Science.gov

Sample records for adult beta-globin gene

  1. Deletion and replacement of the mouse adult beta-globin genes by a "plug and socket" repeated targeting strategy.

    PubMed

    Detloff, P J; Lewis, J; John, S W; Shehee, W R; Langenbach, R; Maeda, N; Smithies, O

    1994-10-01

    We describe a two-step strategy to alter any mouse locus repeatedly and efficiently by direct positive selection. Using conventional targeting for the first step, a functional neo gene and a nonfunctional HPRT minigene (the "socket") are introduced into the genome of HPRT- embryonic stem (ES) cells close to the chosen locus, in this case the beta-globin locus. For the second step, a targeting construct (the "plug") that recombines homologously with the integrated socket and supplies the remaining portion of the HPRT minigene is used; this homologous recombination generates a functional HPRT gene and makes the ES cells hypoxanthine-aminopterin-thymidine resistant. At the same time, the plug provides DNA sequences that recombine homologously with sequences in the target locus and modifies them in the desired manner; the plug is designed so that correctly targeted cells also lose the neo gene and become G418 sensitive. We have used two different plugs to make alterations in the mouse beta-globin locus starting with the same socket-containing ES cell line. One plug deleted 20 kb of DNA containing the two adult beta-globin genes. The other replaced the same region with the human beta-globin gene containing the mutation responsible for sickle cell anemia.

  2. The role of EKLF in human beta-globin gene competition.

    PubMed

    Wijgerde, M; Gribnau, J; Trimborn, T; Nuez, B; Philipsen, S; Grosveld, F; Fraser, P

    1996-11-15

    We have investigated the role of erythroid Kruppel-like factor (EKLF) in expression of the human beta-globin genes in compound EKLF knockout/human beta-locus transgenic mice. EKLF affects only the adult mouse beta-globin genes in homozygous knockout mice; heterozygous mice are unaffected. Here we show that EKLF knockout mice express the human epsilon and gamma-globin genes normally in embryonic red cells. However, fetal liver erythropoiesis, which is marked by a period of gamma- and beta-gene competition in which the genes are alternately transcribed, exhibits an altered ratio of gamma- to beta-gene transcription. EKLF heterozygous fetal livers display a decrease in the number of transcriptionally active beta genes with a reciprocal increase in the number of transcriptionally active gamma genes. beta-Gene transcription is absent in homozygous knockout fetuses with coincident changes in chromatin structure at the beta promoter. There is a further increase in the number of transcriptionally active gamma genes and accompanying gamma gene promoter chromatin alterations. These results indicate that EKLF plays a major role in gamma- and beta-gene competition and suggest that EKLF is important in stabilizing the interaction between the Locus Control Region and the beta-globin gene. In addition, these findings provide further evidence that developmental modulation of globin gene expression within individual cells is accomplished by altering the frequency and/or duration of transcriptional periods of a gene rather than changing the rate of transcription.

  3. Intervening sequence of DNA identified in the structural portion of a mouse beta-globin gene.

    PubMed Central

    Tilghman, S M; Tiemeier, D C; Seidman, J G; Peterlin, B M; Sullivan, M; Maizel, J V; Leder, P

    1978-01-01

    The unusual electron microscopic appearance of a hybrid formed between 9S mouse beta-globin mRNA and its corresponding cloned gene segment is caused by at least one, and possibly two, intervening sequences of DNA that interrupt the mouse beta-globin gene. Such an interpretation is consistent with a paradoxical restriction site pattern previously noted in this gene and with the nucleotide sequence of that portion of the gene that spans both structural and intervening sequences. The large intervening sequence, approximately 550 base pairs in length, occurs in the structural globin sequence and immediately follows the beta-globin codon corresponding to amino acid 104. A smaller, putative intervening sequence is located close to the 5' end of the beta-globin-coding sequence but may reside beyond its initiation codon. The beta-globin gene thus appears to be encoded in two, and possibly three, discontinuous segments. Images PMID:273235

  4. Identification of a recent recombination event within the human beta-globin gene cluster.

    PubMed Central

    Gerhard, D S; Kidd, K K; Kidd, J R; Egeland, J A; Housman, D E

    1984-01-01

    In a detailed study of inheritance of DNA sequence polymorphism in a large reference pedigree, an individual was identified with an apparent genetic recombination event within the human beta-globin gene cluster. Analysis of the haplotypes of relevant individuals within this pedigree suggested that the meiotic crossing-over event is likely to have occurred within a 19.8-kilobase-pair region of the beta-globin gene cluster. Analysis of other DNA markers closely linked to the beta-globin gene cluster--segment 12 of chromosome 11 (D11S12) and loci for insulin, the cellular oncogene c-Ha-ras, and preproparathyroid hormone--confirmed that a crossover event must have occurred within the region of chromosome 11 between D11S12 and the beta-globin gene cluster. It is suggested that the event observed has occurred within a DNA region compatible with recombinational "hot spots" suggested by population studies. PMID:6096866

  5. Identification and molecular characterization of four new large deletions in the beta-globin gene cluster.

    PubMed

    Joly, Philippe; Lacan, Philippe; Garcia, Caroline; Couprie, Nicole; Francina, Alain

    2009-01-01

    Despite the fact that mutations in the human beta-globin gene cluster are essentially point mutations, a significant number of large deletions have also been described. We present here four new large deletions in the beta-globin gene cluster that have been identified on patients displaying an atypical hemoglobin phenotype (high HbF) at routine analysis. The first deletion, which spreads over 2.0 kb, removes the entire beta-globin gene, including its promoter, and is associated with a typical beta-thal minor phenotype. The three other deletions are larger (19.7 to 23.9 kb) and remove both the delta and beta-globin genes. Phenotypically, they look like an HPFH-deletion as they are associated with normal hematological parameters. The precise localization of their 5' and 3' breakpoints gives new insights about the differences between HPFH and (deltabeta)(0)-thalassemia at the molecular level. The importance of detection of these deletions in prenatal diagnosis and newborn screening of hemoglobinopathies is also discussed.

  6. Binding of HMG 17 to mononucleosomes of the avian beta-globin gene cluster in erythroid and non-erythroid cells.

    PubMed Central

    Brotherton, T W; Reneker, J; Ginder, G D

    1990-01-01

    The binding of HMG 17 to stripped core mononucleosomes containing DNA from the avian beta-globin gene cluster was examined to determine whether binding in vitro in this developmentally-regulated gene domain was associated with transcriptional activity or DNaseI-sensitivity in intact nuclei. Mononucleosomes were prepared from primitive and definitive stage embryonic red blood cells of chick embryos, adult reticulocytes, adult reticulocytes in which embryonic rho-globin transcription was induced, and adult thymus cells. Preferential binding by HMG 17 to mononucleosomes containing the beta-globin gene cluster was confined to erythroid-derived mononucleosomes that contain the embryonic rho-globin gene, the adult beta-globin gene, and DNA sequences located between these two genes, but not to those that contain the embryonic epsilon-globin gene. Comparison of these results to the known patterns of transcription and DNaseI-sensitivity within the beta-globin gene cluster shows that HMG 17 binding, although tissue-specific, does not correlate directly with either DNaseI-sensitivity or active gene transcription, but is dependent on other factors present in core mononucleosomes from this active gene domain. Images PMID:1692412

  7. Nonsense mutations in the human. beta. -globin gene affect mRNA metabolism

    SciTech Connect

    Baserga, S.J.; Benz, E.J. Jr. )

    1988-04-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.

  8. Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene.

    PubMed

    Sadelain, M; Wang, C H; Antoniou, M; Grosveld, F; Mulligan, R C

    1995-07-18

    Retrovirus-mediated gene transfer into hematopoietic cells may provide a means of treating both inherited and acquired diseases involving hematopoietic cells. Implementation of this approach for disorders resulting from mutations affecting the beta-globin gene (e.g., beta-thalassemia and sickle cell anemia), however, has been hampered by the inability to generate recombinant viruses able to efficiently and faithfully transmit the necessary sequences for appropriate gene expression. We have addressed this problem by carefully examining the interactions between retroviral and beta-globin gene sequences which affect vector transmission, stability, and expression. First, we examined the transmission properties of a large number of different recombinant proviral genomes which vary both in the precise nature of vector, beta-globin structural gene, and locus control region (LCR) core sequences incorporated and in the placement and orientation of those sequences. Through this analysis, we identified one specific vector, termed M beta 6L, which carries both the human beta-globin gene and core elements HS2, HS3, and HS4 from the LCR and faithfully transmits recombinant proviral sequences to cells with titers greater than 10(6) per ml. Populations of murine erythroleukemia (MEL) cells transduced by this virus expressed levels of human beta-globin transcript which, on a per gene copy basis, were 78% of the levels detected in an MEL-derived cell line, Hu11, which carries human chromosome 11, the site of the beta-globin locus. Analysis of individual transduced MEL cell clones, however, indicated that, while expression was detected in every clone tested (n = 17), the levels of human beta-globin treatment varied between 4% and 146% of the levels in Hu11. This clonal variation in expression levels suggests that small beta-globin LCR sequences may not provide for as strict chromosomal position-independent expression of beta-globin as previously suspected, at least in the context of

  9. Evolution and molecular characterization of a beta-globin gene from the Australian Echidna Tachyglossus aculeatus (Monotremata).

    PubMed

    Lee, M H; Shroff, R; Cooper, S J; Hope, R

    1999-07-01

    Coinciding with a period in evolution when monotremes, marsupials, and eutherians diverged from a common ancestor, a proto-beta-globin gene duplicated, producing the progenitors of mammalian embryonic and adult beta-like globin genes. To determine whether monotremes contain orthologues of these genes and to further investigate the evolutionary relationships of monotremes, marsupials, and eutherians, we have determined the complete DNA sequence of an echidna (Tachyglossus aculeatus) beta-like globin gene. Conceptual translation of the gene and sequence comparisons with eutherian and marsupial beta-like globin genes and echidna adult beta-globin indicate that the gene is adult expressed. Phylogenetic analyses do not clearly resolve the branching pattern of mammalian beta-like globin gene lineages and it is therefore uncertain whether monotremes have orthologues of the embryonic beta-like globin genes of marsupials and eutherians. Four models are proposed that provide a framework for interpreting further studies on the evolution of beta-like globin genes in the context of the evolution of monotremes, marsupials, and eutherians.

  10. Polymorphism of DNA sequence adjacent to human beta-globin structural gene: relationship to sickle mutation.

    PubMed

    Kan, Y W; Dozy, A M

    1978-11-01

    Restriction endonuclease mapping of the human globin genes revealed a genetic variation in a Hpa I recognition site about 5000 nucleotides from the 3' end of the beta-globin structural gene. Instead of a normal 7.6-kilobase (kb) fragment which contains the beta-globin structural gene, 7.0-kb and 13.0-kb variants were detected. Both variants were found in people of African origin and were not detected in Asians or Caucasians. The 13.0-kb variant is frequently associated with the sickle hemoglobin mutation and may be useful for the prediction of the sickle cell gene in prenatal diagnosis. Polymorphism in a restriction enzyme site could be considered as a new class of genetic marker and may offer a new approach to linkage analysis and anthropological studies.

  11. Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector.

    PubMed Central

    Cone, R D; Weber-Benarous, A; Baorto, D; Mulligan, R C

    1987-01-01

    We introduced a human beta-globin gene into murine erythroleukemia (MEL) cells by infection with recombinant retroviruses containing the complete genomic globin sequence. The beta-globin gene was correctly regulated during differentiation, steady-state mRNA levels being induced 5- to 30-fold after treatment of the cells with the chemical inducer dimethyl sulfoxide. Studies using vectors which yield integrated proviruses lacking transcriptional enhancer sequences indicated that neither retroviral transcription nor the retroviral enhancer sequences themselves had any obvious effect on expression of the globin gene. Viral RNA expression also appeared inducible, being considerably depressed in uninduced MEL cells but approaching normal wild-type levels after dimethyl sulfoxide treatment. We provide data which suggest that the control point for both repression and subsequent activation of virus expression in MEL cells lies in the viral enhancer element. Images PMID:3029570

  12. Organization, structure, and evolution of the nonadult rat beta-globin gene cluster.

    PubMed

    Satoh, H; Inokuchi, N; Nagae, Y; Okazaki, T

    1999-07-01

    The beta-globin gene cluster of Wistar rat was extensively cloned and the embryonic genes were mapped and sequenced. Four overlapping lambda Dash recombinant clones cover about 31 kb and contain four nonadult beta-globin genes, 5'-epsilon1-gamma1-gamma2-psigamma3-3'. The epsilon1 and gamma2 are active genes, since their protein products were detected in the fetal stage of the rat (Iwahara et al., J Biochem 119:360-366, 1996). The gamma1 locus might be a pseudogene, since the ATA box in the promoter region is mutated to GTA; however, no other defect is observed. The psigamma3 locus is a truncated pseudogene because a 19-base deletion, which causes a shift of the reading frame, is observed between the second nucleotide of the putative codon 68 and codon 76. A sequence comparison suggests that the psigamma3 might be produced by a gene conversion event of the proto-gamma-globin gene set. Possible histories of the evolution of rat nonadult beta-globin genes are discussed.

  13. Transgenic mice containing a 248-kb yeast artificial chromosome carrying the human beta-globin locus display proper developmental control of human globin genes.

    PubMed Central

    Peterson, K R; Clegg, C H; Huxley, C; Josephson, B M; Haugen, H S; Furukawa, T; Stamatoyannopoulos, G

    1993-01-01

    Transgenic mice were generated using a purified 248-kb yeast artificial chromosome (YAC) bearing an intact 82-kb human beta-globin locus and 148 kb of flanking sequence. Seventeen of 148 F0 pups were transgenic. RNase protection analysis of RNA isolated from the blood of 13 gamma- and beta-globin-positive founders showed that only the human beta-globin gene was expressed in the adult founders. Studies of F1 and F2 fetuses demonstrated that the genes of the beta-locus YAC displayed the proper developmental switches in beta-like globin gene expression. Expression of epsilon- and gamma-globin, but not beta-globin, was observed in the yolk sac, there was only minor gamma and mostly beta expression in the 14-day liver, and only beta mRNA in the blood of the adult animals. Structural data showed that the locus was intact. These results indicate that it is now possible to dissect regulatory mechanisms within the context of an entire locus in vivo by using the ability to perform mutagenesis efficiently in yeast via homologous recombination, followed by purification of the altered YAC and its introduction into mice. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8356061

  14. Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene.

    PubMed Central

    Sadelain, M; Wang, C H; Antoniou, M; Grosveld, F; Mulligan, R C

    1995-01-01

    Retrovirus-mediated gene transfer into hematopoietic cells may provide a means of treating both inherited and acquired diseases involving hematopoietic cells. Implementation of this approach for disorders resulting from mutations affecting the beta-globin gene (e.g., beta-thalassemia and sickle cell anemia), however, has been hampered by the inability to generate recombinant viruses able to efficiently and faithfully transmit the necessary sequences for appropriate gene expression. We have addressed this problem by carefully examining the interactions between retroviral and beta-globin gene sequences which affect vector transmission, stability, and expression. First, we examined the transmission properties of a large number of different recombinant proviral genomes which vary both in the precise nature of vector, beta-globin structural gene, and locus control region (LCR) core sequences incorporated and in the placement and orientation of those sequences. Through this analysis, we identified one specific vector, termed M beta 6L, which carries both the human beta-globin gene and core elements HS2, HS3, and HS4 from the LCR and faithfully transmits recombinant proviral sequences to cells with titers greater than 10(6) per ml. Populations of murine erythroleukemia (MEL) cells transduced by this virus expressed levels of human beta-globin transcript which, on a per gene copy basis, were 78% of the levels detected in an MEL-derived cell line, Hu11, which carries human chromosome 11, the site of the beta-globin locus. Analysis of individual transduced MEL cell clones, however, indicated that, while expression was detected in every clone tested (n = 17), the levels of human beta-globin treatment varied between 4% and 146% of the levels in Hu11. This clonal variation in expression levels suggests that small beta-globin LCR sequences may not provide for as strict chromosomal position-independent expression of beta-globin as previously suspected, at least in the context of

  15. Human beta-globin gene polymorphisms characterized in DNA extracted from ancient bones 12,000 years old.

    PubMed Central

    Béraud-Colomb, E; Roubin, R; Martin, J; Maroc, N; Gardeisen, A; Trabuchet, G; Goosséns, M

    1995-01-01

    Analyzing the nuclear DNA from ancient human bones is an essential step to the understanding of genetic diversity in current populations, provided that such systematic studies are experimentally feasible. This article reports the successful extraction and amplification of nuclear DNA from the beta-globin region from 5 of 10 bone specimens up to 12,000 years old. These have been typed for beta-globin frameworks by sequencing through two variable positions and for a polymorphic (AT) chi (T) gamma microsatellite 500 bp upstream of the beta-globin gene. These specimens of human remains are somewhat older than those analyzed in previous nuclear gene sequencing reports and considerably older than those used to study high-copy-number human mtDNA. These results show that the systematic study of nuclear DNA polymorphisms of ancient populations is feasible. Images Figure 2 Figure 3 PMID:8533755

  16. Same. beta. -globin gene mutation is present on nine different. beta. -thalassemia chromosomes in a Sardinian population

    SciTech Connect

    Pirastu, M.; Galanello, R.; Doherty, M.A.; Tuveri, T.; Cao, A.; Kan, Y.W.

    1987-05-01

    The predominant ..beta..-thalassemia in Sardinia is the ..beta../sup 0/ type in which no ..beta..-globin chains are synthesized in the homozygous state. The authors determined the ..beta..-thalassemia mutations in this population by the oligonucleotide-probe method and defined the chromosome haplotypes on which the mutation resides. The same ..beta../sup 39(CAG..-->..TAG)/ nonsense mutation was found on nine different chromosome haplotypes. Although this mutation may have arisen more than once, the multiple haplotypes could also be generated by crossing over and gene conversion events. These findings underscore the frequency of mutational events in the ..beta..-globin gene region.

  17. A mutation of the beta-globin gene initiation codon, ATG-->AAG, found in a French Caucasian man.

    PubMed

    Lacan, Philippe; Aubry, Martine; Couprie, Nicole; Francina, Alain

    2005-01-01

    A new mutation of the beta-globin gene initiation codon, ATG-->AAG (Met-->Tyr), is reported in a man originating from the southeast of France. Typical hematological findings of beta-thalassemia (thal) trait were found. We emphasize the importance of characterizing uncommon beta-thal mutations for genetic counseling.

  18. Characterization of a large deletion in the {beta}-globin gene cluster in a newborn with hemoglobin FE

    SciTech Connect

    Louie, E.; Dietz, L.; Shafer, F.

    1994-09-01

    A sample on a newborn with hemoglobin FE screen results was obtained to investigate whether E/E or B/{beta}{degrees} thalassemia was present using polymerase chain reaction (PCR) methodology. The newborn appeared homozygous for the hemoglobin E mutation in our initial study, but the parents` genotypes did not support this diagnosis. The father is homozygous for the absence of the hemoglobin E mutation (non E/non E) and the mother is heterozygous (E/non E) for this mutation. The limitation of PCR analysis is an assumption that the amplification of the two {beta}-globin alleles is equivalent. A large deletion on one {beta}-globin gene, which would produce E/{beta}{degrees} thalassemia, would be missed if it included part or the entire region subjected to amplification. The family results were consistent with either non-paternity, sample mix-up or such a deletion of the {beta}-globin gene in the father and child. To rule out the possibility of non-paternity, two polymorphic loci (HLA on chromosome 6 and a VNTR system of chromosome 17) that are outside of the {beta}-globin gene were analyzed and show that inheritance is consistent and the likelihood of a sample mix-up is then reduced. We therefore believe there is a gene deletion in this family. At the present time, analyses of the RFLPs that are 5{prime} of the {beta}-globin gene cluster show that the polymorphisms most distal from the 5{prime} {beta}-globin gene are not being inherited as expected. These results support our interpretation that a deletion exists in the father and was inherited by the child. The father`s clinical picture of possible HPFH (the father has 12% hemoglobin F) also supports the interpretation of a deletion in this family. Deletions of the {beta}-globin gene within this ethnic group are rare. Currently, Southern blots on the family are being probed to determine the extent of the putative deletion.

  19. Retroviral transfer of a human beta-globin/delta-globin hybrid gene linked to beta locus control region hypersensitive site 2 aimed at the gene therapy of sickle cell disease.

    PubMed

    Takekoshi, K J; Oh, Y H; Westerman, K W; London, I M; Leboulch, P

    1995-03-28

    Human gamma-globin and delta-globin chains have been previously identified as strong inhibitors of the polymerization of hemoglobin S, in contrast to the beta-globin chain, which exerts only a moderate antisickling effect. However, gamma-globin and delta-globin are normally expressed at very low levels in adult erythroid cells, in contrast to beta-globin. We report the design of a beta-globin/delta-globin hybrid gene, beta/delta-sickle cell inhibitor 1 (beta/delta-SCI1) and its transduction by retrovirus-mediated gene transfer. The beta/delta-SCI1-encoding gene retains the overall structure of the human beta-globin gene, while incorporating specific amino acid residues from the delta chain previously found responsible for its enhanced antisickling properties. To achieve high expression levels of beta/delta-SCI1 in adult erythrocytes, the hybrid gene was placed under the transcriptional control of the human beta-globin promoter and the DNase I hypersensitive site 2 of the human beta locus control region. High-titer retroviruses were generated, and stable proviral transmission was achieved in infected cells. The mRNA expression levels of the beta/delta-SCI1 gene in infected, dimethyl sulfoxide-induced murine erythroleukemia cells approached 85% of the endogenous murine beta maj-globin mRNA, on a per gene basis, evidence that high gene expression levels were achieved in adult erythroid cells. Further evaluation of this strategy in transgenic animal models of sickle cell disease should assess its efficacy for the gene therapy of human patients.

  20. A review on the origin and spread of deleterious mutants of the beta-globin gene in Indian populations.

    PubMed

    Das, S K; Talukder, G

    2001-01-01

    Deleterious mutations of the human beta-globin gene are responsible for beta-thalassaemia and other haemoglobinopathies, which are the most common genetic diseases in Indian populations. A highly heterogeneous distribution of those mutations is observed in India and certain mutations are restricted to some extent to particular groups only. The reasons behind the geographical clustering and origin of the mutations in India is a highly debated issue and the evidence is conflicting. Our present article aims at tracing the origin of the deleterious beta-globin mutation and evaluates the role of different evolutionary forces responsible for the spread and present distribution of those mutations in Indian populations, using data from molecular biology and statistical methods. Mutations are generated essentially randomly, but "hot-spot" sites for mutation are reported for the beta-globin gene cluster, indicating sequence dependency of mutation. A single origin of a deleterious beta-globin mutation, followed by recombination (in a hot spot region) and/or interallelic gene conversion (within beta-globin gene) through time is the most plausible hypothesis to explain the association of those mutations with multiple haplotype backgrounds and frameworks. It is suggested that India is the place of origin of HbE and HbD mutations and that they dispersed to other parts of the would by migration. HbS mutants present in Indian populations are not of Middle East origin but rather a fresh mutation is the probable explanation for the prevalence among tribal groups. beta-thalassaemia represents a heterogeneous group of mutant alleles in India. Five common and twelve rare mutations have been reported in variable frequencies among different Indian populations. Gene flow of those mutant alleles from different populations of the world by political, military and commercial interactions possibly accounts for the heterogenous nature of beta-thalassaemia among Indians. A multiple allelic

  1. A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia.

    PubMed

    Bank, Arthur; Dorazio, Ronald; Leboulch, Philippe

    2005-01-01

    Recent success in the long-term correction of mouse models of human beta-thalassemia and sickle cell anemia by lentiviral vectors and evidence of high gene transfer and expression in transduced human hematopoietic cells have led to a first clinical trial of gene therapy for the disease. A LentiGlobin vector containing a beta-globin gene (beta(A-T87Q)) that produces a hemoglobin (Hbbeta(A-T87Q)) that can be distinguished from normal hemoglobin will be used. The LentiGlobin vector is self-inactivating and contains large elements of the beta-globin locus control region as well as chromatin insulators and other features that should prevent untoward events. The study will be done in Paris with Eliane Gluckman as the principal investigator and Philippe Leboulch as scientific director. PMID:16339679

  2. Total beta-globin gene deletion has high frequency in Filipinos

    SciTech Connect

    Patrick, N.; Miyakawa, F.; Hunt, J.A.

    1994-09-01

    The distribution of {beta}-thalassemia [{beta}{sup Th}] mutations is unique to each ethnic group. Most mutations affect one or a few bases; large deletions have been rare. Among families screened in Hawaii, [{beta}{sup Th}] heterozygotes were diagnosed by microcytosis, absence of abnormal hemoglobins on isoelectric focusing, and raised Hb A{sub 2} by chromatography. Gene frequency for {beta}{sup Th} was 0.02 in Filipinos. In Filipinos, polymerase chain reaction [PCR] with denaturing gradient gel electrophoresis for {beta}{sup Th} mutations detected a mutation in only 6 of 42 {beta}{sup Th} heterozygotes; an IVS2-666 C/T polymorphism showed non-heterozygosity in 37 and heterozygosity in only 5 of these {beta}{sup Th} heterozygotes. One {beta}{sup Th}/{beta}{sup Th} major patient and his mother had no mutation detected by allele-specific oligomer hybridization; PCR failed to amplify any DNA from his {beta}-globin gene. After a total {beta}-globin gene deletion [{beta}{sup Del}] was found in a Filipino family in Ontario, specific PCR amplification for {beta}{sup Del} detected this in 43 of 53 {beta}{sup Th} Filipino samples tested; the above {beta}{sup Th}/{beta}{sup Th} patient was a ({beta}{sup Del}/{beta}{sup Del}) homozygote. The {beta}{sup Del} may account for over 60% of all {beta}{sup Th} alleles in Filipinos; this is the highest proportion of a deletion {beta}{sup Th} mutation reported from any population. Most but not all {beta}{sup Del} heterozygotes had high Hb F [5.13 {plus_minus} 3.94 mean {plus_minus} 1 s.d.] compared to the codon 41/42 four base deletion common in Chinese [2.30 {plus_minus} 0.86], or to {beta}{sup Th} heterozygotes with normal {alpha}-globin genes [2.23 {plus_minus} 0.80].

  3. Beta-globin gene evolution in the ruminants: evidence for an ancient origin of sheep haplotype B.

    PubMed

    Jiang, Y; Wang, X; Kijas, J W; Dalrymple, B P

    2015-10-01

    Domestic sheep (Ovis aries) can be divided into two groups with significantly different responses to hypoxic environments, determined by two allelic beta-globin haplotypes. Haplotype A is very similar to the goat beta-globin locus, whereas haplotype B has a deletion spanning four globin genes, including beta-C globin, which encodes a globin with high oxygen affinity. We surveyed the beta-globin locus using resequencing data from 70 domestic sheep from 42 worldwide breeds and three Ovis canadensis and two Ovis dalli individuals. Haplotype B has an allele frequency of 71.4% in O. aries and was homozygous (BB) in all five wild sheep. This shared ancestry indicates haplotype B is at least 2-3 million years old. Approximately 40 kb of the sequence flanking the ~37-kb haplotype B deletion had unexpectedly low identity between haplotypes A and B. Phylogenetic analysis showed that the divergent region of sheep haplotype B is remarkably distinct from the beta-globin loci in goat and cattle but still groups with the Ruminantia. We hypothesize that this divergent ~40-kb region in haplotype B may be from an unknown ancestral ruminant and was maintained in the lineage to O. aries, but not other Bovidae, evolving independently of haplotype A. Alternatively, the ~40-kb sequence in haplotype B was more recently acquired by an ancestor of sheep from an unknown non-Bovidae ruminant, replacing part of haplotype A. Haplotype B has a lower nucleotide diversity than does haplotype A, suggesting a recent bottleneck, whereas the higher frequency of haplotype B suggests a subsequent spread through the global population of O. aries.

  4. Beta-globin gene evolution in the ruminants: evidence for an ancient origin of sheep haplotype B.

    PubMed

    Jiang, Y; Wang, X; Kijas, J W; Dalrymple, B P

    2015-10-01

    Domestic sheep (Ovis aries) can be divided into two groups with significantly different responses to hypoxic environments, determined by two allelic beta-globin haplotypes. Haplotype A is very similar to the goat beta-globin locus, whereas haplotype B has a deletion spanning four globin genes, including beta-C globin, which encodes a globin with high oxygen affinity. We surveyed the beta-globin locus using resequencing data from 70 domestic sheep from 42 worldwide breeds and three Ovis canadensis and two Ovis dalli individuals. Haplotype B has an allele frequency of 71.4% in O. aries and was homozygous (BB) in all five wild sheep. This shared ancestry indicates haplotype B is at least 2-3 million years old. Approximately 40 kb of the sequence flanking the ~37-kb haplotype B deletion had unexpectedly low identity between haplotypes A and B. Phylogenetic analysis showed that the divergent region of sheep haplotype B is remarkably distinct from the beta-globin loci in goat and cattle but still groups with the Ruminantia. We hypothesize that this divergent ~40-kb region in haplotype B may be from an unknown ancestral ruminant and was maintained in the lineage to O. aries, but not other Bovidae, evolving independently of haplotype A. Alternatively, the ~40-kb sequence in haplotype B was more recently acquired by an ancestor of sheep from an unknown non-Bovidae ruminant, replacing part of haplotype A. Haplotype B has a lower nucleotide diversity than does haplotype A, suggesting a recent bottleneck, whereas the higher frequency of haplotype B suggests a subsequent spread through the global population of O. aries. PMID:26096044

  5. Sequential changes in chromatin structure during transcriptional activation in the beta globin LCR and its target gene.

    PubMed

    Kim, Kihoon; Kim, AeRi

    2010-09-01

    Chromatin structure is modulated during transcriptional activation. The changes include the association of transcriptional activators, formation of hypersensitive sites and covalent modifications of histones. To understand the order of the various changes accompanying transcriptional activation, we analyzed the mouse beta globin gene, which is transcriptionally inducible in erythroid MEL cells over a time course of HMBA treatment. Transcription of the globin genes requires the locus control region (LCR) consisting of several hypersensitive sites (HSs). Erythroid specific transcriptional activators such as NF-E2, GATA-1, TAL1 and EKLF were associated with the LCR in the uninduced state before transcriptional activation. The HSs of the LCR were formed in this state as revealed by high sensitivity to DNase I and MNase attack. However the binding of transcriptional activators and the depletion of histones were observed in the promoter of the beta globin gene only after transcriptional activation. In addition, various covalent histone modifications were sequentially detected in lysine residues of histone H3 during the activation. Acetylation of K9, K36 and K27 was notable in both LCR HSs and gene after induction but before transcriptional initiation. Inactive histone marks such as K9me2, K36me2 and K27me2 were removed coincident with transcriptional initiation in the gene region. Taken together, these results indicate that LCR has a substantially active structure in the uninduced state while transcriptional activation serially adds active marks, including histone modifications, and removes inactive marks in the target gene of the LCR.

  6. (AC)n dinucleotide repeat polymorphism in 5' beta-globin gene in native and Mestizo Mexican populations.

    PubMed

    Peñaloza, R; Delgado, P; Arenas, D; Barrientos, C; Buentello, L; Loeza, F; Salamanca, F

    2001-12-01

    Repeated sequences are dispersed along the human genome. These sequences are useful as markers in diagnosis of inherited diseases, in forensic medicine, and in tracking the origin and evolution of human populations. The (AC)n repeated element is the most frequent in the human genome. In this paper, the (AC)n repeated element located in the 5' flanking region of the beta-globin gene was studied by single-strand conformation polymorphism (SSCP). Four ethnic Mexican groups (Mixteca, Nahua, Otomí, Purépecha) and a Mestizo population were analyzed. We observed three alleles, A [(AC)16, B [(AC)14], and C [(AC)18], with a frequency of between 68.2% and 86.9%, 13.1% and 18.2%, and 6.7% and 13.7%, respectively. Allele C was present only in Purépecha and Mestizo groups. The absence of this allele in the other ethnic groups studied suggests that there is low genetic admixture of Purépecha and that this is a relatively isolated population. However, it could be that the C allele occurs in low frequencies in the other groups as a result of small sample sizes. The (AC)n repeat polymorphism in the beta-globin gene has not been previously studied in Amerindian populations.

  7. Beta-globin gene cluster haplotypes and HbF levels are not the only modulators of sickle cell disease in Lebanon.

    PubMed

    Inati, A; Taher, A; Bou Alawi, W; Koussa, S; Kaspar, H; Shbaklo, H; Zalloua, P A

    2003-02-01

    Sickle cell disease (SCD) is an inherited autosomal recessive disorder of the beta-globin chain. Despite the fact that all subjects with SCD have the same single base pair mutation, the severity of the clinical and hematological manifestations is extremely variable. This study examined for the first time in Lebanon the correlation between the clinical manifestation of SCD and the beta-globin gene haplotypes. The haplotypes of 50 patients diagnosed with SCD were determined using polymerase chain reaction amplification of fragments containing nine polymorphic restriction sites around and within the epsilon-Ggamma-Agamma-psibeta-delta-beta-globin gene complex. Most reported haplotypes were found in our population with the Benin haplotype as the most prevalent one. When the patients were divided according to their HbF levels into three groups (Group A: HbF < 5%, Group B: HbF between 5 and 15%, and Group C: HbF > 15%), surprisingly, the highest levels of HbF were associated with the most severe clinical cases. Our findings suggest that fetal hemoglobin levels are important but not the only parameters that affect the severity of the disease. In addition, the high levels of HbF in patients with CAR haplotypes did not seem to ameliorate the severity of symptoms, suggesting that genetic factors other than haplotypes are the major determinants of increased HbF levels in Lebanon.

  8. Reliability of detection by polymerase chain reaction of the sickle cell-containing region of the beta-globin gene in single human blastomeres.

    PubMed

    Pickering, S J; McConnell, J M; Johnson, M H; Braude, P R

    1992-05-01

    Human preimplantation embryos at various stages of development have been analysed using the polymerase chain reaction to amplify a 680 base pair fragment of the beta-globin gene. Successful amplification was achieved more frequently with DNA from intact embryos containing between one and 11 cells, single cumulus cells, oocytes which had failed to fertilize and polar bodies than from single blastomeres disaggregated from intact embryos and treated in an identical manner. The distribution of nuclei demonstrated using the nuclear chromophore diamino-phenyl-indole showed considerable inter-blastomere variation; however, no clear correlation between staining pattern and successful amplification was observed. The reason for the unreliable amplification of DNA from single blastomeres is unclear but this finding has important implications for preimplantation diagnosis of genetic disease.

  9. Expression of a cellular gene cloned in herpes simplex virus: rabbit beta-globin is regulated as an early viral gene in infected fibroblasts.

    PubMed Central

    Smiley, J R; Smibert, C; Everett, R D

    1987-01-01

    We constructed nondefective herpes simplex virus type 1 recombinants bearing the intact rabbit beta-globin gene inserted into the viral gene for thymidine kinase to study the expression of a cellular gene when it is present in the viral genome during lytic viral infections. The globin promoter was activated to high levels during productive infection of Vero cells, giving rise to properly spliced and processed cytoplasmic globin transcripts. Expression of globin RNA occurred with early kinetics, was not affected by blocking viral DNA replication, and was strongly inhibited by preventing viral immediate-early protein synthesis with cycloheximide. These results support the hypothesis that temporal control of herpes simplex virus early gene expression is accomplished by mechanisms that are not restricted to viral promoters. In addition, these data show that a cellular transcript can be correctly processed and can accumulate to high levels during viral infection; this indicates that the mechanisms of virally induced shutoff of host RNA accumulation and degradation of host mRNAs do not depend on sequence-specific differentiation between host and viral RNAs. These findings also suggest that herpesviruses have considerable potential as high-capacity gene transfer vectors for a variety of applications. Images PMID:3037101

  10. Development of a High-Resolution Melting Approach for Scanning Beta Globin Gene Point Mutations in the Greek and Other Mediterranean Populations.

    PubMed

    Chassanidis, Christos; Boutou, Effrossyni; Voskaridou, Ersi; Balassopoulou, Angeliki

    2016-01-01

    Beta-thalassaemia is one of the most common autosomal recessive disorders worldwide. The disease's high incidence, which is observed in the broader Mediterranean area has led to the establishment of molecular diagnostics' assays to prevent affected births. Therefore, the development of a reliable, cost-effective and rapid scanning method for β globin gene point mutations, easily adapted to a routine laboratory, is absolutely essential. Here, we describe, for the first time, the development of a High-Resolution Melting Analysis (HRMA) approach, suitable for scanning the particularly heterogeneous beta globin gene mutations present in the Greek population, and thus adaptable to the Mediterranean and other areas where these mutations have been identified. Within this context, β globin gene regions containing mutations frequently identified in the Greek population were divided in ten overlapping amplicons. Our reactions' setup allowed for the simultaneous amplification of multiple primer sets and partial multiplexing, thereby resulting in significant reduction of the experimental time. DNA samples from β-thalassaemia patients/carriers with defined genotypes were tested. Distinct genotypes displayed distinguishable melting curves, enabling accurate detection of mutations. The described HRMA can be adapted to a high-throughput level. It represents a rapid, simple, cost-effective, reliable, highly feasible and sensitive method for β-thalassaemia gene scanning. PMID:27351925

  11. Development of a High-Resolution Melting Approach for Scanning Beta Globin Gene Point Mutations in the Greek and Other Mediterranean Populations.

    PubMed

    Chassanidis, Christos; Boutou, Effrossyni; Voskaridou, Ersi; Balassopoulou, Angeliki

    2016-01-01

    Beta-thalassaemia is one of the most common autosomal recessive disorders worldwide. The disease's high incidence, which is observed in the broader Mediterranean area has led to the establishment of molecular diagnostics' assays to prevent affected births. Therefore, the development of a reliable, cost-effective and rapid scanning method for β globin gene point mutations, easily adapted to a routine laboratory, is absolutely essential. Here, we describe, for the first time, the development of a High-Resolution Melting Analysis (HRMA) approach, suitable for scanning the particularly heterogeneous beta globin gene mutations present in the Greek population, and thus adaptable to the Mediterranean and other areas where these mutations have been identified. Within this context, β globin gene regions containing mutations frequently identified in the Greek population were divided in ten overlapping amplicons. Our reactions' setup allowed for the simultaneous amplification of multiple primer sets and partial multiplexing, thereby resulting in significant reduction of the experimental time. DNA samples from β-thalassaemia patients/carriers with defined genotypes were tested. Distinct genotypes displayed distinguishable melting curves, enabling accurate detection of mutations. The described HRMA can be adapted to a high-throughput level. It represents a rapid, simple, cost-effective, reliable, highly feasible and sensitive method for β-thalassaemia gene scanning.

  12. Development of a High-Resolution Melting Approach for Scanning Beta Globin Gene Point Mutations in the Greek and Other Mediterranean Populations

    PubMed Central

    Chassanidis, Christos; Boutou, Effrossyni; Voskaridou, Ersi; Balassopoulou, Angeliki

    2016-01-01

    Beta-thalassaemia is one of the most common autosomal recessive disorders worldwide. The disease’s high incidence, which is observed in the broader Mediterranean area has led to the establishment of molecular diagnostics’ assays to prevent affected births. Therefore, the development of a reliable, cost-effective and rapid scanning method for β globin gene point mutations, easily adapted to a routine laboratory, is absolutely essential. Here, we describe, for the first time, the development of a High-Resolution Melting Analysis (HRMA) approach, suitable for scanning the particularly heterogeneous beta globin gene mutations present in the Greek population, and thus adaptable to the Mediterranean and other areas where these mutations have been identified. Within this context, β globin gene regions containing mutations frequently identified in the Greek population were divided in ten overlapping amplicons. Our reactions’ setup allowed for the simultaneous amplification of multiple primer sets and partial multiplexing, thereby resulting in significant reduction of the experimental time. DNA samples from β-thalassaemia patients/carriers with defined genotypes were tested. Distinct genotypes displayed distinguishable melting curves, enabling accurate detection of mutations. The described HRMA can be adapted to a high-throughput level. It represents a rapid, simple, cost-effective, reliable, highly feasible and sensitive method for β-thalassaemia gene scanning. PMID:27351925

  13. Genomic organization and differential signature of positive selection in the alpha and beta globin gene clusters in two cetacean species.

    PubMed

    Nery, Mariana F; Arroyo, José Ignacio; Opazo, Juan C

    2013-01-01

    The hemoglobin of jawed vertebrates is a heterotetramer protein that contains two α- and two β-chains, which are encoded by members of α- and β-globin gene families. Given the hemoglobin role in mediating an adaptive response to chronic hypoxia, it is likely that this molecule may have experienced a selective pressure during the evolution of cetaceans, which have to deal with hypoxia tolerance during prolonged diving. This selective pressure could have generated a complex history of gene turnover in these clusters and/or changes in protein structure themselves. Accordingly, we aimed to characterize the genomic organization of α- and β-globin gene clusters in two cetacean species and to detect a possible role of positive selection on them using a phylogenetic framework. Maximum likelihood and Bayesian phylogeny reconstructions revealed that both cetacean species had retained a similar complement of putatively functional genes. For the α-globin gene cluster, the killer whale presents a complement of genes composed of HBZ, HBK, and two functional copies of HBA and HBQ genes, whereas the dolphin possesses HBZ, HBK, HBA and HBQ genes, and one HBA pseudogene. For the β-globin gene cluster, both species retained a complement of four genes, two early expressed genes-HBE and HBH-and two adult expressed genes-HBD and HBB. Our natural selection analysis detected two positively selected sites in the HBB gene (56 and 62) and four in HBA (15, 21, 49, 120). Interestingly, only the genes that are expressed during the adulthood showed the signature of positive selection. PMID:24259315

  14. Confirmation of the potential usefulness of two human beta globin pseudogene markers to estimate gene flows to and from sub-Saharan Africans.

    PubMed

    Ciminelli, Bianca Maria; Pompei, Fiorenza; Relucenti, Michela; Lum, J Koji; Simporé, Jacques; Spedini, Gabriella; Martínez-Labarga, Cristina; Pardo, Miguel G

    2002-04-01

    Two polymorphic sites, -107 and -100 with respect to the "cap" site of the human beta globin pseudogene, recently discovered in our laboratory, turned out to have an ethnically complementary distribution. The first site is polymorphic in Europeans, North Africans, Indians (Hindu), and Oriental Asians, and monomorphic in sub-Saharan Africans. Conversely, the second site is polymorphic in sub-Saharan African populations and monomorphic in the aforementioned populations. Here we report the gene frequencies of these two polymorphic sites in nine additional populations (Egyptians, Spaniards, Japanese, Chinese, Filipinos, Vietnamese, Africans from Togo and from Benin, and Pygmies), confirming their ethnospecificity and, through the analysis of these two markers in Oromo and Amhara of Ethiopia (two mixed populations), their usefulness in genetic admixture studies. Moreover, we studied another marker polymorphic in sub-Saharan African populations only, a TaqI restriction fragment length polymorphism located in the same region as the present markers, demonstrating the absence of linkage disequilibrium between it and the -100 site, so that we can exclude that the information they provide is redundant.

  15. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals

    PubMed Central

    Patel, Vidushi S; Cooper, Steven JB; Deakin, Janine E; Fulton, Bob; Graves, Tina; Warren, Wesley C; Wilson, Richard K; Graves, Jennifer AM

    2008-01-01

    Background Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω) in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. Results The platypus α-globin cluster (chromosome 21) contains embryonic and adult α- globin genes, a β-like ω-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-ζ-ζ'-αD-α3-α2-α1-ω-GBY-3'. The platypus β-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-ε-β-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate α-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal β-globin clusters are embedded in olfactory genes. Thus, the mammalian α- and β-globin clusters are orthologous to the bird α- and β-globin clusters respectively. Conclusion We propose that α- and β-globin clusters evolved from an ancient MPG-C16orf35-α-β-GBY-LUC7L arrangement 410 million years ago. A copy of the original β (represented by ω in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of β-globin genes with different expression profiles in different lineages. PMID:18657265

  16. Efficient and specific repair of sickle beta-globin RNA by trans-splicing ribozymes.

    PubMed

    Byun, Jonghoe; Lan, Ning; Long, Meredith; Sullenger, Bruce A

    2003-10-01

    Previously we demonstrated that a group I ribozyme can perform trans-splicing to repair sickle beta-globin transcripts upon transfection of in vitro transcribed ribozyme into mammalian cells. Here, we sought to develop expression cassettes that would yield high levels of active ribozyme after gene transfer. Our initial expression constructs were designed to generate trans-slicing ribozymes identical to those used in our previous RNA transfection studies with ribozymes containing 6-nucleotide long internal guide sequences. The ribozymes expressed from these cassettes, however, were found to be unable to repair sickle beta-globin RNAs. Further experiments revealed that two additional structural elements are important for ribozyme-mediate RNA repair: the P10 interaction formed between the 5' end of the ribozyme and the beginning of the 3' exon and an additional base-pairing interaction formed between an extended guide sequence and the substrate RNA. These optimized expression cassettes yield ribozymes that are able to amend 10%-50% of the sickle beta-globin RNAs in transfected mammalian cells. Finally, a ribozyme with a 5-bp extended guide sequence preferentially reacts with sickle beta-globin RNAs over wild-type beta-globin RNAs, although the wild-type beta-globin transcript forms only a single mismatch with the ribozyme. These results demonstrate that trans-splicing ribozyme expression cassettes can be generated to yield ribozymes that can repair a clinically relevant fraction of sickle beta-globin RNAs in mammalian cells with greatly improved specificity.

  17. Origin and spread of beta-globin gene mutations in India, Africa, and Mediterranea: analysis of the 5' flanking and intragenic sequences of beta S and beta C genes.

    PubMed

    Trabuchet, G; Elion, J; Baudot, G; Pagnier, J; Bouhass, R; Nigon, V M; Labie, D; Krishnamoorthy, R

    1991-06-01

    Nucleotide polymorphisms of both the 5' flanking and intragenic regions of the human beta-globin gene were investigated by directly sequencing genomic DNA after amplification by the polymerase chain reaction in 47 subjects homozygous for the beta S or the beta C mutation. The sickle-cell mutation was found in the context of five different haplotypes defined by eight nucleotide substitutions and various structures of a region of the simple repeated sequence (AT) chi Ty. All subjects from the same geographic origin bear an identical chromosomal structure, defining the Senegal-, Bantu-, Benin-, Cameroon-, and Indian-type chromosomes. These results strengthen our previous conclusions about the multiple occurrence of the sickle-cell mutation. The Benin-type chromosome was also found among Algerian and Sicilian sickle-cell patients, whereas the Indian-type chromosome was observed in two geographically distant tribes, illustrating the spread of these sickle-cell genes. We also found that the intragenic sequence polymorphisms (frameworks) are not always in linkage disequilibrium with the BamH I polymorphism downstream from the beta-globin gene, as had been previously observed. Finally, we present a tentative phylogenetic tree of the different alleles at this locus. Some polymorphisms of this sequence might be contemporary with our last common ancestor, the great apes, that is, about 4-6 millions years old.

  18. Erythroid-specific expression of beta-globin by the sleeping beauty transposon for Sickle cell disease.

    PubMed

    Zhu, Jianhui; Kren, Betsy T; Park, Chang Won; Bilgim, Rasim; Wong, Phillip Y-P; Steer, Clifford J

    2007-06-12

    Sickle cell disease (SCD) results predominately from a single monogenic mutation that affects thousands of individuals worldwide. Gene therapy approaches have focused on using viral vectors to transfer wild-type beta- or gamma-globin transgenes into hematopoietic stem cells for long-term expression of the recombinant globins. In this study, we investigated the use of a novel nonviral vector system, the Sleeping Beauty (SB) transposon (Tn) to insert a wild-type beta-globin expression cassette into the human genome for sustained expression of beta-globin. We initially constructed a beta-globin expression vector composed of the hybrid cytomegalovirus (CMV) enhancer chicken beta-actin promoter (CAGGS) and full-length beta-globin cDNA, as well as truncated forms lacking either the 3' or 3' and 5' untranslated regions (UTRs), to optimize expression of beta-globin. Beta-globin with its 5' UTR was efficiently expressed from its cDNA in K-562 cells induced with hemin. However, expression was constitutive and not erythroid-specific. We then constructed cis SB-Tn-beta-globin plasmids using a minimal beta-globin gene driven by hybrid promoter IHK (human ALAS2 intron 8 erythroid-specific enhancer, HS40 core element from human alphaLCR, ankyrin-1 promoter), IHbetap (human ALAS2 intron 8 erythroid-specific enhancer, HS40 core element from human alphaLCR, beta-globin promoter), or HS3betap (HS3 core element from human betaLCR, beta-globin promoter) to establish erythroid-specific expression of beta-globin. Stable genomic insertion of the minimal gene and expression of the beta-globin transgene for >5 months at a level comparable to that of the endogenous gamma-globin gene were achieved using a SB-Tn beta-globin cis construct. Interestingly, erythroid-specific expression of beta-globin driven by IHK was regulated primarily at the translational level, in contrast to post-transcriptional regulation in non-erythroid cells. The SB-Tn system is a promising nonviral vector for efficient

  19. Hairpin-duplex equilibrium reflected in the A-->B transition in an undecamer quasi-palindrome present in the locus control region of the human beta-globin gene cluster.

    PubMed

    Kaushik, Mahima; Kukreti, Ritushree; Grover, Deepak; Brahmachari, Samir K; Kukreti, Shrikant

    2003-12-01

    Our recent work on an A-->G single nucleotide polymorphism (SNP) at the quasi-palindromic sequence d(TGGGG[A/G]CCCCA) of HS4 of the human beta-globin locus control region in an Indian population showed a significant association between the G allele and the occurrence of beta-thalassemia. Using UV-thermal denaturation, gel assay, circular dichroism (CD) and nuclease digestion experiments we have demonstrated that the undecamer quasi- palindromic sequence d(TGGGGACCCCA) (HPA11) and its reported polymorphic (SNP) version d(TGG GGGCCCCA) (HPG11) exist in hairpin-duplex equilibria. The biphasic nature of the melting profiles for both the oligonucleotides persisted at low as well as high salt concentrations. The HPG11 hairpin showed a higher T(m) than HPA11. The presence of unimolecular and bimolecular species was also shown by non-denaturating gel electrophoresis experiments. The CD spectra of both oligonucleotides showed features of the A- as well as B-type conformations and, moreover, exhibited a concentration dependence. The disappearance of the 265 nm positive CD signal in an oligomer concentration-dependent manner is indicative of an A-->B transition. The results give unprecedented insight into the in vitro structure of the quasi-palindromic sequence and provide the first report in which a hairpin-duplex equilibrium has been correlated with an A-->B interconversion of DNA. The nuclease-dependent degradation suggests that HPG11 is more resistant to nuclease than HPA11. Multiple sequence alignment of the HS4 region of the beta-globin gene cluster from different organisms revealed that this quasi-palindromic stretch is unique to Homo sapiens. We propose that quasi-palindromic sequences may form stable mini- hairpins or cruciforms in the HS4 region and might play a role in regulating beta-globin gene expression by affecting the binding of transcription factors. PMID:14627823

  20. The beta-globin gene cluster haplotypes in sickle cell anemia patients from Northeast Brazil: a clinical and molecular view.

    PubMed

    Adorno, Elisângela Vitória; Zanette, Angela; Lyra, Isa; Souza, Cyntia Cajado; Santos, Leandro Ferraz; Menezes, Joelma Figueiredo; Dupuit, Marie France; Almeida, Mari Ney Tavares; Reis, Mitermayer Galvão; Gonçalves, Marilda Souza

    2004-08-01

    The beta(S)-globin haplotypes were studied in 78 sickle cell Brazilian patients from Bahia, Northeast Brazil, that has a large population of African origin. Hemoglobin (Hb) profiles were developed by high-performance liquid chromatography (HPLC), and beta(S)-globin gene haplotypes were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) techniques. We identified 44 (55.0%) patients with the CAR/Ben (Central African Republic/Benin) genotype, 16 (20.0%) Ben/Ben, 13 (16.2%) CAR/CAR and seven (8.8%) with other genotypes. Analyses of the phenotypes showed clinical differences related only to Hb F levels and blood transfusion therapy; the presence of -alpha(-3.7)-thalassemia (thal) demonstrated statistical significance when associated with hematocrit (p=0.044), MCV (p=0.0007), MCH (p=0.012) and spleen sequestration events. The haplotype diversity found in the present study can be justified by information about the origin of the slave traffic period in Bahia during the 19th century. The specific characteristics described among the Bahian sickle cell patients could be confirmed by increasing the number of patients with specific genotypes and further studies of genetic markers.

  1. Beta Thalassemia: mutations which affect processing of the beta-Globin mRNA precursor.

    PubMed

    Kantor, J A; Turner, P H; Nienhuis, A W

    1980-08-01

    To define the molecular lesion which causes decreased beta-globin synthesis in beta+ thalessemia, four patients of diverse ethnic origin were studied. Each had a 2--3 fold higher concentration of beta-globin mRNA precursor than that found in control bone marrow cells from patients with sickle cell anemia. Globin RNA metabolism was analyzed in two of these patients. Transcription of the beta-globin gene appeared to be normal, since analysis of nuclear RNA indicated that beta-globin mRNA synthesis exceeded that of alpha in a 2 hr pulse but the cytoplasm contained a relative deficiency of labeled beta-globin mRNA. An abnormal RNA species approximately 650 nucleotides in length, which contained sequences transcribed from both the large intron and coding portions of the beta-globin gene, was found in one patient's bone marrow cells. The second patient's cells contained a significant amount of a 1320 nucleotide RNA species, not initially evident in normal cells, from which part but not all of the large intervening sequence had been removed. Our data thus indicate that mutations which affect RNA processing cause beta thalessemia.

  2. Structural analysis of the 5 prime flanking region of the. beta. -globin gene in African sickle cell anemia patients: Further evidence for three origins of the sickle cell mutation in Africa

    SciTech Connect

    Chebloune, Y.; Pagnier, J.; Trabuchet, G.; Faure, C.; Verdier, G.; Labie, D.; Nigon, V. )

    1988-06-01

    Haplotype analysis of the {beta}-globin gene cluster shows two regions of DNA characterized by nonrandom association of restriction site polymorphisms. These regions are separated by a variable segment containing the repeated sequences (ATTTT){sub n} and (AT){sub x}T{sub y}, which might be involved in recombinational events. Studies of haplotypes linked to the sickle cell gene in Africa provide strong argument for three origins of the mutation: Benin, Senegal, and the Central African Republic. The structure of the variable segment in the three African populations was studied by S1 nuclease mapping of genomic DNA, which allows a comparison of several samples. A 1080-base-pair DNA segment was sequenced for one sample from each population. S1 nuclease mapping confirmed the homogeneity of each population with regard to both (ATTTT){sub n} and (AT){sub x}T{sub y} repeats. The authors found three additional structures for (AT){sub x}T{sub y} correlating with the geographic origin of the patients. Ten other nucleotide positions, 5{prime} and 3{prime} to the (AT){sub x}T{sub y} copies, were found to be variable when compared to homologous sequences from human and monkey DNAs. These results allow us to propose an evolutionary scheme for the polymorphisms in the 5{prime} flanking region of the {beta}-globin gene. The results strongly support the hypothesis of three origins for the sickle mutation in Africa.

  3. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5' hypersensitive site 2 of the beta-globin locus control region.

    PubMed Central

    Gong, Q H; McDowell, J C; Dean, A

    1996-01-01

    Much of our understanding of the process by which enhancers activate transcription has been gained from transient-transfection studies in which the DNA is not assembled with histones and other chromatin proteins as it is in the cell nucleus. To study the activation of a mammalian gene in a natural chromatin context in vivo, we constructed a minichromosome containing the human epsilon-globin gene and portions of the beta-globin locus control region (LCR). The minichromosomes replicate and are maintained at stable copy number in human erythroid cells. Expression of the minichromosomal epsilon-globin gene requires the presence of beta-globin LCR elements in cis, as is the case for the chromosomal gene. We determined the chromatin structure of the epsilon-globin gene in both the active and inactive states. The transcriptionally inactive locus is covered by an array of positioned nucleosomes extending over 1,400 bp. In minichromosomes with a (mu)LCR or DNase I-hypersensitive site 2 (HS2) which actively transcribe the epsilon-globin gene, the nucleosome at the promoter is altered or disrupted while positioning of nucleosomes in the rest of the locus is retained. All or virtually all minichromosomes are simultaneously hypersensitive to DNase I both at the promoter and at HS2. Transcriptional activation and promoter remodeling, as well as formation of the HS2 structure itself, depended on the presence of the NF-E2 binding motif in HS2. The nucleosome at the promoter which is altered upon activation is positioned over the transcriptional elements of the epsilon-globin gene, i.e., the TATA, CCAAT, and CACCC elements, and the GATA-1 site at -165. The simple availability of erythroid transcription factors that recognize these motifs is insufficient to allow expression. As in the chromosomal globin locus, regulation also occurs at the level of chromatin structure. These observations are consistent with the idea that one role of the beta-globin LCR is to maintain promoters free

  4. Structural analysis of the 5' flanking region of the beta-globin gene in African sickle cell anemia patients: further evidence for three origins of the sickle cell mutation in Africa.

    PubMed

    Chebloune, Y; Pagnier, J; Trabuchet, G; Faure, C; Verdier, G; Labie, D; Nigon, V

    1988-06-01

    Haplotype analysis of the beta-globin gene cluster shows two regions of DNA characterized by nonrandom association of restriction site polymorphisms. These regions are separated by a variable segment containing the repeated sequences (ATTTT)n and (AT)xTy, which might be involved in recombinational events. Studies of haplotypes linked to the sickle cell gene in Africa provide strong argument for three origins of the mutation: Benin, Senegal, and the Central African Republic. Nevertheless, the haplotype determination does not give any information about the variable segment and does not totally exclude the possibility of recombination leading to different haplotypes linked to the mutation. The structure of the variable segment in the three African populations was studied by S1 nuclease mapping of genomic DNA, which allows a comparison of several samples. A 1080-base-pair DNA segment was sequenced for one sample from each population. S1 nuclease mapping confirmed the homogeneity of each population with regard to both (ATTTT)n and (AT)xTy repeats. We found three additional structures for (AT)xTy correlating with the geographic origin of the patients. Ten other nucleotide positions, 5' and 3' to the (AT)xTy copies, were found to be variable when compared to homologous sequences from human and monkey DNAs. These results allow us to propose an evolutionary scheme for the polymorphisms in the 5' flanking region of the beta-globin gene. The results strongly support the hypothesis of three origins for the sickle mutation in Africa.

  5. Erythroid Krüppel-like factor (EKLF) is active in primitive and definitive erythroid cells and is required for the function of 5'HS3 of the beta-globin locus control region.

    PubMed

    Tewari, R; Gillemans, N; Wijgerde, M; Nuez, B; von Lindern, M; Grosveld, F; Philipsen, S

    1998-04-15

    Disruption of the gene for transcription factor EKLF (erythroid Krüppel-like factor) results in fatal anaemia caused by severely reduced expression of the adult beta-globin gene, while other erythroid-specific genes, including the embryonic epsilon- and fetal gamma-globin genes, are expressed normally. Thus, EKLF is thought to be a stage-specific factor acting through the CACC box in the beta-gene promoter, even though it is already present in embryonic red cells. Here, we show that a beta-globin gene linked directly to the locus control region (LCR) is expressed at embryonic stages, and that this is only modestly reduced in EKLF-/- embryos. Thus, embryonic beta-globin expression is not intrinsically dependent on EKLF. To investigate whether EKLF functions in the locus control region, we analysed the expression of LCR-driven lacZ reporters. This shows that EKLF is not required for reporter activation by the complete LCR. However, embryonic expression of reporters driven by 5'HS3 of the LCR requires EKLF. This suggests that EKLF interacts directly with the CACC motifs in 5'HS3 and demonstrates that EKLF is also a transcriptional activator in embryonic erythropoiesis. Finally, we show that overexpression of EKLF results in an earlier switch from gamma- to beta-globin expression. Adult mice with the EKLF transgene have reduced platelet counts, suggesting that EKLF levels affect the balance between the megakaryocytic and erythroid lineages. Interestingly, the EKLF transgene rescues the lethal phenotype of EKLF null mice, setting the stage for future studies aimed at the analysis of the EKLF protein and its role in beta-globin gene activation.

  6. Beta-globin locus activation regions: conservation of organization, structure, and function.

    PubMed

    Li, Q L; Zhou, B; Powers, P; Enver, T; Stamatoyannopoulos, G

    1990-11-01

    The human beta-globin locus activation region (LAR) comprises four erythroid-specific DNase I hypersensitive sites (I-IV) thought to be largely responsible for activating the beta-globin domain and facilitating high-level erythroid-specific globin gene expression. We identified the goat beta-globin LAR, determined 10.2 kilobases of its sequence, and demonstrated its function in transgenic mice. The human and goat LARs share 6.5 kilobases of homologous sequences that are as highly conserved as the epsilon-globin gene promoters. Furthermore, the overall spatial organization of the two LARs has been conserved. These results suggest that the functionally relevant regions of the LAR are large and that in addition to their primary structure, the spatial relationship of the conserved elements is important for LAR function.

  7. Nuclear matrix association of the human beta-globin locus utilizing a novel approach to quantitative real-time PCR.

    PubMed

    Ostermeier, G Charles; Liu, Zhandong; Martins, Rui Pires; Bharadwaj, Rikki R; Ellis, James; Draghici, Sorin; Krawetz, Stephen A

    2003-06-15

    The human beta-globin locus is home to five genes that are regulated in a tissue-specific and developmental stage-specific manner. While the exact mode of expression remains somewhat enigmatic, a significant effort has been focused at the locus control region (LCR). The LCR is marked by five DNase I-hypersensitive sites (HS) approximately 15 kb upstream of the epsilon-globin gene. Nuclear matrix-associated regions (MARs) organize chromatin into functional domains and at least one of the HS appears bound to the nuclear matrix. We have employed an in vivo based PCR MAR assay to investigate the role of MAR-mediated regulation of the beta-globin locus. This was facilitated with a novel reaction efficiency based quantitative real-time PCR analysis software tool, Target Analysis Quantification. Using a log-linear regression strategy, discordances were eliminated. This allowed us to reliably estimate the relative amount of initial template associated with the nuclear matrix at 15 unique regions spanning the beta-globin locus in both non-expressing and expressing cell lines. A dynamic association dependent on expression status was revealed both at the LCR/5'HS region and within the second intron of the beta-globin gene. These results provide the first evidence that nuclear matrix association dynamically mediates the looping of the beta-globin locus to achieve transcriptional control.

  8. Genetics Home Reference: methemoglobinemia, beta-globin type

    MedlinePlus

    ... blood cells. Specifically, it alters a molecule called hemoglobin within these cells. Hemoglobin within red blood cells attaches (binds) to oxygen ... in tissues throughout the body. Instead of normal hemoglobin, people with methemoglobinemia, beta-globin type have an ...

  9. Beta-globin active chromatin Hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice.

    PubMed

    Kooren, Jurgen; Palstra, Robert-Jan; Klous, Petra; Splinter, Erik; von Lindern, Marieke; Grosveld, Frank; de Laat, Wouter

    2007-06-01

    Expression of the beta-globin genes proceeds from basal to exceptionally high levels during erythroid differentiation in vivo. High expression is dependent on the locus control region (LCR) and coincides with more frequent LCR-gene contacts. These contacts are established in the context of an active chromatin hub (ACH), a spatial chromatin configuration in which the LCR, together with other regulatory sequences, loops toward the active beta-globin-like genes. Here, we used recently established I/11 cells as a model system that faithfully recapitulates the in vivo erythroid differentiation program to study the molecular events that accompany and underlie ACH formation. Upon I/11 cell induction, histone modifications changed, the ACH was formed, and the beta-globin-like genes were transcribed at rates similar to those observed in vivo. The establishment of frequent LCR-gene contacts coincided with a more efficient loading of polymerase onto the beta-globin promoter. Binding of the transcription factors GATA-1 and EKLF to the locus, although previously shown to be required, was not sufficient for ACH formation. Moreover, we used knock-out mice to show that the erythroid transcription factor p45 NF-E2, which has been implicated in beta-globin gene regulation, is dispensable for beta-globin ACH formation.

  10. Multiple elements in human beta-globin locus control region 5' HS 2 are involved in enhancer activity and position-independent, transgene expression.

    PubMed Central

    Caterina, J J; Ciavatta, D J; Donze, D; Behringer, R R; Townes, T M

    1994-01-01

    The human beta-globin Locus Control Region (LCR) has two important activities. First, the LCR opens a 200 kb chromosomal domain containing the human epsilon-, gamma- and beta-globin genes and, secondly, these sequences function as a powerful enhancer of epsilon-, gamma- and beta-globin gene expression. Erythroid-specific, DNase I hypersensitive sites (HS) mark sequences that are critical for LCR activity. Previous experiments demonstrated that a 1.9 kb fragment containing the 5' HS 2 site confers position-independent expression in transgenic mice and enhances human beta-globin gene expression 100-fold. Further analysis of this region demonstrates that multiple sequences are required for maximal enhancer activity; deletion of SP1, NF-E2, GATA-1 or USF binding sites significantly decrease beta-globin gene expression. In contrast, no single site is required for position-independent transgene expression; all mice with site-specific mutations in 5' HS 2 express human beta-globin mRNA regardless of the site of transgene integration. Apparently, multiple combinations of protein binding sites in 5' HS 2 are sufficient to prevent chromosomal position effects that inhibit transgene expression. PMID:8152905

  11. Diversity of [beta]-globin mutations in Israeli ethnic groups reflects recent historic events

    SciTech Connect

    Filon, D.; Oron, V.; Krichevski, S.; Shaag, A.; Goldfarb, A.; Aker, M.; Rachmilewitz, E.A.; Rund, D.; Oppenheim, A. )

    1994-05-01

    The authors characterized nearly 500 [beta]-thalassemia genes from the Israeli population representing a variety of ethnic subgroups. They found 28 different mutations in the [beta]-globin gene, including three mutations ([beta][sup S], [beta][sup C], and [beta][sup O-Arab]) causing hemoglobinopathies. Marked genetic heterogeneity was observed in both the Arab (20 mutations) and Jewish (17 mutations) populations. On the other hand, two ethnic isolates - Druze and Samaritans - had a single mutation each. Fifteen of the [beta]-thalassemia alleles are Mediterranean in type, 5 originated in Kurdistan, 2 are of Indian origin, and 2 sporadic alleles came from Europe. Only one mutant allele-nonsense codon 37-appears to be indigenous to Israel. While human habitation in Israel dates back to early prehistory, the present-day spectrum of [beta]-globin mutations can be largely explained by migration events that occurred in the past millennium. 26 refs., 2 figs., 3 tabs.

  12. Beta-globin gene haplotypes among cameroonians and review of the global distribution: is there a case for a single sickle mutation origin in Africa?

    PubMed

    Bitoungui, Valentina J Ngo; Pule, Gift D; Hanchard, Neil; Ngogang, Jeanne; Wonkam, Ambroise

    2015-03-01

    Studies of hemoglobin S haplotypes in African subpopulations have potential implications for patient care and our understanding of genetic factors that have shaped the prevalence of sickle cell disease (SCD). We evaluated HBB gene cluster haplotypes in SCD patients from Cameroon, and reviewed the literature for a global distribution. We reviewed medical records to obtain pertinent socio-demographic and clinical features for 610 Cameroonian SCD patients, including hemoglobin electrophoresis and full blood counts. RFLP-PCR was used to determine the HBB gene haplotype on 1082 chromosomes. A systematic review of the current literature was undertaken to catalogue HBB haplotype frequencies in SCD populations around the world. Benin (74%; n = 799) and Cameroon (19%; n = 207) were the most prevalent haplotypes observed among Cameroonian patients. There was no significant association between HBB haplotypes and clinical life events, anthropometric measures, hematological parameters, or fetal hemoglobin (HbF) levels. The literature review of the global haplotype distributions was consistent with known historical migrations of the people of Africa. Previously reported data from Sudan showed a distinctly unusual pattern; all four classical haplotypes were reported, with an exceptionally high proportion of the Senegal, Cameroon, and atypical haplotypes. We did not observe any significant associations between HBB haplotype and SCD disease course in this cohort. Taken together, the data from Cameroon and from the wider literature suggest that a careful reassessment of African HBB haplotypes may shed further light on the evolutionary dynamics of the sickle allele, which could suggest a single origin of the sickle mutation.

  13. Beta-Globin Gene Haplotypes Among Cameroonians and Review of the Global Distribution: Is There a Case for a Single Sickle Mutation Origin in Africa?

    PubMed Central

    Bitoungui, Valentina J. Ngo; Pule, Gift D.; Hanchard, Neil; Ngogang, Jeanne

    2015-01-01

    Abstract Studies of hemoglobin S haplotypes in African subpopulations have potential implications for patient care and our understanding of genetic factors that have shaped the prevalence of sickle cell disease (SCD). We evaluated HBB gene cluster haplotypes in SCD patients from Cameroon, and reviewed the literature for a global distribution. We reviewed medical records to obtain pertinent socio-demographic and clinical features for 610 Cameroonian SCD patients, including hemoglobin electrophoresis and full blood counts. RFLP-PCR was used to determine the HBB gene haplotype on 1082 chromosomes. A systematic review of the current literature was undertaken to catalogue HBB haplotype frequencies in SCD populations around the world. Benin (74%; n=799) and Cameroon (19%; n=207) were the most prevalent haplotypes observed among Cameroonian patients. There was no significant association between HBB haplotypes and clinical life events, anthropometric measures, hematological parameters, or fetal hemoglobin (HbF) levels. The literature review of the global haplotype distributions was consistent with known historical migrations of the people of Africa. Previously reported data from Sudan showed a distinctly unusual pattern; all four classical haplotypes were reported, with an exceptionally high proportion of the Senegal, Cameroon, and atypical haplotypes. We did not observe any significant associations between HBB haplotype and SCD disease course in this cohort. Taken together, the data from Cameroon and from the wider literature suggest that a careful reassessment of African HBB haplotypes may shed further light on the evolutionary dynamics of the sickle allele, which could suggest a single origin of the sickle mutation. PMID:25748438

  14. Genomic evidence for independent origins of beta-like globin genes in monotremes and therian mammals.

    PubMed

    Opazo, Juan C; Hoffmann, Federico G; Storz, Jay F

    2008-02-01

    Phylogenetic reconstructions of the beta-globin gene family in vertebrates have revealed that developmentally regulated systems of hemoglobin synthesis have been reinvented multiple times in independent lineages. For example, the functional differentiation of embryonic and adult beta-like globin genes occurred independently in birds and mammals. In both taxa, the embryonic beta-globin gene is exclusively expressed in primitive erythroid cells derived from the yolk sac. However, the "epsilon-globin" gene in birds is not orthologous to the epsilon-globin gene in mammals, because they are independently derived from lineage-specific duplications of a proto beta-globin gene. Here, we report evidence that the early and late expressed beta-like globin genes in monotremes and therian mammals (marsupials and placental mammals) are the products of independent duplications of a proto beta-globin gene in each of these two lineages. Results of our analysis of genomic sequence data from a large number of vertebrate taxa, including sequence from the recently completed platypus genome, reveal that the epsilon- and beta-globin genes of therian mammals arose via duplication of a proto beta-globin gene after the therian/monotreme split. Our analysis of genomic sequence from the platypus also revealed the presence of a duplicate pair of beta-like globin genes that originated via duplication of a proto beta-globin gene in the monotreme lineage. This discovery provides evidence that, in different lineages of mammals, descendent copies of the same proto beta-globin gene may have been independently neofunctionalized to perform physiological tasks associated with oxygen uptake and storage during embryonic development.

  15. Dual promoter activation by the human beta-globin locus control region.

    PubMed Central

    Bresnick, E H; Felsenfeld, G

    1994-01-01

    The human beta-globin locus control region (LCR) is necessary for high-level and position-independent expression of globin genes in erythroid cells. A variety of mechanisms have been proposed for the cis-activation of individual members of the beta-globin gene family by the LCR located 10-50 kilobases upstream. It is not known, however, whether a given LCR can activate all developmentally appropriate globin family members on its chromosome or whether, within a given chromosome, the LCR must be committed to activating only a single gene. We have devised an experiment to distinguish between these possibilities. This experiment takes advantage of the fact that if two genes in a cluster are transcriptionally active and their promoters, therefore, are in a conformation hypersensitive to nucleases, restriction enzymes that cleave the promoters will excise the intervening chromatin fragment. The Apa I sites on human fetal G gamma- and A gamma-globin gene promoters are accessible to cleavage in nuclei from the human erythroleukemia cell line K562, which expresses these genes, but not in HeLa cells. We find that Apa I digestion leads to excision in high yield of the fragment spanning these promoters, showing that a LCR element is capable of sharing its activating function among members of a gene cluster on a single chromosome. Images PMID:8108408

  16. A five prime splice-region G yields C mutation in exon 1 of the human. beta. -globin gene inhibits pre-mRNA splicing: A mechanism for. beta. sup + -thalassemia

    SciTech Connect

    Vidaud, M.; Vidaud, D.; Amselem, S.; Rosa, J.; Goossens, M. ); Gattoni, R.; Stevenin, J. ); Chibani, J. )

    1989-02-01

    The authors have characterized a Mediterranean {beta}-thalassemia allele containing a sequence change at codon 30 that alters both {beta}-globin pre-mRNA splicing and the structure of the homoglobin product. Presumably, this G {yields} C transversion at position {minus}1 of intron 1 reduces severely the utilization of the normal 5{prime} splice site since the level of the Arg {yields} Thr mutant hemoglobin (designated hemoglobin Kairouan) found in the erythrocytes of the patient is very low (2% of total hemoglobin). Since no natural mutations of the guanine located at position {minus}1 of the CAG/GTAAGT consensus sequence had been isolated previously. They investigated the role of this nucleotide in the constitution of an active 5{prime} splice site by studying the splicing of the pre-mRNA in cell-free extracts. They demonstrate that correct splicing of the mutant pre-mRNA is 98% inhibited. Their results provide further insights into the mechanisms of pre-mRNA maturation by revealing that the last residue of the exon plays a role at least equivalent to that of the intron residue at position +5.

  17. Splicing and 3' end formation in the definition of nonsense-mediated decay-competent human beta-globin mRNPs.

    PubMed

    Neu-Yilik, G; Gehring, N H; Thermann, R; Frede, U; Hentze, M W; Kulozik, A E

    2001-02-01

    Premature translation termination codons are common causes of genetic disorders. mRNAs with such mutations are degraded by a surveillance mechanism termed nonsense-mediated decay (NMD), which represents a phylogenetically widely conserved post-transcriptional mechanism for the quality control of gene expression. How NMD-competent mRNPs are formed and specified remains a central question. Here, we have used human beta-globin mRNA as a model system to address the role of splicing and polyadenylation for human NMD. We show that (i) splicing is an indispensable component of the human beta-globin NMD pathway, which cannot be compensated for by exonic beta-globin 'failsafe' sequences; (ii) the spatial requirements of human beta-globin NMD, as signified by the maximal distance of the nonsense mutation to the final exon-exon junction, are less constrained than in yeast; and (iii) non-polyadenylated mRNAs with a histone 3' end are NMD competent. Thus, the formation of NMD-competent mRNP particles critically depends on splicing but does not require the presence of a poly(A) tail.

  18. Targeting of c-myc and beta-globin coding sequences to cytoskeletal-bound polysomes by c-myc 3' untranslated region.

    PubMed Central

    Hesketh, J; Campbell, G; Piechaczyk, M; Blanchard, J M

    1994-01-01

    The influence of the 3' untranslated region on mRNA localization was investigated by measuring the distribution of myc, beta-globin and hybrid myc-globin mRNAs between free, cytoskeletal-bound and membrane-bound polysomes in cells transfected with either control or chimeric gene constructs. c-myc sequences and beta-globin-coding sequences linked to the myc 3' untranslated region were present at greatest enrichment in cytoskeletal-bound polysomes. beta-Globin mRNA and myc-coding sequences linked to the beta-globin 3' untranslated region were recovered largely in the free polysomes. In situ hybridization confirmed that replacement of the c-myc 3' untranslated region by that of globin caused a relocalization of the mRNA. The results suggest that mRNA localization in differentiated eukaryotic cells depends on a mechanism that involves directional information in the 3' untranslated region of mRNAs. Images Figure 2 Figure 3 PMID:8129712

  19. Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism.

    PubMed

    Dykxhoorn, Derek M; Schlehuber, Lisa D; London, Irving M; Lieberman, Judy

    2006-04-11

    A single nucleotide polymorphism (SNP) in the sickle beta-globin gene (beta(S)) leads to sickle cell anemia. Sickling increases sharply with deoxy sickle Hb concentration and decreases with increasing fetal gamma-globin concentration. Measures that decrease sickle Hb concentration should have an antisickling effect. RNA interference (RNAi) uses small interfering (si)RNAs for sequence-specific gene silencing. A beta(S) siRNA with position 10 of the guide strand designed to align with the targeted beta(S) SNP specifically silences beta(S) gene expression without affecting the expression of the gamma-globin or normal beta-globin (beta(A)) genes. Silencing is increased by altering the 5' end of the siRNA antisense (guide) strand to enhance its binding to the RNA-induced silencing complex (RISC). Specific beta(S) silencing was demonstrated by using a luciferase reporter and full-length beta(S) cDNA transfected into HeLa cells and mouse erythroleukemia cells, where it was expressed in the context of the endogenous beta-globin gene promoter and the locus control region enhancers. When this strategy was used to target beta(E), silencing was not limited to the mutant gene but also targeted the normal beta(A) gene. siRNAs, mismatched with their target at position 10, guided mRNA cleavage in all cases except when two bulky purines were aligned. The specific silencing of the beta(S)-globin gene, as compared with beta(E), as well as studies of silencing SNP mutants in other diseases, indicates that siRNAs developed to target a disease-causing SNP will be specific if the mutant residue is a pyrimidine and the normal residue is a purine.

  20. Contrasting effects of alpha and beta globin regulatory elements on chromatin structure may be related to their different chromosomal environments.

    PubMed Central

    Craddock, C F; Vyas, P; Sharpe, J A; Ayyub, H; Wood, W G; Higgs, D R

    1995-01-01

    Expression of the human alpha and beta globin gene clusters is regulated by remote sequences, referred to as HS -40 and the beta-locus control region (beta-LCR) that lie 5-40 kb upstream of the genes they activate. Because of their common ancestry, similar organization and coordinate expression it has often been assumed that regulation of the globin gene clusters by HS -40 and the beta-LCR occurs via similar mechanisms. Using interspecific hybrids containing chromosomes with naturally occurring deletions of HS -40 we have shown that, in contrast to the beta-LCR, this element exerts no discernible effect on long-range chromatin structure and in addition does not influence formation of DNase I hypersensitive sites at the alpha globin promoters. These differences in the behaviour of HS -40 and the beta-LCR may reflect their contrasting influence on gene expression in transgenic mice and may result from the differing requirements of these elements in their radically different, natural chromosomal environments; the alpha cluster lying within a region of constitutively 'open' chromatin and the beta cluster in a segment of chromatin which opens in a tissue-specific manner. Differences in the hierarchical control of the alpha and beta globin clusters may exemplify more general differences in the regulation of eukaryotic genes which lie in similar open or closed chromosomal regions. Images PMID:7737123

  1. Protection against telomeric position effects by the chicken cHS4 beta-globin insulator.

    PubMed

    Rincón-Arano, Héctor; Furlan-Magaril, Mayra; Recillas-Targa, Félix

    2007-08-28

    Epigenetic silencing of genes relocated near telomeres, termed telomeric position effect, has been extensively studied in yeast and more recently in vertebrates. However, protection of a transgene against telomeric position effects by chromatin insulators has not yet been addressed. In this work we investigated the capacity of the chicken beta-globin insulator cHS4 to shield a transgene against silencing by telomeric heterochromatin. Using telomeric repeats, we targeted transgene integration into telomeres of the chicken cell line HD3. When the chicken cHS4 insulator is incorporated to the transgene, we observe a sustained gene expression of single-copy integrants that can be maintained for >100 days of continuous culture. However, uninsulated single-copy clones showed an accelerated gene expression extinction profile. Unexpectedly, telomeric silencing was not reversed with trichostatin A or nicotidamine. In contrast, significant reactivation was obtained with 5-aza-2'-deoxycytidine, consistent with the subtelomeric DNA methylation status. Strikingly, insulated transgenes integrated into telomeric regions were enriched in histone methylation, such as H3K4me2 and H3K79me2, but not in histone acetylation. Furthermore, the cHS4 insulator counteracts telomeric position effects in an upstream stimulatory factor-independent manner. Our results suggest that this insulator has the capacity to adapt to different chromatin propagation signals in distinct insertional epigenome environments.

  2. Differential expression of murine adult hemoglobins in early ontogeny

    SciTech Connect

    Wawrzyniak, C.J.; Lewis, S.E.; Popp, R.A.

    1985-01-01

    A hemoglobin mutation is described that permits study of the expression of the two adult ..beta..-globin genes throughout fetal and postnatal development. Mice with a mutation at the Hbb/sup s/, ..beta..-globin locus, were used to study the relative levels of ..beta..-s2major and ..beta..-sminor globins specified by the mutant Hbb/sup s2/ haplotype during development. At 11.5 days of gestation ..beta..-sminor comprised over 80% and ..beta..-s2major under 20% of the adult beta-globin. The relative level of ..beta..-sminor decreased through fetal development; at birth ..beta..-sminor represented 33.7% of the ..beta..-globin. The adult values of 71.0% ..beta..-s2major and 29.0% ..beta..-sminor globin are expressed in mice six days after birth. Because the two ..beta..-globin genes are expressed in mice of the Hbb/sup 2s/ haplotype, both the ..beta..-smajor and ..beta..-sminor genes must be expressed in mice of the Hbb/sup s/ haplotype. Expression of the ..beta..-sminor gene is elevated to 35.6% in Hbb/sup s2/ mice that have been bled repeatedly. Thus, the 5' ..beta..-s2major and 3' ..beta..-sminor genes of the Hbb/sup s2/ haplotype and, presumably the 5' ..beta..-smajor and 3' ..beta..-sminor genes of the Hbb/sup s/ haplotype, are regulated independently and are homologous to the 5' ..beta..-dmajor and 3' ..beta..-dminor genes of the Hbb/sup d/ haplotype. Mice of the Hbb/sup s2/ haplotype are better than mice of the Hbb/sup d/ haplotytpe for studying the mechanisms of hemoglobin switching because the Hbb/sup s2/ each of the three embryonic and two adult hemoglobins can be separated by electrophoresis. 17 refs., 3 figs.

  3. Allele-specific enzymatic amplification of. beta. -globin genomic DNA for diagnosis of sickle cell anemia

    SciTech Connect

    Wu, D.Y.; Ugozzoli, L.; Pal, B.K.; Wallace, B. )

    1989-04-01

    A rapid nonradioactive approach to the diagnosis of sickle cell anemia is described based on an allele-specific polymerase chain reaction (ASPCR). This method allows direct detection of the normal or the sickle cell {beta}-globin allele in genomic DNA without additional steps of probe hybridization, ligation, or restriction enzyme cleavage. Two allele-specific oligonucleotide primers, one specific for the sickle cell allele and one specific for the normal allele, together with another primer complementary to both alleles were used in the polymerase chain reaction with genomic DNA templates. The allele-specific primers differed from each other in their terminal 3{prime} nucleotide. Under the proper annealing temperature and polymerase chain reaction conditions, these primers only directed amplification on their complementary allele. In a single blind study of DNA samples from 12 individuals, this method correctly and unambiguously allowed for the determination of the genotypes with no false negatives or positives. If ASPCR is able to discriminate all allelic variation (both transition and transversion mutations), this method has the potential to be a powerful approach for genetic disease diagnosis, carrier screening, HLA typing, human gene mapping, forensics, and paternity testing.

  4. Increased expression of alpha- and beta-globin mRNAs at the pituitary following exposure to estrogen during the critical period of neonatal sex differentiation in the rat.

    PubMed

    Leffers, H; Navarro, V M; Nielsen, John E; Mayen, A; Pinilla, L; Dalgaard, M; Malagon, M M; Castaño, J P; Skakkebaek, N E; Aguilar, E; Tena-Sempere, M

    2006-04-01

    Deterioration of reproductive health in human and wildlife species during the past decades has drawn considerable attention to the potential adverse effects of exposure to xenosteroids during sensitive periods of sex development. The hypothalamic-pituitary (HP) unit is a key element in the neuroendocrine system controlling development and function of the reproductive axis; the HP unit being highly sensitive to the organizing effects of endogenous and exogenous sex steroids. To gain knowledge on the molecular mode of action and potential biomarkers of exposure to estrogenic compounds at the HP unit, we screened for differentially expressed genes at the pituitary and hypothalamus of rats after neonatal exposure to estradiol benzoate. Our analyses identified persistent up-regulation of alpha- and beta-globin mRNAs at the pituitary following neonatal estrogenization. This finding was confirmed by combination of RT-PCR analyses and in situ hybridization. Induction of alpha- and beta-globin mRNA expression at the pituitary by neonatal exposure to estrogen was demonstrated as dose-dependent and it was persistently detected up to puberty. In contrast, durable up-regulation of alpha- and beta-globin genes was not detected at the hypothalamus, cortex, cerebellum, liver and testis. Finally, enhanced levels of alpha- and beta-globin mRNAs at the pituitary were also demonstrated after neonatal administration of the anti-androgen flutamide. In summary, alpha- and beta-globin genes may prove as sensitive, pituitary-specific biomarkers of exposure to estrogenic (and/or anti-androgenic) compounds at critical periods of sex development, whose potential in the assessment of endocrine disrupting events at the HP unit merits further investigation. PMID:16520034

  5. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.

    PubMed

    Saiki, R K; Scharf, S; Faloona, F; Mullis, K B; Horn, G T; Erlich, H A; Arnheim, N

    1985-12-20

    Two new methods were used to establish a rapid and highly sensitive prenatal diagnostic test for sickle cell anemia. The first involves the primer-mediated enzymatic amplification of specific beta-globin target sequences in genomic DNA, resulting in the exponential increase (220,000 times) of target DNA copies. In the second technique, the presence of the beta A and beta S alleles is determined by restriction endonuclease digestion of an end-labeled oligonucleotide probe hybridized in solution to the amplified beta-globin sequences. The beta-globin genotype can be determined in less than 1 day on samples containing significantly less than 1 microgram of genomic DNA.

  6. Bach1 repression of ferritin and thioredoxin reductase1 is heme-sensitive in cells and in vitro and coordinates expression with heme oxygenase1, beta-globin, and NADP(H) quinone (oxido) reductase1.

    PubMed

    Hintze, Korry J; Katoh, Yasutake; Igarashi, Kazuhiko; Theil, Elizabeth C

    2007-11-23

    Ferritin gene transcription is regulated by heme as is ferritin mRNA translation, which is mediated by the well studied mRNA.IRE/IRP protein complex. The heme-sensitive DNA sequence in ferritin genes is the maf recognition/antioxidant response element present in several other genes that are induced by heme and repressed by Bach1. We now report that chromatin immunoprecipitated with Bach1 antiserum contains ferritin DNA sequences. In addition, overexpression of Bach1 protein in the transfected cells decreased ferritin expression, indicating insufficient endogenous Bach1 for full repression; decreasing Bach1 with antisense RNA increased ferritin expression. Thioredoxin reductase1, a gene that also contains a maf recognition/antioxidant response element but is less studied, responded similarly to ferritin, as did the positive controls heme oxygenase1 and NADP(H) quinone (oxido) reductase1. Bach1-DNA promoter interactions in cells were confirmed in vitro with soluble, recombinant Bach1 protein and revealed a quantitative range of Bach1/DNA stabilities: ferritin L approximately ferritin H approximately beta-globin, beta-globin approximately 2-fold >heme oxygenase1 = quinone reductase beta-globin approximately 4-fold >thioredoxin reductase1. Such results indicate the possibility that modulation of cellular Bach1 concentrations will have variable effects among the genes coordinately regulated by maf recognition/antioxidant response elements in iron/oxygen/antioxidant metabolism.

  7. Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes.

    PubMed Central

    Cocca, E; Ratnayake-Lecamwasam, M; Parker, S K; Camardella, L; Ciaramella, M; di Prisco, G; Detrich, H W

    1995-01-01

    Alone among piscine taxa, the antarctic icefishes (family Channichthyidae, suborder Notothenioidei) have evolved compensatory adaptations that maintain normal metabolic functions in the absence of erythrocytes and the respiratory oxygen transporter hemoglobin. Although the uniquely "colorless" or "white" condition of the blood of icefishes has been recognized since the early 20th century, the status of globin genes in the icefish genomes has, surprisingly, remained unexplored. Using alpha- and beta-globin cDNAs from the antarctic rockcod Notothenia coriiceps (family Nototheniidae, suborder Notothenioidei), we have probed the genomes of three white-blooded icefishes and four red-blooded notothenioid relatives (three antarctic, one temperate) for globin-related DNA sequences. We detect specific, high-stringency hybridization of the alpha-globin probe to genomic DNAs of both white- and red-blooded species, whereas the beta-globin cDNA hybridizes only to the genomes of the red-blooded fishes. Our results suggest that icefishes retain inactive genomic remnants of alpha-globin genes but have lost, either through deletion or through rapid mutation, the gene that encodes beta-globin. We propose that the hemoglobinless phenotype of extant icefishes is the result of deletion of the single adult beta-globin locus prior to the diversification of the clade. Images Fig. 2 Fig. 3 Fig. 4 PMID:7892183

  8. Hemoglobin Agenogi--A rare abnormal beta globin chain variant.

    PubMed

    Sharma, Sunita; Sharma, Geetika; Chandra, Jagdish; Colah, Roshan

    2016-01-01

    Haemoglobin (Hb) Agenogi is clinically asymptomatic, rare β-globin chain variant characterized by a substitution of glutamic acid by lysine at position 90 of β-chain. It elutes in the C-window on high-performance liquid chromatography (HPLC). We report a 10-year-old male with easy fatigability, lethargy, pallor, and mild splenomegaly. Hematological parameters revealed microcytic hypochromic anemia and mildly raised red blood cells count, suggestive of thalassemia trait. On HPLC, a predominant peak was observed in the C-window (82.6%) along with raised HbA 2 level (9.3%). Based on these findings, a possibility of HbC disease/β-thalassemia trait doubly heterozygous was considered. Family studies were advised. HPLC findings in father were suggestive of β-thalassemia trait, while both his mother and brother had an abnormal peak in the C-window of 42.7% and 40.8%, respectively, with elevated HbA 2 values of 5% and 4.9%, respectively. Direct DNA sequencing revealed intervening sequences 1-5 (G ; C) in father, confirming β-thalassemia trait. His mother and brother had heterozygous gene mutation at codon 90 of β-globin chain (G ; A) suggestive of Hb Agenogi. The child carried mutations for both β-thalassemia trait as well as Hb Agenogi. PMID:26960650

  9. Effects of increased anionic charge in the beta-globin chain on assembly of hemoglobin in vitro.

    PubMed

    Adachi, K; Yamaguchi, T; Pang, J; Surrey, S

    1998-02-15

    Studies on assembly in vitro of alpha-globin chains with recombinant beta16 Gly-->Asp, beta95 Lys-->Glu, beta120 Lys-->Glu and beta16 Gly-->Asp, 120 Lys-->Glu human beta-globin chain variants in addition to human betaA- and betaS-globin chains were performed to evaluate effects of increased anionic charge in the beta chain on hemoglobin assembly using soluble recombinant beta-globin chains expressed in bacteria. A beta112 Cys-->Asp change was also engineered to monitor effects on assembly of increased negative charge at alpha1beta1 interaction sites. Order of tetramer formation in vitro under limiting alpha-globin chain conditions showed Hb betaG16D, K120E = Hb betaK120E = Hb betaK95E > Hb betaG16D > Hb A > Hb S > Hb betaC112D. In addition, beta112 Cys-->Asp chains exist as monomers rather than beta4 tetramers in the absence of alpha chains, and the beta chain in Hb betaC112D tetramers was readily exchanged by addition of betas. These results suggest that affinity between alpha and beta chains is promoted by negatively-charged beta chains up to a maximum of two additional net negative charges and is independent of location on the surface except at the alpha1beta1 interaction site. In addition, our findings show that beta112 Cys on the G helix is critical for facilitating formation of stable alphabeta dimers, which then form functional hemoglobin tetramers, and that beta112 Cys-->Asp inhibits formation of stable alpha1beta1 and beta1beta2 interactions in alpha2beta2 and beta4 tetramers, respectively. PMID:9454775

  10. Peptide nucleic acid (PNA) binding-mediated induction of human gamma-globin gene expression.

    PubMed

    Wang, G; Xu, X; Pace, B; Dean, D A; Glazer, P M; Chan, P; Goodman, S R; Shokolenko, I

    1999-07-01

    Peptide nucleic acids (PNAs) can bind to homopurine/homopyrimidine sequences of double-stranded DNA targets in a sequence-specific manner and form [PNA]2/DNA triplexes with single-stranded DNA D-loop structures at the PNA binding sites. These D-loop structures have been found to have a capacity to initiate transcription in vitro. If this strategy can be used to induce transcription of endogenous genes, it may provide a novel approach for gene therapy of many human diseases. Human [beta] globin disorders such as sickle cell anemia and beta-thalassemia are very common genetic diseases that are caused by mutations in the beta-globin gene. When gamma-globin genes are highly expressed in sickle cell patients, the presence of high levels of fetal hemoglobin (HbF, alpha2gamma2) can compensate for the defective beta-globin gene product and such patients have much improved symptoms or are free of disease. However, the gamma-globin genes are developmentally regulated and normally expressed at very low levels (>1%) in adult blood cells. We have investigated the possibility of inducing gamma-globin gene expression with PNAs. Using PNAs designed to bind to the 5' flanking region of the gamma-globin gene, induction of expression of a reporter gene construct was demonstrated both in vitro and in vivo. More importantly, PNA-mediated induction of endogenous gamma-globin gene expression was also demonstrated in K562 human erythroleukemia cells. This result suggests that induction of gamma-globin gene expression with PNAs might provide a new approach for the treatment of sickle cell disease. PNA-induced gene expression strategy also may have implications in gene therapy of other diseases such as genetic diseases, cancer and infectious diseases.

  11. Gamma-interferon alters globin gene expression in neonatal and adult erythroid cells

    SciTech Connect

    Miller, B.A.; Perrine, S.P.; Antognetti, G.; Perlmutter, D.H.; Emerson, S.G.; Sieff, C.; Faller, D.V.

    1987-06-01

    The effect of gamma-interferon on fetal hemoglobin synthesis by purified cord blood, fetal liver, and adult bone marrow erythroid progenitors was studied with a radioligand assay to measure hemoglobin production by BFU-E-derived erythroblasts. Coculture with recombinant gamma-interferon resulted in a significant and dose-dependent decrease in fetal hemoglobin production by neonatal and adult, but not fetal, BFU-E-derived erythroblasts. Accumulation of fetal hemoglobin by cord blood BFU-E-derived erythroblasts decreased up to 38.1% of control cultures (erythropoietin only). Synthesis of both G gamma/A gamma globin was decreased, since the G gamma/A gamma ratio was unchanged. Picograms fetal hemoglobin per cell was decreased by gamma-interferon addition, but picograms total hemoglobin was unchanged, demonstrating that a reciprocal increase in beta-globin production occurred in cultures treated with gamma-interferon. No toxic effect of gamma-interferon on colony growth was noted. The addition of gamma-interferon to cultures resulted in a decrease in the percentage of HbF produced by adult BFU-E-derived cells to 45.6% of control. Fetal hemoglobin production by cord blood, fetal liver, and adult bone marrow erythroid progenitors, was not significantly affected by the addition of recombinant GM-CSF, recombinant interleukin 1 (IL-1), recombinant IL-2, or recombinant alpha-interferon. Although fetal progenitor cells appear unable to alter their fetal hemoglobin program in response to any of the growth factors added here, the interaction of neonatal and adult erythroid progenitors with gamma-interferon results in an altered expression of globin genes.

  12. CACCC and GATA-1 sequences make the constitutively expressed alpha-globin gene erythroid-responsive in mouse erythroleukemia cells.

    PubMed Central

    Ren, S; Li, J; Atweh, G F

    1996-01-01

    Although the human alpha-globin and beta-globin genes are co-regulated in adult life, they achieve the same end by very different mechanisms. For example, a transfected beta-globin gene is expressed in an inducible manner in mouse erythroleukemia (MEL) cells while a transfected alpha-globin gene is constitutively expressed at a high level in induced and uninduced MEL cells. Interestingly, when the alpha-globin gene is transferred into MEL cells as part of human chromosome 16, it is appropriately expressed in an inducible manner. We explored the basis for the lack of erythroid-responsiveness of the proximal regulatory elements of the human alpha-globin gene. Since the alpha-globin gene is the only functional human globin gene that lacks CACCC and GATA-1 motifs, we asked whether their addition to the alpha-globin promoter would make the gene erythroid-responsive in MEL cells. The addition of each of these binding sites to the alpha-globin promoter separately did not result in inducibility in MEL cells. However, when both sites were added together, the alpha-globin gene became inducible in MEL cells. This suggests that erythroid non-responsiveness of the alpha-globin gene results from the lack of erythroid binding sites and is not necessarily a function of the constitutively active, GC rich promoter. PMID:8628660

  13. Definition of the ovalbumin gene promoter by transfer of an ovalglobin fusion gene into cultured cells.

    PubMed Central

    Knoll, B J; Zarucki-Schulz, T; Dean, D C; O'Malley, B W

    1983-01-01

    In order to study the initiation of transcription from the ovalbumin gene promoter, we constructed a hybrid gene (ovalglobin) in which 753 bps of ovalbumin gene 5'-flanking sequence were joined to the chicken adult beta-globin gene. When transfected into HeLa S3 cells, ovalglobin gene transcription initiated at the ovalbumin gene cap site, as measured by S1 nuclease and primer extension analysis. Deletion of 5'-flanking sequences to position -95 had little effect on transcription; deletion to -77 reduced transcription to about 20% of the wild type level and deletion to -48 reduced the level to about 2%. A deletion to -24, removing the sequence TATATAT, abolished transcription entirely. Hormonal regulation of the ovalglobin gene was observed when primary oviduct cells were used as recipients for DNA transfection. Under these conditions, addition of progesterone increased the level of ovalglobin transcripts to more than 10 times the uninduced level. Images PMID:6314256

  14. Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene.

    PubMed

    Nuez, B; Michalovich, D; Bygrave, A; Ploemacher, R; Grosveld, F

    1995-05-25

    Erythroid Krüppel-like factor (EKLF) was originally isolated from erythroid cell RNA by differential screening and shown to be erythroid-specific, although a low level of EKLF was found in mast cell lines. EKLF contains three zinc-fingers homologous to those found in the Krüppel family of transcription factors. Because it binds the sequence CCACACCCT, EKLF may affect erythroid development as a result of its ability to bind to the CAC box in the promoter of the beta-globin gene. Mutation of this element leads to reduced beta-globin expression and it appears to mediate the effect of the globin locus control region on the promoter. Here we inactivate the EKLF gene through insertion of a lacZ reporter gene by homologous recombination in embryonic stem (ES) cells. Heterozygous EKLF+/- mice show that the reporter gene is expressed in a developmentally specific manner in all types of erythroblasts in the fetal liver and adult bone marrow. Homozygous EKLF-/- mice appear normal during the embryonic stage of haematopoiesis in the yolk sac, but develop a fatal anaemia during early fetal life when haematopoiesis has switched to the fetal liver. Enucleated erythrocytes are formed but these do not contain the proper amount of haemoglobin. We conclude that the transcription factor EKLF is essential for the final steps of definitive erythropoiesis in fetal liver.

  15. Concordance of a point mutation 5' to the A gamma-globin gene with A gamma beta + hereditary persistence of fetal hemoglobin in Greeks.

    PubMed

    Waber, P G; Bender, M A; Gelinas, R E; Kattamis, C; Karaklis, A; Sofroniadou, K; Stamatoyannopoulos, G; Collins, F S; Forget, B G; Kazazian, H H

    1986-02-01

    In the Greek A gamma beta + type of hereditary persistence of fetal hemoglobin (HPFH), adult heterozygotes produce about 20% fetal hemoglobin (HbF), which is predominantly of the A gamma chain variety. The affected beta-globin gene cluster produces near normal amounts of beta-like globin, but in a A gamma to beta ratio of 20:80 instead of 0.5:99.5. Gelinas et al and Collins et al have shown a G to A change 117 nucleotides 5' to the A gamma gene in two Greeks with A gamma beta + HPFH. To demonstrate that this change is not a neutral polymorphism, we carried out hybridization with oligonucleotide probes (19mers) specific for the normal and the mutant sequences. While normal probe identified the A gamma fragment in genomic DNA of all subjects studied, mutant probe was positive only in Greeks with A gamma beta + HPFH. In sum, 108 beta-globin gene clusters of individuals without HPFH were negative when tested with mutant probe, but all 11 affected individuals of six families with Greek A gamma beta + HPFH (two previously sequenced and four new families) were positive with mutant probe. These data support the conclusion that the -117 mutation is causative of A gamma beta + HPFH in Greeks.

  16. Hb Wilde and Hb Patagonia: two novel elongated beta-globin variants causing dominant beta-thalassemia.

    PubMed

    Scheps, Karen G; Hasenahuer, Marcia A; Parisi, Gustavo; Fornasari, María S; Pennesi, Sandra P; Erramouspe, Beatriz; Basack, Felisa N; Veber, Ernesto S; Aversa, Luis; Elena, Graciela; Varela, Viviana

    2015-06-01

    We describe here the molecular and hematological characteristics of novel frameshift mutations in exon 2 of the HBB gene (in heterozygous state) found in two Argentinean pediatric patients with dominant β-thalassemia-like features. In Hb Wilde, HBB:c.270_273delTGAG(p.Glu90Cysfs*67), we detected the deletion of the third base of the codon 89 (T) and the codon 90 (GAG), whereas in Hb Patagonia, HBB:c.296_297dupGT(p.Asp99Trpfs*59), the frameshift mutation was due to a duplication of a 'GT' dinucleotide after the second base of codon 98 (GTG). The Hb Patagonia and Hb Wilde mutations would result in elongated β-globin chains with modified C-terminal sequences and a total of 155 and 157 amino acids residues, respectively. Based on bioinformatics and structural analysis, as well as protein modeling, we predict that the elongated β-globins would affect the formation of the αβ dimers and their stability, which would further support the mechanism for the observed clinical features in both patients. PMID:25284604

  17. Hb Wilde and Hb Patagonia: two novel elongated beta-globin variants causing dominant beta-thalassemia.

    PubMed

    Scheps, Karen G; Hasenahuer, Marcia A; Parisi, Gustavo; Fornasari, María S; Pennesi, Sandra P; Erramouspe, Beatriz; Basack, Felisa N; Veber, Ernesto S; Aversa, Luis; Elena, Graciela; Varela, Viviana

    2015-06-01

    We describe here the molecular and hematological characteristics of novel frameshift mutations in exon 2 of the HBB gene (in heterozygous state) found in two Argentinean pediatric patients with dominant β-thalassemia-like features. In Hb Wilde, HBB:c.270_273delTGAG(p.Glu90Cysfs*67), we detected the deletion of the third base of the codon 89 (T) and the codon 90 (GAG), whereas in Hb Patagonia, HBB:c.296_297dupGT(p.Asp99Trpfs*59), the frameshift mutation was due to a duplication of a 'GT' dinucleotide after the second base of codon 98 (GTG). The Hb Patagonia and Hb Wilde mutations would result in elongated β-globin chains with modified C-terminal sequences and a total of 155 and 157 amino acids residues, respectively. Based on bioinformatics and structural analysis, as well as protein modeling, we predict that the elongated β-globins would affect the formation of the αβ dimers and their stability, which would further support the mechanism for the observed clinical features in both patients.

  18. Beta-globin haplotype analysis suggests that a major source of Malagasy ancestry is derived from Bantu-speaking Negroids.

    PubMed Central

    Hewitt, R.; Krause, A.; Goldman, A.; Campbell, G.; Jenkins, T.

    1996-01-01

    The origins of the inhabitants of Madagascar have not been fully resolved. Anthropological studies and preliminary genetic data point to two main sources of ancestry of the Malagasy, namely, Indonesian and African, with additional contributions from India and Arabia. The sickle-cell (beta s) mutation is found in populations of African and Indian origin. The frequency of the beta s-globin gene, derived from 1,425 Malagasy individuals, varies from 0 in some highland populations to .25 in some coastal populations. The beta s mutation is thought to have arisen at least five times, on the basis of the presence of five distinct beta s-associated haplotypes, each found in a separate geographic area. Twenty-five of the 35 Malagasy beta s haplotypes were of the typical "Bantu" type, 1 "Senegal" haplotype was found, and 2 rare or atypical haplotypes were observed; the remaining 7 haplotypes were consistent with the Bantu haplotype. The Bantu beta s mutation is thought to have been introduced into Madagascar by Bantu-speaking immigrants (colonists or slaves) from central or east Africa. The Senegal beta s mutation may have been introduced to the island via Portuguese naval explorers. This study provides the first definitive biological evidence that a major component of Malagasy ancestry is derived from African populations, in particular, Bantu-speaking Negroids. beta A haplotypes are also consistent with the claim for a significant African contribution to Malagasy ancestry but are also suggestive of Asian/Oceanic and Caucasoid admixture within the Malagasy population. PMID:8651308

  19. Detection of a major gene for heterocellular hereditary persistence of fetal hemoglobin after accounting for genetic modifiers

    SciTech Connect

    Thein, S.L.; Weatherall, D.J. ); Sampietro, M.; Rohde, K.; Rochette, J.; Lathrop, G.M.; Demenais, F.

    1994-02-01

    [open quotes]Heterocellular hereditary persistence of fetal hemoglobin[close quotes] (HPFH) is the term used to describe the genetically determined persistence of fetal hemoglobin (Hb F) production into adult life, in the absence of any related hematological disorder. Whereas some forms are caused by mutations in the [beta]-globin gene cluster on chromosome 11, others segregate independently. While the latter are of particular interest with respect to the regulation of globin gene switching, it has not been possible to determine their chromosomal location, mainly because their mode of inheritance is not clear, but also because several other factors are known to modify Hb F production. The authors have examined a large Asian Indian pedigree which includes individuals with heterocellular HPFH associated with [beta]-thalassemia and/or [alpha]-thalassemia. Segregation analysis was conducted on the HPFH trait FC, defined to be the percentage of Hb F-containing cells (F-cells), using the class D regressive model. The results provide evidence for the presence of a major gene, dominant or codominant, which controls the FC values with residual familial correlations. The major gene was detected when the effects of genetic modifiers, notably [beta]-thalassemia and the XmnI-[sup G][gamma] polymorphism, are accounted for in this analysis. Linkage with the [beta]-globin gene cluster is excluded. The transmission of the FC values in this pedigree is informative enough to allow detection of linkage with an appropriate marker(s). The analytical approach outlined in this study, using simple regression to allow for genetic modifiers and thus allowing the mode of inheritance of a trait to be dissected out, may be useful as a model for segregation and linkage analyses of other complex phenotypes. 39 refs., 4 figs., 6 tabs.

  20. Detection of a major gene for heterocellular hereditary persistence of fetal hemoglobin after accounting for genetic modifiers.

    PubMed

    Thein, S L; Sampietro, M; Rohde, K; Rochette, J; Weatherall, D J; Lathrop, G M; Demenais, F

    1994-02-01

    "Heterocellular hereditary persistence of fetal hemoglobin" (HPFH) is the term used to describe the genetically determined persistence of fetal hemoglobin (Hb F) production into adult life, in the absence of any related hematological disorder. Whereas some forms are caused by mutations in the beta-globin gene cluster on chromosome 11, others segregate independently. While the latter are of particular interest with respect to the regulation of globin gene switching, it has not been possible to determine their chromosomal location, mainly because their mode of inheritance is not clear, but also because several other factors are known to modify Hb F production. We have examined a large Asian Indian pedigree which includes individuals with heterocellular HPFH associated with beta-thalassemia and/or alpha-thalassemia. Segregation analysis was conducted on the HPFH trait FC, defined to be the percentage of Hb F-containing cells (F-cells), using the class D regressive model. Our results provide evidence for the presence of a major gene, dominant or codominant, which controls the FC values with residual familial correlations. The major gene was detected when the effects of genetic modifiers, notably beta-thalassemia and the XmnI-G gamma polymorphism, are accounted for in the analysis. Linkage with the beta-globin gene cluster is excluded. The transmission of the FC values in this pedigree is informative enough to allow detection of linkage with an appropriate marker(s). The analytical approach outlined in this study, using simple regression to allow for genetic modifiers and thus allowing the mode of inheritance of a trait to be dissected out, may be useful as a model for segregation and linkage analyses of other complex phenotypes. PMID:7508182

  1. Human globin gene analysis for a patient with beta-o/delta beta-thalassemia.

    PubMed Central

    Ottolenghi, S; Lanyon, W G; Williamson, R; Weatherall, D J; Clegg, J B; Pitcher, C S

    1975-01-01

    Complementary DNA (cDNA) was prepared with RNA-dependent DNA polymerase from human globin messenger RNA (mRNA). Annealing and translation experimenta with total mRNA from circulating cells from a patient with heterozygous beta/heterozygous beta-delta-o thalassemia (beta-o/delta beta-o-thalassemia) demonstrated no detectable mRNA for beta-globin. cDNA enriched in sequences homologous to beta-globin mRNA was prepared by hydroxylapatite fractionation of hybrids formed between beta-o/delta beta-o-thalassemic mRNA and cDNA made from mRNA from a patient with alpha-thalassemia (hemoglobin H disease). The rate of annealing of this beta-enriched cDNA to normal human nuclear DNA was that of a sequence present as only a single copy per haploid genome. The beta-enriched cDNA annealed to the beta-o-delta beta-o-thalassemia total DNA with approximately the same kinetics as to normal DNA, indicating that no total gene deletion of beta-globin genes from the diploid genome has occurred, although the accuracy of the technique could not exclude with certainty a partial deletion or a deletion of a beta-globin gene from only one of the haploid genomes. This demonstrates that at least one of the beta-o- or the delta beta-o-thalassemia haploid genomes in this case contains a substantially intact beta-globin gene. PMID:49057

  2. A chromosome 11-linked determinant controls fetal globin expression and the fetal-to-adult globin switch.

    PubMed Central

    Melis, M; Demopulos, G; Najfeld, V; Zhang, J W; Brice, M; Papayannopoulou, T; Stamatoyannopoulos, G

    1987-01-01

    Hybrids formed by fusing mouse erythroleukemia (MEL) cells with human fetal erythroid cells produce human fetal globin, but they switch to adult globin production as culture time advances. To obtain information on the chromosomal assignment of the elements that control gamma-to-beta switching, we analyzed the chromosomal composition of hybrids producing exclusively or predominantly human fetal globin and hybrids producing only adult human globin. No human chromosome was consistently present in hybrids expressing fetal globin and consistently absent in hybrids expressing adult globin. Subcloning experiments demonstrated identical chromosomal compositions in subclones displaying the fetal globin program and those that had switched to expression of the adult globin program. These data indicate that retention of only one human chromosome-i.e., chromosome 11--sufficient for expression of human fetal globin and the subsequent gamma-to-beta switch. The results suggest that the gamma-to-beta switch is controlled either cis to the beta-globin locus or by a trans-acting mechanism, the genes of which reside on human chromosome 11. Images PMID:3479779

  3. Variation in hemoglobin F production among normal and sickle cell adults is not related to nucleotide substitutions in the gamma promoter regions.

    PubMed

    Economou, E P; Antonarakis, S E; Kazazian, H H; Serjeant, G R; Dover, G J

    1991-01-01

    Single nucleotide substitutions in the promoter regions of the A gamma- and G gamma-globin genes have been associated with increased fetal hemoglobin (HbF) production. We wished to determine whether these or other unrecognized substitutions in the gamma promoter regions are responsible for the 20-fold variation in HbF production in sickle cell patients or normal adults. From a random sampling of 250 sickle cell (SS) patients and 125 normal adults, 17 individuals representing the highest and lowest HbF producers were selected for study. All three common restriction fragment length polymorphism beta-globin region haplotypes (Benin, Central African Republic, and Senegal) were found in both the highest and lowest HbF producers with SS disease. Using the polymerase chain reaction amplification and direct sequencing of the amplified DNA product, we examined the promoter regions of both the A gamma and G gamma genes from -350 bp to +50 bp of the CAP site. No mutations were found in either gamma gene promoter region. We conclude that nucleotide substitutions in the promoter regions (-350 to +50 bp) of both gamma genes are not responsible for the marked variation in HbF production among SS or normal individuals.

  4. Acute chest syndrome is associated with single nucleotide polymorphism-defined beta globin cluster haplotype in children with sickle cell anaemia.

    PubMed

    Bean, Christopher J; Boulet, Sheree L; Yang, Genyan; Payne, Amanda B; Ghaji, Nafisa; Pyle, Meredith E; Hooper, W Craig; Bhatnagar, Pallav; Keefer, Jeffrey; Barron-Casella, Emily A; Casella, James F; Debaun, Michael R

    2013-10-01

    Genetic diversity at the human β-globin locus has been implicated as a modifier of sickle cell anaemia (SCA) severity. However, haplotypes defined by restriction fragment length polymorphism sites across the β-globin locus have not been consistently associated with clinical phenotypes. To define the genetic structure at the β-globin locus more thoroughly, we performed high-density single nucleotide polymorphism (SNP) mapping in 820 children who were homozygous for the sickle cell mutation (HbSS). Genotyping results revealed very high linkage disequilibrium across a large region spanning the locus control region and the HBB (β-globin gene) cluster. We identified three predominant haplotypes accounting for 96% of the β(S) -carrying chromosomes in this population that could be distinguished using a minimal set of common SNPs. Consistent with previous studies, fetal haemoglobin level was significantly associated with β(S) -haplotypes. After controlling for covariates, an association was detected between haplotype and rate of hospitalization for acute chest syndrome (ACS) (incidence rate ratio 0·51, 95% confidence interval 0·29-0·89) but not incidence rate of vaso-occlusive pain or presence of silent cerebral infarct (SCI). Our results suggest that these SNP-defined β(S) -haplotypes may be associated with ACS, but not pain or SCI in a study population of children with SCA.

  5. Established epigenetic modifications determine the expression of developmentally regulated globin genes in somatic cell hybrids.

    PubMed Central

    Stanworth, S J; Roberts, N A; Sharpe, J A; Sloane-Stanley, J A; Wood, W G

    1995-01-01

    Somatic cell hybrids generated from transgenic mouse cells have been used to examine the developmental regulation of human gamma-to-beta-globin gene switching. In hybrids between mouse erythroleukemia (MEL) cells and transgenic erythroblasts taken at various stages of development, there was regulated expression of the human fetal gamma and adult beta genes, reproducing the in vivo pattern prior to fusion. Hybrids formed from embryonic blood cells produced predominantly gamma mRNA, whereas beta gene expression was observed in adult hybrids and a complete range of intermediate patterns was found in fetal liver hybrids. The adult environment of the MEL cells, therefore, did not appear to influence selective transcription from this gene complex. Irradiation of the embryonic erythroid cells prior to fusion resulted in hybrids containing only small fragments of donor chromosomes, but the pattern of gene expression did not differ from that of unirradiated hybrids. This finding suggests that continued expression of trans-acting factors from the donor erythroblasts is not necessary for continued expression of the human gamma gene in MEL cells. These results contrast with the lack of developmental regulation of the cluster after transfection of naked DNA into MEL cells and suggest that epigenetic processes established during normal development result in the gene cluster adopting a developmental stage-specific, stable conformation which is maintained through multiple rounds of replication and transcription in the MEL cell hybrids. On prolonged culture, hybrids that initially expressed only the gamma transgene switched to beta gene expression. The time period of switching, from approximately 10 to > 40 weeks, was similar to that seen previously in human fetal erythroblast x MEL cell hybrids but in this case bore no relationship to the time of in vivo switching. It seems unlikely, therefore, that switching in these hybrids is regulated by a developmental clock. PMID:7623793

  6. Gene expression: RNA interference in adult mice

    NASA Astrophysics Data System (ADS)

    McCaffrey, Anton P.; Meuse, Leonard; Pham, Thu-Thao T.; Conklin, Douglas S.; Hannon, Gregory J.; Kay, Mark A.

    2002-07-01

    RNA interference is an evolutionarily conserved surveillance mechanism that responds to double-stranded RNA by sequence-specific silencing of homologous genes. Here we show that transgene expression can be suppressed in adult mice by synthetic small interfering RNAs and by small-hairpin RNAs transcribed in vivo from DNA templates. We also show the therapeutic potential of this technique by demonstrating effective targeting of a sequence from hepatitis C virus by RNA interference in vivo.

  7. Sequencing and mapping hemoglobin gene clusters in the australian model dasyurid marsupial sminthopsis macroura

    SciTech Connect

    De Leo, A.A.; Wheeler, D.; Lefevre, C.; Cheng, Jan-Fang; Hope, R.; Kuliwaba, J.; Nicholas, K.R.; Westermanc, M.; Graves, J.A.M.

    2004-07-26

    Comparing globin genes and their flanking sequences across many species has allowed globin gene evolution to be reconstructed in great detail. Marsupial globin sequences have proved to be of exceptional significance. A previous finding of a beta-like omega gene in the alpha cluster in the tammar wallaby suggested that the alpha and beta cluster evolved via genome duplication and loss rather than tandem duplication. To confirm and extend this important finding we isolated and sequenced BACs containing the alpha and beta loci from the distantly related Australian marsupial Sminthopsis macroura. We report that the alpha gene lies in the same BAC as the beta-like omega gene, implying that the alpha-omega juxtaposition is likely to be conserved in all marsupials. The LUC7L gene was found 3' of the S. macroura alpha locus, a gene order shared with humans but not mouse, chicken or fugu. Sequencing a BAC contig that contained the S. macroura beta globin and epsilon globin loci showed that the globin cluster is flanked by olfactory genes, demonstrating a gene arrangement conserved for over 180 MY. Analysis of the region 5' to the S. macroura epsilon globin gene revealed a region similar to the eutherian LCR, containing sequences and potential transcription factor binding sites with homology to eutherian hypersensitive sites 1 to 5. FISH mapping of BACs containing S. macroura alpha and beta globin genes located the beta globin cluster on chromosome 3q and the alpha locus close to the centromere on 1q, resolving contradictory map locations obtained by previous radioactive in situ hybridization.

  8. Identification of patients with defects in the globin genes

    PubMed Central

    Dell’Edera, Domenico; Epifania, Annunziata Anna; Milazzo, Giusi Natalia; Leo, Manuela; Santacesaria, Carmela; Allegretti, Arianna; Mazzone, Eleonora; Panetta, Paolo; Iammarino, Giovanna; Lupo, Maria Giovanna; Barbieri, Rocchina; Lioi, Maria Brigida

    2013-01-01

    Summary Introduction hemoglobinopathies constitute a major health problem worldwide. These disorders are characterized by a clinical and hematological phenotypic heterogeneity. The increase of HbA2 is an invaluable hematological marker of the beta-thalassemia heterozygosis and of double heterozygosis for the alleles of delta and alpha globin genes or for the alleles of delta and beta globin genes which can cause the increase of HbA2 up to normal or borderline values. Case Report we report the case of a 30-year-old woman (first pregnant) who was admitted to our Unit at 12 weeks for a screening for thalassemia. The outcomes of the biochemical and haematological exams (MCV, MCH, HbA2, HbF) highlighted that the patient was a carrier of a beta-thalassemic trait. Molecular analysis of the beta globin genes highlighted a β039C>T heterozygous mutation. Biochemical and hematological parameters of the husband (MCV, MCH, HbA2, HbF) were normal except for the level of HbA2 (3,6%). The molecular analysis of the beta globin genes highlighted a IVS2 nt844 C>G heterozygous mutation. Furthermore, the heterozygous mutation δ+cod.27G>T was detected in his δ globin gene. For this reason, he was diagnosed a δ+β Thal. Conclusions the aim of this paper is to highlight that biochemical diagnosis could not exhaustive and a molecular diagnostic widening is required to detect the genetic deficiency causing the thalassemic trait. PMID:24611095

  9. Restoration of the CCAAT box or insertion of the CACCC motif activates [corrected] delta-globin gene expression.

    PubMed

    Tang, D C; Ebb, D; Hardison, R C; Rodgers, G P

    1997-07-01

    Hemoglobin A2 (HbA2), which contains delta-globin as its non-alpha-globin, represents a minor fraction of the Hb found in normal adults. It has been shown recently that HbA2 is as potent as HbF in inhibiting intracellular deoxy-HbS polymerization, and its expression is therefore relevant to sickle cell disease treatment strategies. To elucidate the mechanisms responsible for the low-level expression of the delta-globin gene in adult erythroid cells, we first compared promoter sequences and found that the delta-globin gene differs from the beta-globin gene in the absence of an erythroid Krüppel-like factor (EKLF) binding site, the alteration of the CCAAT box to CCAAC, and the presence of a GATA-1 binding site. Second, serial deletions of the human delta-globin promoter sequence fused to a luciferase (LUC) reporter gene were transfected into K562 cells. We identified both positive and negative regulatory regions in the 5' flanking sequence. Furthermore, a plasmid containing a single base pair (bp) mutation in the CCAAC box of the delta promoter, restoring the CCAAT box, caused a 5.6-fold and 2.4-fold (P < .05) increase of LUC activity in transfected K562 cells and MEL cells, respectively, in comparison to the wild-type delta promoter. A set of substitutions that create an EKLF binding site centered at -85 bp increased the expression by 26.8-fold and 6.5-fold (P < .05) in K562 and MEL cells, respectively. These results clearly demonstrate that the restoration of either an EKLF binding site or the CCAAT box can increase delta-globin gene expression, with potential future clinical benefit.

  10. Site-specific base changes in the coding or promoter region of the human beta- and gamma-globin genes by single-stranded oligonucleotides.

    PubMed

    Yin, Wenxuan; Kren, Betsy T; Steer, Clifford J

    2005-08-15

    SSOs (single-stranded oligonucleotides) can mediate site-specific alteration of base-pairs in episomal and chromosomal target genes in mammalian cells. The TNE (targeted nucleotide exchange) can result in either repair or mutation of a gene sequence and is mediated through endogenous DNA repair pathway(s). Thus the approach provides a technique for the treatment of monogenic disorders associated with specific point mutations such as SCD (sickle cell disease). We studied the potential application of SSOs for SCD by introducing either an A to T substitution at the sixth codon of the human beta-globin gene (sickle locus) or a C to G mutation at -202 of the Ggamma-globin gene promoter region. The latter TNE is an alternative strategy to ameliorate the clinical manifestations of sickle cell anaemia by re-activating fetal haemoglobin gene expression in adult erythrocytes. A sensitive and valid PCR assay system was developed, which allows detection of point mutations as low as 0.01% at these sites. Using this system, TNE between 0.01 and 0.1% at the sickle locus or gamma-globin gene promoter region was detected after transfection with SSOs in cultured human cell lines. TNE in the Ggamma-globin promoter region exhibited varying degrees of strand bias that was dependent on SSO design and the cell's DNA mismatch repair activity. The results suggest that the endogenous DNA repair machinery may permit SSO correction of the sickle defect by modification of the beta- and/or gamma-globin genes.

  11. Two new beta0-thalassemic mutations: a deletion (-CC) at codon 142 or overlapping codons 142-143, and an insertion (+T) at codon 45 or overlapping codons 44-45/45-46 of the beta-globin gene.

    PubMed

    Lacan, Philippe; Aubry, Martine; Couprie, Nicole; Francina, Alain

    2007-01-01

    We report here two new beta(0)-thalassemic mutations. In the first case, a deletion of two nucleotides (-CC) at codon 142 was found in a French Caucasian woman. In the second case, an insertion of a single nucleotide (+T) at codon 45 was found in a Turkish girl. In both cases, no dominant thalassemia-like phenotype was observed.

  12. Assessment of high resolution melt analysis feasibility for evaluation of beta-globin gene mutations as a reproducible, cost-efficient and fast alternative to the present conventional method

    PubMed Central

    Ramezanzadeh, Mahboubeh; Salehi, Mansour; Salehi, Rasoul

    2016-01-01

    Background: Beta-thalassemia is the most prevalent monogenic disease throughout the world. It was the first genetic disorder nominated for nation-wide prevention programs involving population screening for heterozygotes and prenatal diagnosis (PND) in Iran. Due to the high prevalence of beta-thalassemia, the shift from conventional mutation detection methods to more recently developed techniques based on novel innovative technologies are essential. We aimed to develop a real-time polymerase chain reaction (PCR) based protocol using high resolution melting (HRM) analysis for diagnosis of common beta-thalassemia mutations. Materials and Methods: Forty DNA samples extracted from peripheral blood of suspected beta-thalassemia carriers participated in this study were subjected to amplification refractory mutation system (ARMS). We then used 20 of these samples for HRM optimization. When 100% sensitivity and specificity was obtained with HRM procedure, we applied the technique for mutation detection on another remaining 20 samples as thalassemia cases with unknown mutations (detected mutations with ARMS-PCR kept confidential). Finally, the HRM procedure applied on 2 chorionic villous sample (CVS) biopsied from 12 weeks gestational age pregnant women for routine PND analysis. Results: In the first step of study, Fr 8/9 (+G), IVSI-1 (G > A), IVSI-5 (G > C), IVSI-110 (G > A), and CD44 (−C) mutations were diagnosed in samples under study using ARMS-PCR technique. Finally, the HRM procedure applied on 20 unknown samples and 2 CVS The results of HRM were in complete concordance with ARMS and confirmed by sequencing. Conclusions: The advantages of HRM analysis over conventional methods is high throughput, rapid, accurate, cost-effective, and reproducible. PMID:27169102

  13. Adult mouse brain gene expression patterns bear an embryologic imprint.

    PubMed

    Zapala, Matthew A; Hovatta, Iiris; Ellison, Julie A; Wodicka, Lisa; Del Rio, Jo A; Tennant, Richard; Tynan, Wendy; Broide, Ron S; Helton, Rob; Stoveken, Barbara S; Winrow, Christopher; Lockhart, Daniel J; Reilly, John F; Young, Warren G; Bloom, Floyd E; Lockhart, David J; Barlow, Carrolee

    2005-07-19

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional "imprint" consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior-posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org).

  14. Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects.

    PubMed

    Mansilla-Soto, Jorge; Riviere, Isabelle; Boulad, Farid; Sadelain, Michel

    2016-04-01

    The beta-thalassemias are inherited anemias caused by mutations that severely reduce or abolish expression of the beta-globin gene. Like sickle cell disease, a related beta-globin gene disorder, they are ideal candidates for performing a genetic correction in patient hematopoietic stem cells (HSCs). The most advanced approach utilizes complex lentiviral vectors encoding the human β-globin gene, as first reported by May et al. in 2000. Considerable progress toward the clinical implementation of this approach has been made in the past five years, based on effective CD34+ cell mobilization and improved lentiviral vector manufacturing. Four trials have been initiated in the United States and Europe. Of 16 evaluable subjects, 6 have achieved transfusion independence. One of them developed a durable clonal expansion, which regressed after several years without transformation. Although globin lentiviral vectors have so far proven to be safe, this occurrence suggests that powerful insulators with robust enhancer-blocking activity will further enhance this approach. The combined discovery of Bcl11a-mediated γ-globin gene silencing and advances in gene editing are the foundations for another gene therapy approach, which aims to reactivate fetal hemoglobin (HbF) production. Its clinical translation will hinge on the safety and efficiency of gene targeting in true HSCs and the induction of sufficient levels of HbF to achieve transfusion independence. Altogether, the progress achieved over the past 15 years bodes well for finding a genetic cure for severe globin disorders in the next decade.

  15. Heterogeneity of DNA fragments associated with the sickle-globin gene.

    PubMed

    Feldenzer, J; Mears, J G; Burns, A L; Natta, C; Bank, A

    1979-09-01

    We have examined the genetic polymorphism previously reported to be associated with the sickle-cell (beta s) gene. The polymorphism involves an alteration of the DNA sequence 3' to the beta-globin gene as detected with the restriction endonuclease, Hpa I. In normal individuals, the beta-globin gene is contained within a DNA fragment of 7.6 kilobases (kb), whereas 87% of individuals with sickle-cell anemia have been reported to have the beta s-gene associated with a 13.0-kb Hpa I fragment. We have studied this polymorphism in 31 New York Black individuals homozygous for sickle-cell anemia to ascertain its genetic and biochemical significance and to evaluate its potential use in the prenatal diagnosis of sickle-cell disease. Our results show only a 58% association of the beta s-gene and the 13.0-kb Hpa I fragment, as well as the presence of additional variants involving the Hpa I site. In addition, the 13.0-kb fragment is also found associated with the beta c- and beta A-genes. Thus, the Hpa I polymorphism probably represents a change in DNA not specifically associated with the beta s-gene, and appears to antedate the beta s-and beta c-mutations.

  16. Purification of an oligo(dG).oligo(dC)-binding sea urchin nuclear protein, suGF1: a family of G-string factors involved in gene regulation during development.

    PubMed

    Hapgood, J; Patterton, D

    1994-02-01

    Contiguous deoxyguanosine residues (G strings) have been implicated in regulation of gene expression in several organisms via the binding of G-string factors. Regulation of expression of the chicken adult beta-globin gene may involve the interplay between binding of an erythrocyte-specific G-string factor, BGP1, and the stability of a positioned nucleosome (C. D. Lewis, S. P. Clark, G. Felsenfeld, and H. Gould, Genes Dev. 2:863-873, 1988). We have purified a 59.5-kDa nuclear protein (suGF1) from sea urchin embryos by DNA affinity chromatography. suGF1 has high binding affinity and specificity for oligo(dG).oligo(dC). The identity of the purified protein was confirmed by renaturation of sequence-specific DNA-binding activity from a sodium dodecyl sulfate-polyacrylamide gel slice and by Southwestern (DNA-protein) blotting. suGF1 binds in vitro to a G11 string present in the H1-H4 intergenic region of a sea urchin early histone gene battery. This suGF1 DNA recognition site occurs within a homopurine-homopyrimidine stretch previously shown to be incorporated into a positioned nucleosome core in vitro. DNase I footprinting shows that suGF1 protects the same base pairs on the promoter of the chicken beta A-globin gene as does BGP1. We show that a G-string cis-regulatory element of a sea urchin cell lineage-specific gene LpS1 (M. Xiang, S.-Y. Lu, M. Musso, G. Karsenty, and W. H. Klein, Development 113:1345-1355, 1991) also represents a high-affinity recognition site for suGF1. suGF1 may be a member of a family of G-string factors involved in the regulation of expression of unrelated genes during development of a number of different organisms.

  17. Application of SFHR to gene therapy of monogenic disorders.

    PubMed

    Goncz, K K; Prokopishyn, N L; Chow, B L; Davis, B R; Gruenert, D C

    2002-06-01

    Gene therapy treatment of disease will be greatly facilitated by the identification of genetic mutations through the Human Genome Project. The specific treatment will ultimately depend on the type of mutation as different genetic lesions will require different gene therapies. For example, large rearrangements and translocations may call for complementation with vectors containing the cDNA for the wild-type (wt) gene. On the other hand, smaller lesions, such as the reversion, addition or deletion of only a few base pairs, on single genes, or monogenic disorders, lend themselves to gene targeting. The potential for one gene targeting technique, small fragment homologous replacement (SFHR) to the gene therapy treatment of sickle cell disease (SCD) is presented. Successful conversion of the wt-beta-globin locus to a SCD genotype of human lymphocytes (K562) and progenitor/stem hematopoietic cells (CD34(+) and lin-CD38-) was achieved by electroporation or microinjection small DNA fragments (SDF).

  18. Age-Related Gene Expression Differences in Monocytes from Human Neonates, Young Adults, and Older Adults

    PubMed Central

    Tong, Ann-Jay; Kollmann, Tobias R.; Smale, Stephen T.

    2015-01-01

    A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development. PMID:26147648

  19. A novel β-globin gene mutation HBB.c.22 G>C produces a hemoglobin variant (Hb Vellore) mimicking HbS in HPLC.

    PubMed

    Edison, E S; Sathya, M; Rajkumar, S V; Nair, S C; Srivastava, A; Shaji, R V

    2012-10-01

    Hemoglobinopathies are highly prevalent in Indian population. DNA analysis to detect causative mutations is required for identifying rare hemoglobin variants or when hematological results are discordant with the clinical phenotype. In this report, we describe a novel hemoglobin variant caused by a mutation in beta-globin gene, Codon 7 GAG→CAG (Glu→Gln) that elutes in the position of sickle haemoglobin (HbS) in cation exchange high performance liquid chromatography. This report highlights possible diagnostic pitfalls in interpreting data solely based on haemoglobin analysis and usefulness of mutation screening in definitive diagnosis of hemoglobinopathies. PMID:22471768

  20. Organization, structure, and expression of the goat globin genes.

    PubMed

    Lingrel, J B; Townes, T M; Shapiro, S G; Spence, S E; Liberator, P A; Wernke, S M

    1983-01-01

    Several hemoglobin switches occur during the development of the goat, making this a useful animal for the study of globin gene expression. In order to help understand the basis for these switches, we have isolated the beta-globin genes of the goat by recombinant DNA technology and characterized these genes with respect to linkage, nucleotide sequence, and expression. The linkage arrangement so far established is epsilon I-epsilon II-psi beta X-beta C-epsilon III-epsilon IV-psi beta Z-beta A-epsilon V. It is proposed that epsilon V is followed by epsilon VI-psi beta-gamma, but so far this linkage has not been established. Several conclusions can be drawn from our findings to date. First, the beta- and gamma-globin genes of the goat have a very different evolutionary history from the beta- and gamma-globin genes of humans. While the beta and gamma genes of the human can be traced to a duplication of the ancestral epsilon/beta-globin gene before the mammalian radiation, the goat beta and gamma genes have arisen much later, and are probably the results of a duplication of a four-gene set, namely the epsilon-epsilon-psi beta-beta primordial linkage group. The beta C gene probably arose from a similar, even later duplication of the non-gamma quadruplet. Because the beta C, beta A, and gamma genes of the goat have diverged much more recently in evolution, they are much more homologous than the equivalent genes in other species. In fact, there are large regions of these genes that share identical sequences. This is meaningful in that regions of sequence identity define areas that cannot be involved in the developmental regulation of these genes.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. The Mammalian Adult Neurogenesis Gene Ontology (MANGO) Provides a Structural Framework for Published Information on Genes Regulating Adult Hippocampal Neurogenesis

    PubMed Central

    Overall, Rupert W.; Paszkowski-Rogacz, Maciej; Kempermann, Gerd

    2012-01-01

    Background Adult hippocampal neurogenesis is not a single phenotype, but consists of a number of sub-processes, each of which is under complex genetic control. Interpretation of gene expression studies using existing resources often does not lead to results that address the interrelatedness of these processes. Formal structure, such as provided by ontologies, is essential in any field for comprehensive interpretation of existing knowledge but, until now, such a structure has been lacking for adult neurogenesis. Methodology/Principal Findings We have created a resource with three components 1. A structured ontology describing the key stages in the development of adult hippocampal neural stem cells into functional granule cell neurons. 2. A comprehensive survey of the literature to annotate the results of all published reports on gene function in adult hippocampal neurogenesis (257 manuscripts covering 228 genes) to the appropriate terms in our ontology. 3. An easy-to-use searchable interface to the resulting database made freely available online. The manuscript presents an overview of the database highlighting global trends such as the current bias towards research on early proliferative stages, and an example gene set enrichment analysis. A limitation of the resource is the current scope of the literature which, however, is growing by around 100 publications per year. With the ontology and database in place, new findings can be rapidly annotated and regular updates of the database will be made publicly available. Conclusions/Significance The resource we present allows relevant interpretation of gene expression screens in terms of defined stages of postnatal neuronal development. Annotation of genes by hand from the adult neurogenesis literature ensures the data are directly applicable to the system under study. We believe this approach could also serve as an example to other fields in a ‘bottom-up’ community effort complementing the already successful

  2. Microarray analysis of gene expression in adult retinal ganglion cells.

    PubMed

    Ivanov, Dmitry; Dvoriantchikova, Galina; Nathanson, Lubov; McKinnon, Stuart J; Shestopalov, Valery I

    2006-01-01

    Retinal ganglion cells (RGCs) transfer visual information to the brain and are known to be susceptible to selective degeneration in various neuropathies such as glaucoma. This selective vulnerability suggests that these highly specialized neurons possess a distinct gene expression profile that becomes altered by neuropathy-associated stresses, which lead to the RGC death. In this study, to identify genes expressed predominantly in adult RGCs, a global transcriptional profile of purified primary RGCs has been compared to that of the whole retina. To avoid alterations of the original gene expression profile by cell culture conditions, we isolated RNA directly from adult RGCs purified by immunopanning without prior sub-cultivation. Genes expressed predominantly in RGCs included: Nrg1, Rgn, 14-3-3 family (Ywhah, Ywhaz, Ywhab), Nrn1, Gap43, Vsnl1, Rgs4. Some of these genes may serve as novel markers for these neurons. Our analysis revealed enrichment in genes controlling the pro-survival pathways in RGCs as compared to other retinal cells. PMID:16376886

  3. Regulation and Function of Adult Neurogenesis. From Genes to Cognition

    DOE PAGES

    Aimone, J. B.; Li, Y.; Lee, S. W.; Clemenson, G. D.; Deng, W.; Gage, F. H.

    2014-10-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. Our review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages ofmore » maturation, ultimately integrating into the adult dentate gyrus network. Furthermore, the increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.« less

  4. Regulation and Function of Adult Neurogenesis: From Genes to Cognition

    PubMed Central

    Aimone, James B.; Li, Yan; Lee, Star W.; Clemenson, Gregory D.; Deng, Wei; Gage, Fred H.

    2014-01-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders. PMID:25287858

  5. Regulation and Function of Adult Neurogenesis. From Genes to Cognition

    SciTech Connect

    Aimone, J. B.; Li, Y.; Lee, S. W.; Clemenson, G. D.; Deng, W.; Gage, F. H.

    2014-10-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. Our review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. Furthermore, the increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.

  6. The organization of the gamma-delta-beta gene complex in normal and thalassemia cells.

    PubMed

    Bank, A; Mears, J G; Ramirez, F; Burns, A L; Spence, S; Feldenzer, J; Baird, M

    1980-01-01

    Restriction enzyme digestion analysis and direct human globin gene cloning have permitted analysis of the physical arrangement of nucleotide sequences within and surrounding the human globin genes. With these methods it has been shown that the linear arrangement 5' to 3' of the globin genes is G gamma-A gamma-delta-beta. The G gamma and A gamma genes are separated by about 3.5 kilobases (kb), while the A gamma and delta genes are 15 kb apart, and the delta and beta 6.5 kb apart. Each of these genes contains a large intervening sequence (IVS) of approximately 1 kb in precisely the same position between condons 104 and 105. In addition, each of these genes has a small IVS between codons 30 and 31. In homozygous delta beta thalassemia DNA, there is deletion of all of the normal delta and beta gene fragments. However, a new fragment 4.2 kb in size containing the 5' end of the delta globin gene is retained. Retention of this fragment in delta beta thalassemia, but not in HPFH is consistent with a role for sequences in this region for limiting gamma globin gene expression. Studies to date suggest that the beta + and beta 0 thalassemias will be due to a heterogeneous group of DNA defects affecting either beta globin gene transcription or beta mRNA processing. In most cases of beta + and beta 0 thalassemia DNA analyzed, there is no detectable deletion of beta or delta genes. In three India beta 0 patients, deletion of the 3' end of the beta gene has been found. Analysis of cloned beta globin genes from a patient with beta + thalasseia shows differences from normal in the fragments generated by restriction enzymes which cut frequently. Whether these differences are responsible for the defect in thalassemia or are polymorphisms unrelated to thalassemia remains to be determined.

  7. Hemoglobins from bacteria to man: evolution of different patterns of gene expression.

    PubMed

    Hardison, R

    1998-04-01

    The discovery of hemoglobins in virtually all kingdoms of organisms has shown (1) that the ancestral gene for hemoglobin is ancient, and (2) that hemoglobins can serve additional functions besides transport of oxygen between tissues, ranging from intracellular oxygen transport to catalysis of redox reactions. These different functions of the hemoglobins illustrate the acquisition of new roles by a pre-existing structural gene, which requires changes not only in the coding regions but also in the regulatory elements of the genes. The evolution of different regulated functions within an ancient gene family allows an examination of the types of biosequence data that are informative for various types of issues. Alignment of amino acid sequences is informative for the phylogenetic relationships among the hemoglobins in bacteria, fungi, protists, plants and animals. Although many of these diverse hemoglobins are induced by low oxygen concentrations, to date none of the molecular mechanisms for their hypoxic induction shows common regulatory proteins; hence, a search for matches in non-coding DNA sequences would not be expected to be fruitful. Indeed, alignments of non-coding DNA sequences do not reveal significant matches even between mammalian alpha- and beta-globin gene clusters, which diverged approximately 450 million years ago and are still expressed in a coordinated and balanced manner. They are in very different genomic contexts that show pronounced differences in regulatory mechanisms. The alpha-globin gene is in constitutively active chromatin and is encompassed by a CpG island, which is a dominant determinant of its regulation, whereas the beta-globin gene is in A+T-rich genomic DNA. Non-coding sequence matches are not seen between avian and mammalian beta-globin gene clusters, which diverged approximately 250 million years ago, despite the fact that regulation of both gene clusters requires tissue-specific activation of a chromatin domain regulated by a locus

  8. Activation of delta-globin gene expression by erythroid Krupple-like factor: a potential approach for gene therapy of sickle cell disease.

    PubMed

    Donze, D; Jeancake, P H; Townes, T M

    1996-11-15

    Hemoglobin A2 (HbA2; alpha 2 delta 2) is a powerful inhibitor of HbS (alpha 2 beta 2(3)) polymerization. However, HbA2 levels are normally low in sickle cell patients. We show that a major reason for low delta-globin gene expression is the defective CACCC box at -90 in the delta-globin promoter. When the CACCC box defect in delta is corrected, expression of an HS2 delta /Luciferase reporter is equivalent to HS2 beta /Luciferase. Erythroid Krupple-like factor (EKLF), which binds to the CACCC box of the beta-globin gene and activates high-level expression, does not bind to the normal delta-globin promoter. Our goal is to design a modified EKLF that binds to the defective delta-globin promoter and enhances delta-globin gene expression. To test the feasibility of this strategy, we inserted the beta-globin CACCC box at -90 of the delta-globin gene promoter to produce an HS2 delta CAC-beta construct and quantitated human delta- and beta-globin mRNA in stably transformed murine erythroleukemia (MEL) cells. delta- Globin mRNA in these cells was 22.0% +/- 9.0% of total human globin mRNA (delta/delta + beta) as compared with 3.0% +/- 1.3% in the HS2 delta-beta control. In a second set of experiments a GAL4 DNA-binding site was inserted at -90 of the delta-globin gene to produce an HS2 delta GAL4-beta construct. This construct and a GAL4(1-147)/EKLF expression vector were stably transfected into MEL cells. delta-Globin mRNA in these cells was 27.8% +/- 7.1% of total human globin mRNA as compared with 9.9% +/- 2.5% in the HS2 delta GAL4-beta plus GAL4(1-147) control. These results show that delta-globin gene expression can be significantly increased by a modified EKLF. Based on these results, we suggest that modified EKLFs, which contain zinc fingers designed to bind specifically to the defective delta-globin CACCC box, may be useful in gene therapy approaches to increase HbA2 levels and inhibit HbS polymerization.

  9. Sequences and evolution of human and squirrel monkey blue opsin genes.

    PubMed

    Shimmin, L C; Mai, P; Li, W H

    1997-04-01

    The sequences of the entire blue opsin gene in the squirrel monkey (Saimiri boliviensis) and the five introns of the human blue opsin gene were obtained. Intron 3 of these genes contains an Alu sequence and intron 4 contains a partial mer13 sequence. A comparison of the squirrel monkey opsin sequence with published mammalian opsin sequences shows that features believed to be functionally critical are all conserved. However, the blue opsin has evolved twice as fast as rhodopsin and is only as conservative as the beta globin, which has evolved at the average rate of mammalian proteins. Interestingly, the interhelical loops are, on average, actually more conservative than the transmembrane alpha helical regions. The introns of the blue opsin gene have evolved at the average rate of introns in primate genes.

  10. ATM localization and gene expression in the adult mouse eye

    PubMed Central

    Leemput, Julia; Masson, Christel; Bigot, Karine; Errachid, Abdelmounaim; Dansault, Anouk; Provost, Alexandra; Gadin, Stéphanie; Aoufouchi, Said; Menasche, Maurice

    2009-01-01

    Purpose High levels of metabolism and oxygen consumption in most adult murine ocular compartments, combined with exposure to light and ultraviolet (UV) radiation, are major sources of oxidative stress, causing DNA damage in ocular cells. Of all mammalian body cells, photoreceptor cells consume the largest amount of oxygen and generate the highest levels of oxidative damage. The accumulation of such damage throughout life is a major factor of aging tissues. Several multiprotein complexes have recently been identified as the major sensors and mediators involved in the maintenance of DNA integrity. The activity of these complexes initially seemed to be restricted to dividing cells, given their ultimate role in major cell cycle checkpoints. However, it was later established that they are also active in post-mitotic cells. Recent findings demonstrate that the DNA damage response (DDR) is essential for the development, maintenance, and normal functioning of the adult central nervous system. One major molecular factor in the DDR is the protein, ataxia telangiectasia mutated (ATM). It is required for the rapid induction of cellular responses to DNA double-strand breaks. These cytotoxic DNA lesions may be caused by oxidative damage. To understand how ATM prevents oxidative stress and participates in the maintenance of genomic integrity and cell viability of the adult retina, we determined the ATM expression patterns and studied its localization in the adult mouse eye. Methods Atm gene expression was analyzed by RT–PCR experiments and its localization by in situ hybridization on adult mouse ocular and cerebellar tissue sections. ATM protein expression was determined by western blot analysis of proteins homogenates extracted from several mouse tissues and its localization by immunohistochemistry experiments performed on adult mouse ocular and cerebellar tissue sections. In addition, subcellular localization was realized by confocal microscopy imaging of ocular tissue

  11. Nongenic transcription, gene regulation and action at a distance.

    PubMed

    Cook, Peter R

    2003-11-15

    In eukaryotes, motifs such as silencers, enhancers and locus control regions act over thousands of base pairs to regulate adjacent genes; insulators limit such effects, and barriers confine repressive heterochromatin to particular chromosomal segments. Recent results show that many of these motifs are nongenic transcription units, and two of them directly contact their targets lying further down the chromosome to loop the intervening DNA: the barriers (scs and scs') flanking the 87A7 heat-shock locus in the fly contact each other, and a locus control region touches the beta-globin gene in the mouse. I hypothesize that the act of transcription underlies the function of these regulators; active polymerizing complexes tend to cluster into 'factories' and this facilitates molecular contact between the transcribed regulator and its distant (and transcribed) target. PMID:14576342

  12. Experience-dependent gene expression in adult visual cortex.

    PubMed

    Chen, Jiabin; Yamahachi, Homare; Gilbert, Charles D

    2010-03-01

    Experience-dependent plasticity of the adult visual cortex underlies perceptual learning and recovery of function following central nervous system lesions. To reveal the signal transduction cascades involved in adult cortical plasticity, we utilized a model of remapping of cortical topography following binocular retinal lesions. In this model, the lesion projection zone (LPZ) of primary visual cortex (V1) recovers visually driven activity by the sprouting of horizontal axonal connections originating from the cells in the surrounding region. To explore the molecular mechanism underlying this process, we used gene microarrays from an expression library prepared from Macaque V1. By microarray analysis of gene expression levels in the LPZ and the surrounding region, and subsequent confirmation with Quantitative Real-Time polymerase chain reaction and in situ hybridization, the participation of a number of genes was observed, including the Rho GTPase family. Its role in regulation of cytoskeleton assembly provides a possible link between the alteration of neural activity and cortical functional reorganization. PMID:19571270

  13. An anatomic gene expression atlas of the adult mouse brain.

    PubMed

    Ng, Lydia; Bernard, Amy; Lau, Chris; Overly, Caroline C; Dong, Hong-Wei; Kuan, Chihchau; Pathak, Sayan; Sunkin, Susan M; Dang, Chinh; Bohland, Jason W; Bokil, Hemant; Mitra, Partha P; Puelles, Luis; Hohmann, John; Anderson, David J; Lein, Ed S; Jones, Allan R; Hawrylycz, Michael

    2009-03-01

    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea). PMID:19219037

  14. Globin genes transcriptional switching, chromatin structure and linked lessons to epigenetics in cancer: a comparative overview.

    PubMed

    Guerrero, Georgina; Delgado-Olguín, Paul; Escamilla-Del-Arenal, Martín; Furlan-Magaril, Mayra; Rebollar, Eria; De La Rosa-Velázquez, Inti A; Soto-Reyes, Ernesto; Rincón-Arano, Héctor; Valdes-Quezada, Christian; Valadez-Graham, Viviana; Recillas-Targa, Félix

    2007-07-01

    At the present time research situates differential regulation of gene expression in an increasingly complex scenario based on interplay between genetic and epigenetic information networks, which need to be highly coordinated. Here we describe in a comparative way relevant concepts and models derived from studies on the chicken alpha- and beta-globin group of genes. We discuss models for globin switching and mechanisms for coordinated transcriptional activation. A comparative overview of globin genes chromatin structure, based on their genomic domain organization and epigenetic components is presented. We argue that the results of those studies and their integrative interpretation may contribute to our understanding of epigenetic abnormalities, from beta-thalassemias to human cancer. Finally we discuss the interdependency of genetic-epigenetic components and the need of their mutual consideration in order to visualize the regulation of gene expression in a more natural context and consequently better understand cell differentiation, development and cancer.

  15. Gene amplification as a cause of inherited thyroxine-binding globulin excess in two Japanese families

    SciTech Connect

    Mori, Yuichi; Miura, Yoshitaka; Saito, Hidehiko

    1995-12-01

    T{sub 4}-binding globulin (TBG) is the major thyroid hormone transport protein in man. Inherited abnormalities in the level of serum TBG have been classified as partial deficiency, complete deficiency, and excess. Sequencing analysis of the TBG gene, located on Xq21-22, has uncovered the molecular defects causing partial and complete deficiency. However, the mechanism leading to inherited TBG excess remains unknown. In this study, two Japanese families, F-A and F-T, with inherited TBG excess were analyzed. Serum TBG levels in hemizygous males were 58 and 44 {mu}g/mL, 3- and 2-fold the normal value, respectively. The molecule had normal properties in terms of heat stability and isoelectric focussing pattern. The sequence of the coding region and the promoter activity of the TBG gene were also indistinguishable between hemizygotes and normal subjects. The gene dosage of TBG relative to that of {beta}-globin, which is located on chromosome 11, and Duchenne muscular dystropy, which is located on Xp, was evaluated by coamplification of these target genes using polymerase chain reaction and subsequent quantitation by HPLC. The TBG/{beta}-globin ratios of the affected male and female of F-A were 3.13 and 4.13 times, respectively, that in the normal males. The TBG/Duchenne muscular dystrophy ratios were 2.92 and 2.09 times the normal value, respectively. These results are compatible with three copies of TBG gene on the affected X-chromosome. Similarly, a 2-fold increase in gene dosage was demonstrated in the affected hemizygote of F-T. A 3-fold tandem amplification of the TBG gene was shown by in situ hybridization of prometaphase and interphase chromosomes from the affected male with a biotinylated genomic TBG probe, confirming the gene dosage results. Gene amplification of TBG is the cause of inherited TBG excess in these two families. 35 refs., 3 figs., 2 tabs.

  16. Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects.

    PubMed

    Mansilla-Soto, Jorge; Riviere, Isabelle; Boulad, Farid; Sadelain, Michel

    2016-04-01

    The beta-thalassemias are inherited anemias caused by mutations that severely reduce or abolish expression of the beta-globin gene. Like sickle cell disease, a related beta-globin gene disorder, they are ideal candidates for performing a genetic correction in patient hematopoietic stem cells (HSCs). The most advanced approach utilizes complex lentiviral vectors encoding the human β-globin gene, as first reported by May et al. in 2000. Considerable progress toward the clinical implementation of this approach has been made in the past five years, based on effective CD34+ cell mobilization and improved lentiviral vector manufacturing. Four trials have been initiated in the United States and Europe. Of 16 evaluable subjects, 6 have achieved transfusion independence. One of them developed a durable clonal expansion, which regressed after several years without transformation. Although globin lentiviral vectors have so far proven to be safe, this occurrence suggests that powerful insulators with robust enhancer-blocking activity will further enhance this approach. The combined discovery of Bcl11a-mediated γ-globin gene silencing and advances in gene editing are the foundations for another gene therapy approach, which aims to reactivate fetal hemoglobin (HbF) production. Its clinical translation will hinge on the safety and efficiency of gene targeting in true HSCs and the induction of sufficient levels of HbF to achieve transfusion independence. Altogether, the progress achieved over the past 15 years bodes well for finding a genetic cure for severe globin disorders in the next decade. PMID:27021486

  17. Gene Test Might One Day Gauge Alzheimer's Risk in Younger Adults

    MedlinePlus

    ... news/fullstory_159737.html Gene Test Might One Day Gauge Alzheimer's Risk in Younger Adults But doctors ... 2016 (HealthDay News) -- A gene test may one day be able to predict the risk for Alzheimer's ...

  18. A Digital Gene Expression-Based Bovine Gene Atlas Evaluating 92 Adult, Juvenile and Fetal Cattle Tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comprehensive transcriptome survey, or “Gene Atlas,” provides information essential for a complete understanding of the genomic biology of an organism. Using a digital gene expression approach, we developed a Gene Atlas of RNA abundance in 92 adult, juvenile and fetal cattle tissues. The samples...

  19. Investigation of genes important in neurodevelopment disorders in adult human brain.

    PubMed

    Maussion, Gilles; Diallo, Alpha B; Gigek, Carolina O; Chen, Elizabeth S; Crapper, Liam; Théroux, Jean-Francois; Chen, Gary G; Vasuta, Cristina; Ernst, Carl

    2015-10-01

    Several neurodevelopmental disorders (NDDs) are caused by mutations in genes expressed in fetal brain, but little is known about these same genes in adult human brain. Here, we test the hypothesis that genes associated with NDDs continue to have a role in adult human brain to explore the idea that NDD symptoms may be partially a result of their adult function rather than just their neurodevelopmental function. To demonstrate adult brain function, we performed expression analyses and ChIPseq in human neural stem cell(NSC) lines at different developmental stages and adult human brain, targeting two genes associated with NDDs, SATB2 and EHMT1, and the WNT signaling gene TCF7L2, which has not been associated with NDDs. Analysis of DNA interaction sites in neural stem cells reveals high (40-50 %) overlap between proliferating and differentiating cells for each gene in temporal space. Studies in adult brain demonstrate that consensus sites are similar to NSCs but occur at different genomic locations. We also performed expression analyses using BrainSpan data for NDD-associated genes SATB2, EHMT1, FMR1, MECP2, MBD5, CTNND2, RAI1, CHD8, GRIN2A, GRIN2B, TCF4, SCN2A, and DYRK1A and find high expression of these genes in adult brain, at least comparable to developing human brain, confirming that genes associated with NDDs likely have a role in adult tissue. Adult function of genes associated with NDDs might be important in clinical disease presentation and may be suitable targets for therapeutic intervention. PMID:26194112

  20. Investigation of genes important in neurodevelopment disorders in adult human brain.

    PubMed

    Maussion, Gilles; Diallo, Alpha B; Gigek, Carolina O; Chen, Elizabeth S; Crapper, Liam; Théroux, Jean-Francois; Chen, Gary G; Vasuta, Cristina; Ernst, Carl

    2015-10-01

    Several neurodevelopmental disorders (NDDs) are caused by mutations in genes expressed in fetal brain, but little is known about these same genes in adult human brain. Here, we test the hypothesis that genes associated with NDDs continue to have a role in adult human brain to explore the idea that NDD symptoms may be partially a result of their adult function rather than just their neurodevelopmental function. To demonstrate adult brain function, we performed expression analyses and ChIPseq in human neural stem cell(NSC) lines at different developmental stages and adult human brain, targeting two genes associated with NDDs, SATB2 and EHMT1, and the WNT signaling gene TCF7L2, which has not been associated with NDDs. Analysis of DNA interaction sites in neural stem cells reveals high (40-50 %) overlap between proliferating and differentiating cells for each gene in temporal space. Studies in adult brain demonstrate that consensus sites are similar to NSCs but occur at different genomic locations. We also performed expression analyses using BrainSpan data for NDD-associated genes SATB2, EHMT1, FMR1, MECP2, MBD5, CTNND2, RAI1, CHD8, GRIN2A, GRIN2B, TCF4, SCN2A, and DYRK1A and find high expression of these genes in adult brain, at least comparable to developing human brain, confirming that genes associated with NDDs likely have a role in adult tissue. Adult function of genes associated with NDDs might be important in clinical disease presentation and may be suitable targets for therapeutic intervention.

  1. The Drosophila Couch Potato Gene: An Essential Gene Required for Normal Adult Behavior

    PubMed Central

    Bellen, H. J.; Vaessin, H.; Bier, E.; Kolodkin, A.; D'Evelyn, D.; Kooyer, S.; Jan, Y. N.

    1992-01-01

    Through enhancer detection screens we have isolated 14 insertions in an essential gene that is expressed in embryonic sensory mother cells (SMC), in most cells of the mature embryonic peripheral nervous system (PNS), and in glial cells of the PNS and the central nervous system (CNS). Embryos homozygote for amorphic alleles die, but show no obvious defects in their cuticle, PNS or CNS. The gene has been named couch potato (cpo) because several insertional alleles alter adult behavior. Homozygous hypomorphic cpo flies recover slowly from ether anaesthesia, show aberrant flight behavior, fail to move toward light and do not exhibit normal negative geotactic behavior. However, the flies are able to groom and walk, and some are able to fly when prodded, indicating that not all processes required for behavior are severely affected. A molecular analysis shows that the 14 insertions are confined to a few hundred nucleotides which probably contain key regulatory sequences of the gene. The orientation of these insertions and their position within this DNA fragment play an important role in the couch potato phenotype. In situ hybridization to whole mount embryos suggest that some insertions affect the levels of transcription of cpo in most cells in which it is expressed. PMID:1644278

  2. The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility.

    PubMed

    Du, Hongling; Taylor, Hugh S

    2015-11-09

    HOX genes convey positional identity that leads to the proper partitioning and adult identity of the female reproductive track. Abnormalities in reproductive tract development can be caused by HOX gene mutations or altered HOX gene expression. Diethylstilbestrol (DES) and other endocrine disruptors cause Müllerian defects by changing HOX gene expression. HOX genes are also essential regulators of adult endometrial development. Regulated HOXA10 and HOXA11 expression is necessary for endometrial receptivity; decreased HOXA10 or HOXA11 expression leads to decreased implantation rates. Alternation of HOXA10 and HOXA11 expression has been identified as a mechanism of the decreased implantation associated with endometriosis, polycystic ovarian syndrome, leiomyoma, polyps, adenomyosis, and hydrosalpinx. Alteration of HOX gene expression causes both uterine developmental abnormalities and impaired adult endometrial development that prevent implantation and lead to female infertility.

  3. The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility.

    PubMed

    Du, Hongling; Taylor, Hugh S

    2016-01-01

    HOX genes convey positional identity that leads to the proper partitioning and adult identity of the female reproductive track. Abnormalities in reproductive tract development can be caused by HOX gene mutations or altered HOX gene expression. Diethylstilbestrol (DES) and other endocrine disruptors cause Müllerian defects by changing HOX gene expression. HOX genes are also essential regulators of adult endometrial development. Regulated HOXA10 and HOXA11 expression is necessary for endometrial receptivity; decreased HOXA10 or HOXA11 expression leads to decreased implantation rates. Alternation of HOXA10 and HOXA11 expression has been identified as a mechanism of the decreased implantation associated with endometriosis, polycystic ovarian syndrome, leiomyoma, polyps, adenomyosis, and hydrosalpinx. Alteration of HOX gene expression causes both uterine developmental abnormalities and impaired adult endometrial development that prevent implantation and lead to female infertility. PMID:26552702

  4. Assessment of Virally Vectored Autoimmunity as a Biocontrol Strategy for Cane Toads

    PubMed Central

    Robinson, Anthony J.; Venables, Daryl; Voysey, Rhonda D.; Boyle, Donna G.; Shanmuganathan, Thayalini; Hardy, Christopher M.; Siddon, Nicole A.; Hyatt, Alex D.

    2011-01-01

    Background The cane toad, Bufo (Chaunus) marinus, is one of the most notorious vertebrate pests introduced into Australia over the last 200 years and, so far, efforts to identify a naturally occurring B. marinus-specific pathogen for use as a biological control agent have been unsuccessful. We explored an alternative approach that entailed genetically modifying a pathogen with broad host specificity so that it no longer caused disease, but carried a gene to disrupt the cane toad life cycle in a species specific manner. Methodology/Principal Findings The adult beta globin gene was selected as the model gene for proof of concept of autoimmunity as a biocontrol method for cane toads. A previous report showed injection of bullfrog tadpoles with adult beta globin resulted in an alteration in the form of beta globin expressed in metamorphs as well as reduced survival. In B. marinus we established for the first time that the switch from tadpole to adult globin exists. The effect of injecting B. marinus tadpoles with purified recombinant adult globin protein was then assessed using behavioural (swim speed in tadpoles and jump length in metamorphs), developmental (time to metamorphosis, weight and length at various developmental stages, protein profile of adult globin) and genetic (adult globin mRNA levels) measures. However, we were unable to detect any differences between treated and control animals. Further, globin delivery using Bohle iridovirus, an Australian ranavirus isolate belonging to the Iridovirus family, did not reduce the survival of metamorphs or alter the form of beta globin expressed in metamorphs. Conclusions/Significance While we were able to show for the first time that the switch from tadpole to adult globin does occur in B. marinus, we were not able to induce autoimmunity and disrupt metamorphosis. The short development time of B. marinus tadpoles may preclude this approach. PMID:21283623

  5. Analysis of gene expression in fetal and adult cells infected with rubella virus

    SciTech Connect

    Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.

    2008-01-05

    Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adult lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced

  6. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation

    PubMed Central

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  7. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation.

    PubMed

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  8. Different Gene Expression Signatures in Children and Adults with Celiac Disease

    PubMed Central

    López-Palacios, N.; Bodas, A.; Dema, B.; Fernández-Arquero, M.; González-Pérez, B.; Salazar, I.; Núñez, C.

    2016-01-01

    Celiac disease (CD) is developed after gluten ingestion in genetically susceptible individuals. It can appear at any time in life, but some differences are commonly observed between individuals with onset early in life or in adulthood. We aimed to investigate the molecular basis underlying those differences. We collected 19 duodenal biopsies of children and adults with CD and compared the expression of 38 selected genes between each other and with the observed in 13 non-CD controls matched by age. A Bayesian methodology was used to analyze the differences of gene expression between groups. We found seven genes with a similarly altered expression in children and adults with CD when compared to controls (C2orf74, CCR6, FASLG, JAK2, IL23A, TAGAP and UBE2L3). Differences were observed in 13 genes: six genes being altered only in adults (IL1RL1, CD28, STAT3, TMEM187, VAMP3 and ZFP36L1) and two only in children (TNFSF18 and ICOSLG); and four genes showing a significantly higher alteration in adults (CCR4, IL6, IL18RAP and PLEK) and one in children (C1orf106). This is the first extensive study comparing gene expression in children and adults with CD. Differences in the expression level of several genes were found between groups, being notorious the higher alteration observed in adults. Further research is needed to evaluate the possible genetic influence underlying these changes and the specific functional consequences of the reported differences. PMID:26859134

  9. Analysis of Gene Expression and Ultrastructure of Stifle Menisci from Juvenile and Adult Pigs

    PubMed Central

    Kreinest, Michael; Reisig, Gregor; Ströbel, Philipp; Fickert, Stefan; Brade, Joachim; Wennemuth, Gunther; Lipp, Peter; Schwarz, Markus L

    2016-01-01

    The origin of the age-associated degenerative processes in meniscal tissue is poorly understood and may be related to an imbalance of anabolic and catabolic metabolism. The aim of the current study was to compare medial menisci isolated from juvenile pigs and degenerated medial menisci from adult pigs in terms of gene expression profile and ultrastructure. Medial menisci were isolated from the knee joints of juvenile and adult pigs (n = 8 for each group). Degeneration was determined histologically according to a scoring system. In addition, the gene expression profiles of 14 genes encoding extracellular matrix proteins, catabolic matrix metalloproteinases and mediators of inflammation were analyzed. Changes in the ultrastructure of the collagen network of the meniscal tissue were analyzed by using transmission electron microscopy. The histologic analysis of menisci showed significantly higher grade of degeneration in tissue isolated from adult porcine knee joints compared with menisci isolated from juvenile knee joints. In particular, destruction of the collagen network was greater in adult menisci than in juvenile menisci. Degenerated menisci showed significantly decreased gene expression of COL1A1 and increased expression of MMP2, MMP13, and IL8. The menisci from adult porcine knee joints can serve as a model for meniscal degeneration. Degenerative changes were manifested as differences in histopathology, gene expression and ultrastructure of collagen network. PMID:26884408

  10. Age-related decreased inhibitory vs. excitatory gene expression in the adult autistic brain

    PubMed Central

    van de Lagemaat, Louie N.; Nijhof, Bonnie; Bosch, Daniëlle G. M.; Kohansal-Nodehi, Mahdokht; Keerthikumar, Shivakumar; Heimel, J. Alexander

    2014-01-01

    Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction and communication, and restricted behavior and interests. A disruption in the balance of excitatory and inhibitory neurotransmission has been hypothesized to underlie these disorders. Here we demonstrate that genes of both pathways are affected by ASD, and that gene expression of inhibitory and excitatory genes is altered in the cerebral cortex of adult but not younger autistic individuals. We have developed a measure for the difference in the level of excitation and inhibition based on gene expression and observe that in this measure inhibition is decreased relative to excitation in adult ASD compared to control. This difference was undetectable in young autistic brains. Given that many psychiatric features of autism are already present at an early age, this suggests that the observed imbalance in gene expression is an aging phenomenon in ASD rather than its underlying cause. PMID:25538548

  11. Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q

    SciTech Connect

    Wirtz, M.K.; Samples, J.R.; Kramer, P.L.

    1997-02-01

    Glaucoma is the third-leading cause of blindness in the world, affecting >13.5 million people. Adult-on-set primary open-angle glaucoma (POAG) is the most common form of glaucoma in the United States. We present a family in which adult-onset POAG is inherited as an autosomal dominant trait. Twelve affected family members were identified from 44 at-risk individuals. The disease-causing gene was mapped to chromosome 3q21-24, with analysis of recombinant haplotypes suggesting a total inclusion region of 11.1 cM between markers D3S3637 and D3S1744. This is the first report of mapping of an adult-onset POAG gene to chromosome 3q, gene symbol GLC1C. 57 refs., 3 figs., 3 tabs.

  12. 20-Hydroxyecdysone stimulates the accumulation of translatable yolk polypeptide gene transcript in adult male Drosophila melanogaster.

    PubMed

    Shirk, P D; Minoo, P; Postlethwait, J H

    1983-01-01

    Yolk polypeptide (YP) synthesis is hormonally stimulated during maturation of adult female Drosophila melanogaster. Synthesis of the three YPs is sex specific and occurs in fat body cells and follicle cells of adult females. However, males have been shown to produce YPs when treated with the steroid hormone 20-hydroxyecdysone (20-HE). By using a cell-free translation system as an assay for YP mRNA, we found that 20-HE also causes the accumulation of translatable YP message in males. In addition, hybridization of cloned copies of genes for both YP1 and YP3 to total RNA from males showed that 20-HE caused the appearance of YP gene transcripts in males. Eight hours after treatment of males with 20-HE, YP gene transcript levels had increased at least 25-fold to approximately 2.7 x 10(6) copies of YP1 gene transcript per adult male fly. In normal adult females, there were 42 x 10(6) copies per fly by 24 hr. There was neither detectable YP synthesis nor translatable YP gene transcript in either normal 1- to 3-day-old males or 24-hr-old males treated with a juvenile hormone analogue. This evidence shows that 20-HE acts to regulate the levels of translatable YP mRNA in male Drosophila.

  13. Expression pattern of Piwi-like genes in adult Myzostoma cirriferum (Annelida).

    PubMed

    Weigert, Anne; Helm, Conrad; Hausen, Harald; Zakrzewski, Anne-C; Bleidorn, Christoph

    2013-09-01

    Piwi-like genes are a subgroup of Argonaute genes which participate as gene regulators by gene silencing. In most bilaterians, such as mouse, human, insects, and zebrafish, their expression is mostly limited to gonadal stem cells. But there are some striking exceptions to this pattern; flatworms and acoels also express Piwi-like genes in somatic stem cells, due to their unique replacement system. Annelid species like Capitella teleta and Platynereis dumerilii express these genes in cells of the posterior growth zone as well as in gonadal stem cells. To investigate the expression pattern of Piwi-like genes in another annelid, we established in situ hybridization for adult Myzostoma cirriferum. Piwi-like gene transcripts recovered in an mRNA-seq library of pooled adult stages of M. cirriferum were expanded using RACE PCR, cloned and sequenced. ML analysis confirmed the identity of both transcripts as part of the Piwi1-like or Piwi2-like subfamily of Argonaute proteins. The results of in situ hybridization studies show that the expression of both Piwi-like genes, Mc-Piwi1 and Mc-Piwi2, is clearly located only in gonadal stem cells, and as such we did not find any evidence for the existence of a posterior growth zone nor expression in somatic stem cells.

  14. Health and population effects of rare gene knockouts in adult humans with related parents

    PubMed Central

    Narasimhan, Vagheesh M.; Hunt, Karen A.; Mason, Dan; Baker, Christopher L.; Karczewski, Konrad J.; Barnes, Michael R.; Barnett, Anthony H.; Bates, Chris; Bellary, Srikanth; Bockett, Nicholas A.; Giorda, Kristina; Griffiths, Christopher J.; Hemingway, Harry; Jia, Zhilong; Kelly, M. Ann; Khawaja, Hajrah A.; Lek, Monkol; McCarthy, Shane; McEachan, Rosie; O’Donnell-Luria, Anne; Paigen, Kenneth; Parisinos, Constantinos A.; Sheridan, Eamonn; Southgate, Laura; Tee, Louise; Thomas, Mark; Xue, Yali; Schnall-Levin, Michael; Petkov, Petko M.; Tyler-Smith, Chris; Maher, Eamonn R.; Trembath, Richard C.; MacArthur, Daniel G.; Wright, John; Durbin, Richard; van Heel, David A.

    2016-01-01

    Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3,222 British Pakistani-heritage adults with high parental relatedness, discovering 1,111 rare-variant homozygous genotypes with predicted loss of gene function (knockouts) in 781 genes. We observed 13.7% fewer than expected homozygous knockout genotypes, implying an average load of 1.6 recessive-lethal-equivalent LOF variants per adult. Linking genetic data to lifelong health records, knockouts were not associated with clinical consultation or prescription rate. In this dataset we identified a healthy PRDM9 knockout mother, and performed phased genome sequencing on her, her child and controls, which showed meiotic recombination sites localised away from PRDM9-dependent hotspots. Thus, natural LOF variants inform upon essential genetic loci, and demonstrate PRDM9 redundancy in humans. PMID:26940866

  15. Gene algebra from a genetic code algebraic structure.

    PubMed

    Sanchez, R; Morgado, E; Grau, R

    2005-10-01

    By considering two important factors involved in the codon-anticodon interactions, the hydrogen bond number and the chemical type of bases, a codon array of the genetic code table as an increasing code scale of interaction energies of amino acids in proteins was obtained. Next, in order to consecutively obtain all codons from the codon AAC, a sum operation has been introduced in the set of codons. The group obtained over the set of codons is isomorphic to the group (Z(64), +) of the integer module 64. On the Z(64)-algebra of the set of 64(N) codon sequences of length N, gene mutations are described by means of endomorphisms f:(Z(64))(N)-->(Z(64))(N). Endomorphisms and automorphisms helped us describe the gene mutation pathways. For instance, 77.7% mutations in 749 HIV protease gene sequences correspond to unique diagonal endomorphisms of the wild type strain HXB2. In particular, most of the reported mutations that confer drug resistance to the HIV protease gene correspond to diagonal automorphisms of the wild type. What is more, in the human beta-globin gene a similar situation appears where most of the single codon mutations correspond to automorphisms. Hence, in the analyses of molecular evolution process on the DNA sequence set of length N, the Z(64)-algebra will help us explain the quantitative relationships between genes.

  16. Hierarchy in gene expression is predictive of risk, progression, and outcome in adult acute myeloid leukemia

    NASA Astrophysics Data System (ADS)

    Tripathi, Shubham; Deem, Michael W.

    2015-02-01

    Cancer progresses with a change in the structure of the gene network in normal cells. We define a measure of organizational hierarchy in gene networks of affected cells in adult acute myeloid leukemia (AML) patients. With a retrospective cohort analysis based on the gene expression profiles of 116 AML patients, we find that the likelihood of future cancer relapse and the level of clinical risk are directly correlated with the level of organization in the cancer related gene network. We also explore the variation of the level of organization in the gene network with cancer progression. We find that this variation is non-monotonic, which implies the fitness landscape in the evolution of AML cancer cells is non-trivial. We further find that the hierarchy in gene expression at the time of diagnosis may be a useful biomarker in AML prognosis.

  17. Hierarchy in Gene Expression is Predictive of Risk, Progression, and Outcome in Adult Acute Myeloid Leukemia

    PubMed Central

    Tripathi, Shubham; Deem, Michael W.

    2015-01-01

    Cancer progresses with a change in the structure of the gene network in normal cells. We define a measure of organizational hierarchy in gene networks of affected cells in adult acute myeloid leukemia (AML) patients. With a retrospective cohort analysis based on the gene expression profiles of 116 acute myeloid leukemia patients, we find that the likelihood of future cancer relapse and the level of clinical risk are directly correlated with the level of organization in the cancer related gene network. We also explore the variation of the level of organization in the gene network with cancer progression. We find that this variation is non-monotonic, which implies the fitness landscape in the evolution of AML cancer cells is nontrivial. We further find that the hierarchy in gene expression at the time of diagnosis may be a useful biomarker in AML prognosis. PMID:25685944

  18. Hierarchy in gene expression is predictive of risk, progression, and outcome in adult acute myeloid leukemia.

    PubMed

    Tripathi, Shubham; Deem, Michael W

    2015-02-01

    Cancer progresses with a change in the structure of the gene network in normal cells. We define a measure of organizational hierarchy in gene networks of affected cells in adult acute myeloid leukemia (AML) patients. With a retrospective cohort analysis based on the gene expression profiles of 116 AML patients, we find that the likelihood of future cancer relapse and the level of clinical risk are directly correlated with the level of organization in the cancer related gene network. We also explore the variation of the level of organization in the gene network with cancer progression. We find that this variation is non-monotonic, which implies the fitness landscape in the evolution of AML cancer cells is non-trivial. We further find that the hierarchy in gene expression at the time of diagnosis may be a useful biomarker in AML prognosis. PMID:25685944

  19. Relationships between Gene Expression and Brain Wiring in the Adult Rodent Brain

    PubMed Central

    French, Leon; Pavlidis, Paul

    2011-01-01

    We studied the global relationship between gene expression and neuroanatomical connectivity in the adult rodent brain. We utilized a large data set of the rat brain “connectome” from the Brain Architecture Management System (942 brain regions and over 5000 connections) and used statistical approaches to relate the data to the gene expression signatures of 17,530 genes in 142 anatomical regions from the Allen Brain Atlas. Our analysis shows that adult gene expression signatures have a statistically significant relationship to connectivity. In particular, brain regions that have similar expression profiles tend to have similar connectivity profiles, and this effect is not entirely attributable to spatial correlations. In addition, brain regions which are connected have more similar expression patterns. Using a simple optimization approach, we identified a set of genes most correlated with neuroanatomical connectivity, and find that this set is enriched for genes involved in neuronal development and axon guidance. A number of the genes have been implicated in neurodevelopmental disorders such as autistic spectrum disorder. Our results have the potential to shed light on the role of gene expression patterns in influencing neuronal activity and connectivity, with potential applications to our understanding of brain disorders. Supplementary data are available at http://www.chibi.ubc.ca/ABAMS. PMID:21253556

  20. Gestational environment programs adult depression-like behavior through methylation of the calcitonin gene-related peptide gene

    PubMed Central

    Jiao, Jianwei; Opal, Mark D.; Dulawa, Stephanie C.

    2012-01-01

    Early life exposure to specific environmental factors can increase risk for developing psychopathology including major depression in adulthood. However, the molecular pathways and epigenetic mechanisms that mediate the effects of early environments on adult mood remain poorly understood. We examined the effects of different gestational and rearing conditions on adult anxiety- and depression-like behavior using a combined reciprocal out-crossing and cross-fostering design in Balb/cJ (cJ) and C57BL/6J (B6) mouse strains. First filial (F1) hybrid offspring, which were gestated by B6 or cJ dams and then reared by either strain, were evaluated for behavior and whole-genome hippocampal gene expression during adulthood. Adult hybrid mice gestated by B6 dams showed increased depression-like behavior in the forced swim and sucrose preference tests, increased hippocampal expression of alpha calcitonin gene-related peptide (αCGRP) transcripts, and decreased methylation of the αCGRP promoter compared to those gestated by cJ dams. Differential expression of αCGRP in adulthood did not result from genomic imprinting, and differences between B6 and cJ mitochondrial DNA were not responsible for behavioral phenotypes observed. Lastly, central administration of αCGRP to adult hybrid mice increased depression-like behavior, while the CGRP1 receptor antagonist CGRP8–37 reduced depression-like behavior in the FST. Our findings suggest that gestational factors influence adult depression-like behavior through methylation of the αCGRP gene. PMID:23044705

  1. Hematopoietic stem cell gene transfer for the treatment of hemoglobin disorders.

    PubMed

    Persons, Derek A

    2009-01-01

    Hematopoietic stem cell (HSC)-targeted gene transfer is an attractive approach for the treatment of a number of hematopoietic disorders caused by single gene defects. Indeed, in a series of gene transfer trials for two different primary immunodeficiencies beginning early in this decade, outstanding success has been achieved. Despite generally low levels of engrafted, genetically modified HSCs, these trials were successful because of the marked selective advantage of gene-corrected lymphoid precursors that allowed reconstitution of the immune system. Unlike the immunodeficiencies, this robust level of in vivo selection is not available to hematopoietic repopulating cells or early progenitor cells following gene transfer of a therapeutic globin gene in the setting of beta-thalassemia and sickle cell disease. Both preclinical and clinical transplant studies involving bone marrow chimeras suggest that 20% or higher levels of engraftment of genetically modified HSCs will be needed for clinical success in the most severe of these disorders. Encouragingly, gene transfer levels in this range have recently been reported in a lentiviral vector gene transfer clinical trial for children with adrenoleukodystrophy. A clinical gene transfer trial for beta-thalassemia has begun in France, and one patient with transfusion-dependent HbE/beta-thalassemia has demonstrated a therapeutic effect after transplantation with autologous CD34(+) cells genetically modified with a beta-globin lentiviral vector. Here, the development and recent progress of gene therapy for the hemoglobin disorders is reviewed.

  2. THE EFFECTS OF HYPERTHERMIA ON SPERMATOGENESIS, APOPTOSIS, GENE EXPRESSION AND FERTILITY IN ADULT MALE MICE

    EPA Science Inventory

    The effects of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male mice
    John C. Rockett1, Faye L. Mapp1, J. Brian Garges1, J. Christopher Luft1, Chisato Mori2 and David J. Dix1.
    1Reproductive Toxicology Division, National Health and Envir...

  3. Monoamine Oxidase a Promoter Gene Associated with Problem Behavior in Adults with Intellectual/Developmental Disabilities

    ERIC Educational Resources Information Center

    May, Michael E.; Srour, Ali; Hedges, Lora K.; Lightfoot, David A.; Phillips, John A., III; Blakely, Randy D.; Kennedy, Craig H.

    2009-01-01

    A functional polymorphism in the promoter of the gene encoding monoamine oxidase A has been associated with problem behavior in various populations. We examined the association of MAOA alleles in adult males with intellectual/developmental disabilities with and without established histories of problem behavior. These data were compared with a…

  4. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  5. Gene-environment interaction in programming hippocampal plasticity: focus on adult neurogenesis

    PubMed Central

    Koehl, Muriel

    2015-01-01

    Interactions between genes and environment are a critical feature of development and both contribute to shape individuality. They are at the core of vulnerability resiliency for mental illnesses. During the early postnatal period, several brain structures involved in cognitive and emotional processing, such as the hippocampus, still develop and it is likely that interferences with this neuronal development, which is genetically determined, might lead to long-lasting structural and functional consequences and increase the risk of developing psychopathology. One particular target is adult neurogenesis, which is involved in the regulation of cognitive and emotional processes. Insights into the dynamic interplay between genes and environmental factors in setting up individual rates of neurogenesis have come from laboratory studies exploring experience-dependent changes in adult neurogenesis as a function of individual’s genetic makeup. These studies have implications for our understanding of the mechanisms regulating adult neurogenesis, which could constitute a link between environmental challenges and psychopathology. PMID:26300723

  6. Using intron splicing trick for preferential gene expression in transduced cells: an approach for suicide gene therapy.

    PubMed

    Pourzadegan, F; Shariati, L; Taghizadeh, R; Khanahmad, H; Mohammadi, Z; Tabatabaiefar, M A

    2016-01-01

    Suicide gene therapy is one of the most innovative approaches in which a potential toxic gene is delivered to the targeted cancer cell by different target delivery methods. We constructed a transfer vector to express green fluorescent protein (GFP) in transduced cells but not in packaging cells. We placed gfp under the control of the cytomegalovirus (CMV) promoter, which is positioned between the two long-terminal repeats in reverse direction. The intron-2 sequence of the human beta globin gene with two poly-A signals and several stop codons on the antisense strand was placed on the leading strand between the CMV promoter and gfp. For lentiviral production, the HEK293T and line were co-transfected with the PMD2G, psPAX2 and pLentiGFP-Ins2 plasmids. The HEK293T and line were transduced with this virus. PCR was performed for evaluation of intron splicing in transduced cells. The GFP expression was seen in 65% of the cells transduced. The PCR amplification of the genomic DNA of transduced cells confirmed the splicing of intron 2. The strategy is significant to accomplish our goal for preserving the packaging cells from the toxic gene expression during viral assembly and the resultant reduction in viral titration. Also it serves to address several other issues in the gene therapy.

  7. Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA

    PubMed Central

    Sarro, Emma C; Sullivan, Regina M; Barr, Gordon

    2014-01-01

    Anxiety-related disorders are among the most common psychiatric illnesses, thought to have both genetic and environmental causes. Early-life trauma, such as abuse from a caregiver, can be predictable or unpredictable, each resulting in increased prevalence and severity of a unique set of disorders. In this study, we examined the influence of early unpredictable trauma on both the behavioral expression of adult anxiety and gene expression within the amygdala. Neonatal rats were exposed to unpaired odor-shock conditioning for 5 days, which produces deficits in adult behavior and amygdala dysfunction. In adulthood, we used the Light/Dark box test to measure anxiety-related behaviors, measuring the latency to enter the lit area and quantified urination and defecation. The amygdala was then dissected and a microarray analysis was performed to examine changes in gene expression. Animals that had received early unpredictable trauma displayed significantly longer latencies to enter the lit area and more defecation and urination. The microarray analysis revealed over-represented genes related to learning and memory, synaptic transmission and trans-membrane transport. Gene ontology and pathway analysis identified highly represented disease states related to anxiety phenotypes, including social anxiety, obsessive-compulsive disorders, PTSD and bipolar disorder. Addiction related genes were also overrepresented in this analysis. Unpredictable shock during early development increased anxiety-like behaviors in adulthood with concomitant changes in genes related to neurotransmission, resulting in gene expression patterns similar to anxiety-related psychiatric disorders. PMID:24240029

  8. Mitochondrial ATPase subunit 6 and cytochrome B gene polymorphisms in young obese adults.

    PubMed

    Fuku, Noriyuki; Oshida, Yoshiharu; Takeyasu, Takeshi; Guo, Li-Jun; Kurata, Miyuki; Yamada, Yoshiji; Sato, Yuzo; Tanaka, Masashi

    2002-02-01

    We hypothesized that the mutational strand asymmetry is more strongly exerted upon the mitochondrial cytochrome b (Cytb) gene, which is distant from the origin of the light-strand replication (Ori(L)), than upon the ATPase subunit 6 (ATP6) gene, which is close to the Ori(L). To test this hypothesis, we determined the sequences of these two genes in 96 Japanese young obese adults. The frequency of G-->A transitions was significantly higher than that of C-->T transitions in the Cytb gene, whereas the frequencies of G-->A and C-->T transitions were not significantly different in the ATP6 gene. The marked mutational strand asymmetry in the Cytb gene can be explained by the deamination of C to uracil in the long single-stranded state of the heavy strand during replication. The ratio of the nonsynonymous substitutions at the second codon positions to those at the first codon positions was significantly lower in the Cytb gene than in the ATP6 gene. The physicochemical differences between the standard and the replaced amino acid residues were significantly smaller in the Cytb gene than in ATP6 one. The present study indicates that amino acid sequences are less variable for Cytb than for ATP6 in spite of the strong mutational strand asymmetry for the Cytb gene.

  9. A similar 5'-flanking region is required for estrogen and progesterone induction of ovalbumin gene expression.

    PubMed

    Dean, D C; Gope, R; Knoll, B J; Riser, M E; O'Malley, B W

    1984-08-25

    We have previously transferred an ovalbumin-beta-globin fusion gene (ovalglobin) into primary cultures of chick oviduct cells and demonstrated that an ovalbumin gene 5'-flanking sequence between -221 and -95 is necessary for progesterone-mediated transcriptional induction (Dean, D. C., Knoll, B. J., Riser, M. E., and O'Malley, B. W. (1983) Nature (Lond.) 305, 551-554). Here we compare 5'-flanking sequences required for induction of the ovalglobin gene by 17 beta-estradiol and progesterone. The early gene of simian virus 40 was inserted into the same plasmid as the ovalbumin fusion gene to serve as an internal control. Since transcription of the viral early gene was unaffected by the presence of steroid hormone or deletions in the ovalbumin gene 5'-flanking region, the level of its transcripts could be monitored as a reference standard for ovalglobin transcription. Ovalglobin transcripts initiated principally from the ovalbumin cap site in the presence or absence of progesterone and 17 beta-estradiol. Deletion of 5'-flanking sequences to -197 had little effect on the induction with either hormone, while successive deletions to -180, -161, and -143 resulted in a gradual decrease in the level of induction. Deletion to -95 eliminated the induction. The results of this study indicate that DNA control elements for regulation of the ovalbumin gene by estrogen and progesterone either overlap directly or are clustered in close proximity in the 5'-flanking region near the ovalbumin gene promoter. PMID:6088508

  10. Role of upstream DNase I hypersensitive sites in the regulation of human alpha globin gene expression.

    PubMed

    Sharpe, J A; Summerhill, R J; Vyas, P; Gourdon, G; Higgs, D R; Wood, W G

    1993-09-01

    Erythroid-specific DNase 1 hypersensitive sites have been identified at the promoters of the human alpha-like genes and within the region from 4 to 40 kb upstream of the gene cluster. One of these sites, HS-40, has been shown previously to be the major regulator of tissue-specific alpha-globin gene expression. We have now examined the function of other hypersensitive sites by studying the expression in mouse erythroleukemia (MEL) cells of various fragments containing these sites attached to HS-40 and an alpha-globin gene. High level expression of the alpha gene was observed in all cases. When clones of MEL cells bearing a single copy of the alpha-globin gene fragments were examined, expression levels were similar to those of the endogenous mouse alpha genes and similar to MEL cells bearing beta gene constructs under the control of the beta-globin locus control region. However, there was no evidence that the additional hypersensitive sites increased the level of expression or conferred copy number dependence on the expression of a linked alpha gene in MEL cells. PMID:7689876

  11. Schistosoma mansoni Egg, Adult Male and Female Comparative Gene Expression Analysis and Identification of Novel Genes by RNA-Seq

    PubMed Central

    Anderson, Letícia; Amaral, Murilo S.; Beckedorff, Felipe; Silva, Lucas F.; Dazzani, Bianca; Oliveira, Katia C.; Almeida, Giulliana T.; Gomes, Monete R.; Pires, David S.; Setubal, João C.; DeMarco, Ricardo; Verjovski-Almeida, Sergio

    2015-01-01

    Background Schistosomiasis is one of the most prevalent parasitic diseases worldwide and is a public health problem. Schistosoma mansoni is the most widespread species responsible for schistosomiasis in the Americas, Middle East and Africa. Adult female worms (mated to males) release eggs in the hepatic portal vasculature and are the principal cause of morbidity. Comparative separate transcriptomes of female and male adult worms were previously assessed with using microarrays and Serial Analysis of Gene Expression (SAGE), thus limiting the possibility of finding novel genes. Moreover, the egg transcriptome was analyzed only once with limited bacterially cloned cDNA libraries. Methodology/Principal findings To compare the gene expression of S. mansoni eggs, females, and males, we performed RNA-Seq on these three parasite forms using 454/Roche technology and reconstructed the transcriptome using Trinity de novo assembly. The resulting contigs were mapped to the genome and were cross-referenced with predicted Smp genes and H3K4me3 ChIP-Seq public data. For the first time, we obtained separate, unbiased gene expression profiles for S. mansoni eggs and female and male adult worms, identifying enriched biological processes and specific enriched functions for each of the three parasite forms. Transcripts with no match to predicted genes were analyzed for their protein-coding potential and the presence of an encoded conserved protein domain. A set of 232 novel protein-coding genes with putative functions related to reproduction, metabolism, and cell biogenesis was detected, which contributes to the understanding of parasite biology. Conclusions/Significance Large-scale RNA-Seq analysis using de novo assembly associated with genome-wide information for histone marks in the vicinity of gene models constitutes a new approach to transcriptome analysis that has not yet been explored in schistosomes. Importantly, all data have been consolidated into a UCSC Genome Browser search

  12. Effect of fetal hemoglobin-stimulating medicines on the interaction of DNA and protein of important erythroid regulatory elements.

    PubMed

    Ji, Xin-Jun; Liu, De-pei; Xu, Dong-Dong; Li, Lei; Liang, Chih-chuan

    2003-08-01

    Beta-Thalassemia is the most common single gene disorder in the world, which is caused by the imbalance between alpha-globin chain and beta-globin chain synthesis. Several medicines, such as 5-azacytidine, hydroxyurea, cytarabine, vinblatine, butyrate, and myleran, have been shown to be able to reactivate gamma-globin chain synthesis during the adult stage, and some of them (5-azacytidine, hydroxyurea, myleran, and butyrate) have been used clinically to treat thalassemia and sickle cell disease. Much research efforts are focusing on the determination of the underlying mechanisms of medicine action. In this experiment, as an effort to probe the underlying mechanism of medicine action, we used ligation-mediated polymerase chain reaction and in vivo footprinting methods to study the DNA-protein interaction at critical erythroid regulatory elements after hydroxyurea or myleran administration to mice. Our results showed that the patterns of in vivo footprints at both the hypersensitive site 2 of the locus control region and the beta-globin gene promoter were changed after medicine treatment. We proposed based on these results that the medicines' administration might result in a change in the interaction between trans-acting factors and cis-acting elements at these regions. These changes might influence the assembly of the transcription complex and, lastly, influence the expression of the beta-globin gene.

  13. Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of "germline genes" with stemness.

    PubMed

    Alié, Alexandre; Leclère, Lucas; Jager, Muriel; Dayraud, Cyrielle; Chang, Patrick; Le Guyader, Hervé; Quéinnec, Eric; Manuel, Michaël

    2011-02-01

    Stem cells are essential for animal development and adult tissue homeostasis, and the quest for an ancestral gene fingerprint of stemness is a major challenge for evolutionary developmental biology. Recent studies have indicated that a series of genes, including the transposon silencer Piwi and the translational activator Vasa, specifically involved in germline determination and maintenance in classical bilaterian models (e.g., vertebrates, fly, nematode), are more generally expressed in adult multipotent stem cells in other animals like flatworms and hydras. Since the progeny of these multipotent stem cells includes both somatic and germinal derivatives, it remains unclear whether Vasa, Piwi, and associated genes like Bruno and PL10 were ancestrally linked to stemness, or to germinal potential. We have investigated the expression of Vasa, two Piwi paralogues, Bruno and PL10 in Pleurobrachia pileus, a member of the early-diverging phylum Ctenophora, the probable sister group of cnidarians. These genes were all expressed in the male and female germlines, and with the exception of one of the Piwi paralogues, they showed similar expression patterns within somatic territories (tentacle root, comb rows, aboral sensory complex). Cytological observations and EdU DNA-labelling and long-term retention experiments revealed concentrations of stem cells closely matching these gene expression areas. These stem cell pools are spatially restricted, and each specialised in the production of particular types of somatic cells. These data unveil important aspects of cell renewal within the ctenophore body and suggest that Piwi, Vasa, Bruno, and PL10 belong to a gene network ancestrally acting in two distinct contexts: (i) the germline and (ii) stem cells, whatever the nature of their progeny.

  14. Dynamic Gene Expression in the Human Cerebral Cortex Distinguishes Children from Adults

    PubMed Central

    Sterner, Kirstin N.; Weckle, Amy; Chugani, Harry T.; Tarca, Adi L.; Sherwood, Chet C.; Hof, Patrick R.; Kuzawa, Christopher W.; Boddy, Amy M.; Abbas, Asad; Raaum, Ryan L.; Grégoire, Lucie; Lipovich, Leonard; Grossman, Lawrence I.; Uddin, Monica; Wildman, Derek E.

    2012-01-01

    In comparison with other primate species, humans have an extended juvenile period during which the brain is more plastic. In the current study we sought to examine gene expression in the cerebral cortex during development in the context of this adaptive plasticity. We introduce an approach designed to discriminate genes with variable as opposed to uniform patterns of gene expression and found that greater inter-individual variance is observed among children than among adults. For the 337 transcripts that show this pattern, we found a significant overrepresentation of genes annotated to the immune system process (pFDR≅0). Moreover, genes known to be important in neuronal function, such as brain-derived neurotrophic factor (BDNF), are included among the genes more variably expressed in childhood. We propose that the developmental period of heightened childhood neuronal plasticity is characterized by more dynamic patterns of gene expression in the cerebral cortex compared to adulthood when the brain is less plastic. That an overabundance of these genes are annotated to the immune system suggests that the functions of these genes can be thought of not only in the context of antigen processing and presentation, but also in the context of nervous system development. PMID:22666384

  15. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes.

    PubMed

    Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S

    2010-06-01

    By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.

  16. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    ERIC Educational Resources Information Center

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  17. PW1 gene/paternally expressed gene 3 (PW1/Peg3) identifies multiple adult stem and progenitor cell populations

    PubMed Central

    Besson, Vanessa; Smeriglio, Piera; Wegener, Amélie; Relaix, Frédéric; Nait Oumesmar, Brahim; Sassoon, David A.; Marazzi, Giovanna

    2011-01-01

    A variety of markers are invaluable for identifying and purifying stem/progenitor cells. Here we report the generation of a murine reporter line driven by Pw1 that reveals cycling and quiescent progenitor/stem cells in all adult tissues thus far examined, including the intestine, blood, testis, central nervous system, bone, skeletal muscle, and skin. Neurospheres generated from the adult PW1-reporter mouse show near 100% reporter-gene expression following a single passage. Furthermore, epidermal stem cells can be purified solely on the basis of reporter-gene expression. These cells are clonogenic, repopulate the epidermal stem-cell niches, and give rise to new hair follicles. Finally, we demonstrate that only PW1 reporter-expressing epidermal cells give rise to follicles that are capable of self-renewal following injury. Our data demonstrate that PW1 serves as an invaluable marker for competent self-renewing stem cells in a wide array of adult tissues, and the PW1-reporter mouse serves as a tool for rapid stem cell isolation and characterization. PMID:21709251

  18. Polygenic risk for externalizing disorders: Gene-by-development and gene-by-environment effects in adolescents and young adults

    PubMed Central

    Salvatore, Jessica E.; Aliev, Fazil; Bucholz, Kathleen; Agrawal, Arpana; Hesselbrock, Victor; Hesselbrock, Michie; Bauer, Lance; Kuperman, Samuel; Schuckit, Marc A.; Kramer, John; Edenberg, Howard J.; Foroud, Tatiana M.; Dick, Danielle M.

    2014-01-01

    In this project, we aimed to bring large-scale gene identification findings into a developmental psychopathology framework. Using a family-based sample, we tested whether polygenic scores for externalizing disorders—based on single nucleotide polymorphism weights derived from genome-wide association study results in adults (n = 1,249)—predicted externalizing disorders, subclinical externalizing behavior, and impulsivity-related traits adolescents (n = 248) and young adults (n = 207), and whether parenting and peer factors in adolescence moderated polygenic risk to predict externalizing disorders. Polygenic scores predicted externalizing disorders in adolescents and young adults, even after controlling for parental externalizing disorder history. Polygenic scores also predicted subclinical externalizing behavior and impulsivity traits in the adolescents and young adults. Adolescent parental monitoring and peer substance use moderated polygenic scores to predict externalizing disorders. This illustrates how state of the science genetics can be integrated with psychological science to identify how genetic risk contributes to the development of psychopathology. PMID:25821660

  19. Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae.

    PubMed

    Chaimanee, Veeranan; Chantawannakul, Panuwan; Chen, Yanping; Evans, Jay D; Pettis, Jeffery S

    2012-08-01

    Nosema ceranae is a microsporidium parasite infecting adult honey bees (Apis mellifera) and is known to affects at both the individual and colony level. In this study, the expression levels were measured for four antimicrobial peptide encoding genes that are associated with bee humoral immunity (defensin, abaecin, apidaecin, and hymenoptaecin), eater gene which is a transmembrane protein involved cellular immunity and gene encoding female-specific protein (vitellogenin) in honey bees when inoculated by N. ceranae. The results showed that four of these genes, defensin, abaecin, apidaecin and hymenoptaecin were significantly down-regulated 3 and 6days after inoculations. Additionally, antimicrobial peptide expressions did not significantly differ between control and inoculated bees after 12days post inoculation. Moreover, our results revealed that the mRNA levels of eater and vitellogenin did not differ significantly following N. ceranae inoculation. Therefore, in this study we reaffirmed that N. ceranae infection induces host immunosuppression.

  20. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org).

  1. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org). PMID:22832508

  2. Adult rat bone marrow stromal cells express genes associated with dopamine neurons

    SciTech Connect

    Kramer, Brian C.; Woodbury, Dale . E-mail: WOODBURYDL@AOL.COM; Black, Ira B.

    2006-05-19

    An intensive search is underway to identify candidates to replace the cells that degenerate in Parkinson's disease (PD). To date, no suitable substitute has been found. We have recently found that adult rat bone marrow stromal cells (MSCs) can be induced to assume a neuronal phenotype in vitro. These findings may have particular relevance to the treatment of PD. We now report that adult MSCs express multiple dopaminergic genes, suggesting that they are potential candidates for cell therapy. Using RT-PCR, we have examined families of genes that are associated with the development and/or survival of dopaminergic neurons. MSCs transcribe a variety of dopaminergic genes including patched and smoothened (components of the Shh receptor), Gli-1 (downstream mediator of Shh), and Otx-1, a gene associated with formation of the mesencephalon during development. Furthermore, Shh treatment elicits a 1.5-fold increase in DNA synthesis in cultured MSCs, suggesting the presence of a functional Shh receptor complex. We have also found that MSCs transcribe and translate Nurr-1, a nuclear receptor essential for the development of dopamine neurons. In addition, MSCs express a variety of growth factor receptors including the glycosyl-phosphatidylinositol-anchored ligand-binding subunit of the GDNF receptor, GFR{alpha}1, as well as fibroblast growth factor receptors one and four. The expression of genes that are associated with the development and survival of dopamine neurons suggests a potential role for these cells in the treatment of Parkinson's disease.

  3. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes.

    PubMed

    Zama, Aparna Mahakali; Uzumcu, Mehmet

    2009-10-01

    Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-beta, which was down-regulated, whereas ERalpha was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 microg/kgxd or 100 mg/kg.d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERalpha and ERbeta genes in postnatal d 50-60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERbeta promoter regions (P < 0.05), whereas the ERalpha promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.

  4. Human growth hormone (GH1) gene polymorphism map in a normal-statured adult population

    PubMed Central

    Esteban, Cristina; Audí, Laura; Carrascosa, Antonio; Fernández-Cancio, Mónica; Pérez-Arroyo, Annalisa; Ulied, Angels; Andaluz, Pilar; Arjona, Rosa; Albisu, Marian; Clemente, María; Gussinyé, Miquel; Yeste, Diego

    2007-01-01

    Objective GH1 gene presents a complex map of single nucleotide polymorphisms (SNPs) in the entire promoter, coding and noncoding regions. The aim of the study was to establish the complete map of GH1 gene SNPs in our control normal population and to analyse its association with adult height. Design, subjects and measurements A systematic GH1 gene analysis was designed in a control population of 307 adults of both sexes with height normally distributed within normal range for the same population: −2 standard deviation scores (SDS) to +2 SDS. An analysis was performed on individual and combined genotype associations with adult height. Results Twenty-five SNPs presented a frequency over 1%: 11 in the promoter (P1 to P11), three in the 5′UTR region (P12 to P14), one in exon 1 (P15), three in intron 1 (P16 to P18), two in intron 2 (P19 and P20), two in exon 4 (P21 and P22) and three in intron 4 (P23 to P25). Twenty-nine additional changes with frequencies under 1% were found in 29 subjects. P8, P19, P20 and P25 had not been previously described. P6, P12, P17 and P25 accounted for 6·2% of the variation in adult height (P = 0·0007) in this population with genotypes A/G at P6, G/G at P6 and A/G at P12 decreasing height SDS (−0·063 ± 0·031, −0·693 ± 0·350 and −0·489 ± 0·265, Mean ± SE) and genotypes A/T at P17 and T/G at P25 increasing height SDS (+1·094 ± 0·456 and +1·184 ± 0·432). Conclusions This study established the GH1 gene sequence variation map in a normal adult height control population confirming the high density of SNPs in a relatively small gene. Our study shows that the more frequent SNPs did not significantly contribute to height determination, while only one promoter and two intronic SNPs contributed significantly to it. Studies in larger populations will have to confirm the associations and in vitro functional studies will elucidate the mechanisms involved. Systematic GH1 gene analysis in patients with growth delay and suspected

  5. A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults

    PubMed Central

    Parisi, Michael; Nuttall, Rachel; Edwards, Pamela; Minor, James; Naiman, Daniel; Lü, Jining; Doctolero, Michael; Vainer, Marina; Chan, Cathy; Malley, James; Eastman, Scott; Oliver, Brian

    2004-01-01

    Background Sexual dimorphism results in the formation of two types of individuals with specialized reproductive roles and is most evident in the germ cells and gonads. Results We have undertaken a global analysis of transcription between the sexes using a 31,464 element FlyGEM microarray to determine what fraction of the genome shows sex-biased expression, what tissues express these genes, the predicted functions of these genes, and where these genes map onto the genome. Females and males (both with and without gonads), dissected testis and ovary, females and males with genetically ablated germlines, and sex-transformed flies were sampled. Conclusions Using any of a number of criteria, we find extensive sex-biased expression in adults. The majority of cases of sex differential gene expression are attributable to the germ cells. There is also a large class of genes with soma-biased expression. There is little germline-biased expression indicating that nearly all genes with germline expression also show sex-bias. Monte Carlo simulations show that some genes with sex-biased expression are non-randomly distributed in the genome. PMID:15186491

  6. Family environment and adult resilience: contributions of positive parenting and the oxytocin receptor gene

    PubMed Central

    Bradley, Bekh; Davis, Telsie A.; Wingo, Aliza P.; Mercer, Kristina B.; Ressler, Kerry J.

    2013-01-01

    Background Abundant research shows that childhood adversity increases the risk for adult psychopathology while research on influences of positive family environment on risk for psychopathology is limited. Similarly, a growing body of research examines genetic and gene by environment predictors of psychopathology, yet such research on predictors of resilience is sparse. Objectives We examined the role of positive factors in childhood family environment (CFE) and the OXTR rs53576 genotype in predicting levels of adult resilient coping and positive affect. We also examined whether the relationship between positive factors in the CFEs and adult resilient coping and positive affect varied across OXTR rs53576 genotype. Methods We gathered self-report data on childhood environment, trauma history, and adult resilience and positive affect in a sample of 971 African American adults. Results We found that positive CFE was positively associated with higher levels of resilient coping and positive affect in adulthood after controlling for childhood maltreatment, other trauma, and symptoms of posttraumatic stress disorder. We did not find a direct effect of OXTR 53576 on a combined resilient coping/positive-affect-dependent variable, but we did find an interaction of OXTR rs53576 with family environment. Conclusions Our data suggest that even in the face of adversity, positive aspects of the family environment may contribute to resilience. These results highlight the importance of considering protective developmental experiences and the interaction of such experiences with genetic variants in risk and resilience research. PMID:24058725

  7. Good genes and sexual selection in dung beetles (Onthophagus taurus): genetic variance in egg-to-adult and adult viability.

    PubMed

    Garcia-Gonzalez, Francisco; Simmons, Leigh W

    2011-01-18

    Whether species exhibit significant heritable variation in fitness is central for sexual selection. According to good genes models there must be genetic variation in males leading to variation in offspring fitness if females are to obtain genetic benefits from exercising mate preferences, or by mating multiply. However, sexual selection based on genetic benefits is controversial, and there is limited unambiguous support for the notion that choosy or polyandrous females can increase the chances of producing offspring with high viability. Here we examine the levels of additive genetic variance in two fitness components in the dung beetle Onthophagus taurus. We found significant sire effects on egg-to-adult viability and on son, but not daughter, survival to sexual maturity, as well as moderate coefficients of additive variance in these traits. Moreover, we do not find evidence for sexual antagonism influencing genetic variation for fitness. Our results are consistent with good genes sexual selection, and suggest that both pre- and postcopulatory mate choice, and male competition could provide indirect benefits to females.

  8. Effects of Doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo

    PubMed Central

    2012-01-01

    Background Most filarial nematodes contain Wolbachia symbionts. The purpose of this study was to examine the effects of doxycycline on gene expression in Wolbachia and adult female Brugia malayi. Methods Brugia malayi infected gerbils were treated with doxycycline for 6-weeks. This treatment largely cleared Wolbachia and arrested worm reproduction. RNA recovered from treated and control female worms was labeled by random priming and hybridized to the Version 2- filarial microarray to obtain expression profiles. Results and discussion Results showed significant changes in expression for 200 Wolbachia (29% of Wolbachia genes with expression signals in untreated worms) and 546 B. malayi array elements after treatment. These elements correspond to known genes and also to novel genes with unknown biological functions. Most differentially expressed Wolbachia genes were down-regulated after treatment (98.5%). In contrast, doxycycline had a mixed effect on B. malayi gene expression with many more genes being significantly up-regulated after treatment (85% of differentially expressed genes). Genes and processes involved in reproduction (gender-regulated genes, collagen, amino acid metabolism, ribosomal processes, and cytoskeleton) were down-regulated after doxycycline while up-regulated genes and pathways suggest adaptations for survival in response to stress (energy metabolism, electron transport, anti-oxidants, nutrient transport, bacterial signaling pathways, and immune evasion). Conclusions Doxycycline reduced Wolbachia and significantly decreased bacterial gene expression. Wolbachia ribosomes are believed to be the primary biological target for doxycycline in filarial worms. B. malayi genes essential for reproduction, growth and development were also down-regulated; these changes are consistent with doxycycline effects on embryo development and reproduction. On the other hand, many B. malayi genes involved in energy production, electron-transport, metabolism, anti

  9. Epigenetic Gene Regulation in the Adult Mammalian Brain: Multiple roles in Memory Formation

    PubMed Central

    Lubin, Farah D.

    2011-01-01

    Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the lifespan and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer’s disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic. PMID:21419233

  10. Expression pattern of STOP lacZ reporter gene in adult and developing mouse brain.

    PubMed

    Couégnas, Alice; Schweitzer, Annie; Andrieux, Annie; Ghandour, M Said; Boehm, Nelly

    2007-05-15

    Stable tubulin-only polypeptide (STOP) proteins are microtubule-associated proteins responsible for microtubule stabilization in neurons. STOP null mice show apparently normal cerebral anatomy but display synaptic defects associated with neuroleptic-sensitive behavioral disorders. STOP null mice have therefore been proposed as an animal model for the study of schizophrenia. In the present study, the expression pattern of STOP gene in developing and adult brain has been examined by using lacZ gene inserted in the STOP locus, as a reporter gene. beta-Galactosidase (beta-gal) immunostaining was confined to neuronal cells and projections. Strong labeling was observed in the whole olfactory system, cortical layer VII, hippocampus, hypothalamus, cerebellum, habenula, fasciculus retroflexus, and interpeduncular nucleus in adults. Additionally, ventral thalamic nucleus, clusters of positive cells in striatum, and Cajal-Retzius cells of cortical layer I were labeled in young mice. The strong expression of STOP lacZ reporter gene observed in brain is confined to areas that may be involved in the schizophrenia-related symptoms observed in STOP-deficient mice.

  11. Dose-Responsive Gene Expression Changes in Juvenile and Adult Mummichogs (Fundulus heteroclitus) After Arsenic Exposure

    PubMed Central

    Gonzalez, Horacio O.; Hu, Jianjun; Gaworecki, Kristen M.; Roling, Jonathan A.; Baldwin, William S.; Gardea-Torresdey, Jorge L.; Bain, Lisa J.

    2010-01-01

    The present study investigated arsenic's effects on mummichogs (Fundulus heteroclitus), while also examining what role that gender or exposure age might play. Adult male and female mummichogs were exposed to 172ppb, 575ppb, or 1,720ppb arsenic as sodium arsenite for 10 days immediately prior to spawning. No differences were noted in the number or viability of eggs between the groups, but there was a significant increase in deformities in 1,720ppb arsenic exposure group. Total RNA from adult livers or 6-week old juveniles was used to probe custom macroarrays for changes in gene expression. In females, 3% of the genes were commonly differentially expressed in the 172 and 575ppb exposure groups compared to controls. In the males, between 1.1-3% of the differentially expressed genes were in common between the exposure groups. Several genes, including apolipoprotein and serum amyloid precursor were commonly expressed in either a dose-responsive manner or were dose-specific, but consistent across genders. These patterns of regulation were confirmed by QPCR. These findings will provide us with a better understanding of the effects of dose, gender, and exposure age on the response to arsenic. PMID:20451245

  12. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9

    PubMed Central

    Carroll, Kelli J.; Makarewich, Catherine A.; McAnally, John; Anderson, Douglas M.; Zentilin, Lorena; Liu, Ning; Giacca, Mauro; Bassel-Duby, Rhonda; Olson, Eric N.

    2016-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart. PMID:26719419

  13. Specific patterns of defective HSV-1 gene transfer in the adult central nervous system: implications for gene targeting.

    PubMed

    Wood, M J; Byrnes, A P; Kaplitt, M G; Pfaff, D W; Rabkin, S D; Charlton, H M

    1994-11-01

    Viral vectors are a means by which genes can be delivered to specific sites in the adult central nervous system. Nevertheless, the interaction between the viral vector and cells of the nervous system, which forms the basis for specific gene transfer, is not well understood. In this study a nonreplicating defective herpes simplex virus type 1 vector, expressing the marker gene lacZ, was stereotaxically injected at varying titers into the rat central nervous system. Three sites were targeted: the caudate nucleus, dentate gyrus, and cerebellar cortex, and the resulting patterns of beta-galactosidase activity were examined. Many cells of neuronal and glial morphology, and of differing neuronal subtypes, expressed beta-galactosidase at each of the injection sites. However, beta-galactosidase activity was also detected in distant secondary brain areas, the neurons of which make afferent connections with the primary sites. This strongly suggested that the retrograde transport of defective virus was the basis for the enzyme activity observed at a distance. Moreover, retrograde transport to secondary sites was found to be highly selective and restricted to certain retrograde neuroanatomical pathways in a specific and titer dependent fashion. The pathways observed were predominantly, but not exclusively, monoaminergic in origin. This finding is supported by reports of specific tropism by HSV for monoaminergic circuits in experimental encephalitis and transneuronal tracing studies. Our observations suggest that certain functional neuronal populations, which are permissive for the retrograde transfer of defective HSV-1 vectors, might be specifically targeted for gene transfer using this approach. Conversely, a knowledge of the pathways permissive for viral uptake, retrograde transfer, and subsequent gene expression will be essential in order to predict the consequences of gene transfer using viral vectors. PMID:7821388

  14. Renal disease in adults with TSC2/PKD1 contiguous gene syndrome.

    PubMed

    Martignoni, Guido; Bonetti, Franco; Pea, Maurizio; Tardanico, Regina; Brunelli, Matteo; Eble, John N

    2002-02-01

    The most common renal lesions of tuberous sclerosis complex, an autosomal-dominant syndrome resulting from losses of TSC1 (9q34) or TSC2 (16p13.3), are renal cysts and angiomyolipomas. Epithelial neoplasms are less common. The TSC2 gene lies adjacent to PKD1, the major gene responsible for autosomal-dominant polycystic kidney disease. Recently, a deletion mutation disrupting both TSC2 and PKD1 has been described in young children with tuberous sclerosis complex with severe renal cystic disease. This disease has been termed the TSC2/PKD1 contiguous gene syndrome. We describe the lesions in the resected kidneys of two adults with TSC2/PDK1 contiguous gene syndrome, at the time of the nephrectomies: a 31-year-old man and his 44-year-old mother. The four kidneys were enlarged reniform masses composed of cysts lined by flattened, cuboidal, or, infrequently, large deeply eosinophilic epithelial cells. The kidneys also contained numerous classic angiomyolipomas and rare intraglomerular microlesions. In the son the largest tumor was a monotypic epithelioid angiomyolipoma. In the wall of his left renal pelvis there was a plaque-shaped, HMB-45-positive localized lesion of lymphangioleiomyomatosis. This is the first description of the renal lesions in adults with genetically confirmed TSC2/PDK1 contiguous gene syndrome. The pathologic findings highlight the importance of thorough sampling for histology in polycystic kidney diseases and indicate that the observation of an angiomyolipoma in biopsy material from patients with enlarged cystic kidneys should suggest the diagnosis of TSC2/PKD1 contiguous gene syndrome, even in cases without ultrasonographic and macroscopic evidence of angiomyolipoma.

  15. Gene therapy for red-green colour blindness in adult primates.

    PubMed

    Mancuso, Katherine; Hauswirth, William W; Li, Qiuhong; Connor, Thomas B; Kuchenbecker, James A; Mauck, Matthew C; Neitz, Jay; Neitz, Maureen

    2009-10-01

    Red-green colour blindness, which results from the absence of either the long- (L) or the middle- (M) wavelength-sensitive visual photopigments, is the most common single locus genetic disorder. Here we explore the possibility of curing colour blindness using gene therapy in experiments on adult monkeys that had been colour blind since birth. A third type of cone pigment was added to dichromatic retinas, providing the receptoral basis for trichromatic colour vision. This opened a new avenue to explore the requirements for establishing the neural circuits for a new dimension of colour sensation. Classic visual deprivation experiments have led to the expectation that neural connections established during development would not appropriately process an input that was not present from birth. Therefore, it was believed that the treatment of congenital vision disorders would be ineffective unless administered to the very young. However, here we show that the addition of a third opsin in adult red-green colour-deficient primates was sufficient to produce trichromatic colour vision behaviour. Thus, trichromacy can arise from a single addition of a third cone class and it does not require an early developmental process. This provides a positive outlook for the potential of gene therapy to cure adult vision disorders. PMID:19759534

  16. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs

    PubMed Central

    Miyanohara, Atsushi; Kamizato, Kota; Juhas, Stefan; Juhasova, Jana; Navarro, Michael; Marsala, Silvia; Lukacova, Nada; Hruska-Plochan, Marian; Curtis, Erik; Gabel, Brandon; Ciacci, Joseph; Ahrens, Eric T; Kaspar, Brian K; Cleveland, Don; Marsala, Martin

    2016-01-01

    Effective in vivo use of adeno-associated virus (AAV)-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal). Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i) potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii) delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii) potent retrograde transgene expression in brain motor centers (motor cortex and brain stem); and (iv) the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients. PMID:27462649

  17. Gene therapy for red-green colour blindness in adult primates.

    PubMed

    Mancuso, Katherine; Hauswirth, William W; Li, Qiuhong; Connor, Thomas B; Kuchenbecker, James A; Mauck, Matthew C; Neitz, Jay; Neitz, Maureen

    2009-10-01

    Red-green colour blindness, which results from the absence of either the long- (L) or the middle- (M) wavelength-sensitive visual photopigments, is the most common single locus genetic disorder. Here we explore the possibility of curing colour blindness using gene therapy in experiments on adult monkeys that had been colour blind since birth. A third type of cone pigment was added to dichromatic retinas, providing the receptoral basis for trichromatic colour vision. This opened a new avenue to explore the requirements for establishing the neural circuits for a new dimension of colour sensation. Classic visual deprivation experiments have led to the expectation that neural connections established during development would not appropriately process an input that was not present from birth. Therefore, it was believed that the treatment of congenital vision disorders would be ineffective unless administered to the very young. However, here we show that the addition of a third opsin in adult red-green colour-deficient primates was sufficient to produce trichromatic colour vision behaviour. Thus, trichromacy can arise from a single addition of a third cone class and it does not require an early developmental process. This provides a positive outlook for the potential of gene therapy to cure adult vision disorders.

  18. Correlation of a set of gene variants, life events and personality features on adult ADHD severity.

    PubMed

    Müller, Daniel J; Chiesa, Alberto; Mandelli, Laura; De Luca, Vincenzo; De Ronchi, Diana; Jain, Umesh; Serretti, Alessandro; Kennedy, James L

    2010-07-01

    Increasing evidence suggests that symptoms of attention deficit hyperactivity disorder (ADHD) could persist into adult life in a substantial proportion of cases. The aim of the present study was to investigate the impact of (1) adverse events, (2) personality traits and (3) genetic variants chosen on the basis of previous findings and (4) their possible interactions on adult ADHD severity. One hundred and ten individuals diagnosed with adult ADHD were evaluated for occurrence of adverse events in childhood and adulthood, and personality traits by the Temperament and Character Inventory (TCI). Common polymorphisms within a set of nine important candidate genes (SLC6A3, DBH, DRD4, DRD5, HTR2A, CHRNA7, BDNF, PRKG1 and TAAR9) were genotyped for each subject. Life events, personality traits and genetic variations were analyzed in relationship to severity of current symptoms, according to the Brown Attention Deficit Disorder Scale (BADDS). Genetic variations were not significantly associated with severity of ADHD symptoms. Life stressors displayed only a minor effect as compared to personality traits. Indeed, symptoms' severity was significantly correlated with the temperamental trait of Harm avoidance and the character trait of Self directedness. The results of the present work are in line with previous evidence of a significant correlation between some personality traits and adult ADHD. However, several limitations such as the small sample size and the exclusion of patients with other severe comorbid psychiatric disorders could have influenced the significance of present findings.

  19. Gene Deletion Screen for Cardiomyopathy in Adult Drosophila Identifies a New Notch Ligand

    PubMed Central

    Kim, Il-Man; Wolf, Matthew J.; Rockman, Howard A.

    2010-01-01

    Rationale Drosophila has been recognized as a model to study human cardiac diseases. Objective Despite these findings, and the wealth of tools that are available to the fly community, forward genetic screens for adult heart phenotypes have been rarely performed due to the difficulty in accurately measuring cardiac function in adult Drosophila. Methods and Results Using optical coherence tomography to obtain real-time analysis of cardiac function in awake Drosophila, we performed a genomic deficiency screen in adult flies. Based on multiple complementary approaches, we identified CG31665 as a novel gene causing dilated cardiomyopathy. CG31665, which we name weary (wry), has structural similarities to members of the Notch family. Using cell aggregation assays and γ-secretase inhibitors we show that Wry is a novel Notch ligand that can mediate cellular adhesion with Notch expressing cells and transactivates Notch to promote signaling and nuclear transcription. Importantly, Wry lacks a DSL (Delta-Serrate-Lag) domain that is common feature to the other Drosophila Notch ligands. We further show that Notch signaling is critically important for the maintenance of normal heart function of the adult fly. Conclusions In conclusion, we identify a previously unknown Notch ligand in Drosophila that when deleted causes cardiomyopathy. Our study suggests that Notch signaling components may be a therapeutic target for dilated cardiomyopathy. PMID:20203305

  20. Photoperiod-induced differential expression of angiogenesis genes in testes of adult Peromyscus leucopus.

    PubMed

    Pyter, Leah M; Hotchkiss, Andrew K; Nelson, Randy J

    2005-02-01

    Non-pathological angiogenesis in adults is rare and is largely thought to be restricted to wound healing and female reproductive cycles. Adult male rodents, however, display seasonal angiogenesis to support seasonal changes in reproductive tissue morphology. Non-tropical rodents use photoperiod (day length) to determine the time of year. During short days, the reproductive system undergoes involution and mating behaviours stop, adaptations which presumably allow energy resources to be shifted to processes necessary for winter survival. We compared the patterns of gene expression involved in angiogenesis in testes of white-footed mice (Peromyscus leucopus) following 7, 14, 21 or 34 weeks of long or short day lengths. Short days decreased body mass, reproductive tract mass and seminiferous tubule diameter. Potential genes involved in seasonal angiogenesis were screened by hybridizing testicular RNA from each group to angiogenesis-specific microarrays. Genes that were > or =6-fold different between long- and short-day testes (i.e. hypoxia-inducible factor 1alpha(Hif1alpha), plasminogen activator inhibitor 1 (Serpine1), transforming growth factor beta receptor 3 (Tgfbetar3) and tumour necrosis factor (Tnf )) were sequenced and expression differences were compared throughout gonadal regression and recrudescence using quantitative RT-PCR. Our results suggest that short days trigger expression of Hif1alpha, Serpine1, and Tgfbetar3 to inhibit angiogenesis or promote apoptosis during testicular regression, and also trigger expression of Tnf to promote angiogenesis during testicular recrudescence.

  1. Identification of Susceptibility Genes of Adult Asthma in French Canadian Women

    PubMed Central

    Bérubé, Jean-Christophe; Gaudreault, Nathalie; Lavoie-Charland, Emilie; Sbarra, Laura; Henry, Cyndi; Madore, Anne-Marie; Paré, Peter D.; van den Berge, Maarten; Nickle, David; Laviolette, Michel; Laprise, Catherine; Boulet, Louis-Philippe; Bossé, Yohan

    2016-01-01

    Susceptibility genes of asthma may be more successfully identified by studying subgroups of phenotypically similar asthma patients. This study aims to identify single nucleotide polymorphisms (SNPs) associated with asthma in French Canadian adult women. A pooling-based genome-wide association study was performed in 240 allergic asthmatic and 120 allergic nonasthmatic women. The top associated SNPs were selected for individual genotyping in an extended cohort of 349 asthmatic and 261 nonasthmatic women. The functional impact of asthma-associated SNPs was investigated in a lung expression quantitative trait loci (eQTL) mapping study (n = 1035). Twenty-one of the 38 SNPs tested by individual genotyping showed P values lower than 0.05 for association with asthma. Cis-eQTL analyses supported the functional contribution of rs17801353 associated with C3AR1 (P = 7.90E − 10). The asthma risk allele for rs17801353 is associated with higher mRNA expression levels of C3AR1 in lung tissue. In silico functional characterization of the asthma-associated SNPs also supported the contribution of C3AR1 and additional genes including SYNE1, LINGO2, and IFNG-AS1. This pooling-based GWAS in French Canadian adult women followed by lung eQTL mapping suggested C3AR1 as a functional locus associated with asthma. Additional susceptibility genes were suggested in this homogenous subgroup of asthma patients. PMID:27445529

  2. Identification of Susceptibility Genes of Adult Asthma in French Canadian Women.

    PubMed

    Bérubé, Jean-Christophe; Gaudreault, Nathalie; Lavoie-Charland, Emilie; Sbarra, Laura; Henry, Cyndi; Madore, Anne-Marie; Paré, Peter D; van den Berge, Maarten; Nickle, David; Laviolette, Michel; Laprise, Catherine; Boulet, Louis-Philippe; Bossé, Yohan

    2016-01-01

    Susceptibility genes of asthma may be more successfully identified by studying subgroups of phenotypically similar asthma patients. This study aims to identify single nucleotide polymorphisms (SNPs) associated with asthma in French Canadian adult women. A pooling-based genome-wide association study was performed in 240 allergic asthmatic and 120 allergic nonasthmatic women. The top associated SNPs were selected for individual genotyping in an extended cohort of 349 asthmatic and 261 nonasthmatic women. The functional impact of asthma-associated SNPs was investigated in a lung expression quantitative trait loci (eQTL) mapping study (n = 1035). Twenty-one of the 38 SNPs tested by individual genotyping showed P values lower than 0.05 for association with asthma. Cis-eQTL analyses supported the functional contribution of rs17801353 associated with C3AR1 (P = 7.90E - 10). The asthma risk allele for rs17801353 is associated with higher mRNA expression levels of C3AR1 in lung tissue. In silico functional characterization of the asthma-associated SNPs also supported the contribution of C3AR1 and additional genes including SYNE1, LINGO2, and IFNG-AS1. This pooling-based GWAS in French Canadian adult women followed by lung eQTL mapping suggested C3AR1 as a functional locus associated with asthma. Additional susceptibility genes were suggested in this homogenous subgroup of asthma patients.

  3. Apoptosis-Related Gene Expression in an Adult Cohort with Crimean-Congo Hemorrhagic Fever

    PubMed Central

    Guler, Nil; Eroglu, Cafer; Yilmaz, Hava; Karadag, Adil; Alacam, Hasan; Sunbul, Mustafa; Fletcher, Tom E.; Leblebicioglu, Hakan

    2016-01-01

    Crimean-Congo Hemorrhagic Fever (CCHF) is a life threatening acute viral infection characterized by fever, bleeding, leukopenia and thrombocytopenia. It is a major emerging infectious diseases threat, but its pathogenesis remains poorly understood and few data exist for the role of apoptosis in acute infection. We aimed to assess apoptotic gene expression in leukocytes in a cross-sectional cohort study of adults with CCHF. Twenty participants with CCHF and 10 healthy controls were recruited at a tertiary CCHF unit in Turkey; at admission baseline blood tests were collected and total RNA was isolated. The RealTime ready Human Apoptosis Panel was used for real-time PCR, detecting differences in gene expression. Participants had CCHF severity grading scores (SGS) with low risk score (10 out of 20) and intermediate or high risk scores (10 out of 20) for mortality. Five of 20 participants had a fatal outcome. Gene expression analysis showed modulation of pro-apoptotic and anti-apoptotic genes that facilitate apoptosis in the CCHF patient group. Dominant extrinsic pathway activation, mostly related with TNF family members was observed. Severe and fatal cases suggest additional intrinsic pathway activation. The clinical significance of relative gene expression is not clear, and larger longitudinal studies with simultaneous measurement of host and viral factors are recommended. PMID:27304063

  4. Association of VAMP-2 and Syntaxin 1A Genes with Adult Attention Deficit Hyperactivity Disorder

    PubMed Central

    Kenar, Aẙe Nur Inci; Ay, Özlem İzci; Erdal, Mehmet Emin

    2014-01-01

    Objective The etiology of attention deficit hyperactivity disorder (ADHD) has not been entirely clarified yet. Structural and metabolic differences at the prefrontal striatal cerebellary system and the interaction of gene and environment are the main factors that thought to play roles in the etiology. Genetic investigations are performed especially about the dopamine pathways and receptors. In this study; it was aimed to investigate the association of the synaptobrevin-2 (VAMP-2) gene Ins/Del polymorphism and syntaxin 1A gene intron 7 polymorphism, which take place in encoding presynaptic protein, with adult ADHD. Methods One hundred thirty-nine patients, having ADHD aging between 18 and 60 years and 106 healthy people as controls were included into the study. DNA samples were extracted from whole blood and genetic analysis were performed. Results A significant difference was determined between ADHD and VAMP-2 Ins/Del polymorphism and syntaxin 1A intron 7 polymorphism according to the control group. These polymorphisms were found not to be associated with subtypes of ADHD. Conclusion It is supposed that synaptic protein genes together with dopaminergic genes might have roles in the etiology of ADHD. PMID:24605127

  5. Gene expression profiling of adult female tissues in feeding Rhipicephalus microplus cattle ticks.

    PubMed

    Stutzer, Christian; van Zyl, Willem A; Olivier, Nicholas A; Richards, Sabine; Maritz-Olivier, Christine

    2013-06-01

    The southern cattle tick, Rhipicephalus microplus, is an economically important pest, especially for resource-poor countries, both as a highly adaptive invasive species and prominent vector of disease. The increasing prevalence of resistance to chemical acaricides and variable efficacy of current tick vaccine candidates highlight the need for more effective control methods. In the absence of a fully annotated genome, the wealth of available expressed sequence tag sequence data for this species presents a unique opportunity to study the genes that are expressed in tissues involved in blood meal acquisition, digestion and reproduction during feeding. Utilising a custom oligonucleotide microarray designed from available singletons (BmiGI Version 2.1) and expressed sequence tag sequences of R. microplus, the expression profiles in feeding adult female midgut, salivary glands and ovarian tissues were compared. From 13,456 assembled transcripts, 588 genes expressed in all three tissues were identified from fed adult females 20 days post infestation. The greatest complement of genes relate to translation and protein turnover. Additionally, a number of unique transcripts were identified for each tissue that relate well to their respective physiological/biological function/role(s). These transcripts include secreted anti-hemostatics and defense proteins from the salivary glands for acquisition of a blood meal, proteases as well as enzymes and transporters for digestion and nutrient acquisition from ingested blood in the midgut, and finally proteins and associated factors involved in DNA replication and cell-cycle control for oogenesis in the ovaries. Comparative analyses of adult female tissues during feeding enabled the identification of a catalogue of transcripts that may be essential for successful feeding and reproduction in the cattle tick, R. microplus. Future studies will increase our understanding of basic tick biology, allowing the identification of shared proteins

  6. Evolution of insect metamorphosis: a microarray-based study of larval and adult gene expression in the ant Camponotus festinatus.

    PubMed

    Goodisman, Michael A D; Isoe, Jun; Wheeler, Diana E; Wells, Michael A

    2005-04-01

    Holometabolous insects inhabit almost every terrestrial ecosystem. The evolutionary success of holometabolous insects stems partly from their developmental program, which includes discrete larval and adult stages. To gain an understanding of how development differs among holometabolous insect taxa, we used cDNA microarray technology to examine differences in gene expression between larval and adult Camponotus festinatus ants. We then compared expression patterns obtained from our study to those observed in the fruitfly Drosophila melanogaster. We found that many genes showed distinct patterns of expression between the larval and adult ant life stages, a result that was confirmed through quantitative reverse-transcriptase polymerase chain reaction. Genes involved in protein metabolism and possessing structural activity tended to be more highly expressed in larval than adult ants. In contrast, genes relatively upregulated in adults possessed a greater diversity of functions and activities. We also discovered that patterns of expression observed for homologous genes in D. melanogaster differed substantially from those observed in C. festinatus. Our results suggest that the specific molecular mechanisms involved in metamorphosis will differ substantially between insect taxa. Systematic investigation of gene expression during development of other taxa will provide additional information on how developmental pathways evolve.

  7. PRENATAL ALCOHOL EXPOSURE ALTERS STEADY-STATE AND ACTIVATED GENE EXPRESSION IN THE ADULT RAT BRAIN

    PubMed Central

    Stepien, Katarzyna A.; Lussier, Alexandre A.; Neumann, Sarah M.; Pavlidis, Paul; Kobor, Michael S.; Weinberg, Joanne

    2016-01-01

    Background Prenatal alcohol exposure (PAE) is associated with alterations in numerous physiological systems, including the stress and immune systems . We have previously shown that PAE increases the course and severity of arthritis in an adjuvant-induced arthritis (AA) model. While the molecular mechanisms underlying these effects are not fully known, changes in neural gene expression are emerging as important factors in the etiology of PAE effects. As the prefrontal cortex (PFC) and hippocampus (HPC) play key roles in neuroimmune function, PAE-induced alterations to their transcriptome may underlie abnormal steady-state functions and responses to immune challenge. The current study examined brains from adult PAE and control females from our recent AA study to determine whether PAE causes long-term alterations in gene expression and whether these mediate the altered severity and course of arthritis in PAE females Methods Adult females from PAE, pair-fed [PF], and ad libitum-fed control [C]) groups were injected with either saline or complete Freund’s adjuvant. Animals were terminated at the peak of inflammation or during resolution (days 16 and 39 post-injection, respectively); cohorts of saline-injected PAE, PF and C females were terminated in parallel. Gene expression was analyzed in the PFC and HPC using whole genome mRNA expression microarrays. Results Significant changes in gene expression in both the PFC and HPC were found in PAE compared to controls in response to ethanol exposure alone (saline-injected females), including genes involved in neurodevelopment, apoptosis, and energy metabolism. Moreover, in response to inflammation (adjuvant-injected females), PAE animals showed unique expression patterns, while failing to exhibit the activation of genes and regulators involved in the immune response observed in control and pair-fed animals. Conclusions These results support the hypothesis that PAE affects neuroimmune function at the level of gene expression

  8. Reversible suppression of an essential gene in adult mice using transgenic RNA interference

    PubMed Central

    McJunkin, Katherine; Mazurek, Anthony; Premsrirut, Prem K.; Zuber, Johannes; Dow, Lukas E.; Simon, Janelle; Stillman, Bruce; Lowe, Scott W.

    2011-01-01

    RNAi has revolutionized loss-of-function genetics by enabling sequence-specific suppression of virtually any gene. Furthermore, tetracycline response elements (TRE) can drive expression of short hairpin RNAs (shRNAs) for inducible and reversible target gene suppression. Here, we demonstrate the feasibility of transgenic inducible RNAi for suppression of essential genes. We set out to directly target cell proliferation by screening an RNAi library against DNA replication factors and identified multiple shRNAs against Replication Protein A, subunit 3 (RPA3). We generated transgenic mice with TRE-driven Rpa3 shRNAs whose expression enforced a reversible cell cycle arrest. In adult mice, the block in cell proliferation caused rapid atrophy of the intestinal epithelium which led to weight loss and lethality within 8–11 d of shRNA induction. Upon shRNA withdrawal, villus atrophy and weight loss were fully reversible. Thus, shRpa3 transgenic mice provide an interesting tool to study tissue maintenance and regeneration. Overall, we have established a robust system that serves the purpose of temperature-sensitive alleles in other model organisms, enabling inducible and reversible suppression of essential genes in a mammalian system. PMID:21482754

  9. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice.

    PubMed

    Lee, Dong Hoon; Moon, Jihye; Ryu, Jinhyun; Jeong, Joo Yeon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Kang, Sang Soo

    2016-04-28

    Fetal alcohol syndrome (FAS) is a condition resulting from excessive drinking by pregnant women. Symptoms of FAS include abnormal facial features, stunted growth, intellectual deficits and attentional dysfunction. Many studies have investigated FAS, but its underlying mechanisms remain unknown. This study evaluated the relationship between alcohol exposure during the synaptogenesis period in postnatal mice and subsequent cognitive function in adult mice. We delivered two injections, separated by 2 h, of ethanol (3 g/kg, ethanol/saline, 20% v/v) to ICR mice on postnatal day 7. After 10 weeks, we conducted a behavioral test, sacrificed the animals, harvested brain tissue and analyzed hippocampal gene expression using a microarray. In ethanol-treated mice, there was a reduction in brain size and decreased neuronal cell number in the cortex, and also cognitive impairment. cDNA microarray results indicated that 1,548 genes showed a > 2-fold decrease in expression relative to control, whereas 974 genes showed a > 2-fold increase in expression relative to control. Many of these genes were related to signal transduction, synaptogenesis and cell membrane formation, which are highlighted in our findings. PMID:26960969

  10. Identification of cis-acting regulatory elements in the promoter region of the rat brain creatine kinase gene.

    PubMed Central

    Hobson, G M; Molloy, G R; Benfield, P A

    1990-01-01

    The functional organization of the rat brain creatine kinase (ckb) promoter was analyzed by deletion, linker scanning, and substitution mutagenesis. Mutations were introduced into the ckb promoter of hybrid ckb/neo (neomycin resistance gene) genes, and the mutant genes were expressed transiently in HeLa cells. Expression was assayed by primer extension analysis of neo RNA, which allowed the transcription start sites and the amount of transcription to be determined. Transfections and primer extension reactions were internally controlled by simultaneous analysis of transcription from the adenovirus VA gene located on the same plasmid as the hybrid ckb/neo gene. We demonstrate that 195 bp of the ckb promoter is sufficient for efficient in vivo expression in HeLa cells. A nonconsensus TTAA element at -28 bp appears to provide the TATA box function for the ckb promoter in vivo. Two CCAAT elements, one at -84 bp and the other at -54 bp, and a TATAAA TA element (a consensus TATA box sequence) at -66 bp are required for efficient transcription from the TTAA element. In addition, we present evidence that the consensus beta-globin TATA box responds to the TATAAATA element in the same way as the ckb nonconsensus TTAA element. Images PMID:2247071

  11. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer

    PubMed Central

    Bernardes de Jesus, Bruno; Vera, Elsa; Schneeberger, Kerstin; Tejera, Agueda M; Ayuso, Eduard; Bosch, Fatima; Blasco, Maria A

    2012-01-01

    A major goal in aging research is to improve health during aging. In the case of mice, genetic manipulations that shorten or lengthen telomeres result, respectively, in decreased or increased longevity. Based on this, we have tested the effects of a telomerase gene therapy in adult (1 year of age) and old (2 years of age) mice. Treatment of 1- and 2-year old mice with an adeno associated virus (AAV) of wide tropism expressing mouse TERT had remarkable beneficial effects on health and fitness, including insulin sensitivity, osteoporosis, neuromuscular coordination and several molecular biomarkers of aging. Importantly, telomerase-treated mice did not develop more cancer than their control littermates, suggesting that the known tumorigenic activity of telomerase is severely decreased when expressed in adult or old organisms using AAV vectors. Finally, telomerase-treated mice, both at 1-year and at 2-year of age, had an increase in median lifespan of 24 and 13%, respectively. These beneficial effects were not observed with a catalytically inactive TERT, demonstrating that they require telomerase activity. Together, these results constitute a proof-of-principle of a role of TERT in delaying physiological aging and extending longevity in normal mice through a telomerase-based treatment, and demonstrate the feasibility of anti-aging gene therapy. PMID:22585399

  12. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms.

    PubMed

    Li, Ben-Wen; Rush, Amy C; Weil, Gary J

    2015-12-01

    Acetylcholine receptors (AChRs) are required for body movement in parasitic nematodes and are targets of "classical" anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs) in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8. The genome of the filarial parasite Brugia malayi contains nine AChRs subunits including orthologues of Cel-unc-29, Cel-unc-38, and Cel-unc-63. We performed in situ hybridization with RNA probes to localize the expression of five AChR genes (Bm1_35890-Bma-unc-29, Bm1_20330-Bma-unc-38, Bm1_38195-Bma-unc-63, Bm1_48815-Bma-acr-26 and Bm1_40515-Bma-acr-12) in B. malayi adult worms. Four of these genes had similar expression patterns with signals in body muscle, developing embryos, spermatogonia, uterine wall adjacent to stretched microfilariae, wall of V as deferens, and lateral cord. Three L-AChR subunit genes (Bma-unc-29, Bma-unc-38 and Bma-unc-63) were expressed in body muscle, which is a known target of levamisole. Bma-acr-12 was co-expressed with these levamisole subunit genes in muscle, and this suggests that its protein product may form receptors with other alpha subunits. Bma-acr-26 was expressed in male muscle but not in female muscle. Strong expression signals of these genes in early embryos and gametes in uterus and testis suggest that AChRs may have a role in nervous system development of embryogenesis and spermatogenesis. This would be consistent with embryotoxic effects of drugs that target these receptors in filarial worms. Our data show that the expression of these receptor genes is tightly regulated with regard to localization in adult worms and developmental stage in embryos and gametes. These results may help to explain the broad effects of

  13. Relationship of a variant in the NTRK1 gene to white matter microstructure in young adults

    PubMed Central

    Braskie, Meredith N; Jahanshad, Neda; Stein, Jason L; Barysheva, Marina; Johnson, Kori; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Ringman, John M; Toga, Arthur W; Thompson, Paul M

    2012-01-01

    The NTRK1 gene (also known as TRKA) encodes a high affinity receptor for NGF, a neurotrophin involved in nervous system development and myelination. NTRK1 has been implicated in neurological function via links between the T allele at rs6336 (NTRK1-T) and schizophrenia risk. A variant in the neurotrophin gene, BDNF, was previously associated with white matter integrity in young adults, highlighting the importance of neurotrophins to white matter development. We hypothesized that NTRK1-T would relate to lower FA in healthy adults. We scanned 391 healthy adult human twins and their siblings (mean age: 23.6 ± 2.2 years; 31 NTRK1-T carriers, 360 non-carriers) using 105-gradient diffusion tensor imaging at 4 Tesla. We evaluated in brain white matter how NTRK1-T and NTRK1 rs4661063 allele A (rs4661063-A, which is in moderate linkage disequilibrium with rs6336) related to voxelwise fractional anisotropy – a common diffusion tensor imaging measure of white matter microstructure. We used mixed-model regression to control for family relatedness, age, and sex. The sample was split in half to test results reproducibility. The false discovery rate method corrected for voxelwise multiple comparisons. NTRK1-T and rs4661063-A correlated with lower white matter fractional anisotropy, independent of age and sex (multiple comparisons corrected: false discovery rate critical p = 0.038 for NTRK1-T and 0.013 for rs4661063-A). In each half-sample, the NTRK1-T effect was replicated in the cingulum, corpus callosum, superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculus, superior corona radiata, and uncinate fasciculus. Our results suggest that NTRK1-T is important for developing white matter microstructure. PMID:22539856

  14. Protective Effect of CRHR1 Gene Variants on the Development of Adult Depression Following Childhood Maltreatment

    PubMed Central

    Polanczyk, Guilherme; Caspi, Avshalom; Williams, Benjamin; Price, Thomas S.; Danese, Andrea; Sugden, Karen; Uher, Rudolf; Poulton, Richie; Moffitt, Terrie E.

    2013-01-01

    Context A previous study reported a gene × environment interaction in which a haplotype in the corticotropin-releasing hormone receptor 1 gene (CRHR1) was associated with protection against adult depressive symptoms in individuals who were maltreated as children (as assessed by the Childhood Trauma Questionnaire [CTQ]). Objective To replicate the interaction between childhood maltreatment and a TAT haplotype formed by rs7209436, rs110402, and rs242924 in CRHR1, predicting adult depression. Design Two prospective longitudinal cohort studies. Setting England and New Zealand. Participants Participants in the first sample were women in the E-Risk Study (N= 1116), followed up to age 40 years with 96% retention. Participants in the second sample were men and women in the Dunedin Study (N= 1037), followed up to age 32 years with 96% retention. Main Outcome Measure Research diagnoses of pastyear and recurrent major depressive disorder. Results In the E-Risk Study, the TAT haplotype was associated with a significant protective effect. In this effect, women who reported childhood maltreatment on the CTQ were protected against depression. In the Dunedin Study, which used a different type of measure of maltreatment, this finding was not replicated. Conclusions A haplotype in CRHR1 has been suggested to exert a protective effect against adult depression among research participants who reported maltreatment on the CTQ, a measure that elicits emotional memories. This suggests the hypothesis that CRHR1’s protective effect may relate to its function in the consolidation of memories of emotionally arousing experiences. PMID:19736354

  15. Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis.

    PubMed

    Diotel, Nicolas; Beil, Tanja; Strähle, Uwe; Rastegar, Sepand

    2015-01-01

    Teleost fish display a remarkable ability to generate new neurons and to repair brain lesions during adulthood. They are, therefore, a very popular model to investigate the molecular mechanisms of constitutive and induced neurogenesis in adult vertebrates. In this study, we investigated the expression patterns of inhibitor of DNA binding (id) genes and of their potential transcriptional repressor, znf238, in the whole brain of adult zebrafish. We show that while id1 is exclusively expressed in ventricular cells in the whole brain, id2a, id3 and id4 genes are expressed in broader areas. Interestingly, znf238 was also detected in these regions, its expression overlapping with id2a, id3 and id4 expression. Further detailed characterization of the id-expressing cells demonstrated that (a) id1 is expressed in type 1 and type 2 neural progenitors as previously published, (b) id2a in type 1, 2 and 3 neural progenitors, (c) id3 in type 3 neural progenitors and (d) id4 in postmitotic neurons. Our data provide a detailed map of id and znf238 expression in the brain of adult zebrafish, supplying a framework for studies of id genes function during adult neurogenesis and brain regeneration in the zebrafish.

  16. Microarray Analysis of Cell Cycle Gene Expression in Adult Human Corneal Endothelial Cells

    PubMed Central

    Ha Thi, Binh Minh; Campolmi, Nelly; He, Zhiguo; Pipparelli, Aurélien; Manissolle, Chloé; Thuret, Jean-Yves; Piselli, Simone; Forest, Fabien; Peoc'h, Michel; Garraud, Olivier; Gain, Philippe; Thuret, Gilles

    2014-01-01

    Corneal endothelial cells (ECs) form a monolayer that controls the hydration of the cornea and thus its transparency. Their almost nil proliferative status in humans is responsible, in several frequent diseases, for cell pool attrition that leads to irreversible corneal clouding. To screen for candidate genes involved in cell cycle arrest, we studied human ECs subjected to various environments thought to induce different proliferative profiles compared to ECs in vivo. Donor corneas (a few hours after death), organ-cultured (OC) corneas, in vitro confluent and non-confluent primary cultures, and an immortalized EC line were compared to healthy ECs retrieved in the first minutes of corneal grafts. Transcriptional profiles were compared using a cDNA array of 112 key genes of the cell cycle and analysed using Gene Ontology classification; cluster analysis and gene map presentation of the cell cycle regulation pathway were performed by GenMAPP. Results were validated using qRT-PCR on 11 selected genes. We found several transcripts of proteins implicated in cell cycle arrest and not previously reported in human ECs. Early G1-phase arrest effectors and multiple DNA damage-induced cell cycle arrest-associated transcripts were found in vivo and over-represented in OC and in vitro ECs. Though highly proliferative, immortalized ECs also exhibited overexpression of transcripts implicated in cell cycle arrest. These new effectors likely explain the stress-induced premature senescence that characterizes human adult ECs. They are potential targets for triggering and controlling EC proliferation with a view to increasing the cell pool of stored corneas or facilitating mass EC culture for bioengineered endothelial grafts. PMID:24747418

  17. The Drosophila melanogaster Muc68E Mucin Gene Influences Adult Size, Starvation Tolerance, and Cold Recovery.

    PubMed

    Reis, Micael; Silva, Ana C; Vieira, Cristina P; Vieira, Jorge

    2016-01-01

    Mucins have been implicated in many different biological processes, such as protection from mechanical damage, microorganisms, and toxic molecules, as well as providing a luminal scaffold during development. Nevertheless, it is conceivable that mucins have the potential to modulate food absorption as well, and thus contribute to the definition of several important phenotypic traits. Here we show that the Drosophila melanogaster Muc68E gene is 40- to 60-million-yr old, and is present in Drosophila species of the subgenus Sophophora only. The central repeat region of this gene is fast evolving, and shows evidence for repeated expansions/contractions. This and/or frequent gene conversion events lead to the homogenization of its repeats. The amino acid pattern P[ED][ED][ST][ST][ST] is found in the repeat region of Muc68E proteins from all Drosophila species studied, and can occur multiple times within a single conserved repeat block, and thus may have functional significance. Muc68E is a nonessential gene under laboratory conditions, but Muc68E mutant flies are smaller and lighter than controls at birth. However, at 4 d of age, Muc68E mutants are heavier, recover faster from chill-coma, and are more resistant to starvation than control flies, although they have the same percentage of lipids as controls. Mutant flies have enlarged abdominal size 1 d after chill-coma recovery, which is associated with higher lipid content. These results suggest that Muc68E has a role in metabolism modulation, food absorption, and/or feeding patterns in larvae and adults, and under normal and stress conditions. Such biological function is novel for mucin genes. PMID:27172221

  18. Induction of Stem Cell Gene Expression in Adult Human Fibroblasts without Transgenes

    PubMed Central

    Ambady, Sakthikumar; Holmes, William F.; Vilner, Lucy; Kole, Denis; Kashpur, Olga; Huntress, Victoria; Vojtic, Ina; Whitton, Holly; Dominko, Tanja

    2009-01-01

    Abstract Reprogramming of differentiated somatic cells into induced pluripotent stem (iPS) cells has potential for derivation of patient-specific cells for therapy as well as for development of models with which to study disease progression. Derivation of iPS cells from human somatic cells has been achieved by viral transduction of human fibroblasts with early developmental genes. Because forced expression of these genes by viral transduction results in transgene integration with unknown and unpredictable potential mutagenic effects, identification of cell culture conditions that can induce endogenous expression of these genes is desirable. Here we show that primary adult human fibroblasts have basal expression of mRNA for OCT4, SOX2, and NANOG. However, translation of these messages into detectable proteins and their subcellular localization depends on cell culture conditions. Manipulation of oxygen concentration and FGF2 supplementation can modulate expression of some pluripotency related genes at the transcriptional, translational, and cellular localization level. Changing cell culture condition parameters led to expression of REX1, potentiation of expression of LIN28, translation of OCT4, SOX2, and NANOG, and translocation of these transcription factors to the cell nucleus. We also show that culture conditions affect the in vitro lifespan of dermal fibroblasts, nearly doubling the number of population doublings before the cells reach replicative senescence. Our results suggest that it is possible to induce and manipulate endogenous expression of stem cell genes in somatic cells without genetic manipulation, but this short-term induction may not be sufficient for acquisition of true pluripotency. Further investigation of the factors involved in inducing this response could lead to discovery of defined culture conditions capable of altering cell fate in vitro. This would alleviate the need for forced expression by transgenesis, thus eliminating the risk of

  19. The Drosophila melanogaster Muc68E Mucin Gene Influences Adult Size, Starvation Tolerance, and Cold Recovery

    PubMed Central

    Reis, Micael; Silva, Ana C.; Vieira, Cristina P.; Vieira, Jorge

    2016-01-01

    Mucins have been implicated in many different biological processes, such as protection from mechanical damage, microorganisms, and toxic molecules, as well as providing a luminal scaffold during development. Nevertheless, it is conceivable that mucins have the potential to modulate food absorption as well, and thus contribute to the definition of several important phenotypic traits. Here we show that the Drosophila melanogaster Muc68E gene is 40- to 60-million-yr old, and is present in Drosophila species of the subgenus Sophophora only. The central repeat region of this gene is fast evolving, and shows evidence for repeated expansions/contractions. This and/or frequent gene conversion events lead to the homogenization of its repeats. The amino acid pattern P[ED][ED][ST][ST][ST] is found in the repeat region of Muc68E proteins from all Drosophila species studied, and can occur multiple times within a single conserved repeat block, and thus may have functional significance. Muc68E is a nonessential gene under laboratory conditions, but Muc68E mutant flies are smaller and lighter than controls at birth. However, at 4 d of age, Muc68E mutants are heavier, recover faster from chill-coma, and are more resistant to starvation than control flies, although they have the same percentage of lipids as controls. Mutant flies have enlarged abdominal size 1 d after chill-coma recovery, which is associated with higher lipid content. These results suggest that Muc68E has a role in metabolism modulation, food absorption, and/or feeding patterns in larvae and adults, and under normal and stress conditions. Such biological function is novel for mucin genes. PMID:27172221

  20. Associations of PER3 and RORA Circadian Gene Polymorphisms and Depressive Symptoms in Older Adults

    PubMed Central

    Maglione, Jeanne E.; Nievergelt, Caroline M.; Parimi, Neeta; Evans, Daniel S.; Ancoli-Israel, Sonia; Stone, Katie L.; Yaffe, Kristine; Redline, Susan; Tranah, Gregory J.

    2015-01-01

    Background Depressive symptoms are common in older adults and associated with poor outcomes. While circadian genes have been implicated in depression, the relationship between circadian genes and depressive symptoms in older adults is unclear. Methods A cross-sectional genetic association study of 529 single nucleotide polymorphisms (SNPs) representing 30 candidate circadian genes was performed in two population-based cohorts: Osteoporotic Fractures in Men Study (MrOS, n=1270, age 76.58±5.61 years) and the Study of Osteoporotic Fractures (SOF) in women (n=1740, 84.05±3.53 years) and a meta-analysis was performed. Depressive symptoms were assessed with the Geriatric Depression Scale categorizing participants as having “none-few symptoms” (0-2), “some depressive symptoms” (>2<6), or “many depressive symptoms” (≥6). Results We found associations meeting multiple testing criteria for significance between the PER3 intronic SNP rs12137927 and decreased odds of reporting “some depressive symptoms” in the SOF sample (OR 0.61, CI 0.48-0.78, df=1, Wald chi-square −4.04, p=0.000054) and the meta-analysis (OR 0.61, CI 0.48-0.78, z= −4.04, p=0.000054) and between the PER3 intronic SNPs rs228644 (OR 0.74, CI 0.63-0.86, z= 3.82, p-value=0.00013) and rs228682 (OR 0.74, CI 0.86 0.63, z= 3.81, p-value=0.00014) and decreased odds of reporting “some depressive symptoms” in the meta-analysis compared to endorsing none-few depressive symptoms. The RORA intronic SNP rs11632098 was associated with greater odds of reporting “many depressive symptoms” (OR 2.16, CI 1.45-3.23, df=1, Wald chi-square 3.76, p=0.000168) in the men. In the meta analysis the association was attenuated and nominally significant (OR 1.63, CI 1.24-2.16, z=3.45, p=0.00056). Conclusions PER3 and RORA may play important roles in the development of depressive symptoms in older adults. PMID:25892098

  1. Detection of sickle cell beta S-globin allele by hybridization with synthetic oligonucleotides.

    PubMed

    Conner, B J; Reyes, A A; Morin, C; Itakura, K; Teplitz, R L; Wallace, R B

    1983-01-01

    Two 19-base-long oligonucleotides were synthesized, one complementary to the normal human beta-globin gene (beta A) and one complementary to the sickle cell beta-globin gene (beta S). The nonadecanucleotides were radioactively labeled and used as probes in DNA hybridization. Under appropriate hybridization conditions, these probes can be used to distinguish the beta A gene from the beta S allele. The DNA from individuals homozygous for the normal beta-globin gene (beta A beta A) only hybridized with the beta A specific probe; the DNA from those homozygous for the sickle cell beta-globin gene (beta S beta S) only hybridized with the beta S specific probe. The DNA from heterozygous individuals (beta A beta S) hybridized with both probes. This allele-specific hybridization behavior of oligonucleotides provides a general method for diagnosis of any genetic disease which involves a point mutation in the DNA sequence of a single-copy gene.

  2. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides).

    PubMed

    Mehinto, Alvine C; Prucha, Melinda S; Colli-Dula, Reyna C; Kroll, Kevin J; Lavelle, Candice M; Barber, David S; Vulpe, Christopher D; Denslow, Nancy D

    2014-07-01

    Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20μg/kg of cadmium chloride (mean exposure level - 2.6μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction. PMID:24794047

  3. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides).

    PubMed

    Mehinto, Alvine C; Prucha, Melinda S; Colli-Dula, Reyna C; Kroll, Kevin J; Lavelle, Candice M; Barber, David S; Vulpe, Christopher D; Denslow, Nancy D

    2014-07-01

    Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20μg/kg of cadmium chloride (mean exposure level - 2.6μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction.

  4. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination.

    PubMed

    Malik, Astha; Kondratov, Roman V; Jamasbi, Roudabeh J; Geusz, Michael E

    2015-01-01

    Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during

  5. Expression of Hox paralog group 13 genes in adult and developing Megalobrama amblycephala.

    PubMed

    Jakovlić, Ivan; Wang, Wei-Min

    2016-07-01

    Hox genes encode transcription factors that play a key role in specifying the body plan in most metazoans. HoxPG13 genes most probably played an important role in body length variation during the evolution of animals. This is the first report of the mRNA expression patterns of the entire Hox paralog group 13 (HoxA13a, HoxA13b, HoxB13a, HoxC13a, HoxC13b, HoxD13a) in fish. Expression was studied by qPCR in five tissues of adult Megalobrama amblycephala specimens (spleen, liver, kidney, intestine and gills) and during development (17 stages: fertilised egg to 90 days-old juveniles). Expression in tissues (for all six genes) was generally very low in gills (0.0006-0.05), spleen (0.006-0.09) and kidney (0.02-0.39); the highest in intestine (from 2.28 for HoxC13b to 244.29 for HoxC13a). During the development, a peak in expression around the hatching was observed for all six genes. Results suggest a high maternal expression of HoxA13a, and low for HoxA13ab. HoxD13a paralog exhibited the lowest expression: 0.0006-2.63 in tissues and 0.0005-1.7 during development, suggesting the possibility of a gradual loss of functionality. Expression of HoxC13 paralogs corroborates the findings in zebrafish: HoxC13b is maternally expressed and more important during the development. In adults, it was the opposite: expression was low for HoxC13b and very variable for HoxC13a (0.06-244.29). Differences in expression levels between both pairs of paralogs (Aa/Ab and Ca/Cb) indicate the possibility of the existence of some redundancy afforded by maintaining both paralogs. PMID:27476414

  6. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination

    PubMed Central

    Kondratov, Roman V.; Jamasbi, Roudabeh J.

    2015-01-01

    Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during

  7. A WNT1-regulated developmental gene cascade prevents dopaminergic neurodegeneration in adult En1(+/-) mice.

    PubMed

    Zhang, Jingzhong; Götz, Sebastian; Vogt Weisenhorn, Daniela M; Simeone, Antonio; Wurst, Wolfgang; Prakash, Nilima

    2015-10-01

    The protracted and age-dependent degeneration of dopamine (DA)-producing neurons of the Substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) in the mammalian midbrain is a hallmark of human Parkinson's Disease (PD) and of certain genetic mouse models of PD, such as mice heterozygous for the homeodomain transcription factor Engrailed 1 (En1(+/-) mice). Neurotoxin-based animal models of PD, in contrast, are characterized by the fast and partly reversible degeneration of the SNc and VTA DA neurons. The secreted protein WNT1 was previously shown to be strongly induced in the neurotoxin-injured adult ventral midbrain (VM), and to protect the SNc and VTA DA neurons from cell death in this context. We demonstrate here that the sustained and ectopic expression of Wnt1 in the SNc and VTA DA neurons of En1(+/Wnt1) mice also protected these genetically affected En1 heterozygote (En1(+/-)) neurons from their premature degeneration in the adult mouse VM. We identified a developmental gene cascade that is up-regulated in the adult En1(+/Wnt1) VM, including the direct WNT1/β-catenin signaling targets Lef1, Lmx1a, Fgf20 and Dkk3, as well as the indirect targets Pitx3 (activated by LMX1A) and Bdnf (activated by PITX3). We also show that the secreted neurotrophin BDNF and the secreted WNT modulator DKK3, but not the secreted growth factor FGF20, increased the survival of En1 mutant dopaminergic neurons in vitro. The WNT1-mediated signaling pathway and its downstream targets BDNF and DKK3 might thus provide a useful means to treat certain genetic and environmental (neurotoxic) forms of human PD.

  8. Optimized heterologous transfection of viable adult organotypic brain slices using an enhanced gene gun

    PubMed Central

    2013-01-01

    Background Organotypic brain slices (OTBS) are an excellent experimental compromise between the facility of working with cell cultures and the biological relevance of using animal models where anatomical, morphological, and cellular function of specific brain regions can be maintained. The biological characteristics of OTBS can subsequently be examined under well-defined conditions. They do, however, have a number of limitations; most brain slices are derived from neonatal animals, as it is difficult to properly prepare and maintain adult OTBS. There are ample problems with tissue integrity as OTBS are delicate and frequently become damaged during the preparative stages. Notwithstanding these obstacles, the introduced exogenous proteins into both neuronal cells, and cells imbedded within tissues, have been consistently difficult to achieve. Results Following the ex vivo extraction of adult mouse brains, mounted inside a medium-agarose matrix, we have exploited a precise slicing procedure using a custom built vibroslicer. To transfect these slices we used an improved biolistic transfection method using a custom made low-pressure barrel and novel DNA-coated nanoparticles (40 nm), which are drastically smaller than traditional microparticles. These nanoparticles also minimize tissue damage as seen by a significant reduction in lactate dehydrogenase activity as well as propidium iodide (PI) and dUTP labelling compared to larger traditional gold particles used on these OTBS. Furthermore, following EYFP exogene delivery by gene gun, the 40 nm treated OTBS displayed a significantly larger number of viable NeuN and EYFP positive cells. These OTBS expressed the exogenous proteins for many weeks. Conclusions Our described methodology of producing OTBS, which results in better reproducibility with less tissue damage, permits the exploitation of mature fully formed adult brains for advanced neurobiological studies. The novel 40 nm particles are ideal for the viable

  9. Embryonic Atrazine Exposure Elicits Alterations in Genes Associated with Neuroendocrine Function in Adult Male Zebrafish.

    PubMed

    Wirbisky, Sara E; Sepúlveda, Maria S; Weber, Gregory J; Jannasch, Amber S; Horzmann, Katharine A; Freeman, Jennifer L

    2016-09-01

    The developmental origins of health and disease (DOHaD) hypothesis states that exposure to environmental stressors early in life can elicit genome and epigenome changes resulting in an increased susceptibility of a disease state during adulthood. Atrazine, a common agricultural herbicide used throughout the Midwestern United States, frequently contaminates potable water supplies and is a suspected endocrine disrupting chemical. In our previous studies, zebrafish was exposed to 0, 0.3, 3, or 30 parts per billion (μg/l) atrazine through embryogenesis, rinsed, and allowed to mature to adulthood. A decrease in spawning was observed with morphological alterations in offspring. In addition, adult females displayed an increase in ovarian progesterone and follicular atresia, alterations in levels of a serotonin metabolite and serotonin turnover in brain tissue, and transcriptome changes in brain and ovarian tissue supporting neuroendocrine alterations. As reproductive dysfunction is also influenced by males, this study assessed testes histology, hormone levels, and transcriptomic profiles of testes and brain tissue in the adult males. The embryonic atrazine exposure resulted in no alterations in body or testes weight, gonadosomatic index, testes histology, or levels of 11-ketotestosterone or testosterone. To further investigate potential alterations, transcriptomic profiles of adult male testes and brain tissue was completed. This analysis demonstrated alterations in genes associated with abnormal cell and neuronal growth and morphology; molecular transport, quantity, and production of steroid hormones; and neurotransmission with an emphasis on the hypothalamus-pituitary-adrenal and hypothalamus-pituitary-thyroid axes. Overall, this data indicate future studies should focus on additional neuroendocrine endpoints to determine potential functional impairments. PMID:27413107

  10. Nuclear β-adrenergic receptors modulate gene expression in adult rat heart

    PubMed Central

    Vaniotis, George; Del Duca, Danny; Trieu, Phan; Rohlicek, Charles V.; Hébert, Terence E.; Allen, Bruce G.

    2016-01-01

    Both β1- and β3-adrenergic receptors (β1ARs and β3ARs) are present on nuclear membranes in adult ventricular myocytes. These nuclear-localized receptors are functional with respect to ligand binding and effector activation. In isolated cardiac nuclei, the non-selective βAR agonist isoproterenol stimulated de novo RNA synthesis measured using assays of transcription initiation (Boivin et al., 2006 Cardiovasc Res. 71:69–78). In contrast, stimulation of endothelin receptors, another G protein-coupled receptor (GPCR) that localizes to the nuclear membrane, resulted in decreased RNA synthesis. To investigate the signalling pathway(s) involved in GPCR-mediated regulation of RNA synthesis, nuclei were isolated from intact adult rat hearts and treated with receptor agonists in the presence or absence of inhibitors of different mitogen-activated protein kinase (MAPK) and PI3K/PKB pathways. Components of p38, JNK, and ERK1/2 MAP kinase cascades as well as PKB were detected in nuclear preparations. Inhibition of PKB with triciribine, in the presence of isoproterenol, converted the activation of the βAR from stimulatory to inhibitory with regards to RNA synthesis, while ERK1/2, JNK and p38 inhibition reduced both basal and isoproterenol-stimulated activity. Analysis by qPCR indicated an increase in the expression of 18 S rRNA following isoproterenol treatment and a decrease in NFκB mRNA. Further qPCR experiments revealed that isoproterenol treatment also reduced the expression of several other genes involved in the activation of NFκB, while ERK1/2 and PKB inhibition substantially reversed this effect. Our results suggest that GPCRs on the nuclear membrane regulate nuclear functions such as gene expression and this process is modulated by activation/inhibition of downstream protein kinases within the nucleus. PMID:20732414

  11. Intermittent rhabdomyolysis with adult onset associated with a mutation in the ACADVL gene.

    PubMed

    Antunes, Ana Patrícia; Nogueira, Célia; Rocha, Hugo; Vilarinho, Laura; Evangelista, Teresinha

    2013-12-01

    Deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD) is an autosomal recessive disease. Most common phenotypes occur in the neonatal period or in childhood with cardiomyopathy, hepatomegaly, and hypoketogenic hypoglycemia. Juvenile/adult-onset is characterized by exercise intolerance and recurrent rhabdomyolysis triggered by prolonged exercise or fasting. This article reports a patient with the homozygous mutation c.1097G>A (p.R366H) in the ACADVL gene. In Portugal, VLCAD deficiency became part of the neonatal screening plan in 2004, and as of 2012, 8 early-onset cases have been diagnosed, giving an incidence rate of 1:97.238 per 737.902 newborns. This patient was diagnosed outside of the neonatal screening plan. Beta-oxidation defects pose a diagnostic challenge because of their transient clinical and laboratorial manifestations and the absence of morphological changes in muscle biopsy further complicate matters, especially in the late-onset forms of the disease. The adult phenotype of VLCAD deficiency is highlighted, emphasizing the need for a high suspicion index and the value of tandem mass spectrometry for the diagnosis. PMID:24263034

  12. A Comparison of the Olfactory Gene Repertoires of Adults and Larvae in the Noctuid Moth Spodoptera littoralis

    PubMed Central

    Poivet, Erwan; Gallot, Aurore; Montagné, Nicolas; Glaser, Nicolas; Legeai, Fabrice; Jacquin-Joly, Emmanuelle

    2013-01-01

    To better understand the olfactory mechanisms in a lepidopteran pest model species, the cotton leafworm Spodoptera littoralis, we have recently established a partial transcriptome from adult antennae. Here, we completed this transcriptome using next generation sequencing technologies, namely 454 and Illumina, on both adult antennae and larval tissues, including caterpillar antennae and maxillary palps. All sequences were assembled in 77,643 contigs. Their analysis greatly enriched the repertoire of chemosensory genes in this species, with a total of 57 candidate odorant-binding and chemosensory proteins, 47 olfactory receptors, 6 gustatory receptors and 17 ionotropic receptors. Using RT-PCR, we conducted the first exhaustive comparison of olfactory gene expression between larvae and adults in a lepidopteran species. All the 127 candidate olfactory genes were profiled for expression in male and female adult antennae and in caterpillar antennae and maxillary palps. We found that caterpillars expressed a smaller set of olfactory genes than adults, with a large overlap between these two developmental stages. Two binding proteins appeared to be larvae-specific and two others were adult-specific. Interestingly, comparison between caterpillar antennae and maxillary palps revealed numerous organ-specific transcripts, suggesting the complementary involvement of these two organs in larval chemosensory detection. Adult males and females shared the same set of olfactory transcripts, except two male-specific candidate pheromone receptors, two male-specific and two female-specific odorant-binding proteins. This study identified transcripts that may be important for sex-specific or developmental stage-specific chemosensory behaviors. PMID:23565215

  13. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia.

    PubMed

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S; Odom, Guy L; Hopkins, Stephanie; Case, Amanda; Wang, David B; Chamberlain, Jeffrey S; Garden, Gwenn A

    2016-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.

  14. Effects of tamoxifen on autosomal genes regulating ovary maintenance in adult mice.

    PubMed

    Yu, Mingxi; Liu, Wei; Wang, Jingyun; Qin, Junwen; Wang, Yongan; Wang, Yu

    2015-12-01

    Environmental endocrine-disrupting chemicals (EDCs), known to bind to estrogen/androgen receptors and mimic native estrogens, have been implicated as a main source for increasing human reproductive and developmental deficiencies and diseases. Tamoxifen (TAM) is one of the most well-known antiestrogens with defined adverse effects on the female reproductive tract, but the mechanisms related to autosomal gene regulation governing ovary maintenance in mammals remain unclear. The expression pattern and levels of key genes and proteins involved in maintaining the ovarian phenotype in mice were analyzed. The results showed that TAM induced significant upregulation of Sox9, which is the testis-determining factor gene. The results showed that TAM induced significant upregulation of Sox9, the testis-determining factor gene, and the expression level of Sox9 mRNA in the ovaries of mice exposed to 75 or 225 mg/kg bw TAM was 2- and 10-fold that in the control group, respectively (p < 0.001). Furthermore, the testicular fibroblast growth factor gene, Fgf9, was also elevated in TAM-treated ovaries. Accordingly, expression of the ovary development marker, forkhead transcription factor (FOXL2), and WNT4/FST signaling, were depressed. The levels of protein expression changed consistently with the target genes. Moreover, the detection of platelet/endothelial cell adhesion molecule 1 (PECAM-1) in TAM-treated ovaries suggested the formation of vascular endothelial cells, which is a further evidence for the differentiation of the ovaries to a testis-like phenotype. During this period, the level of 17β-estradiol, progesterone, and luteinizing hormone decreased, while that of testosterone increased by 3.3-fold (p = 0.013). The activation of a testis-specific molecular signaling cascade was a potentially important mechanism contributing to the gender disorder induced by TAM, which resulted in the differentiation of the ovaries to a testis-like phenotype in adult mice. Limited with

  15. Effects of tamoxifen on autosomal genes regulating ovary maintenance in adult mice.

    PubMed

    Yu, Mingxi; Liu, Wei; Wang, Jingyun; Qin, Junwen; Wang, Yongan; Wang, Yu

    2015-12-01

    Environmental endocrine-disrupting chemicals (EDCs), known to bind to estrogen/androgen receptors and mimic native estrogens, have been implicated as a main source for increasing human reproductive and developmental deficiencies and diseases. Tamoxifen (TAM) is one of the most well-known antiestrogens with defined adverse effects on the female reproductive tract, but the mechanisms related to autosomal gene regulation governing ovary maintenance in mammals remain unclear. The expression pattern and levels of key genes and proteins involved in maintaining the ovarian phenotype in mice were analyzed. The results showed that TAM induced significant upregulation of Sox9, which is the testis-determining factor gene. The results showed that TAM induced significant upregulation of Sox9, the testis-determining factor gene, and the expression level of Sox9 mRNA in the ovaries of mice exposed to 75 or 225 mg/kg bw TAM was 2- and 10-fold that in the control group, respectively (p < 0.001). Furthermore, the testicular fibroblast growth factor gene, Fgf9, was also elevated in TAM-treated ovaries. Accordingly, expression of the ovary development marker, forkhead transcription factor (FOXL2), and WNT4/FST signaling, were depressed. The levels of protein expression changed consistently with the target genes. Moreover, the detection of platelet/endothelial cell adhesion molecule 1 (PECAM-1) in TAM-treated ovaries suggested the formation of vascular endothelial cells, which is a further evidence for the differentiation of the ovaries to a testis-like phenotype. During this period, the level of 17β-estradiol, progesterone, and luteinizing hormone decreased, while that of testosterone increased by 3.3-fold (p = 0.013). The activation of a testis-specific molecular signaling cascade was a potentially important mechanism contributing to the gender disorder induced by TAM, which resulted in the differentiation of the ovaries to a testis-like phenotype in adult mice. Limited with

  16. Roles of young serine-endopeptidase genes in survival and reproduction revealed rapid evolution of phenotypic effects at adult stages.

    PubMed

    Chen, Sidi; Yang, Haiwang; Krinsky, Benjamin H; Zhang, Anthony; Long, Manyuan

    2011-01-01

    Our recent study found that 30% of young genes were essential for viability that determines development through stages from embryo to pupae in Drosophila melanogaster, revealing rapidly evolving genetic components involved in the evolution of development. Meanwhile, many young genes did not produce complete lethal phenotype upon constitutive knockdown, suggesting that they may not be essential for viability. These genes, nevertheless, were fixed by natural selection, and might play an important functional role in their adult stage. Here we present a detailed demonstration that a newly duplicated serine-type endopeptidase gene that originated in the common ancestor in the D. melanogaster subgroup 6~11 million years ago, named Slfc, revealing a strong effect in post-eclosion. Although animals survived constitutive knockdown of Slfc to adult stage, however, their life span reduced significantly by two-thirds compared to wildtype. Furthermore, the Slfc-RNAi males dropped their fertility to less than 10% of the wildtype level, with over 80% of these males being sterile. The Slfc-RNAi females, on the other hand, showed a slight reduction in fertility. This case study demonstrates that a young gene can contribute to fitness on the three important traits of life history in adults, including the life expectancy, male fertility and female fertility, suggesting that new genes can quickly evolve and impact multiple phenotypes.

  17. New Codanin-1 Gene Mutations in a Italian Patient with Congenital Dyserythropoietic Anemia Type I and Heterozygous Beta-Thalassemia.

    PubMed

    D'Alcamo, Elena; Agrigento, V; Pitrolo, L; Sclafani, S; Barone, R; Calvaruso, G; Buffa, V; Maggio, A

    2016-06-01

    Congenital dyserythropoietic anemia type I is an autosomal recessive disorder associated with macrocytic anemia, ineffective erythropoiesis, iron overloading and characterized by abnormal chromatin ultrastructure in erythroblasts such as internuclear chromatin bridges, spongy heterochromatin and invagination of the nuclear membrane. A 58-year-old Causasian man with chronic hemolytic anemia, heterozygous for β (+) -globin IVS1, nt110 G>A mutation (causing abnormal alpha:beta globin chain ratio) showed clinical, laboratory and hematological features suggesting diagnosis of CDA1. Sequence analysis of CDA-related genes revealed compound heterozygosity for two novel mutations in the CDAN1 gene: a frameshift mutation 3367 del 4 (TTAG) in exon 25 and a missense mutation c.1811 G>T in exon 11 causing an aminoacid change from glycine to valine at codon 565 (G565V). One of the propositus' brothers showed the same gene mutations. As the CDA1 can mimic thalassemia, a frequent misdiagnosis is possible especially in countries where the prevalence of thalassemia is high. A strong clinical suspicion in patients who do not reveal a clear genetic basis for presumed thalassemia may help clinch the correct diagnosis. PMID:27408412

  18. Molecular diagnostics of the HBB gene in an Omani cohort using bench-top DNA Ion Torrent PGM technology.

    PubMed

    Hassan, S M; Vossen, R H A M; Chessa, R; den Dunnen, J T; Bakker, E; Giordano, P C; Harteveld, C L

    2014-09-01

    Hemoglobinopathies, such as sickle cell disease (SCD) and beta-thalassemia major (TM), are severe diseases and the most common autosomal recessive condition worldwide and in particular in Oman. Early screening and diagnosis of carriers are the key for primary prevention. Once a country-wide population screening program is mandated by law, a sequencing technology that can rapidly confirm or identify disease-causing mutations for a large number of patients in a short period of time will be necessary. While Sanger sequencing is the standard protocol for molecular diagnosis, next generation sequencing starts to become available to reference laboratories. Using the Ion Torrent PGM sequencer, we have analyzed a cohort of 297 unrelated Omani cases and reliably identified mutations in the beta-globin (HBB) gene. Our model study has shown that Ion Torrent PGM can rapidly sequence such a small gene in a large number of samples using a barcoded uni-directional or bi-directional sequence methodology, reducing cost, workload and providing accurate diagnosis. Based on our results we believe that the Ion Torrent PGM sequencing platform, able to analyze hundreds of patients simultaneously for a single disease gene can be a valid molecular screening alternative to ABI sequencing in the diagnosis of hemoglobinopathies and other genetic disorders in the near future.

  19. Novel Cryptic Rearrangements in Adult B-Cell Precursor Acute Lymphoblastic Leukemia Involving the MLL Gene

    PubMed Central

    Othman, Moneeb A. K.; Grygalewicz, Beata; Pienkowska-Grela, Barbara; Rincic, Martina; Rittscher, Katharina; Melo, Joana B.; Carreira, Isabel M.; Meyer, Britta; Marzena, Watek

    2015-01-01

    MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the MLL gene at 11q23.3 was disrupted, and that the 5′ region was inserted into the chromosomal sub-band 4q21; thus the aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL. PMID:25699572

  20. DNA Methylation Changes in the IGF1R Gene in Birth Weight Discordant Adult Monozygotic Twins.

    PubMed

    Tsai, Pei-Chien; Van Dongen, Jenny; Tan, Qihua; Willemsen, Gonneke; Christiansen, Lene; Boomsma, Dorret I; Spector, Tim D; Valdes, Ana M; Bell, Jordana T

    2015-12-01

    Low birth weight (LBW) can have an impact on health outcomes in later life, especially in relation to pre-disposition to metabolic disease. Several studies suggest that LBW resulting from restricted intrauterine growth leaves a footprint on DNA methylation in utero, and this influence likely persists into adulthood. To investigate this further, we performed epigenome-wide association analyses of blood DNA methylation using Infinium HumanMethylation450 BeadChip profiles in 71 adult monozygotic (MZ) twin pairs who were extremely discordant for birth weight. A signal mapping to the IGF1R gene (cg12562232, p = 2.62 × 10(-8)), was significantly associated with birth weight discordance at a genome-wide false-discovery rate (FDR) of 0.05. We pursued replication in three additional independent datasets of birth weight discordant MZ pairs and observed the same direction of association, but the results were not significant. However, a meta-analysis across the four independent samples, in total 216 birth-weight discordant MZ twin pairs, showed a significant positive association between birth weight and DNA methylation differences at IGF1R (random-effects meta-analysis p = .04), and the effect was particularly pronounced in older twins (random-effects meta-analysis p = .008, 98 older birth-weight discordant MZ twin pairs). The results suggest that severe intra-uterine growth differences (birth weight discordance >20%) are associated with methylation changes in the IGF1R gene in adulthood, independent of genetic effects.

  1. Novel Cryptic Rearrangements in Adult B-Cell Precursor Acute Lymphoblastic Leukemia Involving the MLL Gene.

    PubMed

    Othman, Moneeb A K; Grygalewicz, Beata; Pienkowska-Grela, Barbara; Rincic, Martina; Rittscher, Katharina; Melo, Joana B; Carreira, Isabel M; Meyer, Britta; Marzena, Watek; Liehr, Thomas

    2015-05-01

    MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the MLL gene at 11q23.3 was disrupted, and that the 5' region was inserted into the chromosomal sub-band 4q21; thus the aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL. PMID:25699572

  2. Obesity Gene NEGR1 Associated with White Matter Integrity in Healthy Young Adults

    PubMed Central

    Dennis, Emily L.; Jahanshad, Neda; Braskie, Meredith N.; Warstadt, Nicholus M.; Hibar, Derrek P.; Kohannim, Omid; Nir, Talia M.; McMahon, Katie L.; de Zubicaray, Greig I.; Montgomery, Grant W.; Martin, Nicholas G.; Toga, Arthur W.; Wright, Margaret J.; Thompson, Paul M.

    2014-01-01

    Obesity is a crucial public health issue in developed countries, with implications for cardiovascular and brain health as we age. A number of commonly-carried genetic variants are associated with obesity. Here we aim to see whether variants in obesity-associated genes - NEGR1, FTO, MTCH2, MC4R, LRRN6C, MAP2K5, FAIM2, SEC16B, ETV5, BDNF-AS, ATXN2L, ATP2A1, KCTD15, and TNN13K - are associated with white matter microstructural properties, assessed by high angular resolution diffusion imaging (HARDI) in young healthy adults between 20–30 years of age from the Queensland Twin Imaging study (QTIM). We began with a multi-locus approach testing how a number of common genetic risk factors for obesity at the single nucleotide polymorphism (SNP) level may jointly influence white matter integrity throughout the brain and found a wide spread genetic effect. Risk allele rs2815752 in NEGR1 was most associated with lower white matter integrity across a substantial portion of the brain. Across the area of significance in the bilateral posterior corona radiata, each additional copy of the risk allele was associated with a 2.2% lower average FA. This is the first study to find an association between an obesity risk gene and differences in white matter integrity. As our subjects were young and healthy, our results suggest that NEGR1 has effects on brain structure independent of its effect on obesity. PMID:25072390

  3. Obesity gene NEGR1 associated with white matter integrity in healthy young adults.

    PubMed

    Dennis, Emily L; Jahanshad, Neda; Braskie, Meredith N; Warstadt, Nicholus M; Hibar, Derrek P; Kohannim, Omid; Nir, Talia M; McMahon, Katie L; de Zubicaray, Greig I; Montgomery, Grant W; Martin, Nicholas G; Toga, Arthur W; Wright, Margaret J; Thompson, Paul M

    2014-11-15

    Obesity is a crucial public health issue in developed countries, with implications for cardiovascular and brain health as we age. A number of commonly-carried genetic variants are associated with obesity. Here we aim to see whether variants in obesity-associated genes--NEGR1, FTO, MTCH2, MC4R, LRRN6C, MAP2K5, FAIM2, SEC16B, ETV5, BDNF-AS, ATXN2L, ATP2A1, KCTD15, and TNN13K--are associated with white matter microstructural properties, assessed by high angular resolution diffusion imaging (HARDI) in young healthy adults between 20 and 30 years of age from the Queensland Twin Imaging study (QTIM). We began with a multi-locus approach testing how a number of common genetic risk factors for obesity at the single nucleotide polymorphism (SNP) level may jointly influence white matter integrity throughout the brain and found a wide spread genetic effect. Risk allele rs2815752 in NEGR1 was most associated with lower white matter integrity across a substantial portion of the brain. Across the area of significance in the bilateral posterior corona radiata, each additional copy of the risk allele was associated with a 2.2% lower average FA. This is the first study to find an association between an obesity risk gene and differences in white matter integrity. As our subjects were young and healthy, our results suggest that NEGR1 has effects on brain structure independent of its effect on obesity.

  4. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain

    PubMed Central

    Deverman, Benjamin E.; Pravdo, Piers L.; Simpson, Bryan P.; Kumar, Sripriya Ravindra; Chan, Ken Y.; Banerjee, Abhik; Wu, Wei-Li; Yang, Bin; Huber, Nina; Pasca, Sergiu P.; Gradinaru, Viviana

    2015-01-01

    Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer1-6. However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics7-13. Here we describe a capsid selection method, called Cre-recombination-based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREATE to generate AAV variants that efficiently and widely transduce the adult mouse central nervous system (CNS) after intravenous injection. One variant, AAV-PHP.B, transfers genes throughout the CNS with an efficiency that is at least 40-fold greater than that of the current standard, AAV914-17, and transduces the majority of astrocytes and neurons across multiple CNS regions. In vitro, it transduces human neurons and astrocytes more efficiently than does AAV9, demonstrating the potential of CREATE to produce customized AAV vectors for biomedical applications. PMID:26829320

  5. Transcriptome Analysis and Identification of Differentially Expressed Transcripts of Immune-Related Genes in Spleen of Gosling and Adult Goose

    PubMed Central

    Wang, Anqi; Liu, Fei; Chen, Shun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2015-01-01

    The goose (Anser cygnoides), having high nutritional value, high-quality feathers and high economic benefit, is an economically important poultry species. However, the molecular mechanisms underlying the higher susceptibility to pathogens in goslings than in adult geese remains poorly understood. In this study, the histological sections of spleen tissue from a two-week-old gosling and an adult goose, respectively, were subjected to comparative analysis. The spleen of gosling was mainly composed of mesenchyma, accompanied by scattered lymphocytes, whereas the spleen parenchyma was well developed in the adult goose. To investigate goose immune-related genes, we performed deep transcriptome and gene expression analyses of the spleen samples using paired-end sequencing technology (Illumina). In total, 50,390 unigenes were assembled using Trinity software and TGICL software. Moreover, these assembled unigenes were annotated with gene descriptions and gene ontology (GO) analysis was performed. Through Kyoto encyclopedia of genes and genomes (KEGG) analysis, we investigated 558 important immune-relevant unigenes and 23 predicted cytokines. In addition, 22 immune-related genes with differential expression between gosling and adult goose were identified, among which the three genes showing largest differences in expression were immunoglobulin alpha heavy chain (IgH), mannan-binding lectin serine protease 1 isoform X1 (MASP1) and C–X–C chemokine receptor type 4 (CXCR4). Finally, of these 22 differentially expressed immune-related genes, seven genes, including tumor necrosis factor receptor superfamily member 13B (TNFRSF13B), C-C motif chemokine 4-like (CCL4), CXCR4, interleukin 2 receptor alpha (IL2RA), MHC class I heavy chain (MHCIα), transporter of antigen processing 2 (TAP2) IgH, were confirmed by quantitative real-time PCR (qRT-PCR). The expression levels of all the candidate unigenes were up-regulated in adult geese other than that of TNFRSF13B. The comparative

  6. Transcriptome Analysis and Identification of Differentially Expressed Transcripts of Immune-Related Genes in Spleen of Gosling and Adult Goose.

    PubMed

    Wang, Anqi; Liu, Fei; Chen, Shun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2015-09-22

    The goose (Anser cygnoides), having high nutritional value, high-quality feathers and high economic benefit, is an economically important poultry species. However, the molecular mechanisms underlying the higher susceptibility to pathogens in goslings than in adult geese remains poorly understood. In this study, the histological sections of spleen tissue from a two-week-old gosling and an adult goose, respectively, were subjected to comparative analysis. The spleen of gosling was mainly composed of mesenchyma, accompanied by scattered lymphocytes, whereas the spleen parenchyma was well developed in the adult goose. To investigate goose immune-related genes, we performed deep transcriptome and gene expression analyses of the spleen samples using paired-end sequencing technology (Illumina). In total, 50,390 unigenes were assembled using Trinity software and TGICL software. Moreover, these assembled unigenes were annotated with gene descriptions and gene ontology (GO) analysis was performed. Through Kyoto encyclopedia of genes and genomes (KEGG) analysis, we investigated 558 important immune-relevant unigenes and 23 predicted cytokines. In addition, 22 immune-related genes with differential expression between gosling and adult goose were identified, among which the three genes showing largest differences in expression were immunoglobulin alpha heavy chain (IgH), mannan-binding lectin serine protease 1 isoform X1 (MASP1) and C-X-C chemokine receptor type 4 (CXCR4). Finally, of these 22 differentially expressed immune-related genes, seven genes, including tumor necrosis factor receptor superfamily member 13B (TNFRSF13B), C-C motif chemokine 4-like (CCL4), CXCR4, interleukin 2 receptor alpha (IL2RA), MHC class I heavy chain (MHCIα), transporter of antigen processing 2 (TAP2) IgH, were confirmed by quantitative real-time PCR (qRT-PCR). The expression levels of all the candidate unigenes were up-regulated in adult geese other than that of TNFRSF13B. The comparative

  7. Gene-environment interplay in Drosophila melanogaster: chronic food deprivation in early life affects adult exploratory and fitness traits.

    PubMed

    Burns, James Geoffrey; Svetec, Nicolas; Rowe, Locke; Mery, Frederic; Dolan, Michael J; Boyce, W Thomas; Sokolowski, Marla B

    2012-10-16

    Early life adversity has known impacts on adult health and behavior, yet little is known about the gene-environment interactions (GEIs) that underlie these consequences. We used the fruit fly Drosophila melanogaster to show that chronic early nutritional adversity interacts with rover and sitter allelic variants of foraging (for) to affect adult exploratory behavior, a phenotype that is critical for foraging, and reproductive fitness. Chronic nutritional adversity during adulthood did not affect rover or sitter adult exploratory behavior; however, early nutritional adversity in the larval period increased sitter but not rover adult exploratory behavior. Increasing for gene expression in the mushroom bodies, an important center of integration in the fly brain, changed the amount of exploratory behavior exhibited by sitter adults when they did not experience early nutritional adversity but had no effect in sitters that experienced early nutritional adversity. Manipulation of the larval nutritional environment also affected adult reproductive output of sitters but not rovers, indicating GEIs on fitness itself. The natural for variants are an excellent model to examine how GEIs underlie the biological embedding of early experience.

  8. Loss of function of the yellow-e gene causes dehydration-induced mortality of adult Tribolium castaneum.

    PubMed

    Noh, Mi Young; Kramer, Karl J; Muthukrishnan, Subbaratnam; Beeman, Richard W; Kanost, Michael R; Arakane, Yasuyuki

    2015-03-15

    Yellow protein (dopachrome conversion enzyme, DCE) is involved in the melanin biosynthetic pathway that significantly accelerates pigmentation reactions in insects. Recent studies have suggested that the insect yellow genes represent a rapidly evolving gene family generating functionally diverse paralogs, but the exact physiological functions of several yellow genes are still not understood. To study the function(s) of one of the yellow genes, yellow-e (TcY-e), in the red flour beetle, Tribolium castaneum, we performed real-time PCR to analyze its developmental and tissue-specific expression, and utilized immunohistochemistry to identify the localization of the TcY-e protein in adult cuticle. Injection of double-stranded RNA for TcY-e (dsTcY-e) into late instar larvae had no effect on larval-pupal molting or pupal development. The pupal cuticle, including that lining the setae, gin traps and urogomphi, underwent normal tanning. Adult cuticle tanning including that of the head, mandibles and legs viewed through the translucent pupal cuticle was initiated on schedule (pupal days 4-5), indicating that TcY-e is not required for pupal or pharate adult cuticle pigmentation in T. castaneum. The subsequent pupal-adult molt, however, was adversely affected. Although pupal cuticle apolysis and slippage were evident, some of the adults (~25%) were unable to shed their exuvium and died entrapped in their pupal cuticle. In addition, the resulting adults rapidly became highly desiccated. Interestingly, both the failure of the pupal-adult molt and desiccation-induced mortality were prevented by maintaining the dsTcY-e-treated insects at 100% relative humidity (rh). However, when the high humidity-rescued adults were removed from 100% rh and transferred to 50% rh, they rapidly dehydrated and died, whereas untreated beetles thrived throughout development at 50% rh. We also observed that the body color of the high humidity-rescued dsTcY-e-adults was slightly darker than that of

  9. Angiotensin-Converting Enzyme Gene Polymophism in Adult Primary Focal Segmental Glomerulosclerosis

    PubMed Central

    Mohd, Rozita; Wahab, Zaimi Abdul; Cader, Rizna; Gafor, Halim A.; Radzi, Azizah Md; Shah, Shamsul Azhar; Tong, Norella Kong Chiew

    2014-01-01

    Background Primary focal segmental glomerulosclerosis (FSGS) accounts for a third of biopsy-proven primary glomerulonephritis in Malaysia. Pediatric studies have found the insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme (ACE) gene to be associated with renal disease progression. The aim of this study was to determine the prevalence of the ACE (I/D) genotypes in adult primary FSGS and its association with renal outcome on follow-up. Methods Prospective observational study involving primary FSGS patients was conducted. Biochemical and urine tests at the time of study were compared to the time of the diagnosis and disease progression analyzed. ACE gene polymorphism was identified using polymerase chain reaction amplification technique and categorized into II, ID and DD genotypes. Results Forty-five patients with a median follow-up of 3.8 years (interquartile range: 1.8 - 5.6) were recruited. The commonest genotype was II (n = 23, 51.1%) followed by ID (n = 19, 42.2%) and DD (n = 3, 6.7%). The baseline characteristics were comparable between the II and non-II groups at diagnosis and at study recruitment except that the median urine protein-creatinine index was significantly lower in the II group compared to the non-II group (0.02 vs. 0.04 g/mmol (P = 0.03). Regardless of genotypes, all parameters of renal outcome improved after treatment. Conclusion The II followed by ID genotypes were the predominant ACE gene alleles in our FSGS. Although the D allele has been reported to have a negative impact on renal outcome, treatment appeared to be more important than genotype in preserving renal function in this cohort. PMID:24883149

  10. The pattern of replication at a human telomeric region (16p13.3): its relationship to chromosome structure and gene expression.

    PubMed

    Smith, Z E; Higgs, D R

    1999-08-01

    We have studied replication throughout 325 kb of the telomeric region of a human chromosome (16p13.3) and related the findings to various aspects of chromosome structure and function (DNA sequence organization, nuclease-hypersensitive sites, nuclear matrix attachment sites, patterns of methylation and gene expression). The GC-rich isochore lying adjacent to the telomere, which contains the alpha-globin locus and many widely expressed genes, replicates early in the cell cycle regardless of the pattern of gene expression. In subtelomeric DNA, replication occurs later in the cell cycle and the most telomeric region (20 kb) is late replicating. Juxtaposition of early replicating DNA next to the telomere causes it to replicate later in S-phase. Analysis of the timing of replication in chromosomes with deletions, or in transgenes containing various segments of this telomeric region, suggests that there are no critical origins or zones that initiate replication, rather the pattern of replication appears to be related to the underlying chromatin structure which may restrict or facilitate access to multiple, redundant origins. These results contrast with the pattern of replication at the human beta-globin locus and this may similarly reflect the different chromosomal environments containing these gene clusters.

  11. Restricted use of fetal VH3 immunoglobulin genes by unselected B cells in the adult. Predominance of 56p1-like VH genes in common variable immunodeficiency.

    PubMed

    Braun, J; Berberian, L; King, L; Sanz, I; Govan, H L

    1992-05-01

    The large VH3 family of human immunoglobulin genes is commonly used throughout B cell ontogeny. However, B cells of the fetus and certain autoantibody-producing clones are restricted to a recurrent subset of VH3 genes, and VH3 B cells are deficient in certain immunodeficiency diseases. In this study, we have sequenced a set of rearranged VH3 genes generated by genomic polymerase chain reaction (PCR) from normal adults and those with common variable immunodeficiency (CVI). In both groups, all cones were readily identifiable with the fetal VH3 subset, and were further distinguished by limited DH motifs and exclusive use of JH4. In CVI, the residual population of VH3 B cells were notable for predominant use of 56p1-like VH genes. All clones displayed sequence divergence (including somatic mutation) with evidence of strong selection against complementarity-determining region (CDR) coding change. A survey of other V gene families indicates that human V gene diversity may be restricted in general by germline mechanisms. These findings suggest that the expressed antibody repertoire in the human adult may be much smaller than anticipated, and selected by processes in part distinct from the paradigm of maximal antigen-binding diversity.

  12. Conservation and expression of PIWI-interacting RNA pathway genes in male and female adult gonad of amniotes.

    PubMed

    Lim, Shu Ly; Tsend-Ayush, Enkhjargal; Kortschak, R Daniel; Jacob, Reuben; Ricciardelli, Carmela; Oehler, Martin K; Grützner, Frank

    2013-12-01

    The PIWI-interacting RNA (piRNA) pathway is essential for germline development and transposable element repression. Key elements of this pathway are members of the piRNA-binding PIWI/Argonaute protein family and associated factors (e.g., VASA, MAELSTROM, and TUDOR domain proteins). PIWI-interacting RNAs have been identified in mouse testis and oocytes, but information about the expression of the different piRNA pathway genes, in particular in the mammalian ovary, remains incomplete. We investigated the evolution and expression of piRNA pathway genes in gonads of amniote species (chicken, platypus, and mouse). Database searches confirm a high level of conservation and revealed lineage-specific gain and loss of Piwi genes in vertebrates. Expression analysis in mammals shows that orthologs of Piwi-like (Piwil) genes, Mael (Maelstrom), Mvh (mouse vasa homolog), and Tdrd1 (Tudor domain-containing protein 1) are expressed in platypus adult testis. In contrast to mouse, Piwil4 is expressed in platypus and human adult testis. We found evidence for Mael and Piwil2 expression in mouse Sertoli cells. Importantly, we show mRNA expression of Piwil2, Piwil4, and Mael in oocytes and supporting cells of human, mouse, and platypus ovary. We found no Piwil1 expression in mouse and chicken ovary. The conservation of gene expression in somatic parts of the gonad and germ cells of species that diverged over 800 million yr ago indicates an important role in adult male and female gonad. PMID:24108303

  13. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats.

    PubMed

    Armenti, AnnMarie E; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-12-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 microg/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P<0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P<0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P<0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor beta was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P<0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P<0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.

  14. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats

    SciTech Connect

    Armenti, AnnMarie E.; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-12-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 {mu}g/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P < 0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P < 0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P < 0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor {beta} was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P < 0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P < 0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.

  15. Brain white matter structure and COMT gene are linked to second-language learning in adults.

    PubMed

    Mamiya, Ping C; Richards, Todd L; Coe, Bradley P; Eichler, Evan E; Kuhl, Patricia K

    2016-06-28

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects' grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype. PMID:27298360

  16. Mutations in the lysosomal [beta]-galactosidase gene that cause the adult form of GMI gangliosidosis

    SciTech Connect

    Chakraborty, S.; Rafi, M.A.; Wenger, D.A. )

    1994-06-01

    Three adult patients with acid-galactosidase deficiency/GM1 gangliosidosis who were from two unrelated families of Scandinavian descent were found to share a common point mutation in the coding region of the corresponding gene. The patients share common clinical features, including early dysarthria, mild ataxia, and bone abnormalities. When cDNA from the two patients in family 1 was PCR amplified and sequenced, most (39/41) of the clones showed a C-to-T transition (C[yields]T) at nucleotide 245 (counting from the initiation codon). This mutation changes the codon for the Thr(ACG) to Met(ATG). Mutant and normal sequences were also found in that position in genomic DNA, indicating the presence of another mutant allele. Genomic DNA from the patient in family 2 revealed the same point mutation in one allele. It was determined that in each family only the father carried the C[yields]T mutation. Expression studies showed that this mutation produced 3%-4% of [beta]-galactosidase activity, confirming its deleterious effects. The cDNA clones from the patients in family 1 that did not contain the C[yields]T revealed a 20-bp insertion of intronic sequence between nucleotides 75 and 76, the location of the first intron. Further analysis showed the insertion of a T near the 5[prime] splice donor site which led to the use of a cryptic splice site. It appears that the C[yields]T mutation results in enough functional enzyme to produce a mild adult form of the disease, even in the presence of a second mutation that likely produces nonfunctional enzyme. 31 refs., 7 figs., 1 tab.

  17. Brain white matter structure and COMT gene are linked to second-language learning in adults.

    PubMed

    Mamiya, Ping C; Richards, Todd L; Coe, Bradley P; Eichler, Evan E; Kuhl, Patricia K

    2016-06-28

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects' grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype.

  18. Brain white matter structure and COMT gene are linked to second-language learning in adults

    PubMed Central

    Mamiya, Ping C.; Richards, Todd L.; Coe, Bradley P.; Eichler, Evan E.; Kuhl, Patricia K.

    2016-01-01

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects’ grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype. PMID:27298360

  19. Direct Screening of Blood by PCR and Pyrosequencing for a 16S rRNA Gene Target from Emergency Department and Intensive Care Unit Patients Being Evaluated for Bloodstream Infection

    PubMed Central

    Moore, M. S.; McCarroll, M. G.; McCann, C. D.; May, L.; Younes, N.

    2015-01-01

    Here we compared the results of PCR/pyrosequencing to those of culture for detecting bacteria directly from blood. DNA was extracted from 1,130 blood samples from 913 patients suspected of bacteremia (enrollment criteria were physician-ordered blood culture and complete blood count [CBC]), and 102 controls (healthy blood donors). Real-time PCR assays for beta-globin and Universal 16S rRNA gene targets were performed on all 1,232 extracts. Specimens identified by Universal 16S rRNA gene PCR/pyrosequencing as containing staphylococci, streptococci, or enteric Gram-negative rods had target-specific PCR/pyrosequencing performed. Amplifiable beta-globin (melting temperature [Tm], 87.2°C ± 0.2°C) occurred in 99.1% (1,120/1,130) of patient extracts and 100% (102/102) of controls. Concordance between PCR/pyrosequencing and culture was 96.9% (1,085/1,120) for Universal 16S rRNA gene targets, with positivity rates of 9.4% (105/1,120) and 11.3% (126/1,120), respectively. Bacteria cultured included staphylococci (59/126, 46.8%), Gram-negative rods (34/126, 27%), streptococci (32/126, 25.4%), and a Gram-positive rod (1/126, 0.8%). All controls screened negative by PCR/pyrosequencing. Clinical performance characteristics (95% confidence interval [CI]) for Universal 16S rRNA gene PCR/pyrosequencing included sensitivity of 77.8% (69.5 to 84.7), specificity of 99.3% (98.6 to 99.7), positive predictive value (PPV) of 93.3% (86.8 to 97.3), and negative predictive value (NPV) of 97.2% (96.0 to 98.2). Bacteria were accurately identified in 77.8% (98/126) of culture-confirmed sepsis samples with Universal 16S PCR/pyrosequencing and in 76.4% (96/126) with follow-up target-specific PCR/pyrosequencing. The initial PCR/pyrosequencing took ∼5.5 h to complete or ∼7.5 h when including target-specific PCR/pyrosequencing compared to 27.9 ± 13.6 h for Gram stain or 81.6 ± 24.0 h for phenotypic identification. In summary, this molecular approach detected the causative bacteria in over

  20. Direct Screening of Blood by PCR and Pyrosequencing for a 16S rRNA Gene Target from Emergency Department and Intensive Care Unit Patients Being Evaluated for Bloodstream Infection.

    PubMed

    Moore, M S; McCarroll, M G; McCann, C D; May, L; Younes, N; Jordan, J A

    2016-01-01

    Here we compared the results of PCR/pyrosequencing to those of culture for detecting bacteria directly from blood. DNA was extracted from 1,130 blood samples from 913 patients suspected of bacteremia (enrollment criteria were physician-ordered blood culture and complete blood count [CBC]), and 102 controls (healthy blood donors). Real-time PCR assays for beta-globin and Universal 16S rRNA gene targets were performed on all 1,232 extracts. Specimens identified by Universal 16S rRNA gene PCR/pyrosequencing as containing staphylococci, streptococci, or enteric Gram-negative rods had target-specific PCR/pyrosequencing performed. Amplifiable beta-globin (melting temperature [Tm], 87.2°C ± 0.2°C) occurred in 99.1% (1,120/1,130) of patient extracts and 100% (102/102) of controls. Concordance between PCR/pyrosequencing and culture was 96.9% (1,085/1,120) for Universal 16S rRNA gene targets, with positivity rates of 9.4% (105/1,120) and 11.3% (126/1,120), respectively. Bacteria cultured included staphylococci (59/126, 46.8%), Gram-negative rods (34/126, 27%), streptococci (32/126, 25.4%), and a Gram-positive rod (1/126, 0.8%). All controls screened negative by PCR/pyrosequencing. Clinical performance characteristics (95% confidence interval [CI]) for Universal 16S rRNA gene PCR/pyrosequencing included sensitivity of 77.8% (69.5 to 84.7), specificity of 99.3% (98.6 to 99.7), positive predictive value (PPV) of 93.3% (86.8 to 97.3), and negative predictive value (NPV) of 97.2% (96.0 to 98.2). Bacteria were accurately identified in 77.8% (98/126) of culture-confirmed sepsis samples with Universal 16S PCR/pyrosequencing and in 76.4% (96/126) with follow-up target-specific PCR/pyrosequencing. The initial PCR/pyrosequencing took ∼5.5 h to complete or ∼7.5 h when including target-specific PCR/pyrosequencing compared to 27.9 ± 13.6 h for Gram stain or 81.6 ± 24.0 h for phenotypic identification. In summary, this molecular approach detected the causative bacteria in over

  1. cap alpha. -skeletal and. cap alpha. -cardiac actin genes are coexpressed in adult human skeletal muscle and heart

    SciTech Connect

    Gunning, P.; Ponte, P.; Blau, H.; Kedes, L.

    1983-11-01

    The authors determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes, derived from ..cap alpha.. skeletal, ..beta..- and ..gamma..-actin cDNAs and from an ..cap alpha..-cardiac actin genomic clone, they showed that 28 of the cDNAs correspond to ..cap alpha..-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from ..cap alpha..-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle ..cap alpha..-cardiac actin cDNAs are derived from transcripts of the cloned ..cap alpha..-cardiac actin gene. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. They conclude that ..cap alpha..-skeletal and ..cap alpha..-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (..beta.. and ..gamma..) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, they postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.

  2. Single nucleotide polymorphisms of the inflammatory cytokine genes in adults with chronic immune thrombocytopenic purpura.

    PubMed

    Satoh, Takashi; Pandey, Janardan P; Okazaki, Yuka; Yasuoka, Hidekata; Kawakami, Yutaka; Ikeda, Yasuo; Kuwana, Masataka

    2004-03-01

    Single nucleotide polymorphisms (SNPs) of inflammatory cytokine genes were examined in 84 adult Japanese patients with chronic immune thrombocytopenic purpura (ITP) and 56 race-matched healthy controls. The SNPs examined were within the genes encoding tumour necrosis factor (TNF)-alpha (-238 G/A and -308 G/A), TNF-beta (+252 G/A), and interleukin (IL)-1beta (-511 C/T and +3953 T/C). Of these SNPs, the frequency of the TNF-beta (+252) G/G phenotype was significantly higher in ITP patients than in healthy controls (21% vs. 7%, P = 0.04, odds ratio = 3.6, 95% confidence interval 1.1-11.1), while no significant association was detected for the other SNPs. The distribution of the TNF-beta (+252) phenotype was not associated with human leucocyte antigen class II alleles or the therapeutic response in ITP patients. The frequency of circulating anti-glycoprotein IIb/IIIa antibody-producing B cells was significantly higher in ITP patients with the TNF-beta (+252) G/G phenotype than in those with the G/A or A/A phenotype (11.9 +/- 4.9 vs. 6.8 +/- 4.9 and 3.7 +/- 2.8 per 10(5) peripheral blood mononuclear cells; P = 0.02 and P < 0.001, respectively). These findings suggest that the SNP located at TNF-beta (+252) contributes to susceptibility to chronic ITP by controlling the autoreactive B-cell responses to platelet membrane glycoproteins.

  3. Optimal range for parvalbumin as relaxing agent in adult cardiac myocytes: gene transfer and mathematical modeling.

    PubMed Central

    Coutu, Pierre; Metzger, Joseph M

    2002-01-01

    Parvalbumin (PV) has recently been shown to increase the relaxation rate when expressed in intact isolated cardiac myocytes via adenovirus gene transfer. We report here a combined experimental and mathematical modeling approach to determine the dose-response and the sarcomere length (SL) shortening-frequency relationship of PV in adult rat cardiac myocytes in primary culture. The dose-response was obtained experimentally by observing the PV-transduced myocytes at different time points after gene transfer. Calcium transients and unloaded mechanical contractions were measured. The results were as follows. At low estimated [PV] (approximately 0.01 mM), contractile parameters were unchanged; at intermediate [PV], relaxation rate of the mechanical contraction and the decay rate of the calcium transient increased with little effects on amplitude; and at high [PV] (approximately 0.1 mM), relaxation rate was further increased, but the amplitudes of the mechanical contraction and the calcium transient were diminished when compared with control myocytes. The SL shortening-frequency relationship exhibited a biphasic response to increasing stimulus frequency in controls (decrease in amplitude and re-lengthening time from 0.2 to 1.0 Hz followed by an increase in these parameters from 2.0 to 4.0 Hz). The effect of PV was to flatten this frequency response. This flattening effect was partly explained by a reduction in the variation in fractional binding of PV to calcium during beats at high frequency. In conclusion, experimental results and mathematical modeling indicate that there is an optimal PV range for which relaxation rate is increased with little effect on contractile amplitude and that PV effectiveness decreases as the stimulus frequency increases. PMID:11964244

  4. Faecal Microbiota Composition in Adults Is Associated with the FUT2 Gene Determining the Secretor Status

    PubMed Central

    Wacklin, Pirjo; Tuimala, Jarno; Nikkilä, Janne; Sebastian Tims; Mäkivuokko, Harri; Alakulppi, Noora; Laine, Pia; Rajilic-Stojanovic, Mirjana; Paulin, Lars; de Vos, Willem M.; Mättö, Jaana

    2014-01-01

    The human intestine is colonised with highly diverse and individually defined microbiota, which likely has an impact on the host well-being. Drivers of the individual variation in the microbiota compositions are multifactorial and include environmental, host and dietary factors. We studied the impact of the host secretor status, encoded by fucosyltransferase 2 (FUT2) -gene, on the intestinal microbiota composition. Secretor status determines the expression of the ABH and Lewis histo-blood group antigens in the intestinal mucosa. The study population was comprised of 14 non-secretor (FUT2 rs601338 genotype AA) and 57 secretor (genotypes GG and AG) adult individuals of western European descent. Intestinal microbiota was analyzed by PCR-DGGE and for a subset of 12 non-secretor subjects and 12 secretor subjects additionally by the 16S rRNA gene pyrosequencing and the HITChip phylogenetic microarray analysis. All three methods showed distinct clustering of the intestinal microbiota and significant differences in abundances of several taxa representing dominant microbiota between the non-secretors and the secretors as well as between the FUT2 genotypes. In addition, the non-secretors had lower species richness than the secretors. The soft clustering of microbiota into enterotypes (ET) 1 and 3 showed that the non-secretors had a higher probability of belonging to ET1 and the secretors to ET3. Our study shows that secretor status and FUT2 polymorphism are associated with the composition of human intestinal microbiota, and appears thus to be one of the key drivers affecting the individual variation of human intestinal microbiota. PMID:24733310

  5. CArG boxes in the human cardiac. cap alpha. -actin gene are core binding sites for positive trans-acting regulatory factors

    SciTech Connect

    Miwa, T.; Boxer, L.M.; Kedes, L.

    1987-10-01

    Positively acting, rate-limiting regulatory factors that influence tissue-specific expression of the human cardiac ..cap alpha..-actin gene in a mouse muscle cell line are shown by in vivo competition and gel mobility-shift assays to bind to upstream regions of its promoter but to neither vector DNA not a ..beta..-globin promoter. Although the two binding regions are distinctly separated, each corresponds to a cis region required for muscle-specific transcriptional stimulation, and each contains a core CC(A+T-rich)/sub 6/GC sequence (designated CArG box), which is found in the promoter regions of several muscle-associated genes. Each site has an apparently different binding affinity for trans-acting factors, which may explain the different transcriptional stimulation activities of the two cis regions. Therefore, the authors conclude that the two CArG box regions are responsible for muscle-specific transcriptional activity of the cardiac ..cap alpha..-actin gene through a mechanism that involves their binding of a positive trans-acting factor in muscle cells.

  6. Characterization of the transcriptomes and cuticular protein gene expression of alate adult, brachypterous neotenic and adultoid reproductives of Reticulitermes labralis

    PubMed Central

    Su, Xiaohong; Liu, He; Yang, Xiaojuan; Chen, Jiaoling; Zhang, Honggui; Xing, Lianxi; Zhang, Xiaojing

    2016-01-01

    The separation of primary reproductive and secondary reproductive roles based on the differentiation of alate adults and neotenic reproductives is the most prominent characteristic of termites. To clarify the mechanism underlying this differentiation, we sequenced the transcriptomes of alate adults (ARs), brachypterous neotenics (BNs) and adultoid reproductives (ANs) from the last instar nymphs of Reticulitermes labralis. A total of 404,152,188 clean sequencing reads was obtained and 61,953 unigenes were assembled. Of the 54 identified cuticular protein (CP) genes of the reproductives, 22 were classified into the CPR family and 7 were classified into the CPG family. qRT-PCR analyses of the 6 CP genes revealed that the CP genes involved in exocuticle sclerotization were highly expressed in the ARs and RR-1 involved in soft endocuticle was highly expressed in the ARs and ANs. These results suggest that the alate adults might increase cuticular component deposition to adapt to new or changing environments and that the development of reproductive individuals into primary or secondary reproductives is controlled by the expression of cuticular protein genes involved in the hardening of the exocuticle. In addition, the AN caste is a transitional type between the BN and AR castes in the process of evolution. PMID:27690209

  7. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    NASA Astrophysics Data System (ADS)

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (‑)-PCB149, and (+)-PCB149. Greater enrichment of (‑)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (‑)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149.

  8. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    PubMed Central

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (−)-PCB149, and (+)-PCB149. Greater enrichment of (−)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (−)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149. PMID:26786282

  9. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    NASA Astrophysics Data System (ADS)

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (-)-PCB149, and (+)-PCB149. Greater enrichment of (-)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (-)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149.

  10. The association between romantic relationship status and 5-HT1A gene in young adults.

    PubMed

    Liu, Jinting; Gong, Pingyuan; Zhou, Xiaolin

    2014-01-01

    What factors determine whether or not a young adult will fall in love? Sociological surveys and psychological studies have shown that non-genetic factors, such as socioeconomic status, external appearance, and personality attributes, are crucial components in romantic relationship formation. Here we demonstrate that genetic variants also contribute to romantic relationship formation. As love-related behaviors are associated with serotonin levels in the brain, this study investigated to what extent a polymorphism (C-1019G, rs6295) of 5-HT1A gene is related to relationship status in 579 Chinese Han people. We found that 50.4% of individuals with the CC genotype and 39.0% with CG/GG genotype were in romantic relationship. Logistic regression analysis indicated that the C-1019G polymorphism was significantly associated with the odds of being single both before and after controlling for socioeconomic status, external appearance, religious beliefs, parenting style, and depressive symptoms. These findings provide, for the first time, direct evidence for the genetic contribution to romantic relationship formation. PMID:25412229

  11. Fat brains, greedy genes, and parent power: a biobehavioural risk model of child and adult obesity.

    PubMed

    Carnell, Susan; Kim, Yale; Pryor, Katherine

    2012-06-01

    We live in a world replete with opportunities to overeat highly calorific, palatable foods - yet not everyone becomes obese. Why? We propose that individuals show differences in appetitive traits (e.g. food cue responsiveness, satiety sensitivity) that manifest early in life and predict their eating behaviours and weight trajectories. What determines these traits? Parental feeding restriction is associated with higher child adiposity, pressure to eat with lower adiposity, and both strategies with less healthy eating behaviours, while authoritative feeding styles coincide with more positive outcomes. But, on the whole, twin and family studies argue that nature has a greater influence than nurture on adiposity and eating behaviour, and behavioural investigations of genetic variants that are robustly associated with obesity (e.g. FTO) confirm that genes influence appetite. Meanwhile, a growing body of neuroimaging studies in adults, children and high risk populations suggests that structural and functional variation in brain networks associated with reward, emotion and control might also predict appetite and obesity, and show genetic influence. Together these different strands of evidence support a biobehavioural risk model of obesity development. Parental feeding recommendations should therefore acknowledge the powerful - but modifiable - contribution of genetic and neurological influences to children's eating behaviour.

  12. Tendon and ligament engineering in the adult organism: mesenchymal stem cells and gene-therapeutic approaches

    PubMed Central

    Hoffmann, Andrea

    2007-01-01

    Tendons and ligaments are elastic collagenous tissues with similar composition and hierarchical structure, contributing to motion. Their strength is related to the number and size of the collagen fibrils. Collagen fibrils increase in size during development and in response to increased physical demands or training. Tendon disorders are commonly seen in clinical practice and give rise to significant morbidity. Treatment is difficult and patients often suffer from the symptoms for quite a long time. Despite remodelling, the biochemical and mechanical properties of healed tendon tissue never match those of intact tendon. The prerequisite for focussed treatment strategies in the future will be an improved understanding of the molecular events both in the embryo and contributing to regeneration in the adult organism. Novel approaches include the local delivery of growth factors, stem- and tendon-cell-derived therapy, the application of mechanical load and gene-therapeutic approaches based on vehicles encoding selected factors, or combinations of these. Important factors are proteins of the extracellular matrix like the metalloproteinases, growth factors like the bone morphogenetic proteins but also intracellular signalling mediator proteins, such as the Smads and transcription factors from the helix–loop–helix and other families. In this review, we focus specifically on such molecular approaches based on mesenchymal stem cells. PMID:17634943

  13. Fat brains, greedy genes, and parent power: a biobehavioural risk model of child and adult obesity.

    PubMed

    Carnell, Susan; Kim, Yale; Pryor, Katherine

    2012-06-01

    We live in a world replete with opportunities to overeat highly calorific, palatable foods - yet not everyone becomes obese. Why? We propose that individuals show differences in appetitive traits (e.g. food cue responsiveness, satiety sensitivity) that manifest early in life and predict their eating behaviours and weight trajectories. What determines these traits? Parental feeding restriction is associated with higher child adiposity, pressure to eat with lower adiposity, and both strategies with less healthy eating behaviours, while authoritative feeding styles coincide with more positive outcomes. But, on the whole, twin and family studies argue that nature has a greater influence than nurture on adiposity and eating behaviour, and behavioural investigations of genetic variants that are robustly associated with obesity (e.g. FTO) confirm that genes influence appetite. Meanwhile, a growing body of neuroimaging studies in adults, children and high risk populations suggests that structural and functional variation in brain networks associated with reward, emotion and control might also predict appetite and obesity, and show genetic influence. Together these different strands of evidence support a biobehavioural risk model of obesity development. Parental feeding recommendations should therefore acknowledge the powerful - but modifiable - contribution of genetic and neurological influences to children's eating behaviour. PMID:22724640

  14. Differential expression of the FMRF gene in adult and hatchling stellate ganglia of the squid Loligo pealei.

    PubMed

    Burbach, J Peter H; Grant, Philip; Hellemons, Anita J C G M; Degiorgis, Joseph A; Li, Ka Wan; Pant, Harish C

    2014-01-15

    The giant fiber system of the squid Loligo pealei mediates the escape response and is an important neurobiological model. Here, we identified an abundant transcript in the stellate ganglion (SG) that encodes a FMRFamide precursor, and characterized FMRFamide and FI/LRF-amide peptides. To determine whether FMRFamide plays a role in the adult and hatchling giant fiber system, we studied the expression of the Fmrf gene and FMRFamide peptides. In stage 29 embryos and stage 30 hatchlings, Ffmr transcripts and FMRFamide peptide were low to undetectable in the SG, in contrast to groups of neurons intensely expressing the Fmrf gene in several brain lobes, including those that innervate the SG. In the adult SG the Fmrf gene was highly expressed, but the FMRFamide peptide was in low abundance. Intense staining for FMRFamide in the adult SG was confined to microneurons and fibers in the neuropil and to small fibers surrounding giant axons in stellar nerves. This shows that the Fmrf gene in the SG is strongly regulated post-hatching, and suggests that the FMRFamide precursor is incompletely processed in the adult SG. The data suggest that the SG only employs the Fmrf gene post-hatching and restricts the biosynthesis of FMRFamide, demonstrating that this peptide is not a major transmitter of the giant fiber system. This contrasts with brain lobes that engage FMRFamide embryonically as a regulatory peptide in multiple neuronal systems, including the afferent fibers that innervate the SG. The biological significance of these mechanisms may be to generate diversity within Fmrf-expressing systems in cephalopods.

  15. Adult midgut expressed sequence tags from the tsetse fly Glossina morsitans morsitans and expression analysis of putative immune response genes

    PubMed Central

    Lehane, M J; Aksoy, S; Gibson, W; Kerhornou, A; Berriman, M; Hamilton, J; Soares, M B; Bonaldo, M F; Lehane, S; Hall, N

    2003-01-01

    Background Tsetse flies transmit African trypanosomiasis leading to half a million cases annually. Trypanosomiasis in animals (nagana) remains a massive brake on African agricultural development. While trypanosome biology is widely studied, knowledge of tsetse flies is very limited, particularly at the molecular level. This is a serious impediment to investigations of tsetse-trypanosome interactions. We have undertaken an expressed sequence tag (EST) project on the adult tsetse midgut, the major organ system for establishment and early development of trypanosomes. Results A total of 21,427 ESTs were produced from the midgut of adult Glossina morsitans morsitans and grouped into 8,876 clusters or singletons potentially representing unique genes. Putative functions were ascribed to 4,035 of these by homology. Of these, a remarkable 3,884 had their most significant matches in the Drosophila protein database. We selected 68 genes with putative immune-related functions, macroarrayed them and determined their expression profiles following bacterial or trypanosome challenge. In both infections many genes are downregulated, suggesting a malaise response in the midgut. Trypanosome and bacterial challenge result in upregulation of different genes, suggesting that different recognition pathways are involved in the two responses. The most notable block of genes upregulated in response to trypanosome challenge are a series of Toll and Imd genes and a series of genes involved in oxidative stress responses. Conclusions The project increases the number of known Glossina genes by two orders of magnitude. Identification of putative immunity genes and their preliminary characterization provides a resource for the experimental dissection of tsetse-trypanosome interactions. PMID:14519198

  16. Sequence and regulation of a gene encoding a human 89-kilodalton heat shock protein.

    PubMed Central

    Hickey, E; Brandon, S E; Smale, G; Lloyd, D; Weber, L A

    1989-01-01

    Vertebrate cells synthesize two forms of the 82- to 90-kilodalton heat shock protein that are encoded by distinct gene families. In HeLa cells, both proteins (hsp89 alpha and hsp89 beta) are abundant under normal growth conditions and are synthesized at increased rates in response to heat stress. Only the larger form, hsp89 alpha, is induced by the adenovirus E1A gene product (M. C. Simon, K. Kitchener, H. T. Kao, E. Hickey, L. Weber, R. Voellmy, N. Heintz, and J. R. Nevins, Mol. Cell. Biol. 7:2884-2890, 1987). We have isolated a human hsp89 alpha gene that shows complete sequence identity with heat- and E1A-inducible cDNA used as a hybridization probe. The 5'-flanking region contained overlapping and inverted consensus heat shock control elements that can confer heat-inducible expression on a beta-globin reporter gene. The gene contained 10 intervening sequences. The first intron was located adjacent to the translation start codon, an arrangement also found in the Drosophila hsp82 gene. The spliced mRNA sequence contained a single open reading frame encoding an 84,564-dalton polypeptide showing high homology with the hsp82 to hsp90 proteins of other organisms. The deduced hsp89 alpha protein sequence differed from the human hsp89 beta sequence reported elsewhere (N. F. Rebbe, J. Ware, R. M. Bertina, P. Modrich, and D. W. Stafford (Gene 53:235-245, 1987) in at least 99 out of the 732 amino acids. Transcription of the hsp89 alpha gene was induced by serum during normal cell growth, but expression did not appear to be restricted to a particular stage of the cell cycle. hsp89 alpha mRNA was considerably more stable than the mRNA encoding hsp70, which can account for the higher constitutive rate of hsp89 synthesis in unstressed cells. Images PMID:2527334

  17. An association analysis of the HLA gene region in latent autoimmune diabetes in adults

    PubMed Central

    2011-01-01

    Aims/hypothesis Pathophysiological similarities between latent autoimmune diabetes in adults (LADA) and type 1 diabetes indicate an overlap in genetic susceptibility. HLA-DRB1 and HLA-DQB1 are major susceptibility genes for type 1 diabetes but studies of these genes in LADA have been limited. Our aim was to define patterns of HLA-encoded susceptibility/protection in a large, well characterised LADA cohort, and to establish association with disease and age at diagnosis. Materials and methods Patients with LADA (n=387, including 211 patients from the UK Prospective Diabetes Study) and non-diabetic control subjects (n=327) were of British/Irish European origin. The HLA-DRB1 and -DQB1 genes were genotyped by sequence-specific PCR. Results As in type 1 diabetes mellitus, DRB1*0301_DQB1*0201 (odds ratio [OR]=3.08, 95% CI 2.32–4.12, p=1.2× 10−16) and DRB1*0401_DQB1*0302 (OR=2.57, 95% CI 1.80–3.73, p=4.5×10−8) were the main susceptibility haplotypes in LADA, and DRB1*1501_DQB1*0602 was protective (OR=0.21, 95% CI 0.13–0.34, p=4.2×10−13). Differential susceptibility was conferred by DR4 subtypes: DRB1*0401 was predisposing (OR=1.79, 95% CI 1.35–2.38, p=2.7×10−5) whereas DRB1*0403 was protective (OR=0.37, 95% CI 0.13–0.97, p=0.033). The highest-risk genotypes were DRB1*0301/DRB1*0401 and DQB1*0201/DQB1*0302 (OR=5.14, 95% CI 2.68–10.69, p=1.3×10−8; and OR=6.88, 95% CI 3.54–14.68, p=1.2×10−11, respectively). These genotypes and those containing DRB1*0401 and DQB1*0302 associated with a younger age at diagnosis in LADA, whereas genotypes containing DRB1*1501 and DQB1*0602 associated with an older age at diagnosis. Conclusions/interpretation Patterns of susceptibility at the HLA-DRB1 and HLA-DQB1 loci in LADA are similar to those reported for type 1 diabetes, supporting the hypothesis that autoimmune diabetes occurring in adults is an age-related extension of the pathophysiological process presenting as childhood-onset type 1 diabetes. PMID

  18. Expression of fully functional tetrameric human hemoglobin in Escherichia coli.

    PubMed Central

    Hoffman, S J; Looker, D L; Roehrich, J M; Cozart, P E; Durfee, S L; Tedesco, J L; Stetler, G L

    1990-01-01

    Synthetic genes encoding the human alpha- and beta-globin polypeptides have been expressed from a single operon in Escherichia coli. The alpha- and beta-globin polypeptides associate into soluble tetramers, incorporate heme, and accumulate to greater than 5% of the total cellular protein. Purified recombinant hemoglobin has the correct stoichiometry of alpha- and beta-globin chains and contains a full complement of heme. Each globin chain also contains an additional methionine as an extension to the amino terminus. The recombinant hemoglobin has a C4 reversed-phase HPLC profile essentially identical to that of human hemoglobin A0 and comigrates with hemoglobin A0 on SDS/PAGE. The visible spectrum and oxygen affinity are similar to that of native human hemoglobin A0. The recombinant protein shows a reduction in Bohr and phosphate effects, which may be attributed to the presence of methionine at the amino termini of the alpha and beta chains. We have also expressed the alpha- and beta-globin genes separately and found that the expression of the alpha-globin gene alone results in a marked decrease in the accumulation of alpha-globin in the cell. Separate expression of the beta-globin gene results in high levels of insoluble beta-globin. These observations suggest that the presence of alpha- and beta-globin in the same cell stabilizes alpha-globin and aids the correct folding of beta-globin. This system provides a simple method for expressing large quantities of recombinant hemoglobin and allows facile manipulation of the genes encoding hemoglobin to produce functionally altered forms of this protein. Images PMID:2236062

  19. Comparative Transcriptomics Reveals Key Gene Expression Differences between Diapausing and Non-Diapausing Adults of Culex pipiens

    PubMed Central

    Kang, David S.; Denlinger, David L.; Sim, Cheolho

    2016-01-01

    Diapause is a critical eco-physiological adaptation for winter survival in the West Nile Virus vector, Culex pipiens, but little is known about the molecular mechanisms that distinguish diapause from non-diapause in this important mosquito species. We used Illumina RNA-seq to simultaneously identify and quantify relative transcript levels in diapausing and non-diapausing adult females. Among 65,623,095 read pairs, we identified 41 genes with significantly different transcript abundances between these two groups. Transcriptome divergences between these two phenotypes include genes related to juvenile hormone synthesis, anaerobic metabolism, innate immunity and cold tolerance. PMID:27128578

  20. Adult-onset autosomal recessive ataxia associated with neuronal ceroid lipofuscinosis type 5 gene (CLN5) mutations.

    PubMed

    Mancini, Cecilia; Nassani, Stefano; Guo, Yiran; Chen, Yulan; Giorgio, Elisa; Brussino, Alessandro; Di Gregorio, Eleonora; Cavalieri, Simona; Lo Buono, Nicola; Funaro, Ada; Pizio, Nicola Renato; Nmezi, Bruce; Kyttala, Aija; Santorelli, Filippo Maria; Padiath, Quasar Salem; Hakonarson, Hakon; Zhang, Hao; Brusco, Alfredo

    2015-01-01

    Autosomal recessive inherited ataxias are a growing group of genetic disorders. We report two Italian siblings presenting in their mid-50s with difficulty in walking, dysarthria and progressive cognitive decline. Visual loss, ascribed to glaucoma, manifested a few years before the other symptoms. Brain MRI showed severe cerebellar atrophy, prevalent in the vermis, with marked cortical atrophy of both hemispheres. Exome sequencing identified a novel homozygous mutation (c.935G > A;p.Ser312Asn) in the ceroid neuronal lipofuscinosis type 5 gene (CLN5). Bioinformatics predictions and in vitro studies showed that the mutation was deleterious and likely affects ER-lysosome protein trafficking. Our findings support CLN5 hypomorphic mutations cause autosomal recessive cerebellar ataxia, confirming other reports showing CLN mutations are associated with adult-onset neurodegenerative disorders. We suggest CLN genes should be considered in the molecular analyses of patients presenting with adult-onset autosomal recessive cerebellar ataxia.

  1. Parent-of-Origin Effects of the APOB Gene on Adiposity in Young Adults

    PubMed Central

    Hochner, Hagit; Allard, Catherine; Granot-Hershkovitz, Einat; Chen, Jinbo; Sitlani, Colleen M.; Sazdovska, Sandra; Lumley, Thomas; McKnight, Barbara; Rice, Kenneth; Enquobahrie, Daniel A.; Meigs, James B.; Kwok, Pui; Hivert, Marie-France; Borecki, Ingrid B.; Gomez, Felicia; Wang, Ting; van Duijn, Cornelia; Amin, Najaf; Rotter, Jerome I.; Stamatoyannopoulos, John; Meiner, Vardiella; Manor, Orly; Dupuis, Josée; Friedlander, Yechiel; Siscovick, David S.

    2015-01-01

    Loci identified in genome-wide association studies (GWAS) of cardio-metabolic traits account for a small proportion of the traits' heritability. To date, most association studies have not considered parent-of-origin effects (POEs). Here we report investigation of POEs on adiposity and glycemic traits in young adults. The Jerusalem Perinatal Family Follow-Up Study (JPS), comprising 1250 young adults and their mothers was used for discovery. Focusing on 18 genes identified by previous GWAS as associated with cardio-metabolic traits, we used linear regression to examine the associations of maternally- and paternally-derived offspring minor alleles with body mass index (BMI), waist circumference (WC), fasting glucose and insulin. We replicated and meta-analyzed JPS findings in individuals of European ancestry aged ≤50 belonging to pedigrees from the Framingham Heart Study, Family Heart Study and Erasmus Rucphen Family study (total N≅4800). We considered p<2.7x10-4 statistically significant to account for multiple testing. We identified a common coding variant in the 4th exon of APOB (rs1367117) with a significant maternally-derived effect on BMI (β = 0.8; 95%CI:0.4,1.1; p = 3.1x10-5) and WC (β = 2.7; 95%CI:1.7,3.7; p = 2.1x10-7). The corresponding paternally-derived effects were non-significant (p>0.6). Suggestive maternally-derived associations of rs1367117 were observed with fasting glucose (β = 0.9; 95%CI:0.3,1.5; p = 4.0x10-3) and insulin (ln-transformed, β = 0.06; 95%CI:0.03,0.1; p = 7.4x10-4). Bioinformatic annotation for rs1367117 revealed a variety of regulatory functions in this region in liver and adipose tissues and a 50% methylation pattern in liver only, consistent with allelic-specific methylation, which may indicate tissue-specific POE. Our findings demonstrate a maternal-specific association between a common APOB variant and adiposity, an association that was not previously detected in GWAS. These results provide evidence for the role of

  2. Sensitive Tumorigenic Potential Evaluation of Adult Human Multipotent Neural Cells Immortalized by hTERT Gene Transduction

    PubMed Central

    Jeong, Da Eun; Kim, Sung Soo; Song, Hye Jin; Pyeon, Hee Jang; Kang, Kyeongjin; Hong, Seung-Cheol; Nam, Do-Hyun; Joo, Kyeung Min

    2016-01-01

    Stem cells and therapeutic genes are emerging as a new therapeutic approach to treat various neurodegenerative diseases with few effective treatment options. However, potential formation of tumors by stem cells has hampered their clinical application. Moreover, adequate preclinical platforms to precisely test tumorigenic potential of stem cells are controversial. In this study, we compared the sensitivity of various animal models for in vivo stem cell tumorigenicity testing to identify the most sensitive platform. Then, tumorigenic potential of adult human multipotent neural cells (ahMNCs) immortalized by the human telomerase reverse transcriptase (hTERT) gene was examined as a stem cell model with therapeutic genes. When human glioblastoma (GBM) cells were injected into adult (4–6-week-old) Balb/c-nu, adult NOD/SCID, adult NOG, or neonate (1–2-week-old) NOG mice, the neonate NOG mice showed significantly faster tumorigenesis than that of the other groups regardless of intracranial or subcutaneous injection route. Two kinds of ahMNCs (682TL and 779TL) were primary cultured from surgical samples of patients with temporal lobe epilepsy. Although the ahMNCs were immortalized by lentiviral hTERT gene delivery (hTERT-682TL and hTERT-779TL), they did not form any detectable masses, even in the most sensitive neonate NOG mouse platform. Moreover, the hTERT-ahMNCs had no gross chromosomal abnormalities on a karyotype analysis. Taken together, our data suggest that neonate NOG mice could be a sensitive animal platform to test tumorigenic potential of stem cell therapeutics and that ahMNCs could be a genetically stable stem cell source with little tumorigenic activity to develop regenerative treatments for neurodegenerative diseases. PMID:27391353

  3. Sensitive Tumorigenic Potential Evaluation of Adult Human Multipotent Neural Cells Immortalized by hTERT Gene Transduction.

    PubMed

    Lee, Kee Hang; Nam, Hyun; Jeong, Da Eun; Kim, Sung Soo; Song, Hye Jin; Pyeon, Hee Jang; Kang, Kyeongjin; Hong, Seung-Cheol; Nam, Do-Hyun; Joo, Kyeung Min

    2016-01-01

    Stem cells and therapeutic genes are emerging as a new therapeutic approach to treat various neurodegenerative diseases with few effective treatment options. However, potential formation of tumors by stem cells has hampered their clinical application. Moreover, adequate preclinical platforms to precisely test tumorigenic potential of stem cells are controversial. In this study, we compared the sensitivity of various animal models for in vivo stem cell tumorigenicity testing to identify the most sensitive platform. Then, tumorigenic potential of adult human multipotent neural cells (ahMNCs) immortalized by the human telomerase reverse transcriptase (hTERT) gene was examined as a stem cell model with therapeutic genes. When human glioblastoma (GBM) cells were injected into adult (4-6-week-old) Balb/c-nu, adult NOD/SCID, adult NOG, or neonate (1-2-week-old) NOG mice, the neonate NOG mice showed significantly faster tumorigenesis than that of the other groups regardless of intracranial or subcutaneous injection route. Two kinds of ahMNCs (682TL and 779TL) were primary cultured from surgical samples of patients with temporal lobe epilepsy. Although the ahMNCs were immortalized by lentiviral hTERT gene delivery (hTERT-682TL and hTERT-779TL), they did not form any detectable masses, even in the most sensitive neonate NOG mouse platform. Moreover, the hTERT-ahMNCs had no gross chromosomal abnormalities on a karyotype analysis. Taken together, our data suggest that neonate NOG mice could be a sensitive animal platform to test tumorigenic potential of stem cell therapeutics and that ahMNCs could be a genetically stable stem cell source with little tumorigenic activity to develop regenerative treatments for neurodegenerative diseases. PMID:27391353

  4. Patterns of differential gene expression in adult rotation-resistant and wild-type western corn rootworm digestive tracts.

    PubMed

    Chu, Chia-Ching; Zavala, Jorge A; Spencer, Joseph L; Curzi, Matías J; Fields, Christopher J; Drnevich, Jenny; Siegfried, Blair D; Seufferheld, Manfredo J

    2015-08-01

    The western corn rootworm (WCR,Diabrotica virgifera virgifera LeConte) is an important pest of corn. Annual crop rotation between corn and soybean disrupts the corn-dependent WCR life cycle and is widely adopted to manage this pest. This strategy selected for rotation-resistant (RR) WCR with reduced ovipositional fidelity to corn. Previous studies revealed that RR-WCR adults exhibit greater tolerance of soybean diets, different gut physiology, and host-microbe interactions compared to rotation-susceptible wild types (WT). To identify the genetic mechanisms underlying these phenotypic changes, a de novo assembly of the WCR adult gut transcriptome was constructed and used for RNA-sequencing analyses of RNA libraries from different WCR phenotypes fed with corn or soybean diets. Global gene expression profiles of WT- and RR-WCR were similar when feeding on corn diets, but different when feeding on soybean. Using network-based methods, we identified gene modules transcriptionally correlated with the RR phenotype. Gene ontology enrichment analyses indicated that the functions of these modules were related to metabolic processes, immune responses, biological adhesion, and other functions/processes that appear to correlate to documented traits in RR populations. These results suggest that gut transcriptomic divergence correlated with brief soybean feeding and other physiological traits may exist between RR- and WT-WCR adults. PMID:26240606

  5. oct4-EGFP reporter gene expression marks the stem cells in embryonic development and in adult gonads of transgenic medaka.

    PubMed

    Froschauer, Alexander; Khatun, Mst Muslima; Sprott, David; Franz, Alexander; Rieger, Christiane; Pfennig, Frank; Gutzeit, Herwig O

    2013-01-01

    Maintenance of pluripotency in stem cells is tightly regulated among vertebrates. One of the key genes in this process is oct4, also referred to as pou5f1 in mammals and pou2 in teleosts. Pou5f1 evolved by duplication of pou2 early in the tetrapod lineage, but only monotremes and marsupials retained both genes. Either pou2 or pou5f1 was lost from the genomes of the other tetrapods that have been analyzed to date. Consequently, these two homologous genes are often designated oct4 in functional studies. In most vertebrates oct4 is expressed in pluripotent cells of the early embryo until the blastula stage, and later persist in germline stem cells until adulthood. The isolation and analysis of stem cells from embryo or adult individuals is hampered by the need for reliable markers that can identify and define the cell populations. Here, we report the faithful expression of EGFP under the control of endogenous pou2/oct4 promoters in transgenic medaka (Oryzias latipes). In vivo imaging in oct4-EGFP transgenic medaka reveals the temporal and spatial expression of pou2 in embryos and adults alike. We describe the temporal and spatial patterns of endogenous pou2 and oct4-EGFP expression in medaka with respect to germline and adult stem cells, and discuss applications of oct4-EGFP transgenic medaka in reproductive and stem cell biology. PMID:23139203

  6. Patterns of differential gene expression in adult rotation-resistant and wild-type western corn rootworm digestive tracts

    PubMed Central

    Chu, Chia-Ching; Zavala, Jorge A; Spencer, Joseph L; Curzi, Matías J; Fields, Christopher J; Drnevich, Jenny; Siegfried, Blair D; Seufferheld, Manfredo J

    2015-01-01

    The western corn rootworm (WCR,Diabrotica virgifera virgifera LeConte) is an important pest of corn. Annual crop rotation between corn and soybean disrupts the corn-dependent WCR life cycle and is widely adopted to manage this pest. This strategy selected for rotation-resistant (RR) WCR with reduced ovipositional fidelity to corn. Previous studies revealed that RR-WCR adults exhibit greater tolerance of soybean diets, different gut physiology, and host–microbe interactions compared to rotation-susceptible wild types (WT). To identify the genetic mechanisms underlying these phenotypic changes, a de novo assembly of the WCR adult gut transcriptome was constructed and used for RNA-sequencing analyses of RNA libraries from different WCR phenotypes fed with corn or soybean diets. Global gene expression profiles of WT- and RR-WCR were similar when feeding on corn diets, but different when feeding on soybean. Using network-based methods, we identified gene modules transcriptionally correlated with the RR phenotype. Gene ontology enrichment analyses indicated that the functions of these modules were related to metabolic processes, immune responses, biological adhesion, and other functions/processes that appear to correlate to documented traits in RR populations. These results suggest that gut transcriptomic divergence correlated with brief soybean feeding and other physiological traits may exist between RR- and WT-WCR adults. PMID:26240606

  7. Patterns of differential gene expression in adult rotation-resistant and wild-type western corn rootworm digestive tracts.

    PubMed

    Chu, Chia-Ching; Zavala, Jorge A; Spencer, Joseph L; Curzi, Matías J; Fields, Christopher J; Drnevich, Jenny; Siegfried, Blair D; Seufferheld, Manfredo J

    2015-08-01

    The western corn rootworm (WCR,Diabrotica virgifera virgifera LeConte) is an important pest of corn. Annual crop rotation between corn and soybean disrupts the corn-dependent WCR life cycle and is widely adopted to manage this pest. This strategy selected for rotation-resistant (RR) WCR with reduced ovipositional fidelity to corn. Previous studies revealed that RR-WCR adults exhibit greater tolerance of soybean diets, different gut physiology, and host-microbe interactions compared to rotation-susceptible wild types (WT). To identify the genetic mechanisms underlying these phenotypic changes, a de novo assembly of the WCR adult gut transcriptome was constructed and used for RNA-sequencing analyses of RNA libraries from different WCR phenotypes fed with corn or soybean diets. Global gene expression profiles of WT- and RR-WCR were similar when feeding on corn diets, but different when feeding on soybean. Using network-based methods, we identified gene modules transcriptionally correlated with the RR phenotype. Gene ontology enrichment analyses indicated that the functions of these modules were related to metabolic processes, immune responses, biological adhesion, and other functions/processes that appear to correlate to documented traits in RR populations. These results suggest that gut transcriptomic divergence correlated with brief soybean feeding and other physiological traits may exist between RR- and WT-WCR adults.

  8. Neofunctionalization of embryonic head patterning genes facilitates the positioning of novel traits on the dorsal head of adult beetles.

    PubMed

    Zattara, Eduardo E; Busey, Hannah A; Linz, David M; Tomoyasu, Yoshinori; Moczek, Armin P

    2016-07-13

    The origin and integration of novel traits are fundamental processes during the developmental evolution of complex organisms. Yet how novel traits integrate into pre-existing contexts remains poorly understood. Beetle horns represent a spectacular evolutionary novelty integrated within the context of the adult dorsal head, a highly conserved trait complex present since the origin of insects. We investigated whether otd1/2 and six3, members of a highly conserved gene network that instructs the formation of the anterior end of most bilaterians, also play roles in patterning more recently evolved traits. Using ablation-based fate-mapping, comparative larval RNA interference (RNAi) and transcript sequencing, we found that otd1/2, but not six3, play a fundamental role in the post-embryonic formation of the adult dorsal head and head horns of Onthophagus beetles. By contrast, neither gene appears to pattern the adult head of Tribolium flour beetles even though all are expressed in the dorsal head epidermis of both Onthophagus and Tribolium We propose that, at least in beetles, the roles of otd genes during post-embryonic development are decoupled from their embryonic functions, and that potentially non-functional post-embryonic expression in the dorsal head facilitated their co-option into a novel horn-patterning network during Onthophagus evolution. PMID:27412276

  9. Apolipoprotein B Gene Polymorphisms and Dyslipidemia in HIV Infected Adult Zimbabweans

    PubMed Central

    Zhou, Danai Tavonga; Oektedalen, Olav; Duri, Kerina; Stray-Pedersen, Babill; Gomo, Exnevia

    2016-01-01

    Background: Dyslipidemia does not occur in all HIV-infected or antiretroviral therapy-experienced patients suggesting role of host genetic factors but there is paucity of data on association between dyslipidemia and gene polymorphisms in Zimbabwe. Objective: To determine association of lipoprotein levels and apolipoprotein B polymorphisms in HIV-infected adults. Method: Demographic data were collected from 103 consenting patients; lipoprotein levels were determined and blood samples were successfully genotyped for both apolipoprotein B 2488C>T Xba1 and apolipoprotein B 4154G>A p.Gln4154Lys EcoR1 polymorphisms by real time polymerase chain reaction. Results: Mean age of genotyped patients was 40.3 ± 10.1 years, 68% were female; prevalence of dyslipidemia was 67.4%. Of 103 samples genotyped for apolipoprotein B Xba1 polymorphism, 76 (74%) were homozygous C/C, 24 (23%) were heterozygous C/T and only three (3%) were homozygous T/T. Apolipoprotein B EcoR1 polymorphism showed little variability, one participant had rare genotype A/A, 68.3% had wild type genotype G/G. Conclusion: Observed frequencies of apolipoprotein B XbaI and EcoRI polymorphisms matched other African studies. In spite of low numbers of rare variants, there was positive association between both total cholestrol and high density lipoprotein with ECoR1 wild type G/G genotype, suggesting that ECoRI 4154 G allele could be more protective against coronary heart disease than EcoR1 4154 A allele. There is need for further research at population level to confirm whether apolipoprotein B ECoR1 genotyping is useful for predicting risk of dyslipidemia in HIV patients in our setting. PMID:27790293

  10. Gene expression analysis distinguishes tissue-specific and gender-related functions among adult Ascaris suum tissues.

    PubMed

    Wang, Zhengyuan; Gao, Xin; Martin, John; Yin, Yong; Abubucker, Sahar; Rash, Amy C; Li, Ben-Wen; Nash, Bill; Hallsworth-Pepin, Kym; Jasmer, Douglas P; Mitreva, Makedonka

    2013-06-01

    Over a billion people are infected by Ascaris spp. intestinal parasites. To clarify functional differences among tissues of adult A. suum, we compared gene expression by various tissues of these worms by expression microarray methods. The A. suum genome was sequenced and assembled to allow generation of microarray elements. Expression of over 40,000 60-mer elements was investigated in a variety of tissues from both male and female adult worms. Nearly 50 percent of the elements for which signal was detected exhibited differential expression among different tissues. The unique profile of transcripts identified for each tissue clarified functional distinctions among tissues, such as chitin binding in the ovary and peptidase activity in the intestines. Interestingly, hundreds of gender-specific elements were characterized in multiple non-reproductive tissues of female or male worms, with most prominence of gender differences in intestinal tissue. A. suum genes from the same family were frequently expressed differently among tissues. Transcript abundance for genes specific to A. suum, by comparison to Caenorhabditis elegans, varied to a greater extent among tissues than for genes conserved between A. suum and C. elegans. Analysis using C. elegans protein interaction data identified functional modules conserved between these two nematodes, resulting in identification of functional predictions of essential subnetworks of protein interactions and how these networks may vary among nematode tissues. A notable finding was very high module similarity between adult reproductive tissues and intestine. Our results provide the most comprehensive assessment of gene expression among tissues of a parasitic nematode to date. PMID:23572074

  11. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis.

    PubMed

    Okada, Morihiro; Miller, Thomas C; Fu, Liezhen; Shi, Yun-Bo

    2015-09-01

    The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.

  12. Deletion and deletion/insertion mutations in the juxtamembrane domain of the FLT3 gene in adult acute myeloid leukemia

    PubMed Central

    Deeb, Kristin K.; Smonskey, Matthew T.; DeFedericis, HanChun; Deeb, George; Sait, Sheila N.J.; Wetzler, Meir; Wang, Eunice S.; Starostik, Petr

    2014-01-01

    In contrast to FLT3 ITD mutations, in-frame deletions in the FLT3 gene have rarely been described in adult acute leukemia. We report two cases of AML with uncommon in-frame mutations in the juxtamembrane domain of the FLT3 gene: a 3-bp (c.1770_1774delCTACGinsGT; p.F590_V592delinsLF) deletion/insertion and a 12-bp (c.1780_1791delTTCAGAGAATAT; p.F594_Y597del) deletion. We verified by sequencing that the reading frame of the FLT3 gene was preserved and by cDNA analysis that the mRNA of the mutant allele was expressed in both cases. Given the recent development of FLT3 inhibitors, our findings may be of therapeutic value for AML patients harboring similar FLT3 mutations. PMID:25379410

  13. A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia.

    PubMed

    Simon, Camille; Chagraoui, Jalila; Krosl, Jana; Gendron, Patrick; Wilhelm, Brian; Lemieux, Sébastien; Boucher, Geneviève; Chagnon, Pierre; Drouin, Simon; Lambert, Raphaëlle; Rondeau, Claude; Bilodeau, Annie; Lavallée, Sylvie; Sauvageau, Martin; Hébert, Josée; Sauvageau, Guy

    2012-04-01

    In this study, we show the high frequency of spontaneous γδ T-cell leukemia (T-ALL) occurrence in mice with biallelic deletion of enhancer of zeste homolog 2 (Ezh2). Tumor cells show little residual H3K27 trimethylation marks compared with controls. EZH2 is a component of the PRC2 Polycomb group protein complex, which is associated with DNA methyltransferases. Using next-generation sequencing, we identify alteration in gene expression levels of EZH2 and acquired mutations in PRC2-associated genes (DNMT3A and JARID2) in human adult T-ALL. Together, these studies document that deregulation of EZH2 and associated genes leads to the development of mouse, and likely human, T-ALL.

  14. Lack of Association between a 3'UTR VNTR Polymorphism of Dopamine Transporter Gene (SLC6A3) and ADHD in a Brazilian Sample of Adult Patients

    ERIC Educational Resources Information Center

    Aperecida da Silva, Maria; Cordeiro, Quirino; Louza, Mario; Vallada, Homero

    2011-01-01

    Objective: To investigate a possible association between a 3'UTR VNTR polymorphism of the dopamine transporter gene (SLC6A3) and ADHD in a Brazilian sample of adult patients. Method: Study Case-control with 102 ADHD adult outpatients ("DSM-IV" criteria) and 479 healthy controls. The primers' sequence used were: 3'UTR-Forward: 5' TGT GGT GAT GGG…

  15. Epigenetic abnormality of SRY gene in the adult XY female with pericentric inversion of the Y chromosome.

    PubMed

    Mitsuhashi, Tomoko; Warita, Katsuhiko; Sugawara, Teruo; Tabuchi, Yoshiaki; Takasaki, Ichiro; Kondo, Takashi; Hayashi, Fumio; Wang, Zhi-Yu; Matsumoto, Yoshiki; Miki, Takanori; Takeuchi, Yoshiki; Ebina, Yasuhiko; Yamada, Hideto; Sakuragi, Noriaki; Yokoyama, Toshifumi; Nanmori, Takashi; Kitagawa, Hiroshi; Kant, Jeffrey A; Hoshi, Nobuhiko

    2010-06-01

    In normal ontogenetic development, the expression of the sex-determining region of the Y chromosome (SRY) gene, involved in the first step of male sex differentiation, is spatiotemporally regulated in an elaborate fashion. SRY is expressed in germ cells and Sertoli cells in adult testes. However, only few reports have focused on the expressions of SRY and the other sex-determining genes in both the classical organ developing through these genes (gonad) and the peripheral tissue (skin) of adult XY females. In this study, we examined the gonadal tissue and fibroblasts of a 17-year-old woman suspected of having disorders of sexual differentiation by cytogenetic, histological, and molecular analyses. The patient was found to have the 46,X,inv(Y)(p11.2q11.2) karyotype and streak gonads with abnormally prolonged SRY expression. The sex-determining gene expressions in the patient-derived fibroblasts were significantly changed relative to those from a normal male. Further, the acetylated histone H3 levels in the SRY region were significantly high relative to those of the normal male. As SRY is epistatic in the sex-determination pathway, the prolonged SRY expression possibly induced a destabilizing effect on the expressions of the downstream sex-determining genes. Collectively, alterations in the sex-determining gene expressions persisted in association with disorders of sexual differentiation not only in the streak gonads but also in the skin of the patient. The findings suggest that correct regulation of SRY expression is crucial for normal male sex differentiation, even if SRY is translated normally.

  16. Identification of gene function and functional pathways by systemic plasmid-based ribozyme targeting in adult mice

    PubMed Central

    Kashani-Sabet, Mohammed; Liu, Yong; Fong, Sylvia; Desprez, Pierre-Yves; Liu, Shuqing; Tu, Guanghuan; Nosrati, Mehdi; Handumrongkul, Chakkrapong; Liggitt, Denny; Thor, Ann D.; Debs, Robert J.

    2002-01-01

    To date, functional genomic studies have been confined to either cell-based assays or germline mutations, using transgenic or knockout animals. However, these approaches are often unable either to recapitulate complex biologic phenotypes, such as tumor metastasis, or to identify the specific genes and functional pathways that produce serious diseases in adult animals. Although the transcription factor NF-κB transactivates many metastasis-related genes in cells, the precise genes and functional-pathways through which NF-κB regulates metastasis in tumor-bearing hosts are poorly understood. Here, we show that the systemic delivery of plasmid-based ribozymes targeting NF-κB in adult, tumor-bearing mice suppressed NF-κB expression in metastatic melanoma cells, as well as in normal cell types, and significantly reduced metastatic spread. Plasmid-based ribozymes suppressed target-gene expression with sequence specificity not achievable by using synthetic oligonucleotide-based approaches. NF-κB seemed to regulate tumor metastasis through invasion-related, rather than angiogenesis-, cell-cycle- or apoptosis-related pathways in tumor-bearing mice. Furthermore, ribozymes targeting either of the NF-κB-regulated genes, integrin β3 or PECAM-1 (a ligand-receptor pair linked to cell adhesion), reduced tumor metastasis at a level comparable to NF-κB. These studies demonstrate the utility of gene targeting by means of systemic, plasmid-based ribozymes to dissect out the functional genomics of complex biologic phenotypes, including tumor metastasis. PMID:11891271

  17. Stage-specific reprogramming of gene expression characterizes Lr48-mediated adult plant leaf rust resistance in wheat.

    PubMed

    Dhariwal, Raman; Gahlaut, Vijay; Govindraj, Bhaganagare R; Singh, Dharmendra; Mathur, Saloni; Vyas, Shailendra; Bandopadhyay, Rajib; Khurana, Jitendra Paul; Tyagi, Akhilesh Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal; Balyan, Harindra Singh; Gupta, Pushpendra Kumar

    2015-03-01

    Wheat genotype CSP44 carrying a recessive gene Lr48 exhibits adult plant resistance (APR; incompatible reaction) but gives a compatible reaction (susceptibility) at the seedling stage against leaf rust. A comparative gene expression analysis involving cDNA-amplified fragment length polymorphism (cDNA-AFLP) and quantitative PCR (qPCR) was carried out for incompatible and compatible reactions in the genotype CSP44. cDNA-AFLP analysis was conducted using RNA samples that were isolated from flag leaves following inoculation with leaf rust race 77-5 (the most virulent race) and also after mock inoculation. As many as 298 of a total of 493 expressed transcript-derived fragments (TDFs) exhibited differential expression (262 upregulated and 36 downregulated). Of these 298 TDFs, 48 TDFs were eluted from gels, re-amplified, cloned, and sequenced. Forty two of these 48 TDFs had homology with known genes involved in the following biological processes: energy production, metabolism, transport, signaling, defense response, plant-pathogen interaction, transcriptional regulation, translation, and proteolysis. The functions of the remaining six TDFs could not be determined; apparently, these represented some novel genes. The qPCR analysis for 18 TDFs (with known and unknown functions, but showing major differences in expression) was conducted using RNA isolated from the seedlings as well as from the adult plants. The expression of at least 11 TDFs was induced and that of 4 other TDFs attenuated or remained near normal in adult plants following leaf rust inoculations. The remaining three TDFs had non-specific/developmental stage-specific expression. Functional annotation of TDFs that were upregulated suggest that the APR was supported by transient recruitment and reprogramming of processes like perception and recognition of pathogen effector by receptors, followed by CDPK and MAPK signaling, transport, metabolism, and energy release.

  18. Interactions between beta-2 adrenoceptor gene variation, cardiovascular control and dietary sodium in healthy young adults.

    PubMed

    Eisenach, John H; Schroeder, Darrell R; Pavey, Emily S; Penheiter, Alan R; Knutson, Jean N; Turner, Stephen T; Joyner, Michael J

    2014-12-01

    Dietary sodium affects function of the beta-2 adrenoceptor (ADRB2). We tested the hypothesis that haplotype variation in the ADRB2 gene would influence the cardiovascular and regional vasodilator responses to sympathoexcitatory manoeuvres following low, normal and high sodium diets, and ADRB2-mediated forearm vasodilation in the high sodium condition. Seventy-one healthy young adults were grouped by double homozygous haplotypes: Arg16+Gln27 (n = 31), the rare Gly16+Gln27 (n = 10) and Gly16+Glu27 (n = 30). Using a randomized cross-over design, subjects were studied following 5 days of controlled low, normal and high sodium with 1 month or longer between diets (and low hormone phase of the menstrual cycle). All three visits utilized ECG and finger plethysmography for haemodynamic measures, and the high sodium visit included a brachial arterial catheter for forearm vasodilator responses to isoprenaline with plethysmography. Lymphocytes were sampled for ex vivo analysis of ADRB2 density and binding conformation. We found a main effect of haplotype on ADRB2 density (P = 0.03) with the Gly16+Glu27 haplotype having the greatest density (low, normal, high sodium: 12.9 ± 0.9, 13.5 ± 0.9 and 13.6 ± 0.8 fmol mg(-1) protein, respectively) and Arg16+Gln27 having the least (9.3 ± 0.6, 10.1 ± 0.5 and 10.3 ± 0.6  fmol mg(-1) protein, respectively), but there were no sodium or haplotype effects on receptor binding conformation. In the mental stress trial, there was a main effect of haplotype on cardiac output (P = 0.04), as Arg16+Gln27 had the lowest responses. Handgrip and forearm vasodilation yielded no haplotype differences, and no correlations were present for ADRB2 density and haemodynamics. Our findings support cell-based evidence that ADRB2 haplotype influences ADRB2 protein expression independent of dietary sodium, yet the haemodynamic consequences appear modest in healthy humans.

  19. Circadian regulation gene polymorphisms are associated with sleep disruption and duration, and circadian phase and rhythm in adults with HIV.

    PubMed

    Lee, Kathryn A; Gay, Caryl; Byun, Eeeseung; Lerdal, Anners; Pullinger, Clive R; Aouizerat, Bradley E

    2015-01-01

    Genes involved in circadian regulation, such as circadian locomotor output cycles kaput [CLOCK], cryptochrome [CRY1] and period [PER], have been associated with sleep outcomes in prior animal and human research. However, it is unclear whether polymorphisms in these genes are associated with the sleep disturbances commonly experienced by adults living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Thus, the purpose of this study was to describe polymorphisms in selected circadian genes that are associated with sleep duration or disruption as well as the sleep-wake rhythm strength and phase timing among adults living with HIV/AIDS. A convenience sample of 289 adults with HIV/AIDS was recruited from HIV clinics and community sites in the San Francisco Bay Area. A wrist actigraph was worn for 72 h on weekdays to estimate sleep duration or total sleep time (TST), sleep disruption or percentage of wake after sleep onset (WASO) and several circadian rhythm parameters: mesor, amplitude, the ratio of mesor to amplitude (circadian quotient), and 24-h autocorrelation. Circadian phase measures included clock time for peak activity (acrophase) from actigraphy movement data, and bed time and final wake time from actigraphy and self-report. Genotyping was conducted for polymorphisms in five candidate genes involved in circadian regulation: CLOCK, CRY1, PER1, PER2 and PER3. Demographic and clinical variables were evaluated as potential covariates. Interactions between genotype and HIV variables (i.e. viral load, years since HIV diagnosis) were also evaluated. Controlling for potentially confounding variables (e.g. race, gender, CD4+ T-cell count, waist circumference, medication use, smoking and depressive symptoms), CLOCK was associated with WASO, 24-h autocorrelation and objectively-measured bed time; CRY1 was associated with circadian quotient; PER1 was associated with mesor and self-reported habitual wake time; PER2 was associated with TST

  20. Circadian regulation gene polymorphisms are associated with sleep disruption and duration, and circadian phase and rhythm in adults with HIV.

    PubMed

    Lee, Kathryn A; Gay, Caryl; Byun, Eeeseung; Lerdal, Anners; Pullinger, Clive R; Aouizerat, Bradley E

    2015-01-01

    Genes involved in circadian regulation, such as circadian locomotor output cycles kaput [CLOCK], cryptochrome [CRY1] and period [PER], have been associated with sleep outcomes in prior animal and human research. However, it is unclear whether polymorphisms in these genes are associated with the sleep disturbances commonly experienced by adults living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Thus, the purpose of this study was to describe polymorphisms in selected circadian genes that are associated with sleep duration or disruption as well as the sleep-wake rhythm strength and phase timing among adults living with HIV/AIDS. A convenience sample of 289 adults with HIV/AIDS was recruited from HIV clinics and community sites in the San Francisco Bay Area. A wrist actigraph was worn for 72 h on weekdays to estimate sleep duration or total sleep time (TST), sleep disruption or percentage of wake after sleep onset (WASO) and several circadian rhythm parameters: mesor, amplitude, the ratio of mesor to amplitude (circadian quotient), and 24-h autocorrelation. Circadian phase measures included clock time for peak activity (acrophase) from actigraphy movement data, and bed time and final wake time from actigraphy and self-report. Genotyping was conducted for polymorphisms in five candidate genes involved in circadian regulation: CLOCK, CRY1, PER1, PER2 and PER3. Demographic and clinical variables were evaluated as potential covariates. Interactions between genotype and HIV variables (i.e. viral load, years since HIV diagnosis) were also evaluated. Controlling for potentially confounding variables (e.g. race, gender, CD4+ T-cell count, waist circumference, medication use, smoking and depressive symptoms), CLOCK was associated with WASO, 24-h autocorrelation and objectively-measured bed time; CRY1 was associated with circadian quotient; PER1 was associated with mesor and self-reported habitual wake time; PER2 was associated with TST

  1. Recombinant adeno-associated virus (rAAV)-mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells.

    PubMed

    Miller, J L; Donahue, R E; Sellers, S E; Samulski, R J; Young, N S; Nienhuis, A W

    1994-10-11

    Effective gene therapy for the severe hemoglobin (Hb) disorders, sickle-cell anemia and thalassemia, will require an efficient method to transfer, integrate, and express a globin gene in primary erythroid cells. To evaluate recombinant adeno-associated virus (rAAV) for this purpose, we constructed a rAAV vector encoding a human gamma-globin gene (pJM24/vHS432A gamma). Its 4725-nucleotide genome consists of two 180-bp AAV inverted terminal repeats flanking the core elements of hypersensitive sites 2, 3, and 4 from the locus control region of the beta-globin gene cluster, linked to a mutationally marked A gamma-globin gene (A gamma) containing native promoter and RNA processing signals. CD34+ human hematopoietic cells were exposed to rAAV particles at a multiplicity of infection of 500-1000 and cultured in semisolid medium containing several cytokines. A reverse transcriptase polymerase chain reaction assay distinguished mRNA signals derived from transduced and endogenous human gamma-globin genes. Twenty to 40% of human erythroid burst-forming unit-derived colonies expressed the rAAV-transduced A gamma-globin gene at levels 4-71% that of the endogenous gamma-globin genes. The HbF content of pooled control colonies was 26%, whereas HbF was 40% of the total in pooled colonies derived from rAAV transduced progenitors. These data establish that rAAV containing elements from the locus control region linked to a gamma-globin gene are capable of transferring and expressing that gene in primary human hematopoietic cells resulting in a substantial increase in HbF content.

  2. Recombinant adeno-associated virus (rAAV)-mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells.

    PubMed Central

    Miller, J L; Donahue, R E; Sellers, S E; Samulski, R J; Young, N S; Nienhuis, A W

    1994-01-01

    Effective gene therapy for the severe hemoglobin (Hb) disorders, sickle-cell anemia and thalassemia, will require an efficient method to transfer, integrate, and express a globin gene in primary erythroid cells. To evaluate recombinant adeno-associated virus (rAAV) for this purpose, we constructed a rAAV vector encoding a human gamma-globin gene (pJM24/vHS432A gamma). Its 4725-nucleotide genome consists of two 180-bp AAV inverted terminal repeats flanking the core elements of hypersensitive sites 2, 3, and 4 from the locus control region of the beta-globin gene cluster, linked to a mutationally marked A gamma-globin gene (A gamma) containing native promoter and RNA processing signals. CD34+ human hematopoietic cells were exposed to rAAV particles at a multiplicity of infection of 500-1000 and cultured in semisolid medium containing several cytokines. A reverse transcriptase polymerase chain reaction assay distinguished mRNA signals derived from transduced and endogenous human gamma-globin genes. Twenty to 40% of human erythroid burst-forming unit-derived colonies expressed the rAAV-transduced A gamma-globin gene at levels 4-71% that of the endogenous gamma-globin genes. The HbF content of pooled control colonies was 26%, whereas HbF was 40% of the total in pooled colonies derived from rAAV transduced progenitors. These data establish that rAAV containing elements from the locus control region linked to a gamma-globin gene are capable of transferring and expressing that gene in primary human hematopoietic cells resulting in a substantial increase in HbF content. Images PMID:7524085

  3. Molecular Epidemiology of ESBL Genes and Multi-Drug Resistance in Diarrheagenic Escherichia Coli Strains Isolated from Adults in Iran

    PubMed Central

    Ghorbani-Dalini, Sadegh; Kargar, Mohammad; Doosti, Abbas; Abbasi, Pejman; Sarshar, Meysam

    2015-01-01

    Resistance to oxyimino cephalosporins antibiotics in Enterobacteriaceae is primarily done by the extended spectrum β-lactamases (ESBLs). Clear identification of risk factors for ESBLs-producing infections is necessary. Therefore, efficient strategies can be developed to decrease outbreak of these infections. The aim of this study was to determine the antibacterial susceptibility and ESBLs pattern of diarrhogenic Escherichia coli (E. coli) strains isolated from adult patients. In the present study, diarrheogenic E. coli strains were isolated from 54 patients from the University of Medical Sciences hospitals in Shiraz. Antimicrobial susceptibility testing was done by disk diffusion method by CLSI criteria. The presence of blaTEM, blaSHV and blaCTX-M genes was investigated by PCR using designated primers. The prevalence of ESBLs-producer E. coli strains was 12.96%. Antimicrobial resistance testing showed a high resistance to cefexime, trimethoprim-sulfamethoxazole, ampicillin and penicillin. Overall, β-lactamase genes were identified in 52 (96.30%) isolates which were identified as 45 (83.33%) blaTEM, 17 (31.48%) blaSHV and 11 (20.37%) blaCTX-M. ESBLs-producer E. coli is very prevalent in Diarrheogenic strains isolated from adult patients. Also, this study clearly showed that the blaTEM gene for ESBLs-producer E. coli was widespread in Iran. PMID:26664394

  4. Molecular Epidemiology of ESBL Genes and Multi-Drug Resistance in Diarrheagenic Escherichia Coli Strains Isolated from Adults in Iran.

    PubMed

    Ghorbani-Dalini, Sadegh; Kargar, Mohammad; Doosti, Abbas; Abbasi, Pejman; Sarshar, Meysam

    2015-01-01

    Resistance to oxyimino cephalosporins antibiotics in Enterobacteriaceae is primarily done by the extended spectrum β-lactamases (ESBLs). Clear identification of risk factors for ESBLs-producing infections is necessary. Therefore, efficient strategies can be developed to decrease outbreak of these infections. The aim of this study was to determine the antibacterial susceptibility and ESBLs pattern of diarrhogenic Escherichia coli (E. coli) strains isolated from adult patients. In the present study, diarrheogenic E. coli strains were isolated from 54 patients from the University of Medical Sciences hospitals in Shiraz. Antimicrobial susceptibility testing was done by disk diffusion method by CLSI criteria. The presence of bla TEM , bla SHV and bla CTX-M genes was investigated by PCR using designated primers. The prevalence of ESBLs-producer E. coli strains was 12.96%. Antimicrobial resistance testing showed a high resistance to cefexime, trimethoprim-sulfamethoxazole, ampicillin and penicillin. Overall, β-lactamase genes were identified in 52 (96.30%) isolates which were identified as 45 (83.33%) bla TEM, 17 (31.48%) blaSHV and 11 (20.37%) blaCTX-M. ESBLs-producer E. coli is very prevalent in Diarrheogenic strains isolated from adult patients. Also, this study clearly showed that the bla TEM gene for ESBLs-producer E. coli was widespread in Iran.

  5. Lifetime medical and psychiatric comorbidity of night eating behavior in the Swedish Twin Study of Adults: Genes and Environment (STAGE).

    PubMed

    Lundgren, Jennifer D; Allison, Kelly C; Stunkard, Albert J; Bulik, Cynthia M; Thornton, Laura M; Karin Lindroos, Anna; Rasmussen, Finn

    2012-09-30

    The medical and psychosocial comorbidity of two core features of night eating syndrome (NES), evening hyperphagia (EH) and nocturnal awakening and ingestion of food (NI), was evaluated in adults enrolled in the Swedish Twin Study of Adults: Genes and Environment (STAGE) study. As part of the STAGE study, more than 20,000 participants completed assessments of their physical and mental health, which included two night eating screening questions designed to assess EH and NI. STAGE participants who completed a night eating validation interview to confirm the presence or absence of night eating and who had comorbidity data available (n=463) were compared on the lifetime prevalence of several psychiatric and medical conditions. In contrast to previous studies, night eating (EH and/or NI) was not significantly associated with lifetime history of any mental or physical health variable.

  6. Lifetime medical and psychiatric comorbidity of night eating behavior in the Swedish Twin Study of Adults: Genes and Environment (STAGE).

    PubMed

    Lundgren, Jennifer D; Allison, Kelly C; Stunkard, Albert J; Bulik, Cynthia M; Thornton, Laura M; Karin Lindroos, Anna; Rasmussen, Finn

    2012-09-30

    The medical and psychosocial comorbidity of two core features of night eating syndrome (NES), evening hyperphagia (EH) and nocturnal awakening and ingestion of food (NI), was evaluated in adults enrolled in the Swedish Twin Study of Adults: Genes and Environment (STAGE) study. As part of the STAGE study, more than 20,000 participants completed assessments of their physical and mental health, which included two night eating screening questions designed to assess EH and NI. STAGE participants who completed a night eating validation interview to confirm the presence or absence of night eating and who had comorbidity data available (n=463) were compared on the lifetime prevalence of several psychiatric and medical conditions. In contrast to previous studies, night eating (EH and/or NI) was not significantly associated with lifetime history of any mental or physical health variable. PMID:22560060

  7. Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus

    NASA Technical Reports Server (NTRS)

    Kitajima, T.; Tomita, M.; Killian, C. E.; Akasaka, K.; Wilt, F. H.

    1996-01-01

    We have isolated a cDNA clone for spicule matrix protein, SM30, from sea urchin Hemicentrotus pulcherrimus and have studied the expression of this gene in comparison with that of another spicule matrix protein gene, SM50. In cultured micromeres as well as in intact embryos transcripts of SM30 were first detectable around the onset of spicule formation and rapidly increased with the growth of spicules, which accompanied accumulation of glycosylated SM30 protein(s). When micromeres were cultured in the presence of Zn2+, spicule formation and SM30 expression were suppressed, while both events resumed concurrently after the removal of Zn2+ from the culture medium. Expression of SM50, in contrast, started before the appearance of spicules and was not sensitive to Zn2+. Differences were also observed in adult tissues; SM30 mRNA was detected in spines and tube feet but not in the test, while SM50 mRNA was apparent in all of these mineralized tissues at similar levels. These results strongly suggest that the SM30 gene is regulated by a different mechanism to that of the SM50 gene and that the products of these two genes are differently involved in sea urchin biomineralization. A possible role of SM30 protein in skeleton formation is discussed.

  8. The 5' flanking region of the gene for the Epstein-Barr virus-encoded nuclear antigen 2 contains a cell type specific cis-acting regulatory element that activates transcription in transfected B-cells.

    PubMed Central

    Ricksten, A; Olsson, A; Andersson, T; Rymo, L

    1988-01-01

    We have recently identified the promoter that positions the initiation (cap) site for RNA encoding the Epstein-Barr virus (EBV) determined nuclear antigen 2 (EBNA2) in transfected COS-1 cells. The cells were transfected with recombinant vectors that contained the BamHI WYH region of the EBV genome. In order to delineate regulatory DNA sequences required for the expression of EBNA2 the 5' flanking region of the gene was linked to reporter genes in expression vectors and transfected into EBV genome-negative lymphoid DG75 cells. We demonstrate that several cis-acting elements contribute to a transcriptional enhancer activity found in the region between nucleotides-553 and -86 relative to the cap site. The enhancer was active in lymphoid DG75 cells but not in HeLa cells and stimulated transcription also from the heterologous thymidine kinase (TK) and beta-globin promoters. Nuclear extracts of lymphoid cells contained protein factors that bound to the enhancer. The in vitro introduction of a mutation in the enhancer sequence that substantially reduced the transcription stimulatory activity concurrently blocked the binding of one of the factors. Images PMID:2843816

  9. Higher body mass index in adults at diagnosis of the slowly progressive form of type 1 diabetes mellitus is associated with lower risk HLA genes.

    PubMed

    Fourlanos, S; Elkassaby, S; Varney, M D; Colman, P G; Harrison, L C

    2014-06-01

    We hypothesised that higher body weight, a proposed risk factor for type 1 diabetes mellitus, would be associated with increased penetrance of lower risk genes. In adults at diagnosis of the slowly progressive form of type 1 diabetes mellitus we found that higher body mass index was associated with the absence of the highest risk HLA genes.

  10. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity

    PubMed Central

    Frayling, Timothy M.; Timpson, Nicholas J.; Weedon, Michael N.; Zeggini, Eleftheria; Freathy, Rachel M.; Lindgren, Cecilia M.; Perry, John R. B.; Elliott, Katherine S.; Lango, Hana; Rayner, Nigel W.; Shields, Beverley; Harries, Lorna W.; Barrett, Jeffrey C.; Ellard, Sian; Groves, Christopher J.; Knight, Bridget; Patch, Ann-Marie; Ness, Andrew R.; Ebrahim, Shah; Lawlor, Debbie A.; Ring, Susan M.; Ben-Shlomo, Yoav; Jarvelin, Marjo-Riitta; Sovio, Ulla; Bennett, Amanda J.; Melzer, David; Ferrucci, Luigi; Loos, Ruth J. F.; Barroso, Inês; Wareham, Nicholas J.; Karpe, Fredrik; Owen, Katharine R.; Cardon, Lon R.; Walker, Mark; Hitman, Graham A.; Palmer, Colin N. A.; Doney, Alex S. F.; Morris, Andrew D.; Smith, George Davey; Hattersley, Andrew T.; McCarthy, Mark I.

    2009-01-01

    Obesity is a serious international health problem that increases the risk of several common diseases. The genetic factors predisposing to obesity are poorly understood. A genome-wide search for type 2 diabetes–susceptibility genes identified a common variant in the FTO (fat mass and obesity associated) gene that predisposes to diabetes through an effect on body mass index (BMI). An additive association of the variant with BMI was replicated in 13 cohorts with 38,759 participants. The 16% of adults who are homozygous for the risk allele weighed about 3 kilograms more and had 1.67-fold increased odds of obesity when compared with those not inheriting a risk allele. This association was observed from age 7 years upward and reflects a specific increase in fat mass. PMID:17434869

  11. Perinatal malnutrition programs gene expression of leptin receptors isoforms in testis and prostate of adult rats.

    PubMed

    Gombar, Flavia Meireles; Ramos, Cristiane Fonte

    2013-06-10

    The aim of this paper was to evaluate if maternal malnutrition during lactation programs the expression of leptin receptor isoforms in the testes and prostate ventral lobe of adult rats. At delivery, Wistar rats were separated into 3 groups: control group (C) with free access to a standard laboratory diet containing 22% protein; protein-energy restricted group (PER) with free access to an isoenergy and protein-restricted diet containing 8% protein; and energy-restricted group (ER) receiving standard laboratory diet in restricted quantities, which were calculated according to the mean ingestion of the PER group. All animals were sacrificed at 90 days of age. Both PER and ER groups presented low body weight from the first days after birth, however, while the ER group reached the control weight around day 80, the body weight of PER group was significantly lower compared to controls until the day the animals were killed. In relation to tissue weight, only the relative testis weight of the ER group presented an alteration compared to the control group (p<0.03). There was also no alteration in the leptin serum levels among the groups. The main leptin receptors isoforms, OBRa and OBRb were significantly increased in the testis (OBRa: C=0.71±0.10; PER=1.14±0.17; ER=1.92±0.70, p<0.0007, OBRb: C=0.87±0.04; PER=1.20±0.05; ER=1.44±0.17, p<0.001) and prostate (OBRa: C=0.70±0.18; PER=1.30±0.14; ER=1.65±0.22, p<0.014, OBRb: C=0.77±0.14; PER=1.16±0.04; ER=1.30±0.13, p<0.027) of both malnourished groups. However, the testis OBRc (C=1.52±0.06; PER=1.35±0.23; ER=3.50±0.72, p<0.023) and OBRf (C=1.31±0.12; PER=1.66±0.27; ER=3.47±0.55, p<0.009) and prostate OBRc (C=0.48±0.13; ER=1.18±0.34, p<0.01) and OBRf (C=0.73±0.15; PER=0.99±0.11; ER=1.83±0.30, p<0.016) isoforms were significantly increased only in the ER group. The results presented here show for the first time that both testis and prostate leptin receptor isoforms gene expression are programmed by perinatal

  12. Unraveling the estrogen receptor (er) genes in Atlantic salmon (Salmo salar) reveals expression differences between the two adult life stages but little impact from polychlorinated biphenyl (PCB) load.

    PubMed

    Nikoleris, Lina; Hansson, Maria C

    2015-01-15

    Estrogen receptors (ers) not only are activated by hormones but also interact with many human-derived environmental contaminants. Here, we present evidence for four expressed er genes in Atlantic salmon cDNA - two more ers (erα2 and erβ2) than previously published. To determine if er gene expression differs between two adult life-stages we sampled 20 adult salmon from the feeding phase in the Baltic Sea and during migration in the River Mörrum, Sweden. Results show that all four er genes are present in the investigated tissues, except for erα2 not appearing in the spleen. Overall, a profile analysis reveals the erα1 gene to be the most highly expressed er gene in both female and male Baltic Sea salmon tissues, and also in female River Mörrum salmon. In contrast, this gene has the lowest gene expression level of the four er genes in male salmon from the River Mörrum. The erα2 gene is expressed at the lowest levels in both female/male Baltic Sea salmon and in female River Mörrum salmon. Statistical analyses indicate a significant and complex interaction where both sex and adult life stage can impact er gene expression. Regression analyses did not demonstrate any significant relationship between polychlorinated biphenyl (PCB) body burden and er gene expression level, suggesting that accumulated pollutants from the Baltic Sea may be deactivated inside the salmon's lipid tissues and have limited impact on er activity. This study is the first comprehensive analysis of four er gene expression levels in two wild salmon populations from two different adult life stages where information about PCB load is also available.

  13. Nitric oxide synthase gene polymorphism (G894T) influences arterial stiffness in adults: The Bogalusa Heart Study.

    PubMed

    Chen, Wei; Srinivasan, Sathanur R; Bond, M Gene; Tang, Rong; Urbina, Elaine M; Li, Shengxu; Boerwinkle, Eric; Berenson, Gerald S

    2004-07-01

    The endothelial nitric oxide synthase (eNOS) gene is known to influence the regulation of blood pressure (BP) levels. However, whether the eNOS gene locus influences arterial stiffness independently of BP is unknown. This study examines the independent effect of the eNOS gene polymorphism (G894T) on arterial stiffness in 118 African American and 285 white young adults, aged 25 to 37 years. Arterial stiffness was measured from M-mode ultrasounds of common carotid artery using Peterson's (Ep) and Young's (YEM) elastic modulus. African Americans displayed a lower frequency of the T allele than did whites (0.131 v 0.321, P <.001). The T allele was associated with lower systolic BP in African Americans (P =.04) but not in whites. African Americans showed significantly higher values of Ep (that is, increased stiffness) than did whites (49.9 kPa vs 45.5 kPa, P =.003), whereas no such difference in ethnicity was found for YEM, a measure of elasticity adjusted for relative wall thickness. After controlling for sex, age, body mass index, insulin, heart rate, and mean arterial pressure, the T allele was associated with significantly lower values of Ep (P =.037) and YEM (P =.068) in African Americans. Although the genotype effect on Ep and YEM was not significant in whites, trends were similar to those in African Americans. In the total sample, including ethnicity as an additional covariate, the G894T genotype was significantly associated with Ep (P =.046) and YEM (P =.035). These results suggest that the allelic variation (G894T) of the eNOS gene or a locus closely linked to it is associated with lower arterial wall stiffness, adjusting for BP levels, in young adults.

  14. Gene Expression Profiling of Shoot-Derived Calli from Adult Radiata Pine and Zygotic Embryo-Derived Embryonal Masses

    PubMed Central

    Garcia-Mendiguren, O.; Montalbán, I. A.; Stewart, D.; Moncaleán, P.; Klimaszewska, K.; Rutledge, R. G.

    2015-01-01

    Background Although somatic embryogenesis has an unprecedented potential for large-scale clonal propagation of conifers, the ability to efficiently induce the embryonal cultures required for somatic embryo production has long been a challenge. Furthermore, because early stage zygotic embryos remain the only responsive explants for pines, it is not possible to clone individual trees from vegetative explants at a commercial scale. This is of particular interest for adult trees because many elite characteristics only become apparent following sexual maturation. Findings Shoot explants collected from adult radiata pine trees were cultured on four induction media differing in plant growth regulator composition, either directly after collection or from in vitro-generated axillary shoots. Six callus lines were selected for microscopic examination, which failed to reveal any embryonal masses (EM). qPCR expression profiling of five of these lines indicated that explant type influenced the absolute level of gene expression, but not the type of genes that were expressed. The analysis, which also included three EM lines induced from immature zygotic embryos, encompassed five categories of genes reflective of metabolic, mitotic and meristematic activity, along with putative markers of embryogenicity. Culture medium was found to have no significant impact on gene expression, although differences specific to the explant’s origin were apparent. Expression of transcriptional factors associated with vegetative meristems further suggested that all of the callus lines possessed a substantive vegetative character. Most notable, however, was that they all also expressed a putative embryogenic marker (LEC1). Conclusions While limited in scope, these results illustrate the utility of expression profiling for characterizing tissues in culture. For example, although the biological significance of LEC1 expression is unclear, it does present the possibility that these callus lines possess

  15. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality.

    PubMed

    El-Shesheny, Ibrahim; Hajeri, Subhas; El-Hawary, Ibrahim; Gowda, Siddarame; Killiny, Nabil

    2013-01-01

    Huanglongbing (HLB) causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP), the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas), the causal agent of HLB. Silencing genes by RNA interference (RNAi) is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd) gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th)) of the nymphal stage. Micro-application (topical application) of dsRNA to 5(th) instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.

  16. Subchronic Inhalation of Soluble Manganese Induces Expression of Hypoxia-associated Angiogenic Genes in Adult Mouse Lungs

    PubMed Central

    Bredow, Sebastian; Falgout, Melanie M.; March, Thomas H.; Yingling, Christin M.; Malkoski, Stephen P.; Aden, James; Bedrick, Edward J.; Lewis, Johnnye L.; Divine, Kevin K.

    2007-01-01

    Although the lung constitutes the major exposure route for airborne manganese (Mn), little is known about the potential pulmonary effects and the underlying molecular mechanisms. Transition metals can mimic a hypoxia-like response, activating the hypoxia inducible factor-1 (HIF-1) transcription factor family. Through binding to the hypoxia-response element (HRE) these factors regulate expression of many genes, including vascular endothelial growth factor (VEGF). Increases in VEGF, an important biomarker of angiogenesis, have been linked to respiratory diseases, including pulmonary hypertension. The objective of this study was to evaluate pulmonary hypoxia-associated angiogenic gene expression in response to exposure of soluble Mn(II) and to assess the genes' role as intermediaries of potential pulmonary Mn toxicity. In vitro, 0.25 mM Mn(II) altered morphology and slowed the growth of human pulmonary epithelial cell lines. Acute doses between 0.05 and 1 mM stimulated VEGF promoter activity up to 3.7-fold in transient transfection assays. Deletion of the HRE within the promoter had no effect on Mn(II)-induced VEGF expression but decreased cobalt [Co(II)]-induced activity 2-fold, suggesting that HIF-1 may not be involved in Mn(II)-induced VEGF gene transcription. Nose-only inhalation to 2 mg Mn(II)/m3 for 5 days at 6h/day produced no significant pulmonary inflammation but induced a 2-fold increase in pulmonary VEGF mRNA levels in adult mice and significantly altered expression of genes associated with murine angiogenesis. These findings suggest that even short-term exposures to soluble, occupationally relevant Mn(II) concentrations may alter pulmonary gene expression in pathways that ultimately could affect the lungs' susceptibility to respiratory disease. PMID:17467022

  17. Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila.

    PubMed

    Auer, Jasmin S; Nagel, Anja C; Schulz, Adriana; Wahl, Vanessa; Preiss, Anette

    2015-12-01

    In Drosophila, Notch and EGFR signalling pathways are closely intertwined. Their relationship is mostly antagonistic, and may in part be based on the phosphorylation of the Notch signal transducer Suppressor of Hairless [Su(H)] by MAPK. Su(H) is a transcription factor that together with several cofactors regulates the expression of Notch target genes. Here we address the consequences of a local induction of three Su(H) variants on Notch target gene expression. To this end, wild-type Su(H), a phospho-deficient Su(H) (MAPK-) (ko) and a phospho-mimetic Su(H) (MAPK-ac) isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(spl)m8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(spl)m8-lacZ, vg (BE) -lacZ). In general, Su(H) (MAPK-) (ko) induced a stronger response than wild-type Su(H), whereas the response to Su(H) (MAPK-ac) was very weak. Notch target genes cut, wingless and vg (BE) -lacZ were ectopically activated, whereas E(spl)m8-lacZ was repressed by overexpression of Su(H) proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DER (act) ) or the MAPK (rl (SEM) ) and individual Su(H) variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes) as well as to assay the response of the Notch target gene cut in cell clones.

  18. Population structure and uropathogenic virulence-associated genes of faecal Escherichia coli from healthy young and elderly adults.

    PubMed

    Vollmerhausen, Tara L; Ramos, Nubia L; Gündogdu, Aycan; Robinson, Wayne; Brauner, Annelie; Katouli, Mohammad

    2011-05-01

    We investigated the population structures of faecal Escherichia coli in 30 healthy young adults (13 males and 17 females) aged between 20 and 45 years and 29 elderly adults (14 females and 15 males) aged between 65 and 77 years. In all, 1566 strains were typed with the PhPlate system and grouped into biochemical phenotypes (BPTs). Strains with shared BPTs were further typed using randomly amplified polymorphic DNA analysis. Forty-four per cent of the strains were shared between two or more age and gender groups. Elders had a significantly higher (P<0.001) number of BPTs (mean±standard error 3.3±0.27) than younger groups (1.82±0.27). Phylogenetic affiliation and virulence-associated genes (VAGs) of the strains showed that more than 80 % of the strains belonging to dominant types belonged to phylogroups B2 and D. Amongst dominant BPTs, phylogenetic group A was significantly associated with females (P<0.0001), and elders were more likely to carry group D (P<0.0124). Elderly males had a higher prevalence of VAGs than young males (P<0.0001) and young females (P<0.0005). We conclude that there is a lower prevalence of E. coli with uropathogenic properties in healthy young adults than in elders. PMID:21292854

  19. Rearranged Anaplastic Lymphoma Kinase (ALK) Gene in Adult-Onset Papillary Thyroid Cancer Amongst Atomic Bomb Survivors

    PubMed Central

    Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro

    2012-01-01

    Background We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAFV600E) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. Methods The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription–polymerase chain reaction and 5′ rapid amplification of cDNA ends (5′ RACE). Results We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK

  20. Sudden unexpected fatal encephalopathy in adults with OTC gene mutations-Clues for early diagnosis and timely treatment

    PubMed Central

    2014-01-01

    Background X-linked Ornithine Transcarbamylase deficiency (OTCD) is often unrecognized in adults, as clinical manifestations are non-specific, often episodic and unmasked by precipitants, and laboratory findings can be normal outside the acute phase. It may thus be associated with significant mortality if not promptly recognized and treated. The aim of this study was to provide clues for recognition of OTCD in adults and analyze the environmental factors that, interacting with OTC gene mutations, might have triggered acute clinical manifestations. Methods We carried out a clinical, biochemical and molecular study on five unrelated adult patients (one female and four males) with late onset OTCD, who presented to the Emergency Department (ED) with initial fatal encephalopathy. The molecular study consisted of OTC gene sequencing in the probands and family members and in silico characterization of the newly detected mutations. Results We identified two new, c.119G>T (p.Arg40Leu) and c.314G>A (p.Gly105Glu), and three known OTC mutations. Both new mutations were predicted to cause a structural destabilization, correlating with late onset OTCD. We also identified, among the family members, 8 heterozygous females and 2 hemizygous asymptomatic males. Patients' histories revealed potential environmental triggering factors, including steroid treatment, chemotherapy, diet changes and hormone therapy for in vitro fertilization. Conclusions This report raises awareness of the ED medical staff in considering OTCD in the differential diagnosis of sudden neurological and behavioural disorders associated with hyperammonemia at any age and in both genders. It also widens the knowledge about combined effect of genetic and environmental factors in determining the phenotypic expression of OTCD. PMID:25026867

  1. RNAi-mediated gene knockdown and in vivo diuresis assay in adult female Aedes aegypti mosquitoes.

    PubMed

    Drake, Lisa L; Price, David P; Aguirre, Sarah E; Hansen, Immo A

    2012-07-14

    This video protocol demonstrates an effective technique to knockdown a particular gene in an insect and conduct a novel bioassay to measure excretion rate. This method can be used to obtain a better understanding of the process of diuresis in insects and is especially useful in the study of diuresis in blood-feeding arthropods that are able to take up huge amounts of liquid in a single blood meal. This RNAi-mediated gene knockdown combined with an in vivo diuresis assay was developed by the Hansen lab to study the effects of RNAi-mediated knockdown of aquaporin genes on Aedes aegypti mosquito diuresis. The protocol is setup in two parts: the first demonstration illustrates how to construct a simple mosquito injection device and how to prepare and inject dsRNA into the thorax of mosquitoes for RNAi-mediated gene knockdown. The second demonstration illustrates how to determine excretion rates in mosquitoes using an in vivo bioassay.

  2. A candidate gene investigation of methylphenidate response in adult attention-deficit/hyperactivity disorder patients: results from a naturalistic study.

    PubMed

    Hegvik, Tor-Arne; Jacobsen, Kaya Kvarme; Fredriksen, Mats; Zayats, Tetyana; Haavik, Jan

    2016-08-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common childhood onset neuropsychiatric disorder with a complex and heterogeneous symptomatology. Persistence of ADHD symptoms into adulthood is common. Methylphenidate (MPH) is a widely prescribed stimulant compound that may be effective against ADHD symptoms in children and adults. However, MPH does not exert satisfactory effect in all patients. Several genetic variants have been proposed to predict either treatment response or adverse effects of stimulants. We conducted a literature search to identify previously reported variants associated with MPH response and additional variants that were biologically plausible candidates for MPH response. The response to MPH was assessed by the treating clinicians in 564 adult ADHD patients and 20 genetic variants were successfully genotyped. Logistic regression was used to test for association between these polymorphisms and treatment response. Nominal associations (p < 0.05) were meta-analysed with published data from previous comparable studies. In our analyses, rs1800544 in the ADRA2A gene was associated with MPH response at a nominal significance level (OR 0.560, 95 % CI 0.329-0.953, p = 0.033). However, this finding was not affirmed in the meta-analysis. No genetic variants revealed significant associations after correction for multiple testing (p < 0.00125). Our results suggest that none of the studied variants are strong predictors of MPH response in adult ADHD as judged by clinician ratings, potentially except for rs1800544. Consequently, pharmacogenetic testing in routine clinical care is not supported by our analyses. Further studies on the pharmacogenetics of adult ADHD are warranted. PMID:27091191

  3. A lacZ reporter gene expression atlas for 313 adult KOMP mutant mouse lines

    PubMed Central

    Pasumarthi, Ravi K.; Baridon, Brian; Djan, Esi; Trainor, Amanda; Griffey, Stephen M.; Engelhard, Eric K.; Rapp, Jared; Li, Bowen; de Jong, Pieter J.; Lloyd, K.C. Kent

    2015-01-01

    Expression of the bacterial beta-galactosidase reporter gene (lacZ) in the vector used for the Knockout Mouse Project (KOMP) is driven by the endogenous promoter of the target gene. In tissues from KOMP mice, histochemical staining for LacZ enzyme activity can be used to determine gene expression patterns. With this technique, we have produced a comprehensive resource of gene expression using both whole mount (WM) and frozen section (FS) LacZ staining in 313 unique KOMP mutant mouse lines. Of these, ∼80% of mutants showed specific staining in one or more tissues, while ∼20% showed no specific staining, ∼13% had staining in only one tissue, and ∼25% had staining in >6 tissues. The highest frequency of specific staining occurred in the brain (∼50%), male gonads (42%), and kidney (39%). The WM method was useful for rapidly identifying whole organ and some substructure staining, while the FS method often revealed substructure and cellular staining specificity. Both staining methods had >90% repeatability in biological replicates. Nonspecific LacZ staining occurs in some tissues due to the presence of bacteria or endogenous enzyme activity. However, this can be effectively distinguished from reporter gene activity by the combination of the WM and FS methods. After careful annotation, LacZ staining patterns in a high percentage of mutants revealed a unique structure-function not previously reported for many of these genes. The validation of methods for LacZ staining, annotation, and expression analysis reported here provides unique insights into the function of genes for which little is currently known. PMID:25591789

  4. Working memory performance in young adults is associated to the AATn polymorphism of the CNR1 gene.

    PubMed

    Ruiz-Contreras, Alejandra E; Carrillo-Sánchez, Karol; Gómez-López, Nardhy; Vadillo-Ortega, Felipe; Hernández-Morales, Salvador; Carnevale-Cantoni, Alessandra; Espejel-Núñez, Aurora; Méndez-Díaz, Mónica; Prospéro-García, Oscar

    2013-01-01

    Working memory (WM) depends on several neural networks and neurochemical systems. One of them is the endocannabinoid (eCB) system, which CB1 receptor (CB1R) is widely distributed all over the brain. The stimulation of CB1R by agonists reduces WM efficiency. The CNR1 human gene (6q14-15) encodes the CB1R. AATn polymorphism of the CNR1 gene has been related to psychiatric disorders, and to procedural learning and attention in healthy subjects. The aim of this exploratory research was to test whether AATn polymorphism of the CNR1 is related to the WM performance, by measuring n-back task. Mexican healthy young adults (n = 94) performed the WM n-back task. One of the most frequent AATn allele in our sample was the AAT12. We formed three groups, as a function of the AATn genotype: AAT ≤ 12/AAT≤12, AAT ≤ 12/AAT > 12 and AAT > 12/AAT > 12, and their accuracy on the n-back task was compared. WM accuracy differed among genotypes (P=0.03): AAT ≤ 12/AAT≤12 group had a higher performance than the AAT > 12/AAT > 12 group (statistical power: 0.65, f(2) = 0.20, P<0.05). These results suggest that the fewer AATn repeats of the CNR1 gene, the better WM performance, and sustain the idea that eCB system participates in the modulation of the human brain network involved in WM.

  5. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse.

    PubMed

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2016-03-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood-brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus.

  6. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse.

    PubMed

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2016-03-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood-brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  7. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  8. Increased lubricin/proteoglycan 4 gene expression and decreased modulus in medial collateral ligaments following ovariohysterectomy in the adult rabbit: Evidence consistent with aging.

    PubMed

    Lemmex, Devin B; Ono, Yohei; Reno, Carol R; Hart, David A; Lo, Ian K Y; Thornton, Gail M

    2016-02-01

    This study investigated whether ovariohysterectomy (OVH) surgery to induce menopause resulted in changes to modulus, failure strain and lubricin/proteoglycan 4 (PRG4) gene expression in rabbit medial collateral ligaments (MCLs), similar to aging (Thornton et al., 2015a). The MCLs from adult rabbits that underwent OVH surgery as adolescents (15-week-old) and adults (1-year-old) were compared by evaluating mechanical behaviour (adolescent OVH, n=8; adult OVH, n=7; normal, n=7), gene expression (adolescent OVH, n=9; adult OVH, n=8; normal, n=8), and collagen and glycosaminoglycan (adolescent OVH, n=9; adult OVH, n=8; normal, n=8) and water (adolescent OVH, n=9; adult OVH, n=8; normal, n=8) content. Mechanical behaviour evaluated cyclic, static and total creep strain, and ultimate tensile strength, modulus and failure strain. The RT-qPCR assessed mRNA levels for matrix regulatory genes. Adult OVH MCLs exhibited increased cyclic creep and failure strain, and decreased modulus with increased mRNA levels for lubricin/PRG4 and collagen I compared with normal MCLs. Adolescent OVH MCLs exhibited increased cyclic, static and total creep strain with decreased mRNA levels for the progesterone receptor. Lubricin/PRG4 plays a role in the lubrication of collagen fascicles which is likely related to the decreased modulus and increased failure strain observed in ligaments from adult OVH rabbits. Progesterone and its receptor are thought to play a role in the stretching of ligaments in pelvic organ prolapse and pregnancy which is likely related to the increase in creep strain observed in ligaments from adolescent OVH rabbits. Ovariohysterectomy in adult rabbits resulted in changes that were consistent with the aging MCL. PMID:26776933

  9. Increased lubricin/proteoglycan 4 gene expression and decreased modulus in medial collateral ligaments following ovariohysterectomy in the adult rabbit: Evidence consistent with aging.

    PubMed

    Lemmex, Devin B; Ono, Yohei; Reno, Carol R; Hart, David A; Lo, Ian K Y; Thornton, Gail M

    2016-02-01

    This study investigated whether ovariohysterectomy (OVH) surgery to induce menopause resulted in changes to modulus, failure strain and lubricin/proteoglycan 4 (PRG4) gene expression in rabbit medial collateral ligaments (MCLs), similar to aging (Thornton et al., 2015a). The MCLs from adult rabbits that underwent OVH surgery as adolescents (15-week-old) and adults (1-year-old) were compared by evaluating mechanical behaviour (adolescent OVH, n=8; adult OVH, n=7; normal, n=7), gene expression (adolescent OVH, n=9; adult OVH, n=8; normal, n=8), and collagen and glycosaminoglycan (adolescent OVH, n=9; adult OVH, n=8; normal, n=8) and water (adolescent OVH, n=9; adult OVH, n=8; normal, n=8) content. Mechanical behaviour evaluated cyclic, static and total creep strain, and ultimate tensile strength, modulus and failure strain. The RT-qPCR assessed mRNA levels for matrix regulatory genes. Adult OVH MCLs exhibited increased cyclic creep and failure strain, and decreased modulus with increased mRNA levels for lubricin/PRG4 and collagen I compared with normal MCLs. Adolescent OVH MCLs exhibited increased cyclic, static and total creep strain with decreased mRNA levels for the progesterone receptor. Lubricin/PRG4 plays a role in the lubrication of collagen fascicles which is likely related to the decreased modulus and increased failure strain observed in ligaments from adult OVH rabbits. Progesterone and its receptor are thought to play a role in the stretching of ligaments in pelvic organ prolapse and pregnancy which is likely related to the increase in creep strain observed in ligaments from adolescent OVH rabbits. Ovariohysterectomy in adult rabbits resulted in changes that were consistent with the aging MCL.

  10. Gene expression profiling of the hippocampal dentate gyrus in an adult toxicity study captures a variety of neurodevelopmental dysfunctions in rat models of hypothyroidism.

    PubMed

    Shiraki, Ayako; Saito, Fumiyo; Akane, Hirotoshi; Akahori, Yumi; Imatanaka, Nobuya; Itahashi, Megu; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    We previously found that developmental hypothyroidism changed the expression of genes in the rat hippocampal dentate gyrus, a brain region where adult neurogenesis is known to occur. In the present study, we performed brain region-specific global gene expression profiling in an adult rat hypothyroidism model to see if it reflected the developmental neurotoxicity we saw in the developmental hypothyroidism model. Starting when male rats were 5 weeks old, we administered 6-propyl-2-thiouracil at a doses of 0, 0.1 and 10 mg kg(-1) body weight by gavage for 28 days. We selected four brain regions to represent both cerebral and cerebellar tissues: hippocampal dentate gyrus, cerebral cortex, corpus callosum and cerebellar vermis. We observed significant alterations in the expression of genes related to neural development (Eph family genes and Robo3) in the cerebral cortex and hippocampal dentate gyrus and in the expression of genes related to myelination (Plp1 and Mbp) in the hippocampal dentate gyrus. We observed only minor changes in the expression of these genes in the corpus callosum and cerebellar vermis. We used real-time reverse-transcription polymerase chain reaction to confirm Chrdl1, Hes5, Mbp, Plp1, Slit1, Robo3 and the Eph family transcript expression changes. The most significant changes in gene expression were found in the dentate gyrus. Considering that the gene expression profile of the adult dentate gyrus closely related to neurogenesis, 28-day toxicity studies looking at gene expression changes in adult hippocampal dentate gyrus may also detect possible developmental neurotoxic effects.

  11. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    PubMed

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.

  12. Drosophila as a model for the identification of genes causing adult human heart disease

    PubMed Central

    Wolf, Matthew J.; Amrein, Hubert; Izatt, Joseph A.; Choma, Michael A.; Reedy, Mary C.; Rockman, Howard A.

    2006-01-01

    Drosophila melanogaster genetics provides the advantage of molecularly defined P-element insertions and deletions that span the entire genome. Although Drosophila has been extensively used as a model system to study heart development, it has not been used to dissect the genetics of adult human heart disease because of an inability to phenotype the adult fly heart in vivo. Here we report the development of a strategy to measure cardiac function in awake adult Drosophila that opens the field of Drosophila genetics to the study of human dilated cardiomyopathies. Through the application of optical coherence tomography, we accurately distinguish between normal and abnormal cardiac function based on measurements of internal cardiac chamber dimensions in vivo. Normal Drosophila have a fractional shortening of 87 ± 4%, whereas cardiomyopathic flies that contain a mutation in troponin I or tropomyosin show severe impairment of systolic function. To determine whether the fly can be used as a model system to recapitulate human dilated cardiomyopathy, we generated transgenic Drosophila with inducible cardiac expression of a mutant of human δ-sarcoglycan (δsgS151A), which has previously been associated with familial dilated cardiomyopathy. Compared to transgenic flies overexpressing wild-type δsg, or the standard laboratory strain w1118, Drosophila expressing δsgS151A developed marked impairment of systolic function and significantly enlarged cardiac chambers. These data illustrate the utility of Drosophila as a model system to study dilated cardiomyopathy and the applicability of the vast genetic resources available in Drosophila to systematically study the genetic mechanisms responsible for human cardiac disease. PMID:16432241

  13. Mrp4, a new mitogen-regulated protein/proliferin gene; unique in this gene family for its expression in the adult mouse tail and ear.

    PubMed

    Fassett, J T; Hamilton, R T; Nilsen-Hamilton, M

    2000-05-01

    Mitogen-regulated proteins (also known as proliferin; mrp/plf) are nonclassical members of the PRL/GH family. They are expressed at high levels during midgestation when they are thought to induce angiogenesis and uterine growth. There are between four and six mrp/plf genes, and three different complementary DNAs have been cloned. Here we identify a fourth mrp/plf gene (mrp4) that we have cloned and characterized. MRP4 is 91% identical in amino acid sequence with the other MRP/PLF proteins but is missing two glycosylation sites that are present in the other forms. Consistent with the loss of two of three glycosylation sites, the expressed form of MRP4 has a lower apparent molecular weight compared with other MRP/PLFs. In vivo, mrp4 is expressed in the placenta and the adult skin. Expression of mrp4 messenger RNA peaks in the placenta on day 12. In the skin, mrp4 expression is specific to the ears and tails of mice. Our results suggest that, as well as having growth and angiogenic effects during pregnancy, the MRP/PLFs may have functions in nonreproductive tissues. Unique among the members of the mrp/plf family for its expression in the hair follicles of the tail and ear, MRP4 is expected to have a singular role in the growth and development of these follicles.

  14. A novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains: a candidate gene for benign adult familial myoclonic epilepsy on human chromosome 8q23.3-q24.1.

    PubMed

    Shimizu, Atsushi; Asakawa, Shuichi; Sasaki, Takashi; Yamazaki, Satoru; Yamagata, Hidehisa; Kudoh, Jun; Minoshima, Shinsei; Kondo, Ikuko; Shimizu, Nobuyoshi

    2003-09-12

    We identified a novel giant gene encoding a transmembrane protein with CUB and sushi multiple domains on the human chromosome 8q23.3-q24.1 in which benign adult familial myoclonic epilepsy type 1 (BAFME1/FAME, OMIM:601068) has been mapped. This giant gene consists of 73 exons and spans over 1.2Mb on the genomic DNA region. It showed significant homology to two genes, CSMD1 gene on 8p23 and CSMD2 gene on 1p34, at reduced amino acid sequence level and hence we designated as CSMD3. The CSMD3 gene was expressed mainly in adult and fetal brains. We performed mutation analysis on the CSMD3 gene for seven patients with BAFME1/FAME, but no mutation was found in the coding sequence of the CSMD3 gene. Comparative genomic analysis revealed a conserved family of CSMD genes in the mouse and fugu genomes. Possible functions of the CSMD gene family are discussed.

  15. Genetic association study of NF-κB genes in UK Caucasian adult and juvenile onset idiopathic inflammatory myopathy

    PubMed Central

    Chinoy, Hector; Li, Charles K.-C.; Platt, Hazel; Fertig, Noreen; Varsani, Hemlata; Gunawardena, Harsha; Betteridge, Zoe; Oddis, Chester V.; McHugh, Neil J.; Wedderburn, Lucy R.; Ollier, William E. R.

    2012-01-01

    Objective. Treatment-resistant muscle wasting is an increasingly recognized problem in idiopathic inflammatory myopathy (IIM). TNF-α is thought to induce muscle catabolism via activation of nuclear factor-kappa B (NF-κB). Several genes share homology with the NF-κB family of proteins. This study investigated the role of NF-κB-related genes in disease susceptibility in UK Caucasian IIM. Methods. Data from 362 IIM cases [274 adults, 49 (±14.0) years, 72% female; 88 juveniles, 6 (±3.6) years, 73% female) were compared with 307 randomly selected Caucasian controls. DNA was genotyped for 63 single nucleotide polymorphisms (SNPs) from NF-κB-related genes. Data were stratified by IIM subgroup/serotype. Results. A significant allele association was observed in the overall IIM group vs controls for the IKBL-62T allele (rs2071592, odds ratio 1.5, 95% CI 1.21, 1.89, corrected P = 0.0086), which strengthened after stratification by anti-Jo-1 or -PM-Scl antibodies. Genotype analysis revealed an increase for the AT genotype in cases under a dominant model. No other SNP was associated in the overall IIM group. Strong pairwise linkage disequilibrium was noted between IKBL-62T, TNF-308A and HLA-B*08 (D′ = 1). Using multivariate regression, the IKBL-62T IIM association was lost after adjustment for TNF-308A or HLA-B*08. Conclusion. An association was noted between IKBL-62T and IIM, with increased risk noted in anti-Jo-1- and -PM-Scl antibody-positive patients. However, the IKBL-62T association is dependent on TNF-308A and HLA-B*08, due to strong shared linkage disequilibrium between these alleles. After adjustment of the 8.1 HLA haplotype, NF-κB genes therefore do not independently confer susceptibility in IIM. PMID:22210660

  16. ABAEnrichment: an R package to test for gene set expression enrichment in the adult and developing human brain

    PubMed Central

    Prüfer, Kay; Kelso, Janet; Dannemann, Michael

    2016-01-01

    Summary: We present ABAEnrichment, an R package that tests for expression enrichment in specific brain regions at different developmental stages using expression information gathered from multiple regions of the adult and developing human brain, together with ontologically organized structural information about the brain, both provided by the Allen Brain Atlas. We validate ABAEnrichment by successfully recovering the origin of gene sets identified in specific brain cell-types and developmental stages. Availability and Implementation: ABAEnrichment was implemented as an R package and is available under GPL (≥ 2) from the Bioconductor website (http://bioconductor.org/packages/3.3/bioc/html/ABAEnrichment.html). Contacts: steffi_grote@eva.mpg.de, kelso@eva.mpg.de or michael_dannemann@eva.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354695

  17. A nondiapausing variant of the flesh fly, Sarcophaga bullata, that shows arrhythmic adult eclosion and elevated expression of two circadian clock genes, period and timeless.

    PubMed

    Goto, Shin G; Han, Bing; Denlinger, David L

    2006-01-01

    We describe a variant of the flesh fly, Sarcophaga bullata, which fails to enter pupal diapause in response to short daylength and low temperatures. This fly also has an arrhythmic adult eclosion pattern: rather than eclosing in early photophase, the variant ecloses arrhythmically throughout the photophase and scotophase. The loss of both diapause (photoperiodic response) and the gating of adult eclosion (presumably a circadian response) suggests that the same clock system is involved in these two responses. An examination of the expression patterns of the clock genes period and timeless demonstrates that both genes are present in the nondiapausing variant, but surprisingly, both genes are expressed at higher levels. This abnormality we observe, possibly the consequence of an upstream clock gene malfunction or a malfunction of the autoregulatory loop, results in disruption of a component of the clock system that is apparently needed for both photoperiodism and circadian rhythmicity.

  18. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    PubMed Central

    Ieraci, Alessandro; Mallei, Alessandra; Popoli, Maurizio

    2016-01-01

    Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI) mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH) mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice. PMID:26881124

  19. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice.

    PubMed

    Ieraci, Alessandro; Mallei, Alessandra; Popoli, Maurizio

    2016-01-01

    Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI) mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH) mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice. PMID:26881124

  20. Genome-wide chromatin and gene expression profiling during memory formation and maintenance in adult mice

    PubMed Central

    Centeno, Tonatiuh Pena; Shomroni, Orr; Hennion, Magali; Halder, Rashi; Vidal, Ramon; Rahman, Raza-Ur; Bonn, Stefan

    2016-01-01

    Recent evidence suggests that the formation and maintenance of memory requires epigenetic changes. In an effort to understand the spatio-temporal extent of learning and memory-related epigenetic changes we have charted genome-wide histone and DNA methylation profiles, in two different brain regions, two cell types, and three time-points, before and after learning. In this data descriptor we provide detailed information on data generation, give insights into the rationale of experiments, highlight necessary steps to assess data quality, offer guidelines for future use of the data and supply ready-to-use code to replicate the analysis results. The data provides a blueprint of the gene regulatory network underlying short- and long-term memory formation and maintenance. This ‘healthy’ gene regulatory network of learning can now be compared to changes in neurological or psychiatric diseases, providing mechanistic insights into brain disorders and highlighting potential therapeutic avenues. PMID:27727234

  1. Mutations in mammalian tolloid-like 1 gene detected in adult patients with ASD

    PubMed Central

    Stańczak, Paweł; Witecka, Joanna; Szydło, Anna; Gutmajster, Ewa; Lisik, Małgorzata; Auguściak-Duma, Aleksandra; Tarnowski, Maciej; Czekaj, Tomasz; Czekaj, Hanna; Sieroń, Aleksander L

    2009-01-01

    Atrial septal defect (ASD) is an incomplete septation of atria in human heart causing circulatory problems. Its frequency is estimated at one per 10 000. Actions of numerous genes have been linked to heart development. However, no single gene defect causing ASD has yet been identified. Incomplete heart septation similar to ASD was reported in transgenic mice with both inactive alleles of gene encoding mammalian zinc metalloprotease a mammalian tolloid-like 1 (tll1). Here, we have screened 19 ASD patients and 15 healthy age-matched individuals for mutations in TLL1 gene. All 22 exons were analyzed exon by exon for heteroduplex formation. Subsequently, DNA fragments forming heteroduplexes were sequenced. In four nonrelated patients, three missense mutations in coding sequence, and one single base change in the 5′UTR have been detected. Two mutations (Met182Leu, and Ala238Val) were detected in ASD patients with the same clinical phenotype. As the second mutation locates immediately upstream of the catalytic zinc-binding signature, it might change the enzyme substrate specificity. The third change, Leu627Val in the CUB3 domain, has been found in an ASD patient with interatrial septum aneurysm in addition to ASD. The CUB3 domain is important for substrate-specific recognition. In the remaining 15 patients as well as in 15 reference samples numerous base substitutions, deletions, and insertions have been detected, but no mutations changing the coding sequence have been found. Lack of mutations in relation to ASD of these patients could possibly be because of genetic heterogeneity of the syndrome. PMID:18830233

  2. Association of peroxisome proliferator-activated receptor-gamma gene polymorphisms and gene-gene interaction with asthma risk in a Chinese adults population

    PubMed Central

    Li, Wancheng; Dai, Wenjing; Sun, Jian; Zhang, Wei; Jiang, Yi; Ma, Chunlan; Wang, Chunmao; He, Jie

    2015-01-01

    Aims: To investigate the association between single nucleotide polymorphism (SNP) of peroxisome proliferator-activated receptors γ (PPAR γ) and additional gene-gene interactions on asthma risk. Methods: A total of 882 subjects (602 males, 280 females), with a mean age of 61.3±14.8 years old, including 430 asthma patients and 452 normal subjects were selected in this study, including the genotyping of polymorphisms. Logistic regression was performed to investigate association between SNP and asthma. Generalized MDR (GMDR) was used to analysis the interaction among four SNP. Results: Asthma risk was significantly lower in carriers of Ala allele of the rs1805192 polymorphism than those with Pro/Pro (Pro/Ala+ Ala/Ala versus Pro/Pro, adjusted OR (95% CI)=0.70 (0.51-0.94). In addition, we also found a significant association between rs10865710 and asthma, asthma risk was significantly lower in carriers of G allele of the rs10865710 polymorphism than those with CC (CG+ GG versus CC, adjusted OR (95% CI)=0.68 (0.55-0.95). There was a significant three-locus model (P=0.0107) involving rs1805192, rs10865710 and rs709158, indicating a potential gene-gene interaction among rs1805192, rs10865710 and rs709158. Overall, the three-locus models had a cross-validation consistency of 10 of 10, and had the testing accuracy of 60.72% after covariates adjustment. Conclusions: Our results support an important association of rs1805192 and rs10865710 with asthma, and additional interaction among rs1805192, rs10865710 and rs709158. PMID:26770574

  3. Low-dose bisphenol A disrupts gonad development and steroidogenic genes expression in adult female rare minnow Gobiocypris rarus.

    PubMed

    Zhang, Yingying; Gao, Jiancao; Xu, Peng; Yuan, Cong; Qin, Fang; Liu, Shaozhen; Zheng, Yao; Yang, Yanping; Wang, Zaizhao

    2014-10-01

    Bisphenol A (BPA), an estrogenic monomer, has attracted many researchers to study its adverse effects in animal reproduction, especially in fish. To explore the effects of low dose BPA on adult female rare minnow Gobiocypris rarus, we exposed the fish to BPA at nominal concentrations of 5, 15, and 50 μg L(-1) for 14 and 35 d. The 35-d BPA exposure at 50 μg L(-1) had obviously suppressive effects on oocyte development, and BPA at all the three concentrations in both exposure durations of 14 and 35 d had stimulative effects on hepatic vitellogenin (vtg) transcription. BPA at lower concentrations (5 and 15 μg L(-1)) exhibited stimulative effects on the expressions of ovarian steroidogenic genes while at higher concentration (50 μg L(-1)) displayed inhibitive effects. Analysis of ovarian steroidogenic genes 5'-flanking regions and mRNA expressions of their potential regulatory factors revealed that the BPA-mediated actions on steroidogenesis in G. rarus ovary probably involve estrogen receptor (Esr) and androgen receptor (Ar) signaling, nuclear receptor subfamily 5, group A, number 1 (Nr5a1) pathway, and epigenetic regulation. PMID:25048937

  4. UPRT, a suicide-gene therapy candidate in higher eukaryotes, is required for Drosophila larval growth and normal adult lifespan

    PubMed Central

    Ghosh, Arpan C.; Shimell, MaryJane; Leof, Emma R.; Haley, Macy J.; O’Connor, Michael B.

    2015-01-01

    Uracil phosphoribosyltransferase (UPRT) is a pyrimidine salvage pathway enzyme that catalyzes the conversion of uracil to uridine monophosphate (UMP). The enzyme is highly conserved from prokaryotes to humans and yet phylogenetic evidence suggests that UPRT homologues from higher-eukaryotes, including Drosophila, are incapable of binding uracil. Purified human UPRT also do not show any enzymatic activity in vitro, making microbial UPRT an attractive candidate for anti-microbial drug development, suicide-gene therapy, and cell-specific mRNA labeling techniques. Nevertheless, the enzymatic site of UPRT remains conserved across the animal kingdom indicating an in vivo role for the enzyme. We find that the Drosophila UPRT homologue, krishah (kri), codes for an enzyme that is required for larval growth, pre-pupal/pupal viability and long-term adult lifespan. Our findings suggest that UPRT from all higher eukaryotes is likely enzymatically active in vivo and challenges the previous notion that the enzyme is non-essential in higher eukaryotes and cautions against targeting the enzyme for therapeutic purposes. Our findings also suggest that expression of the endogenous UPRT gene will likely cause background incorporation when using microbial UPRT as a cell-specific mRNA labeling reagent in higher eukaryotes. PMID:26271729

  5. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water

    SciTech Connect

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V.; Costa, Max

    2015-05-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p < 0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. - Highlights: • Males and females exhibit unique gene expression changes in response to arsenic. • Only 23 genes are common among the differentially expressed genes for the sexes. • Male and female gene lists exhibit common biological

  6. SPOCK3, a risk gene for adult ADHD and personality disorders.

    PubMed

    Weber, Heike; Scholz, Claus-Jürgen; Jacob, Christian P; Heupel, Julia; Kittel-Schneider, Sarah; Erhardt, Angelika; Hempel, Susanne; Schmidt, Brigitte; Kiel, Tilman; Gessner, Alexandra; Lesch, Klaus-Peter; Reif, Andreas

    2014-08-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most frequent psychiatric disorder in children, where it displays a global prevalence of 5 %. In up to 50 % of the cases, ADHD may persist into adulthood (aADHD), where it is often comorbid with personality disorders. Due to a potentially heritable nature of this comorbidity, we hypothesized that their genetic framework may contain common risk-modifying genes. SPOCK3, a poorly characterized, putatively Ca(2+)-binding extracellular heparan/chondroitin sulfate proteoglycan gene encoded by the human chromosomal region 4q32.3, was found to be associated with polymorphisms among the top ranks in a genome-wide association study (GWAS) on ADHD and a pooled GWAS on personality disorder (PD). We therefore genotyped 48 single nucleotide polymorphisms (SNPs) representative of the SPOCK3 gene region in 1,790 individuals (n aADHD = 624, n PD = 630, n controls = 536). In this analysis, we found two SNPs to be nominally associated with aADHD (rs7689440, rs897511) and four PD-associated SNPs (rs7689440, rs897511, rs17052671 and rs1485318); the latter even reached marginal significance after rigorous Bonferroni correction. Bioinformatics tools predicted a possible influence of rs1485318 on transcription factor binding, whereas the other candidate SNPs may have effects on alternative splicing. Our results suggest that SPOCK3 may modify the genetic risk for ADHD and PD; further studies are, however, needed to identify the underlying mechanisms. PMID:24292267

  7. Associations between ADH gene variants and alcohol phenotypes in Dutch adults.

    PubMed

    van Beek, Jenny H D A; Willemsen, Gonneke; de Moor, Marleen H M; Hottenga, Jouke Jan; Boomsma, Dorret I

    2010-02-01

    Recently, Macgregor et al. (2009) demonstrated significant associations of ADH polymorphisms with reactions to alcohol and alcohol consumption measures in an Australian sample. The aim of the present study was to replicate these findings in a Dutch sample. Survey data on alcohol phenotypes came from 1,754 unrelated individuals registered with the Netherlands Twin Register. SNPs in the ADH gene cluster located on chromosome 4q (n = 491) were subdivided in seven gene sets: ADH5, ADH4, ADH6, ADH1A, ADH1B, ADH1C and ADH7. Within these sets associations of SNPs with alcohol consumption measures, age at onset variables, reactions to alcohol and problem drinking liability were examined. Of the original 38 SNPs studied by Macgregor et al. (2009), six SNPs were not available in our dataset, because one of them had a minor allele frequency < .01 (rs1229984) and five could not be imputed. The remaining SNP associations with alcohol phenotypes as identified by Macgregor et al. (2009) were not replicated in the Dutch sample, after correcting for multiple genotype and phenotype testing. Significant associations were found however, for reactions to alcohol with a SNP in ADH5 (rs6827292, p = .001) and a SNP just upstream of ADH5 (rs6819724, p = .0007) that is in strong LD with rs6827292. Furthermore, an association between age at onset of regular alcohol use and a SNP just upstream of ADH7 (rs2654849, p = .003) was observed. No significant associations were found for alcohol consumption and problem drinking liability. Although these findings do not replicate the earlier findings at the SNP level, the results confirm the role of the ADH gene cluster in alcohol phenotypes.

  8. Contributions of the DAT1 and DRD2 genes to serious and violent delinquency among adolescents and young adults.

    PubMed

    Guo, Guang; Roettger, Michael E; Shih, Jean C

    2007-03-01

    As far as we know, this is the first national study that reports compelling evidence for the main effects of genetic variants on serious and violent delinquency among adolescents and young adults. This study investigated the association between the self-reported serious and violent delinquency and the TaqI polymorphism in the DRD2 gene and the 40-bp VNTR in the DAT1 gene. The study was based on a cohort of more than 2,500 adolescents and young adults in the National Longitudinal Study of Adolescent Health in the United States. The trajectories of serious delinquency for the DAT1*10R/10R and DAT1*10R/9R genotypes are about twice as high as that for the DAT1*9R/9R genotype (LR test, P = 0.018, 2 df). For DRD2, the trajectory of serious delinquency for the heterozygotes (A1/A2) is about 20% higher than the A2/A2 genotype and about twice as high as the A1/A1 genotype, a phenomenon sometimes described as heterosis (LR test, P = 0.005, 2 df). The findings on violent delinquency closely resemble those on serious delinquency. The trajectories of violent delinquency for the DAT1*10R/9R and DAT1*10R/10R genotype are again about twice as high as that for DAT1*9R/9R (LR test, P = 0.021, 2 df). The two homozygotes of DRD2*A1/A1 and DRD2*A2/A2 scored lower (LR test, P = 0.0016, 2 df) than the heterozygotes. The findings in the models that consider DAT1 and DRD2 jointly (serious delinquency P = 0.0016, 4 df; violent delinquency P = 0.0006, 4 df) are essentially the same as those in the single-gene models, suggesting the absence of a significant correlation between the two genetic variants. These results only apply to males. Neither variant is associated with delinquency among females.

  9. A common gene for juvenile and adult-onset primary open-angle glaucomas confined on chromosome 1q

    SciTech Connect

    Morissette, J.; Plante, M.; Raymond, V.

    1995-06-01

    Primary open-angle glaucoma (POAG), which causes progressive loss of the visual fields, was subdivided into two groups according to age at onset: (1) chronic open-angle glaucoma (COAG) diagnosed after 40 years and (2) juvenile open-angle glaucoma (JOAG) diagnosed between 3 years of age and early adulthood. A JOAG gene (GLC1A) was recently mapped to chromosome 1q. We studied 142 members of a huge multigenerational French Canadian family affected with autosomal dominant POAG. Either JOAG or COAG was diagnosed with ocular hypertension (OHT), which may lead to POAG. To localize a common disease gene that might be responsible for both glaucoma subsets, we performed linkage analysis considering JOAG and COAG under the same phenotypic category. JOAG/COAG was tightly linked to seven microsatellite markers on chromosome 1q23-q25; a maximum lod score of 6.62 was obtained with AF-M278ye5. To refine the disease locus, we exploited a recombination mapping strategy based on a unique founder effect. The same characteristic haplotype, composed of 14 markers spanning 12 cM between loci D1S196 and D1S212, was recognized in all persons affected by JOAG, COAG, or OHT, but it did not occur in unaffected spouses and in normal family members >35 years of age, except for three obligatory carriers. Key combination events confined the disease region within a 9-cM interval between loci D1S445 and D1S416/D1S480. These observations demonstrate that the GLC1A gene is responsible for both adult-onset and juvenile glaucomas and suggest that the JOAG and COAG categories within this family may be part of a clinical continuum artificially divided at age 40 years. 49 refs., 4 figs., 2 tabs.

  10. Quantitative RT-PCR comparison of the urea and nitric oxide cycle gene transcripts in adult human tissues.

    PubMed

    Neill, Meaghan Anne; Aschner, Judy; Barr, Frederick; Summar, Marshall L

    2009-06-01

    The urea cycle and nitric oxide cycle play significant roles in complex biochemical and physiologic reactions. These cycles have distinct biochemical goals including the clearance of waste nitrogen; the production of the intermediates ornithine, citrulline, and arginine for the urea cycle; and the production of nitric oxide for the nitric oxide pathway. Despite their disparate functions, the two pathways share two enzymes, argininosuccinic acid synthase and argininosuccinic acid lyase, and a transporter, citrin. Studying the gene expression of these enzymes is paramount in understanding these complex biochemical pathways. Here, we examine the expression of genes involved in the urea cycle and the nitric oxide cycle in a panel of eleven different tissue samples obtained from individual adults without known inborn errors of metabolism. In this study, the pattern of co-expressed enzymes provides a global view of the metabolic activity of the urea and nitric oxide cycles in human tissues. Our results show that these transcripts are differentially expressed in different tissues. Using the co-expression profiles, we discovered that the combination of expression of enzyme transcripts as detected in our study, might serve to fulfill specific physiologic function(s) including urea production/nitrogen removal, arginine/citrulline production, nitric oxide production, and ornithine production. Our study reveals the importance of studying not only the expression profile of an enzyme of interest, but also studying the expression profiles of the other enzymes involved in a particular pathway so as to better understand the context of expression. The tissue patterns we observed highlight the variety of important functions of these enzymes and provides insight into the many clinical observations that result from their disruption. These results have implications for the management of urea cycle patients and raise considerations for the care of those patients receiving liver

  11. Anti-beta s-ribozyme reduces beta s mRNA levels in transgenic mice: potential application to the gene therapy of sickle cell anemia.

    PubMed

    Alami, R; Gilman, J G; Feng, Y Q; Marmorato, A; Rochlin, I; Suzuka, S M; Fabry, M E; Nagel, R L; Bouhassira, E E

    1999-04-01

    Our current strategy for gene therapy of sickle cell anemia involves retroviral vectors capable of transducing "designer" globin genes that code for novel anti-sickling globins (while resisting digestion by a ribozyme), coupled with the expression of a hammerhead ribozyme that can selectively cleave the human beta s mRNA. In this report, we have tested in vivo an anti-beta s hammerhead ribozyme embedded within a cDNA coding for the luciferase reporter gene driven by the human beta-globin promoter and hyper-sensitive sites 3 and 4 of the locus control region. We have created mice transgenic for this luciferase-ribozyme construct and bred the ribozyme transgene into mice that were already transgenic for the human beta s gene. We then measured expression of the beta s transgene at the protein and RNA levels by HPLC and primer extension. The presence of the ribozyme was associated with a statistically significant reduction in the level of beta s mRNA in spleen stress reticulocytes (from 60.5 +/- 4.1% to 52.9 +/- 4.2%) and in the percentage of beta s globin chains in very young mice (from 44.5 +/- 0.6% to 40.8 +/- 0.7%). These results demonstrate that it is possible to decrease the concentration of beta s chains and mRNA with the help of a hammerhead ribozyme. While the enormous amount of globin mRNA in reticulocytes is a challenge for ribozyme technology, the exquisite dependence of the delay time for formation of Hb S nuclei on the concentration of Hb S in red blood cells suggests that even a modest reduction in Hb S concentration would have therapeutic value.

  12. Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells.

    PubMed

    Libby, P; Ordovas, J M; Auger, K R; Robbins, A H; Birinyi, L K; Dinarello, C A

    1986-08-01

    Interleukin 1 (IL-1) can induce potentially pathogenic functions of vascular endothelial cells. This mediator was formerly thought to be produced primarily by activated macrophages. We report here that bacterial endotoxin and recombinant human tumor necrosis factor cause accumulation of IL-1 beta mRNA in adult human vascular endothelial cells. IL-1 alpha mRNA was also detected when endothelial cells were exposed to endotoxin under "superinduction" conditions in the presence of cycloheximide. Metabolic labeling of these cells during endotoxin stimulation demonstrated increased synthesis and secretion of immunoprecipitable IL-1 protein that comigrated electrophoretically with the predominant monocyte species. In parallel with increased IL-1 mRNA and protein, endothelial cells exposed to endotoxin also release biologically active IL-1 that was neutralized by anti-IL-1-antibody. Because bloodborne agents must traverse the endothelium before entering tissues, endothelial IL-1 production induced by microbial products or other injurious stimuli could initiate local responses to invasion. Endothelial cells are both a source of and target for IL-1; accordingly, this novel autocrine mechanism might play an early role in the pathogenesis of vasculitis, allograft rejection, and arteriosclerosis.

  13. Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain

    PubMed Central

    2012-01-01

    Background Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted. PMID:22695063

  14. Sex and strategy use matters for pattern separation, adult neurogenesis, and immediate early gene expression in the hippocampus.

    PubMed

    Yagi, Shunya; Chow, Carmen; Lieblich, Stephanie E; Galea, Liisa A M

    2016-01-01

    Adult neurogenesis in the dentate gyrus (DG) plays a crucial role for pattern separation, and there are sex differences in the regulation of neurogenesis. Although sex differences, favoring males, in spatial navigation have been reported, it is not known whether there are sex differences in pattern separation. The current study was designed to determine whether there are sex differences in the ability for separating similar or distinct patterns, learning strategy choice, adult neurogenesis, and immediate early gene (IEG) expression in the DG in response to pattern separation training. Male and female Sprague-Dawley rats received a single injection of the DNA synthesis marker, bromodeoxyuridine (BrdU), and were tested for the ability of separating spatial patterns in a spatial pattern separation version of delayed nonmatching to place task using the eight-arm radial arm maze. Twenty-seven days following BrdU injection, rats received a probe trial to determine whether they were idiothetic or spatial strategy users. We found that male spatial strategy users outperformed female spatial strategy users only when separating similar, but not distinct, patterns. Furthermore, male spatial strategy users had greater neurogenesis in response to pattern separation training than all other groups. Interestingly, neurogenesis was positively correlated with performance on similar pattern trials during pattern separation in female spatial strategy users but negatively correlated with performance in male idiothetic strategy users. These results suggest that the survival of new neurons may play an important positive role for pattern separation of similar patterns in females. Furthermore, we found sex and strategy differences in IEG expression in the CA1 and CA3 regions in response to pattern separation. These findings emphasize the importance of studying biological sex on hippocampal function and neural plasticity.

  15. Prenatal Arsenic Exposure Alters Gene Expression in the Adult Liver to a Proinflammatory State Contributing to Accelerated Atherosclerosis

    PubMed Central

    States, J. Christopher; Singh, Amar V.; Knudsen, Thomas B.; Rouchka, Eric C.; Ngalame, Ntube O.; Arteel, Gavin E.; Piao, Yulan; Ko, Minoru S. H.

    2012-01-01

    The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE−/−) mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE−/− mice exposed to 49 ppm arsenic in utero from gestational day (GD) 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND) 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a). Gene ontology (GO) annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8) and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes containing

  16. Lactase gene c/t(-13910) polymorphism, calcium intake, and pQCT bone traits in Finnish adults.

    PubMed

    Tolonen, Sanna; Laaksonen, Marika; Mikkilä, Vera; Sievänen, Harri; Mononen, Nina; Räsänen, Leena; Viikari, Jorma; Raitakari, Olli T; Kähönen, Mika; Lehtimäki, Terho J

    2011-02-01

    Genetic lactase nonpersistence may influence calcium intake and thereby bone health. We investigated in the Cardiovascular Risk in Young Finn Study whether young adults aged 31-46 years with the C/C(-13910) genotype are more susceptible to reduced bone phenotypes, low-energy fractures, and low calcium intake than subjects with other lactase genotypes. We also analyzed the gene-environment interactions on bone with calcium intake and physical activity. Peripheral quantitative computed tomography bone traits were measured from the distal and shaft sites of the radius and tibia. The total number of those subjects whose nondominant forearm was measured and the lactase genotype was defined was 1551. Information on diet, lifestyle factors, and fractures was collected with questionnaires. The mean intake of calcium was the lowest in men with the C/C(-13910) genotype (P = 0.001). Men with the T/T(-13910) genotype had ~3% higher trabecular density at the distal radius and distal tibia compared to other lactase genotypes (P = 0.03 and 0.02, respectively). In women, we found no evidence of the gene effect at the radius and tibia. No major interactions of the C/T(-13910) polymorphism with calcium intake or physical activity on bone phenotypes were found in either sex. In conclusion, the C/T(-13910) polymorphism was associated with trabecular density at the distal radius and tibia in men. These differences may be due to the differences in calcium intake between the lactase genotypes.

  17. Three mouse models of human thalassemia.

    PubMed Central

    Martinell, J; Whitney, J B; Popp, R A; Russell, L B; Anderson, W F

    1981-01-01

    Three types of mice with globin gene mutations, called 352HB, 27HB, and Hbath-J, appear to be true animal models of human thalassemia. Expression of the alpha-globin genes in three stocks of mice, each one heterozygous for one of the alpha-globin mutations, was examined at the polypeptide, RNA, and DNA levels. alpha-Globin polypeptide chains, relative to beta-globin chains in heterozygous thalassemic mice, are present at approximately 80% of normal. The ratios of alpha-globin to beta-globin RNA sequences are also 75-80% of normal, exactly reflecting the alpha-globin to beta-globin chain ratios. In the case of mutant 352HB, at least one alpha-globin gene is deleted. Thalassemic mouse erythroid cells appear to compensate partially for the loss of half of their alpha-globin genes. Images PMID:6946454

  18. Vasopressin inhibits type-I collagen and albumin gene expression in primary cultures of adult rat hepatocytes

    SciTech Connect

    Chojkier, M.; Brenner, D.A.; Leffert, H.L.

    1989-06-05

    The mechanisms that regulate collagen gene expression in hepatic cells are poorly understood. Accelerated Ca2+ fluxes are associated with inhibiting collagen synthesis selectively in human fibroblasts. In suspension cultures of isolated hepatocytes, the Ca2+ agonist vasopressin increases cytosolic levels of free Ca2+. However, whether vasopressin's interactions with plasma membrane V1 receptors attenuate hepatic collagen production is unknown. We investigated this problem by studying vasopressin's effects on collagen synthesis and Ca2+ efflux in long-term primary cultures of differentiated and proliferation-competent adult rat hepatocytes. Twelve-day-old quiescent cultures were exposed to test substances and labeled with (5-3H)proline. Determinations of radioactivity in collagenase-sensitive and collagenase-resistant proteins were used to calculate the relative levels of collagen production. Synthetic (8-arg)vasopressin stimulated 45Ca2+ efflux within 1 min and inhibited hepatocyte collagen production within 3 h by 50%; overall rates of protein synthesis were not affected significantly. In cultures labeled with (35S)methionine, vasopressin also decreased the levels of newly synthesized and secreted albumin, but not fibrinogen, detected in specific immunoprecipitates analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Northern blot analyses using specific (32P)cDNA probes revealed 70% decreases in hybridizable levels of collagen alpha 1(I) mRNA in hepatocyte cultures treated with either vasopressin or Ca2+ ionophore A23187; hybridizable levels of albumin mRNA also fell approximately 50% following vasopressin treatment.

  19. Identification of genes co-upregulated with Arc during BDNF-induced long-term potentiation in adult rat dentate gyrus in vivo.

    PubMed

    Wibrand, Karin; Messaoudi, Elhoucine; Håvik, Bjarte; Steenslid, Vibeke; Løvlie, Roger; Steen, Vidar M; Bramham, Clive R

    2006-03-01

    Brain-derived neurotrophic factor (BDNF) is a critical regulator of transcription-dependent adaptive neuronal responses, such as long-term potentiation (LTP). Brief infusion of BDNF into the dentate gyrus of adult anesthetized rats triggers stable LTP at medial perforant path-granule synapses that is transcription-dependent and requires induction of the immediate early gene Arc. Rather than acting alone, Arc is likely to be part of a larger BDNF-induced transcriptional program. Here, we used cDNA microarray expression profiling to search for genes co-upregulated with Arc 3 h after BDNF-LTP induction. Of nine cDNAs encoding for known genes and up-regulated more than four-fold, we selected five genes, Narp, neuritin, ADP-ribosylation factor-like protein-4 (ARL4L), TGF-beta-induced immediate early gene-1 (TIEG1) and CARP, for further validation. Real-time PCR confirmed robust up-regulation of these genes in an independent set of BDNF-LTP experiments, whereas infusion of the control protein cytochrome C had no effect. In situ hybridization histochemistry further revealed up-regulation of all five genes in somata of post-synaptic granule cells following both BDNF-LTP and high-frequency stimulation-induced LTP. While Arc synthesis is critical for local actin polymerization and stable LTP formation, several of the co-upregulated genes have known functions in excitatory synaptogenesis, axon guidance and glutamate receptor clustering. These results provide novel insight into gene expression responses underlying BDNF-induced synaptic consolidation in the adult brain in vivo. PMID:16553613

  20. Kinetics of the ontogenic and reversible hemoglobin switching in the mouflon (Ovis musimon) and sheep x mouflon hybrid.

    PubMed

    Masala, B; Manca, L; Cocco, E; Ledda, S; Naitana, S

    1991-01-01

    1. Hemoglobin (Hb) switching in the perinatal life of wild mouflon (Ovis musimon) was characterized by the replacement of Hb F by 60% levels of Hb C, and subsequently of Hb C by Hb B. 2. The recently discovered Hb M variant was not replaced by Hb C; thus, Hb BM heterozygote newborns synthesized 30% Hb C at the expense of Hb B. 3. Hybrid B mouflon x B sheep synthesized only 5% Hb C at birth but were able to produce 30% Hb C in adult life following induced anemia. 4. Adult BB and BM mouflons, after the same extent of induced anemia, synthesized HB C levels similar to those produced at birth. The results indicate a mouflon beta-globin gene cluster arrangement similar to those of sheep and goat, the beta C gene having an intermediate expression. Results also suggest a selective disadvantage in hybrid animals. PMID:1723669

  1. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    SciTech Connect

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F.

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  2. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water.

    PubMed

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V; Costa, Max

    2015-05-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p<0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. PMID:25759245

  3. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water1

    PubMed Central

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V.; Costa, Max

    2015-01-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50–1000 µg/ L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p<0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic’s possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. PMID:25759245

  4. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water.

    PubMed

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V; Costa, Max

    2015-05-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p<0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females.

  5. Candidate genes for Alzheimer's disease are associated with individual differences in plasma levels of beta amyloid peptides in adults with Down syndrome.

    PubMed

    Schupf, Nicole; Lee, Annie; Park, Naeun; Dang, Lam-Ha; Pang, Deborah; Yale, Alexander; Oh, David Kyung-Taek; Krinsky-McHale, Sharon J; Jenkins, Edmund C; Luchsinger, José A; Zigman, Warren B; Silverman, Wayne; Tycko, Benjamin; Kisselev, Sergey; Clark, Lorraine; Lee, Joseph H

    2015-10-01

    We examined the contribution of candidates genes for Alzheimer's disease (AD) to individual differences in levels of beta amyloid peptides in adults with Down syndrom, a population at high risk for AD. Participants were 254 non-demented adults with Down syndrome, 30-78 years of age. Genomic deoxyribonucleic acid was genotyped using an Illumina GoldenGate custom array. We used linear regression to examine differences in levels of Aβ peptides associated with the number of risk alleles, adjusting for age, sex, level of intellectual disability, race and/or ethnicity, and the presence of the APOE ε4 allele. For Aβ42 levels, the strongest gene-wise association was found for a single nucleotide polymorphism (SNP) on CAHLM1; for Aβ40 levels, the strongest gene-wise associations were found for SNPs in IDE and SOD1, while the strongest gene-wise associations with levels of the Aβ42/Aβ40 ratio were found for SNPs in SORCS1. Broadly classified, variants in these genes may influence amyloid precursor protein processing (CALHM1, IDE), vesicular trafficking (SORCS1), and response to oxidative stress (SOD1).

  6. Candidate genes for Alzheimer's disease are associated with individual differences in plasma levels of beta amyloid peptides in adults with Down syndrome.

    PubMed

    Schupf, Nicole; Lee, Annie; Park, Naeun; Dang, Lam-Ha; Pang, Deborah; Yale, Alexander; Oh, David Kyung-Taek; Krinsky-McHale, Sharon J; Jenkins, Edmund C; Luchsinger, José A; Zigman, Warren B; Silverman, Wayne; Tycko, Benjamin; Kisselev, Sergey; Clark, Lorraine; Lee, Joseph H

    2015-10-01

    We examined the contribution of candidates genes for Alzheimer's disease (AD) to individual differences in levels of beta amyloid peptides in adults with Down syndrom, a population at high risk for AD. Participants were 254 non-demented adults with Down syndrome, 30-78 years of age. Genomic deoxyribonucleic acid was genotyped using an Illumina GoldenGate custom array. We used linear regression to examine differences in levels of Aβ peptides associated with the number of risk alleles, adjusting for age, sex, level of intellectual disability, race and/or ethnicity, and the presence of the APOE ε4 allele. For Aβ42 levels, the strongest gene-wise association was found for a single nucleotide polymorphism (SNP) on CAHLM1; for Aβ40 levels, the strongest gene-wise associations were found for SNPs in IDE and SOD1, while the strongest gene-wise associations with levels of the Aβ42/Aβ40 ratio were found for SNPs in SORCS1. Broadly classified, variants in these genes may influence amyloid precursor protein processing (CALHM1, IDE), vesicular trafficking (SORCS1), and response to oxidative stress (SOD1). PMID:26166206

  7. Intermittent neonatal hypoxia elicits the upregulation of inflammatory-related genes in adult male rats through long-lasting programming effects.

    PubMed

    Gehrand, Ashley L; Kaldunski, Mary L; Bruder, Eric D; Jia, Shuang; Hessner, Martin J; Raff, Hershel

    2015-12-01

    The long-term effects of neonatal intermittent hypoxia (IH), an accepted model of apnea-induced hypoxia, are unclear. We have previously shown lasting "programming" effects on the HPA axis in adult rats exposed to neonatal IH. We hypothesized that neonatal rat exposure to IH will subsequently result in a heightened inflammatory state in the adult. Rat pups were exposed to normoxia (control) or six cycles of 5% IH or 10% IH over one hour daily from postnatal day 2-6. Plasma samples from blood obtained at 114 days of age were analyzed by assessing the capacity to induce transcription in a healthy peripheral blood mononuclear cell (PBMC) population and read using a high-density microarray. The analysis of plasma from adult rats previously exposed to neonatal 5% IH versus 10% IH resulted in 2579 significantly regulated genes including increased expression of Cxcl1, Cxcl2, Ccl3, Il1a, and Il1b. We conclude that neonatal exposure to intermittent hypoxia elicits a long-lasting programming effect in the adult resulting in an upregulation of inflammatory-related genes. PMID:26660555

  8. Quantitative analysis of short- and long-distance racing performance in young and adult horses and association analysis with functional candidate genes in Spanish Trotter horses.

    PubMed

    Negro Rama, S; Valera, M; Membrillo, A; Gómez, M D; Solé, M; Menendez-Buxadera, A; Anaya, G; Molina, A

    2016-10-01

    The association of five candidate genes with sporting performance in young and adult Spanish Trotter horses (STHs) was performed according to a previous selection based on quantitative analysis of the trait time per kilometre (TPK). A total of 334 516 records of TPK from 5958 STHs were used to estimate the estimated breeding values (EBVs) at different age groups (young and adults horses) throughout the range of distances (1600-2700 m) using a bicharacter random regression model. The heritability estimated by distance ranged from 0.16 to 0.40, with a different range for the two age groups. Considering the animals with the best and the worst deregressed EBV, 321 STHs were selected for SNP genotyping in MSTN, COX4I2, PDK4, DMRT3 and CKM genes. An association analysis based on ridge and logistic regression revealed that the young trotters with genotype GG in PDK4 (p < 0.05) and AA of DMRT3 (p < 0.001) SNPs show the best potential in short-distance races, while those carrying the genotype AA in DMRT3 (p < 0.001) and CC in CKM (p < 0.05) genes seem to be the best in long-distance races. Adult trotters with genotype AA in DMRT3 also display greater speed (p < 0.05) and endurance (p < 0.001).

  9. Erythroid-Specific Expression of LIN28A Is Sufficient for Robust Gamma-Globin Gene and Protein Expression in Adult Erythroblasts

    PubMed Central

    Byrnes, Colleen; Kaushal, Megha; Rabel, Antoinette; Tumburu, Laxminath; Allwardt, Joshua M.; Miller, Jeffery L.

    2015-01-01

    Increasing fetal hemoglobin (HbF) levels in adult humans remains an active area in hematologic research. Here we explored erythroid-specific LIN28A expression for its effect in regulating gamma-globin gene expression and HbF levels in cultured adult erythroblasts. For this purpose, lentiviral transduction vectors were produced with LIN28A expression driven by erythroid-specific gene promoter regions of the human KLF1 or SPTA1 genes. Transgene expression of LIN28A with a linked puromycin resistance marker was restricted to the erythroid lineage as demonstrated by selective survival of erythroid colonies (greater than 95% of all colonies). Erythroblast LIN28A over-expression (LIN28A-OE) did not significantly affect proliferation or inhibit differentiation. Greater than 70% suppression of total let-7 microRNA levels was confirmed in LIN28A-OE cells. Increases in gamma-globin mRNA and protein expression with HbF levels reaching 30–40% were achieved. These data suggest that erythroblast targeting of LIN28A expression is sufficient for increasing fetal hemoglobin expression in adult human erythroblasts. PMID:26675483

  10. Genetic expression and functional characterization of the RUNX2 gene in human adult bone marrow mesenchymal stem cells.

    PubMed

    Zhang, J Y; Li, L C

    2015-01-01

    Past studies have revealed the critical role of runt-related transcription factor 2 (RUNX2) in the proliferation and differentiation of mesenchymal stem cells (MSCs). This study therefore aimed to investigate the expression profile of the RUNX2 gene in human bone marrow MSCs and its biological characteristics. Bone marrow MSCs were separated from 12 patients who had received hip joint replacement surgery. After purification and culture, the MSCs were subjected to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, the alkaline phosphatase assay, reverse transcription polymerase chain reaction, and RUNX2 protein quantification. The cell growth curve, staining images, and information on the membrane antigens and the levels of RUNX2 mRNA and protein were obtained based on the results. The growth curve showed, after a 2-day lag period, cultured MSCs entered into the log phase between d3 (Day 3) and d6, when they reached a plateau. Flow cytometry data suggested 94.38% of MSCs were CD90-positive, while only 3.99 and 1.71% of total cells were positive for CD35 and CD45, respectively. With the elongated induction period, cultured MSCs were polygonal in shape. After a 14-day induction, cell fusion occurred in the center of the cell nodule accompanied by the disappearance of cellular structure to form the calcium nodule, which was stained red. There was also a statistically significant increase in the level of RUNX2 protein at d7 and d14. An osteogenic medium is required for the differentiation of adult MSCs, which is also under RUNX2 regulation. These findings are potentially valuable for clinical practice. PMID:26782468

  11. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

  12. Vitamin D status: multifactorial contribution of environment, genes and other factors in healthy Australian adults across a latitude gradient.

    PubMed

    Lucas, Robyn M; Ponsonby, Anne-Louise; Dear, Keith; Valery, Patricia C; Taylor, Bruce; van der Mei, Ingrid; McMichael, Anthony J; Pender, Michael P; Chapman, Caron; Coulthard, Alan; Kilpatrick, Trevor J; Stankovich, Jim; Williams, David; Dwyer, Terence

    2013-07-01

    Vitamin D deficiency is common and implicated in risk of several human diseases. Evidence on the relative quantitative contribution of environmental, genetic and phenotypic factors to vitamin D status (assessed by the serum concentration of 25-hydroxyvitamin D, 25(OH)D) in free-living populations is sparse. We conducted a cross-sectional study of 494 Caucasian adults aged 18-61years, randomly selected from the Australian Electoral Roll according to groups defined by age, sex and region (spanning 27°-43°South). Data collected included personal characteristics, sun exposure behaviour, biomarkers of skin type and past sun exposure, serum 25(OH)D concentration and candidate single nucleotide polymorphisms. Ambient ultraviolet radiation (UVR) levels in the month six weeks before blood sampling best predicted vitamin D status. Serum 25(OH)D concentration increased by 10nmol/L as reported time in the sun doubled. Overall, 54% of the variation in serum 25(OH)D concentration could be accounted for: 36% of the variation was explained by sun exposure-related factors; 14% by genetic factors (including epistasis) and 3.5% by direct measures of skin phenotype. Novel findings from this study are demonstration of gene epistasis, and quantification of the relative contribution of a wide range of environmental, constitutional and genetic factors to vitamin D status. Ambient UVR levels and time in the sun were of prime importance but it is nonetheless important to include the contribution of genetic factors when considering sun exposure effects. This article is part of a Special Issue entitled 'Vitamin D Workshop'.

  13. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    PubMed

    Chater-Diehl, Eric J; Laufer, Benjamin I; Castellani, Christina A; Alberry, Bonnie L; Singh, Shiva M

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  14. Changes in expression of hepatic genes involved in energy metabolism during hibernation in captive, adult, female Japanese black bears (Ursus thibetanus japonicus).

    PubMed

    Shimozuru, Michito; Kamine, Akari; Tsubota, Toshio

    2012-10-01

    Hibernating bears survive up to 6 months without feeding by utilizing stored body fat as fuel. To investigate how bears maintain energy homeostasis during hibernation, we analyzed changes in mRNA expression of hepatic genes involved in energy metabolism throughout the hibernation period in captive, adult, female Japanese black bears (Ursus thibetanus japonicus). Real-time PCR analysis revealed down-regulation of glycolysis- (e.g., glucokinase), amino acid catabolism- (e.g., alanine aminotransferase) and de novo lipogenesis-related genes (e.g., acetyl-CoA carboxylase 1), and up-regulation of gluconeogensis- (e.g., pyruvate carboxylase), β-oxidation- (i.e., uncoupling protein 2) and ketogenesis-related genes (i.e., 3-hydroxy-3-methylglutary-CoA synthase 2), during hibernation, compared to the active period (June). In addition, we found that glycolysis-related genes (i.e., glucokinase and pyruvate kinase) were more suppressed in the early phase of hibernation (January) compared to the late phase (March). One week after the commencement of feeding in April, expression levels of most genes returned to levels comparable to those seen in June, but β-oxidation-related genes were still up-regulated during this period. These results suggest that the modulation of gene expression is not static, but changes throughout the hibernation period. The transcriptional modulation during hibernation represents a unique physiological adaptation to prolonged fasting in bears.

  15. Growth response and expression of muscle growth-related candidate genes in adult zebrafish fed plant and fishmeal protein-based diets.

    PubMed

    Ulloa, Pilar E; Peña, Andrea A; Lizama, Carla D; Araneda, Cristian; Iturra, Patricia; Neira, Roberto; Medrano, Juan F

    2013-03-01

    The main objective of this study was to examine the effects of a plant protein- vs. fishmeal-based diet on growth response in a population of 24 families, as well as expression of growth-related genes in the muscle of adult zebrafish (Danio rerio). Each family was split to create two fish populations with similar genetic backgrounds, and the fish were fed either fishmeal (FM diet) or plant protein (PP diet) as the unique protein source in their diets from 35 to 98 days postfertilization (dpf). To understand the effect of the PP diet on gene expression, individuals from three families, representative of the mean weight in both populations, were selected. To understand the effect of familiar variation on gene expression, the same families were evaluated separately. At 98 dpf, growth-related genes Igf1a, Igf2a, mTOR, Pld1a, Mrf4, Myod, Myogenin, and Myostatin1b were evaluated. In males, Myogenin, Mrf4, and Igf2a showed changes attributable to the PP diet. In females, the effect of the PP diet did not modulate the expression in any of the eight genes studied. The effect of familiar variation on gene expression was observed among families. This study shows that PP diet and family variation have effects on gene expression in fish muscle.

  16. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure

    PubMed Central

    Chater-Diehl, Eric J.; Castellani, Christina A.; Alberry, Bonnie L.; Singh, Shiva M.

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse’s lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as “Free radical scavenging”. We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was “Peroxisome biogenesis”; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  17. Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism.

    PubMed

    Feng, Hao; Wang, Xiaojie; Zhang, Qiong; Fu, Yanping; Feng, Chuanxin; Wang, Bing; Huang, Lili; Kang, Zhensheng

    2014-01-01

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive wheat diseases worldwide. Varieties with adult plant resistance (APR) maintain effective and durable disease resistance. APR to stripe rust in wheat cultivar XZ9104 (XZ) is associated with extensive hypersensitive cell death and production of reactive oxygen species in the host. MDHAR is an important gene in the AsA-GSH cycle, and it plays an important role in maintaining the reduced pool of AsA scavenging hydrogen peroxide. microRNAs (miRNAs) were shown to engage in post-transcriptional regulation by degrading target mRNAs or repressing gene translation in plants responding to abiotic/biotic stresses. Previously, two novel miRNAs (1136-P3 and PN-2013) were isolated in wheat and the target gene of them was determined using degradome sequencing technology. In this study, the target gene was isolated and characterized as TaMDHAR, a monodehydroascorbate reductase gene. We first demonstrated that the target gene could be cleaved by these two miRNAs in tobacco leaves experimentally. However, TaMDHAR was regulated by PN-2013, not 1136-P3, in wheat-Pst adult incompatible interaction according to the expression patterns. The TaMDHAR knockdown resulted in improved wheat resistance to Pst at the seedling stage, with no influence on 1136-P3 and PN-2013 expression. The TaMDHAR knockdown resulted in a much greater H2O2 accumulation and lower APX and CAT activities together with higher expression in several PR genes. We deduced that TaMDHAR could contribute to the APR of XZ through ROS metabolism as regulated by the AsA-GSH cycle.

  18. Retinoid Homeostatic Gene Expression in Liver, Lung and Kidney: Ontogeny and Response to Vitamin A-Retinoic Acid (VARA) Supplementation from Birth to Adult Age

    PubMed Central

    Owusu, Sarah A.; Ross, A. Catharine

    2016-01-01

    Vitamin A (VA, retinol) metabolism is homeostatically controlled, but little is known of its regulation in the postnatal period. Here, we determined the postnatal trajectory of VA storage and metabolism in major compartments of VA metabolism–plasma, liver, lung, and kidney from postnatal (P) day 1 to adulthood. We also investigated the response to supplementation with VARA, a combination of VA and 10% all-trans-retinoic acid that previously was shown to synergistically increase retinol uptake and storage in lung. Nursling pups of dams fed a VA-marginal diet received an oral dose of oil (placebo) or VARA on each of four neonatal days: P1, P4, P7, and P10; and again as adults. Tissues were collected 6 h after the final dosing on P1, P4, P10, and at adult age. Gene transcripts for Lrat and Rbp4 in liver and Raldh-1 and Raldh-3 in lung, did not differ in the neonatal period but were higher, P<0.05, in adults, while Cyp26B1, Stra6, megalin, and Raldh-2 in lung did not differ from perinatal to adult ages. VARA supplementation increased total retinol in plasma, liver and lung, with a dose-by-dose accumulation in neonatal liver and lung, while transcripts for Lrat in liver, megalin in kidney, Cyp26A1/B1 in liver and lung, respectively, and Stra6 in lung, were all increased, suggesting pathways of VA uptake, storage and RA oxidation were each augmented after VARA. VARA decreased hepatic expression of Rbp4, responsible for VA trafficking from liver to plasma, and, in lung, of Raldh-1 and Raldh-2, which function in RA production. Our results define retinoid homeostatic gene expression from neonatal and adult age and show that while supplementation with VARA acutely alters retinol content and retinoid homeostatic gene expression in neonatal and adult lung, liver and kidney, VARA supplementation of neonates increased adult-age VA content only in the liver. PMID:26731668

  19. Gestational N-hexane inhalation alters the expression of genes related to ovarian hormone production and DNA methylation states in adult female F1 rat offspring.

    PubMed

    Li, Hong; Zhang, Chenyun; Ni, Feng; Guo, Suhua; Wang, Wenxiang; Liu, Jing; Lu, Xiaoli; Huang, Huiling; Zhang, Wenchang

    2015-12-15

    Research has revealed that n-hexane can disrupt adult female endocrine functions; however, few reports have focused on endocrine changes in adult F1 females after maternal exposure during gestation. In this study, female Wistar rats inhaled 100, 500, 2500, or 12,500 ppm n-hexane for 4 h daily during their initial 20 gestational days. The F1 female offspring exhibited abnormal oestrus cycles. Compared with the controls, the in vitro-cultured ovarian granulosa cells of the 12,500 ppm group showed significantly reduced in vitro progesterone and oestradiol secretion. Elevated progesterone secretion was observed in the 500 ppm group, and decreased and significantly upregulated mRNA expression of the Star, Cyp11a1, Cyp17a1, and Hsd3b genes was observed in the 12,500 ppm and 500 ppm groups, respectively. The protein expression levels were consistent with the mRNA expression levels. Methylation screening of the promoter regions of these genes was performed using MeDIP-chip and confirmed by methylation-sensitive high-resolution melting (MS-HRM), and the observed methylation state changes of the promoter regions were correlated with the gene expression levels. The results suggest that the hormone levels in the female offspring after gestational n-hexane inhalation correspond to the expression levels and DNA methylation states of the hormone production genes. PMID:26410608

  20. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males

    SciTech Connect

    Zucchi, Sara; Bluethgen, Nancy; Ieronimo, Andrea; Fent, Karl

    2011-01-15

    Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 {mu}g/L. In eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 {mu}g/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.

  1. DNA methylation differences at growth related genes correlate with birth weight: a molecular signature linked to developmental origins of adult disease?

    PubMed Central

    2012-01-01

    factors unrelated to birth weight, while inter-individual differences in DNA methylation may represent a "molecular fossil record" of differences in birth weight-related gene expression. Finding these "unexpected" pathways may tell us something about the long-term association between low birth weight and adult disease, as well as which genes may be susceptible to environmental effects. These findings increase our understanding of the molecular mechanisms involved in human development and disease progression. PMID:22498030

  2. Selection and reliability of internal reference genes for quantitative PCR verification of transcriptomics during the differentiation process of porcine adult mesenchymal stem cells

    PubMed Central

    2010-01-01

    Introduction The objective of this study was to find highly reliable internal-control genes (ICGs) for normalization of qPCR data from porcine adult mesenchymal stem cells induced to differentiate toward adipogenic and osteogenic lineages. Methods Stem cells were acquired from subcutaneous back fat and bone marrow of three castrated Yorkshire crossbred male pigs. Adipose and bone marrow-derived stem cells (ADSCs and BMSCs) were cultured in vitro with specific osteogenic or adipogenic differentiation medium for 4 weeks. Total RNA was extract for microarray (13,000 oligonucleotides) and qPCR analyses. Microarray data were used to uncover the most stably expressed genes (that is, potential ICGs). Co-regulation among potential ICGs was evaluated with Ingenuity Pathway Analysis. qPCR was performed on the non-coregulated ICGs candidates and on specific osteogenic (COL1A1) and adipogenic (DBI) genes. geNorm was used to uncover the most reliable ICGs by using qPCR data and the optimal number of ICGs to be used to calculate the normalization factor. Results Microarray data analysis revealed 27 potential ICGs. Among those, 10 genes without known co-regulation were selected to perform qPCR. geNorm performed on qPCR data uncovered high stability in expression ratio among the selected ICGs. However, especially reliable normalization was obtained by geometric mean of NSUN5, TIMM17B, and VPS4A. The effect of normalization, assessed on specific osteogenic (COL1A1) and adipogenic (DBI) genes, was apparent for the adipogenic and less apparent for the osteogenic differentiation. Conclusions The combination of microarray data and pairwise gene analysis allowed identification of novel and highly reliable ICGs for qPCR data normalization of adult porcine stem cells induced to differentiate to adipogenic and osteogenic lineages. PMID:20504288

  3. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: Effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure wo...

  4. Sequences upstream of the homologous cis-elements of the Adh adult enhancer of Drosophila are required for maximal levels of Adh gene transcription in adults of Scaptodrosophila lebanonensis.

    PubMed Central

    Papaceit, Montserrat; Orengo, Dorcas; Juan, Elvira

    2004-01-01

    The evolution of cis-regulatory elements is of particular interest for our understanding of the evolution of gene regulation. The Adh gene of Drosophilidae shows interspecific differences in tissue-specific expression and transcript levels during development. In Scaptodrosophila lebanonensis adults, the level of distal transcripts is maximal between the fourth and eighth day after eclosion and is around five times higher than that in D. melanogaster Adh(S). To examine whether these quantitative differences are regulated by sequences lying upstream of the distal promoter, we performed in vitro deletion mutagenesis of the Adh gene of S. lebanonensis, followed by P-element-mediated germ-line transformation. All constructs included, as a cotransgene, a modified Adh gene of D. melanogaster (dAdh) in a fixed position and orientation that acted as a chromosomal position control. Using this approach, we have identified a fragment of 1.5 kb in the 5' region, 830 bp upstream of the distal start site, which is required to achieve maximal levels of distal transcript in S. lebanonensis. The presence of this fragment produces a 3.5-fold higher level of distal mRNA (as determined by real time quantitative PCR) compared with the D. melanogaster dAdh cotransgene. This region contains the degenerated end of a minisatellite sequence expanding farther upstream and does not correspond to the Adh adult enhancer (AAE) of D. melanogaster. Indeed, the cis-regulatory elements of the AAE have been identified by phylogenetic footprinting within the region 830 bp upstream of the distal start site of S. lebanonensis. Furthermore, the deletions Delta-830 and Delta-2358 yield the same pattern of tissue-specific expression, indicating that all tissue-specific elements are contained within the region 830 bp upstream of the distal start site. PMID:15166155

  5. Homozygosity for the common GAA gene splice site mutation c.-32-13T>G in Pompe disease is associated with the classical adult phenotypical spectrum.

    PubMed

    Musumeci, Olimpia; Thieme, Andrea; Claeys, Kristl G; Wenninger, Stephan; Kley, Rudolf A; Kuhn, Marius; Lukacs, Zoltan; Deschauer, Marcus; Gaeta, Michele; Toscano, Antonio; Gläser, Dieter; Schoser, Benedikt

    2015-09-01

    Homozygosity for the common Caucasian splice site mutation c.-32-13T>G in intron 1 of the GAA gene is rather rare in Pompe patients. We report on the clinical, biochemical, morphological, muscle imaging, and genetic findings of six adult Pompe patients from five unrelated families with the c.-32-13T>G GAA gene mutation in homozygous state. All patients had decreased GAA activity and elevated creatine kinase levels. Five patients, aged between 43 and 61 years (median 53 years), initially presented with myalgia, hyperCKaemia, and/or exercise induced fatigue at an age of onset (12-55 years). All but one had proximal lower limb weakness combined with axial weakness and moderate respiratory insufficiency; the sixth patient presented with hyperCKaemia only. Muscle biopsies showed PAS-positive vacuolar myopathy with lysosomal changes and reduced GAA activity. Muscle MRI of lower limb muscles revealed a moderate adipose substitution of the gluteal muscles, biceps femoris and slight fatty infiltration of all thigh muscles. One MRI of the respiratory muscles revealed a diaphragmatic atrophy with unilateral diaphragm elevation. So, the common Caucasian, so called mild, splice site mutation c.-32-13T>G in intron 1 of the GAA gene in a homozygote status reflects the full adult Pompe disease phenotype severity spectrum. PMID:26231297

  6. RNA interference-mediated knockdown of the Halloween gene Spookiest (CYP307B1) impedes adult eclosion in the western tarnished plant bug, Lygus hesperus.

    PubMed

    Van Ekert, E; Wang, M; Miao, Y-G; Brent, C S; Hull, J J

    2016-10-01

    Ecdysteroids play a critical role in coordinating insect growth, development and reproduction. A suite of cytochrome P450 monooxygenases coded by what are collectively termed Halloween genes mediate ecdysteroid biosynthesis. In this study, we describe cloning and RNA interference (RNAi)-mediated knockdown of the CYP307B1 Halloween gene (Spookiest) in the western tarnished plant bug, Lygus hesperus. Transcripts for Ly. hesperus Spookiest (LhSpot) were amplified from all life stages and correlated well with timing of the pre-moult ecdysteroid pulse. In adults, LhSpot was amplified from heads of both genders as well as female reproductive tissues. Heterologous expression of a LhSpot fluorescent chimera in cultured insect cells co-localized with a fluorescent marker of the endoplasmic reticulum/secretory pathway. RNAi-mediated knockdown of LhSpot in fifth instars reduced expression of ecdysone-responsive genes E74 and E75, and prevented adult development. This developmental defect was rescued following application of exogenous 20-hydroxyecdysone but not exogenous 7-dehydrocholesterol. The unequivocal RNAi effects on Ly. hesperus development and the phenotypic rescue by 20-hydroxyecdysone are causal proof of the involvement of LhSpot in ecdysteroid biosynthesis and related developmental processes, and may provide an avenue for development of new control measures against Ly. hesperus. PMID:27189651

  7. RNA interference-mediated knockdown of the Halloween gene Spookiest (CYP307B1) impedes adult eclosion in the western tarnished plant bug, Lygus hesperus.

    PubMed

    Van Ekert, E; Wang, M; Miao, Y-G; Brent, C S; Hull, J J

    2016-10-01

    Ecdysteroids play a critical role in coordinating insect growth, development and reproduction. A suite of cytochrome P450 monooxygenases coded by what are collectively termed Halloween genes mediate ecdysteroid biosynthesis. In this study, we describe cloning and RNA interference (RNAi)-mediated knockdown of the CYP307B1 Halloween gene (Spookiest) in the western tarnished plant bug, Lygus hesperus. Transcripts for Ly. hesperus Spookiest (LhSpot) were amplified from all life stages and correlated well with timing of the pre-moult ecdysteroid pulse. In adults, LhSpot was amplified from heads of both genders as well as female reproductive tissues. Heterologous expression of a LhSpot fluorescent chimera in cultured insect cells co-localized with a fluorescent marker of the endoplasmic reticulum/secretory pathway. RNAi-mediated knockdown of LhSpot in fifth instars reduced expression of ecdysone-responsive genes E74 and E75, and prevented adult development. This developmental defect was rescued following application of exogenous 20-hydroxyecdysone but not exogenous 7-dehydrocholesterol. The unequivocal RNAi effects on Ly. hesperus development and the phenotypic rescue by 20-hydroxyecdysone are causal proof of the involvement of LhSpot in ecdysteroid biosynthesis and related developmental processes, and may provide an avenue for development of new control measures against Ly. hesperus.

  8. Expression of Genes Related to Germ Cell Lineage and Pluripotency in Single Cells and Colonies of Human Adult Germ Stem Cells

    PubMed Central

    Conrad, Sabine; Azizi, Hossein; Hatami, Maryam; Kubista, Mikael; Bonin, Michael; Hennenlotter, Jörg; Sievert, Karl-Dietrich; Skutella, Thomas

    2016-01-01

    The aim of this study was to elucidate the molecular status of single human adult germ stem cells (haGSCs) and haGSC colonies, which spontaneously developed from the CD49f MACS and matrix- (collagen−/laminin+ binding-) selected fraction of enriched spermatogonia. Single-cell transcriptional profiling by Fluidigm BioMark system of a long-term cultured haGSCs cluster in comparison to human embryonic stem cells (hESCs) and human fibroblasts (hFibs) revealed that haGSCs showed a characteristic germ- and pluripotency-associated gene expression profile with some similarities to hESCs and with a significant distinction from somatic hFibs. Genome-wide comparisons with microarray analysis confirmed that different haGSC colonies exhibited gene expression heterogeneity with more or less pluripotency. The results of this study confirm that haGSCs are adult stem cells with a specific molecular gene expression profile in vitro, related but not identical to true pluripotent stem cells. Under ES-cell conditions haGSC colonies could be selected and maintained in a partial pluripotent state at the molecular level, which may be related to their cell plasticity and potential to differentiate into cells of all germ layers. PMID:26649052

  9. The Effect of Pro-Neurogenic Gene Expression on Adult Subventricular Zone Precursor Cell Recruitment and Fate Determination After Excitotoxic Brain Injury

    PubMed Central

    Jones, Kathryn S; Connor, Bronwen J

    2016-01-01

    Despite the presence of on-going neurogenesis in the adult mammalian brain, neurons are generally not replaced after injury. Using a rodent model of excitotoxic cell loss and retroviral (RV) lineage tracing, we previously demonstrated transient recruitment of precursor cells from the subventricular zone (SVZ) into the lesioned striatum. In the current study we determined that these cells included migratory neuroblasts and oligodendrocyte precursor cells (OPC), with the predominant response from glial cells. We attempted to override this glial response by ectopic expression of the pro-neurogenic genes Pax6 or Dlx2 in the adult rat SVZ following quinolinic acid lesioning. RV-Dlx2 over-expression stimulated repair at a previously non-neurogenic time point by enhancing neuroblast recruitment and the percentage of cells that retained a neuronal fate within the lesioned area, compared to RV-GFP controls. RV-Pax6 expression was unsuccessful at inhibiting glial fate and intriguingly, increased OPC cell numbers with no change in neuronal recruitment. These findings suggest that gene choice is important when attempting to augment endogenous repair as the lesioned environment can overcome pro-neurogenic gene expression. Dlx2 over-expression however was able to partially overcome an anti-neuronal environment and therefore is a promising candidate for further study of striatal regeneration. PMID:27397999

  10. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders.

    PubMed

    Tyrka, A R; Parade, S H; Welch, E S; Ridout, K K; Price, L H; Marsit, C; Philip, N S; Carpenter, L L

    2016-01-01

    Early adversity increases risk for developing psychopathology. Epigenetic modification of stress reactivity genes is a likely mechanism contributing to this risk. The glucocorticoid receptor (GR) gene is of particular interest because of the regulatory role of the GR in hypothalamic-pituitary-adrenal (HPA) axis function. Mounting evidence suggests that early adversity is associated with GR promoter methylation and gene expression. Few studies have examined links between GR promoter methylation and psychopathology, and findings to date have been mixed. Healthy adult participants (N=340) who were free of psychotropic medications reported on their childhood experiences of maltreatment and parental death and desertion. Lifetime depressive and anxiety disorders and past substance-use disorders were assessed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Methylation of exon 1F of the GR gene (NR3C1) was examined in leukocyte DNA via pyrosequencing. On a separate day, a subset of the participants (n=231) completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Childhood adversity and a history of past substance-use disorder and current or past depressive or anxiety disorders were associated with lower levels of NR3C1 promoter methylation across the region as a whole and at individual CpG sites (P<0.05). The number of adversities was negatively associated with NR3C1 methylation in participants with no lifetime disorder (P=0.018), but not in those with a lifetime disorder. GR promoter methylation was linked to altered cortisol responses to the Dex/CRH test (P<0.05). This study presents evidence of reduced methylation of NR3C1 in association with childhood maltreatment and depressive, anxiety and substance-use disorders in adults. This finding stands in contrast to our prior work, but is consistent with emerging findings, suggesting complexity in the regulation of this gene.

  11. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders.

    PubMed

    Tyrka, A R; Parade, S H; Welch, E S; Ridout, K K; Price, L H; Marsit, C; Philip, N S; Carpenter, L L

    2016-01-01

    Early adversity increases risk for developing psychopathology. Epigenetic modification of stress reactivity genes is a likely mechanism contributing to this risk. The glucocorticoid receptor (GR) gene is of particular interest because of the regulatory role of the GR in hypothalamic-pituitary-adrenal (HPA) axis function. Mounting evidence suggests that early adversity is associated with GR promoter methylation and gene expression. Few studies have examined links between GR promoter methylation and psychopathology, and findings to date have been mixed. Healthy adult participants (N=340) who were free of psychotropic medications reported on their childhood experiences of maltreatment and parental death and desertion. Lifetime depressive and anxiety disorders and past substance-use disorders were assessed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Methylation of exon 1F of the GR gene (NR3C1) was examined in leukocyte DNA via pyrosequencing. On a separate day, a subset of the participants (n=231) completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Childhood adversity and a history of past substance-use disorder and current or past depressive or anxiety disorders were associated with lower levels of NR3C1 promoter methylation across the region as a whole and at individual CpG sites (P<0.05). The number of adversities was negatively associated with NR3C1 methylation in participants with no lifetime disorder (P=0.018), but not in those with a lifetime disorder. GR promoter methylation was linked to altered cortisol responses to the Dex/CRH test (P<0.05). This study presents evidence of reduced methylation of NR3C1 in association with childhood maltreatment and depressive, anxiety and substance-use disorders in adults. This finding stands in contrast to our prior work, but is consistent with emerging findings, suggesting complexity in the regulation of this gene. PMID

  12. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders

    PubMed Central

    Tyrka, A R; Parade, S H; Welch, E S; Ridout, K K; Price, L H; Marsit, C; Philip, N S; Carpenter, L L

    2016-01-01

    Early adversity increases risk for developing psychopathology. Epigenetic modification of stress reactivity genes is a likely mechanism contributing to this risk. The glucocorticoid receptor (GR) gene is of particular interest because of the regulatory role of the GR in hypothalamic–pituitary–adrenal (HPA) axis function. Mounting evidence suggests that early adversity is associated with GR promoter methylation and gene expression. Few studies have examined links between GR promoter methylation and psychopathology, and findings to date have been mixed. Healthy adult participants (N=340) who were free of psychotropic medications reported on their childhood experiences of maltreatment and parental death and desertion. Lifetime depressive and anxiety disorders and past substance-use disorders were assessed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Methylation of exon 1F of the GR gene (NR3C1) was examined in leukocyte DNA via pyrosequencing. On a separate day, a subset of the participants (n=231) completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Childhood adversity and a history of past substance-use disorder and current or past depressive or anxiety disorders were associated with lower levels of NR3C1 promoter methylation across the region as a whole and at individual CpG sites (P<0.05). The number of adversities was negatively associated with NR3C1 methylation in participants with no lifetime disorder (P=0.018), but not in those with a lifetime disorder. GR promoter methylation was linked to altered cortisol responses to the Dex/CRH test (P<0.05). This study presents evidence of reduced methylation of NR3C1 in association with childhood maltreatment and depressive, anxiety and substance-use disorders in adults. This finding stands in contrast to our prior work, but is consistent with emerging findings, suggesting complexity in the regulation of this gene. PMID

  13. Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration

    PubMed Central

    Chen, Shuyuan; Shimoda, Masyuki; Chen, Jiaxi; Matsumodo, Shinichi

    2012-01-01

    The molecular mechanism of β-cell regeneration remains poorly understood. Cyclin D2/CDK4 expresses in normal β cells and maintains adult β-cell growth. We hypothesized that gene therapy with cyclin D2/CDK4/GLP-1 plasmids targeted to the pancreas of STZ-treated rats by ultrasound-targeted microbubble destruction (UTMD) would force cell cycle re-entry of residual G0-phase islet cells into G1/S phase to regenerate β cells. A single UTMD treatment induced β-cell regeneration with reversal of diabetes for 6 mo without evidence of toxicity. We observed that this β-cell regeneration was not mediated by self-replication of pre-existing β cells. Instead, cyclin D2/CDK4/GLP-1 initiated robust proliferation of adult pancreatic progenitor cells that exist within islets and terminally differentiate to mature islets with β cells and α cells. PMID:22373529

  14. The gene encoding the VP16-accessory protein HCF (HCFC1) resides in human Xq28 and is highly expressed in fetal tissues and the adult kidney

    SciTech Connect

    Wilson, A.C.; Herr, W.; Parrish, J.E.; Massa, H.F.

    1995-01-20

    After herpes simplex virus (HSV) infection, the viral regulatory protein VP16 activates transcription of the HSV immediate-early promoters by directing complex formation with two cellular proteins, the POU-homeodomain transcription factor Oct-1 and the host cell factor HCF. The function of HCF in uninfected cells is unknown. Here we show by fluorescence in situ hybridization and somatic cell hybrid analysis that the gene encoding human HCF, HCFC1, maps to the q28 region of the X chromosome. Yeast artificial chromosome and cosmid mapping localizes the HCFC1 gene within 100 kb distal of the renal vasopressin type-2 receptor (V2R) gene and adjacent to the renin-binding protein gene (RENBP). The HCFC1 gene is apparently unique. HCF transcripts and protein are most abundant in fetal and placental tissues and cell lines, suggesting a role in cell proliferation. In adults, HCF protein is abundant in the kidney, but not in the brain, a site of latent HSV infection and where HCF levels may influence progression of HSV infection. 42 refs., 3 figs.

  15. Rapid and dynamic alterations of gene expression profiles of adult porcine bone marrow derived stem cell in response to hypoxia

    PubMed Central

    Wang, Suna; Zhou, Yifu; Seavey, Caleb N.; Singh, Avneesh K.; Xu, Xiuli; Hunt, Timothy; Hoyt, Robert F.; Horvath, Keith A.

    2013-01-01

    This study sought to identify the gene expression patterns of porcine bone marrow-derived MSC in response to hypoxia and investigate novel specific hypoxic targets that may have a role in determining MSC proliferation/survival and differentiation. MSC from fifteen animals were incubated in 1% oxygen and 8% carbon dioxide for 6, 12 and 24 hours. RNA samples were isolated and assayed with Affymetrix porcine arrays and quantitative reverse transcription PCR. Significant gene expression levels among the four groups of normoxia, 6-, 12- and 24-hours hypoxia were identified. The pattern in the 12-hours hypoxia group was similar to that of 24-hours. Of 23,924 probes, 377 and 210 genes were regulated in the 6- and 24-hours hypoxia groups, respectively. Functional classification of the hypoxic regulated genes was mainly clustered in cell proliferation and response to stress. However, the major upregulated genes in the 6-hours group were activated in cell cycle phases; the genes in the 24-hours hypoxia were evenly separated into cell differentiation, apoptosis and cellular metabolic processes. Twenty-eight genes were upregulated in all hypoxia groups; these genes are considered as hypoxic targets. Our results identified a genome-wide hypoxia induced gene expression pattern in porcine MSC. This study provides a global view of molecular events in the cells during exposure to hypoxia and revealed a set of novel candidate hypoxic targets. PMID:20172499

  16. Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (HSV-1) and electroporation: methods and optogenetic applications

    PubMed Central

    Zou, Ming; De Koninck, Paul; Neve, Rachael L.; Friedrich, Rainer W.

    2014-01-01

    The zebrafish has various advantages as a model organism to analyze the structure and function of neural circuits but efficient viruses or other tools for fast gene transfer are lacking. We show that transgenes can be introduced directly into the adult zebrafish brain by herpes simplex type I viruses (HSV-1) or electroporation. We developed a new procedure to target electroporation to defined brain areas and identified promoters that produced strong long-term expression. The fast workflow of electroporation was exploited to express multiple channelrhodopsin-2 variants and genetically encoded calcium indicators in telencephalic neurons for measurements of neuronal activity and synaptic connectivity. The results demonstrate that HSV-1 and targeted electroporation are efficient tools for gene delivery into the zebrafish brain, similar to adeno-associated viruses and lentiviruses in other species. These methods fill an important gap in the spectrum of molecular tools for zebrafish and are likely to have a wide range of applications. PMID:24834028

  17. A previously undiagnosed case of Gerstmann-Sträussler-Scheinker disease revealed by PRNP gene analysis in patients with adult-onset ataxia.

    PubMed

    Cagnoli, Claudia; Brussino, Alessandro; Sbaiz, Luca; Di Gregorio, Eleonora; Atzori, Cristiana; Caroppo, Paola; Orsi, Laura; Migone, Nicola; Buffa, Carlo; Imperiale, Daniele; Brusco, Alfredo

    2008-07-30

    Ataxia is a frequently reported symptom in prion diseases (PD) and it is characteristic of Gerstmann-Sträussler-Scheinker syndrome (GSS), a genetic PD mainly related to the P102L mutation in the PRNP gene. Our aim was to screen for the P102L and other six known PRNP gene mutations (P105L, A117V, Y145X, E200K, D202N, and V210I) a group of 206 consecutive patients diagnosed with adult-onset cerebellar ataxia of unknown origin. The patients, negative for the most common acquired and genetic forms, were analyzed using a combination of restriction endonuclease digestion and pyrosequencing; eight, affected by ataxia and cognitive dysfunction, were also sequenced for the PRNP gene. One patient resulted to be heterozygous for the P102L mutation. Retrospectively, the clinical picture was consistent with a "classical" GSS phenotype. In conclusion, the screening for the P102L mutation, or even the sequencing of the PRNP gene should be taken in consideration in patients with late-onset ataxia (>50 years).

  18. Antibacterial activities of multi drug resistant Myroides odoratimimus bacteria isolated from adult flesh flies (Diptera: sarcophagidae) are independent of metallo beta-lactamase gene

    PubMed Central

    Dharne, M.S.; Gupta, A.K.; Rangrez, A.Y.; Ghate, H.V.; Patole, M.S.; Shouche, Y.S.

    2008-01-01

    Flesh flies (Diptera: Sarcophagidae) are well known cause of myiasis and their gut bacteria have never been studied for antimicrobial activity against bacteria. Antimicrobial studies of Myroides spp. are restricted to nosocomial strains. A Gram-negative bacterium, Myroides sp., was isolated from the gut of adult flesh flies (Sarcophaga sp.) and submitted to evaluation of nutritional parameters using Biolog GN, 16S rRNA gene sequencing, susceptibility to various antimicrobials by disc diffusion method and detection of metallo β-lactamase genes (TUS/MUS). The antagonistic effects were tested on Gram-negative and Gram-positive bacteria isolated from human clinical specimens, environmental samples and insect mid gut. Bacterial species included were Aeromonas hydrophila, A. culicicola, Morganella morganii subsp. sibonii, Ochrobactrum anthropi, Weissella confusa, Escherichia coli, Ochrobactrum sp., Serratia sp., Kestersia sp., Ignatzschineria sp., Bacillus sp. The Myroides sp. strain was resistant to penicillin-G, erythromycin, streptomycin, amikacin, kanamycin, gentamycin, ampicillin, trimethoprim and tobramycin. These strain showed antibacterial action against all bacterial strains except W. confusa, Ignatzschineria sp., A. hydrophila and M. morganii subsp. sibonii. The multidrug resistance of the strain was similar to the resistance of clinical isolates, inhibiting growth of bacteria from clinical, environmental and insect gut samples. The metallo β-lactamase (TUS/MUS) genes were absent, and resistance due to these genes was ruled out, indicating involvement of other secretion machinery. PMID:24031236

  19. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, impaired adult social behavior and activity patterns

    PubMed Central

    Wise, Alexandra; Tenezaca, Luis; Fernandez, Robert W.; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F.; Venkatesh, Tadmiri

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions and hyperactivity. ASD exhibits a strong genetic component with underlying multi-gene interactions. Candidate gene studies have shown that the neurobeachin gene is disrupted in human patients with idiopathic autism (Castermans et al., 2003). The gene for neurobeachin (NBEA) spans the common fragile site FRA 13A and encodes a signal scaffold protein (Savelyeva et al., 2006). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. (Medrihan et al., 2009; Savelyeva, Sagulenko, Schmitt, & Schwab, 2006). rugose (rg) is the Drosophila homologue of the mammalian and human neurobeachin. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the EGFR and Notch mediated signaling pathways, facilitating cross-talk between these and other pathways (Shamloula et al., 2002). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion and hyperactivity. These results demonstrate that Drosophila neurobeachin (rugose) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying autism spectrum disorders. PMID:26100104

  20. Transcript levels of ten caste-related genes in adult diploid males of Melipona quadrifasciata (Hymenoptera, Apidae) - A comparison with haploid males, queens and workers

    PubMed Central

    Borges, Andreia A.; Humann, Fernanda C.; Oliveira Campos, Lucio A.; Tavares, Mara G.; Hartfelder, Klaus

    2011-01-01

    In Hymenoptera, homozygosity at the sex locus results in the production of diploid males. In social species, these pose a double burden by having low fitness and drawing resources normally spent for increasing the work force of a colony. Yet, diploid males are of academic interest as they can elucidate effects of ploidy (normal males are haploid, whereas the female castes, the queens and workers, are diploid) on morphology and life history. Herein we investigated expression levels of ten caste-related genes in the stingless bee Melipona quadrifasciata, comparing newly emerged and 5-day-old diploid males with haploid males, queens and workers. In diploid males, transcript levels for dunce and paramyosin were increased during the first five days of adult life, while those for diacylglycerol kinase and the transcriptional co-repressor groucho diminished. Two general trends were apparent, (i) gene expression patterns in diploid males were overall more similar to haploid ones and workers than to queens, and (ii) in queens and workers, more genes were up-regulated after emergence until day five, whereas in diploid and especially so in haploid males more genes were down-regulated. This difference between the sexes may be related to longevity, which is much longer in females than in males. PMID:22215977

  1. Reference Genes for qPCR Analysis in Resin-Tapped Adult Slash Pine As a Tool to Address the Molecular Basis of Commercial Resinosis.

    PubMed

    de Lima, Júlio C; de Costa, Fernanda; Füller, Thanise N; Rodrigues-Corrêa, Kelly C da Silva; Kerber, Magnus R; Lima, Mariano S; Fett, Janette P; Fett-Neto, Arthur G

    2016-01-01

    Pine oleoresin is a major source of terpenes, consisting of turpentine (mono- and sesquiterpenes) and rosin (diterpenes) fractions. Higher oleoresin yields are of economic interest, since oleoresin derivatives make up a valuable source of materials for chemical industries. Oleoresin can be extracted from living trees, often by the bark streak method, in which bark removal is done periodically, followed by application of stimulant paste containing sulfuric acid and other chemicals on the freshly wounded exposed surface. To better understand the molecular basis of chemically-stimulated and wound induced oleoresin production, we evaluated the stability of 11 putative reference genes for the purpose of normalization in studying Pinus elliottii gene expression during oleoresinosis. Samples for RNA extraction were collected from field-grown adult trees under tapping operations using stimulant pastes with different compositions and at various time points after paste application. Statistical methods established by geNorm, NormFinder, and BestKeeper softwares were consistent in pointing as adequate reference genes HISTO3 and UBI. To confirm expression stability of the candidate reference genes, expression profiles of putative P. elliottii orthologs of resin biosynthesis-related genes encoding Pinus contorta β-pinene synthase [PcTPS-(-)β-pin1], P. contorta levopimaradiene/abietadiene synthase (PcLAS1), Pinus taeda α-pinene synthase [PtTPS-(+)αpin], and P. taeda α-farnesene synthase (PtαFS) were examined following stimulant paste application. Increased oleoresin yields observed in stimulated treatments using phytohormone-based pastes were consistent with higher expression of pinene synthases. Overall, the expression of all genes examined matched the expected profiles of oleoresin-related transcript changes reported for previously examined conifers. PMID:27379135

  2. Reference Genes for qPCR Analysis in Resin-Tapped Adult Slash Pine As a Tool to Address the Molecular Basis of Commercial Resinosis

    PubMed Central

    de Lima, Júlio C.; de Costa, Fernanda; Füller, Thanise N.; Rodrigues-Corrêa, Kelly C. da Silva; Kerber, Magnus R.; Lima, Mariano S.; Fett, Janette P.; Fett-Neto, Arthur G.

    2016-01-01

    Pine oleoresin is a major source of terpenes, consisting of turpentine (mono- and sesquiterpenes) and rosin (diterpenes) fractions. Higher oleoresin yields are of economic interest, since oleoresin derivatives make up a valuable source of materials for chemical industries. Oleoresin can be extracted from living trees, often by the bark streak method, in which bark removal is done periodically, followed by application of stimulant paste containing sulfuric acid and other chemicals on the freshly wounded exposed surface. To better understand the molecular basis of chemically-stimulated and wound induced oleoresin production, we evaluated the stability of 11 putative reference genes for the purpose of normalization in studying Pinus elliottii gene expression during oleoresinosis. Samples for RNA extraction were collected from field-grown adult trees under tapping operations using stimulant pastes with different compositions and at various time points after paste application. Statistical methods established by geNorm, NormFinder, and BestKeeper softwares were consistent in pointing as adequate reference genes HISTO3 and UBI. To confirm expression stability of the candidate reference genes, expression profiles of putative P. elliottii orthologs of resin biosynthesis-related genes encoding Pinus contorta β-pinene synthase [PcTPS-(−)β-pin1], P. contorta levopimaradiene/abietadiene synthase (PcLAS1), Pinus taeda α-pinene synthase [PtTPS-(+)αpin], and P. taeda α-farnesene synthase (PtαFS) were examined following stimulant paste application. Increased oleoresin yields observed in stimulated treatments using phytohormone-based pastes were consistent with higher expression of pinene synthases. Overall, the expression of all genes examined matched the expected profiles of oleoresin-related transcript changes reported for previously examined conifers. PMID:27379135

  3. Sizes of abdominal organs in adults with severe short stature due to severe, untreated, congenital GH deficiency caused by a homozygous mutation in the GHRH receptor gene

    PubMed Central

    Oliveira, Carla R. P.; Salvatori, Roberto; Nóbrega, Luciana M. A.; Carvalho, Erick O. M.; Menezes, Menilson; Farias, Catarine T.; Britto, Allan V. O.; Pereira, Rossana M. C.; Aguiar-Oliveira, Manuel H.

    2008-01-01

    Summary Objective To assess the sizes of intra-abdominal organs of adult subjects with untreated severe congenital isolated GH deficiency (IGHD) due to lack of functional GHRH receptor (GHRH-R), and to verify whether there is proportionality between size of organ and adult stature and body surface area (BSA). Subjects and methods By using ultrasound, we studied the sizes (absolute and corrected by height, weight and BSA) of the intra-abdominal organs of 18 adult subjects with IGHD (eight females, IGHD group) who have never received GH replacement therapy. They were all homozygous for the same null mutation (IVS1 + 1G → A) in the GHRH receptor gene (GHRH-R). They were compared with normal controls from the same region. Results After correction for BSA, subjects lacking a functional GHRH-R have normal prostate and ovaries size, small spleen and uterus, and large liver, pancreas and kidney. Conclusions Size of individual abdominal organs is influenced in different ways by severe and congenital lack of GH due to a GHRH-R mutation. PMID:18034778

  4. Ecdysone Receptor-based Singular Gene Switches for Regulated Transgene Expression in Cells and Adult Rodent Tissues.

    PubMed

    Lee, Seoghyun; Sohn, Kyung-Cheol; Choi, Dae-Kyoung; Won, Minho; Park, Kyeong Ah; Ju, Sung-Kyu; Kang, Kidong; Bae, Young-Ki; Hur, Gang Min; Ro, Hyunju

    2016-01-01

    Controlled gene expression is an indispensable technique in biomedical research. Here, we report a convenient, straightforward, and reliable way to induce expression of a gene of interest with negligible background expression compared to the most widely used tetracycline (Tet)-regulated system. Exploiting a Drosophila ecdysone receptor (EcR)-based gene regulatory system, we generated nonviral and adenoviral singular vectors designated as pEUI(+) and pENTR-EUI, respectively, which contain all the required elements to guarantee regulated transgene expression (GAL4-miniVP16-EcR, termed GvEcR hereafter, and 10 tandem repeats of an upstream activation sequence promoter followed by a multiple cloning site). Through the transient and stable transfection of mammalian cell lines with reporter genes, we validated that tebufenozide, an ecdysone agonist, reversibly induced gene expression, in a dose- and time-dependent manner, with negligible background expression. In addition, we created an adenovirus derived from the pENTR-EUI vector that readily infected not only cultured cells but also rodent tissues and was sensitive to tebufenozide treatment for regulated transgene expression. These results suggest that EcR-based singular gene regulatory switches would be convenient tools for the induction of gene expression in cells and tissues in a tightly controlled fashion. PMID:27673563

  5. Ecdysone Receptor-based Singular Gene Switches for Regulated Transgene Expression in Cells and Adult Rodent Tissues

    PubMed Central

    Lee, Seoghyun; Sohn, Kyung-Cheol; Choi, Dae-Kyoung; Won, Minho; Park, Kyeong Ah; Ju, Sung-Kyu; Kang, Kidong; Bae, Young-Ki; Hur, Gang Min; Ro, Hyunju

    2016-01-01

    Controlled gene expression is an indispensable technique in biomedical research. Here, we report a convenient, straightforward, and reliable way to induce expression of a gene of interest with negligible background expression compared to the most widely used tetracycline (Tet)-regulated system. Exploiting a Drosophila ecdysone receptor (EcR)-based gene regulatory system, we generated nonviral and adenoviral singular vectors designated as pEUI(+) and pENTR-EUI, respectively, which contain all the required elements to guarantee regulated transgene expression (GAL4-miniVP16-EcR, termed GvEcR hereafter, and 10 tandem repeats of an upstream activation sequence promoter followed by a multiple cloning site). Through the transient and stable transfection of mammalian cell lines with reporter genes, we validated that tebufenozide, an ecdysone agonist, reversibly induced gene expression, in a dose- and time-dependent manner, with negligible background expression. In addition, we created an adenovirus derived from the pENTR-EUI vector that readily infected not only cultured cells but also rodent tissues and was sensitive to tebufenozide treatment for regulated transgene expression. These results suggest that EcR-based singular gene regulatory switches would be convenient tools for the induction of gene expression in cells and tissues in a tightly controlled fashion. PMID:27673563

  6. Comparative Analysis of AhR-Mediated TCDD-Elicited Gene Expression in Human Liver Adult Stem Cells

    PubMed Central

    Kim, Suntae; Dere, Edward; Burgoon, Lyle D.; Chang, Chia-Cheng; Zacharewski, Timothy R.

    2009-01-01

    Time course and dose-response studies were conducted in HL1-1 cells, a human liver cell line with stem cell–like characteristics, to assess the differential gene expression elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) compared with other established models. Cells were treated with 0.001, 0.01, 0.1, 1, 10, or 100nM TCDD or dimethyl sulfoxide vehicle control for 12 h for the dose-response study, or with 10nM TCDD or vehicle for 1, 2, 4, 8, 12, 24, or 48 h for the time course study. Elicited changes were monitored using a human cDNA microarray with 6995 represented genes. Empirical Bayes analysis identified 144 genes differentially expressed at one or more time points following treatment. Most genes exhibited dose-dependent responses including CYP1A1, CYP1B1, ALDH1A3, and SLC7A5 genes. Comparative analysis of HL1-1 differential gene expression to human HepG2 data identified 74 genes with comparable temporal expression profiles including 12 putative primary responses. HL1-1–specific changes were related to lipid metabolism and immune responses, consistent with effects elicited in vivo. Furthermore, comparative analysis of HL1-1 cells with mouse Hepa1c1c7 hepatoma cell lines and C57BL/6 hepatic tissue identified 18 and 32 commonly regulated orthologous genes, respectively, with functions associated with signal transduction, transcriptional regulation, metabolism and transport. Although some common pathways are affected, the results suggest that TCDD elicits species- and model-specific gene expression profiles. PMID:19684285

  7. A functional variant in MIR137, a candidate gene for schizophrenia, affects Stroop test performance in young adults.

    PubMed

    González-Giraldo, Yeimy; González-Reyes, Rodrigo E; Forero, Diego A

    2016-02-28

    MIR137, a brain expressed miRNA, has been identified as a top novel susceptibility gene for schizophrenia (SZ). 230 healthy participants completed the Stroop test and were genotyped for a functional Variable Number Tandem Repeat (VNTR) in MIR137 gene. MIR137 VNTR genotypes were associated with differences in Stroop facilitation and accuracies in congruent trials and for the total number of errors. This is the first study of the functional VNTR in MIR137 gene and Stroop test performance in healthy subjects. Our results could have important implications for the identification of genetic candidates for endophenotypes for SZ.

  8. Bilateral renal tumors in an adult man with Smith-Magenis syndrome: The role of the FLCN gene.

    PubMed

    Dardour, Leila; Verleyen, Pieter; Lesage, Karl; Holvoet, Maureen; Devriendt, Koen

    2016-10-01

    Smith-Magenis syndrome (SMS) is a contiguous-gene disorder most commonly caused by a deletion of chromosome 17p11.2. We report a 57 year-old man with SMS who presents bilateral renal tumors. This is most likely related to haploinsufficiency of FLCN gene, located in the deleted region, and a known tumor suppressor gene. Haploinsufficiency of FLCN causes Birt-Hogg-Dubé syndrome (BHDS), characterized by pulmonary cysts, renal and skin tumors. The present observation suggests that the follow-up of patients with SMS should also focus on possible manifestations of BHDS.

  9. A functional variant in MIR137, a candidate gene for schizophrenia, affects Stroop test performance in young adults.

    PubMed

    González-Giraldo, Yeimy; González-Reyes, Rodrigo E; Forero, Diego A

    2016-02-28

    MIR137, a brain expressed miRNA, has been identified as a top novel susceptibility gene for schizophrenia (SZ). 230 healthy participants completed the Stroop test and were genotyped for a functional Variable Number Tandem Repeat (VNTR) in MIR137 gene. MIR137 VNTR genotypes were associated with differences in Stroop facilitation and accuracies in congruent trials and for the total number of errors. This is the first study of the functional VNTR in MIR137 gene and Stroop test performance in healthy subjects. Our results could have important implications for the identification of genetic candidates for endophenotypes for SZ. PMID:26778630

  10. Candidate Genes from Molecular Pathways Related to Appetite Regulatory Neural Network and Adipocyte Homeostasis and Obesity: the Coronary Artery Risk Development in Young Adults (CARDIA) Study

    PubMed Central

    Friedlander, Yechiel; Li, Guo; Fornage, Myriam; Williams, O. Dale; Lewis, Cora E.; Schreiner, Pamela; Pletcher, Mark J.; Enquobahrie, Daniel; Williams, Michelle; Siscovick, David S.

    2010-01-01

    Background Appetite regulatory neural network and adipocyte homeostasis molecular pathways are critical to long-term weight maintenance. Genetic variation in these pathways may explain variability of obesity in the general population. Aims The associations of four genes in these pathways (leptin (LEP), leptin receptor (LEPR), neuropeptide Y2 receptor (NPY2R) and peptide YY (PYY)) with obesity-related phenotypes were examined among participants in the CARDIA Study. Participants were 18-30 years old upon recruitment (1985-86). Weight, BMI and waist circumference were measured at baseline and at years 2, 5, 7, 10, 15, and 20. Genotyping was conducted using tag SNPs that characterize the common pattern of genetic variation in these genes. Race-specific linear regression models were used to examine associations of the various SNPs with obesity-related measurements, controlling for sex and age. The overall association based on the 7 repeated anthropometric measurements was tested with GEE. False discovery rate was used to adjust for multiple testing. Results In African-Americans, SNPs across the LEP gene demonstrated significant overall associations with obesity-related phenotypes. The associations between rs17151919 in LEP gene with weight tended to increase with time (SNP × time interaction p=0.0193). The difference in weight levels associated with each additional minor allele ranged from 2.6 kg at entry to 4.8 kg at year 20. Among African-American men, the global tests indicated that SNPs across the NPY2R gene were also associated with waist circumference measurements (p=0.0462). In Caucasians, SNPs across the LEP gene also tended to be associated with weight measurements (p=0.0471) and rs11684664 in PYY gene was associated with obesity-related phenotypes (p= 0.010-0.026) in women only. Conclusions Several SNPs in the LEP, NPY2R and PYY but not the LEPR genes were associated with obesity-related phenotypes in young adults. The associations were more prominent for the

  11. Gene-Specific Differential DNA Methylation and Chronic Arsenic Exposure in an Epigenome-Wide Association Study of Adults in Bangladesh

    PubMed Central

    Argos, Maria; Chen, Lin; Jasmine, Farzana; Tong, Lin; Pierce, Brandon L.; Roy, Shantanu; Paul-Brutus, Rachelle; Gamble, Mary V.; Harper, Kristin N.; Parvez, Faruque; Rahman, Mahfuzar; Rakibuz-Zaman, Muhammad; Slavkovich, Vesna; Baron, John A.; Graziano, Joseph H.; Kibriya, Muhammad G.

    2014-01-01

    Background: Inorganic arsenic is one of the most common naturally occurring contaminants found in the environment. Arsenic is associated with a number of health outcomes, with epigenetic modification suggested as a potential mechanism of toxicity. Objective: Among a sample of 400 adult participants, we evaluated the association between arsenic exposure, as measured by blood and urinary total arsenic concentrations, and epigenome-wide white blood cell DNA methylation. Methods: We used linear regression models to examine the associations between arsenic exposure and methylation at each CpG site, adjusted for sex, age, and batch. Differentially methylated loci were subsequently examined in relation to corresponding gene expression for functional evidence of gene regulation. Results: In adjusted analyses, we observed four differentially methylated CpG sites with urinary total arsenic concentration and three differentially methylated CpG sites with blood arsenic concentration, based on the Bonferroni-corrected significance threshold of p < 1 × 10–7. Methylation of PLA2G2C (probe cg04605617) was the most significantly associated locus in relation to both urinary (p = 3.40 × 10–11) and blood arsenic concentrations (p = 1.48 × 10–11). Three additional novel methylation loci—SQSTM1 (cg01225779), SLC4A4 (cg06121226), and IGH (cg13651690)—were also significantly associated with arsenic exposure. Further, there was evidence of methylation-related gene regulation based on gene expression for a subset of differentially methylated loci. Conclusions: We observed significant associations between arsenic exposure and gene-specific differential white blood cell DNA methylation, suggesting that epigenetic modifications may be an important pathway underlying arsenic toxicity. The specific differentially methylated loci identified may inform potential pathways for future interventions. Citation: Argos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S, Paul-Brutus R, Gamble MV

  12. Gene expression analyses of essential catch factors in the smooth and striated adductor muscles of larval, juvenile and adult great scallop (Pecten maximus).

    PubMed

    Andersen, Øivind; Torgersen, Jacob S; Pagander, Helene H; Magnesen, Thorolf; Johnston, Ian A

    2009-01-01

    The scallop adductor muscle consists of striated fibres responsible for the fast closure of the shells, and smooth fibres able to maintain tension in a prolonged state of contraction called catch. Formation of the force-bearing catch linkages has been demonstrated to be initiated by dephosphorylation of the key catch-regulating factor twitchin by a calcineurin-like phosphatase, while the involvement of other thick filament proteins is uncertain. Here we report on the development of catchability of the adductor smooth muscle in the great scallop (Pecten maximus) by analysing the spatio-temporal gene expression patterns of the myosin regulatory light chain (MLCr), twitchin, myorod and calcineurin using whole mount in situ hybridization and real-time quantitative PCR. The MLCr signal was identified in the retractor and adductor muscles of the pediveliger larvae, and the juvenile and adult scallop displayed abundant mRNA levels of MLCr in the smooth and striated adductor muscles. Twitchin was mainly expressed in the smooth adductor muscle during metamorphosis, whereas the adult striated adductor muscle contained seven-folds higher twitchin mRNA levels compared to the smooth portion. Calcineurin expression predominated in the gonads and in the smooth adductor, and five-folds higher mRNA levels were measured in the smooth than in the striated fibres at the adult stage. In contrast to the other genes examined, the expression of myorod was confined to the smooth adductor muscle suggesting that myorod plays a permissive role in the molluscan catch muscles, which are first required at the vulnerable settlement stage as a component of the predator defence system.

  13. Responsiveness of four gender-specific genes, figla, foxl2, scp3 and sox9a to 17α-ethinylestradiol in adult rare minnow Gobiocypris rarus.

    PubMed

    Yuan, Cong; Wu, Tingting; Zhang, Yingying; Gao, Jiancao; Yang, Yanping; Qin, Fang; Liu, Shaozhen; Zheng, Yao; Wang, Zaizhao

    2014-05-01

    Proteins encoded by figla, foxl2, scp3 and sox9a play important roles in gonad differentiation and reproduction. In the present study, we aimed to determine the responsiveness of figla, foxl2, scp3 and sox9a to 17α-ethinylestradiol (EE2) in the gonads of adult Gobiocypris rarus. Full-length cDNAs of figla, scp3 and sox9a were cloned and characterized by RT-PCR and RACE methods. Expression patterns in adult tissues were investigated. Results indicated that figla was predominantly expressed in adult ovaries and scp3 was restrictively expressed in the male testes and sox9a was principally expressed in the brains of both genders and the testes of males. Gene expression profiles of figla, foxl2, scp3 and sox9a were analyzed in the gonads of adult G. rarus exposed to EE2 at 1, 5, 25, and 125ng/L for 3 and 6days. Three-day EE2 treatment at 1-125ng/L all caused a significant increase of figla transcript in testes and foxl2 transcript in ovaries. However, six-day EE2 exposure at 1-125ng/L repressed figla and scp3 transcript in testes and foxl2 transcript in ovaries. The present study indicates that the testicular transcripts of figla and scp3 in males and the ovarian foxl2 transcript in females have high responsiveness to EE2 and they can be used as sensitive molecular biomarkers for early warning to monitor the environmental estrogenic chemicals in fresh water environment. The present study also suggests that the effective EE2 dosage for feminization in male G. rarus might be at least 25ng/L. PMID:24631545

  14. Influence of single nucleotide polymorphisms of cytokine genes on anti-HBs antibody production after hepatitis B vaccination in a Japanese young adult population.

    PubMed

    Yukimasa, Nobuyasu; Sato, Shoichi; Oboshi, Wataru; Watanabe, Toru; Uzawa, Ryuichi

    2016-01-01

    Hepatitis B (HB) vaccination is one of the most efficient tools to prevent the transmission of the virus. Considerable variability exists in HB vaccine responses, with 5-10% of healthy Japanese adults demonstrating no response following a standard vaccination. Recently, polymorphisms of immune-regulatory genes, such as cytokine genes, have been reported to influence the immune response to HB vaccine. The aim of this study was to investigate the underlying mechanisms of the genetic association between several cytokine gene polymorphisms and the immune response to HB vaccination in a Japanese population. One hundred and twenty three vaccinated young adults were classified according to the level of antibody-titer (anti-HBs). Single nucleotide polymorphism typing for IFN-γ (+874, 3'-UTR), IL-10 (-591, -819, -1082), and TNF-α (-308, -857), was accomplished using the PCR-RFLP or SSP-PCR method. The TNF-α (-857) CC type and the IL-10 (-1082) AG type were present more frequently in the low titer group than in the high titer group. The TNF-α (-857) CC type was found to be significantly associated with low response of serum anti-HBs. The anti-HBs antibody was not readily produced in the IL-10 (-1082) AG and TNF-α (-857) CC haplotype. Conversely, the antibody was readily produced in the IL-10 (-1082) AA and TNF-α (-857) CC haplotype, and the IL-10 (-1082) AA and TNF-α (-857) CT haplotype, suggesting a high likelihood of the IL-10 (-1082) AG type to be included in the low anti-HBs group, and high anti-HBs antibody production in those with the TNF-α (-857) CT type. These SNPs may produce ethnically-specific differences in the immune response to HB vaccine in the Japanese population. J. Med. Invest. 63: 256-261, August, 2016. PMID:27644568

  15. Genome-wide association data suggest ABCB1 and immune-related gene sets may be involved in adult antisocial behavior.

    PubMed

    Salvatore, J E; Edwards, A C; McClintick, J N; Bigdeli, T B; Adkins, A; Aliev, F; Edenberg, H J; Foroud, T; Hesselbrock, V; Kramer, J; Nurnberger, J I; Schuckit, M; Tischfield, J A; Xuei, X; Dick, D M

    2015-04-28

    Adult antisocial behavior (AAB) is moderately heritable, relatively common and has adverse consequences for individuals and society. We examined the molecular genetic basis of AAB in 1379 participants from a case-control study in which the cases met criteria for alcohol dependence. We also examined whether genes of interest were expressed in human brain. AAB was measured using a count of the number of Antisocial Personality Disorder criteria endorsed under criterion A from the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV). Participants were genotyped on the Illumina Human 1M BeadChip. In total, all single-nucleotide polymorphisms (SNPs) accounted for 25% of the variance in AAB, although this estimate was not significant (P=0.09). Enrichment tests indicated that more significantly associated genes were over-represented in seven gene sets, and most were immune related. Our most highly associated SNP (rs4728702, P=5.77 × 10(-7)) was located in the protein-coding adenosine triphosphate-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1). In a gene-based test, ABCB1 was genome-wide significant (q=0.03). Expression analyses indicated that ABCB1 was robustly expressed in the brain. ABCB1 has been implicated in substance use, and in post hoc tests we found that variation in ABCB1 was associated with DSM-IV alcohol and cocaine dependence criterion counts. These results suggest that ABCB1 may confer risk across externalizing behaviors, and are consistent with previous suggestions that immune pathways are associated with externalizing behaviors. The results should be tempered by the fact that we did not replicate the associations for ABCB1 or the gene sets in a less-affected independent sample.

  16. Single Cell Quantification of Reporter Gene Expression in Live Adult Caenorhabditis elegans Reveals Reproducible Cell-Specific Expression Patterns and Underlying Biological Variation.

    PubMed

    Mendenhall, Alexander R; Tedesco, Patricia M; Sands, Bryan; Johnson, Thomas E; Brent, Roger

    2015-01-01

    In multicellular organisms such as Caenorhabditis elegans, differences in complex phenotypes such as lifespan correlate with the level of expression of particular engineered reporter genes. In single celled organisms, quantitative understanding of responses to extracellular signals and of cell-to-cell variation in responses has depended on precise measurement of reporter gene expression. Here, we developed microscope-based methods to quantify reporter gene expression in cells of Caenorhabditis elegans with low measurement error. We then quantified expression in strains that carried different configurations of Phsp-16.2-fluorescent-protein reporters, in whole animals, and in all 20 cells of the intestine tissue, which is responsible for most of the fluorescent signal. Some animals bore more recently developed single copy Phsp-16.2 reporters integrated at defined chromosomal sites, others, "classical" multicopy reporter gene arrays integrated at random sites. At the level of whole animals, variation in gene expression was similar: strains with single copy reporters showed the same amount of animal-to-animal variation as strains with multicopy reporters. At the level of cells, in animals with single copy reporters, the pattern of expression in cells within the tissue was highly stereotyped. In animals with multicopy reporters, the cell-specific expression pattern was also stereotyped, but distinct, and somewhat more variable. Our methods are rapid and gentle enough to allow quantification of expression in the same cells of an animal at different times during adult life. They should allow investigators to use changes in reporter expression in single cells in tissues as quantitative phenotypes, and link those to molecular differences. Moreover, by diminishing measurement error, they should make possible dissection of the causes of the remaining, real, variation in expression. Understanding such variation should help reveal its contribution to differences in complex

  17. Genome-wide association data suggest ABCB1 and immune-related gene sets may be involved in adult antisocial behavior

    PubMed Central

    Salvatore, J E; Edwards, A C; McClintick, J N; Bigdeli, T B; Adkins, A; Aliev, F; Edenberg, H J; Foroud, T; Hesselbrock, V; Kramer, J; Nurnberger, J I; Schuckit, M; Tischfield, J A; Xuei, X; Dick, D M

    2015-01-01

    Adult antisocial behavior (AAB) is moderately heritable, relatively common and has adverse consequences for individuals and society. We examined the molecular genetic basis of AAB in 1379 participants from a case–control study in which the cases met criteria for alcohol dependence. We also examined whether genes of interest were expressed in human brain. AAB was measured using a count of the number of Antisocial Personality Disorder criteria endorsed under criterion A from the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV). Participants were genotyped on the Illumina Human 1M BeadChip. In total, all single-nucleotide polymorphisms (SNPs) accounted for 25% of the variance in AAB, although this estimate was not significant (P=0.09). Enrichment tests indicated that more significantly associated genes were over-represented in seven gene sets, and most were immune related. Our most highly associated SNP (rs4728702, P=5.77 × 10−7) was located in the protein-coding adenosine triphosphate-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1). In a gene-based test, ABCB1 was genome-wide significant (q=0.03). Expression analyses indicated that ABCB1 was robustly expressed in the brain. ABCB1 has been implicated in substance use, and in post hoc tests we found that variation in ABCB1 was associated with DSM-IV alcohol and cocaine dependence criterion counts. These results suggest that ABCB1 may confer risk across externalizing behaviors, and are consistent with previous suggestions that immune pathways are associated with externalizing behaviors. The results should be tempered by the fact that we did not replicate the associations for ABCB1 or the gene sets in a less-affected independent sample. PMID:25918995

  18. Adeno-associated virus 2-mediated high efficiency gene transfer into immature and mature subsets of hematopoietic progenitor cells in human umbilical cord blood

    PubMed Central

    1994-01-01

    Recombinant adeno-associated virus 2 (AAV) virions were constructed containing a gene for resistance to neomycin (neoR), under the control of either the herpesvirus thymidine kinase (TK) gene promoter (vTK- Neo), or the human parvovirus B19 p6 promoter (vB19-Neo), as well as those containing an upstream erythroid cell-specific enhancer (HS-2) from the locus control region of the human beta-globin gene cluster (vHS2-TK-Neo; vHS2-B19-Neo). These recombinant virions were used to infect either low density or highly enriched populations of CD34+ cells isolated from human umbilical cord blood. In clonogenic assays initiated with cells infected with the different recombinant AAV-Neo virions, equivalent high frequency transduction of the neoR gene into slow-cycling multipotential, erythroid, and granulocyte/macrophage (GM) progenitor cells, including those with high proliferative potential, was obtained without prestimulation with growth factors, indicating that these immature and mature hematopoietic progenitor cells were susceptible to infection by the recombinant AAV virions. Successful transduction did not require and was not enhanced by prestimulation of these cell populations with cytokines. The functional activity of the transduced neo gene was evident by the development of resistance to the drug G418, a neomycin analogue. Individual high and low proliferative colony-forming unit (CFU)-GM, burst-forming unit-erythroid, and CFU- granulocyte erythroid macrophage megakaryocyte colonies from mock- infected, or the recombinant virus-infected cultures were subjected to polymerase chain reaction analysis using a neo-specific synthetic oligonucleotide primer pair. A 276-bp DNA fragment that hybridized with a neo-specific DNA probe on Southern blots was only detected in those colonies cloned from the recombinant virus-infected cells, indicating stable integration of the transduced neo gene. These studies suggest that parvovirus-based vectors may prove to be a useful

  19. ACE and UCP2 gene polymorphisms and their association with baseline and exercise-related changes in the functional performance of older adults.

    PubMed

    Keogh, Justin W L; Palmer, Barry R; Taylor, Denise; Kilding, Andrew E

    2015-01-01

    Maintaining high levels of physical function is an important aspect of successful ageing. While muscle mass and strength contribute to functional performance in older adults, little is known about the possible genetic basis for the heterogeneity of physical function in older adults and in how older adults respond to exercise. Two genes that have possible roles in determining levels of muscle mass, strength and function in young and older adults are angiotensin-converting enzyme (ACE) and mitochondrial uncoupling protein 2 (UCP2). This study examined whether polymorphisms in these two individual genes were associated with baseline functional performance levels and/or the training-related changes following exercise in previously untrained older adults. Five-eight Caucasian older adults (mean age 69.8 years) with no recent history of resistance training enrolled in a 12 week program of resistance, balance and cardiovascular exercises aimed at improving functional performance. Performance in 6 functional tasks was recorded at baseline and after 12 weeks. Genomic DNA was assayed for the ACE intron 16 insertion/deletion (I/D) and the UCP2 G-866A polymorphism. Baseline differences among genotype groups were tested using analysis of variance. Genotype differences in absolute and relative changes in physical function among the exercisers were tested using a general linear model, adjusting for age and gender. The genotype frequencies for each of the studied polymorphisms conformed to the Hardy-Weinberg equilibrium. The ACE I/D genotype was significantly associated with mean baseline measures of handgrip strength (II 30.9 ± 3.01 v. ID 31.7 ± 1.48 v. DD 29.3 ± 2.18 kg, p < 0.001), 8ft Up and Go time (II 6.45 ± 0.48 v. ID/DD 4.41 ± 0.19 s, p < 0.001) and 6 min walk distance (II 458 ± 28.7 v. ID/DD 546 ± 12.1m, p = 0.008). The UCP2 G-866A genotype was also associated with baseline 8ft Up and Go time (GG 5.45 ± 0.35 v. GA 4.47 ± 0.26 v. AA 3.89 ± 0.71 s, p = 0

  20. Cardiac AAV9 Gene Delivery Strategies in Adult Canines: Assessment by Long-term Serial SPECT Imaging of Sodium Iodide Symporter Expression

    PubMed Central

    Moulay, Gilles; Ohtani, Tomohito; Ogut, Ozgur; Guenzel, Adam; Behfar, Atta; Zakeri, Rosita; Haines, Philip; Storlie, Jimmy; Bowen, Lorna; Pham, Linh; Kaye, David; Sandhu, Gurpreet; O'Connor, Michael; Russell, Stephen; Redfield, Margaret

    2015-01-01

    Heart failure is a leading cause of morbidity and mortality, and cardiac gene delivery has the potential to provide novel therapeutic approaches. Adeno-associated virus serotype 9 (AAV9) transduces the rodent heart efficiently, but cardiotropism, immune tolerance, and optimal delivery strategies in large animals are unclear. In this study, an AAV9 vector encoding canine sodium iodide symporter (NIS) was administered to adult immunocompetent dogs via epicardial injection, coronary infusion without and with cardiac recirculation, or endocardial injection via a novel catheter with curved needle and both end- and side-holes. As NIS mediates cellular uptake of clinical radioisotopes, expression was tracked by single-photon emission computerized tomography (SPECT) imaging in addition to Western blot and immunohistochemistry. Direct epicardial or endocardial injection resulted in strong cardiac expression, whereas expression after intracoronary infusion or cardiac recirculation was undetectable. A threshold myocardial injection dose that provides robust nonimmunogenic expression was identified. The extent of transmural myocardial expression was greater with the novel catheter versus straight end-hole needle delivery. Furthermore, the authors demonstrate that cardiac NIS reporter gene expression and duration can be quantified using serial noninvasive SPECT imaging up to 1 year after vector administration. These data are relevant to efforts to develop cardiac gene delivery as heart failure therapy. PMID:25915925

  1. SOX4 is a direct target gene of FRA-2 and induces expression of HDAC8 in adult T-cell leukemia/lymphoma.

    PubMed

    Higuchi, Tomonori; Nakayama, Takashi; Arao, Tokuzo; Nishio, Kazuto; Yoshie, Osamu

    2013-05-01

    Previously, we have shown that an AP-1 family member, FRA-2, is constitutively expressed in adult T-cell leukemia/lymphoma (ATL) and, together with JUND, upregulates CCR4 and promotes ATL cell growth. Among the identified potential target genes of FRA-2/JUND was SOX4. Here, we examine the expression and function of SOX4 in ATL. SOX4 was indeed consistently expressed in primary ATL cells. FRA-2/JUND efficiently activated the SOX4 promoter via an AP-1 site. Knockdown of SOX4 expression by small interfering RNA (siRNA) strongly suppressed cell growth of ATL cell lines. Microarray analyses revealed that SOX4 knockdown reduced the expression of genes such as germinal center kinase related (GCKR), NAK-associated protein 1 (NAP1), and histone deacetylase 8 (HDAC8). We confirmed consistent expression of GCKR, NAP1, and HDAC8 in primary ATL cells. We also showed direct activation of the HDAC8 promoter by SOX4. Furthermore, siRNA knockdown of GCKR, NAP1, and HDAC8 each significantly suppressed cell growth of ATL cell lines. Taken together, we have revealed an important oncogenic cascade involving FRA-2/JUND and SOX4 in ATL, which leads to the expression of genes such as GCKR, NAP1, and HDAC8. PMID:23482931

  2. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  3. Experimentally Increased Codon Bias in the Drosophila Adh Gene Leads to an Increase in Larval, But Not Adult, Alcohol Dehydrogenase Activity

    PubMed Central

    Hense, Winfried; Anderson, Nathan; Hutter, Stephan; Stephan, Wolfgang; Parsch, John; Carlini, David B.

    2010-01-01

    Although most amino acids can be encoded by more than one codon, the synonymous codons are not used with equal frequency. This phenomenon is known as codon bias and appears to be a universal feature of genomes. The translational selection hypothesis posits that the use of optimal codons, which match the most abundant species of isoaccepting tRNAs, results in increased translational efficiency and accuracy. Previous work demonstrated that the experimental reduction of codon bias in the Drosophila alcohol dehydrogenase (Adh) gene led to a significant decrease in ADH protein expression. In this study we performed the converse experiment: we replaced seven suboptimal leucine codons that occur naturally in the Drosophila melanogaster Adh gene with the optimal codon. We then compared the in vivo ADH activities imparted by the wild-type and mutant alleles. The introduction of optimal leucine codons led to an increase in ADH activity in third-instar larvae. In adult flies, however, the introduction of optimal codons led to a decrease in ADH activity. There is no evidence that other selectively constrained features of the Adh gene, or its rate of transcription, were altered by the synonymous replacements. These results are consistent with translational selection for codon bias being stronger in the larval stage and suggest that there may be a selective conflict over optimal codon usage between different developmental stages. PMID:19966063

  4. Experimentally increased codon bias in the Drosophila Adh gene leads to an increase in larval, but not adult, alcohol dehydrogenase activity.

    PubMed

    Hense, Winfried; Anderson, Nathan; Hutter, Stephan; Stephan, Wolfgang; Parsch, John; Carlini, David B

    2010-02-01

    Although most amino acids can be encoded by more than one codon, the synonymous codons are not used with equal frequency. This phenomenon is known as codon bias and appears to be a universal feature of genomes. The translational selection hypothesis posits that the use of optimal codons, which match the most abundant species of isoaccepting tRNAs, results in increased translational efficiency and accuracy. Previous work demonstrated that the experimental reduction of codon bias in the Drosophila alcohol dehydrogenase (Adh) gene led to a significant decrease in ADH protein expression. In this study we performed the converse experiment: we replaced seven suboptimal leucine codons that occur naturally in the Drosophila melanogaster Adh gene with the optimal codon. We then compared the in vivo ADH activities imparted by the wild-type and mutant alleles. The introduction of optimal leucine codons led to an increase in ADH activity in third-instar larvae. In adult flies, however, the introduction of optimal codons led to a decrease in ADH activity. There is no evidence that other selectively constrained features of the Adh gene, or its rate of transcription, were altered by the synonymous replacements. These results are consistent with translational selection for codon bias being stronger in the larval stage and suggest that there may be a selective conflict over optimal codon usage between different developmental stages.

  5. Cardiac AAV9 Gene Delivery Strategies in Adult Canines: Assessment by Long-term Serial SPECT Imaging of Sodium Iodide Symporter Expression.

    PubMed

    Moulay, Gilles; Ohtani, Tomohito; Ogut, Ozgur; Guenzel, Adam; Behfar, Atta; Zakeri, Rosita; Haines, Philip; Storlie, Jimmy; Bowen, Lorna; Pham, Linh; Kaye, David; Sandhu, Gurpreet; O'Connor, Michael; Russell, Stephen; Redfield, Margaret

    2015-07-01

    Heart failure is a leading cause of morbidity and mortality, and cardiac gene delivery has the potential to provide novel therapeutic approaches. Adeno-associated virus serotype 9 (AAV9) transduces the rodent heart efficiently, but cardiotropism, immune tolerance, and optimal delivery strategies in large animals are unclear. In this study, an AAV9 vector encoding canine sodium iodide symporter (NIS) was administered to adult immunocompetent dogs via epicardial injection, coronary infusion without and with cardiac recirculation, or endocardial injection via a novel catheter with curved needle and both end- and side-holes. As NIS mediates cellular uptake of clinical radioisotopes, expression was tracked by single-photon emission computerized tomography (SPECT) imaging in addition to Western blot and immunohistochemistry. Direct epicardial or endocardial injection resulted in strong cardiac expression, whereas expression after intracoronary infusion or cardiac recirculation was undetectable. A threshold myocardial injection dose that provides robust nonimmunogenic expression was identified. The extent of transmural myocardial expression was greater with the novel catheter versus straight end-hole needle delivery. Furthermore, the authors demonstrate that cardiac NIS reporter gene expression and duration can be quantified using serial noninvasive SPECT imaging up to 1 year after vector administration. These data are relevant to efforts to develop cardiac gene delivery as heart failure therapy. PMID:25915925

  6. Archaic African and Asian lineages in the genetic ancestry of modern humans.

    PubMed Central

    Harding, R M; Fullerton, S M; Griffiths, R C; Bond, J; Cox, M J; Schneider, J A; Moulin, D S; Clegg, J B

    1997-01-01

    A 3-kb region encompassing the beta-globin gene has been analyzed for allelic sequence polymorphism in nine populations from Africa, Asia, and Europe. A unique gene tree was constructed from 326 sequences of 349 in the total sample. New maximum-likelihood methods for analyzing gene trees on the basis of coalescence theory have been used. The most recent common ancestor of the beta-globin gene tree is a sequence found only in Africa and estimated to have arisen approximately 800,000 years ago. There is no evidence for an exponential expansion out of a bottlenecked founding population, and an effective population size of approximately 10,000 has been maintained. Modest differences in levels of beta-globin diversity between Africa and Asia are better explained by greater African effective population size than by greater time depth. There may have been a reduction of Asian effective population size in recent evolutionary history. Characteristically Asian ancestry is estimated to be older than 200,000 years, suggesting that the ancestral hominid population at this time was widely dispersed across Africa and Asia. Patterns of beta-globin diversity suggest extensive worldwide late Pleistocene gene flow and are not easily reconciled with a unidirectional migration out of Africa 100,000 years ago and total replacement of archaic populations in Asia. PMID:9106523

  7. Gene expression in Asian citrus psyllid adults feeding from Florida citrus: Application to biology and vector control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used a genomics approach to identify some of the genetic basis of D. citri biology, identifying in particular genes associated with feeding, reproduction, pathology, and insecticide resistance. The Asian citrus psyllid (AsCP), Diaphorina citri (Hemiptera: Psyllidae), is a highly competent vector ...

  8. Induction of vitellogenin gene expression in adult male fathead minnows for select EDCs in 48-hour exposures

    EPA Science Inventory

    Endocrine disrupting chemicals have been shown to be present in surface waters, sediments and sludge, and are known to induce vitellogenin gene liver transcripts in male fathead minnows. The purpose of our study was to establish the lowest concentrations of estrogenic chemicals ...

  9. Association of ADAM33 gene polymorphisms with adult allergic asthma and rhinitis in a Chinese Han population

    PubMed Central

    Su, Dongju; Zhang, Ximei; Sui, Hong; Lü, Fuzhen; Jin, Lianhong; Zhang, Jing

    2008-01-01

    Background Rhinitis and asthma are very common diseases involving genetic and environmental factors. Most patients with asthma also have rhinitis, which suggests the concept of 'one airway, one disease.' A disintegrin and metalloproteinase 33 (ADAM33) is the first asthma-susceptible gene to be discovered by positional cloning. To evaluate the potential influence of ADAM33 gene polymorphisms on allergic rhinitis (AR) and allergic asthma (AS), a case-control study was conducted on the Han population of northeast China. Methods Six polymorphic sites (V4, T+1, T2, T1, S1, and Q-1) were genotyped in 128 patients with AR, 181 patients with AS, and 151 healthy controls (CTR). Genotypes were determined by the polymerase chain restriction fragment length polymorphism (PCR-RFLP) method. Data were analyzed using the chi-square test with Haploview software. Results The single nucleotide polymorphisms (SNPs), V4 G/C, T+1 A/G, and T1 G/A, of the ADAM33 gene may be the causal variants in AR, whereas ADAM33 V4 G/C, T2 A/G, T1 G/A, and Q-1A/G may participate in the susceptibility of AS. Conclusion These results suggest that polymorphisms of the ADAM33 gene may modify individual susceptibility to AR and AS in a Chinese Han population. PMID:18778489

  10. Short-term treatment of adult male zebrafish (Danio Rerio) with 17α-ethinyl estradiol affects the transcription of genes involved in development and male sex differentiation.

    PubMed

    Reyhanian Caspillo, Nasim; Volkova, Kristina; Hallgren, Stefan; Olsson, Per-Erik; Porsch-Hällström, Inger

    2014-08-01

    The synthetic estrogen 17α-ethinyl estradiol (EE2) disturbs reproduction and causes gonadal malformation in fish. Effects on the transcription of genes involved in gonad development and function that could serve as sensitive biomarkers of reproductive effects in the field is, however, not well known. We have studied mRNA expression in testes and liver of adult zebrafish (Danio rerio) males treated with 0, 5 or 25 ng/L EE2for 14 days. qPCR analysis showed that the mRNA expression of four genes linked to zebrafish male sex determination and differentiation, Anti-Mullerian Hormone, Double sex and mab-related protein, Sry-related HMG box-9a and Nuclear receptor subfamily 5 group number 1b were significantly decreased by 25 ng/L, but not 5 ng/L EE2 compared with the levels in untreated fish. The decreased transcription was correlated with a previously shown spawning failure in these males (Reyhanian et al., 2011. Aquat Toxicol 105, 41-48), suggesting that decreased mRNA expression of genes regulating male sexual function could be involved in the functional sterility. The mRNA level of Cytochrome P-45019a, involved in female reproductive development, was unaffected by hormone treatment. The transcription of the female-specific Vitellogenin was significantly induced in testes. While testicular Androgen Receptor and the Estrogen Receptor-alpha mRNA levels were unchanged, Estrogen receptor-beta was significantly decreased by 25 ng/L EE2. Hepatic Estrogen Receptor-alpha mRNA was significantly increased by both exposure concentrations, while Estrogen Receptor-beta transcription was unaltered. The decreased transcription of male-predominant genes supports a demasculinization of testes by EE2 and might reflect reproductive disturbances in the environment. PMID:24747828

  11. Juvenile hormone facilitates the antagonism between adult reproduction and diapause through the methoprene-tolerant gene in the female Colaphellus bowringi.

    PubMed

    Liu, Wen; Li, Yi; Zhu, Li; Zhu, Fen; Lei, Chao-Liang; Wang, Xiao-Ping

    2016-07-01

    In insects, the process whereby juvenile hormone (JH) regulates short-day (SD)-induced reproductive diapause has been previously investigated. However, we still do not understand the mechanism by which JH regulates long-day (LD)-induced reproductive diapause. In this study, we use a cabbage beetle, Colaphellus bowringi, which is a serious pest of cruciferous vegetables in Asia capable of entering reproductive diapause under LD conditions, as a model to test whether JH regulates female reproductive diapause similar to the mechanism of SD-induced diapause. Our results showed that the JH analog (JHA) methoprene significantly induced ovarian development but inhibited lipid accumulation of diapause-destined adults. Meanwhile, the transcripts of the vitellogenin (Vg) genes were upregulated, whereas the expression of the fat synthesis and stress tolerance genes were downregulated. RNA interference of the JH candidate receptor gene methoprene-tolerant (Met) blocked JH-induced ovarian development and Vg transcription, suggesting a positive regulatory function for JH-Met signaling in reproduction. Furthermore, under reproduction-inducing conditions, Met depletion promoted a diapause-like phenotype, including arrested ovarian development and increased lipid storage, and stimulated the expression of diapause-related genes involved in lipid synthesis and stress tolerance, suggesting JH-Met signaling plays an important role in the inhibition of diapause. Accordingly, our data indicate that JH acts through Met to facilitate development of the reproductive system by upregulating Vg expression while inhibiting diapause by suppressing lipid synthesis and stress tolerance in the cabbage beetle. Combined with previous studies in SD-induced reproductive diapause, we conclude that JH may regulate female reproductive diapause using a conserved Met-dependent pathway, regardless of the length of the photoperiod inducing diapause in insects.

  12. HPA Axis Gene Expression and DNA Methylation Profiles in Rats Exposed to Early Life Stress, Adult Voluntary Ethanol Drinking and Single Housing

    PubMed Central

    Todkar, Aniruddha; Granholm, Linnea; Aljumah, Mujtaba; Nilsson, Kent W.; Comasco, Erika; Nylander, Ingrid

    2016-01-01

    The neurobiological basis of early life stress (ELS) impact on vulnerability to alcohol use disorder is not fully understood. The effect of ELS, adult ethanol consumption and single housing, on expression of stress and DNA methylation regulatory genes as well as blood corticosterone levels was investigated in the hypothalamus and pituitary of adult out-bred Wistar rats subjected to different rearing conditions. A prolonged maternal separation (MS) of 360 min (MS360) was used to study the effect of ELS, and a short MS of 15 min (MS15) was used as a control. Voluntary ethanol drinking was assessed using a two-bottle free choice paradigm to simulate human episodic drinking. The effects of single housing and ethanol were assessed in conventional animal facility rearing (AFR) conditions. Single housing in adulthood was associated with lower Crhr1 and higher Pomc expression in the pituitary, whereas ethanol drinking was associated with higher expression of Crh in the hypothalamus and Crhr1 in the pituitary, accompanied by lower corticosterone levels. As compared to controls with similar early life handling, rats exposed to ELS displayed lower expression of Pomc in the hypothalamus, and higher Dnmt1 expression in the pituitary. Voluntary ethanol drinking resulted in lower Fkbp5 expression in the pituitary and higher Crh expression in the hypothalamus, independently of rearing conditions. In rats exposed to ELS, water and ethanol drinking was associated with higher and lower corticosterone levels, respectively. The use of conventionally reared rats as control group yielded more significant results than the use of rats exposed to short MS. Positive correlations, restricted to the hypothalamus and ELS group, were observed between the expression of the hypothalamus-pituitary-adrenal receptor and the methylation-related genes. Promoter DNA methylation and expression of respective genes did not correlate suggesting that other loci are involved in transcriptional regulation

  13. Association of Major Histocompatibility Complex Class 1 Chain-Related Gene A Dimorphism with Type 1 Diabetes and Latent Autoimmune Diabetes in Adults in the Algerian Population

    PubMed Central

    Belanteur, Khadidja; Amroun, Habiba; Benyahia, Amel; Heniche, Amel; Azzouz, Malha; Mimouni, Safia; Gervais, Thibaud; Latinne, Dominique; Boudiba, Aissa; Attal, Nabila; Abbadi, Mohamed Cherif

    2012-01-01

    Major histocompatibility complex class I chain-related gene A (MICA-129) dimorphism was investigated in 73 autoimmune diabetes patients (type 1 diabetes and latent autoimmune diabetes in adults) and 75 controls from Algeria. Only MICA-129 Val allele and MICA-129 Val/Val genotype frequencies were higher among patients than in the control group. Statistical analysis of the estimated extended HLA-DR-DQ-MICA haplotypes shown that individual effects of MICA alleles on HLA-DQ2-DR3-MICA-129 Val/Val and HLA-DQ8-DR4-MICA-129 Val/Val haplotypes were significantly higher in patients than in the control groups. These preliminary data might suggest a relevant role of MICA-129 Val/Val single nucleotide polymorphism (weak/weak binders of NKG2D receptor) in the pathogenesis of T1D and LADA. PMID:22323559

  14. PDYN, a gene implicated in brain/mental disorders, is targeted by REST in the adult human brain.

    PubMed

    Henriksson, Richard; Bäckman, Cristina M; Harvey, Brandon K; Kadyrova, Helena; Bazov, Igor; Shippenberg, Toni S; Bakalkin, Georgy

    2014-11-01

    The dynorphin κ-opioid receptor system is implicated in mental health and brain/mental disorders. However, despite accumulating evidence that PDYN and/or dynorphin peptide expression is altered in the brain of individuals with brain/mental disorders, little is known about transcriptional control of PDYN in humans. In the present study, we show that PDYN is targeted by the transcription factor REST in human neuroblastoma SH-SY5Y cells and that that interfering with REST activity increases PDYN expression in these cells. We also show that REST binding to PDYN is reduced in the adult human brain compared to SH-SY5Y cells, which coincides with higher PDYN expression. This may be related to MIR-9 mediated down-regulation of REST as suggested by a strong inverse correlation between REST and MIR-9 expression. Our results suggest that REST represses PDYN expression in SH-SY5Y cells and the adult human brain and may have implications for mental health and brain/mental disorders. PMID:25220237

  15. Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration.

    PubMed

    Cowles, Martis W; Brown, David D R; Nisperos, Sean V; Stanley, Brianna N; Pearson, Bret J; Zayas, Ricardo M

    2013-12-01

    In contrast to most well-studied model organisms, planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for adult neurogenesis in vivo. We analyzed the basic helix-loop-helix (bHLH) family of transcription factors, many of which are crucial for nervous system development and have been implicated in human diseases. However, their potential roles in adult neurogenesis or central nervous system (CNS) function are not well understood. We identified 44 planarian bHLH homologs, determined their patterns of expression in the animal and assessed their functions using RNAi. We found nine bHLHs expressed in stem cells and neurons that are required for CNS regeneration. Our analyses revealed that homologs of coe, hes (hesl-3) and sim label progenitors in intact planarians, and following amputation we observed an enrichment of coe(+) and sim(+) progenitors near the wound site. RNAi knockdown of coe, hesl-3 or sim led to defects in CNS regeneration, including failure of the cephalic ganglia to properly pattern and a loss of expression of distinct neuronal subtype markers. Together, these data indicate that coe, hesl-3 and sim label neural progenitor cells, which serve to generate new neurons in uninjured or regenerating animals. Our study demonstrates that this model will be useful to investigate how stem cells interpret and respond to genetic and environmental cues in the CNS and to examine the role of bHLH transcription factors in adult tissue regeneration.

  16. Early-life stress changes expression of GnRH and kisspeptin genes and DNA methylation of GnRH3 promoter in the adult zebrafish brain.

    PubMed

    Khor, Yee Min; Soga, Tomoko; Parhar, Ishwar S

    2016-02-01

    Early-life stress can cause long-term effects in the adulthood such as alterations in behaviour, brain functions and reproduction. DNA methylation is a mechanism of epigenetic change caused by early-life stress. Dexamethasone (DEX) was administered to zebrafish larvae to study its effect on reproductive dysfunction. The level of GnRH2, GnRH3, Kiss1 and Kiss2 mRNAs were measured between different doses of DEX treatment groups in adult zebrafish. Kiss1 and GnRH2 expression were increased in the 200mg/L DEX treated while Kiss2 and GnRH3 mRNA levels were up-regulated in the 2mg/L DEX-treated zebrafish. The up-regulation may be related to programming effect of DEX in the zebrafish larvae, causing overcompensation mechanism to increase the mRNA levels. Furthermore, DEX treatment caused negative impact on the development and maturation of the testes, in particular spermatogenesis. Therefore, immature gonadal development may cause positive feedback by increasing GnRH and Kiss. This indicates that DEX can alter the regulation of GnRH2, GnRH3, Kiss1 and Kiss2 in adult zebrafish, which affects maturation of gonads. Computer analysis of 1.5 kb region upstream of the 5' UTR of Kiss1, Kiss2, GnRH2 and GnRH3 promoter showed that there are putative binding sites of glucocorticoid response element and transcription factors involved in stress response. GnRH3 promoter analysed from pre-optic area, ventral telencephalon and ventral olfactory bulb showed higher methylation at CpG residues located on -1410, -1377 and -1355 between control and 2mg/L DEX-treated groups. Hence, early-life DEX treatment can alter methylation of GnRH3 gene promoter, which subsequently affects gene regulation and reproductive functions.

  17. Microsatellite allele A5.1 of MHC class I chain-related gene A is associated with latent autoimmune diabetes in adults in Latvia.

    PubMed

    Berzina, L; Shtauvere-Brameus, A; Rumba, I; Sanjeevi, C B

    2002-04-01

    NIDDM is one of the most common forms of diabetes. The diagnosis is based on WHO classification, which is a clinical classification and misses the autoimmune diabetes in adults. Therefore, among the clinically diagnosed NIDDM cases, there can be a certain number of patients with latent autoimmune diabetes in adults (LADA). The MICA gene is located in the MHC class I region and is expressed by monocytes, keratinocytes, and endothelial cells. Sequence determination of the MICA gene identifies trinucleotide repeat (GCT) microsatellite polymorphism, which identifies 5 alleles with 4, 5, 6, and 9 repetitions of GCT (A4, A5, A6, and A9) or 5 repetitions of GCT with 1 additional G insertion for allele A5.1. From our previous studies, we have shown that microsatellite allele A5 of MICA is associated with IDDM. The aim of this study was to test the hypothesis that certain MICA alleles are associated with LADA among clinically diagnosed NIDDM. Out of 100 clinically diagnosed NIDDM patients, 49 tested positive for GAD65 and IA-2 antibodies by use of 35S RIA. Samples from these 49 patients and 96 healthy controls were analyzed for MICA by PCR amplification, and fragment sizes were determined in an ABI prism DNA sequencer. Our results show that MICA allele A5.1 is significantly increased in antibody-positive (GAD65 or IA-2) NIDDM patients [35/49 (72%)] when compared to healthy controls [22/96 (23%)] (OR = 8.4; P < 0.0001). However, we do not see any association with each of the antibodies separately. From our study, we conclude that (a) MICA allele A5.1 is associated with LADA and (b) MICA may play an important role in the etiopathogenesis of LADA.

  18. An autopsy case of adult-onset hereditary spastic paraplegia type 2 with a novel mutation in exon 7 of the proteolipid protein 1 gene.

    PubMed

    Suzuki, Satoshi O; Iwaki, Toru; Arakawa, Kenji; Furuya, Hirokazu; Fujii, Naoki; Iwaki, Akiko

    2011-12-01

    We report an autopsy case of rare adult-onset spastic paraplegia type 2 (SPG2) with a novel missense mutation in exon 7 of the proteolipid protein 1 gene (PLP1). The patient was a 67-year-old man whose elder brother had died of a similar disease with onset in his 40s. Thirty-three years before death at the age of 35, he noticed difficulty in walking. He gradually became abasic over a period of 6 years. He also developed progressive dementia and eventually became bed-ridden by 28 years after onset. At autopsy, gross inspection revealed diffuse, moderate atrophy of the cerebrum with a dilated ventricular system and softening of the white matter throughout the central nervous system (CNS). Histopathologically, the CNS showed widespread myelin pallor in the white matter. By contrast, the gray matter and peripheral nerves were well preserved. Some white matter tracts, including the corticospinal tracts, were preferentially affected, and severe axonal degeneration was observed in these tracts. Genetic analysis revealed a novel mutation, p.Tyr263Cys, in exon 7 of PLP1. This case represents an adult-onset SPG2 patient with one of the oldest ages of onset reported to date. The late onset and long clinical course suggest that this novel mutation does not affect the maturation of oligodendrocytes, but is related to insufficient maintenance of myelin.

  19. A novel IGH@ gene rearrangement associated with CDKN2A/B deletion in young adult B-cell acute lymphoblastic leukemia

    PubMed Central

    OTHMAN, MONEEB A.K.; GRYGALEWICZ, BEATA; PIENKOWSKA-GRELA, BARBARA; RYGIER, JOLANTA; EJDUK, ANNA; RINCIC, MARTINA; MELO, JOANA B.; CARREIRA, ISABEL M.; MEYER, BRITTA; LIEHR, THOMAS

    2016-01-01

    Acquired copy number changes are common in acute leukemia. They are reported as recurrent amplifications or deletions (del), and may be indicative of involvement of oncogenes or tumor suppressor genes in acquired disease, as well as serving as potential biomarkers for prognosis or as targets for molecular therapy. The present study reported a gain of copy number of 14q13 to 14q32, leading to immunoglobulin heavy chain locus splitting in a young adult female. To the best of our knowledge, this rearrangement has not been previously reported in B-cell acute lymphoblastic leukemia (ALL). Low resolution banding cytogenetics performed at the time of diagnosis revealed a normal karyotype. However, retrospective application of fluorescence in situ hybridization (FISH) banding and locus-specific FISH probes, as well as multiplex ligation-dependent probe amplification and high resolution array-comparative genomic hybridization, revealed previously hidden aberrations. Overall, a karyotype of 46, XX, del(9) (p21.3 p21.3),derivative(14) (pter-> q32.33:: q32.33-> q13 ::q32.33-> qter) was determined. The patient was treated according to the Polish Adult Leukemia Group protocol and achieved complete remission. The results of the present study indicate that a favorable prognosis is associated with these aberrations when the aforementioned treatment is administered. PMID:26998132

  20. Transcriptional activation of human adult alpha-globin genes by hypersensitive site-40 enhancer: function of nuclear factor-binding motifs occupied in erythroid cells.

    PubMed Central

    Rombel, I; Hu, K Y; Zhang, Q; Papayannopoulou, T; Stamatoyannopoulos, G; Shen, C K

    1995-01-01

    The developmental stage- and erythroid lineage-specific activation of the human embryonic zeta- and fetal/adult alpha-globin genes is controlled by an upstream regulatory element [hypersensitive site (HS)-40] with locus control region properties, a process mediated by multiple nuclear factor-DNA complexes. In vitro DNase I protection experiments of the two G+C-rich, adult alpha-globin promoters have revealed a number of binding sites for nuclear factors that are common to HeLa and K-562 extracts. However, genomic footprinting analysis has demonstrated that only a subset of these sites, clustered between -130 and +1, is occupied in an erythroid tissue-specific manner. The function of these in vivo-occupied motifs of the alpha-globin promoters, as well as those previously mapped in the HS-40 region, is assayed by site-directed mutagenesis and transient expression in embryonic/fetal erythroid K-562 cells. These studies, together with our expression data on the human embryonic zeta-globin promoter, provide a comprehensive view of the functional roles of individual nuclear factor-DNA complexes in the final stages of transcriptional activation of the human alpha-like globin promoters by the HS-40 element. Images Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:7604012

  1. SLC30A3 and SEP15 gene polymorphisms influence the serum concentrations of zinc and selenium in mature adults.

    PubMed

    da Rocha, Tatiane Jacobsen; Korb, Camila; Schuch, Jaqueline Bohrer; Bamberg, Daiani Pires; de Andrade, Fabiana Michelsen; Fiegenbaum, Marilu

    2014-09-01

    Because of their numerous roles in several biological processes, zinc and selenium are the most commonly studied micronutrients in the elderly. Therefore, we hypothesized that the polymorphisms in the genes that are responsible for the transport of zinc and selenium may have a genotype-dependent effect on the serum concentration of these micronutrients. The objective of this study was to determine the effects of solute carrier family 30 member 3 (SLC30A3) and 15-kd selenoprotein (SEP15) polymorphisms on zinc and selenium concentrations, respectively, in the serum. This cross-sectional study included 110 individuals who were aged 50 years or older. Serum micronutrient concentrations were determined by flame atomic absorption spectrophotometry (for zinc) and by atomic absorption spectrophotometry with a graphite furnace (for selenium). The single-nucleotide polymorphisms, rs73924411 and rs11126936 of the SLC30A3 gene and rs5859, rs5854, and rs561104 of the SEP15 gene, were examined by real-time polymerase chain reaction. Regarding rs11126936, the serum zinc concentration was lower in CC homozygotes (0.75 ± 0.31 mg/L) than in A carriers (0.89 ± 0.28 mg/L, P = .016). Concerning rs561104, the serum selenium concentration was higher in CC homozygotes (5.65 ± 1.11 μg/dL) compared with T carriers (4.88 ± 1.25 μg/dL, P = .044). Our results demonstrate the influence of SLC30A3 and SEP15 gene polymorphisms on the serum concentrations of zinc and selenium, respectively. The effects of these associations should be further investigated to help elucidate the modes of action of trace elements and to identify biomarkers, which could ultimately define the optimal intake of these micronutrients at the molecular level. More research must be performed before the roles of these polymorphisms in the serum concentrations of zinc and selenium can be fully understood. PMID:25249019

  2. Expression of c-fos gene in central nervous system of adult medaka (Oryzias latipes) after hypergravity stimulation

    NASA Astrophysics Data System (ADS)

    Shimomura, S.; Ijiri, K.

    The immediate-early genes serve as useful neurobiological tools for mapping brain activity induced by a sensory stimulation. In this study, we have examined brain activity related to gravity perception of medaka (Oryzias latipes) by use of c-fos. The gene, which is homologous to the c-fos genes of other vertebrates, was identified in medaka. Functionally important domains are highly conserved among all the vertebrate species analyzed. Intraperitoneal administration of kainic acid transiently induced the c-fos mRNAs in medaka brain. The results indicate that the expression of c-fos can be utilized as a suitable anatomical marker for the increased neural activities in the central nervous system of medaka. Fish were continuously exposed to 3G hypergravity by centrifugation. Investigation of c-fos mRNA expression showed that c-fos mRNA significantly increased 30 minutes after a start of 3G exposure. The distribution of its transcripts within brains was analyzed by an in situ hybridization method. The 3G-treated medakas displayed c-fos positive cells in their brainstem regions, which are related to vestibular function, such as torus semicircularis, posterior octavu nucleus, nucleus tangentialis and inferior olive. Our results established the method to trace the activated area in the fish brain following gravity stimulation. The method will be a useful tool for understanding gravity perception in the brain.

  3. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms. PMID:26844865

  4. A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland.

    PubMed

    Catalán, Marcelo A; Kondo, Yusuke; Peña-Munzenmayer, Gaspar; Jaramillo, Yasna; Liu, Frances; Choi, Sooji; Crandall, Edward; Borok, Zea; Flodby, Per; Shull, Gary E; Melvin, James E

    2015-02-17

    Activation of an apical Ca(2+)-activated Cl(-) channel (CaCC) triggers the secretion of saliva. It was previously demonstrated that CaCC-mediated Cl(-) current and Cl(-) efflux are absent in the acinar cells of systemic Tmem16A (Tmem16A Cl(-) channel) null mice, but salivation was not assessed in fully developed glands because Tmem16A null mice die within a few days after birth. To test the role of Tmem16A in adult salivary glands, we generated conditional knockout mice lacking Tmem16A in acinar cells (Tmem16A(-/-)). Ca(2+)-dependent salivation was abolished in Tmem16A(-/-) mice, demonstrating that Tmem16A is obligatory for Ca(2+)-mediated fluid secretion. However, the amount of saliva secreted by Tmem16A(-/-) mice in response to the β-adrenergic receptor agonist isoproterenol (IPR) was comparable to that seen in controls, indicating that Tmem16A does not significantly contribute to cAMP-induced secretion. Furthermore, IPR-stimulated secretion was unaffected in mice lacking Cftr (Cftr(∆F508/∆F508)) or ClC-2 (Clcn2(-/-)) Cl(-) channels. The time course for activation of IPR-stimulated fluid secretion closely correlated with that of the IPR-induced cell volume increase, suggesting that acinar swelling may activate a volume-sensitive Cl(-) channel. Indeed, Cl(-) channel blockers abolished fluid secretion, indicating that Cl(-) channel activity is critical for IPR-stimulated secretion. These data suggest that β-adrenergic-induced, cAMP-dependent fluid secretion involves a volume-regulated anion channel. In summary, our results using acinar-specific Tmem16A(-/-) mice identify Tmem16A as the Cl(-) channel essential for muscarinic, Ca(2+)-dependent fluid secretion in adult mouse salivary glands.

  5. Allelic Variation in TAS2R Bitter Receptor Genes Associates with Variation in Sensations from and Ingestive Behaviors toward Common Bitter Beverages in Adults

    PubMed Central

    Hayes, John E.; Wallace, Margaret R.; Knopik, Valerie S.; Herbstman, Deborah M.; Bartoshuk, Linda M.

    2011-01-01

    The 25 human bitter receptors and their respective genes (TAS2Rs) contain unusually high levels of allelic variation, which may influence response to bitter compounds in the food supply. Phenotypes based on the perceived bitterness of single bitter compounds were first linked to food preference over 50 years ago. The most studied phenotype is propylthiouracil bitterness, which is mediated primarily by the TAS2R38 gene and possibly others. In a laboratory-based study, we tested for associations between TAS2R variants and sensations, liking, or intake of bitter beverages among healthy adults who were primarily of European ancestry. A haploblock across TAS2R3, TAS2R4, and TAS2R5 explained some variability in the bitterness of espresso coffee. For grapefruit juice, variation at a TAS2R19 single nucleotide polymorphism (SNP) was associated with increased bitterness and decreased liking. An association between a TAS2R16 SNP and alcohol intake was identified, and the putative TAS2R38–alcohol relationship was confirmed, although these polymorphisms did not explain sensory or hedonic responses to sampled scotch whisky. In summary, TAS2R polymorphisms appear to influence the sensations, liking, or intake of common and nutritionally significant beverages. Studying perceptual and behavioral differences in vivo using real foods and beverages may potentially identify polymorphisms related to dietary behavior even in the absence of known ligands. PMID:21163912

  6. Expression of the Troponin C at 41C Gene in Adult Drosophila Tubular Muscles Depends upon Both Positive and Negative Regulatory Inputs.

    PubMed

    Chechenova, Maria B; Maes, Sara; Cripps, Richard M

    2015-01-01

    Most animals express multiple isoforms of structural muscle proteins to produce tissues with different physiological properties. In Drosophila, the adult muscles include tubular-type muscles and the fibrillar indirect flight muscles. Regulatory processes specifying tubular muscle fate remain incompletely understood, therefore we chose to analyze the transcriptional regulation of TpnC41C, a Troponin C gene expressed in the tubular jump muscles, but not in the fibrillar flight muscles. We identified a 300-bp promoter fragment of TpnC41C sufficient for the fiber-specific reporter expression. Through an analysis of this regulatory element, we identified two sites necessary for the activation of the enhancer. Mutations in each of these sites resulted in 70% reduction of enhancer activity. One site was characterized as a binding site for Myocyte Enhancer Factor-2. In addition, we identified a repressive element that prevents activation of the enhancer in other muscle fiber types. Mutation of this site increased jump muscle-specific expression of the reporter, but more importantly reporter expression expanded into the indirect flight muscles. Our findings demonstrate that expression of the TpnC41C gene in jump muscles requires integration of multiple positive and negative transcriptional inputs. Identification of the transcriptional regulators binding the cis-elements that we identified will reveal the regulatory pathways controlling muscle fiber differentiation.

  7. Safety and biological efficacy of a lipid-CFTR complex for gene transfer in the nasal epithelium of adult patients with cystic fibrosis.

    PubMed

    Noone, P G; Hohneker, K W; Zhou, Z; Johnson, L G; Foy, C; Gipson, C; Jones, K; Noah, T L; Leigh, M W; Schwartzbach, C; Efthimiou, J; Pearlman, R; Boucher, R C; Knowles, M R

    2000-01-01

    Gene transfer is an attractive option to treat the basic defect in cystic fibrosis. In a double-blind, placebo-controlled, rising-dose tolerance study in the nasal epithelium, we tested the safety and efficacy of a cationic liposome [p-ethyl-dimyristoylphosphadityl choline (EDMPC) cholesterol] complexed with an expression plasmid containing hCFTR cDNA. Eleven adult CF patients were studied in a protocol that allowed comparisons within individual subjects: vector and placebo were sprayed into alternate nostrils at intervals over 7 h. After dosing, vector-specific DNA was present in nasal lavage of all subjects for up to 10 days. There were no adverse events. The vector-treated epithelium did not exhibit a significant increase in CFTR-mediated Cl- conductance from baseline and was not different from the placebo-treated nostril: mean deltaCFTR Cl- conductance, mV +/- SEM, -1.6+/-0.4 vs -0.6+/-0.4, respectively. CFTR-mediated Cl- conductance increased toward normal during repetitive nasal potential difference measurements over the 3 days before dosing which influenced the postdosing calculations. No vector-specific mRNA was detected in the nasal epithelial scrape biopsies, although endogenous CFTR mRNA was detected in all subjects. We conclude that the lipid-DNA complex is safe, but did not produce consistent evidence of gene transfer to the nasal epithelium by physiologic or molecular measures. PMID:10933918

  8. Expression of migration-related genes is progressively upregulated in murine Lineage-Sca-1+c-Kit+ population from the fetal to adult stages of development

    PubMed Central

    2010-01-01

    Introduction Hematopoietic stem cells (HSCs) follow a genetically programmed pattern of migration during development. Extracellular matrix and adhesion molecules, as well as chemokines and their receptors, are important in adult HSC migration. However, little is known about the role these molecules play at earlier developmental stages. Methods We have analyzed by quantitative polymerase chain reaction (qPCR) array the expression pattern of extracellular matrix and adhesion molecules as well as chemokines and chemokine receptors in Lineage-Sca-1+c-Kit+ (LSK) cells at different stages of development, in order to characterize the role played by these molecules in LSK. Data were represented by volcano plots to show the differences in expression pattern at the time points studied. Results Our results show marked changes in the expression pattern of extracellular matrix, adhesion molecules, chemokines and their receptors with developmental age, particularly in later stages of development. Ten molecules were significantly increased among the LSK populations studied. Our screen identified the upregulation of Col4a1, as well as molecules involved in its degradation (Mmp2, Timp2), with development. Other genes identified were Sell, Tgfbi, and Entpd1. Furthermore, we show that the expression of the chemokines Ccl4, Ccl9, Il18 and the chemokine receptor Cxcr4 increases in LSK cells during development. Conclusions Several genes are upregulated in the LSK population in their transition to the bone marrow microenvironment, increasing at later stages of development. This gene pattern should be emulated by embryonic stem cell-derived hematopoietic progenitors in order to improve their properties for clinical applications such as engraftment. PMID:20637061

  9. A gene-environment investigation on personality traits in two independent clinical sets of adult patients with personality disorder and attention deficit/hyperactive disorder.

    PubMed

    Jacob, Christian P; Nguyen, Thuy Trang; Dempfle, Astrid; Heine, Monika; Windemuth-Kieselbach, Christine; Baumann, Katarina; Jacob, Florian; Prechtl, Julian; Wittlich, Maike; Herrmann, Martin J; Gross-Lesch, Silke; Lesch, Klaus-Peter; Reif, Andreas

    2010-06-01

    While an interactive effect of genes with adverse life events is increasingly appreciated in current concepts of depression etiology, no data are presently available on interactions between genetic and environmental (G x E) factors with respect to personality and related disorders. The present study therefore aimed to detect main effects as well as interactions of serotonergic candidate genes (coding for the serotonin transporter, 5-HTT; the serotonin autoreceptor, HTR1A; and the enzyme which synthesizes serotonin in the brain, TPH2) with the burden of life events (#LE) in two independent samples consisting of 183 patients suffering from personality disorders and 123 patients suffering from adult attention deficit/hyperactivity disorder (aADHD). Simple analyses ignoring possible G x E interactions revealed no evidence for associations of either #LE or of the considered polymorphisms in 5-HTT and TPH2. Only the G allele of HTR1A rs6295 seemed to increase the risk of emotional-dramatic cluster B personality disorders (p = 0.019, in the personality disorder sample) and to decrease the risk of anxious-fearful cluster C personality disorders (p = 0.016, in the aADHD sample). We extended the initial simple model by taking a G x E interaction term into account, since this approach may better fit the data indicating that the effect of a gene is modified by stressful life events or, vice versa, that stressful life events only have an effect in the presence of a susceptibility genotype. By doing so, we observed nominal evidence for G x E effects as well as main effects of 5-HTT-LPR and the TPH2 SNP rs4570625 on the occurrence of personality disorders. Further replication studies, however, are necessary to validate the apparent complexity of G x E interactions in disorders of human personality.

  10. Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression.

    PubMed

    Marqués-Torrejón, M Ángeles; Porlan, Eva; Banito, Ana; Gómez-Ibarlucea, Esther; Lopez-Contreras, Andrés J; Fernández-Capetillo, Oscar; Vidal, Anxo; Gil, Jesús; Torres, Josema; Fariñas, Isabel

    2013-01-01

    In the adult brain, continual neurogenesis of olfactory neurons is sustained by the existence of neural stem cells (NSCs) in the subependymal niche. Elimination of the cyclin-dependent kinase inhibitor 1A (p21) leads to premature exhaustion of the subependymal NSC pool, suggesting a relationship between cell cycle control and long-term self-renewal, but the molecular mechanisms underlying NSC maintenance by p21 remain unexplored. Here we identify a function of p21 in the direct regulation of the expression of pluripotency factor Sox2, a key regulator of the specification and maintenance of neural progenitors. We observe that p21 directly binds a Sox2 enhancer and negatively regulates Sox2 expression in NSCs. Augmented levels of Sox2 in p21 null cells induce replicative stress and a DNA damage response that leads to cell growth arrest mediated by increased levels of p19(Arf) and p53. Our results show a regulation of NSC expansion driven by a p21/Sox2/p53 axis.

  11. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice

    PubMed Central

    Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly

    2013-01-01

    We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.—Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V., Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. PMID:23729587

  12. Adult Books for Young Adults.

    ERIC Educational Resources Information Center

    Carter, Betty

    1997-01-01

    Considers the differences between young adult and adult books and maintains that teachers must be familiar with young adults' tastes for both. Suggests that traffic between these publishing divisions is a two-way street, with young adults reading adult books and adults reading young adult books. (TB)

  13. Helicobacter pylori Infection Induces Anemia, Depletes Serum Iron Storage, and Alters Local Iron-Related and Adult Brain Gene Expression in Male INS-GAS Mice

    PubMed Central

    Burns, Monika; Muthupalani, Sureshkumar; Ge, Zhongming; Wang, Timothy C.; Bakthavatchalu, Vasudevan; Cunningham, Catriona; Ennis, Kathleen; Georgieff, Michael; Fox, James G.

    2015-01-01

    of Hp SS1-infected INS-GAS mice will be an appropriate animal model for further study of the effects of concurrent H. pylori infection and anemia on iron homeostasis and adult iron-dependent brain gene expression. PMID:26575645

  14. Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult GIFT strain of Nile tilapia, Oreochromis niloticus.

    PubMed

    Tian, Juan; Wu, Fan; Yang, Chang-Geng; Jiang, Ming; Liu, Wei; Wen, Hua

    2015-02-01

    The objective of this study was to assess the effects of dietary lipids on growth performance, body composition, serum parameters, and expression of genes involved in lipid metabolism in adult genetically improved farmed tilapia (GIFT strain) of Nile tilapia, Oreochromis niloticus. We randomly assigned adult male Nile tilapia (average initial body weight = 220.00 ± 9.54 g) into six groups consisting of four replicates (20 fish per replicate). Fish in each group were hand-fed a semi-purified diets containing different lipid levels [3.3 (the control group), 28.4, 51.4, 75.4, 101.9, and 124.1 g kg(-1)] for 8 weeks. The results indicated that there was no obvious effect in feeding rate among all groups (P > 0.05). The highest weight gain, specific growth rate, and protein efficiency ratio in 75.4 g kg(-1) diet group were increased by 23.31, 16.17, and 22.02 % than that of fish in the control group (P < 0.05). Protein retention ratio was highest in 51.4 g kg(-1) diet group. The results revealed that the optimum dietary lipid level for maximum growth performance is 76.6-87.9 g kg(-1). Increasing dietary lipid levels contributed to increased tissue and whole body lipid levels. Saturated and monounsaturated fatty acids (MUFAs) decreased, and polyunsaturated fatty acids increased with increasing dietary lipid levels. With the exception of MUFAs, the fatty acid profiles of liver and muscle were similar. Dietary lipid levels were negatively correlated with low-density lipoprotein- cholesterol content and positively with triacylglycerol and glucose contents. In the lipid-fed groups, there was a significant down-regulation of fatty acid synthase (FAS) mRNA in liver, muscle, and visceral adipose tissues. There was a rapid up-regulation of lipoprotein lipase (LPL) mRNA in muscle and liver with increasing dietary lipid levels. In visceral adipose tissue, LPL mRNA was significantly down-regulated in the lipid-fed groups. Dietary lipids increased hormone-sensitive lipase (HSL) m

  15. A plasma membrane protein is involved in cell contact-mediated regulation of tissue-specific genes in adult hepatocytes

    PubMed Central

    1991-01-01

    We have identified the liver-regulating protein (LRP), a cell surface protein involved in the maintenance of hepatocyte differentiation when cocultured with rat liver epithelial cells (RLEC). LRP was defined by immunoreactivity to a monoclonal antibody (mAb L8) prepared from RLEC. mAb L8 specifically detected two polypeptides of 85 and 73 kD in immunoprecipitation of both hepatocyte- and RLEC-iodinated plasma membranes. The involvement of these polypeptides, which are integral membrane proteins, in cell interaction-mediated regulation of hepatocytes was assessed by evaluating the perturbing effects of the antibody on cocultures with RLEC. Several parameters characteristic of differentiated hepatocytes were studied, such as liver-specific and house-keeping gene expression, cytoskeletal organization and deposition of extracellular matrix (ECM). An early cytoskeletal disturbance was evidenced and a marked alteration of hepatocyte functional capacity was observed in the presence of the antibody, together with a loss of ECM deposition. By contrast, cell-cell aggregation or cell adhesion to various extracellular matrix components were not affected. These findings suggest that LRP is distinct from an extracellular matrix receptor. The fact that early addition of mAb L8 during cell contact establishment was necessary to be effective may indicate that LRP is a novel plasma membrane protein that plays an early pivotal role in the coordinated metabolic changes which lead to the differentiated phenotype of mature hepatocytes. PMID:1918151

  16. Hair cell regeneration after ATOH1 gene therapy in the cochlea of profoundly deaf adult guinea pigs.

    PubMed

    Atkinson, Patrick J; Wise, Andrew K; Flynn, Brianna O; Nayagam, Bryony A; Richardson, Rachael T

    2014-01-01

    The degeneration of hair cells in the mammalian cochlea results in permanent sensorineural hearing loss. This study aimed to promote the regeneration of sensory hair cells in the mature cochlea and their reconnection with auditory neurons through the introduction of ATOH1, a transcription factor known to be necessary for hair cell development, and the introduction of neurotrophic factors. Adenoviral vectors containing ATOH1 alone, or with neurotrophin-3 and brain derived neurotrophic factor were injected into the lower basal scala media of guinea pig cochleae four days post ototoxic deafening. Guinea pigs treated with ATOH1 gene therapy, alone, had a significantly greater number of cells expressing hair cell markers compared to the contralateral non-treated cochlea when examined 3 weeks post-treatment. This increase, however, did not result in a commensurate improvement in hearing thresholds, nor was there an increase in synaptic ribbons, as measured by CtBP2 puncta after ATOH1 treatment alone, or when combined with neurotrophins. However, hair cell formation and synaptogenesis after co-treatment with ATOH1 and neurotrophic factors remain inconclusive as viral transduction was reduced due to the halving of viral titres when the samples were combined. Collectively, these data suggest that, whilst ATOH1 alone can drive non-sensory cells towards an immature sensory hair cell phenotype in the mature cochlea, this does not result in functional improvements after aminoglycoside-induced deafness.

  17. Hair Cell Regeneration after ATOH1 Gene Therapy in the Cochlea of Profoundly Deaf Adult Guinea Pigs

    PubMed Central

    Atkinson, Patrick J.; Wise, Andrew K.; Flynn, Brianna O.; Nayagam, Bryony A.; Richardson, Rachael T.

    2014-01-01

    The degeneration of hair cells in the mammalian cochlea results in permanent sensorineural hearing loss. This study aimed to promote the regeneration of sensory hair cells in the mature cochlea and their reconnection with auditory neurons through the introduction of ATOH1, a transcription factor known to be necessary for hair cell development, and the introduction of neurotrophic factors. Adenovir