in male subjects are largely unknown. Therefore, we measured hippocampal concentrations of 17β-estradiol, corticosterone and testosterone, as well as the gene expression of estrogen receptor α and β (ERα, β), androgen receptor (AR), glucocorticoid (GR) and mineralocorticoid (MR) receptors after stress in adulthood in maternally separated (MS+; at postnatal days 14-16 for 6h each day) and control (MS-) male rats. In vivo hippocampal long-term potentiation (LTP) serves as a cellular model of learning and memory formation. Population spike- (PSA) and the fEPSP-LTP within the dentate gyrus (DG) were reinforced by elevated-platform-stress (EP-stress) in MS- but not in MS+ rats. MR- and ERβ-mRNA were upregulated 1h after EP-stress in MS- but not in MS+ rats as compared to non-stressed littermates. Infusion of an MR antagonist before LTP induction blocked early- and late-PSA- and -fEPSP-LTP, whereas blockade of ERβ impaired only the late PSA-LTP. Application of a DNA methyltransferase (DNMT) inhibitor partly restored the LTP-reinforcement in MS+ rats, accompanied by a retrieval of ERβ- but not MR-mRNA upregulation. Basal ERβ gene promoter methylation was similar between groups, whereas MS+ and MS- rats showed different methylation patterns across CpG sites after EP-stress. These findings indicate a key role of ERβ in early-stress mediated emotionality and emotion-induced late-LTP in adult male rats via DNA methylation mechanisms. PMID:22776422

  13. Cell type-specific Nogo-A gene ablation promotes axonal regeneration in the injured adult optic nerve

    PubMed Central

    Vajda, F; Jordi, N; Dalkara, D; Joly, S; Christ, F; Tews, B; Schwab, M E; Pernet, V

    2015-01-01

    Nogo-A is a well-known myelin-enriched inhibitory protein for axonal growth and regeneration in the central nervous system (CNS). Besides oligodendrocytes, our previous data revealed that Nogo-A is also expressed in subpopulations of neurons including retinal ganglion cells, in which it can have a positive role in the neuronal growth response after injury, through an unclear mechanism. In the present study, we analyzed the opposite roles of glial versus neuronal Nogo-A in the injured visual system. To this aim, we created oligodendrocyte (Cnp-Cre+/−xRtn4/Nogo-Aflox/flox) and neuron-specific (Thy1-Cretg+xRtn4flox/flox) conditional Nogo-A knock-out (KO) mouse lines. Following complete intraorbital optic nerve crush, both spontaneous and inflammation-mediated axonal outgrowth was increased in the optic nerves of the glia-specific Nogo-A KO mice. In contrast, neuron-specific deletion of Nogo-A in a KO mouse line or after acute gene recombination in retinal ganglion cells mediated by adeno-associated virus serotype 2.Cre virus injection in Rtn4flox/flox animals decreased axon sprouting in the injured optic nerve. These results therefore show that selective ablation of Nogo-A in oligodendrocytes and myelin in the optic nerve is more effective at enhancing regrowth of injured axons than what has previously been observed in conventional, complete Nogo-A KO mice. Our data also suggest that neuronal Nogo-A in retinal ganglion cells could participate in enhancing axonal sprouting, possibly by cis-interaction with Nogo receptors at the cell membrane that may counteract trans-Nogo-A signaling. We propose that inactivating Nogo-A in glia while preserving neuronal Nogo-A expression may be a successful strategy to promote axonal regeneration in the CNS. PMID:25257170

  14. Cell type-specific Nogo-A gene ablation promotes axonal regeneration in the injured adult optic nerve.

    PubMed

    Vajda, F; Jordi, N; Dalkara, D; Joly, S; Christ, F; Tews, B; Schwab, M E; Pernet, V

    2015-02-01

    Nogo-A is a well-known myelin-enriched inhibitory protein for axonal growth and regeneration in the central nervous system (CNS). Besides oligodendrocytes, our previous data revealed that Nogo-A is also expressed in subpopulations of neurons including retinal ganglion cells, in which it can have a positive role in the neuronal growth response after injury, through an unclear mechanism. In the present study, we analyzed the opposite roles of glial versus neuronal Nogo-A in the injured visual system. To this aim, we created oligodendrocyte (Cnp-Cre(+/-)xRtn4/Nogo-A(flox/flox)) and neuron-specific (Thy1-Cre(tg+)xRtn4(flox/flox)) conditional Nogo-A knock-out (KO) mouse lines. Following complete intraorbital optic nerve crush, both spontaneous and inflammation-mediated axonal outgrowth was increased in the optic nerves of the glia-specific Nogo-A KO mice. In contrast, neuron-specific deletion of Nogo-A in a KO mouse line or after acute gene recombination in retinal ganglion cells mediated by adeno-associated virus serotype 2.Cre virus injection in Rtn4(flox/flox) animals decreased axon sprouting in the injured optic nerve. These results therefore show that selective ablation of Nogo-A in oligodendrocytes and myelin in the optic nerve is more effective at enhancing regrowth of injured axons than what has previously been observed in conventional, complete Nogo-A KO mice. Our data also suggest that neuronal Nogo-A in retinal ganglion cells could participate in enhancing axonal sprouting, possibly by cis-interaction with Nogo receptors at the cell membrane that may counteract trans-Nogo-A signaling. We propose that inactivating Nogo-A in glia while preserving neuronal Nogo-A expression may be a successful strategy to promote axonal regeneration in the CNS. PMID:25257170

  15. A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD)

    SciTech Connect

    Giorgio, E.; Robyr, D.; Spielmann, M.; Ferrero, E.; Di Gregorio, E.; Imperiale, D.; Vaula, G.; Stamoulis, G.; Santoni, F.; Atzori, C.; Gasparini, L.; Ferrera, D.; Canale, C.; Guipponi, M.; Pennacchio, L. A.; Antonarakis, S. E.; Brussino, A.; Brusco, A.

    2015-02-20

    Chromosomal rearrangements with duplication of the lamin B1 (LMNB1) gene underlie autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), a rare neurological disorder in which overexpression of LMNB1 causes progressive central nervous system demyelination. However, we previously reported an ADLD family (ADLD-1-TO) without evidence of duplication or other mutation in LMNB1 despite linkage to the LMNB1 locus and lamin B1 overexpression. By custom array-CGH, we further investigated this family and report here that patients carry a large (~660 kb) heterozygous deletion that begins 66 kb upstream of the LMNB1 promoter. Lamin B1 overexpression was confirmed in further ADLD-1-TO tissues and in a postmortem brain sample, where lamin B1 was increased in the frontal lobe. Through parallel studies, we investigated both loss of genetic material and chromosomal rearrangement as possible causes of LMNB1 overexpression, and found that ADLD-1-TO plausibly results from an enhancer adoption mechanism. The deletion eliminates a genome topological domain boundary, allowing normally forbidden interactions between at least three forebrain-directed enhancers and the LMNB1 promoter, in line with the observed mainly cerebral localization of lamin B1 overexpression and myelin degeneration. Finally, this second route to LMNB1 overexpression and ADLD is a new example of the relevance of regulatory landscape modifications in determining Mendelian phenotypes.

  16. A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD)

    DOE PAGESBeta

    Giorgio, E.; Robyr, D.; Spielmann, M.; Ferrero, E.; Di Gregorio, E.; Imperiale, D.; Vaula, G.; Stamoulis, G.; Santoni, F.; Atzori, C.; et al

    2015-02-20

    Chromosomal rearrangements with duplication of the lamin B1 (LMNB1) gene underlie autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), a rare neurological disorder in which overexpression of LMNB1 causes progressive central nervous system demyelination. However, we previously reported an ADLD family (ADLD-1-TO) without evidence of duplication or other mutation in LMNB1 despite linkage to the LMNB1 locus and lamin B1 overexpression. By custom array-CGH, we further investigated this family and report here that patients carry a large (~660 kb) heterozygous deletion that begins 66 kb upstream of the LMNB1 promoter. Lamin B1 overexpression was confirmed in further ADLD-1-TO tissues and in amore » postmortem brain sample, where lamin B1 was increased in the frontal lobe. Through parallel studies, we investigated both loss of genetic material and chromosomal rearrangement as possible causes of LMNB1 overexpression, and found that ADLD-1-TO plausibly results from an enhancer adoption mechanism. The deletion eliminates a genome topological domain boundary, allowing normally forbidden interactions between at least three forebrain-directed enhancers and the LMNB1 promoter, in line with the observed mainly cerebral localization of lamin B1 overexpression and myelin degeneration. Finally, this second route to LMNB1 overexpression and ADLD is a new example of the relevance of regulatory landscape modifications in determining Mendelian phenotypes.« less

  17. Correction of Neurological Disease of Mucopolysaccharidosis IIIB in Adult Mice by rAAV9 Trans-Blood–Brain Barrier Gene Delivery

    PubMed Central

    Fu, Haiyan; DiRosario, Julianne; Killedar, Smruti; Zaraspe, Kimberly; McCarty, Douglas M

    2011-01-01

    The greatest challenge in developing therapies for mucopolysaccharidosis (MPS) IIIB is to achieve efficient central nervous system (CNS) delivery across the blood–brain barrier (BBB). In this study, we used the novel ability of adeno-associated virus serotype 9 (AAV9) to cross the BBB from the vasculature to achieve long-term global CNS, and widespread somatic restoration of α-N-acetylglucosaminidase (NAGLU) activity. A single intravenous (IV) injection of rAAV9-CMV-hNAGLU, without extraneous treatment to disrupt the BBB, restored NAGLU activity to normal or above normal levels in adult MPS IIIB mice, leading to the correction of lysosomal storage pathology in the CNS and periphery, and correction of astrocytosis and neurodegeneration. The IV delivered rAAV9 vector also transduced abundant neurons in the myenteric and submucosal plexus, suggesting peripheral nervous system (PNS) targeting. While CNS entry did not depend on osmotic disruption of the BBB, it was significantly enhanced by pretreatment with an IV infusion of mannitol. Most important, we demonstrate that a single systemic rAAV9-NAGLU gene delivery provides long-term (>18 months) neurological benefits in MPS IIIB mice, resulting in significant improvement in behavioral performance, and extension of survival. These data suggest promising clinical potential using the trans-BBB neurotropic rAAV9 vector for treating MPS IIIB and other neurogenetic diseases. PMID:21386820

  18. An autopsied case of adult-onset bulbospinalform Alexander disease with a novel S393R mutation in the GFAP gene.

    PubMed

    Iwasaki, Yasushi; Saito, Yufuko; Mori, Keiko; Ito, Masumi; Mimuro, Maya; Aiba, Ikuko; Saito, Kozo; Mizuta, Ikuko; Yoshida, Tomokatsu; Nakagawa, Masanori; Yoshida, Mari

    2015-01-01

    A 50-year-old Japanese man with no apparent family history noticed diplopia. He gradually showed gait disturbance and dysuria. Abducens disorder of eye movement with nystagmus, tongue atrophy with fasciculation, spastic tetraparesis, and sensory disturbance were also observed. MRI showed severe atrophy of the medulla oblongata to the cervical cord ("tadpole appearance"). Tracheotomy and gastrostomy were performed 7 years after onset due to the development of bulbar palsy. Death occurred following respiratory failure after 11 years total disease duration. The brain weighed 1,380 g. The cerebrum, cerebellum, midbrain, and upper pons were preserved from atrophy, but the medulla oblongata to the cervical cord showed severe atrophy. A few Rosenthal fibers were observed in the cerebral white matter, basal ganglia, and cerebellum, whereas numerous Rosenthal fibers were observed in the medulla oblongata to the cervical cord. Myelin loss with relatively preserved axons was extensively observed from the middle of the pons to the spinal cord. The clinicopathological diagnosis was adult-onset bulbospinal-form Alexander disease. Glial fibrillary acidic protein (GFAP) gene analysis revealed a novel mutation of S393R. Expression patterns of S393R mutant GFAP using adrenal carcinoma-derived cells (SW13 cells) showed a decreased number of filamentous structures and abnormal aggregates. PMID:25828773

  19. Inducible Lentivirus-Mediated Expression of the Oct4 Gene Affects Multilineage Differentiation of Adult Human Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Hao, Qiang; An, Jia-Qiang; Hao, Fei; Yang, Chun; Lu, Tao; Qu, Ting-Yu; Zhao, Li-Ru; Duan, Wei-Ming

    2015-10-01

    The octamer-binding transcription factor 4 (Oct4) gene plays an important role in maintaining the undifferentiated state of embryonic stem cells (ESCs) and reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs). In the present study, we transduced human bone marrow-derived mesenchymal stem cells (hMSCs) using tetracycline-on (Tet-On) lentiviruses carrying human Oct4 to examine the effects of regulated expression of human Oct4 on the proliferation and differentiation of hMSCs. hMSCs were efficiently transduced by Tet-On lentiviruses to express regulated levels of human Oct4 with doxycycline (Dox), as examined by immunofluorescent staining, flow cytometry, and quantitative real time-PCR (qRT-PCR) assays. Ectopic expression of Oct4 in transduced hMSCs increased the ability of colony formation. Continued expression of Oct4 further enhanced adipogenic differentiation of hMSCs, and transient expression of Oct4 sufficiently enhanced osteogenic differentiation of hMSCs. qRT-PCR analysis showed that ectopic expression of Oct4 in transduced hMSCs temporally increased the expression of Sox2 and c-Myc. Interestingly, ectopic expression of Oct4 reduced neuronal differentiation of hMSCs when incubated under neuronal differentiation conditions. Our results suggest that ectopic expression of human Oct4 leads to temporal changes in multilineage differentiation of hMSCs and may inhibit neuronal differentiation of hMSCs. PMID:26230571

  20. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis.

    PubMed

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-08-01

    Mercury (Hg) is a prominent environmental contaminant that causes a variety of adverse effects on aquatic organisms. However, the mechanisms underlying inorganic Hg-induced reproductive impairment in fish remains largely unknown. In this study, adult zebrafish were exposed to 0 (control), 15 and 30μg Hg/l (added as mercuric chloride, HgCl2) for 30days, and the effects on histological structure, antioxidant status and sex hormone levels in the ovary and testis, as well as the mRNA expression of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis were analyzed. Exposure to Hg caused pathological lesions in zebrafish gonads, and changed the activities and mRNA levels of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)) as well as the content of glutathione (GSH) and malondialdehyde (MDA). In females, although ovarian 17β-estradiol (E2) content remained relatively stable, significant down-regulation of lhβ, gnrh2, gnrh3, lhr and erα were observed. In males, testosterone (T) levels in the testis significantly decreased after Hg exposure, accompanied by down-regulated expression of gnrh2, gnrh3, fshβ and lhβ in the brain as well as fshr, lhr, ar, cyp17 and cyp11b in the testis. Thus, our study indicated that waterborne inorganic Hg exposure caused histological damage and oxidative stress in the gonads of zebrafish, and altered sex hormone levels by disrupting the transcription of related HPG-axis genes, which could subsequently impair the reproduction of fish. Different response of the antioxidant defense system, sex hormone and HPG-axis genes between females and males exposed to inorganic Hg indicated the gender-specific regulatory effect by Hg. To our knowledge, this is the first time to explore the effects and mechanisms of inorganic Hg exposure on reproduction at the histological, enzymatic and molecular levels, which will greatly extend our understanding on the mechanisms underlying of reproductive

  1. Identical marker alleles in Podolic cattle (Bos taurus) and Indian zebu (Bos indicus).

    PubMed

    Pieragostini, E; Scaloni, A; Rullo, R; Di Luccia, A

    2000-09-01

    In the context of biochemical marker research and in order to add new information on native breeds, the present work focuses on a local Southern Italy cattle, namely Italian Podolic. We provide the complete structural characterisation of alpha-lactalbumins and beta-globin chains isolated from Podolic cattle (Bos taurus). Given the unavailability of the complete sequence for alpha-lactalbumin A of taurine cattle in the literature, we intended to check its structure in order to ascertain the absence of any possible silent mutation. Screening the Podolic cattle, we found a new beta-globin variant not detectable by conventional methods. The presence of such a new variant might be helpful in the study of the Podolic population genetic structure and for a better knowledge of the gene pool per se, and in comparison with the other breeds. Structural analyses showed that the new beta-globin Podolic variant exhibited the same sequence as beta-globin Azebu. The alpha-lactalbumin A was the same as that isolated from zebu cattle (Bos indicus). The results are discussed in relation to the possible involvement of the two markers in the debate on the origin of the Podolic breed. PMID:11126744

  2. The p.Ala510Val mutation in the SPG7 (paraplegin) gene is the most common mutation causing adult onset neurogenetic disease in patients of British ancestry.

    PubMed

    Roxburgh, Richard H; Marquis-Nicholson, Renate; Ashton, Fern; George, Alice M; Lea, Rod A; Eccles, David; Mossman, Stuart; Bird, Thomas; van Gassen, Koen L; Kamsteeg, Erik-Jan; Love, Donald R

    2013-05-01

    The c.1529C >T change in the SPG7 gene, encoding the mutant p.Ala510Val paraplegin protein, was first described as a polymorphism in 1998. This was based on its frequency of 3 % and 4 % in two separate surveys of controls in the United Kingdom (UK) population. Subsequently, it has been found to co-segregate with disease in a number of different populations. Yeast expression studies support its having a deleterious effect. In this paper a consanguineous sibship is described in which four members who are homozygous for the p.Ala510Val variant present with a spectrum of disease. This spectrum encompasses moderately severe hereditary spastic paraparesis (HSP) with more minor ataxia in two siblings, moderately severe ataxia without spasticity in the third, and a very mild gait ataxia in the fourth. Two of the siblings also manifest vestibular failure. The remaining eight unaffected siblings are either heterozygous for the p.Ala510Val variant, or do not carry it at all. Homozygosity mapping using a high-density SNP array across the whole genome found just 11 genes (on two regions of chromosome 3) outside the SPG7 region on chromosome 16, which were homozygously shared by the affected siblings, but not shared by the unaffected siblings; none of them are likely to be causative. The weight of evidence is strongly in favour of the p.Ala510Val variant being a disease-causing mutation. We present additional data from the Auckland City Hospital neurogenetics clinic to show that the p.Ala510Val mutation is prevalent amongst HSP patients of UK extraction belying any suggestion that European p.Ala510Val haplotypes harbour a disease-causing mutation which the UK p.Ala510Val haplotypes do not. Taken together with previous findings of a carrier frequency of 3-4 % in the UK population (giving a homozygosity rate of 20-40/100,000), the data imply that the p.Ala510Val is the most common mutation causing neurogenetic disease in adults of UK ancestry, albeit the penetrance may be low or

  3. Elevated water temperature increases the levels of reo-like virus and selected innate immunity genes in hemocytes and hepatopancreas of adult female blue crab, Callinectes sapidus.

    PubMed

    Chung, J Sook; Pitula, J S; Schott, E; Alvarez, J V; Maurer, L; Lycett, K A

    2015-11-01

    Seasonal changes in water temperature directly affect the aquatic ecosystem. The blue crab, Callinectes sapidus, inhabiting the Chesapeake Bay has been adapted to seasonal changes of the environmental conditions. In this, the animals halt their physiological process of the growth and reproduction during colder months while they resume these processes as water temperatures increase. We aimed to understand the effect of the elevated temperatures on a disease progression of reo-like virus (CsRLV) and innate immunity of adult female C. sapidus. Following a rise in water temperature from 10 to 23 °C, CsRLV levels in infected crabs rose significantly in hemocytes and multiple organs. However, in hemocytes, the elevated temperature had no effect on the levels of three innate immune genes: Cas-ecCuZnSOD-2, CasPPO and CasLpR three carbohydrate metabolic genes: CasTPS, CasGlyP; and CasTreh and the total hemocyte counts (THC). Interestingly, the hemocytes of CsRLV infected animals exposed to 23 °C for 10 days had significantly elevated levels of Cas-ecCuZnSOD-2 and CasTPS, compared to those of the uninfected ones also exposed to the same condition and compared to hatchery-raised females kept at 23 °C. Despite the lack of changes in THC, the types of hemocytes from the animals with high CsRLV levels differed from those of uninfected ones and from hatchery animals kept at 23 °C: CsRLV-infected crabs had hemocytes of smaller size with less cytosolic complexity than uninfected crabs. It therefore appears that the change in temperature influences rapid replication of CsRLV in all internal tissues examined. This implies that CsRLV may have broad tissue tropism. Interestingly, the digestive tract (mid- and hindgut) contains significantly higher levels of CsRLV than hemocytes while hepatopancreas and ovary have lower levels than hemocytes. Innate immune responses differ by tissue: midgut and hepatopancreas with upregulated Cas-ecCuZnSOD-2 similar to that found in hemocytes. By

  4. Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: Relationship to structural plasticity and immediate early gene expression in frontal cortex

    PubMed Central

    Hamilton, Derek A.; Akers, Katherine G.; Rice, James P.; Johnson, Travis E.; Candelaria-Cook, Felicha T.; Maes, Levi I.; Rosenberg, Martina; Valenzuela, C. Fernando; Savage, Daniel D.

    2009-01-01

    The goals of the present study were to characterize the effects of prenatal exposure to moderate levels of ethanol on adult social behavior, and to evaluate fetal-ethanol-related effects on dendritic morphology, structural plasticity and activity-related immediate early gene (IEG) expression in the agranular insular (AID) and prelimbic (Cg3) regions of frontal cortex. Baseline fetal-ethanol-related alterations in social behavior were limited to reductions in social investigation in males. Repeated experience with novel cage-mates resulted in comparable increases in wrestling and social investigation among saccharin- and ethanol-exposed females, whereas social behavioral effects among males were more evident in ethanol-exposed animals. Male ethanol-exposed rats also displayed profound increases in wrestling when social interaction was motivated by 24 hours of isolation. Baseline decreases in dendritic length and spine density in AID were observed in ethanol-exposed rats that were always housed with the same cage-mate. Modest experience-related decreases in dendritic length and spine density in AID were observed in saccharin-exposed rats housed with various cage-mates. In contrast, fetal-ethanol-exposed rats displayed experience-related increases in dendritic length in AID, and no experience-related changes in spine density. The only effect observed in Cg3 was a baseline increase in basilar dendritic length among male ethanol-exposed rats. Robust increases in activity-related IEG expression in AID (c-fos and Arc) and Cg3 (c-fos) were observed following social interaction in saccharin-exposed rats, however, activity-related increases in IEG expression were not observed in fetal-ethanol-exposed rats in either region. The results indicate that deficits in social behavior are among the long-lasting behavioral consequences of moderate ethanol exposure during brain development, and implicate AID, and to a lesser degree Cg3, in fetal-ethanol-related social behavior

  5. Is the adiposity-associated FTO gene variant related to all-cause mortality independent of adiposity? Meta-analysis of data from 169,551 Caucasian adults

    PubMed Central

    Mirza, S. S.; Zhao, J. H.; Chasman, D. I.; Fischer, K.; Qi, Q.; Smith, A. V.; Thinggaard, M.; Jarczok, M. N.; Nalls, M. A.; Trompet, S.; Timpson, N. J.; Schmidt, B.; Jackson, A. U.; Lyytikäinen, L. P.; Verweij, N.; Mueller-Nurasyid, M.; Vikström, M.; Marques-Vidal, P.; Wong, A.; Meidtner, K.; Middelberg, R. P.; Strawbridge, R. J.; Christiansen, L.; Kyvik, K. O.; Hamsten, A.; Jääskeläinen, T.; Tjønneland, A.; Eriksson, J. G.; Whitfield, J. B.; Boeing, H.; Hardy, R.; Vollenweider, P.; Leander, K.; Peters, A.; van der Harst, P.; Kumari, M.; Lehtimäki, T.; Meirhaeghe, A.; Tuomilehto, J.; Jöckel, K.-H.; Ben-Shlomo, Y.; Sattar, N.; Baumeister, S. E.; Smith, G. Davey; Casas, J. P.; Houston, D. K.; März, W.; Christensen, K.; Gudnason, V.; Hu, F. B.; Metspalu, A.; Ridker, P. M.; Wareham, N. J.; Loos, R. J. F.; Tiemeier, H.; Sonestedt, E.; Sørensen, T. I. A.

    2015-01-01

    Summary Previously, a single nucleotide polymorphism (SNP), rs9939609, in the FTO gene showed a much stronger association with all-cause mortality than expected from its association with body mass index (BMI), body fat mass index (FMI) and waist circumference (WC). This finding implies that the SNP has strong pleiotropic effects on adiposity and adiposity-independent pathological pathways that leads to increased mortality. To investigate this further, we conducted a meta-analysis of similar data from 34 longitudinal studies including 169,551 adult Caucasians among whom 27,100 died during follow-up. Linear regression showed that the minor allele of the FTO SNP was associated with greater BMI (n = 169,551; 0.32 kg m−2; 95% CI 0.28–0.32, P < 1 × 10−32), WC (n = 152,631; 0.76 cm; 0.68–0.84, P < 1 × 10−32) and FMI (n = 48,192; 0.17 kg m−2; 0.13–0.22, P = 1.0 × 10−13). Cox proportional hazard regression analyses for mortality showed that the hazards ratio (HR) for the minor allele of the FTO SNPs was 1.02 (1.00–1.04, P = 0.097), but the apparent excess risk was eliminated after adjustment for BMI and WC (HR: 1.00; 0.98–1.03, P = 0.662) and for FMI (HR: 1.00; 0.96–1.04, P = 0.932). In conclusion, this study does not support that the FTO SNP is associated with all-cause mortality independently of the adiposity phenotypes. PMID:25752329

  6. Large-scale reconstitution of a retina-to-brain pathway in adult rats using gene therapy and bridging grafts: An anatomical and behavioral analysis.

    PubMed

    You, Si-Wei; Hellström, Mats; Pollett, Margaret A; LeVaillant, Chrisna; Moses, Colette; Rigby, Paul J; Penrose, Marissa; Rodger, Jennifer; Harvey, Alan R

    2016-05-01

    Peripheral nerve (PN) grafts can be used to bridge tissue defects in the CNS. Using a PN-to-optic nerve (ON) graft model, we combined gene therapy with pharmacotherapy to promote the long-distance regeneration of injured adult retinal ganglion cells (RGCs). Autologous sciatic nerve was sutured onto the transected ON and the distal end immediately inserted into contralateral superior colliculus (SC). Control rats received intraocular injections of saline or adeno-associated virus (AAV) encoding GFP. In experimental groups, three bi-cistronic AAV vectors encoding ciliary neurotrophic factor (CNTF) were injected into different regions of the grafted eye. Each vector encoded a different fluorescent reporter to assess retinotopic order in the regenerate projection. To encourage sprouting/synaptogenesis, after 6 weeks some AAV-CNTF injected rats received an intravitreal injection of recombinant brain-derived neurotrophic factor (rBDNF) or AAV-BDNF. Four months after surgery, cholera toxin B was used to visualize regenerate RGC axons. RGC viability and axonal regrowth into SC were significantly greater in AAV-CNTF groups. In some cases, near the insertion site, regenerate axonal density resembled retinal terminal densities seen in normal SC. Complex arbors were seen in superficial but not deep SC layers and many terminals were immunopositive for presynaptic proteins vGlut2 and SV2. There was improvement in visual function via the grafted eye with significantly greater pupillary constriction in both AAV-CNTF+BDNF groups. In both control and AAV-CNTF+rBDNF groups the extent of light avoidance correlated with the maximal distance of axonal penetration into superficial SC. Despite the robust regrowth of RGC axons back into the SC, axons originating from different parts of the retina were intermixed at the PN graft/host SC interface, indicating that there remained a lack of order in this extensive regenerate projection. PMID:26970586

  7. Dynamic changes in global and gene-specific DNA methylation during hibernation in adult thirteen-lined ground squirrels, Ictidomys tridecemlineatus.

    PubMed

    Alvarado, Sebastian; Mak, Timothy; Liu, Sara; Storey, Kenneth B; Szyf, Moshe

    2015-06-01

    Hibernating mammals conserve energy in the winter by undergoing prolonged bouts of torpor, interspersed with brief arousals back to euthermia. These bouts are accompanied by a suite of reversible physiological and biochemical changes; however, much remains to be discovered about the molecular mechanisms involved. Given the seasonal nature of hibernation, it stands to reason that underlying plastic epigenetic mechanisms should exist. One such form of epigenomic regulation involves the reversible modification of cytosine bases in DNA by methylation. DNA methylation is well known to be a mechanism that confers upon DNA its cellular identity during differentiation in response to innate developmental cues. However, it has recently been hypothesized that DNA methylation also acts as a mechanism for adapting genome function to changing external environmental and experiential signals over different time scales, including during adulthood. Here, we tested the hypothesis that DNA methylation is altered during hibernation in adult wild animals. This study evaluated global changes in DNA methylation in response to hibernation in the liver and skeletal muscle of thirteen-lined ground squirrels along with changes in expression of DNA methyltransferases (DNMT1/3B) and methyl binding domain proteins (MBDs). A reduction in global DNA methylation occurred in muscle during torpor phases whereas significant changes in DNMTs and MBDs were seen in both tissues. We also report dynamic changes in DNA methylation in the promoter of the myocyte enhancer factor 2C (mef2c) gene, a candidate regulator of metabolism in skeletal muscle. Taken together, these data show that genomic DNA methylation is dynamic across torpor-arousal bouts during winter hibernation, consistent with a role for this regulatory mechanism in contributing to the hibernation phenotype. PMID:25908059

  8. Is the adiposity-associated FTO gene variant related to all-cause mortality independent of adiposity? Meta-analysis of data from 169,551 Caucasian adults.

    PubMed

    Zimmermann, E; Ängquist, L H; Mirza, S S; Zhao, J H; Chasman, D I; Fischer, K; Qi, Q; Smith, A V; Thinggaard, M; Jarczok, M N; Nalls, M A; Trompet, S; Timpson, N J; Schmidt, B; Jackson, A U; Lyytikäinen, L P; Verweij, N; Mueller-Nurasyid, M; Vikström, M; Marques-Vidal, P; Wong, A; Meidtner, K; Middelberg, R P; Strawbridge, R J; Christiansen, L; Kyvik, K O; Hamsten, A; Jääskeläinen, T; Tjønneland, A; Eriksson, J G; Whitfield, J B; Boeing, H; Hardy, R; Vollenweider, P; Leander, K; Peters, A; van der Harst, P; Kumari, M; Lehtimäki, T; Meirhaeghe, A; Tuomilehto, J; Jöckel, K-H; Ben-Shlomo, Y; Sattar, N; Baumeister, S E; Davey Smith, G; Casas, J P; Houston, D K; März, W; Christensen, K; Gudnason, V; Hu, F B; Metspalu, A; Ridker, P M; Wareham, N J; Loos, R J F; Tiemeier, H; Sonestedt, E; Sørensen, T I A

    2015-04-01

    Previously, a single nucleotide polymorphism (SNP), rs9939609, in the FTO gene showed a much stronger association with all-cause mortality than expected from its association with body mass index (BMI), body fat mass index (FMI) and waist circumference (WC). This finding implies that the SNP has strong pleiotropic effects on adiposity and adiposity-independent pathological pathways that leads to increased mortality. To investigate this further, we conducted a meta-analysis of similar data from 34 longitudinal studies including 169,551 adult Caucasians among whom 27,100 died during follow-up. Linear regression showed that the minor allele of the FTO SNP was associated with greater BMI (n = 169,551; 0.32 kg m(-2) ; 95% CI 0.28-0.32, P < 1 × 10(-32) ), WC (n = 152,631; 0.76 cm; 0.68-0.84, P < 1 × 10(-32) ) and FMI (n = 48,192; 0.17 kg m(-2) ; 0.13-0.22, P = 1.0 × 10(-13) ). Cox proportional hazard regression analyses for mortality showed that the hazards ratio (HR) for the minor allele of the FTO SNPs was 1.02 (1.00-1.04, P = 0.097), but the apparent excess risk was eliminated after adjustment for BMI and WC (HR: 1.00; 0.98-1.03, P = 0.662) and for FMI (HR: 1.00; 0.96-1.04, P = 0.932). In conclusion, this study does not support that the FTO SNP is associated with all-cause mortality independently of the adiposity phenotypes. PMID:25752329

  9. Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression.

    PubMed

    Pfenninger, Cosima V; Steinhoff, Christine; Hertwig, Falk; Nuber, Ulrike A

    2011-01-01

    In contrast to ependymal cells located above the subventricular zone (SVZ) of the adult lateral ventricle wall (LVW), adult spinal cord (SC) ependymal cells possess certain neural stem cell characteristics. The molecular basis of this difference is unknown. In this study, antibodies against multiple cell surface markers were applied to isolate pure populations of SC and LVW ependymal cells, which allowed a direct comparison of their in vitro behavior and in vivo gene expression profile. Isolated CD133(+)/CD24(+)/CD45(-)/CD34(-) ependymal cells from the SC displayed in vitro self-renewal and differentiation capacity, whereas those from the LVW did not. SC ependymal cells showed a higher expression of several genes involved in cell division, cell cycle regulation, and chromosome stability, which is consistent with a long-term self-renewal capacity, and shared certain transcripts with neural stem cells of the embryonic forebrain. They also expressed several retinoic acid (RA)-regulated genes and responded to RA exposure. LVW ependymal cells showed higher transcript levels of many genes regulated by transforming growth factor-β family members. Among them were Dlx2, Id2, Hey1, which together with Foxg1 could explain their potential to turn into neuroblasts under certain environmental conditions. PMID:21046556

  10. A Sex-Linked Gene Controlling the Onset of Sexual Maturity in Female and Male Platyfish (XIPHOPHORUS MACULATUS), Fecundity in Females and Adult Size in Males

    PubMed Central

    Kallman, Klaus D.; Borkoski, Valerie

    1978-01-01

    A sex-linked gene, P, controls the onset of sexual maturity in the platyfish, Xiphophorus maculatus. The activity of this gene is correlated with the age and size at which the gonadotropic zone of the adenohypophysis differentiates and becomes physiologically active. Immature fish of all genotypes grow at the same rate; however, as adults, males with "early" genotypes are significantly smaller than males of "late" genotypes, since growth rate declines strongly under the influence of androgenic hormone. Five alleles, P1... P5, have been identified from natural populations that under controlled conditions cause gonad maturation between eight and 73 weeks. P1P1 males become mature at eight weeks and 21 mm, P2P2 and P3P3 males between eleven and 13.5 weeks and 25 to 29 mm, and P4P4 males at 25 weeks and 37 mm. Since P5 is X-linked, no males homozygous for P5 could be produced. The difference between P2 and P3 is largely based upon their interaction with P5. P3P5 males mature at 17.5 weeks and 33.5 mm and P2P5 males at 28 weeks and 38 mm. The rate of transformation of the unmodified anal fin into a gonopodium, which is under androgenic control, is directly related to the age at initiation of sexual maturity, ranging from 3.2 weeks in P1P1 males to seven weeks in P2P 5 males. These differences may reflect different levels of circulating gonadotropic and androgenic hormones.—In two genotypes of females, initiation of vitellogenesis was closely correlated with size and this critical size was independent of age (e.g., 21 mm for P1P1 ). In a third genotype (P1P5) the minimum size for vitellogenesis decreased with increasing age, so that females would mature as early as eleven weeks, provided they had attained at least 29 mm, but at 25 weeks even females as small as 23 mm possessed ripe gonads. For P5P5 females, which become mature between 34 and 73 weeks of age, there is no correlation between size and initiation of vitellogenesis. In all four genotypes of females examined

  11. Genetic variants near the MGAT1 gene are associated with body weight, BMI and fatty acid metabolism among adults and children

    PubMed Central

    Jacobsson, J A; Rask-Andersen, M; Risérus, U; Moschonis, G; Koumpitski, A; Chrousos, G P; Lannfelt, L; Marcus, C; Gyllensten, U; Schiöth, H B; Fredriksson, R

    2012-01-01

    Objective: Recently a genome-wide association analysis from five European populations identified a polymorphism located downstream of the mannosyl-(α-1,3)-glycoprotein-β-1,2-N-acetylglucosaminyltransferase (MGAT1) gene that was associated with body-weight. In the present study, associations between MGAT1 variants combined with obesity and insulin measurements were investigated in three cohorts. Levels of fatty acids and estimated measures of Δ desaturases were also investigated among adult men. Design: Six polymorphisms downstream of MGAT1 were genotyped in a cross-sectional cohort of 1152 Swedish men. Three polymorphisms were further analyzed in a case-control study of 1076 Swedish children and in a cross-sectional study of 2249 Greek children. Results: Three polymorphisms, rs12186500 (odds ratio (OR): 1.892, 95% confidence interval (CI): 1.237–2.895, P=0.003), rs1021001 (OR: 2.102, 95% CI: 1.280–3.455, P=0.003) and rs4285184 (OR: 1.587, 95% CI: 1.024–2.459, P=0.038) were associated with a higher prevalence of obesity among the adult men and a trend for obesity was observed for rs4285184 among the Swedish (OR: 1.205, 95% CI: 0.987–1.471, P=0.067) and Greek children (OR: 1.192, 95%CI: 0.978–1.454, P=0.081). Association with body weight was observed for rs12186500 (P=0.017) and rs4285184 (P=0.024) among the men. The rs1021001 and rs4285184 were also associated with body mass index (BMI) in the two Swedish cohorts and similar trends were observed among the Greek children. The combined effect size for rs1021001 and rs4285184 on BMI z-score from a meta-analysis was 0.233 (95% CI:0.093–0.373, P=0.001) and 0.147 (95% CI:0.057–0.236, P=0.001), respectively. We further observed associations between the genetic variants and fatty acids (P<0.039) and estimated measures of Δ desaturases (P<0.040), as well as interactions for rs12186500 (P<0.019) with an effect on BMI. No association was found with homeostatic model assessment-insulin resistance in any cohort

  12. 17-A ETHYNYLESTRADIOL-INDUCED VITELLOGENIN GENE TRANSCRIPTION QUANTIFIED IN LIVERS OF ADULT MALES, LARVAE, AND GILLS OF FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    We have applied a method for quantifying relative levels of messenger RNA (mRNA) transcription to assess chemically-induced gene expression in fathead minnows (Pimephales promelas). Synthetic oligonucleotides designed for the fathead minnow vitellogenin gene transcription (Vg) p...

  13. 17A-ETHYNYLESTRADIOL-INDUCED VITELLOGENIN GENE TRANSCRIPTION QUANTIFIED IN LIVERS OF ADULT MALES, LARVAE, AND GILLS OF FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    We have applied a method for quantifying relative levels of messenger RNA (mRNA) transcription to assess chemically-induced gene expression in fathead minnows (Pimephales promelas). Synthetic oligonucleotides designed for the fathead minnow vitellogenin gene transcription (Vg) p...

  14. Dietary ascorbic acid modulates the expression profile of stress protein genes in hepatopancreas of adult Pacific abalone Haliotis discus hannai Ino.

    PubMed

    Wu, Chenglong; Wang, Jia; Xu, Wei; Zhang, Wenbing; Mai, Kangsen

    2014-12-01

    This study was conducted to investigate the effects of dietary ascorbic acid (AA) on transcriptional expression patterns of antioxidant proteins, heat shock proteins (HSP) and nuclear factor kappa B (NF-κB) in the hepatopancreas of Pacific abalone Haliotis discus hannai Ino (initial average length: 84.36 ± 0.24 mm) using real-time quantitative PCR assays. L-ascorbyl-2-molyphosphate (LAMP) was added to the basal diet to formulate four experimental diets containing 0.0, 70.3, 829.8 and 4967.5 mg AA equivalent kg(-1) diets, respectively. Each diet was fed to triplicate groups of adult abalone in acrylic tanks (200 L) in a flow-through seawater system. Each tank was stocked with 15 abalone. Animals were fed once daily (17:00) to apparent satiation for 24 weeks. The results showed that the dietary AA (70.3 mg kg(-1)) could significantly up-regulate the expression levels of Cu/Zn superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), feritin (FT) and heat shock protein 26 (HSP26) in the hepatopancreas of abalone in this treatment compared to the controls. However, the expression levels of Mn-SOD, glutathione peroxidase (GPX), thioredoxin peroxidase (TPx), selenium-binding protein (SEBP), HSP70 and HSP90 were significantly down-regulated. Compared with those in the group with 70.3 mg kg(-1) dietary AA, the expression levels of CAT, GST and HSP26 were decreased in abalone fed with very high dietary AA (4967.5 mg kg(-1)). In addition, significant up-regulations of expression levels of Mn-SOD, GPX, TPx, SEBP, FT, HSP70, HSP90 and NF-κB were observed in abalone fed with apparently excessive dietary AA (829.8 and 4967.5 mg kg(-1)) as compared to those fed 70.3 mg kg(-1) dietary AA. These findings showed that dietary AA influenced the expression levels of antioxidant proteins, heat shock proteins and NF-κB in the hepatopancreas of abalone at transcriptional level. Levels of dietary AA that appeared adequate (70.3 mg kg(-1)) reduced the oxidative stress

  15. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa.

    PubMed

    Lin, F; Chen, X M

    2007-05-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is the preferred control of the disease. The spring wheat cultivar 'Alpowa' has both race-specific, all-stage resistance and non-race-specific, high-temperature adult-plant (HTAP) resistances to stripe rust. To identify genes for the stripe rust resistances, Alpowa was crossed with 'Avocet Susceptible' (AVS). Seedlings of the parents, and F(1), F(2) and F(3) progeny were tested with races PST-1 and PST-21 of P. striiformis f. sp. tritici under controlled greenhouse conditions. Alpowa has a single partially dominant gene, designated as YrAlp, conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrAlp. A linkage group of five RGAP markers and two SSR markers was constructed for YrAlp using 136 F(3) lines. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP markers Xwgp47 and Xwgp48 and the two SSR markers indicated that YrAlp is located on the short arm of chromosome 1B. To map quantitative trait loci (QTLs) for the non-race-specific HTAP resistance, the parents and 136 F(3) lines were tested at two sites near Pullman and one site near Mount Vernon, Washington, under naturally infected conditions. A major HTAP QTL was consistently detected across environments and was located on chromosome 7BL. Because of its chromosomal location and the non-race-specific nature of the HTAP resistance, this gene is different from previously described genes for adult-plant resistance, and is therefore designated Yr39. The gene contributed to 64.2% of the total variation of relative area under disease progress curve (AUDPC) data and 59.1% of the total variation of infection type data recorded at the heading-flowering stages. Two RGAP markers, Xwgp36 and Xwgp45 with the highest R (2) values

  16. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes. PMID:24817326

  17. Association of Cytotoxic T-Lymphocyte-Associated Protein 4 (CTLA4) Gene Polymorphisms with Autoimmune Thyroid Disease in Children and Adults: Case-Control Study.

    PubMed

    Ting, Wei-Hsin; Chien, Ming-Nan; Lo, Fu-Sung; Wang, Chao-Hung; Huang, Chi-Yu; Lin, Chiung-Ling; Lin, Wen-Shan; Chang, Tzu-Yang; Yang, Horng-Woei; Chen, Wei-Fang; Lien, Ya-Ping; Cheng, Bi-Wen; Lin, Chao-Hsu; Chen, Chia-Ching; Wu, Yi-Lei; Hung, Chen-Mei; Li, Hsin-Jung; Chan, Chon-In; Lee, Yann-Jinn

    2016-01-01

    Autoimmune thyroid disease (AITD), including Graves disease (GD) and Hashimoto disease (HD), is an organ-specific autoimmune disease with a strong genetic component. Although the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) polymorphism has been reported to be associated with AITD in adults, few studies have focused on children. The aim of our study was to investigate whether the CTLA4 polymorphisms, including -318C/T (rs5742909), +49A/G (rs231775), and CT60 (rs3087243), were associated with GD and HD in Han Chinese adults and children. We studied 289 adult GD, 265 pediatric GD, 229 pediatric HD patients, and 1058 healthy controls and then compared genotype, allele, carrier, and haplotype frequencies between patients and controls. We found that CTLA4 SNPs +49A/G and CT60 were associated with GD in adults and children. Allele G of +49A/G was significantly associated with GD in adults (odds ratio [OR], 1.50; 95% confidence interval [CI], 1.21-1.84; corrected P value [Pc] < 0.001) and children (OR, 1.42; 95% CI, 1.15-1.77; Pc = 0.002). Allele G of CT60 also significantly increased risk of GD in adults (OR, 1.63; 95% CI, 1.27-2.09; Pc < 0.001) and GD in children (OR, 1.58; 95% CI, 1.22-2.04; Pc < 0.001). Significant linkage disequilibrium was found between +49A/G and CT60 in GD and control subjects (D' = 0.92). Our results showed that CTLA4 was associated with both GD and HD and played an equivalent role in both adult and pediatric GD in Han Chinese population. PMID:27111218