Science.gov

Sample records for adult brain including

  1. Brain tumor - primary - adults

    MedlinePlus

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  2. Brain and Spinal Cord Tumors in Adults

    MedlinePlus

    ... Search Search En Español Category Cancer A-Z Brain and Spinal Cord Tumors in Adults If you have a brain or spinal cord tumor or are close to ... cope. Here you can find out all about brain and spinal cord tumors in adults, including risk ...

  3. Lung Disease Including Asthma and Adult Vaccination

    MedlinePlus

    ... Healthcare Professionals Lung Disease including Asthma and Adult Vaccination Language: English Español (Spanish) Recommend on Facebook Tweet ... more about health insurance options. Learn about adult vaccination and other health conditions Asplenia Diabetes Heart Disease, ...

  4. Acupuncture stimulation induces neurogenesis in adult brain.

    PubMed

    Nam, Min-Ho; Ahn, Kwang Seok; Choi, Seung-Hoon

    2013-01-01

    The discovery of adult neurogenesis was a turning point in the field of neuroscience. Adult neurogenesis offers an enormous possibility to open a new therapeutic paradigm of neurodegenerative diseases and stroke. Recently, several studies suggested that acupuncture may enhance adult neurogenesis. Acupuncture has long been an important treatment for brain diseases in the East Asia. The scientific mechanisms of acupuncture treatment for the diseases, such as Alzheimer's disease, Parkinson's disease, and stroke, have not been clarified yet; however, the neurogenic effect of acupuncture can be a possible reason. Here, we have reviewed the studies on the effect of stimulation at various acupoints for neurogenesis, such as ST36 and GV20. The suggested mechanisms are also discussed including upregulation of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, basic fibroblast growth factor and neuropeptide Y, and activation of the function of primo vascular system.

  5. Left Brain/Right Brain Learning for Adult Education.

    ERIC Educational Resources Information Center

    Garvin, Barbara

    1986-01-01

    Contrasts and compares the theory and practice of adult education as it relates to the issue of right brain/left brain learning. The author stresses the need for a whole-brain approach to teaching and suggests that adult educators, given their philosophical directions, are the perfect potential users of this integrated system. (Editor/CT)

  6. Primary brain tumours in adults.

    PubMed

    Ricard, Damien; Idbaih, Ahmed; Ducray, François; Lahutte, Marion; Hoang-Xuan, Khê; Delattre, Jean-Yves

    2012-05-26

    Important advances have been made in the understanding and management of adult gliomas and primary CNS lymphomas--the two most common primary brain tumours. Progress in imaging has led to a better analysis of the nature and grade of these tumours. Findings from large phase 3 studies have yielded some standard treatments for gliomas, and have confirmed the prognostic value of specific molecular alterations. High-throughput methods that enable genome-wide analysis of tumours have improved the knowledge of tumour biology, which should lead to a better classification of gliomas and pave the way for so-called targeted therapy trials. Primary CNS lymphomas are a group of rare non-Hodgkin lymphomas. High-dose methotrexate-based regimens increase survival, but the standards of care and the place of whole-brain radiotherapy remain unclear, and are likely to depend on the age of the patient. The focus now is on the development of new polychemotherapy regimens to reduce or defer whole-brain radiotherapy and its delayed complications.

  7. The effects of vitamin D on brain development and adult brain function.

    PubMed

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-05

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine.

  8. Neural repair in the adult brain

    PubMed Central

    Jessberger, Sebastian

    2016-01-01

    Acute or chronic injury to the adult brain often results in substantial loss of neural tissue and subsequent permanent functional impairment. Over the last two decades, a number of approaches have been developed to harness the regenerative potential of neural stem cells and the existing fate plasticity of neural cells in the nervous system to prevent tissue loss or to enhance structural and functional regeneration upon injury. Here, we review recent advances of stem cell-associated neural repair in the adult brain, discuss current challenges and limitations, and suggest potential directions to foster the translation of experimental stem cell therapies into the clinic. PMID:26918167

  9. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  10. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury.

    PubMed

    Childs, Charmaine; Lunn, Kueh Wern

    2013-04-22

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted.

  11. A meal preparation treatment protocol for adults with brain injury.

    PubMed

    Neistadt, M E

    1994-05-01

    Adults with acquired brain injury often demonstrate dysfunction in meal preparation due to deficits in component cognitive-perceptual skills. Although occupational therapy for these clients routinely includes meal preparation training, there are no protocols in the occupational therapy literature to help structure that activity to address clients' cognitive-perceptual deficits. This paper describes a meal preparation treatment protocol based on cognitive-perceptual information processing theory that has been pilot tested in a treatment outcome study with adult men with traumatic or anoxic acquired brain injury. In that study, the group of 23 subjects treated with this meal preparation protocol showed significant improvement in their meal preparation skill, as measured by the Rabideau Kitchen Evaluation-Revised (RKE-R), a test of meal preparation skill, and in their cognitive-perceptual skill, as measured by the WAIS-R Block Design Test. The treatment protocol includes descriptions of the structure, grading, and cuing methods for light meal preparation activities.

  12. Guidelines for Better Communication with Brain Impaired Adults

    MedlinePlus

    ... are here Home Guidelines for Better Communication with Brain Impaired Adults Printer-friendly version Communicating with a loved one with a brain disorder can indeed be challenging. Finding the right ...

  13. Comprehensive cellular‐resolution atlas of the adult human brain

    PubMed Central

    Royall, Joshua J.; Sunkin, Susan M.; Ng, Lydia; Facer, Benjamin A.C.; Lesnar, Phil; Guillozet‐Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A.; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A.; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L.; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A.; Koch, Christof; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Zielke, H. Ronald; Hohmann, John G.; Jones, Allan R.; Bernard, Amy; Hawrylycz, Michael J.; Hof, Patrick R.; Fischl, Bruce

    2016-01-01

    ABSTRACT Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273

  14. Adult human brain cell culture for neuroscience research.

    PubMed

    Gibbons, Hannah M; Dragunow, Mike

    2010-06-01

    Studies of the brain have progressed enormously through the use of in vivo and in vitro non-human models. However, it is unlikely such studies alone will unravel the complexities of the human brain and so far no neuroprotective treatment developed in animals has worked in humans. In this review we discuss the use of adult human brain cell culture methods in brain research to unravel the biology of the normal and diseased human brain. The advantages of using adult human brain cells as tools to study human brain function from both historical and future perspectives are discussed. In particular, studies using dissociated cultures of adult human microglia, astrocytes, oligodendrocytes and neurons are described and the applications of these types of study are evaluated. Alternative sources of human brain cells such as adult neural stem cells, induced pluripotent stem cells and slice cultures of adult human brain tissue are also reviewed. These adult human brain cell culture methods could benefit basic research and more importantly, facilitate the translation of basic neuroscience research to the clinic for the treatment of brain disorders.

  15. Adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function.

    PubMed

    Braun, S M G; Jessberger, S

    2014-02-01

    Neural stem/progenitor cells (NSPCs) in the mammalian brain retain the ability to generate new neurones throughout life in discrete brain regions, through a process called adult neurogenesis. Adult neurogenesis, a dramatic form of adult brain circuitry plasticity, has been implicated in physiological brain function and appears to be of pivotal importance for certain forms of learning and memory. In addition, failing or altered neurogenesis has been associated with a variety of brain diseases such as major depression, epilepsy and age-related cognitive decline. Here we review recent advances in our understanding of the basic biology underlying the neurogenic process in the adult brain, focusing on mechanisms that regulate quiescence, proliferation and differentiation of NSPCs. In addition, we discuss how neurogenesis influences normal brain function, and in particular its role in memory formation, as well as its contribution to neuropsychiatric diseases. Finally, we evaluate the potential of targeting endogenous NSPCs for brain repair.

  16. Isolation and Culture of Adult Zebrafish Brain-derived Neurospheres

    PubMed Central

    Lopez-Ramirez, Miguel A.; Calvo, Charles-Félix; Ristori, Emma; Thomas, Jean-Léon; Nicoli, Stefania

    2016-01-01

    The zebrafish is a highly relevant model organism for understanding the cellular and molecular mechanisms involved in neurogenesis and brain regeneration in vertebrates. However, an in-depth analysis of the molecular mechanisms underlying zebrafish adult neurogenesis has been limited due to the lack of a reliable protocol for isolating and culturing neural adult stem/progenitor cells. Here we provide a reproducible method to examine adult neurogenesis using a neurosphere assay derived from zebrafish whole brain or from the telencephalon, tectum and cerebellum regions of the adult zebrafish brain. The protocol involves, first the microdissection of zebrafish adult brain, then single cell dissociation and isolation of self-renewing multipotent neural stem/progenitor cells. The entire procedure takes eight days. Additionally, we describe how to manipulate gene expression in zebrafish neurospheres, which will be particularly useful to test the role of specific signaling pathways during adult neural stem/progenitor cell proliferation and differentiation in zebrafish. PMID:26967835

  17. Stem Cell-Mediated Regeneration of the Adult Brain

    PubMed Central

    Jessberger, Sebastian

    2016-01-01

    Acute or chronic injury of the adult mammalian brain is often associated with persistent functional deficits as its potential for regeneration and capacity to rebuild lost neural structures is limited. However, the discovery that neural stem cells (NSCs) persist throughout life in discrete regions of the brain, novel approaches to induce the formation of neuronal and glial cells, and recently developed strategies to generate tissue for exogenous cell replacement strategies opened novel perspectives how to regenerate the adult brain. Here, we will review recently developed approaches for brain repair and discuss future perspectives that may eventually allow for developing novel treatment strategies in acute and chronic brain injury. PMID:27781019

  18. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  19. EFA Includes Education and Literacy for All Adults Everywhere

    ERIC Educational Resources Information Center

    Hildebrand, Henner; Hinzen, Heribert

    2004-01-01

    The Institute for International Co-operation of the German Adult Education Association, otherwise known as the IIZ/DVV, is based in Bonn. Germany and has more than 40 years of service in various projects in different countries. The Institute is known for the publication of the journal "Adult Education and Development," the most widely…

  20. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    PubMed Central

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-01-01

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings. PMID:26229677

  1. Neuroimaging in adult penetrating brain injury: a guide for radiographers.

    PubMed

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-06-01

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  2. Neuroimaging in adult penetrating brain injury: a guide for radiographers

    SciTech Connect

    Temple, Nikki; Donald, Cortny; Skora, Amanda; Reed, Warren

    2015-06-15

    Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Based on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.

  3. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    NASA Astrophysics Data System (ADS)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  4. Treatment Efficacy: Cognitive-Communicative Disorders Resulting from Traumatic Brain Injury in Adults.

    ERIC Educational Resources Information Center

    Coelho, Carl A.; And Others

    1996-01-01

    This article discusses adults with brain injuries and resulting cognitive communicative disorders. The incidence of brain injuries, the effects of cognitive-communication disorders, the role of the speech-language pathologist, the benefits of treatment, and the effects of different treatments are discussed. Charts are included that summarize…

  5. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    PubMed Central

    Liu, He; Song, Ni

    2016-01-01

    Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and brain tumors. PMID:27375363

  6. Testosterone affects language areas of the adult human brain

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.

    2016-01-01

    Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  7. Testosterone affects language areas of the adult human brain.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2016-05-01

    Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc.

  8. Mechanisms of neuronal migration in the adult brain.

    PubMed

    Kaneko, Naoko; Sawada, Masato; Sawamoto, Kazunobu

    2017-03-02

    Adult neurogenesis was first observed nearly 60 years ago, and it has since grown into an important neurochemistry research field. Much recent research has focused on the treatment of brain diseases through neuronal regeneration with endogenously generated neurons. In the adult brain, immature neurons called neuroblasts are continuously generated in the ventricular-subventricular zone (V-SVZ). These neuroblasts migrate rapidly through the rostral migratory stream to the olfactory bulb, where they mature and are integrated into the neuronal circuitry. After brain insult, some of the neuroblasts in the V-SVZ migrate toward the lesion to repopulate the injured tissue. This notable migratory capacity of V-SVZ-derived neuroblasts is important for efficiently regenerating neurons in remote areas of the brain. As these neurons migrate for long distances through adult brain tissue, they are supported by various guidance cues and structures that act as scaffolds. Some of these mechanisms are unique to neuroblast migration in the adult brain, and are not involved in migration in the developing brain. Here, we review the latest findings on the mechanisms of neuroblast migration in the adult brain under physiological and pathological conditions, and discuss various issues that still need to be resolved. This article is protected by copyright. All rights reserved.

  9. Roles for oestrogen receptor β in adult brain function.

    PubMed

    Handa, R J; Ogawa, S; Wang, J M; Herbison, A E

    2012-01-01

    Oestradiol exerts a profound influence upon multiple brain circuits. For the most part, these effects are mediated by oestrogen receptor (ER)α. We review here the roles of ERβ, the other ER isoform, in mediating rodent oestradiol-regulated anxiety, aggressive and sexual behaviours, the control of gonadotrophin secretion, and adult neurogenesis. Evidence exists for: (i) ERβ located in the paraventricular nucleus underpinning the suppressive influence of oestradiol on the stress axis and anxiety-like behaviour; (ii) ERβ expressed in gonadotrophin-releasing hormone neurones contributing to oestrogen negative-feedback control of gonadotrophin secretion; (iii) ERβ controlling the offset of lordosis behaviour; (iv) ERβ suppressing aggressive behaviour in males; (v) ERβ modulating responses to social stimuli; and (vi) ERβ in controlling adult neurogenesis. This review highlights two major themes; first, ERβ and ERα are usually tightly inter-related in the oestradiol-dependent control of a particular brain function. For example, even though oestradiol feedback to control reproduction occurs principally through ERα-dependent mechanisms, modulatory roles for ERβ also exist. Second, the roles of ERα and ERβ within a particular neural network may be synergistic or antagonistic. Examples of the latter include the role of ERα to enhance, and ERβ to suppress, anxiety-like and aggressive behaviours. Splice variants such as ERβ2, acting as dominant negative receptors, are of further particular interest because their expression levels may reflect preceeding oestradiol exposure of relevance to oestradiol replacement therapy. Together, this review highlights the predominant modulatory, but nonetheless important, roles of ERβ in mediating the many effects of oestradiol upon adult brain function.

  10. Encoding of mechanical nociception differs in the adult and infant brain

    PubMed Central

    Fabrizi, Lorenzo; Verriotis, Madeleine; Williams, Gemma; Lee, Amy; Meek, Judith; Olhede, Sofia; Fitzgerald, Maria

    2016-01-01

    Newborn human infants display robust pain behaviour and specific cortical activity following noxious skin stimulation, but it is not known whether brain processing of nociceptive information differs in infants and adults. Imaging studies have emphasised the overlap between infant and adult brain connectome architecture, but electrophysiological analysis of infant brain nociceptive networks can provide further understanding of the functional postnatal development of pain perception. Here we hypothesise that the human infant brain encodes noxious information with different neuronal patterns compared to adults. To test this we compared EEG responses to the same time-locked noxious skin lance in infants aged 0–19 days (n = 18, clinically required) and adults aged 23–48 years (n = 21). Time-frequency analysis revealed that while some features of adult nociceptive network activity are present in infants at longer latencies, including beta-gamma oscillations, infants display a distinct, long latency, noxious evoked 18-fold energy increase in the fast delta band (2–4 Hz) that is absent in adults. The differences in activity between infants and adults have a widespread topographic distribution across the brain. These data support our hypothesis and indicate important postnatal changes in the encoding of mechanical pain in the human brain. PMID:27345331

  11. Memory and Brain Volume in Adults Prenatally Exposed to Alcohol

    ERIC Educational Resources Information Center

    Coles, Claire D.; Goldstein, Felicia C.; Lynch, Mary Ellen; Chen, Xiangchuan; Kable, Julie A.; Johnson, Katrina C.; Hu, Xiaoping

    2011-01-01

    The impact of prenatal alcohol exposure on memory and brain development was investigated in 92 African-American, young adults who were first identified in the prenatal period. Three groups (Control, n = 26; Alcohol-related Neurodevelopmental Disorder, n = 36; and Dysmorphic, n = 30) were imaged using structural MRI with brain volume calculated for…

  12. Childhood Onset Schizophrenia: Cortical Brain Abnormalities as Young Adults

    ERIC Educational Resources Information Center

    Greenstein, Deanna; Lerch, Jason; Shaw, Philip; Clasen, Liv; Giedd, Jay; Gochman, Peter; Rapoport, Judith; Gogtay, Nitin

    2006-01-01

    Background: Childhood onset schizophrenia (COS) is a rare but severe form of the adult onset disorder. While structural brain imaging studies show robust, widespread, and progressive gray matter loss in COS during adolescence, there have been no longitudinal studies of sufficient duration to examine comparability with the more common adult onset…

  13. Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain.

    PubMed

    Feliciano, David M; Bordey, Angélique; Bonfanti, Luca

    2015-09-18

    Two decades after the discovery that neural stem cells (NSCs) populate some regions of the mammalian central nervous system (CNS), deep knowledge has been accumulated on their capacity to generate new neurons in the adult brain. This constitutive adult neurogenesis occurs throughout life primarily within remnants of the embryonic germinal layers known as "neurogenic sites." Nevertheless, some processes of neurogliogenesis also occur in the CNS parenchyma commonly considered as "nonneurogenic." This "noncanonical" cell genesis has been the object of many claims, some of which turned out to be not true. Indeed, it is often an "incomplete" process as to its final outcome, heterogeneous by several measures, including regional location, progenitor identity, and fate of the progeny. These aspects also strictly depend on the animal species, suggesting that persistent neurogenic processes have uniquely adapted to the brain anatomy of different mammals. Whereas some examples of noncanonical neurogenesis are strictly parenchymal, others also show stem cell niche-like features and a strong link with the ventricular cavities. This work will review results obtained in a research field that expanded from classic neurogenesis studies involving a variety of areas of the CNS outside of the subventricular zone (SVZ) and subgranular zone (SGZ). It will be highlighted how knowledge concerning noncanonical neurogenic areas is still incomplete owing to its regional and species-specific heterogeneity, and to objective difficulties still hampering its full identification and characterization.

  14. Adolescent binge ethanol treatment alters adult brain regional volumes, cortical extracellular matrix protein and behavioral flexibility.

    PubMed

    Coleman, Leon Garland; Liu, Wen; Oguz, Ipek; Styner, Martin; Crews, Fulton T

    2014-01-01

    Adolescents binge drink more than any other age group, increasing risk of disrupting the development of the frontal cortex. We hypothesized that adolescent binge drinking would lead to persistent alterations in adulthood. In this study, we modeled adolescent weekend underage binge-drinking, using adolescent mice (post-natal days [P] 28-37). The adolescent intermittent binge ethanol (AIE) treatment includes 6 binge intragastric doses of ethanol in an intermittent pattern across adolescence. Assessments were conducted in adulthood following extended abstinence to determine if there were persistent changes in adults. Reversal learning, open field and other behavioral assessments as well as brain structure using magnetic imaging and immunohistochemistry were determined. We found that AIE did not impact adult Barnes Maze learning. However, AIE did cause reversal learning deficits in adults. AIE also caused structural changes in the adult brain. AIE was associated with adulthood volume enlargements in specific brain regions without changes in total brain volume. Enlarged regions included the orbitofrontal cortex (OFC, 4%), cerebellum (4.5%), thalamus (2%), internal capsule (10%) and genu of the corpus callosum (7%). The enlarged OFC volume in adults after AIE is consistent with previous imaging studies in human adolescents. AIE treatment was associated with significant increases in the expression of several extracellular matrix (ECM) proteins in the adult OFC including WFA (55%), Brevican (32%), Neurocan (105%), Tenacin-C (25%), and HABP (5%). These findings are consistent with AIE causing persistent changes in brain structure that could contribute to a lack of behavioral flexibility.

  15. Adolescent binge ethanol treatment alters adult brain regional volumes, cortical extracellular matrix protein and behavioral flexibility

    PubMed Central

    Coleman, Leon Garland; Liu, Wen; Oguz, Ipek; Styner, Martin; Crews, Fulton T.

    2014-01-01

    Adolescents binge drink more than any other age group, increasing risk of disrupting the development of the frontal cortex. We hypothesized that adolescent binge drinking would lead to persistent alterations in adulthood. In this study, we modeled adolescent weekend underage binge-drinking, using adolescent mice (post-natal days [P] 28–37). The adolescent intermittent binge ethanol (AIE) treatment includes 6 binge intragastric doses of ethanol in an intermittent pattern across adolescence. Assessments were conducted in adulthood following extended abstinence to determine if there were persistent changes in adults. Reversal learning, open field and other behavioral assessments as well as brain structure using magnetic imaging and immunohistochemistry were determined. We found AIE did not impact adult Barnes Maze learning. However, AIE did cause reversal learning deficits in adults. AIE also caused structural changes in the adult brain. AIE was associated with adulthood volume enlargements in specific brain regions without changes in total brain volume. Enlarged regions included the orbitofrontal cortex (OFC, 4%), cerebellum (4.5%), thalamus (2%), internal capsule (10%) and genu of the corpus callosum (7%). The enlarged OFC volume in adults after AIE is consistent with previous imaging studies in human adolescents. AIE treatment was associated with significant increases in the expression of several extracellular matrix (ECM) proteins in the adult OFC including WFA (55%), Brevican (32%), Neurocan (105%), Tenacin-C (25%), and HABP (5%). These findings are consistent with AIE causing persistent changes in brain structure that could contribute to a lack of behavioral flexibility. PMID:24275185

  16. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies

    PubMed Central

    Oliva, Carolina A.; Vargas, Jessica Y.; Inestrosa, Nibaldo C.

    2013-01-01

    During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer’s disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts. PMID:24348327

  17. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies.

    PubMed

    Oliva, Carolina A; Vargas, Jessica Y; Inestrosa, Nibaldo C

    2013-12-03

    During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer's disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts.

  18. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  19. New Nerve Cells for the Adult Brain.

    ERIC Educational Resources Information Center

    Kempermann, Gerd; Gage, Fred H.

    1999-01-01

    Contrary to dogma, the human brain does produce new nerve cells in adulthood. The mature human brain spawns neurons routinely in the hippocampus, an area important to memory and learning. This research can make it possible to ease any number of disorders involving neurological damage and death. (CCM)

  20. Effects of environmental tobacco smoke on adult rat brain biochemistry.

    PubMed

    Fuller, Brian F; Gold, Mark S; Wang, Kevin K W; Ottens, Andrew K

    2010-05-01

    Environmental tobacco smoke (ETS) has been linked to deleterious health effects, particularly pulmonary and cardiac disease; yet, the general public considers ETS benign to brain function in adults. In contrast, epidemiological data have suggested that ETS impacts the brain and potentially modulates neurodegenerative disease. The present study begins to examine yet unknown biochemical effects of ETS on the adult mammalian brain. In the developed animal model, adult male rats were exposed to ETS 3 h a day for 3 weeks. Biochemical data showed altered glial fibrillary acid protein levels as a main treatment effect of ETS, suggestive of reactive astrogliosis. Yet, markers of oxidative and cell stress were unaffected by ETS exposure in the brain regions examined. Increased proteolytic degradation of alphaII-spectrin by caspase-3 and the dephosphorylation of serine(116) on PEA-15 indicated greater apoptotic cell death modulated by the extrinsic pathway in the brains of ETS-exposed animals. Further, beta-synuclein was upregulated by ETS, a neuroprotective protein previously reported to exhibit anti-apoptotic and anti-fibrillogenic properties. These findings demonstrate that ETS exposure alters the neuroproteome of the adult rat brain, and suggest modulation of inflammatory and cell death processes.

  1. Control of adult neurogenesis by programmed cell death in the mammalian brain.

    PubMed

    Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon

    2016-04-21

    The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.

  2. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

    PubMed

    Qian, Qi; Liu, Qiuji; Zhou, Dongming; Pan, Hongyu; Liu, Zhiwei; He, Fangping; Ji, Suying; Wang, Dongpi; Bao, Wangxiao; Liu, Xinyi; Liu, Zhaoling; Zhang, Heng; Zhang, Xiaoqin; Zhang, Ling; Wang, Mingkai; Xu, Ying; Huang, Fude; Luo, Benyan; Sun, Binggui

    2017-02-13

    Efr3 is a newly identified plasma membrane protein and plays an important role in the phosphoinositide metabolism on the plasma membrane. However, although it is highly expressed in the brain, the functional significance of Efr3 in the brain is not clear. In the present study, we generated Efr3a(f/f) mice and then crossed them with Nestin-Cre mice to delete Efr3a, one of the Efr3 isoforms, specifically in the brain. We found that brain-specific ablation of Efr3a promoted adult hippocampal neurogenesis by increasing survival and maturation of newborn neurons without affecting their dendritic tree morphology. Moreover, the brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling pathway was significantly enhanced in the hippocampus of Efr3a-deficient mice, as reflected by increased expression of BDNF, TrkB, and the downstream molecules, including phospho-MAPK and phospho-Akt. Furthermore, the number of TUNEL(+) cells was decreased in the subgranular zone of dentate gyrus in Efr3a-deficient mice compared with that of control mice. Our data suggest that brain-specific deletion of Efr3a could promote adult hippocampal neurogenesis, presumably by upregulating the expression of BDNF and its receptor, TrkB, and therefore provide new insight into the roles of Efr3 in the brain.-Qian, Q., Liu, Q., Zhou, D., Pan, H., Liu, Z., He, F., Ji, S., Wang, D., Bao, W., Liu, X., Liu, Z., Zhang, H., Zhang, X., Zhang, L., Wang, M., Xu, Y., Huang, F., Luo, B., Sun B. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.

  3. aBEAT: A Toolbox for Consistent Analysis of Longitudinal Adult Brain MRI

    PubMed Central

    Dai, Yakang; Wang, Yaping; Wang, Li; Wu, Guorong; Shi, Feng; Shen, Dinggang

    2013-01-01

    Longitudinal brain image analysis is critical for revealing subtle but complex structural and functional changes of brain during aging or in neurodevelopmental disease. However, even with the rapid increase of clinical research and trials, a software toolbox dedicated for longitudinal image analysis is still lacking publicly. To cater for this increasing need, we have developed a dedicated 4D Adult Brain Extraction and Analysis Toolbox (aBEAT) to provide robust and accurate analysis of the longitudinal adult brain MR images. Specially, a group of image processing tools were integrated into aBEAT, including 4D brain extraction, 4D tissue segmentation, and 4D brain labeling. First, a 4D deformable-surface-based brain extraction algorithm, which can deform serial brain surfaces simultaneously under temporal smoothness constraint, was developed for consistent brain extraction. Second, a level-sets-based 4D tissue segmentation algorithm that incorporates local intensity distribution, spatial cortical-thickness constraint, and temporal cortical-thickness consistency was also included in aBEAT for consistent brain tissue segmentation. Third, a longitudinal groupwise image registration framework was further integrated into aBEAT for consistent ROI labeling by simultaneously warping a pre-labeled brain atlas to the longitudinal brain images. The performance of aBEAT has been extensively evaluated on a large number of longitudinal MR T1 images which include normal and dementia subjects, achieving very promising results. A Linux-based standalone package of aBEAT is now freely available at http://www.nitrc.org/projects/abeat. PMID:23577105

  4. Brain abscess caused by Citrobacter koseri infection in an adult.

    PubMed

    Liu, Heng-Wei; Chang, Chih-Ju; Hsieh, Cheng-Ta

    2015-04-01

    Citrobacter koseri is a gram-negative bacillus that causes mostly meningitis and brain abscesses in neonates and infants. However, brain abscess caused by Citrobacter koseri infection in an adult is extremely rare, and only 2 cases have been described. Here, we reported a 73-year-old male presenting with a 3-week headache. A history of diabetes mellitus was noted. The images revealed a brain abscess in the left frontal lobe and pus culture confirmed the growth of Citrobacter koseri. The clinical symptoms improved completely postoperatively.

  5. Inflammation is detrimental for neurogenesis in adult brain

    NASA Astrophysics Data System (ADS)

    Ekdahl, Christine T.; Claasen, Jan-Hendrik; Bonde, Sara; Kokaia, Zaal; Lindvall, Olle

    2003-11-01

    New hippocampal neurons are continuously generated in the adult brain. Here, we demonstrate that lipopolysaccharide-induced inflammation, which gives rise to microglia activation in the area where the new neurons are born, strongly impairs basal hippocampal neurogenesis in rats. The increased neurogenesis triggered by a brain insult is also attenuated if it is associated with microglia activation caused by tissue damage or lipopolysaccharide infusion. The impaired neurogenesis in inflammation is restored by systemic administration of minocycline, which inhibits microglia activation. Our data raise the possibility that suppression of hippocampal neurogenesis by activated microglia contributes to cognitive dysfunction in aging, dementia, epilepsy, and other conditions leading to brain inflammation.

  6. FACS purification of immunolabeled cell types from adult rat brain.

    PubMed

    Guez-Barber, Danielle; Fanous, Sanya; Harvey, Brandon K; Zhang, Yongqing; Lehrmann, Elin; Becker, Kevin G; Picciotto, Marina R; Hope, Bruce T

    2012-01-15

    Molecular analysis of brain tissue is greatly complicated by having many different classes of neurons and glia interspersed throughout the brain. Fluorescence-activated cell sorting (FACS) has been used to purify selected cell types from brain tissue. However, its use has been limited to brain tissue from embryos or transgenic mice with promoter-driven reporter genes. To overcome these limitations, we developed a FACS procedure for dissociating intact cell bodies from adult wild-type rat brains and sorting them using commercially available antibodies against intracellular and extracellular proteins. As an example, we isolated neurons using a NeuN antibody and confirmed their identity using microarray and real time PCR of mRNA from the sorted cells. Our FACS procedure allows rapid, high-throughput, quantitative assays of molecular alterations in identified cell types with widespread applications in neuroscience.

  7. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    PubMed Central

    Nitzsche, Björn; Frey, Stephen; Collins, Louis D.; Seeger, Johannes; Lobsien, Donald; Dreyer, Antje; Kirsten, Holger; Stoffel, Michael H.; Fonov, Vladimir S.; Boltze, Johannes

    2015-01-01

    Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species. PMID:26089780

  8. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes.

    PubMed

    Nitzsche, Björn; Frey, Stephen; Collins, Louis D; Seeger, Johannes; Lobsien, Donald; Dreyer, Antje; Kirsten, Holger; Stoffel, Michael H; Fonov, Vladimir S; Boltze, Johannes

    2015-01-01

    Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

  9. Bilateral Brain Regions Associated with Naming in Older Adults

    ERIC Educational Resources Information Center

    Obler, Loraine K.; Rykhlevskaia, Elena; Schnyer, David; Clark-Cotton, Manuella R.; Spiro, Avron, III; Hyun, JungMoon; Kim, Dae-Shik; Goral, Mira; Albert, Martin L.

    2010-01-01

    To determine structural brain correlates of naming abilities in older adults, we tested 24 individuals aged 56-79 on two confrontation-naming tests (the Boston Naming Test (BNT) and the Action Naming Test (ANT)), then collected from these individuals structural Magnetic-Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) data. Overall,…

  10. Receptor protein tyrosine phosphatase σ binds to neurons in the adult mouse brain

    PubMed Central

    Yi, Jae-Hyuk; Katagiri, Yasuhiro; Yu, Panpan; Lourie, Jacob; Bangayan, Nathanael J.; Symes, Aviva J.; Geller, Herbert M.

    2014-01-01

    The role of type IIA receptor protein tyrosine phosphatases (RPTPs), which includes LAR, RPTPσ and RPTPδ, in the nervous system is becoming increasingly recognized. Evidence supports a significant role for these RPTPs during the development of the nervous system as well as after injury, and mutations in RPTPs are associated with human disease. However, a major open question is the nature of the ligands that interact with type IIA RPTPs in the adult brain. Candidates include several different proteins as well as the glycosaminoglycan chains of proteoglycans. In order to investigate this problem, we used a receptor affinity probe assay with RPTPσ-AP fusion proteins on sections of adult mouse brain and to cultured neurons. Our results demonstrate that the major binding sites for RPTPσ in adult mouse brain are on neurons and are not proteoglycan GAG chains, as RPTPσ binding overlaps with the neuronal marker NeuN and was not significantly altered by treatments which eliminate chondroitin sulfate, heparan sulfate, or both. We also demonstrate no overlap of binding of RPTPσ with perineuronal nets, and a unique modulation of RPTPσ binding to brain by divalent cations. Our data therefore point to neuronal proteins, rather than CSPGs, as being the ligands for RPTPσ in the adult, uninjured brain. PMID:24530640

  11. Pedophilic brain potential responses to adult erotic stimuli.

    PubMed

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults.

  12. Experience-dependent neural plasticity in the adult damaged brain

    PubMed Central

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper extremity (hand and arm) impairments. A prolonged and widespread process of repair and reorganization of surviving neural circuits is instigated by injury to the adult brain. When experience impacts these same neural circuits, it interacts with degenerative and regenerative cascades to shape neural reorganization and functional outcome. This is evident in the cortical plasticity resulting from compensatory reliance on the “good” forelimb in rats with unilateral sensorimotor cortical infarcts. Behavioral interventions (e.g., rehabilitative training) can drive functionally beneficial neural reorganization in the injured hemisphere. However, experience can have both behaviorally beneficial and detrimental effects. The interactions between experience-dependent and injury-induced neural plasticity are complex, time-dependent, and varied with age and other factors. A better understanding of these interactions is needed to understand how to optimize brain remodeling and functional outcome. Learning outcomes Readers will be able to describe (a) experience effects that are maladaptive for behavioral outcome after brain damage, (b) manipulations of experience that drive functionally beneficial neural plasticity, and (c) reasons why rehabilitative training effects can be expected to vary with age, training duration and timing. PMID:21620413

  13. Relationships between gene expression and brain wiring in the adult rodent brain.

    PubMed

    French, Leon; Pavlidis, Paul

    2011-01-06

    We studied the global relationship between gene expression and neuroanatomical connectivity in the adult rodent brain. We utilized a large data set of the rat brain "connectome" from the Brain Architecture Management System (942 brain regions and over 5000 connections) and used statistical approaches to relate the data to the gene expression signatures of 17,530 genes in 142 anatomical regions from the Allen Brain Atlas. Our analysis shows that adult gene expression signatures have a statistically significant relationship to connectivity. In particular, brain regions that have similar expression profiles tend to have similar connectivity profiles, and this effect is not entirely attributable to spatial correlations. In addition, brain regions which are connected have more similar expression patterns. Using a simple optimization approach, we identified a set of genes most correlated with neuroanatomical connectivity, and find that this set is enriched for genes involved in neuronal development and axon guidance. A number of the genes have been implicated in neurodevelopmental disorders such as autistic spectrum disorder. Our results have the potential to shed light on the role of gene expression patterns in influencing neuronal activity and connectivity, with potential applications to our understanding of brain disorders. Supplementary data are available at http://www.chibi.ubc.ca/ABAMS.

  14. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging

    PubMed Central

    Bell, Robert D.; Winkler, Ethan A.; Sagare, Abhay P.; Singh, Itender; LaRue, Barb; Deane, Rashid; Zlokovic, Berislav V.

    2010-01-01

    SUMMARY Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capillary perfusion, cerebral blood flow and cerebral blood flow responses to brain activation which ultimately mediates chronic perfusion stress and hypoxia, and (2) blood-brain barrier breakdown associated with brain accumulation of serum proteins and several vasculotoxic and/or neurotoxic macromolecules ultimately leading to secondary neuronal degenerative changes. We show that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning and memory impairment and the neuroinflammatory response. Thus, pericytes control key neurovascular functions that are necessary for proper neuronal structure and function, and pericytes loss results in a progressive age-dependent vascular-mediated neurodegeneration. PMID:21040844

  15. Sex, stress and the brain: interactive actions of hormones on the developing and adult brain.

    PubMed

    McEwen, B S

    2014-12-01

    The brain is a target of steroid hormone actions that affect brain architecture, molecular and neurochemical processes, behavior and neuroprotection via both genomic and non-genomic actions. Estrogens have such effects throughout the brain and this article provides an historical and current view of how this new view has come about and how it has affected the study of sex differences, as well as other areas of neuroscience, including the effects of stress on the brain.

  16. That's Using Your Brain!

    ERIC Educational Resources Information Center

    Visser, Dana R.

    1996-01-01

    Discusses new adult learning theories, including those of Roger Sperry (left brain/right brain), Paul McLean (triune brain), and Howard Gardner (multiple intelligences). Relates adult learning theory to training. (JOW)

  17. Life Satisfaction in Adult Survivors of Childhood Brain Tumors

    PubMed Central

    Crom, Deborah B.; Li, Zhenghong; Brinkman, Tara M.; Hudson, Melissa M.; Armstrong, Gregory T.; Neglia, Joseph; Ness, Kirsten K.

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, life-long deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors’ physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggests some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population–based matched controls. Chi-square tests, t-tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors’ general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population. PMID:25027187

  18. Life satisfaction in adult survivors of childhood brain tumors.

    PubMed

    Crom, Deborah B; Li, Zhenghong; Brinkman, Tara M; Hudson, Melissa M; Armstrong, Gregory T; Neglia, Joseph; Ness, Kirsten K

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, lifelong deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors' physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggest some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population-based matched controls. Chi-square tests, t tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated that life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors' general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population.

  19. Decreased segregation of brain systems across the healthy adult lifespan

    PubMed Central

    Chan, Micaela Y.; Park, Denise C.; Savalia, Neil K.; Petersen, Steven E.; Wig, Gagan S.

    2014-01-01

    Healthy aging has been associated with decreased specialization in brain function. This characterization has focused largely on describing age-accompanied differences in specialization at the level of neurons and brain areas. We expand this work to describe systems-level differences in specialization in a healthy adult lifespan sample (n = 210; 20–89 y). A graph-theoretic framework is used to guide analysis of functional MRI resting-state data and describe systems-level differences in connectivity of individual brain networks. Young adults’ brain systems exhibit a balance of within- and between-system correlations that is characteristic of segregated and specialized organization. Increasing age is accompanied by decreasing segregation of brain systems. Compared with systems involved in the processing of sensory input and motor output, systems mediating “associative” operations exhibit a distinct pattern of reductions in segregation across the adult lifespan. Of particular importance, the magnitude of association system segregation is predictive of long-term memory function, independent of an individual’s age. PMID:25368199

  20. Prenatal ethanol exposure increases brain cholesterol content in adult rats.

    PubMed

    Barceló-Coblijn, Gwendolyn; Wold, Loren E; Ren, Jun; Murphy, Eric J

    2013-11-01

    Fetal alcohol syndrome is the most severe expression of the fetal alcohol spectrum disorders (FASD). Although alterations in fetal and neonate brain fatty acid composition and cholesterol content are known to occur in animal models of FASD, the persistence of these alterations into adulthood is unknown. To address this question, we determined the effect of prenatal ethanol exposure on individual phospholipid class fatty acid composition, individual phospholipid class mass, and cholesterol mass in brains from 25-week-old rats that were exposed to ethanol during gestation beginning at gestational day 2. While total phospholipid mass was unaffected, phosphatidylinositol and cardiolipin mass was decreased 14 and 43 %, respectively. Exposure to prenatal ethanol modestly altered brain phospholipid fatty acid composition, and the most consistent change was a significant 1.1-fold increase in total polyunsaturated fatty acids (PUFA), in the n-3/n-6 ratio, and in the 22:6n-3 content in ethanolamine glycerophospholipids and in phosphatidylserine. In contrast, prenatal ethanol consumption significantly increased brain cholesterol mass 1.4-fold and the phospholipid to cholesterol ratio was significantly increased 1.3-fold. These results indicate that brain cholesterol mass was significantly increased in adult rats exposed prenatally to ethanol, but changes in phospholipid mass and phospholipid fatty acid composition were extremely limited. Importantly, suppression of postnatal ethanol consumption was not sufficient to reverse the large increase in cholesterol observed in the adult rats.

  1. Increased juvenile predation is not associated with evolved differences in adult brain size in Trinidadian killifish (Rivulus hartii).

    PubMed

    Beston, Shannon M; Broyles, Whitnee; Walsh, Matthew R

    2017-02-01

    Vertebrates exhibit extensive variation in brain size. The long-standing assumption is that this variation is driven by ecologically mediated selection. Recent work has shown that an increase in predator-induced mortality is associated with evolved increases and decreases in brain size. Thus, the manner in which predators induce shifts in brain size remains unclear. Increased predation early in life is a key driver of many adult traits, including life-history and behavioral traits. Such results foreshadow a connection between age-specific mortality and selection on adult brain size. Trinidadian killifish, Rivulus hartii, are found in sites with and without guppies, Poecilia reticulata. The densities of Rivulus drop dramatically in sites with guppies because guppies prey upon juvenile Rivulus. Previous work has shown that guppy predation is associated with the evolution of adult life-history traits in Rivulus. In this study, we compared second-generation laboratory-born Rivulus from sites with and without guppies for differences in brain size and associated trade-offs between brain size and other components of fitness. Despite the large amount of existing research on the importance of early-life events on the evolution of adult traits, and the role of predation on both behavior and brain size, we did not find an association between the presence of guppies and evolutionary shifts in Rivulus brain size. Such results argue that increased rates of juvenile mortality may not alter selection on adult brain size.

  2. Delineating multiple functions of VEGF-A in the adult brain.

    PubMed

    Licht, Tamar; Keshet, Eli

    2013-05-01

    Vascular endothelial growth factor-A (abbreviated throughout this review as VEGF) is mostly known for its angiogenic activity, for its activity as a vascular permeability factor, and for its vascular survival activity [1]. There is a growing body of evidence, however, that VEGF fulfills additional less 'traditional' functions in multiple organs, both during development, as well as homeostatic functions in fully developed organs. This review focuses on the multiple roles of VEGF in the adult brain and is less concerned with the roles played by VEGF during brain development, functions described elsewhere in this review series. Most functions of VEGF that are essential for proper brain development are, in fact, dispensable in the adult brain as was clearly demonstrated using a conditional brain-specific VEGF loss-of-function (LOF) approach. Thus, in contrast to VEGF LOF in the developing brain, a process which is detrimental for the growth and survival of blood vessels and leads to massive neuronal apoptosis [2-4], continued signaling by VEGF in the mature brain is no longer required for maintaining already established cerebral vasculature and its inhibition does not cause appreciable vessel regression, hypoxia or apoptosis [4-7]. Yet, VEGF continues to be expressed in the adult brain in a constitutive manner. Moreover, VEGF is expressed in the adult brain in a region-specific manner and in distinctive spatial patterns incompatible with an angiogenic role (see below), strongly suggesting angiogenesis-independent and possibly also perfusion-independent functions. Here we review current knowledge on some of these 'non-traditional', often unexpected homeostatic VEGF functions, including those unrelated to its effects on the brain vasculature. These effects could be mediated directly (on non-vascular cells expressing cognate VEGF receptors) or indirectly (via the endothelium). Experimental approaches aimed at distinguishing between these possibilities for each particular

  3. Electrophysiological Recording in the Brain of Intact Adult Zebrafish

    PubMed Central

    Johnston, Lindsey; Ball, Rebecca E.; Acuff, Seth; Gaudet, John; Sornborger, Andrew; Lauderdale, James D.

    2013-01-01

    Previously, electrophysiological studies in adult zebrafish have been limited to slice preparations or to eye cup preparations and electrorentinogram recordings. This paper describes how an adult zebrafish can be immobilized, intubated, and used for in vivo electrophysiological experiments, allowing recording of neural activity. Immobilization of the adult requires a mechanism to deliver dissolved oxygen to the gills in lieu of buccal and opercular movement. With our technique, animals are immobilized and perfused with habitat water to fulfill this requirement. A craniotomy is performed under tricaine methanesulfonate (MS-222; tricaine) anesthesia to provide access to the brain. The primary electrode is then positioned within the craniotomy window to record extracellular brain activity. Through the use of a multitube perfusion system, a variety of pharmacological compounds can be administered to the adult fish and any alterations in the neural activity can be observed. The methodology not only allows for observations to be made regarding changes in neurological activity, but it also allows for comparisons to be made between larval and adult zebrafish. This gives researchers the ability to identify the alterations in neurological activity due to the introduction of various compounds at different life stages. PMID:24300281

  4. Educating the adult brain: How the neuroscience of learning can inform educational policy

    NASA Astrophysics Data System (ADS)

    Knowland, Victoria C. P.; Thomas, Michael S. C.

    2014-05-01

    The acquisition of new skills in adulthood can positively affect an individual's quality of life, including their earning potential. In some cases, such as the learning of literacy in developing countries, it can provide an avenue to escape from poverty. In developed countries, job retraining in adulthood contributes to the flexibility of labour markets. For all adults, learning opportunities increase participation in society and family life. However, the popular view is that adults are less able to learn for an intrinsic reason: their brains are less plastic than in childhood. This article reviews what is currently known from neuroscientific research about how brain plasticity changes with age, with a particular focus on the ability to acquire new skills in adulthood. Anchoring their review in the examples of the adult acquisition of literacy and new motor skills, the authors address five specific questions: (1) Are sensitive periods in brain development relevant to learning complex educational skills like literacy? (2) Can adults become proficient in a new skill? (3) Can everyone learn equally effectively in adulthood? (4) What is the role of the learning environment? (5) Does adult education cost too much? They identify areas where further research is needed and conclude with a summary of principles for enhancing adult learning now established on a neuroscience foundation.

  5. Ketone-body utilization by homogenates of adult rat brain

    SciTech Connect

    Lopes-Cardozo, M.; Klein, W.

    1982-06-01

    The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of /sup 14/C from (3-/sup 14/C)ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that of D-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO/sub 2/. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.

  6. Brain network activity in monolingual and bilingual older adults.

    PubMed

    Grady, Cheryl L; Luk, Gigi; Craik, Fergus I M; Bialystok, Ellen

    2015-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life.

  7. Brain Network Activity in Monolingual and Bilingual Older Adults

    PubMed Central

    Grady, Cheryl L.; Luk, Gigi; Craik, Fergus I.M.; Bialystok, Ellen

    2016-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  8. Executive control function, brain activation and white matter hyperintensities in older adults

    PubMed Central

    Venkatraman, Vijay K.; Aizenstein, Howard; Guralnik, Jack; Newman, Anne B.; Glynn, Nancy W.; Taylor, Christopher; Studenski, Stephanie; Launer, Lenore; Pahor, Marco; Williamson, Jeff; Rosano, Caterina

    2009-01-01

    Context Older adults responding to executive control function (ECF) tasks show greater brain activation on functional MRI (fMRI). It is not clear whether greater fMRI activation indicates a strategy to compensate for underlying brain structural abnormalities while maintaining higher performance. Objective To identify the patterns of fMRI activation in relationship with ECF performance and with brain structural abnormalities. Design Cross-sectional analysis. Main variables of interest: fMRI activation, accuracy while performing an ECF task (Digit Symbol Substitution Test), volume of white matter hyperintensities and of total brain atrophy. Setting Cohort of community-dwelling older adults. Participants Data were obtained on 25 older adults (20 women, 81 years mean age). Outcome Measure Accuracy (number of correct response / total number of responses) while performing the Digit Symbol Substitution Test. Results Greater accuracy was significantly associated with greater peak fMRI activation, from ECF regions, including left middle frontal gyrus and right posterior parietal cortex. Greater WMH was associated with lower activation within accuracy-related regions. The interaction of accuracy by white matter hyperintensities volume was significant within the left posterior parietal region. Specifically, the correlation of white matter hyperintensities volume with fMRI activation varied as a function of accuracy and it was positive for greater accuracy. Associations with brain atrophy were not significant. Conclusions Recruitment of additional areas and overall greater brain activation in older adults is associated with higher performance. Posterior parietal activation may be particularly important to maintain higher accuracy in the presence of underlying brain connectivity structural abnormalities. PMID:19922803

  9. Traumatic Brain Injury Activation of the Adult Subventricular Zone Neurogenic Niche

    PubMed Central

    Chang, Eun Hyuk; Adorjan, Istvan; Mundim, Mayara V.; Sun, Bin; Dizon, Maria L. V.; Szele, Francis G.

    2016-01-01

    Traumatic brain injury (TBI) is common in both civilian and military life, placing a large burden on survivors and society. However, with the recognition of neural stem cells in adult mammals, including humans, came the possibility to harness these cells for repair of damaged brain, whereas previously this was thought to be impossible. In this review, we focus on the rodent adult subventricular zone (SVZ), an important neurogenic niche within the mature brain in which neural stem cells continue to reside. We review how the SVZ is perturbed following various animal TBI models with regards to cell proliferation, emigration, survival, and differentiation, and we review specific molecules involved in these processes. Together, this information suggests next steps in attempting to translate knowledge from TBI animal models into human therapies for TBI. PMID:27531972

  10. Time Spent Caregiving and Help Received by Spouses and Adult Children of Brain-Impaired Adults.

    ERIC Educational Resources Information Center

    Enright, Robert B., Jr.

    1991-01-01

    Surveyed 233 family caregivers for brain-impaired adults. Spousal caregivers (both husbands and wives) devoted much time to caregiving. Most caregivers received little assistance from other family members and friends, but husbands received more than others. Employed spouses received more paid help than unemployed spouses; employment did not affect…

  11. Epigenetic choreographers of neurogenesis in the adult mammalian brain

    PubMed Central

    Ma, Dengke K; Marchetto, Maria Carolina; Guo, Junjie U; Ming, Guo-li; Gage, Fred H; Song, Hongjun

    2012-01-01

    Epigenetic mechanisms regulate cell differentiation during embryonic development and also serve as important interfaces between genes and the environment in adulthood. Neurogenesis in adults, which generates functional neural cell types from adult neural stem cells, is dynamically regulated by both intrinsic state-specific cell differentiation cues and extrinsic neural niche signals. Epigenetic regulation by DNA and histone modifiers, non-coding RNAs and other self-sustained mechanisms can lead to relatively long-lasting biological effects and maintain functional neurogenesis throughout life in discrete regions of the mammalian brain. Here, we review recent evidence that epigenetic mechanisms carry out diverse roles in regulating specific aspects of adult neurogenesis and highlight the implications of such epigenetic regulation for neural plasticity and disorders. PMID:20975758

  12. Combined Cognitive-Psychological-Physical Intervention Induces Reorganization of Intrinsic Functional Brain Architecture in Older Adults

    PubMed Central

    Zheng, Zhiwei; Zhu, Xinyi; Yin, Shufei; Wang, Baoxi; Niu, Yanan; Huang, Xin; Li, Rui; Li, Juan

    2015-01-01

    Mounting evidence suggests that enriched mental, physical, and socially stimulating activities are beneficial for counteracting age-related decreases in brain function and cognition in older adults. Here, we used functional magnetic resonance imaging (fMRI) to demonstrate the functional plasticity of brain activity in response to a combined cognitive-psychological-physical intervention and investigated the contribution of the intervention-related brain changes to individual performance in healthy older adults. The intervention was composed of a 6-week program of combined activities including cognitive training, Tai Chi exercise, and group counseling. The results showed improved cognitive performance and reorganized regional homogeneity of spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signals in the superior and middle temporal gyri, and the posterior lobe of the cerebellum, in the participants who attended the intervention. Intriguingly, the intervention-induced changes in the coherence of local spontaneous activity correlated with the improvements in individual cognitive performance. Taken together with our previous findings of enhanced resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe regions following a combined intervention program in older adults, we conclude that the functional plasticity of the aging brain is a rather complex process, and an effective cognitive-psychological-physical intervention is helpful for maintaining a healthy brain and comprehensive cognition during old age. PMID:25810927

  13. Health Problems Precede Traumatic Brain Injury in Older Adults

    PubMed Central

    Dams-O’Connor, Kristen; Gibbons, Laura E; Landau, Alexandra; Larson, Eric B; Crane, Paul K.

    2016-01-01

    Objectives To evaluate whether indices of pre-injury health and functioning were associated with risk for incident traumatic brain injury (TBI) with loss of consciousness (LOC), and evaluated health-related factors associated with mortality among those with an incident TBI. Design Prospective community cohort study. Setting Group Health, Seattle Washington. Participants 3,363 individuals aged 65 and older with no self-reported prior TBI with LOC were enrolled and followed every 2 years for an average of 7.5 years (range 0–18 years). Measurements We used Weibull survival models to evaluate baseline and time-varying predictors of incident TBI with LOC, including measures of depression, activities of daily living, cerebrovascular disease, and disease comorbidity. Results In an adjusted multivariate model, baseline depression symptoms as measured by CES-D score (hazard ratio (HR) and 95% confidence interval (CI) for 4 points = 1.34 (1.13, 1.58); p<0.05) and baseline impairment in activities of daily living (ADL; HR (95% CI) = 2.37 (1.24, 4.53); p<0.01) were associated with incident TBI. In a model that included time-dependent covariates, cerebrovascular disease at the previous visit (HR (95% CI) = 2.28 (1.37, 3.78); p<0.01), CES-D score the previous visit (HR for 4 points (95% CI) = 1.23 (1.02, 1.49); p<0.05) and baseline impairment in ADL (HR (95% CI) 2.14 (1.11, 4.13); p<0.05) predicted incident TBI. Of factors considered, cerebrovascular disease and ADL impairment were associated with earlier mortality among those with an incident TBI with LOC. Conclusion Indices of health, mood, and functional status predict incident TBI with LOC in older adults. These findings may have implications for injury prevention and post-injury clinical management. PMID:26925541

  14. Large-scale identification of coregulated enhancer networks in the adult human brain.

    PubMed

    Vermunt, Marit W; Reinink, Peter; Korving, Jeroen; de Bruijn, Ewart; Creyghton, Paul M; Basak, Onur; Geeven, Geert; Toonen, Pim W; Lansu, Nico; Meunier, Charles; van Heesch, Sebastiaan; Clevers, Hans; de Laat, Wouter; Cuppen, Edwin; Creyghton, Menno P

    2014-10-23

    Understanding the complexity of the human brain and its functional diversity remain a major challenge. Distinct anatomical regions are involved in an array of processes, including organismal homeostasis, cognitive functions, and susceptibility to neurological pathologies, many of which define our species. Distal enhancers have emerged as key regulatory elements that acquire histone modifications in a cell- and species-specific manner, thus enforcing specific gene expression programs. Here, we survey the epigenomic landscape of promoters and cis-regulatory elements in 136 regions of the adult human brain. We identify a total of 83,553 promoter-distal H3K27ac-enriched regions showing global characteristics of brain enhancers. We use coregulation of enhancer elements across many distinct regions of the brain to uncover functionally distinct networks at high resolution and link these networks to specific neuroglial functions. Furthermore, we use these data to understand the relevance of noncoding genomic variations previously linked to Parkinson's disease incidence.

  15. Acute moderate exercise enhances compensatory brain activation in older adults.

    PubMed

    Hyodo, Kazuki; Dan, Ippeita; Suwabe, Kazuya; Kyutoku, Yasushi; Yamada, Yuhki; Akahori, Mitsuya; Byun, Kyeongho; Kato, Morimasa; Soya, Hideaki

    2012-11-01

    A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation.

  16. Allergen sensitization to aeroallergens including Blomia tropicalis among adult and childhood asthmatics in Thailand.

    PubMed

    Daengsuwan, Tassalapa; Lee, Bee-Wah; Visitsuntorn, Nualanong; Charoenratanakul, Suchai; Ruangrak, Sirirat; Jirapongsananuruk, Orathai; Vichyanond, Pakit

    2003-12-01

    To study prevalence of allergen sensitization among asthmatics in Thailand, skin prick tests (SPT) were performed in 84 pediatric, 71 adult asthmatics and 71 adult volunteers. Allergen extracts used for testing included common allergens in Thailand and in Singapore. The incidence of positive SPT to any allergen among the three groups (childhood, adult patients and adult controls) were 64.3%, 43.7% and 35.2%, respectively. Dermatophagoides were the most common allergens sensitized by both pediatric (58.3%) and adult asthmatics (40.8%). Twenty-four children (28.6%) and 8 adult patients (11.3%) were sensitized to storage mites (Blomia tropicalis and/or Austroglyciphagus malaysiensis). All patients sensitized to Blomia tropicalis were sensitized to Dermatophagoides. Twenty-seven percent and 15.5% of childhood and adult asthmatics were sensitized to cockroach allergens. The rates of sensitization to oil palm pollen in childhood and adult asthmatics were 8.3% and 5.6%, respectively. Sensitization to other pollens and spores were less than 5%. This study confirms the importance of Dermatophagoides among Thai asthmatics.

  17. Transcriptional profiling of adult neural stem-like cells from the human brain.

    PubMed

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.

  18. Monte Carlo simulation of light propagation in the adult brain

    NASA Astrophysics Data System (ADS)

    Mudra, Regina M.; Nadler, Andreas; Keller, Emanuella; Niederer, Peter

    2004-06-01

    When near infrared spectroscopy (NIRS) is applied noninvasively to the adult head for brain monitoring, extra-cerebral bone and surface tissue exert a substantial influence on the cerebral signal. Most attempts to subtract extra-cerebral contamination involve spatially resolved spectroscopy (SRS). However, inter-individual variability of anatomy restrict the reliability of SRS. We simulated the light propagation with Monte Carlo techniques on the basis of anatomical structures determined from 3D-magnetic resonance imaging (MRI) exhibiting a voxel resolution of 0.8 x 0.8 x 0.8 mm3 for three different pairs of T1/T2 values each. The MRI data were used to define the material light absorption and dispersion coefficient for each voxel. The resulting spatial matrix was applied in the Monte Carlo Simulation to determine the light propagation in the cerebral cortex and overlaying structures. The accuracy of the Monte Carlo Simulation was furthermore increased by using a constant optical path length for the photons which was less than the median optical path length of the different materials. Based on our simulations we found a differential pathlength factor (DPF) of 6.15 which is close to with the value of 5.9 found in the literature for a distance of 4.5cm between the external sensors. Furthermore, we weighted the spatial probability distribution of the photons within the different tissues with the probabilities of the relative blood volume within the tissue. The results show that 50% of the NIRS signal is determined by the grey matter of the cerebral cortex which allows us to conclude that NIRS can produce meaningful cerebral blood flow measurements providing that the necessary corrections for extracerebral contamination are included.

  19. Experimental induction of corpora amylacea in adult rat brain.

    PubMed

    Schipper, H M

    1998-10-01

    Corpora amylacea (CA) are glycoproteinaceous inclusions that accumulate in astroglia and other brain cells as a function of advancing age and, to an even greater extent, in several human neurodegenerative conditions. The mechanisms responsible for their biogenesis and their subcellular origin(s) remain unclear. We previously demonstrated that the sulfhydryl agent, cysteamine (CSH), promotes the accumulation of CA-like inclusions in cultured rat astroglia. In the present study, we show that subcutaneous administration of CSH to adult rats (150 mg/kg for 6 weeks followed by a 5-week drug-washout period) elicits the accumulation of CA in many cortical and subcortical brain regions. As in the aging human brain and in CSH-treated rat astrocyte cultures, the inclusions are periodic acid-Schiff -positive and are consistently immunostained with antibodies directed against mitochondrial epitopes and ubiquitin. Our findings support our contention that mitochondria are important structural precursors of CA, and that CSH accelerates aging-like processes in rat astroglia both in vitro and in the intact brain.

  20. Vertex-wise examination of depressive symptom dimensions and brain volumes in older adults.

    PubMed

    McLaren, Molly E; Szymkowicz, Sarah M; O'Shea, Andrew; Woods, Adam J; Anton, Stephen D; Dotson, Vonetta M

    2017-02-28

    Differences in brain volumes have commonly been reported in older adults with both subthreshold and major depression. Few studies have examined the association between specific symptom dimensions of depression and brain volumes. This study used vertex-wise analyses to examine the association between specific symptom dimensions of depression and brain volumes in older adults with subthreshold levels of depressive symptoms. Forty-three community-dwelling adults between the ages of 55 and 81 years underwent a structural Magnetic Resonance Imaging scan and completed the Center for Epidemiologic Studies Depression Scale (CES-D). Vertex-wise analyses were conducted using Freesurfer Imaging Suite to examine the relationship between CES-D subscale scores and gray matter volumes while controlling for sex, age, and education. We found distinct associations between depressed mood, somatic symptoms, and lack of positive affect subscales with regional volumes, including primarily positive relationships in temporal regions and a negative association with the lingual gyrus. The relationship between higher depressed mood subscale scores and larger volumes in the left inferior temporal lobe withstood Monte-Carlo correction for multiple comparisons. Results from this preliminary study highlight the importance of examining depression on a symptom dimension level and identify brain regions that may be important in larger studies of depression.

  1. Localization and regulation of PML bodies in the adult mouse brain.

    PubMed

    Hall, Małgorzata H; Magalska, Adriana; Malinowska, Monika; Ruszczycki, Błażej; Czaban, Iwona; Patel, Satyam; Ambrożek-Latecka, Magdalena; Zołocińska, Ewa; Broszkiewicz, Hanna; Parobczak, Kamil; Nair, Rajeevkumar R; Rylski, Marcin; Pawlak, Robert; Bramham, Clive R; Wilczyński, Grzegorz M

    2016-06-01

    PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons.

  2. Hour-Long Nap May Boost Brain Function in Older Adults

    MedlinePlus

    ... fullstory_162923.html Hour-Long Nap May Boost Brain Function in Older Adults Linked to improved memory and ... during the day had any effects on their brain function. Nearly 60 percent of the people regularly napped ...

  3. Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain

    PubMed Central

    Boulanger, Jenna J.; Messier, Claude

    2017-01-01

    Key Points Oligodendrocyte precursor cells express doublecortin, a microtubule-associated protein.Oligodendrocyte precursor cells express doublecortin, but at a lower level of expression than in neuronal precursor.Doublecortin is not associated with a potential immature neuronal phenotype in Oligodendrocyte precursor cells. Oligodendrocyte precursor cells (OPC) are glial cells that differentiate into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. Considering these roles in the adult brain, OPCs are likely mobile cells that can migrate on some distances before they differentiate into myelinating oligodendrocytes. A number of studies have noted that OPCs express doublecortin (DCX), a microtubule-associated protein expressed in neural precursor cells and in migrating immature neurons. Here we describe the distribution of DCX in OPCs. We found that almost all OPCs express DCX, but the level of expression appears to be much lower than what is found in neural precursor. We found that DCX is downregulated when OPCs start expressing mature oligodendrocyte markers and is absent in myelinating oligodendrocytes. DCX does not appear to signal an immature neuronal phenotype in OPCs in the adult mouse brain. Rather, it could be involved either in cell migration, or as a marker of an immature oligodendroglial cell phenotype.

  4. Brain volume and cognitive function in adult survivors of childhood acute lymphoblastic leukemia.

    PubMed

    Edelmann, Michelle N; Krull, Kevin R

    2013-10-01

    The survival rate for childhood acute lymphoblastic leukemia (ALL) is greater than 80%. However, many of these survivors develop long-term chronic health conditions, with a relatively common late effect being neurocognitive dysfunction. Although neurocognitive impairments have decreased in frequency and severity as treatment has evolved, there is a subset of survivors in the current treatment era that are especially vulnerable to the neurotoxic effects of ALL and its treatment. Additionally, little is known about long-term brain development as survivors mature into adulthood. A recent study by Zeller et al. compared neurocognitive function and brain volume in 130 adult survivors of childhood ALL to 130 healthy adults matched on age and sex. They identified the caudate as particularly sensitive to the neurotoxic effects of chemotherapy. We discuss the implications and limitations of this study, including how their findings support the concept of individual vulnerability to ALL and its treatment.

  5. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus.

    PubMed

    Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui

    2016-04-15

    Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.

  6. Electrophysiological Properties of Subventricular Zone Cells in Adult Mouse Brain

    PubMed Central

    Lai, Bin; Mao, Xiao Ou; Xie, Lin; Chang, Su-Youne; Xiong, Zhi-Gang; Jin, Kunlin; Greenberg, David A.

    2010-01-01

    The subventricular zone (SVZ) is a principal site of adult neurogenesis and appears to participate in the brain’s response to injury. Thus, measures that enhance SVZ neurogenesis may have a role in treatment of neurological disease. To better characterize SVZ cells and identify potential targets for therapeutic intervention, we studied electrophysiological properties of SVZ cells in adult mouse brain slices using patch-clamp techniques. Electrophysiology was correlated with immunohistochemical phenotype by injecting cells with lucifer yellow and by studying transgenic mice carrying green fluorescent protein under control of the doublecortin (DCX) or glial fibrillary acidic protein (GFAP) promoter. We identified five types of cells in the adult mouse SVZ: type 1 cells, with 4-aminopyridine (4-AP)/tetraethylammonium (TEA)-sensitive and CdCl2-sensitive inward currents; type 2 cells, with Ca2+-sensitive K+ and both 4-AP/TEA-sensitive and -insensitive currents; type 3 cells, with 4-AP/TEA-sensitive and -insensitive and small Na+ currents; type 4 cells, with slowly activating, large linear outward current and sustained outward current without fast-inactivating component; and type 5 cells, with a large outward rectifying current with a fast inactivating component. Type 2 and 3 cells expressed DCX, types 4 and 5 cells expressed GFAP, and type 1 cells expressed neither. We propose that SVZ neurogenesis involves a progression of electrophysiological cell phenotypes from types 4 and 5 cells (astrocytes) to type 1 cells (neuronal progenitors) to types 2 and 3 cells (nascent neurons), and that drugs acting on. ion channels expressed during neurogenesis might promote therapeutic neurogenesis in the injured brain. PMID:20434436

  7. Doublecortin expression in the normal and epileptic adult human brain.

    PubMed

    Liu, Y W J; Curtis, M A; Gibbons, H M; Mee, E W; Bergin, P S; Teoh, H H; Connor, B; Dragunow, M; Faull, R L M

    2008-12-01

    Mesial temporal lobe epilepsy (MTLE) is a neurological disorder associated with spontaneous recurrent complex partial seizures and hippocampal sclerosis. Although increased hippocampal neurogenesis has been reported in animal models of MTLE, increased neurogenesis has not been reported in the hippocampus of adult human MTLE cases. Here we showed that cells expressing doublecortin (Dcx), a microtubule-associated protein expressed in migrating neuroblasts, were present in the hippocampus and temporal cortex of the normal and MTLE adult human brain. In particular, increased numbers of Dcx-positive cells were observed in the epileptic compared with the normal temporal cortex. Importantly, 56% of Dcx-expressing cells in the epileptic temporal cortex coexpressed both the proliferative cell marker, proliferating cell nuclear antigen and early neuronal marker, TuJ1, suggesting that they may be newly generated neurons. A subpopulation of Dcx-positive cells in the epileptic temporal cortex also coexpressed the mature neuronal marker, NeuN, suggesting that epilepsy may promote the generation of new neurons in the temporal cortex. This study has identified, for the first time, a novel population of Dcx-positive cells in the adult human temporal cortex that can be upregulated by epilepsy and thus, raises the possibility that these cells may have functional significance in the pathophysiology of epilepsy.

  8. Applications of hybrid diffuse optics for clinical management of adults after brain injury

    NASA Astrophysics Data System (ADS)

    Kim, Meeri Nam

    Information about cerebral blood flow (CBF) is valuable for clinical management of patients after severe brain injury. Unfortunately, current modalities for monitoring brain are often limited by hurdles that include high cost, low throughput, exposure to ionizing radiation, probe invasiveness, and increased risk to critically ill patients when transportation out of their room or unit is required. A further limitation of current technologies is an inability to provide continuous bedside measurements that are often desirable for unstable patients. Here we explore the clinical utility of diffuse correlation spectroscopy (DCS) as an alternative approach for bedside CBF monitoring. DCS uses the rapid intensity fluctuations of near-infrared light to derive a continuous measure of changes in blood flow without ionizing radiation or invasive probing. Concurrently, we employ another optical technique, called diffuse optical spectroscopy (DOS), to derive changes in cerebral oxyhemoglobin ( HbO2) and deoxyhemoglobin (Hb) concentrations. Our clinical studies integrate DCS with DOS into a single hybrid instrument that simultaneously monitors CBF and HbO2/Hb in the injured adult brain. The first parts of this dissertation present the motivations for monitoring blood flow in injured brain, as well as the theory underlying diffuse optics technology. The next section elaborates on details of the hybrid instrumentation. The final chapters describe four human subject studies carried out with these methods. Each of these studies investigates an aspect of the potential of the hybrid monitor in clinical applications involving adult brain. The studies include: (1) validation of DCS-measured CBF against xenon-enhanced computed tomography in brain-injured adults; (2) a study of the effects of age and gender on posture-change-induced CBF variation in healthy subjects; (3) a study of the efficacy of DCS/DOS for monitoring neurocritical care patients during various medical interventions such

  9. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex.

    PubMed

    Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.

  10. Differential regulation of laminin b1 transgene expression in the neonatal and adult mouse brain.

    PubMed

    Sharif, K A; Baker, H; Gudas, L J

    2004-01-01

    Laminins are the major glycoproteins present in basement membrane, a type of extracellular matrix. We showed that the LAMB1 gene, which encodes the laminin beta1 subunit, is transcriptionally activated by retinoic acid in embryonic stem cells. However, little information is available concerning LAMB1 developmental regulation and spatial expression in the adult mouse brain. In this study we used transgenic mice expressing different lengths of LAMB1 promoter driving beta-galactosidase to investigate developmental and adult transcriptional regulation in the regions of the brain in which the laminin beta1 protein is expressed. CNS expression was not observed in transgenic mice carrying a 1.4LAMB1betagal construct. Mice carrying a 2.5LAMB1betagal construct expressed the LAMB1 transgene, as assayed by X-gal staining, only in the molecular layer of the neonatal cerebellum. In contrast, a 3.9LAMB1betagal transgene showed broad regional expression in the adult mouse brain, including the hippocampus, entorhinal cortex, colliculi, striatum, and substantia nigra. Similar expression patterns were observed for the endogenous laminin beta1 protein and for the 3.9LAMB1betagal transgene, analyzed with an antibody against the beta-galactosidase protein. The 3.9LAMB1betagal transgene expression in the hippocampal tri-synaptic circuit suggests a role for the LAMB1 gene in learning and memory.

  11. Language of the aging brain: Event-related potential studies of comprehension in older adults

    PubMed Central

    Wlotko, Edward W.; Lee, Chia-Lin; Federmeier, Kara D.

    2010-01-01

    Normal aging brings increased richness in knowledge and experience as well as declines in cognitive abilities. Event-related brain potential (ERP) studies of language comprehension corroborate findings showing that the structure and organization of semantic knowledge remains relatively stable with age. Highlighting the advantages of the temporal and functional specificity of ERPs, this survey focuses on age-related changes in higher-level processes required for the successful comprehension of meaning representations built from multiple words. Older adults rely on different neural pathways and cognitive processes during normal, everyday comprehension, including a shift away from the predictive use of sentential context, differential recruitment of neural resources, and reduced engagement of controlled processing. Within age groups, however, there are important individual differences that, for example, differentiate a subset of older adults whose processing patterns more closely resemble that of young adults, providing a window into cognitive skills and abilities that may mediate or moderate age-related declines. PMID:20823949

  12. Brain self-protection: the role of endogenous neural progenitor cells in adult brain after cerebral cortical ischemia.

    PubMed

    Li, Bin; Piao, Chun-Shu; Liu, Xiao-Yun; Guo, Wen-Ping; Xue, Yue-Qiang; Duan, Wei-Ming; Gonzalez-Toledo, Maria E; Zhao, Li-Ru

    2010-04-23

    Convincing evidence has shown that brain ischemia causes the proliferation of neural stem cells/neural progenitor cells (NSCs/NPCs) in both the subventricular zone (SVZ) and the subgranular zone (SGZ) of adult brain. The role of brain ischemia-induced NSC/NPC proliferation, however, has remained unclear. Here we have determined whether brain ischemia-induced amplification of the NSCs/NPCs in adult brain is required for brain self-protection. The approach of intracerebroventricular (ICV) infusion of cytosine arabinoside (Ara-C), an inhibitor for cell proliferation, for the first 7days after brain ischemia was used to block ischemia-induced NSC/NPC proliferation. We observed that ICV infusion of Ara-C caused a complete blockade of NSC/NPC proliferation in the SVZ and a dramatic reduction of NSC/NPC proliferation in the SGZ. Additionally, as a result of the inhibition of ischemia-induced NSC/NPC pool amplification, the number of neurons in the hippocampal CA1 and CA3 was significantly reduced, the infarction size was significantly enlarged, and neurological deficits were significantly worsened after focal brain ischemia. We also found that an NSC/NPC-conditioned medium showed neuroprotective effects in vitro and that adult NSC/NPC-released brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) are required for NSC/NPC-conditioned medium-induced neuroprotection. These data suggest that NSC/NPC-generated trophic factors are neuroprotective and that brain ischemia-triggered NSC/NPC proliferation is crucial for brain protection. This study provides insights into the contribution of endogenous NSCs/NPCs to brain self-protection in adult brain after ischemia injury.

  13. Central artery stiffness, baroreflex sensitivity, and brain white matter neuronal fiber integrity in older adults.

    PubMed

    Tarumi, Takashi; de Jong, Daan L K; Zhu, David C; Tseng, Benjamin Y; Liu, Jie; Hill, Candace; Riley, Jonathan; Womack, Kyle B; Kerwin, Diana R; Lu, Hanzhang; Munro Cullum, C; Zhang, Rong

    2015-04-15

    Cerebral hypoperfusion elevates the risk of brain white matter (WM) lesions and cognitive impairment. Central artery stiffness impairs baroreflex, which controls systemic arterial perfusion, and may deteriorate neuronal fiber integrity of brain WM. The purpose of this study was to examine the associations among brain WM neuronal fiber integrity, baroreflex sensitivity (BRS), and central artery stiffness in older adults. Fifty-four adults (65 ± 6 years) with normal cognitive function or mild cognitive impairment (MCI) were tested. The neuronal fiber integrity of brain WM was assessed from diffusion metrics acquired by diffusion tensor imaging. BRS was measured in response to acute changes in blood pressure induced by bolus injections of vasoactive drugs. Central artery stiffness was measured by carotid-femoral pulse wave velocity (cfPWV). The WM diffusion metrics including fractional anisotropy (FA) and radial (RD) and axial (AD) diffusivities, BRS, and cfPWV were not different between the control and MCI groups. Thus, the data from both groups were combined for subsequent analyses. Across WM, fiber tracts with decreased FA and increased RD were associated with lower BRS and higher cfPWV, with many of the areas presenting spatial overlap. In particular, the BRS assessed during hypotension was strongly correlated with FA and RD when compared with hypertension. Executive function performance was associated with FA and RD in the areas that correlated with cfPWV and BRS. These findings suggest that baroreflex-mediated control of systemic arterial perfusion, especially during hypotension, may play a crucial role in maintaining neuronal fiber integrity of brain WM in older adults.

  14. Brain-expressed imprinted genes and adult behaviour: the example of Nesp and Grb10.

    PubMed

    Dent, Claire L; Isles, Anthony R

    2014-02-01

    Imprinted genes are defined by their parent-of-origin-specific monoallelic expression. Although the epigenetic mechanisms regulating imprinted gene expression have been widely studied, their functional importance is still unclear. Imprinted genes are associated with a number of physiologies, including placental function and foetal growth, energy homeostasis, and brain and behaviour. This review focuses on genomic imprinting in the brain and on two imprinted genes in particular, Nesp and paternal Grb10, which, when manipulated in animals, have been shown to influence adult behaviour. These two genes are of particular interest as they are expressed in discrete and overlapping neural regions, recognised as key "imprinting hot spots" in the brain. Furthermore, these two genes do not appear to influence placental function and/or maternal provisioning of offspring. Consequently, by understanding their behavioural function we may begin to shed light on the evolutionary significance of imprinted genes in the adult brain, independent of the recognised role in maternal care. In addition, we discuss the potential future directions of research investigating the function of these two genes and the behavioural role of imprinted genes more generally.

  15. CILIA FORMATION IN THE ADULT CAT BRAIN AFTER PARGYLINE TREATMENT

    PubMed Central

    Milhaud, Monique; Pappas, George D.

    1968-01-01

    The brains of four adult cats treated with pargyline (a nonhydrazide monoaminoxidase inhibitor) were examined at both the light and electron microscopic levels. Formation of typical mature cilia with the 9 + 2 pattern was observed in neural cells in the following areas: habenula nuclei, interpeduncular nuclei, hippocampus, mammillary bodies, thalamus, and caudate nucleus. The most marked ciliation occurs in the habenula nuclei. In general, glial cells greatly predominate in the formation of cilia. It is not clear whether ciliation in the central nervous system is the direct result of pargyline or if it occurs indirectly as a result of inhibition of monoaminoxidase. These findings are compared with the serotonin effect on ciliation in the embryogenesis of lower forms. It is suggested that pharmacological stimulation of centriolar reproduction without subsequent mitosis may lead to ciliary formation. PMID:11905194

  16. A model for genomic imprinting in the social brain: adults.

    PubMed

    Ubeda, Francisco; Gardner, Andy

    2011-02-01

    Genomic imprinting refers to genes that are silenced when inherited via sperm or via egg. The silencing of genes conditional upon their parental origin requires an evolutionary explanation. The most widely accepted theory for the evolution of genomic imprinting-the kinship theory-argues that conflict between maternally inherited and paternally inherited genes over phenotypes with asymmetric effects on matrilineal and patrilineal kin results in self-imposed silencing of one of the copies. This theory has been applied to imprinting of genes expressed in the placenta, and infant brain determining the allocation of parental resources being the source of conflict parental promiscuity. However, there is growing evidence that imprinted genes are expressed in the postinfant brain where parental promiscuity per se is no longer a source of conflict. Here, we advance the kinship theory by developing an evolutionary model of genomic imprinting in adults, driven by intragenomic conflict over allocation to parental versus communal care. We consider the role of sex differences in dispersal and variance in reproductive success as sources of conflict. We predict that, in hominids and birds, parental care will be expressed by maternally inherited genes. In nonhominid mammals, we predict more diversity, with some mammals showing the same pattern and other showing the reverse. We use the model to interpret experimental data on imprinted genes in the house mouse: specifically, paternally expressed Peg1 and Peg3 genes, underlying maternal care, and maternally expressed Gnas and paternally expressed Gnasxl genes, underlying communal care. We also use the model to relate ancestral demography to contemporary imprinting disorders of adults, in humans and other taxa.

  17. Brain activation during visual working memory correlates with behavioral mobility performance in older adults.

    PubMed

    Kawagoe, Toshikazu; Suzuki, Maki; Nishiguchi, Shu; Abe, Nobuhito; Otsuka, Yuki; Nakai, Ryusuke; Yamada, Minoru; Yoshikawa, Sakiko; Sekiyama, Kaoru

    2015-01-01

    Functional mobility and cognitive function often decline with age. We previously found that functional mobility as measured by the Timed Up and Go Test (TUG) was associated with cognitive performance for visually-encoded (i.e., for location and face) working memory (WM) in older adults. This suggests a common neural basis between TUG and visual WM. To elucidate this relationship further, the present study aimed to examine the neural basis for the WM-mobility association. In accordance with the well-known neural compensation model in aging, we hypothesized that "attentional" brain activation for easy WM would increase in participants with lower mobility. The data from 32 healthy older adults were analyzed, including brain activation during easy WM tasks via functional Magnetic Resonance Imaging (fMRI) and mobility performance via both TUG and a simple walking test. WM performance was significantly correlated with TUG but not with simple walking. Some prefrontal brain activations during WM were negatively correlated with TUG performance, while positive correlations were found in subcortical structures including the thalamus, putamen and cerebellum. Moreover, activation of the subcortical regions was significantly correlated with WM performance, with less activation for lower WM performers. These results indicate that older adults with lower mobility used more cortical (frontal) and fewer subcortical resources for easy WM tasks. To date, the frontal compensation has been proposed separately in the motor and cognitive domains, which have been assumed to compensate for dysfunction of the other brain areas; however, such dysfunction was less clear in previous studies. The present study observed such dysfunction as degraded activation associated with lower performance, which was found in the subcortical regions. We conclude that a common dysfunction-compensation activation pattern is likely the neural basis for the association between visual WM and functional mobility.

  18. Brain activation during visual working memory correlates with behavioral mobility performance in older adults

    PubMed Central

    Kawagoe, Toshikazu; Suzuki, Maki; Nishiguchi, Shu; Abe, Nobuhito; Otsuka, Yuki; Nakai, Ryusuke; Yamada, Minoru; Yoshikawa, Sakiko; Sekiyama, Kaoru

    2015-01-01

    Functional mobility and cognitive function often decline with age. We previously found that functional mobility as measured by the Timed Up and Go Test (TUG) was associated with cognitive performance for visually-encoded (i.e., for location and face) working memory (WM) in older adults. This suggests a common neural basis between TUG and visual WM. To elucidate this relationship further, the present study aimed to examine the neural basis for the WM-mobility association. In accordance with the well-known neural compensation model in aging, we hypothesized that “attentional” brain activation for easy WM would increase in participants with lower mobility. The data from 32 healthy older adults were analyzed, including brain activation during easy WM tasks via functional Magnetic Resonance Imaging (fMRI) and mobility performance via both TUG and a simple walking test. WM performance was significantly correlated with TUG but not with simple walking. Some prefrontal brain activations during WM were negatively correlated with TUG performance, while positive correlations were found in subcortical structures including the thalamus, putamen and cerebellum. Moreover, activation of the subcortical regions was significantly correlated with WM performance, with less activation for lower WM performers. These results indicate that older adults with lower mobility used more cortical (frontal) and fewer subcortical resources for easy WM tasks. To date, the frontal compensation has been proposed separately in the motor and cognitive domains, which have been assumed to compensate for dysfunction of the other brain areas; however, such dysfunction was less clear in previous studies. The present study observed such dysfunction as degraded activation associated with lower performance, which was found in the subcortical regions. We conclude that a common dysfunction—compensation activation pattern is likely the neural basis for the association between visual WM and functional

  19. New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain

    PubMed Central

    Perez, Julio D.; Rubinstein, Nimrod D.; Dulac, Catherine

    2016-01-01

    Mammalian evolution entailed multiple innovations in gene regulation, including the emergence of genomic imprinting, an epigenetic regulation leading to the preferential expression of a gene from its maternal or paternal allele. Genomic imprinting is highly prevalent in the brain, yet, until recently, its central roles in neural processes have not been fully appreciated. Here, we provide a comprehensive survey of adult and developmental brain functions influenced by imprinted genes, from neural development and wiring to synaptic function and plasticity, energy balance, social behaviors, emotions, and cognition. We further review the widespread identification of parental biases alongside monoallelic expression in brain tissues, discuss their potential roles in dosage regulation of key neural pathways, and suggest possible mechanisms underlying the dynamic regulation of imprinting in the brain. This review should help provide a better understanding of the significance of genomic imprinting in the normal and pathological brain of mammals including humans. PMID:27145912

  20. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD.

    PubMed

    Sokunbi, Moses O; Fung, Wilson; Sawlani, Vijay; Choppin, Sabine; Linden, David E J; Thome, Johannes

    2013-12-30

    In patients with attention deficit hyperactivity disorder (ADHD), quantitative neuroimaging techniques have revealed abnormalities in various brain regions, including the frontal cortex, striatum, cerebellum, and occipital cortex. Nonlinear signal processing techniques such as sample entropy have been used to probe the regularity of brain magnetoencephalography signals in patients with ADHD. In the present study, we extend this technique to analyse the complex output patterns of the 4 dimensional resting state functional magnetic resonance imaging signals in adult patients with ADHD. After adjusting for the effect of age, we found whole brain entropy differences (P=0.002) between groups and negative correlation (r=-0.45) between symptom scores and mean whole brain entropy values, indicating lower complexity in patients. In the regional analysis, patients showed reduced entropy in frontal and occipital regions bilaterally and a significant negative correlation between the symptom scores and the entropy maps at a family-wise error corrected cluster level of P<0.05 (P=0.001, initial threshold). Our findings support the hypothesis of abnormal frontal-striatal-cerebellar circuits in ADHD and the suggestion that sample entropy is a useful tool in revealing abnormalities in the brain dynamics of patients with psychiatric disorders.

  1. Cognitive functioning in relation to brain amyloid-β in healthy adults with Down syndrome.

    PubMed

    Hartley, Sigan L; Handen, Benjamin L; Devenny, Darlynne A; Hardison, Regina; Mihaila, Iulia; Price, Julie C; Cohen, Annie D; Klunk, William E; Mailick, Marsha R; Johnson, Sterling C; Christian, Bradley T

    2014-09-01

    Nearly all adults with Down syndrome show neuropathology of Alzheimer's disease, including amyloid-β deposition, by their fifth decade of life. In the current study, we examined the association between brain amyloid-β deposition, assessed via in vivo assessments of neocortical Pittsburgh compound B, and scores on an extensive neuropsychological battery of measures of cognitive functioning in 63 adults (31 male, 32 female) with Down syndrome aged 30-53 years who did not exhibit symptoms of dementia. Twenty-two of the adults with Down syndrome were identified as having elevated neocortical Pittsburgh compound B retention levels. There was a significant positive correlation (r = 0.62, P < 0.0001) between age and neocortical Pittsburgh compound B retention. This robust association makes it difficult to discriminate normative age-related decline in cognitive functioning from any potential effects of amyloid-β deposition. When controlling for chronological age in addition to mental age, there were no significant differences between the adults with Down syndrome who had elevated neocortical Pittsburgh compound B retention levels and those who did not on any of the neuropsychological measures. Similarly, when examining Pittsburgh compound B as a continuous variable, after controlling for mental age and chronological age, only the Rivermead Picture Recognition score was significantly negatively associated with neocortical Pittsburgh compound B retention. Our findings indicate that many adults with Down syndrome can tolerate amyloid-β deposition without deleterious effects on cognitive functioning. However, we may have obscured true effects of amyloid-β deposition by controlling for chronological age in our analyses. Moreover, our sample included adults with Down syndrome who were most 'resistant' to the effects of amyloid-β deposition, as adults already exhibiting clinical symptoms of dementia symptoms were excluded from the study.

  2. Age-related changes in susceptibility of rat brain slice cultures including hippocampus to encephalomyocarditis virus

    PubMed Central

    Su, Weiping; Ueno-Yamanouchi, Aito; Uetsuka, Koji; Nakayama, Hiroyuki; Doi, Kunio

    1999-01-01

    Replication of the D variant of encephalomyocarditis virus (EMC-D) and its cytopathic effects were studied in the brain slice cultures including hippocampus (hippocampal slice) obtained from postnatal 1-, 4-, 7-, 14-, 28-and 56-day-old Fischer 344 rats. At 0, 12, 24, 36 and 48 h after infection, virus titres of the slices and culture media were assayed. Viral replication was observed in cultures from 1-to 28-day-old rats, and the highest titre was recorded in the slice and culture medium from the youngest rat. The peak of virus titre decreased with age and no distinct viral replication was observed in the cultures from 56-day-old rats. Light microscopy revealed that degenerative and necrotic changes appeared in the infected hippocampal slices from 1- to 28-day-old rats, and the changes became less prominent with age. In situ hybridization and indirect immunofluorescence staining showed that positive signals of viral RNA and antigen were prominent in younger rats and decreased with age. These results suggest that an age-related decrease in the susceptibility of rat brain to EMC-D is less related to the maturation of the immune system but possibly to that of the neurone. PMID:10632784

  3. A perfusion protocol for lizards, including a method for brain removal

    PubMed Central

    Hoops, Daniel

    2015-01-01

    The goal of fixation is to rapidly and uniformly preserve tissue in a life-like state. Perfusion achieves optimal fixation by pumping fixative directly through an animal’s circulatory system. Standard perfusion techniques were developed primarily for application in mammals, which are traditional neuroscience research models. Increasingly, other vertebrate groups are also being used in neuroscience. Following mammalian perfusion protocols for non-mammalian vertebrates often results in failed perfusions. Here, I present a modified perfusion protocol suitable for lizards. Though geared towards standard brain perfusion, this protocol is easily modified for the perfusion of other tissues and for various specialized histological techniques. • The two aortas of the lizard heart, emerging from a single ventricle, mean that care must be taken to place the perfusion needle in the correct aorta, unlike in mammals. • Only the head and neck perfuse – the visceral organs will not decolour, and the body may not twitch. • I also include a method for removing a lizard brain, which differs from mammals due to the incomplete and thicker skull of the lizard. PMID:26150986

  4. Epigenetic gene regulation in the adult mammalian brain: multiple roles in memory formation.

    PubMed

    Lubin, Farah D

    2011-07-01

    Brain-derived neurotrophic factor (bdnf) is one of numerous gene products necessary for long-term memory formation and dysregulation of bdnf has been implicated in the pathogenesis of cognitive and mental disorders. Recent work indicates that epigenetic-regulatory mechanisms including the markings of histone proteins and associated DNA remain labile throughout the life-span and represent an attractive molecular process contributing to gene regulation in the brain. In this review, important information will be discussed on epigenetics as a set of newly identified dynamic transcriptional mechanisms serving to regulate gene expression changes in the adult brain with particular emphasis on bdnf transcriptional readout in learning and memory formation. This review will also highlight evidence for the role of epigenetics in aberrant bdnf gene regulation in the pathogenesis of cognitive dysfunction associated with seizure disorders, Rett syndrome, Schizophrenia, and Alzheimer's disease. Such research offers novel concepts for understanding epigenetic transcriptional mechanisms subserving adult cognition and mental health, and furthermore promises novel avenues for therapeutic approach in the clinic.

  5. Investigation of genes important in neurodevelopment disorders in adult human brain.

    PubMed

    Maussion, Gilles; Diallo, Alpha B; Gigek, Carolina O; Chen, Elizabeth S; Crapper, Liam; Théroux, Jean-Francois; Chen, Gary G; Vasuta, Cristina; Ernst, Carl

    2015-10-01

    Several neurodevelopmental disorders (NDDs) are caused by mutations in genes expressed in fetal brain, but little is known about these same genes in adult human brain. Here, we test the hypothesis that genes associated with NDDs continue to have a role in adult human brain to explore the idea that NDD symptoms may be partially a result of their adult function rather than just their neurodevelopmental function. To demonstrate adult brain function, we performed expression analyses and ChIPseq in human neural stem cell(NSC) lines at different developmental stages and adult human brain, targeting two genes associated with NDDs, SATB2 and EHMT1, and the WNT signaling gene TCF7L2, which has not been associated with NDDs. Analysis of DNA interaction sites in neural stem cells reveals high (40-50 %) overlap between proliferating and differentiating cells for each gene in temporal space. Studies in adult brain demonstrate that consensus sites are similar to NSCs but occur at different genomic locations. We also performed expression analyses using BrainSpan data for NDD-associated genes SATB2, EHMT1, FMR1, MECP2, MBD5, CTNND2, RAI1, CHD8, GRIN2A, GRIN2B, TCF4, SCN2A, and DYRK1A and find high expression of these genes in adult brain, at least comparable to developing human brain, confirming that genes associated with NDDs likely have a role in adult tissue. Adult function of genes associated with NDDs might be important in clinical disease presentation and may be suitable targets for therapeutic intervention.

  6. Brain glucose metabolism in adults with ataxia-telangiectasia and their asymptomatic relatives.

    PubMed

    Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Studentsova, Yana; Margus, Brad; Crawford, Thomas O

    2014-06-01

    Ataxia-telangiectasia is a recessive genetic disorder (ATM is the mutated gene) of childhood with severe motor impairments and whereas homozygotes manifest the disorder, heterozygotes are asymptomatic. Structural brain imaging and post-mortem studies in individuals with ataxia-telangiectasia have reported cerebellar atrophy; but abnormalities of motor control characteristic of extrapyramidal dysfunction suggest impairment of broader motor networks. Here, we investigated possible dysfunction in other brain areas in individuals with ataxia-telangiectasia and tested for brain changes in asymptomatic relatives to assess if heterozygocity affects brain function. We used positron emission tomography and (18)F-fluorodeoxyglucose to measure brain glucose metabolism (quantified as µmol/100 g/min), which serves as a marker of brain function, in 10 adults with ataxia-telangiectasia, 19 non-affected adult relatives (12 siblings, seven parents) and 29 age-matched healthy controls. Statistical parametric mapping and region of interest analyses were used to compare individuals with ataxia-telangiectasia, asymptomatic relatives, and unrelated controls. We found that participants with ataxia-telangiectasia had lower metabolism in cerebellar hemispheres (14%, P < 0.001), anterior vermis (40%, P < 0.001) and fusiform gyrus (20%, P < 0.001) compared with controls or siblings, and lower metabolism in hippocampus (12%, P = 0.05) compared with controls, and showed significant intersubject variability (decreases in vermis ranged from 18% to 60%). Participants with ataxia-telangiectasia also had higher metabolism in globus pallidus (16%, P = 0.05), which correlated negatively with motor performance. Asymptomatic relatives had lower metabolism in anterior vermis (12%; P = 0.01) and hippocampus (19%; P = 0.002) than controls. Our results indicate that, in addition to the expected decrease in cerebellar metabolism, participants with ataxia-telangiectasia had widespread changes in metabolic

  7. Micromanipulation of gene expression in the adult zebrafish brain using cerebroventricular microinjection of morpholino oligonucleotides.

    PubMed

    Kizil, Caghan; Iltzsche, Anne; Kaslin, Jan; Brand, Michael

    2013-05-23

    Manipulation of gene expression in tissues is required to perform functional studies. In this paper, we demonstrate the cerebroventricular microinjection (CVMI) technique as a means to modulate gene expression in the adult zebrafish brain. By using CVMI, substances can be administered into the cerebroventricular fluid and be thoroughly distributed along the rostrocaudal axis of the brain. We particularly focus on the use of antisense morpholino oligonucleotides, which are potent tools for knocking down gene expression in vivo. In our method, when applied, morpholino molecules are taken up by the cells lining the ventricular surface. These cells include the radial glial cells, which act as neurogenic progenitors. Therefore, knocking down gene expression in the radial glial cells is of utmost importance to analyze the widespread neurogenesis response in zebrafish, and also would provide insight into how vertebrates could sustain adult neurogenesis response. Such an understanding would also help the efforts for clinical applications in human neurodegenerative disorders and central nervous system regeneration. Thus, we present the cerebroventricular microinjection method as a quick and efficient way to alter gene expression and neurogenesis response in the adult zebrafish forebrain. We also provide troubleshooting tips and other useful information on how to carry out the CVMI procedure.

  8. Biochemical effect of a ketogenic diet on the brains of obese adult rats.

    PubMed

    Mohamed, Hoda E; El-Swefy, Sahar E; Rashed, Leila A; Abd El-Latif, Sally K

    2010-07-01

    Excess weight, particularly abdominal obesity, can cause or exacerbate cardiovascular and metabolic disease. Obesity is also a proven risk factor for Alzheimer's disease (AD). Various studies have demonstrated the beneficial effects of a ketogenic diet (KD) in weight reduction and in modifying the disease activity of neurodegenerative disorders, including AD. Therefore, in this study we examined the metabolic and neurodegenerative changes associated with obesity and the possible neuroprotective effects of a KD in obese adult rats. Compared with obese rats fed a control diet, obese rats fed a KD showed significant weight loss, improvement in lipid profiles and insulin resistance, and upregulation of adiponectin mRNA expression in adipose tissue. In addition, the KD triggered significant downregulation of brain amyloid protein precursor, apolipoprotein E and caspase-3 mRNA expression, and improvement of brain oxidative stress responses. These findings suggest that a KD has anti-obesity and neuroprotective effects.

  9. Regional brain activity change predicts responsiveness to treatment for stuttering in adults.

    PubMed

    Ingham, Roger J; Wang, Yuedong; Ingham, Janis C; Bothe, Anne K; Grafton, Scott T

    2013-12-01

    Developmental stuttering is known to be associated with aberrant brain activity, but there is no evidence that this knowledge has benefited stuttering treatment. This study investigated whether brain activity could predict progress during stuttering treatment for 21 dextral adults who stutter (AWS). They received one of two treatment programs that included periodic H2(15)O PET scanning (during oral reading, monologue, and eyes-closed rest conditions). All participants successfully completed an initial treatment phase and then entered a phase designed to transfer treatment gains; 9/21 failed to complete this latter phase. The 12 pass and 9 fail participants were similar on speech and neural system variables before treatment, and similar in speech performance after the initial phase of their treatment. At the end of the initial treatment phase, however, decreased activation within a single region, L. putamen, in all 3 scanning conditions was highly predictive of successful treatment progress.

  10. GABA regulates synaptic integration of newly generated neurons in the adult brain

    NASA Astrophysics Data System (ADS)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  11. In vivo brain anatomy of adult males with Fragile X syndrome: an MRI study.

    PubMed

    Hallahan, Brian P; Craig, Michael C; Toal, Fiona; Daly, Eileen M; Moore, Caroline J; Ambikapathy, Anita; Robertson, Dene; Murphy, Kieran C; Murphy, Declan G M

    2011-01-01

    Fragile X Syndrome (FraX) is caused by the expansion of a single trinucleotide gene sequence (CGG) on the X chromosome, and is a leading cause of learning disability (mental retardation) worldwide. Relatively few studies, however, have examined the neuroanatomical abnormalities associated with FraX. Of those that are available many included mixed gender populations, combined FraX children and adults into one sample, and employed manual tracing techniques which measures bulk volume of particular regions. Hence, there is relatively little information on differences in grey and white matter content across whole brain. We employed magnetic resonance imaging to investigate brain anatomy in 17 adult males with FraX and 18 healthy controls that did not differ significantly in age. Data were analysed using stereology and VBM to compare (respectively) regional brain bulk volume, and localised grey/white matter content. Using stereology we found that FraX males had a significant increase in bulk volume bilaterally of the caudate nucleus and parietal lobes and of the right brainstem, but a significant decrease in volume of the left frontal lobe. Our complimentary VBM analysis revealed an increased volume of grey matter in fronto-striatal regions (including bilaterally in the caudate nucleus), and increased white matter in regions extending from the brainstem to the parahippocampal gyrus, and from the left cingulate cortex extending into the corpus callosum. People with FraX have regionally specific differences in brain anatomy from healthy controls with enlargement of the caudate nuclei that persists into adulthood.

  12. Occupational and environmental risk factors of adult primary brain cancers: a systematic review.

    PubMed

    Gomes, J; Al Zayadi, A; Guzman, A

    2011-04-01

    The incidence of brain neoplasm has been progressively increasing in recent years in the industrialized countries. One of the reasons for this increased incidence could be better access to health care and improved diagnosis in the industrialized countries. It also appears that Caucasians have a higher incidence than blacks or Hispanics or Asians. A number of risk factors have been identified and described including the genetic, ethnic and age-based factors. Certain occupational and environmental factors are also believed to influence the risk of primary adult brain tumors. Potential occupational and environmental factors include exposure to diagnostic and therapeutic radiations, electromagnetic radiation from cellular phones and other wireless devices, infectious agents, air pollution and residence near landfills and high-voltage power lines and jobs as firefighters, farmers, physician, chemists and jobs in industries such as petrochemical, power generation, synthetic rubber manufacturing, agricultural chemicals manufacturing. The purpose of this systematic review is to examine occupational and environmental risk factors of brain neoplasm. A range of occupational and environmental exposures are evaluated for significance of their relationship with adult primary brain tumors. On the basis of this review we suggest a concurrent evaluation of multiple risk factors both within and beyond occupational and environmental domains. The concurrent approach needs to consider better exposure assessment techniques, lifetime occupational exposures, genotypic and phenotypic characteristics and lifestyle and dietary habits. This approach needs to be interdisciplinary with contributions from neurologists, oncologists, epidemiologists and molecular biologists. Conclusive evidence that has eluded multitude of studies with single focus and single exposure needs to multifaceted and multidisciplinary.

  13. Treatment of Severe Adult Traumatic Brain Injury Using Bone Marrow Mononuclear Cells.

    PubMed

    Cox, Charles S; Hetz, Robert A; Liao, George P; Aertker, Benjamin M; Ewing-Cobbs, Linda; Juranek, Jenifer; Savitz, Sean I; Jackson, Margaret L; Romanowska-Pawliczek, Anna M; Triolo, Fabio; Dash, Pramod K; Pedroza, Claudia; Lee, Dean A; Worth, Laura; Aisiku, Imoigele P; Choi, Huimahn A; Holcomb, John B; Kitagawa, Ryan S

    2017-04-01

    Preclinical studies using bone marrow derived cells to treat traumatic brain injury have demonstrated efficacy in terms of blood-brain barrier preservation, neurogenesis, and functional outcomes. Phase 1 clinical trials using bone marrow mononuclear cells infused intravenously in children with severe traumatic brain injury demonstrated safety and potentially a central nervous system structural preservation treatment effect. This study sought to confirm the safety, logistic feasibility, and potential treatment effect size of structural preservation/inflammatory biomarker mitigation in adults to guide Phase 2 clinical trial design. Adults with severe traumatic brain injury (Glasgow Coma Scale 5-8) and without signs of irreversible brain injury were evaluated for entry into the trial. A dose escalation format was performed in 25 patients: 5 controls, followed 5 patients in each dosing cohort (6, 9, 12 ×10(6) cells/kg body weight), then 5 more controls. Bone marrow harvest, cell processing to isolate the mononuclear fraction, and re-infusion occurred within 48 hours after injury. Patients were monitored for harvest-related hemodynamic changes, infusional toxicity, and adverse events. Outcome measures included magnetic resonance imaging-based measurements of supratentorial and corpus callosal volumes as well as diffusion tensor imaging-based measurements of fractional anisotropy and mean diffusivity of the corpus callosum and the corticospinal tract at the level of the brainstem at 1 month and 6 months postinjury. Functional and neurocognitive outcomes were measured and correlated with imaging data. Inflammatory cytokine arrays were measured in the plasma pretreatment, posttreatment, and at 1 and 6 month follow-up. There were no serious adverse events. There was a mild pulmonary toxicity of the highest dose that was not clinically significant. Despite the treatment group having greater injury severity, there was structural preservation of critical regions of interest

  14. Adolescent and young adult survivors of childhood brain tumors: Life after treatment in their own words

    PubMed Central

    Hobbie, Wendy L.; Ogle, Sue; Reilly, Maureen; Barakat, Lamia; Lucas, Matthew S.; Ginsberg, Jill P.; Fisher, Michael J.; Volpe, Ellen M.; Deatrick, Janet A.

    2015-01-01

    Background To date there are few studies that examine the perspectives of older survivors of childhood brain tumors who are living with their families in terms of their sense of self and their role in their families. Objective To describe how adolescent and young adult survivors (AYA) of childhood brain tumors describe their HRQOL, that is their physical, emotional, and social functioning. Methods This qualitative descriptive study included a purposive sample of 41 AYA survivors of a childhood brain tumor who live with their families. Home interviews were conducted using a semi-structured interview guide. Directed content analytic techniques were used to analyze data using HRQOL as a framework. Results This group of brain tumor survivors described their everyday lives in terms of their physical health, neurocognitive functioning, emotional health, social functioning, and self-care abilities. Overall, survivors struggle for normalcy in the face of changed functioning due to their cancer and the (late) effects of their treatment. Conclusions Neurocognitive issues seemed most compelling in the narratives. The importance of families went beyond the resources, structure, and support for functioning. Their families provided the recognition that they were important beings and their existence mattered to someone. Implications for Practice The value and complexity of care coordination was highlighted by the multifaceted needs of the survivors. Advocacy for appropriate and timely educational, vocational, and social support is critical as part of comprehensive cancer survivorship care. PMID:25950583

  15. Adult attachment predicts maternal brain and oxytocin response to infant cues

    PubMed Central

    Strathearn, Lane; Fonagy, Peter; Amico, Janet; Montague, P. Read

    2010-01-01

    Infant cues, such as smiling or crying facial expressions, are powerful motivators of human maternal behavior, activating dopamine-associated brain reward circuits. Oxytocin, a neurohormone of attachment, promotes maternal care in animals, although its role in human maternal behavior is unclear. We examined 30 first-time new mothers to test whether differences in attachment, based on the Adult Attachment Interview, were related to brain reward and peripheral oxytocin response to infant cues. On viewing their own infant’s smiling and crying faces during functional MRI scanning, mothers with secure attachment showed greater activation of brain reward regions, including the ventral striatum, and the oxytocin-associated hypothalamus/pituitary region. Peripheral oxytocin response to infant contact at 7 months was also significantly higher in secure mothers, and was positively correlated with brain activation in both regions. Insecure/dismissing mothers showed greater insular activation in response to their own infant’s sad faces. These results suggest that individual differences in maternal attachment may be linked with development of the dopaminergic and oxytocinergic neuroendocrine systems. PMID:19710635

  16. The long-term side effects of radiation therapy for benign brain tumors in adults

    SciTech Connect

    al-Mefty, O.; Kersh, J.E.; Routh, A.; Smith, R.R. )

    1990-10-01

    Radiation therapy plays an integral part in managing intracranial tumors. While the risk:benefit ratio is considered acceptable for treating malignant tumors, risks of long-term complications of radiotherapy need thorough assessment in adults treated for benign tumors. Many previously reported delayed complications of radiotherapy can be attributed to inappropriate treatment or to the sensitivity of a developing child's brain to radiation. Medical records, radiological studies, autopsy findings, and follow-up information were reviewed for 58 adult patients (31 men and 27 women) treated between 1958 and 1987 with radiotherapy for benign intracranial tumors. Patient ages at the time of irradiation ranged from 21 to 87 years (mean 47.7 years). The pathology included 46 pituitary adenomas, five meningiomas, four glomus jugulare tumors, two pineal area tumors, and one craniopharyngioma. Average radiation dosage was 4984 cGy (range 3100 to 7012 cGy), given in an average of 27.2 fractions (range 15 to 45 fractions), over a period averaging 46.6 days. The follow-up period ranged from 3 to 31 years (mean 8.1 years). Findings related to tumor recurrence or surgery were excluded. Twenty-two patients had complications considered to be delayed side effects of radiotherapy. Two patients had visual deterioration developing 3 and 6 years after treatment; six had pituitary dysfunction; and 17 had varying degrees of parenchymal changes of the brain, occurring mostly in the temporal lobes and relating to the frequent presentation of pituitary tumors. One clival tumor with the radiographic appearance of a meningioma, developed 30 years post-irradiation for acromegaly. This study unveils considerable delayed sequelae of radiotherapy in a series of adult patients receiving what is considered safe treatment for benign brain tumors. 163 refs.

  17. Behavioral and magnetoencephalographic correlates of plasticity in the adult human brain

    PubMed Central

    Ramachandran, V. S.

    1993-01-01

    Recent behavioral and physiological evidence suggests that even brief sensory deprivation can lead to the rapid emergence of new and functionally effective neural connections in the adult human brain. Images Fig. 2 PMID:8248123

  18. APOE Polymorphism Affects Brain Default Mode Network in Healthy Young Adults

    PubMed Central

    Su, Yun Yan; Liang, Xue; Schoepf, U. Joseph; Varga-Szemes, Akos; West, Henry C.; Qi, Rongfeng; Kong, Xiang; Chen, Hui Juan; Lu, Guang Ming; Zhang, Long Jiang

    2015-01-01

    Abstract To investigate the effect of apolipoprotein E (APOE) gene polymorphism on the resting-state brain function, structure, and blood flow in healthy adults younger than 35 years, using multimodality magnetic resonance (MR) imaging. Seventy-six healthy adults (34 men, 23.7 ± 2.8 y; 31 APOE ε4/ε3 carriers, 31 ε3/ε3 carriers, and 14 ε2/ε3 carriers) were included. For resting-state functional MRI data, default mode network (DMN) and amplitude of low-frequency fluctuation maps were extracted and analyzed. Voxel-based morphometry, diffusion tensor imaging from structural imaging, and cerebral blood flow based on arterial spin labeling MR imaging were also analyzed. Correlation analysis was performed between the above mentioned brain parameters and neuropsychological tests. There were no differences in neuropsychological performances, amplitude of low-frequency fluctuation, gray/white matter volumes, fractional anisotropy, mean diffusivity, or whole brain cerebral blood flow among the 3 groups. As for DMN, the ε4/ε3 group showed increased functional connectivities (FCs) in the left medial prefrontal cortex and bilateral posterior cingulate cortices/precuneus compared with the ε3/ε3 group, and increased FCs in the left medial prefrontal cortex and right temporal lobe compared with the ε2/ε3 group (P < 0.05, Alphasim corrected). No differences of DMN FCs were found between the ε2/ε3 and ε3/ε3 groups. FCs in the right temporal lobe positively correlated with the performances of vocabulary learning, delayed recall, and graph recall in all participants (P < 0.05). APOE ε4 carriers exhibited significantly increased DMN FCs when compared with ε3 and ε2 carriers. The ε4 affects DMN FCs before brain structure and blood flow in cognitively intact young patients, suggesting DMN FC may serve as a potential biomarker for the detection of early manifestations of genetic effect. PMID:26717353

  19. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains.

    PubMed

    Miyata, Seiji

    2015-01-01

    The blood-brain barrier (BBB) generally consists of endothelial tight junction barriers that prevent the free entry of blood-derived substances, thereby maintaining the extracellular environment of the brain. However, the circumventricular organs (CVOs), which are located along the midlines of the brain ventricles, lack these endothelial barriers and have fenestrated capillaries; therefore, they have a number of essential functions, including the transduction of information between the blood circulation and brain. Previous studies have demonstrated the extensive contribution of the CVOs to body fluid and thermal homeostasis, energy balance, the chemoreception of blood-derived substances, and neuroinflammation. In this review, recent advances have been discussed in fenestrated capillary characterization and dynamic tissue reconstruction accompanied by angiogenesis and neurogliogenesis in the sensory CVOs of adult brains. The sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP), have size-selective and heterogeneous vascular permeabilities. Astrocyte-/tanycyte-like neural stem cells (NSCs) sense blood- and cerebrospinal fluid-derived information through the transient receptor potential vanilloid 1, a mechanical/osmotic receptor, Toll-like receptor 4, a lipopolysaccharide receptor, and Nax, a Na-sensing Na channel. They also express tight junction proteins and densely and tightly surround mature neurons to protect them from blood-derived neurotoxic substances, indicating that the NSCs of the CVOs perform BBB functions while maintaining the capacity to differentiate into new neurons and glial cells. In addition to neurogliogenesis, the density of fenestrated capillaries is regulated by angiogenesis, which is accompanied by the active proliferation and sprouting of endothelial cells. Vascular endothelial growth factor (VEGF) signaling may be involved in angiogenesis and neurogliogenesis, both of

  20. Neuronal Organization of Deep Brain Opsin Photoreceptors in Adult Teleosts

    PubMed Central

    Hang, Chong Yee; Kitahashi, Takashi; Parhar, Ishwar S.

    2016-01-01

    Biological impacts of light beyond vision, i.e., non-visual functions of light, signify the need to better understand light detection (or photoreception) systems in vertebrates. Photopigments, which comprise light-absorbing chromophores bound to a variety of G-protein coupled receptor opsins, are responsible for visual and non-visual photoreception. Non-visual opsin photopigments in the retina of mammals and extra-retinal tissues of non-mammals play an important role in non-image-forming functions of light, e.g., biological rhythms and seasonal reproduction. This review highlights the role of opsin photoreceptors in the deep brain, which could involve conserved neurochemical systems that control different time- and light-dependent physiologies in in non-mammalian vertebrates including teleost fish. PMID:27199680

  1. Youthful Brains in Older Adults: Preserved Neuroanatomy in the Default Mode and Salience Networks Contributes to Youthful Memory in Superaging

    PubMed Central

    Sun, Felicia W.; Stepanovic, Michael R.; Andreano, Joseph

    2016-01-01

    Decline in cognitive skills, especially in memory, is often viewed as part of “normal” aging. Yet some individuals “age better” than others. Building on prior research showing that cortical thickness in one brain region, the anterior midcingulate cortex, is preserved in older adults with memory performance abilities equal to or better than those of people 20–30 years younger (i.e., “superagers”), we examined the structural integrity of two large-scale intrinsic brain networks in superaging: the default mode network, typically engaged during memory encoding and retrieval tasks, and the salience network, typically engaged during attention, motivation, and executive function tasks. We predicted that superagers would have preserved cortical thickness in critical nodes in these networks. We defined superagers (60–80 years old) based on their performance compared to young adults (18–32 years old) on the California Verbal Learning Test Long Delay Free Recall test. We found regions within the networks of interest where the cerebral cortex of superagers was thicker than that of typical older adults, and where superagers were anatomically indistinguishable from young adults; hippocampal volume was also preserved in superagers. Within the full group of older adults, thickness of a number of regions, including the anterior temporal cortex, rostral medial prefrontal cortex, and anterior midcingulate cortex, correlated with memory performance, as did the volume of the hippocampus. These results indicate older adults with youthful memory abilities have youthful brain regions in key paralimbic and limbic nodes of the default mode and salience networks that support attentional, executive, and mnemonic processes subserving memory function. SIGNIFICANCE STATEMENT Memory performance typically declines with age, as does cortical structural integrity, yet some older adults maintain youthful memory. We tested the hypothesis that superagers (older individuals with

  2. Future Concerns of Adult Siblings of Persons with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Olney, Marjorie F.

    2008-01-01

    This study examined future concerns conveyed by adult siblings who provided regular caregiving support to their brothers and sisters with traumatic brain injury (TBI). The authors surveyed a national sample of 280 adult siblings of persons with TBI. Using a constant comparative approach to text analysis, the authors analyzed responses to the…

  3. Correlates of Depression in Adult Siblings of Persons with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Lynch, Ruth Torkelson

    2006-01-01

    Using Pearlin's stress process model, this study examined correlates of depression in 170 adult siblings of persons with traumatic brain injury (TBI). Approximately 39% of adult sibling participants evinced "Center for Epidemiologic Studies-Depression" (CES-D; Radloff, 1977) scores indicating clinically significant depressive symptoms. Background…

  4. Development of a Conceptual Model to Predict Physical Activity Participation in Adults with Brain Injuries

    ERIC Educational Resources Information Center

    Driver, Simon

    2008-01-01

    The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with…

  5. IGF-I: A Key Growth Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain

    PubMed Central

    Nieto-Estévez, Vanesa; Defterali, Çağla; Vicario-Abejón, Carlos

    2016-01-01

    The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs). This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I) exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type, and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP) and the subventricular zone-olfactory bulb (SVZ-OB). By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis, and neuron integration in synaptic circuits. PMID:26941597

  6. Evidence of neurodegeneration in brains of older adults who do not yet fulfill MCI criteria

    PubMed Central

    Chao, L.L.; Mueller, S.G.; Buckley, S.T.; Peek, K.; Raptentsetseng, S.; Elman, J.; Yaffe, K.; Miller, B.L.; Kramer, J.H.; Madison, C.; Mungas, D.; Schuff, N.; Weiner, M.W.

    2008-01-01

    We sought to determine whether there are structural and metabolic changes in the brains of older adults with cognitive complaints yet who do not meet MCI criteria (i.e., preMCI). We compared the volumes of regional lobar gray matter (GM) and medial temporal lobe structures, including the hippocampus, entorhinal cortex (ERC), fusiform and parahippocampal gyri, and metabolite ratios from the posterior cingulate in individuals who had a Clinical Demetia Rating (CDR) of 0.5, but who did not meet MCI criteria (preMCI, N = 17), patients with mild cognitive impairment (MCI, N = 13), and cognitively normal controls (N = 18). Controls had more ERC, fusiform, and frontal gray matter volume than preMCI and MCI subjects and greater parahippocampal volume and more posterior cingulate N-acetylaspartate (NAA)/myoinosotil (mI) than MCI. There were no significant differences between MCI and preMCI subjects on any of these measures. These findings suggest there are neurodegenerative changes in the brains of older adults who have cognitive complaints severe enough to qualify for CDR = 0.5 yet show no deficits on formal neuropsychological testing. The results further support the hypothesis that detection of individuals with very mild forms of Alzheimer's disease (AD) may be facilitated by use of the CDR, which emphasizes changes in cognition over time within individuals rather than comparison with group norms. PMID:18550226

  7. Evidence of neurodegeneration in brains of older adults who do not yet fulfill MCI criteria.

    PubMed

    Chao, L L; Mueller, S G; Buckley, S T; Peek, K; Raptentsetseng, S; Elman, J; Yaffe, K; Miller, B L; Kramer, J H; Madison, C; Mungas, D; Schuff, N; Weiner, M W

    2010-03-01

    We sought to determine whether there are structural and metabolic changes in the brains of older adults with cognitive complaints yet who do not meet MCI criteria (i.e., preMCI). We compared the volumes of regional lobar gray matter (GM) and medial temporal lobe structures, including the hippocampus, entorhinal cortex (ERC), fusiform and parahippocampal gyri, and metabolite ratios from the posterior cingulate in individuals who had a Clinical Demetia Rating (CDR) of 0.5, but who did not meet MCI criteria (preMCI, N=17), patients with mild cognitive impairment (MCI, N=13), and cognitively normal controls (N=18). Controls had more ERC, fusiform, and frontal gray matter volume than preMCI and MCI subjects and greater parahippocampal volume and more posterior cingulate N-acetylaspartate (NAA)/myoinosotil (mI) than MCI. There were no significant differences between MCI and preMCI subjects on any of these measures. These findings suggest there are neurodegenerative changes in the brains of older adults who have cognitive complaints severe enough to qualify for CDR=0.5 yet show no deficits on formal neuropsychological testing. The results further support the hypothesis that detection of individuals with very mild forms of Alzheimer's disease (AD) may be facilitated by use of the CDR, which emphasizes changes in cognition over time within individuals rather than comparison with group norms.

  8. Salmonella as a biological "Trojan horse" for neoplasia: future possibilities including brain cancer.

    PubMed

    Mlynarczyk, Gregory S A; Berg, Carrie A; Withrock, Isabelle C; Fick, Meghan E; Anderson, Stephen J; Laboissonniere, Lauren A; Jefferson, Matthew A; Brewer, Matthew T; Stock, Matthew L; Lange, Jennifer K; Luna, K C; Acharya, Sreemoyee; Kanuri, Sriharsha; Sharma, Shaunik; Kondru, Naveen C; McCormack, Garrett R; Carlson, Steve A

    2014-09-01

    This manuscript considers available evidence that a specific Salmonella strain could be used as an effective orally-administered option for cancer therapy involving the brain. It has been established that Salmonella preferentially colonizes neoplastic tissue and thrives as a facultative anaerobe in the intra-tumor environment. Although Salmonella accumulates in tumors by passive processes, it is still possible for lipopolysaccharide to cause sepsis and endotoxic shock during the migration of bacteria to the tumor site. An LPS-free version of a recently identified Salmonella isolate may have the capability to circumvent the blood brain barrier and provide a safer method of reaching brain tumors. This isolate merits further research as a "Trojan horse" for future oral biotherapy of brain cancer.

  9. The Social Environment and Neurogenesis in the Adult Mammalian Brain

    PubMed Central

    Lieberwirth, Claudia; Wang, Zuoxin

    2012-01-01

    Adult neurogenesis – the formation of new neurons in adulthood – has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones) as well as exogenous (e.g., physical activity and environmental complexity) factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. More recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult–adult (e.g., mating and chemosensory interactions) and adult–offspring (e.g., gestation, parenthood, and exposure to offspring) interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant–subordinate interactions) on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed. PMID:22586385

  10. Pre-Adult MRI of Brain Cancer and Neurological Injury: Multivariate Analyses.

    PubMed

    Levman, Jacob; Takahashi, Emi

    2016-01-01

    Brain cancer and neurological injuries, such as stroke, are life-threatening conditions for which further research is needed to overcome the many challenges associated with providing optimal patient care. Multivariate analysis (MVA) is a class of pattern recognition technique involving the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of neuroimaging challenges, including identifying variables associated with patient outcomes; understanding an injury's etiology, development, and progression; creating diagnostic tests; assisting in treatment monitoring; and more. Compared to adults, imaging of the developing brain has attracted less attention from MVA researchers, however, remarkable MVA growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to brain injury and cancer in neurological fetal, neonatal, and pediatric magnetic resonance imaging (MRI). With a wide variety of MRI modalities providing physiologically meaningful biomarkers and new biomarker measurements constantly under development, MVA techniques hold enormous potential toward combining available measurements toward improving basic research and the creation of technologies that contribute to improving patient care.

  11. Pre-Adult MRI of Brain Cancer and Neurological Injury: Multivariate Analyses

    PubMed Central

    Levman, Jacob; Takahashi, Emi

    2016-01-01

    Brain cancer and neurological injuries, such as stroke, are life-threatening conditions for which further research is needed to overcome the many challenges associated with providing optimal patient care. Multivariate analysis (MVA) is a class of pattern recognition technique involving the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of neuroimaging challenges, including identifying variables associated with patient outcomes; understanding an injury’s etiology, development, and progression; creating diagnostic tests; assisting in treatment monitoring; and more. Compared to adults, imaging of the developing brain has attracted less attention from MVA researchers, however, remarkable MVA growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to brain injury and cancer in neurological fetal, neonatal, and pediatric magnetic resonance imaging (MRI). With a wide variety of MRI modalities providing physiologically meaningful biomarkers and new biomarker measurements constantly under development, MVA techniques hold enormous potential toward combining available measurements toward improving basic research and the creation of technologies that contribute to improving patient care. PMID:27446888

  12. Imaging diagnosis and fundamental knowledge of common brain tumors in adults.

    PubMed

    Tanaka, Akio

    2006-07-01

    The most common primary brain tumors in Japanese adults are meningiomas, gliomas, pituitary adenomas, and schwannomas, which together account for 84.0% of all primary brain tumors. The typical imaging findings of these tumors are well known by radiologists; therefore, the clinical and pathological issues, including terminology, genetics, and relation to hormones are discussed in this article. Other diseases important for the differential diagnoses are also mentioned. The molecular genetic analysis of brain tumors has recently become important. For instance, genetic analysis is important for differentiating oligodendroglial tumors from astrocytic tumors, and the gene mutation predicts response to chemotherapy for anaplastic oligodendrogliomas. Background factors such as hormones, history of cranial irradiation, and medications influence oncogenesis, tumor growth, and tumor appearances as seen by imaging modalities. A differential diagnosis with knowledge of the above may have some advantages over diagnoses based on imaging findings alone. Nonneoplastic diseases such as abscesses and demyelinating diseases may mimic gliomas. Pituitary adenomas may be confused with nonneoplastic conditions such as physiological hypertrophy and Rathke's cleft cyst. Such misdiagnoses would result in a treatment protocol very different from what would be suitable. Such conditions should be carefully distinguished from neoplasms.

  13. Efficient Uptake and Dissemination of Scrapie Prion Protein by Astrocytes and Fibroblasts from Adult Hamster Brain

    PubMed Central

    Hollister, Jason R.; Lee, Kil Sun; Dorward, David W.; Baron, Gerald S.

    2015-01-01

    Prion infections target neurons and lead to neuronal loss. However, the role of non-neuronal cells in the initiation and spread of infection throughout the brain remains unclear despite the fact these cells can also propagate prion infectivity. To evaluate how different brain cells process scrapie prion protein (PrPres) during acute infection, we exposed neuron-enriched and non-neuronal cell cultures from adult hamster brain to fluorescently-labeled purified PrPres and followed the cultures by live cell confocal imaging over time. Non-neuronal cells present in both types of cultures, specifically astrocytes and fibroblasts, internalized PrPres more efficiently than neurons. PrPres was trafficked to late endosomal/lysosomal compartments and rapidly transported throughout the cell bodies and processes of all cell types, including contacts between astrocytes and neurons. These observations suggest that astrocytes and meningeal fibroblasts play an as yet unappreciated role in prion infections via efficient uptake and dissemination of PrPres. PMID:25635871

  14. Efficient uptake and dissemination of scrapie prion protein by astrocytes and fibroblasts from adult hamster brain.

    PubMed

    Hollister, Jason R; Lee, Kil Sun; Dorward, David W; Baron, Gerald S

    2015-01-01

    Prion infections target neurons and lead to neuronal loss. However, the role of non-neuronal cells in the initiation and spread of infection throughout the brain remains unclear despite the fact these cells can also propagate prion infectivity. To evaluate how different brain cells process scrapie prion protein (PrPres) during acute infection, we exposed neuron-enriched and non-neuronal cell cultures from adult hamster brain to fluorescently-labeled purified PrPres and followed the cultures by live cell confocal imaging over time. Non-neuronal cells present in both types of cultures, specifically astrocytes and fibroblasts, internalized PrPres more efficiently than neurons. PrPres was trafficked to late endosomal/lysosomal compartments and rapidly transported throughout the cell bodies and processes of all cell types, including contacts between astrocytes and neurons. These observations suggest that astrocytes and meningeal fibroblasts play an as yet unappreciated role in prion infections via efficient uptake and dissemination of PrPres.

  15. Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain.

    PubMed

    Berg, Daniel A; Kirkham, Matthew; Beljajeva, Anna; Knapp, Dunja; Habermann, Bianca; Ryge, Jesper; Tanaka, Elly M; Simon, András

    2010-12-01

    In contrast to mammals, salamanders and teleost fishes can efficiently repair the adult brain. It has been hypothesised that constitutively active neurogenic niches are a prerequisite for extensive neuronal regeneration capacity. Here, we show that the highly regenerative salamander, the red spotted newt, displays an unexpectedly similar distribution of active germinal niches with mammals under normal physiological conditions. Proliferation zones in the adult newt brain are restricted to the forebrain, whereas all other regions are essentially quiescent. However, ablation of midbrain dopamine neurons in newts induced ependymoglia cells in the normally quiescent midbrain to proliferate and to undertake full dopamine neuron regeneration. Using oligonucleotide microarrays, we have catalogued a set of differentially expressed genes in these activated ependymoglia cells. This strategy identified hedgehog signalling as a key component of adult dopamine neuron regeneration. These data show that brain regeneration can occur by activation of neurogenesis in quiescent brain regions.

  16. Age-Related Differences in the Brain Areas outside the Classical Language Areas among Adults Using Category Decision Task

    ERIC Educational Resources Information Center

    Cho, Yong Won; Song, Hui-Jin; Lee, Jae Jun; Lee, Joo Hwa; Lee, Hui Joong; Yi, Sang Doe; Chang, Hyuk Won; Berl, Madison M.; Gaillard, William D.; Chang, Yongmin

    2012-01-01

    Older adults perform much like younger adults on language. This similar level of performance, however, may come about through different underlying brain processes. In the present study, we evaluated age-related differences in the brain areas outside the typical language areas among adults using a category decision task. Our results showed that…

  17. PDYN, a gene implicated in brain/mental disorders, is targeted by REST in the adult human brain.

    PubMed

    Henriksson, Richard; Bäckman, Cristina M; Harvey, Brandon K; Kadyrova, Helena; Bazov, Igor; Shippenberg, Toni S; Bakalkin, Georgy

    2014-11-01

    The dynorphin κ-opioid receptor system is implicated in mental health and brain/mental disorders. However, despite accumulating evidence that PDYN and/or dynorphin peptide expression is altered in the brain of individuals with brain/mental disorders, little is known about transcriptional control of PDYN in humans. In the present study, we show that PDYN is targeted by the transcription factor REST in human neuroblastoma SH-SY5Y cells and that that interfering with REST activity increases PDYN expression in these cells. We also show that REST binding to PDYN is reduced in the adult human brain compared to SH-SY5Y cells, which coincides with higher PDYN expression. This may be related to MIR-9 mediated down-regulation of REST as suggested by a strong inverse correlation between REST and MIR-9 expression. Our results suggest that REST represses PDYN expression in SH-SY5Y cells and the adult human brain and may have implications for mental health and brain/mental disorders.

  18. Not(ch) just development: Notch signalling in the adult brain

    PubMed Central

    Ables, Jessica L.; Breunig, Joshua J.; Eisch, Amelia J.; Rakic, Pasko

    2011-01-01

    The Notch pathway is often regarded as a developmental pathway, but components of Notch signalling are expressed and active in the adult brain. With the advent of more sophisticated genetic manipulations, evidence has emerged that suggests both conserved and novel roles for Notch signalling in the adult brain. Not surprisingly, Notch is a key regulator of adult neural stem cells, but it is increasingly clear that Notch signalling also has roles in the regulation of migration, morphology, synaptic plasticity and survival of immature and mature neurons. Understanding the many functions of Notch signalling in the adult brain, and its dysfunction in neurodegenerative disease and malignancy, is crucial to the development of new therapeutics that are centred around this pathway. PMID:21505516

  19. MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain.

    PubMed

    Nguyen, Minh Vu Chuong; Du, Fang; Felice, Christy A; Shan, Xiwei; Nigam, Aparna; Mandel, Gail; Robinson, John K; Ballas, Nurit

    2012-07-18

    Mutations in the X-linked gene, methyl-CpG binding protein 2 (Mecp2), underlie a wide range of neuropsychiatric disorders, most commonly, Rett Syndrome (RTT), a severe autism spectrum disorder that affects approximately one in 10,000 female live births. Because mutations in the Mecp2 gene occur in the germ cells with onset of neurological symptoms occurring in early childhood, the role of MeCP2 has been ascribed to brain maturation at a specific developmental window. Here, we show similar kinetics of onset and progression of RTT-like symptoms in mice, including lethality, if MeCP2 is removed postnatally during the developmental stage that coincides with RTT onset, or adult stage. For the first time, we show that brains that lose MeCP2 at these two different stages are actively shrinking, resulting in higher than normal neuronal cell density. Furthermore, we show that mature dendritic arbors of pyramidal neurons are severely retracted and dendritic spine density is dramatically reduced. In addition, hippocampal astrocytes have significantly less complex ramified processes. These changes accompany a striking reduction in the levels of several synaptic proteins, including CaMKII α/β, AMPA, and NMDA receptors, and the synaptic vesicle proteins Vglut and Synapsin, which represent critical modifiers of synaptic function and dendritic arbor structure. Importantly, the mRNA levels of these synaptic proteins remains unchanged, suggesting that MeCP2 likely regulates these synaptic proteins post-transcriptionally, directly or indirectly. Our data suggest a crucial role for MeCP2 in post-transcriptional regulation of critical synaptic proteins involved in maintaining mature neuronal networks during late stages of postnatal brain development.

  20. Molecular and immunocytochemical characterization of primary neuronal cultures from adult rat brain: Differential expression of neuronal and glial protein markers.

    PubMed

    Ray, Balmiki; Bailey, Jason A; Sarkar, Sumit; Lahiri, Debomoy K

    2009-11-15

    Neurobiological studies using primary neuronal cultures commonly employ fetal-derived neurons, but much less often adult brain-derived neurons. Our goal is to perform morphological and molecular characterization of primary neuronal cultures from adult rat brain, including the relative expression of neuronal and glial cell markers at different time points. We tested the hypothesis that long-term neuronal viability is compatible with glial proliferation in adult neuron culture. We examined neuron culture from adult rat brain, which was maintained at steady state up to 24 days, and characterized them on the basis of cellular, molecular and biochemical properties at different time points of the culture. We identified neuronal and glial cells by both immunocytochemical and western immunoblotting techniques using NSE and Tau as neuronal markers and GFAP as glial protein marker, which revealed the presence of predominantly neuronal cells in the initial phase of the culture and a rise in glial cells from day 12 onwards. Notably, neuronal cells were preserved in the culture along with the glial cells even at day 24. Transfection of the cultured cells with a GFP expression vector and plasmids containing a luciferase reporter gene under the control of two different gene promoters demonstrated DNA transfectability. Taken together, these results suggest a differential expression of neuronal and glial cells at different time points and long-term neuronal viability in the presence of glial proliferation. Such adult neurons serve as a suitable system for the application of neurodegeneration models and for drug target discovery in various brain disorders including Alzheimer's disease.

  1. Measuring Outcomes in Adult Weight Loss Studies That Include Diet and Physical Activity: A Systematic Review

    PubMed Central

    Millstein, Rachel A.

    2014-01-01

    Background. Measuring success of obesity interventions is critical. Several methods measure weight loss outcomes but there is no consensus on best practices. This systematic review evaluates relevant outcomes (weight loss, BMI, % body fat, and fat mass) to determine which might be the best indicator(s) of success. Methods. Eligible articles described adult weight loss interventions that included diet and physical activity and a measure of weight or BMI change and body composition change. Results. 28 full-text articles met inclusion criteria. Subjects, settings, intervention lengths, and intensities varied. All studies measured body weight (−2.9 to −17.3 kg), 9 studies measured BMI (−1.1 to −5.1 kg/m2), 20 studies measured % body fat (−0.7 to −10.2%), and 22 studies measured fat mass (−0.9 to −14.9 kg). All studies found agreement between weight or BMI and body fat mass or body fat % decreases, though there were discrepancies in degree of significance between measures. Conclusions. Nearly all weight or BMI and body composition measures agreed. Since body fat is the most metabolically harmful tissue type, it may be a more meaningful measure of health change. Future studies should consider primarily measuring % body fat, rather than or in addition to weight or BMI. PMID:25525513

  2. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  3. Analysis of Adult Neurogenesis: Evidence for a Prominent “Non-Neurogenic” DCX-Protein Pool in Rodent Brain

    PubMed Central

    Kremer, Thomas; Jagasia, Ravi; Herrmann, Annika; Matile, Hugues; Borroni, Edilio; Francis, Fiona; Kuhn, Hans Georg; Czech, Christian

    2013-01-01

    Here, we have developed a highly sensitive immunoassay for Dcx to characterize expression in brain and cerebrospinal fluid (CSF) of rodents. We demonstrate that Dcx is widely expressed during development in various brain regions and as well can be detected in cerebrospinal fluid of rats (up to 30 days postnatal). While Dcx protein level decline in adulthood and were detectable in neurogenic regions of the adult rodent brain, similar levels were also detectable in brain regions expected to bear no neurogenesis including the cerebral cortex and CA1/CA3 enriched hippocampus. We monitored DCX protein levels after paradigms to increase or severely decrease adult hippocampal neurogenesis, namely physical activity and cranial radiation, respectively. In both paradigms, Dcx protein- and mRNA-levels clearly reflected changes in neurogenesis in the hippocampus. However, basal Dcx-levels are unaffected in non-neurogenic regions (e.g. CA1/CA3 enriched hippocampus, cortex). These data suggest that there is a substantial “non-neurogenic” pool of Dcx- protein, whose regulation can be uncoupled from adult neurogenesis suggesting caution for the interpretation of such studies. PMID:23690918

  4. Pulmonary Function After Treatment for Embryonal Brain Tumors on SJMB03 That Included Craniospinal Irradiation

    SciTech Connect

    Green, Daniel M.; Merchant, Thomas E.; Billups, Catherine A.; Stokes, Dennis C.; Broniscer, Alberto; Bartels, Ute; Chintagumpala, Murali; Hassall, Timothy E.; Gururangan, Sridharan; McCowage, Geoffrey B.; Heath, John A.; Cohn, Richard J.; Fisher, Michael J.; Srinivasan, Ashok; Robinson, Giles W.; Gajjar, Amar

    2015-09-01

    Purpose: The treatment of children with embryonal brain tumors (EBT) includes craniospinal irradiation (CSI). There are limited data regarding the effect of CSI on pulmonary function. Methods: Protocol SJMB03 enrolled patients 3 to 21 years of age with EBT. Pulmonary function tests (PFTs) (forced expiratory volume in 1 second [FEV{sub 1}] and forced vital capacity [FVC] by spirometry, total lung capacity [TLC] by nitrogen washout or plethysmography, and diffusing capacity of the lung for carbon monoxide corrected for hemoglobin [DLCO{sub corr}]) were obtained. Differences between PFTs obtained immediately after the completion of CSI and 24 or 60 months after the completion of treatment (ACT) were compared using exact Wilcoxon signed-rank tests and repeated-measures models. Results: Between June 24, 2003, and March 1, 2010, 303 eligible patients (spine dose: ≤2345 cGy, 201; >2345 cGy, 102; proton beam, 20) were enrolled, 260 of whom had at least 1 PFT. The median age at diagnosis was 8.9 years (range, 3.1-20.4 years). The median thoracic spinal radiation dose was 23.4 Gy (interquartile range [IQR], 23.4-36.0 Gy). The median cyclophosphamide dose was 16.0 g/m{sup 2} (IQR, 15.7-16.0 g/m{sup 2}). At 24 and 60 months ACT, DLCO{sub corr} was <75% predicted in 23% (27/118) and 25% (21/84) of patients, FEV{sub 1} was <80% predicted in 20% (34/170) and 29% (32/109) of patients, FVC was <80% predicted in 27% (46/172) and 28% (30/108) of patients, and TLC was <75% predicted in 9% (13/138) and 11% (10/92) of patients. DLCO{sub corr} was significantly decreased 24 months ACT (median difference [MD] in % predicted, 3.00%; P=.028) and 60 months ACT (MD in % predicted, 6.00%; P=.033) compared with the end of radiation therapy. These significant decreases in DLCO{sub corr} were also observed in repeated-measures models (P=.011 and P=.032 at 24 and 60 months ACT, respectively). Conclusions: A significant minority of EBT survivors experience PFT deficits after CSI

  5. Pulmonary Function after Treatment for Embryonal Brain Tumors on SJMB03 that Included Craniospinal Irradiation

    PubMed Central

    Green, Daniel M.; Merchant, Thomas E.; Billups, Catherine A.; Stokes, Dennis C.; Broniscer, Alberto; Bartels, Ute; Chintagumpala, Murali; Hassall, Timothy E.; Gururangan, Sridharan; McCowage, Geoffrey B.; Heath, John A.; Cohn, Richard J.; Fisher, Michael J.; Srinivasan, Ashok; Robinson, Giles W.; Gajjar, Amar

    2015-01-01

    Purpose Treatment of children with embryonal brain tumors (EBT) includes craniospinal irradiation (CSI). There are limited data regarding the effect of CSI on pulmonary function. Methods Protocol XXXXX enrolled patients 3 to 21 years of age with EBT. Pulmonary function tests (PFTs) [forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) by spirometry, total lung capacity (TLC) by nitrogen washout or plethysmography and diffusing capacity of the lung for carbon monoxide corrected for hemoglobin (DLCOcorr)] were obtained. Differences between PFTs obtained immediately after the completion of CSI and 24 or 60 months after completion of treatment (ACT) were compared using exact Wilcoxon signed rank tests and repeated measures models. Results 303 eligible patients (spine dose: ≤ 2345 cGy- 201; > 2345 cGy-102; proton beam, 20) were enrolled between June 24, 2003 and March 1, 2010, 260 of whom had at least one PFT. The median age at diagnosis was 8.9 years (range, 3.1–20.4 years). The median thoracic spinal RT dose was 23.4 Gy (Inter Quartile Range (IQR), 23.4–36.0 Gy). The median cyclophosphamide dose was 16.0 g/m2 (IQR, 15.7–16.0 g/m2). 24 and 60 months ACT, DLCOcorr was <75% predicted in 23% (27/118) and 25% (21/84), FEV1 <80% predicted in 20% (34/170) and 29% (32/109), FVC < 80% predicted in 27% (46/172) and 28% (30/108) and TLC <75% predicted in 9% (13/138) and 11% (10/92) of patients. DLCOcorr was significantly decreased 24 (median difference (MD) in % predicted, − 3.00%; p=0.028) and 60 months ACT (MD in % predicted, − 6.00%; p=0.033) compared to the end of RT. These significant decreases in DLCOcorr were also observed in repeated measures models (p=0.011 and p=0.032 at 24 and 60 months ACT, respectively). Conclusions A significant minority of EBT survivors experience PFT deficits following CSI. Continued monitoring of this cohort is planned. PMID:26279023

  6. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification

    PubMed Central

    Cacialli, Pietro; Gueguen, Marie-Madeleine; Coumailleau, Pascal; D’Angelo, Livia; Kah, Olivier; Lucini, Carla; Pellegrini, Elisabeth

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has emerged as an active mediator in many essential functions in the central nervous system of mammals. BDNF plays significant roles in neurogenesis, neuronal maturation and/or synaptic plasticity and is involved in cognitive functions such as learning and memory. Despite the vast literature present in mammals, studies devoted to BDNF in the brain of other animal models are scarse. Zebrafish is a teleost fish widely known for developmental genetic studies and is emerging as model for translational neuroscience research. In addition, its brain shows many sites of adult neurogenesis allowing higher regenerative properties after traumatic injuries. To add further knowledge on neurotrophic factors in vertebrate brain models, we decided to determine the distribution of bdnf mRNAs in the larval and adult zebrafish brain and to characterize the phenotype of cells expressing bdnf mRNAs by means of double staining studies. Our results showed that bdnf mRNAs were widely expressed in the brain of 7 days old larvae and throughout the whole brain of mature female and male zebrafish. In adults, bdnf mRNAs were mainly observed in the dorsal telencephalon, preoptic area, dorsal thalamus, posterior tuberculum, hypothalamus, synencephalon, optic tectum and medulla oblongata. By combining immunohistochemistry with in situ hybridization, we showed that bdnf mRNAs were never expressed by radial glial cells or proliferating cells. By contrast, bdnf transcripts were expressed in cells with neuronal phenotype in all brain regions investigated. Our results provide the first demonstration that the brain of zebrafish expresses bdnf mRNAs in neurons and open new fields of research on the role of the BDNF factor in brain mechanisms in normal and brain repairs situations. PMID:27336917

  7. Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    PubMed Central

    Wong, Chelsea N.; Chaddock-Heyman, Laura; Voss, Michelle W.; Burzynska, Agnieszka Z.; Basak, Chandramallika; Erickson, Kirk I.; Prakash, Ruchika S.; Szabo-Reed, Amanda N.; Phillips, Siobhan M.; Wojcicki, Thomas; Mailey, Emily L.; McAuley, Edward; Kramer, Arthur F.

    2015-01-01

    Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59–80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function. PMID:26321949

  8. Clonal development and organization of the adult Drosophila central brain

    PubMed Central

    Yu, Hung-Hsiang; Awasaki, Takeshi; Schroeder, Mark David; Long, Fuhui; Yang, Jacob S.; He, Yisheng; Ding, Peng; Kao, Jui-Chun; Wu, Gloria Yueh-Yi; Peng, Hanchuan; Myers, Gene; Lee, Tzumin

    2013-01-01

    Summary Background The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. Results By determining individual NB clones and pursuing their projections into specific neuropils we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often co-innervate the same local neuropil(s) and further target a restricted set of distant neuropils. Conclusions These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain. PMID:23541733

  9. Event-related brain potentials - Comparison between children and adults

    NASA Technical Reports Server (NTRS)

    Courchesne, E.

    1977-01-01

    The reported investigation shows that nontarget stimuli which are infrequently presented and deviate from the background elicit Nc and Pc waves in children. The same stimuli elicit P3 waves in adults. The scalp distribution of P3 waves in adults appears to vary with the ease of stimulus recognition or the degree of stimulus novelty. However, the Nc and Pc distributions in children do not seem to vary with these factors. The differences between children and adults in event-related potentials suggest corresponding differences in the mode of processing employed by each when rare, deviant stimuli are encountered

  10. Morphological brain network assessed using graph theory and network filtration in deaf adults.

    PubMed

    Kim, Eunkyung; Kang, Hyejin; Lee, Hyekyoung; Lee, Hyo-Jeong; Suh, Myung-Whan; Song, Jae-Jin; Oh, Seung-Ha; Lee, Dong Soo

    2014-09-01

    Prolonged deprivation of auditory input can change brain networks in pre- and postlingual deaf adults by brain-wide reorganization. To investigate morphological changes in these brains voxel-based morphometry, voxel-wise correlation with the primary auditory cortex, and whole brain network analyses using morphological covariance were performed in eight prelingual deaf, eleven postlingual deaf, and eleven hearing adults. Network characteristics based on graph theory and network filtration based on persistent homology were examined. Gray matter density in the primary auditor cortex was preserved in prelingual deafness, while it tended to decrease in postlingual deafness. Unlike postlingual, prelingual deafness showed increased bilateral temporal connectivity of the primary auditory cortex compared to the hearing adults. Of the graph theory-based characteristics, clustering coefficient, betweenness centrality, and nodal efficiency all increased in prelingual deafness, while all the parameters of postlingual deafness were similar to the hearing adults. Patterns of connected components changing during network filtration were different between prelingual deafness and hearing adults according to the barcode, dendrogram, and single linkage matrix representations, while these were the same in postlingual deafness. Nodes in fronto-limbic and left temporal components were closely coupled, and nodes in the temporo-parietal component were loosely coupled, in prelingual deafness. Patterns of connected components changing in postlingual deafness were the same as hearing adults. We propose that the preserved density of auditory cortex associated with increased connectivity in prelingual deafness, and closer coupling between certain brain areas, represent distinctive reorganization of auditory and related cortices compared with hearing or postlingual deaf adults. The differential network reorganization in the prelingual deaf adults could be related to the absence of auditory speech

  11. Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents.

    PubMed

    Zhou, June; Keenan, Michael J; Fernandez-Kim, Sun Ok; Pistell, Paul J; Ingram, Donald K; Li, Bing; Raggio, Anne M; Shen, Li; Zhang, Hanjie; McCutcheon, Kathleen L; Tulley, Richard T; Blackman, Marc R; Keller, Jeffrey N; Martin, Roy J

    2013-11-01

    Resistant starch (RS) is a dietary fiber that exerts multiple beneficial effects. The current study explored the effects of dietary RS on selected brain and behavioral functions in adult and aged rodents. Because glucokinase (GK) expression in hypothalamic arcuate nucleus and area postrema of the brainstem is important for brain glucose sensing, GK mRNA was measured by brain nuclei microdissection and PCR. Adult RS-fed rats had a higher GK mRNA than controls in both brain nuclei, an indicator of improved brain glucose sensing. Next, we tested whether dietary RS improve selected behaviors in aged mice. RS-fed aged mice exhibited (i) an increased eating responses to fasting, a behavioral indicator of improvement in aged brain glucose sensing; (ii) a longer latency to fall from an accelerating rotarod, a behavioral indicator of improved motor coordination; and (iii) a higher serum active glucagon-like peptide-1 (GLP-1). Then, GLP-1 receptor null (GLP-1RKO) mice were used to test the role of GLP-1 in brain glucose sensing, and they exhibited impaired eating responses to fasting. We conclude that in rodents (i) dietary RS improves two important indicators of brain function: glucose sensing and motor coordination, and (ii) GLP-1 is important in the optimal feeding response to a fast.

  12. Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue.

    PubMed

    Okonogi, Noriyuki; Nakamura, Kazuhiro; Suzuki, Yoshiyuki; Suto, Nana; Suzue, Kazutomo; Kaminuma, Takuya; Nakano, Takashi; Hirai, Hirokazu

    2014-07-01

    Postnatal hematopoietic progenitor cells do not contribute to microglial homeostasis in adult mice under normal conditions. However, previous studies using whole-body irradiation and bone marrow (BM) transplantation models have shown that adult BM cells migrate into the brain tissue and differentiate into microglia (BM-derived microglia; BMDM). Here, we investigated whether cranial irradiation alone was sufficient to induce the generation of BMDM in the adult mouse brain. Transgenic mice that express green fluorescent protein (GFP) under the control of a murine stem cell virus (MSCV) promoter (MSCV-GFP mice) were used. MSCV-GFP mice express GFP in BM cells but not in the resident microglia in the brain. Therefore, these mice allowed us to detect BM-derived cells in the brain without BM reconstitution. MSCV-GFP mice, aged 8-12 weeks, received 13.0 Gy irradiation only to the cranium, and BM-derived cells in the brain were quantified at 3 and 8 weeks after irradiation. No BM-derived cells were detected in control non-irradiated MSCV-GFP mouse brains, but numerous GFP-labeled BM-derived cells were present in the brain stem, basal ganglia and cerebral cortex of the irradiated MSCV-GFP mice. These BM-derived cells were positive for Iba1, a marker for microglia, indicating that GFP-positive BM-derived cells were microglial in nature. The population of BMDM was significantly greater at 8 weeks post-irradiation than at 3 weeks post-irradiation in all brain regions examined. Our results clearly show that cranial irradiation alone is sufficient to induce the generation of BMDM in the adult mouse.

  13. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons.

    PubMed

    Kazu, Rodrigo S; Maldonado, José; Mota, Bruno; Manger, Paul R; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate, insectivore, and afrotherian brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share non-neuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are, however, distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires, and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex.

  14. Multidisciplinary management including periodontics, orthodontics, implants, and prosthetics for an adult.

    PubMed

    Pinho, Teresa; Neves, Manuel; Alves, Célia

    2012-08-01

    This article describes the complex dental treatment of an adult patient with multiple missing teeth, mild chronic periodontitis, and a malocclusion with a cant of the occlusal plane. After periodontal treatment, titanium implants and a miniscrew were placed to correct the occlusal plane canting with orthodontic treatment. Prosthodontic treatment was completed by using osseointegrated implants to replace the missing teeth.

  15. Using network science to evaluate exercise-associated brain changes in older adults.

    PubMed

    Burdette, Jonathan H; Laurienti, Paul J; Espeland, Mark A; Morgan, Ashley; Telesford, Qawi; Vechlekar, Crystal D; Hayasaka, Satoru; Jennings, Janine M; Katula, Jeffrey A; Kraft, Robert A; Rejeski, W Jack

    2010-01-01

    Literature has shown that exercise is beneficial for cognitive function in older adults and that aerobic fitness is associated with increased hippocampal tissue and blood volumes. The current study used novel network science methods to shed light on the neurophysiological implications of exercise-induced changes in the hippocampus of older adults. Participants represented a volunteer subgroup of older adults that were part of either the exercise training (ET) or healthy aging educational control (HAC) treatment arms from the Seniors Health and Activity Research Program Pilot (SHARP-P) trial. Following the 4-month interventions, MRI measures of resting brain blood flow and connectivity were performed. The ET group's hippocampal cerebral blood flow (CBF) exhibited statistically significant increases compared to the HAC group. Novel whole-brain network connectivity analyses showed greater connectivity in the hippocampi of the ET participants compared to HAC. Furthermore, the hippocampus was consistently shown to be within the same network neighborhood (module) as the anterior cingulate cortex only within the ET group. Thus, within the ET group, the hippocampus and anterior cingulate were highly interconnected and localized to the same network neighborhood. This project shows the power of network science to investigate potential mechanisms for exercise-induced benefits to the brain in older adults. We show a link between neurological network features and CBF, and it is possible that this alteration of functional brain networks may lead to the known improvement in cognitive function among older adults following exercise.

  16. Modular Brain Network Organization Predicts Response to Cognitive Training in Older Adults

    PubMed Central

    Gallen, Courtney L.; Baniqued, Pauline L.; Chapman, Sandra B.; Aslan, Sina; Keebler, Molly; Didehbani, Nyaz; D’Esposito, Mark

    2016-01-01

    Cognitive training interventions are a promising approach to mitigate cognitive deficits common in aging and, ultimately, to improve functioning in older adults. Baseline neural factors, such as properties of brain networks, may predict training outcomes and can be used to improve the effectiveness of interventions. Here, we investigated the relationship between baseline brain network modularity, a measure of the segregation of brain sub-networks, and training-related gains in cognition in older adults. We found that older adults with more segregated brain sub-networks (i.e., more modular networks) at baseline exhibited greater training improvements in the ability to synthesize complex information. Further, the relationship between modularity and training-related gains was more pronounced in sub-networks mediating “associative” functions compared with those involved in sensory-motor processing. These results suggest that assessments of brain networks can be used as a biomarker to guide the implementation of cognitive interventions and improve outcomes across individuals. More broadly, these findings also suggest that properties of brain networks may capture individual differences in learning and neuroplasticity. Trail Registration: ClinicalTrials.gov, NCT#00977418 PMID:28006029

  17. Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia.

    PubMed

    Winter, Christine; Djodari-Irani, Anais; Sohr, Reinhard; Morgenstern, Rudolf; Feldon, Joram; Juckel, Georg; Meyer, Urs

    2009-05-01

    Maternal infection during pregnancy enhances the offspring's risk for severe neuropsychiatric disorders in later life, including schizophrenia. Recent attempts to model this association in animals provided further experimental evidence for a causal relationship between in-utero immune challenge and the postnatal emergence of a wide spectrum of behavioural, pharmacological and neuroanatomical dysfunctions implicated in schizophrenia. However, it still remains unknown whether the prenatal infection-induced changes in brain and behavioural functions may be associated with multiple changes at the neurochemical level. Here, we tested this hypothesis in a recently established mouse model of viral-like infection. Pregnant dams on gestation day 9 were exposed to viral mimetic polyriboinosinic-polyribocytidilic acid (PolyI:C, 5 mg/kg i.v.) or vehicle treatment, and basal neurotransmitter levels were then compared in the adult brains of animals born to PolyI:C- or vehicle-treated mothers by high-performance liquid chromatography on post-mortem tissue. We found that prenatal immune activation significantly increased the levels of dopamine and its major metabolites in the lateral globus pallidus and prefrontal cortex, whilst at the same time it decreased serotonin and its metabolite in the hippocampus, nucleus accumbens and lateral globus pallidus. In addition, a specific reduction of the inhibitory amino acid taurine in the hippocampus was noted in prenatally PolyI:C-exposed offspring relative to controls, whereas central glutamate and gamma-aminobutyric acid (GABA) content was largely unaffected by prenatal immune activation. Our results thus confirm that maternal immunological stimulation during early/middle pregnancy is sufficient to induce long-term changes in multiple neurotransmitter levels in the brains of adult offspring. This further supports the possibility that infection-mediated interference with early fetal brain development may predispose the developing organism

  18. Brain function differences in language processing in children and adults with autism.

    PubMed

    Williams, Diane L; Cherkassky, Vladimir L; Mason, Robert A; Keller, Timothy A; Minshew, Nancy J; Just, Marcel Adam

    2013-08-01

    Comparison of brain function between children and adults with autism provides an understanding of the effects of the disorder and associated maturational differences on language processing. Functional imaging (functional magnetic resonance imaging) was used to examine brain activation and cortical synchronization during the processing of literal and ironic texts in 15 children with autism, 14 children with typical development, 13 adults with autism, and 12 adult controls. Both the children and adults with autism had lower functional connectivity (synchronization of brain activity among activated areas) than their age and ability comparison group in the left hemisphere language network during irony processing, and neither autism group had an increase in functional connectivity in response to increased task demands. Activation differences for the literal and irony conditions occurred in key language-processing regions (left middle temporal, left pars triangularis, left pars opercularis, left medial frontal, and right middle temporal). The children and adults with autism differed from each other in the use of some brain regions during the irony task, with the adults with autism having activation levels similar to those of the control groups. Overall, the children and adults with autism differed from the adult and child controls in (a) the degree of network coordination, (b) the distribution of the workload among member nodes, and (3) the dynamic recruitment of regions in response to text content. Moreover, the differences between the two autism age groups may be indicative of positive changes in the neural function related to language processing associated with maturation and/or educational experience.

  19. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    PubMed

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  20. Language control in bilingual adults with and without history of mild traumatic brain injury.

    PubMed

    Ratiu, Ileana; Azuma, Tamiko

    2017-03-01

    Adults with a history of traumatic brain injury often show deficits in executive functioning (EF), including the ability to inhibit, switch, and attend to tasks. These abilities are critical for language processing in bilinguals. This study examined the effect of mild traumatic brain injury (mTBI) on EF and language processing in bilinguals using behavioral and eye-tracking measures. Twenty-two bilinguals with a history of mTBI and twenty healthy control bilinguals were administered executive function and language processing tasks. Bilinguals with a history of mTBI showed deficits in specific EFs and had higher rates of language processing errors than healthy control bilinguals. Additionally, individuals with a history of mTBI have different patterns of eye movements during reading than healthy control bilinguals. These data suggest that language processing deficits are related to underlying EF abilities. The findings provide important information regarding specific EF and language control deficits in bilinguals with a history mTBI.

  1. Adult axolotls can regenerate original neuronal diversity in response to brain injury

    PubMed Central

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. DOI: http://dx.doi.org/10.7554/eLife.13998.001 PMID:27156560

  2. ABAEnrichment: an R package to test for gene set expression enrichment in the adult and developing human brain.

    PubMed

    Grote, Steffi; Prüfer, Kay; Kelso, Janet; Dannemann, Michael

    2016-10-15

    We present ABAEnrichment, an R package that tests for expression enrichment in specific brain regions at different developmental stages using expression information gathered from multiple regions of the adult and developing human brain, together with ontologically organized structural information about the brain, both provided by the Allen Brain Atlas. We validate ABAEnrichment by successfully recovering the origin of gene sets identified in specific brain cell-types and developmental stages.

  3. The effects of sleep deprivation on brain functioning in older adults.

    PubMed

    Almklov, Erin L; Drummond, Sean P A; Orff, Henry; Alhassoon, Omar M

    2015-01-01

    Few studies have examined the effects of total sleep deprivation (TSD) on cognitive performance and brain activation using functional MRI (fMRI) in older adults. The current study examines blood oxygen level-dependent (BOLD) activation in older adults and younger adults during the sustained attention (GO) and response inhibition (NOGO) portions of a GO-NOGO cognitive task following 36 hr of total sleep deprivation. No significant performance differences were observed between the groups on the behavioral outcome measures of total hits and false alarms. Neuroimaging results, however, revealed a significant interaction between age-group and sleep-deprivation status. Specifically, older adults showed greater BOLD activation as compared to younger adults after 36 hours total sleep deprivation in brain regions typically associated with attention and inhibitory processes. These results suggest in order for older adults to perform the GO-NOGO task effectively after sleep deprivation, they rely on compensatory recruitment of brain regions that aide in the maintenance of cognitive performance.

  4. The effects of acetaldehyde on nicotine-induced transmitter levels in young and adult brain areas.

    PubMed

    Sershen, H; Shearman, E; Fallon, S; Chakraborty, G; Smiley, J; Lajtha, A

    2009-08-14

    The aim of the present study was to examine the effect of acetaldehyde administration on neurotransmitters in the presence of nicotine in brain areas associated with cognition and reward. We assayed these effects via microdialysis in conscious freely moving male Sprague-Dawley rats. It was reported that low doses of acetaldehyde enhance nicotine self-administration in young, but not in adult rats. Since nicotine enhances reward and learning, while acetaldehyde is reported to enhance reward but inhibit learning, acetaldehyde thus would be likely to stimulate reward without stimulating learning. We hoped that examining the effects of acetaldehyde (on nicotine-mediated neurotransmitter changes) would help to distinguish reward mechanisms less influenced by learning mechanisms. To avoid the aversive effect of acetaldehyde, we used a low dose of acetaldehyde (0.16 mg/kg) administered after nicotine (0.3mg/kg). We analyzed six brain regions: nucleus accumbens shell (NAccS), ventral tegmental area (VTA), ventral and dorsal hippocampus (VH and DH), and prefrontal and medial temporal cortex (PFC, MTC), assaying dopamine (DA), norepinephrine (NE) and serotonin (5-HT) and their metabolites in young and adult rats. The effect of acetaldehyde on nicotine-induced transmitter changes was different in young as compared to adult rat brain regions. In the NAccS of the young, DA was not affected while NE and 5-HT were increased. In the adult in this area DA and NE were decreased, while 5-HT was not altered. In other areas also in many cases, the effect of acetaldehyde in the young and in the adult was different. As an example, acetaldehyde administration increased NE in young and decreased NE in adult DH. We found stimulation of nicotine-induced changes by acetaldehyde in seven instances - six of these were observed in areas in young brain, NE in four areas (NAccS, DH, VH, and PFC), and 5-HT in two (NAccS and DH). Only one increase was noted in adult brain (DA in VTA). Inhibition of

  5. Fetal Alcohol Exposure Reduces Adult Brain Plasticity. Science Briefs

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2007

    2007-01-01

    "Science Briefs" summarize the findings and implications of a recent study in basic science or clinical research. This Brief summarizes the findings and implications of "Moderate Fetal Alcohol Exposure Impairs the Neurogenic Response to an Enriched Environment in Adult Mice" (I. Y. Choi; A. M. Allan; and L. A. Cunningham). Observations of mice…

  6. A Comprehensive Study of the Anatomical Variations of the Circle of Willis in Adult Human Brains

    PubMed Central

    Iqbal, S.

    2013-01-01

    Background: Cerebrovascular diseases such as stroke, aneurysms and arterio-venous malformations are very much prevalent in our country. Circle of Willis, as an anastomotic polygon at the base of the brain forms an important collateral network to maintain adequate cerebral perfusion. Changes in the normal morphology of the circle may condition the appearance and severity of symptoms of cerebrovascular disorders, such as aneurysms, infarctions and other vascular anomalies. A possible link between abnormalities of the circle of Willis and the mentally ill patients has been observed. Aim and Objectives: The aim of the present study is to have an intimate knowledge of the variations in the cerebral arterial circle and to clarify the clinical importance of these variations in certain forms of cerebrovascular diseases. So an attempt was made to analyse the anatomical variations of the circle in a random population. Material and Methods: The work was based on fifty adult brains from persons died of diverse causes. The materials were obtained during routine autopsy studies. The base of the brain including the brain stem with intact arterial circle was preserved in 10% formalin for 10 days. The circle of Willis and its major branches were carefully dissected under water using a magnifying lens. The variations were recorded and photographed. Results: Majority of the circles (52%) showed anomalies. Hypoplasia was the most frequent anomaly and was found in 24% of the brains. Accessory vessels in the form of duplications/triplications of anterior communicating artery were seen in 12% of the circles. The embryonic origin of the posterior cerebral artery from the internal carotid persisted in 10% of the circles. An incomplete circle due to the absence of one or other posterior communicating artery was found in 6% of the specimens.Variations are more frequent in posterior half of the circle. Conclusion: The anatomical variations of the circle of Willis were probably genetically

  7. Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water.

    PubMed

    Krishna, Saritha; Dodd, Celia A; Hekmatyar, Shahryar K; Filipov, Nikolay M

    2014-01-01

    Natural leaching processes and/or anthropogenic contamination can result in ground water concentrations of the essential metal manganese (Mn) that far exceed the current regulatory standards. Neurological consequences of Mn drinking water (DW) overexposure to experimental animals, i.e., mice, including its brain deposition/distribution and behavioral effects are understudied. Adult male C57BL/6 mice were exposed to Mn via the DW for 8 weeks. After 5 weeks of Mn exposure, magnetic resonance imaging revealed significant Mn deposition in all examined brain regions; the degree of Mn deposition did not increase further a week later. Behaviorally, early hyperactivity and more time spent in the center of the arenas in an open field test, decreased forelimb grip strength and less time swimming in a forced swim test were observed after 6 weeks of Mn DW exposure. Eight-week Mn DW exposure did not alter striatal dopamine, its metabolites, or the expression of key dopamine homeostatic proteins, but it significantly increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) levels, without affecting the levels of serotonin itself. Increased expression (mRNA) of glial fibrillary acidic protein (GFAP, an astrocyte activation marker), heme oxygenase-1 and inducible nitric oxide synthase (oxidative and nitrosative stress markers, respectively) were observed 8 weeks post-Mn DW exposure in the substantia nigra. Besides mRNA increases, GFAP protein expression was increased in the substantia nigra pars reticulata. In summary, the neurobehavioral deficits, characterized by locomotor and emotional perturbations, and nigral glial activation associated with significant brain Mn deposition are among the early signs of Mn neurotoxicity caused by DW overexposure.

  8. Brain deposition and neurotoxicity of manganese in adult mice exposed via the drinking water

    PubMed Central

    Saritha, Krishna; Celia, Dodd A.; Shahryar, Hekmatyar K.; Nikolay, Filipov M.

    2013-01-01

    Natural leaching processes and/or anthropogenic contamination can result in ground water concentrations of the essential metal manganese (Mn) that far exceed the current regulatory standards. Neurological consequences of Mn drinking water (DW) overexposure to experimental animals, i.e. mice, including its brain deposition/distribution and behavioral effects are understudied. Adult male C57BL/6 mice were exposed to Mn via the DW for 8 weeks. After 5 weeks of Mn exposure, magnetic resonance imaging revealed significant Mn deposition in all examined brain regions; the degree of Mn deposition did not increase further a week later. Behaviorally, early hyperactivity and more time spent in the center of the arenas in an open field test, decreased forelimb grip strength and less time swimming in a forced swim test were observed after 6 weeks of Mn DW exposure. Eight-week Mn DW exposure did not alter striatal dopamine, its metabolites, or the expression of key dopamine homeostatic proteins, but it significantly increased striatal 5-hydroxyindoleacetic acid (a serotonin metabolite) level, without affecting the levels of serotonin itself. Increased expression (mRNA) of glial fibrillary acidic protein (GFAP, an astrocyte activation marker), heme oxygenase-1 and inducible nitric oxide synthase (oxidative and nitrosative stress markers, respectively) were observed 8 weeks post Mn DW exposure in the substantia nigra. Besides mRNA increases, GFAP protein expression was increased in the substantia nigra pars reticulata. In summary, the neurobehavioral deficits, characterized by locomotor and emotional perturbations, and nigral glial activation associated with significant brain Mn deposition are among the early signs of Mn neurotoxicity caused by DW overexposure. PMID:23832297

  9. Neuroanatomical distribution of galectin-3 in the adult rat brain.

    PubMed

    Yoo, Hong-Il; Kim, Eu-Gene; Lee, Eun-Jin; Hong, Sung-Young; Yoon, Chi-Sun; Hong, Min-Ju; Park, Sang-Jin; Woo, Ran-Sook; Baik, Tai-Kyoung; Song, Dae-Yong

    2017-04-01

    Galectin-3 is a member of the lectin subfamily that enables the specific binding of β-galactosides. It is expressed in a broad spectrum of species and organs, and is known to have various functions related to cell adhesion, signal transduction, and proinflammatory responses. Although, expression of galectin-3 in some activated neuroglia under neuroinflammation has been well documented in the central nervous system, little is known about the neuronal expression and distribution of galectin-3 in normal brain. To describe the cellular and neuroanatomical expression map of galectin-3, we performed galectin-3 immunohistochemistry on the entire normal rat brain and subsequently analyzed the neuronal distribution. Galectin-3 expression was observed not only in some neuroglia but also in neurons. Neuronal expression of galectin-3 was observed in many functional parts of the cerebral cortex and various other subcortical nuclei in the hypothalamus and brainstem. Neuroanatomical analysis revealed that robust galectin-3 immuno-signals were present in many hypothalamic nuclei related to a variety of physiological functions responsible for mediating anxiety responses, energy balance, and neuroendocrine regulation. In addition, the regions highly connected with these hypothalamic nuclei also showed intense galectin-3 expression. Moreover, multiple key regions involved in regulating autonomic functions exhibited high levels of galectin-3 expression. In contrast, the subcortical nuclei responsible for the control of voluntary motor functions and limbic system exhibited no galectin-3 immunoreactivity. These observations suggest that galectin-3 expression in the rat brain seems to be regulated by developmental cascades, and that functionally and neuroanatomically related brain nuclei constitutively express galectin-3 in adulthood.

  10. Brain tissue pressure measurements in perinatal and adult rabbits.

    PubMed

    Hornig, G W; Lorenzo, A V; Zavala, L M; Welch, K

    1987-12-01

    Brain tissue pressure (BTP) in pre- and post-natal anesthetized rabbits, held in a stereotactic head holder, was measured with a fluid filled 23 gauge open-ended cannula connected distally to a pressure transducer. By advancing the cannula step wise through a hole in the cranium it was possible to sequentially measure pressure from the cranial subarachnoid space, cortex, ventricle and basal ganglia. Separate cannulas and transducers were used to measure CSFP from the cisterna magna and arterial and/or venous pressure. Pressure recordings obtained when the tip of the BTP cannula was located in the cranial subarachnoid space or ventricle exhibited respiratory and blood pressure pulsations equivalent to and in phase with CSF pulsations recorded from the cisterna magna. When the tip was advanced into brain parenchymal sites such pulsations were suppressed or non-detectable unless communication with a CSF compartment had been established inadvertently. Although CSF pressures in the three spinal fluid compartments were equivalent, in most animals BTP was higher than CSFP. However, after momentary venting of the system BTP equilibrated at a pressure below that of CSFP. We speculate that venting of the low compliance system (1.20 x 10(-5) ml/mmHg) relieves the isometric pressure build-up due to insertion of the cannula into brain parenchyma. Under these conditions, and at all ages examined, BTP in the rabbit is consistently lower than CSFP and, as with CSFP, it increases as the animal matures.

  11. Canonical Genetic Signatures of the Adult Human Brain

    PubMed Central

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  12. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    PubMed Central

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  13. Proliferation zones in the brain of adult fish Austrolebias (Cyprinodontiform: Rivulidae): a comparative study.

    PubMed

    Fernández, A S; Rosillo, J C; Casanova, G; Olivera-Bravo, S

    2011-08-25

    In contrast with mammals, adult fish brains exhibit an enormous potential to produce new cells. Proliferation zones, however, have been described in only a few species, hindering comparisons among genuses and orders. Here we analyzed brain cell proliferation in annual teleostean fishes Austrolebias (Cyprinodontiform: Rivulidae). Immunocytochemistry against 5-bromo-2'-deoxyuridine (BrdU) was quantitated and mapped 24 h after injection in three species with different phylogenetic positions or habitats. All species had similar brain anatomy and total volume, but olfactory bulbs, torus longitudinalis and cerebellum were of different sizes in different species. Cell proliferation was found throughout the brain. Three-D reconstructions provided evidence for contiguity along the rostro-caudal axis and concentration in the vicinity of the ventricles. Brain regions analyzed exhibited high mitotic activity, and the torus longitudinalis had the highest volume-normalized proliferation index. A. affinis exhibited the highest normalized proliferation indexes in visual regions but the lowest in olfactory bulb. A. reicherti showed an inverse pattern, suggesting that these species have a different hierarchy of sensorial modalities that could be related to phylogeny or habitat. Double immunostaining against BrdU and cell-type specific markers was performed to determine the fate of proliferating cells. A widespread gliogenesis was evidenced. Few cells positive for both BrdU and the neuronal marker HuC/D were found in the brain of the three species, demonstrating neurogenesis in the adult Austrolebias brain. Summarizing, adult members of the three species showed similar brain anatomy and cell proliferation patterns. Among species, volume-normalized proliferation indexes varied in regions involved in different sensory modalities. To our knowledge, this is the first report showing proliferating cells with neuronal markers as earlier as 24 h after BrdU injection.

  14. Adding chemo after radiation treatment improves survival for adults with a type of brain tumor

    Cancer.gov

    Adults with low-grade gliomas, a form of brain tumor, who received chemotherapy following completion of radiation therapy lived longer than patients who received radiation therapy alone, according to long-term follow-up results from a NIH-supported random

  15. Humor, Rapport, and Uncomfortable Moments in Interactions with Adults with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kovarsky, Dana; Schiemer, Christine; Murray, Allison

    2011-01-01

    We examined uncomfortable moments that damaged rapport during group interactions between college students in training to become speech-language pathologists and adults with traumatic brain injury. The students worked as staff in a community-based program affiliated with a university training program that functioned as a recreational gathering…

  16. Brain Blood Flow Related to Acoustic Laryngeal Reaction Time in Adult Developmental Stutterers.

    ERIC Educational Resources Information Center

    Watson, Ben C.; And Others

    1992-01-01

    This study sought to identify patterns of impaired acoustic laryngeal reaction time as a function of response complexity parallel to metabolic measures of brain function. Findings indicated that the disruption in speech motor control for 16 adult male developmental stutterers was systematically related to metabolic asymmetry in left superior and…

  17. Neural Underpinnings of Working Memory in Adult Survivors of Childhood Brain Tumors.

    PubMed

    King, Tricia Z; Na, Sabrina; Mao, Hui

    2015-08-01

    Adult survivors of childhood brain tumors are at risk for cognitive performance deficits that require the core cognitive skill of working memory. Our goal was to examine the neural mechanisms underlying working memory performance in survivors. We studied the working memory of adult survivors of pediatric posterior fossa brain tumors using a letter n-back paradigm with varying cognitive workload (0-, 1-, 2-, and 3-back) and functional magnetic resonance imaging as well as neuropsychological measures. Survivors of childhood brain tumors evidenced lower working memory performance than demographically matched healthy controls. Whole-brain analyses revealed significantly greater blood-oxygen level dependent (BOLD) activation in the left superior / middle frontal gyri and left parietal lobe during working memory (2-back versus 0-back contrast) in survivors. Left frontal BOLD response negatively correlated with 2- and 3-back working memory performance, Auditory Consonant Trigrams (ACT), and Digit Span Backwards. In contrast, parietal lobe BOLD response negatively correlated with 0-back (vigilance task) and ACT. The results revealed that adult survivors of childhood posterior fossa brain tumors recruited additional cognitive control resources in the prefrontal lobe during increased working memory demands. This increased prefrontal activation is associated with lower working memory performance and is consistent with the allocation of latent resources theory.

  18. [Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain].

    PubMed

    Respondek, Michalina; Buszman, Ewa

    2015-12-31

    Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC), which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  19. New neurons clear the path of astrocytic processes for their rapid migration in the adult brain.

    PubMed

    Kaneko, Naoko; Marín, Oscar; Koike, Masato; Hirota, Yuki; Uchiyama, Yasuo; Wu, Jane Y; Lu, Qiang; Tessier-Lavigne, Marc; Alvarez-Buylla, Arturo; Okano, Hideyuki; Rubenstein, John L R; Sawamoto, Kazunobu

    2010-07-29

    In the long-range neuronal migration of adult mammals, young neurons travel from the subventricular zone to the olfactory bulb, a long journey (millimeters to centimeters, depending on the species). How can these neurons migrate through the dense meshwork of neuronal and glial processes of the adult brain parenchyma? Previous studies indicate that young neurons achieve this by migrating in chains through astrocytic tunnels. Here, we report that young migrating neurons actively control the formation and maintenance of their own migration route. New neurons secrete the diffusible protein Slit1, whose receptor, Robo, is expressed on astrocytes. We show that the Slit-Robo pathway is required for morphologic and organizational changes in astrocytes that result in the formation and maintenance of the astrocytic tunnels. Through this neuron-glia interaction, the new neurons regulate the formation of the astrocytic meshwork that is needed to enable their rapid and directional migration in adult brain.

  20. Removing brakes on adult brain plasticity: from molecular to behavioral interventions

    PubMed Central

    Bavelier, D.; Levi, D.M.; Li, R.W.; Dan, Y.; Hensch, T.K.

    2010-01-01

    Adult brain plasticity, although possible, remains more restricted in scope than during development. Here, we address conditions under which circuit rewiring may be facilitated in the mature brain. At a cellular and molecular level, adult plasticity is actively limited. Some of these “brakes” are structural, such as peri-neuronal nets or myelin, which inhibit neurite outgrowth. Others are functional, acting directly upon excitatory-inhibitory balance within local circuits. Plasticity in adulthood can be induced either by lifting these brakes through invasive interventions or by exploiting endogenous permissive factors, such as neuromodulators. Using the amblyopic visual system as a model, we discuss genetic, pharmacological, and environmental removal of brakes to enable recovery of vision in adult rodents. Although these mechanisms remain largely uncharted in the human, we consider how they may provide a biological foundation for the remarkable increase in plasticity after action video game play by amblyopic subjects. PMID:21068299

  1. Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain.

    PubMed

    Ihrie, Rebecca A; Alvarez-Buylla, Arturo

    2011-05-26

    New neurons and glial cells are generated in an extensive germinal niche adjacent to the walls of the lateral ventricles in the adult brain. The primary progenitors (B1 cells) have astroglial characteristics but retain important neuroepithelial properties. Recent work shows how B1 cells contact all major compartments of this niche. They share the "shoreline" on the ventricles with ependymal cells, forming a unique adult ventricular zone (VZ). In the subventricular zone (SVZ), B1 cells contact transit amplifying (type C) cells, chains of young neurons (A cells), and blood vessels. How signals from these compartments influence the behavior of B1 or C cells remains largely unknown, but recent work highlights growth factors, neurotransmitters, morphogens, and the extracellular matrix as key regulators of this niche. The integration of emerging molecular and anatomical clues forecasts an exciting new understanding of how the germ of youth is actively maintained in the adult brain.

  2. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation

    PubMed Central

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  3. Oxytocin enhances inter-brain synchrony during social coordination in male adults.

    PubMed

    Mu, Yan; Guo, Chunyan; Han, Shihui

    2016-12-01

    Recent brain imaging research has revealed oxytocin (OT) effects on an individual's brain activity during social interaction but tells little about whether and how OT modulates the coherence of inter-brain activity related to two individuals' coordination behavior. We developed a new real-time coordination game that required two individuals of a dyad to synchronize with a partner (coordination task) or with a computer (control task) by counting in mind rhythmically. Electroencephalography (EEG) was recorded simultaneously from a dyad to examine OT effects on inter-brain synchrony of neural activity during interpersonal coordination. Experiment 1 found that dyads showed smaller interpersonal time lags of counting and greater inter-brain synchrony of alpha-band neural oscillations during the coordination (vs control) task and these effects were reliably observed in female but not male dyads. Moreover, the increased alpha-band inter-brain synchrony predicted better interpersonal behavioral synchrony across all participants. Experiment 2, using a double blind, placebo-controlled between-subjects design, revealed that intranasal OT vs placebo administration in male dyads improved interpersonal behavioral synchrony in both the coordination and control tasks but specifically enhanced alpha-band inter-brain neural oscillations during the coordination task. Our findings provide first evidence that OT enhances inter-brain synchrony in male adults to facilitate social coordination.

  4. The Effects of Face Expertise Training on the Behavioral Performance and Brain Activity of Adults with High Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Faja, Susan; Webb, Sara Jane; Jones, Emily; Merkle, Kristen; Kamara, Dana; Bavaro, Joshua; Aylward, Elizabeth; Dawson, Geraldine

    2012-01-01

    The effect of expertise training with faces was studied in adults with ASD who showed initial impairment in face recognition. Participants were randomly assigned to a computerized training program involving either faces or houses. Pre- and post-testing included standardized and experimental measures of behavior and event-related brain potentials…

  5. Inflammation regulates functional integration of neurons born in adult brain.

    PubMed

    Jakubs, Katherine; Bonde, Sara; Iosif, Robert E; Ekdahl, Christine T; Kokaia, Zaal; Kokaia, Merab; Lindvall, Olle

    2008-11-19

    Inflammation influences several steps of adult neurogenesis, but whether it regulates the functional integration of the new neurons is unknown. Here, we explored, using confocal microscopy and whole-cell patch-clamp recordings, whether a chronic inflammatory environment affects the morphological and electrophysiological properties of new dentate gyrus granule cells, labeled with a retroviral vector encoding green fluorescent protein. Rats were exposed to intrahippocampal injection of lipopolysaccharide, which gave rise to long-lasting microglia activation. Inflammation caused no changes in intrinsic membrane properties, location, dendritic arborization, or spine density and morphology of the new cells. Excitatory synaptic drive increased to the same extent in new and mature cells in the inflammatory environment, suggesting increased network activity in hippocampal neural circuitries of lipopolysaccharide-treated animals. In contrast, inhibitory synaptic drive was more enhanced by inflammation in the new cells. Also, larger clusters of the postsynaptic GABA(A) receptor scaffolding protein gephyrin were found on dendrites of new cells born in the inflammatory environment. We demonstrate for the first time that inflammation influences the functional integration of adult-born hippocampal neurons. Our data indicate a high degree of synaptic plasticity of the new neurons in the inflammatory environment, which enables them to respond to the increase in excitatory input with a compensatory upregulation of activity and efficacy at their afferent inhibitory synapses.

  6. Efficacy of 68Ga-DOTATOC Positron Emission Tomography (PET) CT in Children and Young Adults With Brain Tumors

    ClinicalTrials.gov

    2016-09-07

    Acoustic Schwannoma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Supratentorial Ependymoma; Meningeal Melanocytoma; Newly Diagnosed Childhood Ependymoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood

  7. Sleep and synaptic plasticity in the developing and adult brain.

    PubMed

    Frank, Marcos G

    2015-01-01

    Sleep is hypothesized to play an integral role in brain plasticity. This has traditionally been investigated using behavioral assays. In the last 10-15 years, studies combining sleep measurements with in vitro and in vivo models of synaptic plasticity have provided exciting new insights into how sleep alters synaptic strength. In addition, new theories have been proposed that integrate older ideas about sleep function and recent discoveries in the field of synaptic plasticity. There remain, however, important challenges and unanswered questions. For example, sleep does not appear to have a single effect on synaptic strength. An unbiased review of the literature indicates that the effects of sleep vary widely depending on ontogenetic stage, the type of waking experience (or stimulation protocols) that precede sleep and the type of neuronal synapse under examination. In this review, I discuss these key findings in the context of current theories that posit different roles for sleep in synaptic plasticity.

  8. Evaluation of a Reading Comprehension Strategy Package to Improve Reading Comprehension of Adult College Students with Acquired Brain Injuries

    ERIC Educational Resources Information Center

    Griffiths, Gina G.

    2013-01-01

    Adults with mild to moderate acquired brain injury (ABI) often pursue post-secondary or professional education after their injuries in order to enter or re-enter the job market. An increasing number of these adults report problems with reading-to-learn. The problem is particularly concerning given the growing population of adult survivors of ABI.…

  9. Homeostasis of Microglia in the Adult Brain: Review of Novel Microglia Depletion Systems.

    PubMed

    Waisman, Ari; Ginhoux, Florent; Greter, Melanie; Bruttger, Julia

    2015-10-01

    Microglia are brain macrophages that emerge from early erythro-myeloid precursors in the embryonic yolk sac and migrate to the brain mesenchyme before the blood brain barrier is formed. They seed the brain, and proliferate until they have formed a grid-like distribution in the central nervous system that is maintained throughout lifespan. The mechanisms through which these embryonic-derived cells contribute to microglia homoeostasis at steady state and upon inflammation are still not entirely clear. Here we review recent studies that provided insight into the contribution of embryonically-derived microglia and of adult 'microglia-like' cells derived from monocytes during inflammation. We examine different microglia depletion models, and discuss the origin of their rapid repopulation after depletion and outline important areas of future research.

  10. Bimanual Motor Coordination in Older Adults Is Associated with Increased Functional Brain Connectivity – A Graph-Theoretical Analysis

    PubMed Central

    Heitger, Marcus H.; Goble, Daniel J.; Dhollander, Thijs; Dupont, Patrick; Caeyenberghs, Karen; Leemans, Alexander; Sunaert, Stefan; Swinnen, Stephan P.

    2013-01-01

    In bimanual coordination, older and younger adults activate a common cerebral network but the elderly also have additional activation in a secondary network of brain areas to master task performance. It remains unclear whether the functional connectivity within these primary and secondary motor networks differs between the old and the young and whether task difficulty modulates connectivity. We applied graph-theoretical network analysis (GTNA) to task-driven fMRI data in 16 elderly and 16 young participants using a bimanual coordination task including in-phase and anti-phase flexion/extension wrist movements. Network nodes for the GTNA comprised task-relevant brain areas as defined by fMRI activation foci. The elderly matched the motor performance of the young but showed an increased functional connectivity in both networks across a wide range of connectivity metrics, i.e., higher mean connectivity degree, connection strength, network density and efficiency, together with shorter mean communication path length between the network nodes and also a lower betweenness centrality. More difficult movements showed an increased connectivity in both groups. The network connectivity of both groups had “small world” character. The present findings indicate (a) that bimanual coordination in the aging brain is associated with a higher functional connectivity even between areas also activated in young adults, independently from task difficulty, and (b) that adequate motor coordination in the context of task-driven bimanual control in older adults may not be solely due to additional neural recruitment but also to aging-related changes of functional relationships between brain regions. PMID:23637982

  11. Frog Virus 3 dissemination in the brain of tadpoles, but not in adult Xenopus, involves blood brain barrier dysfunction

    PubMed Central

    De Jesús Andino, Francisco; Jones, Letitia; Maggirwar, Sanjay B.; Robert, Jacques

    2016-01-01

    While increasing evidence points to a key role of monocytes in amphibian host defenses, monocytes are also thought to be important in the dissemination and persistent infection caused by ranavirus. However, little is known about the fate of infected macrophages or if ranavirus exploits immune privileged organs, such as the brain, in order to establish a reservoir. The amphibian Xenopus laevis and Frog Virus 3 (FV3) were established as an experimental platform for investigating in vivo whether ranavirus could disseminate to the brain. Our data show that the FV3 infection alters the BBB integrity, possibly mediated by an inflammatory response, which leads to viral dissemination into the central nervous system in X. laevis tadpole but not adult. Furthermore, our data suggest that the macrophages play a major role in viral dissemination by carrying the virus into the neural tissues. PMID:26931458

  12. Serum chemistry reference values in adult Japanese quail (Coturnix coturnix japonica) including sex-related differences.

    PubMed

    Scholtz, N; Halle, I; Flachowsky, G; Sauerwein, H

    2009-06-01

    Serum chemistry reference values may provide useful information about the physical condition of individuals, making them a useful tool in differentiating normal and healthy animals from abnormal or diseased states. For Japanese quail that are used for producing eggs and meat for human consumption and also as laboratory animals, we aimed to extend the available array of reference values and to compare 16-wk-old adult male versus female birds. In the present study, clinical chemistry data (albumin, total protein, glucose, uric acid, cholesterol, bilirubin, cholinesterase, creatinine, triglycerides, alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyltransferase) in blood serum from up to 125 male and 151 female Japanese quail were established. Statistical comparisons were made between male and female birds. Aspartate aminotransferase, alanine aminotransferase, glucose, cholinesterase, and bilirubin values were higher (P < 0.01) in males, whereas females had higher (P < 0.05) concentrations of albumin, total protein, gamma-glutamyltransferase, total cholesterol, and triglycerides. No significant sex-based differences were observed for creatinine and uric acid. The reference values provided are relevant in particular for the use of quail as laboratory animals when responses to specific treatments have to be monitored and appraised.

  13. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications.

    PubMed

    Abou-Antoun, Tamara J; Hale, James S; Lathia, Justin D; Dombrowski, Stephen M

    2017-04-03

    Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.

  14. Network Structure among Brain Systems in Adult ADHD is Uniquely Modified by Stimulant Administration.

    PubMed

    Cary, Robert P; Ray, Siddharth; Grayson, David S; Painter, Julia; Carpenter, Samuel; Maron, Leeza; Sporns, Olaf; Stevens, Alexander A; Nigg, Joel T; Fair, Damien A

    2016-07-14

    Current research in connectomics highlights that self-organized functional networks or "communities" of cortical areas can be detected in the adult brain. This perspective may provide clues to mechanisms of treatment response in psychiatric conditions. Here we examine functional brain community topology based on resting-state fMRI in adult Attention-Deficit/Hyperactivity Disorder (ADHD; n = 22) and controls (n = 31). We sought to evaluate ADHD patterns in adulthood and their modification by short term stimulants administration. Participants with ADHD were scanned one or two weeks apart, once with medication and once without; comparison participants were scanned at one time-point. Functional connectivity was estimated from these scans and community detection applied to determine cortical network topology. Measures of change in connectivity profile were calculated via a graph measure, termed the Node Dissociation Index (NDI). Compared to controls, several cortical networks had atypical connectivity in adults with ADHD when withholding stimulants, as measured by NDI. In most networks stimulants significantly reduced, but did not eliminate, differences in the distribution of connections between key brain systems relative to the control sample. These findings provide an enriched model of connectivity in ADHD and demonstrate how stimulants may exert functional effects by altering connectivity profiles in the brain.

  15. The functional organisation of glia in the adult brain of Drosophila and other insects

    PubMed Central

    Edwards, Tara N.; Meinertzhagen, Ian A.

    2010-01-01

    This review annotates and categorises the glia of adult Drosophila and other model insects and describes the developmental origins of these in the Drosophila optic lobe. The functions of glia in the adult vary depending upon their sub-type and location in the brain. The task of annotating glia is essentially complete only for the glia of the fly's lamina, which comprise: two types of surface glia - the pseudocartridge and fenestrated glia; two types of cortex glia - the distal and proximal satellite glia; and two types of neuropile glia - the epithelial and marginal glia. We advocate that the term subretinal glia, as used to refer to both pseudocartridge and fenestrated glia, be abandoned. Other neuropiles contain similar glial subtypes, but other than the antennal lobes these have not been described in detail. Surface glia form the blood brain barrier, regulating the flow of substances into and out of the nervous system, both for the brain as a whole and the optic neuropiles in particular. Cortex glia provide a second level of barrier, wrapping axon fascicles and isolating neuronal cell bodies both from neighbouring brain regions and from their underlying neuropiles. Neuropile glia can be generated in the adult and a subtype, ensheathing glia, are responsible for cleaning up cellular debris during Wallerian degeneration. Both the neuropile ensheathing and astrocyte-like glia may be involved in clearing neurotransmitters from the extracellular space, thus modifying the levels of histamine, glutamate and possibly dopamine at the synapse to ultimately affect behaviour. PMID:20109517

  16. Restraint Stress-Induced Morphological Changes at the Blood-Brain Barrier in Adult Rats

    PubMed Central

    Sántha, Petra; Veszelka, Szilvia; Hoyk, Zsófia; Mészáros, Mária; Walter, Fruzsina R.; Tóth, Andrea E.; Kiss, Lóránd; Kincses, András; Oláh, Zita; Seprényi, György; Rákhely, Gábor; Dér, András; Pákáski, Magdolna; Kálmán, János; Kittel, Ágnes; Deli, Mária A.

    2016-01-01

    Stress is well-known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognized in the development of neurodegenerative disorders, such as Alzheimer's disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3, and 21 days) were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occluding, and glucose transporter-1) and astroglia (GFAP). Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, 1-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5, and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes, cognitive and

  17. Nuclear receptors of the honey bee: annotation and expression in the adult brain.

    PubMed

    Velarde, Rodrigo A; Robinson, Gene E; Fahrbach, Susan E

    2006-10-01

    The Drosophila genome encodes 18 canonical nuclear receptors. All of the Drosophila nuclear receptors are here shown to be present in the genome of the honey bee (Apis mellifera). Given that the time since divergence of the Drosophila and Apis lineages is measured in hundreds of millions of years, the identification of matched orthologous nuclear receptors in the two genomes reveals the fundamental set of nuclear receptors required to 'make' an endopterygote insect. The single novelty is the presence in the A. mellifera genome of a third insect gene similar to vertebrate photoreceptor-specific nuclear receptor (PNR). Phylogenetic analysis indicates that this novel gene, which we have named AmPNR-like, is a new member of the NR2 subfamily not found in the Drosophila or human genomes. This gene is expressed in the developing compound eye of the honey bee. Like their vertebrate counterparts, arthropod nuclear receptors play key roles in embryonic and postembryonic development. Studies in Drosophila have focused primarily on the role of these transcription factors in embryogenesis and metamorphosis. Examination of an expressed sequence tag library developed from the adult bee brain and analysis of transcript expression in brain using in situ hybridization and quantitative RT-PCR revealed that several members of the nuclear receptor family (AmSVP, AmUSP, AmERR, AmHr46, AmFtz-F1, and AmHnf-4) are expressed in the brain of the adult bee. Further analysis of the expression of AmUSP and AmSVP in the mushroom bodies, the major insect brain centre for learning and memory, revealed changes in transcript abundance and, in the case of AmUSP, changes in transcript localization, during the development of foraging behaviour in the adult. Study of the honey bee therefore provides a model for understanding nuclear receptor function in the adult brain.

  18. An Updated Review of Interventions that Include Promotion of Physical Activity for Adult Men.

    PubMed

    Bottorff, Joan L; Seaton, Cherisse L; Johnson, Steve T; Caperchione, Cristina M; Oliffe, John L; More, Kimberly; Jaffer-Hirji, Haleema; Tillotson, Sherri M

    2015-06-01

    The marked disparity in life expectancy between men and women suggests men are a vulnerable group requiring targeted health promotion programs. As such, there is an increasing need for health promotion strategies that effectively engage men with their health and/or illness management. Programs that promote physical activity could significantly improve the health of men. Although George et al. (Sports Med 42(3):281, 30) reviewed physical activity programs involving adult males published between 1990 and 2010, developments in men's health have prompted the emergence of new sex- and gender-specific approaches targeting men. The purpose of this review was to: (1) extend and update the review undertaken by George et al. (Sports Med 42(3):281, 30) concerning the effectiveness of physical activity programs in males, and (2) evaluate the integration of gender-specific influences in the content, design, and delivery of men's health promotion programs. A search of MEDLINE, CINAHL, ScienceDirect, Web of Science, PsycINFO, the Cochrane Library, and the SPORTDiscus databases for articles published between January 2010 and August 2014 was conducted. In total, 35 studies, involving evaluations of 31 programs, were identified. Findings revealed that a variety of techniques and modes of delivery could effectively promote physical activity among men. Though the majority of programs were offered exclusively to men, 12 programs explicitly integrated gender-related influences in male-specific programs in ways that recognized men's interests and preferences. Innovations in male-only programs that focus on masculine ideals and gender influences to engage men in increasing their physical activity hold potential for informing strategies to promote other areas of men's health.

  19. Immunohistochemical and ultrastructural changes in the brain in probable adult glycogenosis type IV: adult polyglucosan body disease.

    PubMed

    Wierzba-Bobrowicz, Teresa; Lewandowska, Eliza; Stepień, Tomasz; Modzelewska, Joanna

    2008-01-01

    Glycogenosis type IV is caused by a deficiency of glycogen branching enzyme (alpha-1,4 glucan 6-transglucosylase). Adult polyglucosan body disease (APBD) may represent a neuropathological hallmark of the adult form of this storage disease of the central nervous system. We analysed a case of a 45-year-old unconscious woman who died three days after admission to the hospital. Neuropathological examination revealed massive accumulation of polyglucosan bodies (PBs) in the cortex and white matter of the whole brain. PBs were located in the processes of neurons, astrocytes and microglial cells. The storage material in the cytoplasm of neurons and glial cells was visible as fine granules. Ultrastructurally, PBs consisted of non-membrane-bound deposits of branched and densely packed filaments, measuring about 7-10 nm in diameter, typical of polyglucosan bodies. APBD patients develop upper and lower neuron disease and dementia, probably secondary to the disruption of neuron and astrocyte functions.

  20. Treatment of Adult Severe Traumatic Brain Injury Using Autologous Bone Marrow Mononuclear Cells

    DTIC Science & Technology

    2013-06-01

    TrackVis to obtain whole brain values of FA and MD as well as a focused analysis of the corpus callosum (CC). As shown in Figure 13, initial 1mo FA...In addition to whole brain, targeted DTI analyses of the corpus callosum included FA and MD in the CC as a whole as well as a segmented CC

  1. Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice.

    PubMed

    Duan, Deyi; Fu, Yuhong; Paxinos, George; Watson, Charles

    2013-03-01

    The transcription factor Pax6 has been reported to specify neural progenitor cell fates during development and maintain neuronal commitments in the adult. The spatiotemporal patterns of Pax6 expression were examined in sagittal and horizontal sections of the embryonic, postnatal, and adult brains using immunohistochemistry and double immunolabeling. The proportion of Pax6-immunopositive cells in various parts of the adult brain was estimated using the isotropic fractionator methodology. It was shown that at embryonic day 11 (E11) Pax6 was robustly expressed in the proliferative neuroepithelia of the ventricular zone in the forebrain and hindbrain, and in the floor and the mesencephalic reticular formation (mRt) in the midbrain. At E12, its expression emerged in the nucleus of the lateral lemniscus in the rhombencephalon and disappeared from the floor of the midbrain. As neurodevelopment proceeds, the expression pattern of Pax6 changes from the mitotic germinal zone in the ventricular zone to become extensively distributed in cell groups in the forebrain and hindbrain, and the expression persisted in the mRt. The majority of Pax6-positive cell groups were maintained until adult life, but the intensity of Pax6 expression became much weaker. Pax6 expression was maintained in the mitotic subventricular zone in the adult brain, but not in the germinal region dentate gyrus in the adult hippocampus. There was no obvious colocalization of Pax6 and NeuN during embryonic development, suggesting Pax6 is found primarily in developing progenitor cells. In the adult brain, however, Pax6 maintains neuronal features of some subtypes of neurons, as indicated by 97.1% of Pax6-positive cells co-expressing NeuN in the cerebellum, 40.7% in the olfactory bulb, 38.3% in the cerebrum, and 73.9% in the remaining brain except the hippocampus. Differentiated tyrosine hydroxylase (TH) neurons were observed in the floor of the E11 midbrain where Pax6 was also expressed, but no obvious

  2. Adult Brain Serotonin Deficiency Causes Hyperactivity, Circadian Disruption, and Elimination of Siestas

    PubMed Central

    Whitney, Meredith Sorenson; Shemery, Ashley M.; Yaw, Alexandra M.; Donovan, Lauren J.; Glass, J. David

    2016-01-01

    Serotonin (5-HT) is a crucial neuromodulator linked to many psychiatric disorders. However, after more than 60 years of study, its role in behavior remains poorly understood, in part because of a lack of methods to target 5-HT synthesis specifically in the adult brain. Here, we have developed a genetic approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system by stereotaxic injection of an adeno-associated virus expressing Cre recombinase (AAV-Cre) into the midbrain/pons of mice carrying a loxP-conditional tryptophan hydroxylase 2 (Tph2) allele. We investigated the behavioral effects of deficient brain 5-HT synthesis and discovered a unique composite phenotype. Surprisingly, adult 5-HT deficiency did not affect anxiety-like behavior, but resulted in a robust hyperactivity phenotype in novel and home cage environments. Moreover, loss of 5-HT led to an altered pattern of circadian behavior characterized by an advance in the onset and a delay in the offset of daily activity, thus revealing a requirement for adult 5-HT in the control of daily activity patterns. Notably, after normalizing for hyperactivity, we found that the normal prolonged break in nocturnal activity (siesta), a period of rapid eye movement (REM) and non-REM sleep, was absent in all animals in which 5-HT deficiency was verified. Our findings identify adult 5-HT as a requirement for siestas, implicate adult 5-HT in sleep–wake homeostasis, and highlight the importance of our adult-specific 5-HT-synthesis-targeting approach in understanding 5-HT's role in controlling behavior. SIGNIFICANCE STATEMENT Serotonin (5-HT) is a crucial neuromodulator, yet its role in behavior remains poorly understood, in part because of a lack of methods to target specifically adult brain 5-HT synthesis. We developed an approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system. Using this technique, we

  3. The brain and the braincase: a spatial analysis on the midsagittal profile in adult humans.

    PubMed

    Bruner, Emiliano; Amano, Hideki; de la Cuétara, José Manuel; Ogihara, Naomichi

    2015-09-01

    The spatial relationships between brain and braincase represent a major topic in surgery and evolutionary neuroanatomy. In paleoneurology, neurocranial landmarks are often used as references for brain areas. In this study, we analyze the variation and covariation of midsagittal brain and skull coordinates in a sample of adult modern humans in order to demonstrate spatial associations between hard and soft tissues. The correlation between parietal lobe size and parietal bone size is very low, and there is a marked individual variation. The distances between lobes and bones are partially influenced by the dimensions of the parietal lobes. The main pattern of morphological variability among individuals, associated with the size of the precuneus, apparently does not influence the position of the neurocranial sutures. Therefore, variations in precuneal size modify the distance between the paracentral lobule and bregma, and between the parietal lobe and lambda. Hence, the relative position of the cranial and cerebral landmarks can change as a function of the parietal dimensions. The slight correlation and covariation among these elements suggests a limited degree of spatial integration between soft and hard tissues. Therefore, although the brain influences the cranial size and shape during morphogenesis, the specific position of the cerebral components is sensitive to multiple effects and local factors, without a strict correspondence with the bone landmarks. This absence of correspondent change between brain and skull boundaries suggests caution when making inferences about the brain areas from the position of the cranial sutures. The fact that spatial relationships between cranial and brain areas may vary according to brain proportions must be considered in paleoneurology, when brain anatomy is inferred from cranial evidence.

  4. Including anatomical and functional information in MC simulation of PET and SPECT brain studies. Brain-VISET: a voxel-based iterative method.

    PubMed

    Marti-Fuster, Berta; Esteban, Oscar; Thielemans, Kris; Setoain, Xavier; Santos, Andres; Ros, Domenec; Pavia, Javier

    2014-10-01

    Monte Carlo (MC) simulation provides a flexible and robust framework to efficiently evaluate and optimize image processing methods in emission tomography. In this work we present Brain-VISET (Voxel-based Iterative Simulation for Emission Tomography), a method that aims to simulate realistic [ (99m) Tc]-SPECT and [ (18) F]-PET brain databases by including anatomical and functional information. To this end, activity and attenuation maps generated using high-resolution anatomical images from patients were used as input maps in a MC projector to simulate SPECT or PET sinograms. The reconstructed images were compared with the corresponding real SPECT or PET studies in an iterative process where the activity inputs maps were being modified at each iteration. Datasets of 30 refractory epileptic patients were used to assess the new method. Each set consisted of structural images (MRI and CT) and functional studies (SPECT and PET), thereby allowing the inclusion of anatomical and functional variability in the simulation input models. SPECT and PET sinograms were obtained using the SimSET package and were reconstructed with the same protocols as those employed for the clinical studies. The convergence of Brain-VISET was evaluated by studying the behavior throughout iterations of the correlation coefficient, the quotient image histogram and a ROI analysis comparing simulated with real studies. The realism of generated maps was also evaluated. Our findings show that Brain-VISET is able to generate realistic SPECT and PET studies and that four iterations is a suitable number of iterations to guarantee a good agreement between simulated and real studies.

  5. Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain

    PubMed Central

    Sun, Gerald J.; Zhou, Yi; Stadel, Ryan P.; Moss, Jonathan; Yong, Jing Hui A.; Ito, Shiori; Kawasaki, Nicholas K.; Phan, Alexander T.; Oh, Justin H.; Modak, Nikhil; Reed, Randall R.; Toni, Nicolas; Song, Hongjun; Ming, Guo-li

    2015-01-01

    In a classic model of mammalian brain formation, precursors of principal glutamatergic neurons migrate radially along radial glia fibers whereas GABAergic interneuron precursors migrate tangentially. These migration modes have significant implications for brain function. Here we used clonal lineage tracing of active radial glia-like neural stem cells in the adult mouse dentate gyrus and made the surprising discovery that proliferating neuronal precursors of glutamatergic granule neurons exhibit significant tangential migration along blood vessels, followed by limited radial migration. Genetic birthdating and morphological and molecular analyses pinpointed the neuroblast stage as the main developmental window when tangential migration occurs. We also developed a partial “whole-mount” dentate gyrus preparation and observed a dense plexus of capillaries, with which only neuroblasts, among the entire population of progenitors, are directly associated. Together, these results provide insight into neuronal migration in the adult mammalian nervous system. PMID:26170290

  6. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain.

    PubMed

    Currie, Ko W; Molinaro, Alyssa M; Pearson, Bret J

    2016-11-19

    The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx, which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand (Smed-hh), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS.

  7. Neurodevelopment. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain.

    PubMed

    Barbosa, Joana S; Sanchez-Gonzalez, Rosario; Di Giaimo, Rossella; Baumgart, Emily Violette; Theis, Fabian J; Götz, Magdalena; Ninkovic, Jovica

    2015-05-15

    Adult neural stem cells are the source for restoring injured brain tissue. We used repetitive imaging to follow single stem cells in the intact and injured adult zebrafish telencephalon in vivo and found that neurons are generated by both direct conversions of stem cells into postmitotic neurons and via intermediate progenitors amplifying the neuronal output. We observed an imbalance of direct conversion consuming the stem cells and asymmetric and symmetric self-renewing divisions, leading to depletion of stem cells over time. After brain injury, neuronal progenitors are recruited to the injury site. These progenitors are generated by symmetric divisions that deplete the pool of stem cells, a mode of neurogenesis absent in the intact telencephalon. Our analysis revealed changes in the behavior of stem cells underlying generation of additional neurons during regeneration.

  8. Daily Marijuana Use Is Not Associated with Brain Morphometric Measures in Adolescents or Adults

    PubMed Central

    Thayer, Rachel E.; Depue, Brendan E.; Sabbineni, Amithrupa; Bryan, Angela D.; Hutchison, Kent E.

    2015-01-01

    Recent research has suggested that marijuana use is associated with volumetric and shape differences in subcortical structures, including the nucleus accumbens and amygdala, in a dose-dependent fashion. Replication of such results in well controlled studies is essential to clarify the effects of marijuana. To that end, this retrospective study examined brain morphology in a sample of adult daily marijuana users (n = 29) versus nonusers (n = 29) and a sample of adolescent daily users (n = 50) versus nonusers (n = 50). Groups were matched on a critical confounding variable, alcohol use, to a far greater degree than in previously published studies. We acquired high-resolution MRI scans, and investigated group differences in gray matter using voxel-based morphometry, surface-based morphometry, and shape analysis in structures suggested to be associated with marijuana use, as follows: the nucleus accumbens, amygdala, hippocampus, and cerebellum. No statistically significant differences were found between daily users and nonusers on volume or shape in the regions of interest. Effect sizes suggest that the failure to find differences was not due to a lack of statistical power, but rather was due to the lack of even a modest effect. In sum, the results indicate that, when carefully controlling for alcohol use, gender, age, and other variables, there is no association between marijuana use and standard volumetric or shape measurements of subcortical structures. PMID:25632127

  9. Identifying endogenous neural stem cells in the adult brain in vitro and in vivo: novel approaches.

    PubMed

    Rueger, Maria Adele; Androutsellis-Theotokis, Andreas

    2013-01-01

    In the 1960s, Joseph Altman reported that the adult mammalian brain is capable of generating new neurons. Today it is understood that some of these neurons are derived from uncommitted cells in the subventricular zone lining the lateral ventricles, and the dentate gyrus of the hippocampus. The first area generates new neuroblasts which migrate to the olfactory bulb, whereas hippocampal neurogenesis seems to play roles in particular types of learning and memory. A part of these uncommitted (immature) cells is able to divide and their progeny can generate all three major cell types of the nervous system: neurons, astrocytes, and oligodendrocytes; these properties define such cells as neural stem cells. Although the roles of these cells are not yet clear, it is accepted that they affect functions including olfaction and learning/memory. Experiments with insults to the central nervous system also show that neural stem cells are quickly mobilized due to injury and in various disorders by proliferating, and migrating to injury sites. This suggests a role of endogenous neural stem cells in disease. New pools of stem cells are being discovered, suggesting an even more important role for these cells. To understand these cells and to coax them to contribute to tissue repair it would be very useful to be able to image them in the living organism. Here we discuss advances in imaging approaches as well as new concepts that emerge from stem cell biology with emphasis on the interface between imaging and stem cells.

  10. Differential expression of sirtuin family members in the developing, adult, and aged rat brain.

    PubMed

    Sidorova-Darmos, Elena; Wither, Robert G; Shulyakova, Natalya; Fisher, Carl; Ratnam, Melanie; Aarts, Michelle; Lilge, Lothar; Monnier, Philippe P; Eubanks, James H

    2014-01-01

    The sirtuins are NAD(+)-dependent protein deacetylases and/or ADP-ribosyltransferases that play roles in metabolic homeostasis, stress response and potentially aging. This enzyme family resides in different subcellular compartments, and acts on a number of different targets in the nucleus, cytoplasm and in the mitochondria. Despite their recognized ability to regulate metabolic processes, the roles played by specific sirtuins in the brain-the most energy demanding tissue in the body-remains less well investigated and understood. In the present study, we examined the regional mRNA and protein expression patterns of individual sirtuin family members in the developing, adult, and aged rat brain. Our results show that while each sirtuin is expressed in the brain at each of these different stages, they display unique spatial and temporal expression patterns within the brain. Further, for specific members of the family, the protein expression profile did not coincide with their respective mRNA expression profile. Moreover, using primary cultures enriched for neurons and astrocytes respectively, we found that specific sirtuin members display preferential neural lineage expression. Collectively, these results provide the first composite illustration that sirtuin family members display differential expression patterns in the brain, and provide evidence that specific sirtuins could potentially be targeted to achieve cell-type selective effects within the brain.

  11. Associations among executive function, cardiorespiratory fitness, and brain network properties in older adults

    PubMed Central

    Kawagoe, Toshikazu; Onoda, Keiichi; Yamaguchi, Shuhei

    2017-01-01

    Aging is associated with deterioration in a number of cognitive functions. Previous reports have demonstrated the beneficial effect of physical fitness on cognitive function, especially executive function (EF). The graph theoretical approach models the brain as a complex network represented graphically as nodes and edges. We analyzed several measures of EF, an index of physical fitness, and resting-state functional magnetic resonance imaging data from healthy older volunteers to elucidate the associations among EF, cardiorespiratory fitness, and brain network properties. The topological neural properties were significantly related to the level of EF and/or physical fitness. Global efficiency, which represents how well the whole brain is integrated, was positively related, whereas local efficiency, which represents how well the brain is functionally segregated, was negatively related, to the level of EF and fitness. The associations among EF, physical fitness and topological resting-state functional network property appear related to compensation and dedifferentiation in older age. A mediation analysis showed that high-fit older adults gain higher global efficiency of the brain at the expense of lower local efficiency. The results suggest that physical fitness may be beneficial in maintaining EF in healthy aging by enhancing the efficiency of the global brain network. PMID:28054664

  12. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains.

    PubMed

    Good, C D; Johnsrude, I; Ashburner, J; Henson, R N; Friston, K J; Frackowiak, R S

    2001-09-01

    We used voxel-based morphometry (VBM) to examine human brain asymmetry and the effects of sex and handedness on brain structure in 465 normal adults. We observed significant asymmetry of cerebral grey and white matter in the occipital, frontal, and temporal lobes (petalia), including Heschl's gyrus, planum temporale (PT) and the hippocampal formation. Males demonstrated increased leftward asymmetry within Heschl's gyrus and PT compared to females. There was no significant interaction between asymmetry and handedness and no main effect of handedness. There was a significant main effect of sex on brain morphology, even after accounting for the larger global volumes of grey and white matter in males. Females had increased grey matter volume adjacent to the depths of both central sulci and the left superior temporal sulcus, in right Heschl's gyrus and PT, in right inferior frontal and frontomarginal gyri and in the cingulate gyrus. Females had significantly increased grey matter concentration extensively and relatively symmetrically in the cortical mantle, parahippocampal gyri, and in the banks of the cingulate and calcarine sulci. Males had increased grey matter volume bilaterally in the mesial temporal lobes, entorhinal and perirhinal cortex, and in the anterior lobes of the cerebellum, but no regions of increased grey matter concentration.

  13. Biomaterial microenvironments to support the generation of new neurons in the adult brain.

    PubMed

    Conway, Anthony; Schaffer, David V

    2014-05-01

    Neural stem cells (NSC) in two regions of the adult mammalian brain--the subventricular zone (SVZ) and hippocampus--continuously generate new neurons, enabled by a complex repertoire of factors that precisely regulate the activation, proliferation, differentiation, and integration of the newborn cells. A growing number of studies also report low-level neurogenesis in regions of the adult brain outside these established neurogenic niches--potentially via NSC recruitment or activation of local, quiescent NSCs--under perturbations such as ischemia, cell death, or viral gene delivery of proneural growth factors. We have explored whether implantation of engineered biomaterials can stimulate neurogenesis in normally quiescent regions of the brain. Specifically, recombinant versions of factors found within the NSC microenvironment, Sonic hedgehog, and ephrin-B2 were conjugated to long polymers, thereby creating highly bioactive, multivalent ligands that begin to emulate components of the neurogenic niche. In this engineered biomaterial microenvironment, new neuron formation was observed in normally non-neurogenic regions of the brain, the striatum, and the cortex, and combining these multivalent biomaterials with stromal cell-derived factor-1α increased neuronal commitment of newly divided cells seven- to eightfold in these regions. Additionally, the decreased hippocampal neurogenesis of geriatric rodents was partially rescued toward levels of young animals. We thus demonstrate for the first time de novo neurogenesis in both the cortex and striatum of adult rodents stimulated solely by delivery of synthetic biomaterial forms of proteins naturally found within adult neurogenic niches, offering the potential to replace neurons lost in neurodegenerative disease or injury as an alternative to cell implantation.

  14. Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results

    PubMed Central

    Szymkowicz, Sarah M.; Persson, Jonas; Lin, Tian; Fischer, Håkan; Ebner, Natalie C.

    2016-01-01

    Quick correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging (MRI), this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analysis of covariances (ANCOVAs) models with response time (RT) as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume (ICV). Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging. PMID:27610082

  15. Netrin-5 is highly expressed in neurogenic regions of the adult brain.

    PubMed

    Yamagishi, Satoru; Yamada, Kohei; Sawada, Masato; Nakano, Suguru; Mori, Norio; Sawamoto, Kazunobu; Sato, Kohji

    2015-01-01

    Mammalian netrin family proteins are involved in targeting of axons, neuronal migration, and angiogenesis and act as repulsive and attractive guidance molecules. Netrin-5 is a new member of the netrin family with homology to the C345C domain of netrin-1. Unlike other netrin proteins, murine netrin-5 consists of two EGF motifs of the laminin V domain (LE) and the C345C domain, but lacks the N-terminal laminin VI domain and one of the three LE motifs. We generated a specific antibody against netrin-5 to investigate its expression pattern in the rodent adult brain. Strong netrin-5 expression was observed in the olfactory bulb (OB), rostral migrate stream (RMS), the subventricular zone (SVZ), and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus, where neurogenesis occurs in the adult brain. In the SVZ and RMS, netrin-5 expression was observed in Mash1-positive transit-amplifying cells and in Doublecortin (DCX)-positive neuroblasts, but not in GFAP-positive astrocytes. In the OB, netrin-5 expression was maintained in neuroblasts, but its level was decreased in NeuN-positive mature neurons. In the hippocampal SGZ, netrin-5 was observed in Mash1-positive cells and in DCX-positive neuroblasts, but not in GFAP-positive astrocytes, suggesting that netrin-5 expression occurs from type 2a to type 3 cells. These data suggest that netrin-5 is produced by both transit-amplifying cells and neuroblasts to control neurogenesis in the adult brain.

  16. Eating disorder psychopathology, brain structure, neuropsychological correlates and risk mechanisms in very preterm young adults.

    PubMed

    Micali, Nadia; Kothari, Radha; Nam, Kie Woo; Gioroukou, Elena; Walshe, Muriel; Allin, Matthew; Rifkin, Larry; Murray, Robin M; Nosarti, Chiara

    2015-03-01

    This study investigates the prevalence of eating disorder (ED) psychopathology, neuropsychological function, structural brain correlates and risk mechanisms in a prospective cohort of very preterm (VPT) young adults. We assessed ED psychopathology and neuropsychological correlates in 143 cohort individuals born at <33 weeks of gestation. Structural brain correlates and risk factors at birth, in childhood and adolescence, were investigated using prospectively collected data throughout childhood/adolescence. VPT-born individuals had high levels of ED psychopathology at age 21 years. Executive function did not correlate with ED symptomatology. VPT adults presenting with ED psychopathology had smaller grey matter volume at age 14/15 years in the left posterior cerebellum and smaller white matter volume in the fusiform gyrus bilaterally, compared with VPT adults with no ED psychopathology. Caesarean delivery predicted engaging in compensatory behaviours, and severe eating difficulty at age 14 years predicted ED symptomatology in young adulthood. VPT individuals are at risk for ED symptomatology, with evidence of associated structural alterations in posterior brain regions. Further prospective studies are needed to clarify the pathways that lead from perinatal/obstetric complications to ED and relevant neurobiological mechanisms. © 2015 The Authors. European Eating Disorders Review published by John Wiley &Sons, Ltd.

  17. Neuronal Organization of the Brain in the Adult Amphioxus (Branchiostoma lanceolatum): A Study With Acetylated Tubulin Immunohistochemistry.

    PubMed

    Castro, Antonio; Becerra, Manuela; Manso, María Jesús; Anadón, Ramón

    2015-10-15

    Amphioxus (Cephalochordata) belongs to the most basal extant chordates, and knowledge of their brain organization appears to be key to deciphering the early stages of evolution of vertebrate brains. Most comprehensive studies of the organization of the central nervous system of adult amphioxus have investigated the spinal cord. Some brain populations have been characterized via neurochemistry and electron microscopy, and the overall cytoarchitecture of the brain was studied by Ekhart et al. (2003; J. Comp. Neurol. 466:319-330) with general staining methods and retrograde transport from the spinal cord. Here, the cytoarchitecture of the brain of adult amphioxus Branchiostoma lanceolatum was reinvestigated by using acetylated tubulin immunohistochemistry, which specifically stains neurons and fibers, in combination with some ancillary methods. This method allowed reproducible staining and mapping of types of neuron, mostly in brain regions caudal to the entrance level of nerve 2, and its comparison with spinal cord populations. The brain populations studied and discussed in detail were the Retzius bipolar cells, lamellate cells, Joseph cells, various types of translumenal cells, somatic motoneurons, Rohde nucleus cells, small ventral multipolar neurons, and Edinger cells. These observations expand our knowledge of the distribution of cell types and provide additional data on the number of cells and the axonal tracts and commissural regions of the adult amphioxus brain. The results of this comprehensive study provide a framework for comparison of complex adult populations with the early brain neuronal populations revealed in developmental studies of the amphioxus.

  18. Neurocognitive and Family Functioning and Quality of Life Among Young Adult Survivors of Childhood Brain Tumors

    PubMed Central

    Hocking, Matthew C.; Hobbie, Wendy L.; Deatrick, Janet A.; Lucas, Matthew S.; Szabo, Margo M.; Volpe, Ellen M.; Barakat, Lamia P.

    2012-01-01

    Many childhood brain tumor survivors experience significant neurocognitive late effects across multiple domains that negatively affect quality of life. A theoretical model of survivorship suggests that family functioning and survivor neurocognitive functioning interact to affect survivor and family outcomes. This paper reviews the types of neurocognitive late effects experienced by survivors of pediatric brain tumors. Quantitative and qualitative data from three case reports of young adult survivors and their mothers are analyzed according to the theoretical model and presented in this paper to illustrate the importance of key factors presented in the model. The influence of age at brain tumor diagnosis, family functioning, and family adaptation to illness on survivor quality of life and family outcomes are highlighted. Future directions for research and clinical care for this vulnerable group of survivors are discussed. PMID:21722062

  19. Spatial distribution and cellular composition of adult brain proliferative zones in the teleost, Gymnotus omarorum

    PubMed Central

    Olivera-Pasilio, Valentina; Peterson, Daniel A.; Castelló, María E.

    2014-01-01

    Proliferation of stem/progenitor cells during development provides for the generation of mature cell types in the CNS. While adult brain proliferation is highly restricted in the mammals, it is widespread in teleosts. The extent of adult neural proliferation in the weakly electric fish, Gymnotus omarorum has not yet been described. To address this, we used double thymidine analog pulse-chase labeling of proliferating cells to identify brain proliferation zones, characterize their cellular composition, and analyze the fate of newborn cells in adult G. omarorum. Short thymidine analog chase periods revealed the ubiquitous distribution of adult brain proliferation, similar to other teleosts, particularly Apteronotus leptorhynchus. Proliferating cells were abundant at the ventricular-subventricular lining of the ventricular-cisternal system, adjacent to the telencephalic subpallium, the diencephalic preoptic region and hypothalamus, and the mesencephalic tectum opticum and torus semicircularis. Extraventricular proliferation zones, located distant from the ventricular-cisternal system surface, were found in all divisions of the rombencephalic cerebellum. We also report a new adult proliferation zone at the caudal-lateral border of the electrosensory lateral line lobe. All proliferation zones showed a heterogeneous cellular composition. The use of short (24 h) and long (30 day) chase periods revealed abundant fast cycling cells (potentially intermediate amplifiers), sparse slow cycling (potentially stem) cells, cells that appear to have entered a quiescent state, and cells that might correspond to migrating newborn neural cells. Their abundance and migration distance differed among proliferation zones: greater numbers and longer range and/or pace of migrating cells were associated with subpallial and cerebellar proliferation zones. PMID:25249943

  20. IGF-I redirects doublecortin-positive cell migration in the normal adult rat brain.

    PubMed

    Maucksch, C; McGregor, A L; Yang, M; Gordon, R J; Yang, M; Connor, B

    2013-06-25

    The migration of subventricular zone (SVZ)-derived neural precursor cells through the rostral migratory stream (RMS) to the olfactory bulb is tightly regulated by local micro-environmental cues. Insulin-like Growth Factor-I (IGF-I) can stimulate the migration of several neuronal cell types and acts as a 'departure' factor in the avian SVZ. To establish whether IGF-I can also act as a migratory factor for adult neuronal precursor cells in vivo, in addition to its well established role in precursor cell proliferation and differentiation, we used AAV2-mediated gene transfer to produce ectopic expression of IGF-I in the normal adult rat striatum. We then assessed whether the expression of IGF-I would recruit SVZ-derived neuronal precursor cells from the RMS into the striatum. Ectopic expression of IGF-I in the normal adult rat brain significantly increased the number of doublecortin (Dcx)-positive cells and the extent of their migration into the striatum 4 and 8 weeks after AAV2-IGF-I injection but did not promote neuronal differentiation. In vitro migration assays confirmed that IGF-I is an inducer of migration and directs SVZ-derived adult neuronal precursor cell migration by both chemotaxis and chemokinesis. These results demonstrate that overexpression of IGF-I in the normal adult rat brain can override the normal cues directing precursor cell migration along the RMS and can redirect precursor cell migration into a non-neurogenic region. Enhanced expression of IGF-I following brain injury may therefore act as a diffusible factor mediating precursor cell migration to areas of neuronal cell damage.

  1. Arginine vasotocin neuronal development and its projection in the adult brain of the medaka.

    PubMed

    Kagawa, Nao; Honda, Akira; Zenno, Akiko; Omoto, Ryosuke; Imanaka, Saya; Takehana, Yusuke; Naruse, Kiyoshi

    2016-02-02

    The neurohypophysial peptide arginine vasotocin (AVT) and its mammalian ortholog arginine vasopressin function in a wide range of physiological and behavioral events. Here, we generated a new line of transgenic medaka (Oryzias latipes), which allowed us to monitor AVT neurons by enhanced green fluorescent protein (EGFP) and demonstrate AVT neuronal development in the embryo and the projection of AVT neurons in the adult brain of avt-egfp transgenic medaka. The onset of AVT expression manifested at 2 days postfertilization (dpf) as a pair of signals in the telencephalon of the brain. The telencephalic AVT neurons migrated and converged on the preoptic area (POA) by 4dpf. At the same stage, another onset of AVT expression manifested in the central optic tectum (OT), and they migrated to the ventral part of the hypothalamus (VH) by 6dpf. In the adult brain, the AVT somata with EGFP signals existed in the gigantocellular POA (gPOA), magnocellular POA (mPOA), and parvocellular POA (pPOA) and in the VH. Whereas the major projection of AVT fibers was found from the pPOA and VH to the posterior pituitary, it was also found that AVT neurons in the three POAs send their fibers into wide regions of the brain such as the telencephalon, mesencephalon and diencephalon. This study suggests that the avt-egfp transgenic medaka is a useful model to explore AVT neuronal development and function.

  2. Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals.

    PubMed

    Bruner, Emiliano; Rangel de Lázaro, Gizéh; de la Cuétara, José Manuel; Martín-Loeches, Manuel; Colom, Roberto; Jacobs, Heidi I L

    2014-04-01

    Recent analyses indicate that the precuneus is one of the main centres of integration in terms of functional and structural processes within the human brain. This neuroanatomical element is formed by different subregions, involved in visuo-spatial integration, memory and self-awareness. We analysed the midsagittal brain shape in a sample of adult humans (n = 90) to evidence the patterns of variability and geometrical organization of this area. Interestingly, the major brain covariance pattern within adult humans is strictly associated with the relative proportions of the precuneus. Its morphology displays a marked individual variation, both in terms of geometry (mostly in its longitudinal dimensions) and anatomy (patterns of convolution). No patent differences are evident between males and females, and the allometric effect of size is minimal. However, in terms of morphology, the precuneus does not represent an individual module, being influenced by different neighbouring structures. Taking into consideration the apparent involvement of the precuneus in higher-order human brain functions and evolution, its wide variation further stresses the important role of these deep parietal areas in modern neuroanatomical organization.

  3. Extremely low frequency electromagnetic fields (EMF) and brain cancer in adults and children: review and comment.

    PubMed Central

    Gurney, J. G.; van Wijngaarden, E.

    1999-01-01

    Epidemiologic and experimental research on the potential carcinogenic effects of extremely low frequency electromagnetic fields (EMF) has now been conducted for over two decades. Cancer epidemiology studies in relation to EMF have focused primarily on brain cancer and leukemia, both from residential sources of exposure in children and adults and from occupational exposure in adult men. Because genotoxic effects of EMF have not been shown, most recent laboratory research has attempted to show biological effects that could be related to cancer promotion. In this report, we briefly review residential and occupational EMF studies on brain cancer. We also provide a general review of experimental studies as they relate both to the biological plausibility of an EMF-brain cancer relation and to the insufficiency of such research to help guide exposure assessment in epidemiologic studies. We conclude from our review that no recent research, either epidemiologic or experimental, has emerged to provide reasonable support for a causal role of EMF on brain cancer. PMID:11550314

  4. Brain white matter structure and COMT gene are linked to second-language learning in adults.

    PubMed

    Mamiya, Ping C; Richards, Todd L; Coe, Bradley P; Eichler, Evan E; Kuhl, Patricia K

    2016-06-28

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects' grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype.

  5. Brain white matter structure and COMT gene are linked to second-language learning in adults

    PubMed Central

    Mamiya, Ping C.; Richards, Todd L.; Coe, Bradley P.; Eichler, Evan E.; Kuhl, Patricia K.

    2016-01-01

    Adult human brains retain the capacity to undergo tissue reorganization during second-language learning. Brain-imaging studies show a relationship between neuroanatomical properties and learning for adults exposed to a second language. However, the role of genetic factors in this relationship has not been investigated. The goal of the current study was twofold: (i) to characterize the relationship between brain white matter fiber-tract properties and second-language immersion using diffusion tensor imaging, and (ii) to determine whether polymorphisms in the catechol-O-methyltransferase (COMT) gene affect the relationship. We recruited incoming Chinese students enrolled in the University of Washington and scanned their brains one time. We measured the diffusion properties of the white matter fiber tracts and correlated them with the number of days each student had been in the immersion program at the time of the brain scan. We found that higher numbers of days in the English immersion program correlated with higher fractional anisotropy and lower radial diffusivity in the right superior longitudinal fasciculus. We show that fractional anisotropy declined once the subjects finished the immersion program. The relationship between brain white matter fiber-tract properties and immersion varied in subjects with different COMT genotypes. Subjects with the Methionine (Met)/Valine (Val) and Val/Val genotypes showed higher fractional anisotropy and lower radial diffusivity during immersion, which reversed immediately after immersion ended, whereas those with the Met/Met genotype did not show these relationships. Statistical modeling revealed that subjects’ grades in the language immersion program were best predicted by fractional anisotropy and COMT genotype. PMID:27298360

  6. Sustained increase in adult neurogenesis in the rat hippocampal dentate gyrus after transient brain ischemia.

    PubMed

    Wang, Congmin; Zhang, Mingguang; Sun, Chifei; Cai, Yuqun; You, Yan; Huang, Liping; Liu, Fang

    2011-01-13

    It is known that the number of newly generated neurons is increased in the young and adult rodent subventricular zone (SVZ) and dentate gyrus (DG) after transient brain ischemia. However, it remains unclear whether increase in neurogenesis in the adult DG induced by ischemic stroke is transient or sustained. We here reported that from 2 weeks to 6 months after transient middle cerebral artery occlusion (MCAO), there were more doublecortin positive (DCX+) cells in the ipsilateral compared to the sham-control and contralateral DG of the adult rat. After the S-phase marker 5-bromo-2'-deoxyuridine (BrdU) was injected 2 days after MCAO to label newly generated cells, a large number of BrdU-labeled neuroblasts differentiated into mature granular neurons. These BrdU-labeled neurons survived for at least 6 months. When BrdU was injected 6 weeks after injury, there were still more newly generated neuroblasts differentiated into mature neurons in the ipsilateral DG. Altogether, our data indicate that transient brain ischemia initiates a prolonged increase in neurogenesis and promotes the normal development of the newly generated neurons in the adult DG.

  7. Abundant Production of Brain-Derived Neurotrophic Factor by Adult Visceral Epithelia

    PubMed Central

    Lommatzsch, Marek; Braun, Armin; Mannsfeldt, Anne; Botchkarev, Vladimir A.; Botchkareva, Natalia V.; Paus, Ralf; Fischer, Axel; Lewin, Gary R.; Renz, Harald

    1999-01-01

    Brain-derived neurotrophic factor (BDNF) plays a crucial role for the survival of visceral sensory neurons during development. However, the physiological sources and the function of BDNF in the adult viscera are poorly described. We have investigated the cellular sources and the potential role of BDNF in adult murine viscera. We found markedly different amounts of BDNF protein in different organs. Surprisingly, BDNF levels in the urinary bladder, lung, and colon were higher than those found in the brain or skin. In situ hybridization experiments revealed that BDNF mRNA was made by visceral epithelial cells, several types of smooth muscle, and neurons of the myenteric plexus. Epithelia that expressed BDNF lacked both the high- and low-affinity receptors for BDNF, trkB and p75NTR. In contrast, both receptors were present on neurons of the peripheral nervous system. Studies with BDNF−/−mice demonstrated that epithelial and smooth muscle cells developed normally in the absence of BDNF. These data provide evidence that visceral epithelia are a major source, but not a target, of BDNF in the adult viscera. The abundance of BDNF protein in certain internal organs suggests that this neurotrophin may regulate the function of adult visceral sensory and motor neurons. PMID:10514401

  8. PET imaging of neurogenic activity in the adult brain: Toward in vivo imaging of human neurogenesis.

    PubMed

    Tamura, Yasuhisa; Kataoka, Yosky

    2017-01-01

    Neural stem cells are present in 2 neurogenic regions, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG), and continue to generate new neurons throughout life. Adult hippocampal neurogenesis is linked to a variety of psychiatric disorders such as depression and anxiety, and to the therapeutic effects of antidepressants, as well as learning and memory. In vivo imaging for hippocampal neurogenic activity may be used to diagnose psychiatric disorders and evaluate the therapeutic efficacy of antidepressants. However, these imaging techniques remain to be established until now. Recently, we established a quantitative positron emission tomography (PET) imaging technique for neurogenic activity in the adult brain with 3'-deoxy-3'-[(18)F]fluoro-L-thymidine ([(18)F]FLT) and probenecid, a drug transporter inhibitor in blood-brain barrier. Moreover, we showed that this PET imaging technique can monitor alterations in neurogenic activity in the hippocampus of adult rats with depression and following treatment with an antidepressant. This PET imaging method may assist in diagnosing depression and in monitoring the therapeutic efficacy of antidepressants. In this commentary, we discuss the possibility of in vivo PET imaging for neurogenic activity in adult non-human primates and humans.

  9. Prion diseases and adult neurogenesis: how do prions counteract the brain's endogenous repair machinery?

    PubMed

    Relaño-Ginés, Aroa; Lehmann, Sylvain; Crozet, Carole

    2014-01-01

    Scientific advances in stem cell biology and adult neurogenesis have raised the hope that neurodegenerative disorders could benefit from stem cell-based therapy. Adult neurogenesis might be part of the physiological regenerative process, however it might become impaired by the disease's mechanism and therefore contribute to neurodegeneration. In prion disorders this endogenous repair system has rarely been studied. Whether adult neurogenesis plays a role or not in brain repair or in the propagation of prion pathology remains unclear. We have recently investigated the status of adult neural stem cells isolated from prion-infected mice. We were able to show that neural stem cells accumulate and replicate prions thus resulting in an alteration of their neuronal destiny. We also reproduced these results in adult neural stem cells, which were infected in vitro. The fact that endogenous adult neurogenesis could be altered by the accumulation of misfolded prion protein represents another great challenge. Inhibiting prion propagation in these cells would thus help the endogenous neurogenesis to compensate for the injured neuronal system. Moreover, understanding the endogenous modulation of the neurogenesis system would help develop effective neural stem cell-based therapies.

  10. Prion diseases and adult neurogenesis: How do prions counteract the brain's endogenous repair machinery?

    PubMed Central

    Relaño-Ginés, Aroa; Lehmann, Sylvain; Crozet, Carole

    2014-01-01

    Scientific advances in stem cell biology and adult neurogenesis have raised the hope that neurodegenerative disorders could benefit from stem cell-based therapy. Adult neurogenesis might be part of the physiological regenerative process; however, it might become impaired by the disease's mechanism and therefore contribute to neurodegeneration. In prion disorders this endogenous repair system has rarely been studied. Whether adult neurogenesis plays a role or not in brain repair or in the propagation of prion pathology remains unclear. We have recently investigated the status of adult neural stem cells isolated from prion-infected mice. We were able to show that neural stem cells accumulate and replicate prions thus resulting in an alteration of their neuronal destiny. We also reproduced these results in adult neural stem cells, which were infected in vitro. The fact that endogenous adult neurogenesis could be altered by the accumulation of misfolded prion protein represents another great challenge. Inhibiting prion propagation in these cells would thus help the endogenous neurogenesis to compensate for the injured neuronal system. Moreover, understanding the endogenous modulation of the neurogenesis system would help develop effective neural stem cell-based therapies. PMID:24831876

  11. Brain activation during interference resolution in young and older adults: an fMRI study.

    PubMed

    Zhu, David C; Zacks, Rose T; Slade, Jill M

    2010-04-01

    A rapid event-related fMRI arrow flanker task was used to study aging-associated decline in executive functions related to interference resolution. Older adults had more difficulty responding to Incongruent cues during the flanker task compared to the young adults; the response time difference between the Incongruent and Congruent conditions in the older group was over 50% longer compared to the young adults. In the frontal regions, differential activation ("Incongruent-Congruent" conditions) was observed in the inferior and middle frontal gyri in within-group analyses for both groups. However, the cluster was smaller in the older group and the centroid location was shifted by 19.7 mm. The left superior and medial frontal gyri also appeared to be specifically recruited by older adults during interference resolution, partially driven by errors. The frontal right lateralization found in the young adults was maintained in the older adults during successful trials. Interestingly, bilateral activation was observed when error trials were combined with successful trials highlighting the influence of brain activation associated with errors during cognitive processing. In conclusion, aging appears to result in modified functional regions that may contribute to reduced interference resolution. In addition, error processing should be considered and accounted for when studying age-related cognitive changes as errors may confound the interpretation of task specific age-related activation differences.

  12. Insulin-like and testis ecdysiotropin neuropeptides are regulated by the circadian timing system in the brain during larval-adult development in the insect Rhodnius prolixus (Hemiptera).

    PubMed

    Vafopoulou, Xanthe; Steel, Colin G H

    2012-11-01

    Insulin-like peptides (ILPs) regulate numerous functions in insects including growth, development, carbohydrate metabolism and female reproduction. This paper reports the immunohistochemical localization of ILPs in brain neurons of Rhodnius prolixus and their intimate associations with the brain circadian clock system. In larvae, three groups of neurons in the protocerebrum are ILP-positive, and testis ecdysiotropin (TE) is co-localized in two of them. During adult development, the number of ILP groups increased to four. A blood meal initiates transport and release of ILPs, indicating that release is nutrient dependent. Both production and axonal transport of ILPs continue during adult development with clear cytological evidence of a daily rhythm that closely correlates with the daily rhythm of ILPs release from brains in vitro. The same phenomena were observed with TE previously. Double labeling for ILPs and pigment dispersing factor (PDF) (contained in the brain lateral clock cells, LNs) revealed intimate associations between axons of the ILP/TE cells and PDF-positive axons in both central brain and retrocerebral complex, revealing potential neuronal pathways for circadian regulation of ILPs and TE. Similar close associations were found previously between LN axons and axons of the brain neurons producing the neuropeptide prothoracicotropic hormone. Thus, the brain clock system controls rhythmicity in multiple brain neurohormones. It is suggested that rhythms in circulating ILPs and TE act in concert with known rhythms of circulating ecdysteroids in both larvae and adults to orchestrate the timing of cellular responses in diverse tissues of the animal, thereby generating internal temporal order within it.

  13. Evaluation of use of reading comprehension strategies to improve reading comprehension of adult college students with acquired brain injury.

    PubMed

    Griffiths, Gina G; Sohlberg, McKay Moore; Kirk, Cecilia; Fickas, Stephen; Biancarosa, Gina

    2016-01-01

    Adults with mild to moderate acquired brain injury (ABI) often pursue post-secondary or professional education after their injuries in order to enter or re-enter the job market. An increasing number of these adults report problems with reading-to-learn. The problem is particularly concerning given the growing population of adult survivors of ABI. Despite the rising need, empirical evaluation of reading comprehension interventions for adults with ABI is scarce. This study used a within-subject design to evaluate whether adult college students with ABI with no more than moderate cognitive impairments benefited from using reading comprehension strategies to improve comprehension of expository text. Integrating empirical support from the cognitive rehabilitation and special education literature, the researchers designed a multi-component reading comprehension strategy package. Participants read chapters from an introductory-level college anthropology textbook in two different conditions: strategy and no-strategy. The results indicated that reading comprehension strategy use was associated with recall of more correct information units in immediate and delayed free recall tasks; more efficient recall in the delayed free recall task; and increased accuracy recognising statements from a sentence verification task designed to reflect the local and global coherence of the text. The findings support further research into using reading comprehension strategies as an intervention approach for the adult ABI population. Future research needs include identifying how to match particular reading comprehension strategies to individuals, examining whether reading comprehension performance improves further through the incorporation of systematic training, and evaluating texts from a range of disciplines and genres.

  14. SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions.

    PubMed

    Sun, Wei; Cornwell, Adam; Li, Jiashu; Peng, Sisi; Osorio, M Joana; Su Wanga, Nadia Aalling; Benraiss, Abdellatif; Lou, Nanhong; Goldman, Steven A; Nedergaard, Maiken

    2017-03-23

    Astrocytes have in recent years become the focus of intense experimental interest, yet markers for their definitive identification remain both scarce and imperfect. Astrocytes may be recognized as such by their expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), glutamate transporter 1 (GLT1)quaporin-4 (AQP4)ldehyde dehydrogenase 1 family member L1 (ALDH1L1)nd other proteins. Yet these proteins may all be regulated both developmentally and functionally, restricting their utility. To identify a nuclear marker pathognomonic of astrocytic phenotype, we assessed differential RNA expression by FACS-purified adult astrocytesnd on that basis evaluated the expression of the transcription factor SOX9 in both mouse and human brain. We found that SOX9 is almost selectively expressed by astrocytes in the adult brain except for ependymal cells and in the neurogenic regions, where SOX9 is also expressed by neural progenitor cells. Transcriptome comparisons of SOX9+ cells with GLT1+ cells showed that the two populations of cells exhibit largely overlapping gene expression. Expression of SOX9 did not decrease during agingnd was instead upregulated by reactive astrocytes in a number of settings, including a murine model of amyotrophic lateral sclerosis (SOD1G93A), middle cerebral artery occlusion (MCAO)nd multiple mini-strokes. We quantified the relative number of astrocytes using the isotropic fractionator technique in combination with SOX9 immunolabeling. The analysis showed that SOX9+ astrocytes constitute 10%∼20% of the total cell number in most CNS regions smaller fraction of total cell number than previously estimated in the normal adult brain.Significance Statement Astrocytes are traditionally identified immuno-histochemically by antibodies that target cell-specific antigens in the cytosol or plasma membrane. We show here that SOX9 is an astrocyte-specific nuclear marker in all major areas of the central nervous system outside of the neurogenic

  15. The whole-brain N-acetylaspartate correlates with education in normal adults.

    PubMed

    Glodzik, Lidia; Wu, William E; Babb, James S; Achtnichts, Lutz; Amann, Michael; Sollberger, Marc; Monsch, Andreas U; Gass, Achim; Gonen, Oded

    2012-10-30

    N-acetylaspartate (NAA) is an index of neuronal integrity. We hypothesized that in healthy subjects its whole brain concentration (WBNAA) may be related to formal educational attainment, a common proxy for cognitive reserve. To test this hypothesis, 97 middle aged to elderly subjects (51-89 years old, 38% women) underwent brain magnetic resonance imaging and non-localizing proton spectroscopy. Their WBNAA was obtained by dividing their whole-head NAA amount by the brain volume. Intracranial volume and fractional brain volume, a metric of brain atrophy, were also determined. Each subject's educational attainment was the sum of his/her years of formal education. In the entire group higher education was associated with larger intracranial volume. The relationship between WBNAA and education was observed only in younger (51-70 years old) participants. In this group, education explained 21% of the variance in WBNAA. More WBNAA was related to more years of formal education in adults and younger elders. Prospective studies can determine whether this relationship reflects a true advantage from years of training versus innate characteristics predisposing a subject to higher achievements later in life. We propose that late-life WBNAA may be more affected by other factors acting at midlife and later.

  16. Differential Distribution of Major Brain Gangliosides in the Adult Mouse Central Nervous System

    PubMed Central

    Vajn, Katarina; Viljetić, Barbara; Degmečić, Ivan Večeslav; Schnaar, Ronald L.; Heffer, Marija

    2013-01-01

    Gangliosides - sialic acid-bearing glycolipids - are major cell surface determinants on neurons and axons. The same four closely related structures, GM1, GD1a, GD1b and GT1b, comprise the majority of total brain gangliosides in mammals and birds. Gangliosides regulate the activities of proteins in the membranes in which they reside, and also act as cell-cell recognition receptors. Understanding the functions of major brain gangliosides requires knowledge of their tissue distribution, which has been accomplished in the past using biochemical and immunohistochemical methods. Armed with new knowledge about the stability and accessibility of gangliosides in tissues and new IgG-class specific monoclonal antibodies, we investigated the detailed tissue distribution of gangliosides in the adult mouse brain. Gangliosides GD1b and GT1b are widely expressed in gray and white matter. In contrast, GM1 is predominately found in white matter and GD1a is specifically expressed in certain brain nuclei/tracts. These findings are considered in relationship to the hypothesis that gangliosides GD1a and GT1b act as receptors for an important axon-myelin recognition protein, myelin-associated glycoprotein (MAG). Mediating axon-myelin interactions is but one potential function of the major brain gangliosides, and more detailed knowledge of their distribution may help direct future functional studies. PMID:24098718

  17. Distinct Brain and Behavioral Benefits from Cognitive vs. Physical Training: A Randomized Trial in Aging Adults.

    PubMed

    Chapman, Sandra B; Aslan, Sina; Spence, Jeffrey S; Keebler, Molly W; DeFina, Laura F; Didehbani, Nyaz; Perez, Alison M; Lu, Hanzhang; D'Esposito, Mark

    2016-01-01

    Insidious declines in normal aging are well-established. Emerging evidence suggests that non-pharmacological interventions, specifically cognitive and physical training, may counter diminishing age-related cognitive and brain functions. This randomized trial compared effects of two training protocols: cognitive training (CT) vs. physical training (PT) on cognition and brain function in adults 56-75 years. Sedentary participants (N = 36) were randomized to either CT or PT group for 3 h/week over 12 weeks. They were assessed at baseline-, mid-, and post-training using neurocognitive, MRI, and physiological measures. The CT group improved on executive function whereas PT group's memory was enhanced. Uniquely deploying cerebral blood flow (CBF) and cerebral vascular reactivity (CVR) MRI, the CT cohort showed increased CBF within the prefrontal and middle/posterior cingulate cortex (PCC) without change to CVR compared to PT group. Improvements in complex abstraction were positively associated with increased resting CBF in dorsal anterior cingulate cortex (dACC). Exercisers with higher CBF in hippocampi bilaterally showed better immediate memory. The preliminary evidence indicates that increased cognitive and physical activity improves brain health in distinct ways. Reasoning training enhanced frontal networks shown to be integral to top-down cognitive control and brain resilience. Evidence of increased resting CBF without changes to CVR implicates increased neural health rather than improved vascular response. Exercise did not improve cerebrovascular response, although CBF increased in hippocampi of those with memory gains. Distinct benefits incentivize testing effectiveness of combined protocols to strengthen brain health.

  18. Differential expression of sirtuin family members in the developing, adult, and aged rat brain

    PubMed Central

    Sidorova-Darmos, Elena; Wither, Robert G.; Shulyakova, Natalya; Fisher, Carl; Ratnam, Melanie; Aarts, Michelle; Lilge, Lothar; Monnier, Philippe P.; Eubanks, James H.

    2014-01-01

    The sirtuins are NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that play roles in metabolic homeostasis, stress response and potentially aging. This enzyme family resides in different subcellular compartments, and acts on a number of different targets in the nucleus, cytoplasm and in the mitochondria. Despite their recognized ability to regulate metabolic processes, the roles played by specific sirtuins in the brain—the most energy demanding tissue in the body—remains less well investigated and understood. In the present study, we examined the regional mRNA and protein expression patterns of individual sirtuin family members in the developing, adult, and aged rat brain. Our results show that while each sirtuin is expressed in the brain at each of these different stages, they display unique spatial and temporal expression patterns within the brain. Further, for specific members of the family, the protein expression profile did not coincide with their respective mRNA expression profile. Moreover, using primary cultures enriched for neurons and astrocytes respectively, we found that specific sirtuin members display preferential neural lineage expression. Collectively, these results provide the first composite illustration that sirtuin family members display differential expression patterns in the brain, and provide evidence that specific sirtuins could potentially be targeted to achieve cell-type selective effects within the brain. PMID:25566066

  19. Distinct Brain and Behavioral Benefits from Cognitive vs. Physical Training: A Randomized Trial in Aging Adults

    PubMed Central

    Chapman, Sandra B.; Aslan, Sina; Spence, Jeffrey S.; Keebler, Molly W.; DeFina, Laura F.; Didehbani, Nyaz; Perez, Alison M.; Lu, Hanzhang; D'Esposito, Mark

    2016-01-01

    Insidious declines in normal aging are well-established. Emerging evidence suggests that non-pharmacological interventions, specifically cognitive and physical training, may counter diminishing age-related cognitive and brain functions. This randomized trial compared effects of two training protocols: cognitive training (CT) vs. physical training (PT) on cognition and brain function in adults 56–75 years. Sedentary participants (N = 36) were randomized to either CT or PT group for 3 h/week over 12 weeks. They were assessed at baseline-, mid-, and post-training using neurocognitive, MRI, and physiological measures. The CT group improved on executive function whereas PT group's memory was enhanced. Uniquely deploying cerebral blood flow (CBF) and cerebral vascular reactivity (CVR) MRI, the CT cohort showed increased CBF within the prefrontal and middle/posterior cingulate cortex (PCC) without change to CVR compared to PT group. Improvements in complex abstraction were positively associated with increased resting CBF in dorsal anterior cingulate cortex (dACC). Exercisers with higher CBF in hippocampi bilaterally showed better immediate memory. The preliminary evidence indicates that increased cognitive and physical activity improves brain health in distinct ways. Reasoning training enhanced frontal networks shown to be integral to top-down cognitive control and brain resilience. Evidence of increased resting CBF without changes to CVR implicates increased neural health rather than improved vascular response. Exercise did not improve cerebrovascular response, although CBF increased in hippocampi of those with memory gains. Distinct benefits incentivize testing effectiveness of combined protocols to strengthen brain health. PMID:27462210

  20. The effect of elevated plasma phenylalanine levels on protein synthesis rates in adult rat brain.

    PubMed Central

    Dunlop, D S; Yang, X R; Lajtha, A

    1994-01-01

    Increasing the plasma phenylalanine concentration to levels as high as 0.560-0.870 mM (over ten times normal levels) had no detectable effect on the rate of brain protein synthesis in adult rats. The average rates for 7-week-old rats were: valine, 0.58 +/- 0.05%/h, phenylalanine, 0.59 +/- 0.06%/h, and tyrosine, 0.60 +/- 0.09%/h, or 0.59 +/- 0.06%/h overall. Synthesis rates calculated on the basis of the specific activity of the tRNA-bound amino acid were slightly lower (4% lower for phenylalanine) than those based on the brain free amino acid pool. Similarly, the specific activities of valine and phenylalanine in microdialysis fluid from striatum were practically the same as those in the brain free amino acid pool. Thus the specific activities of the valine and phenylalanine brain free pools are good measures of the precursor specific activity for protein synthesis. In any event, synthesis rates, whether based on the specific activities of the amino acids in the brain free pool or those bound to tRNA, were unaffected by elevated levels of plasma phenylalanine. Brain protein synthesis rates measured after the administration of quite large doses of phenylalanine (> 1.5 mumol/g) or valine (15 mumol/g) were in agreement (0.62 +/- 0.01 and 0.65 +/- 0.01%/h respectively) with the rates determined with infusions of trace amounts of amino acids. Thus the technique of stabilizing precursor-specific activity, and pushing values in the brain close to those of the plasma, by the administration of large quantities of precursor, appears to be valid. PMID:8093014

  1. Progressive Gender Differences of Structural Brain Networks in Healthy Adults: A Longitudinal, Diffusion Tensor Imaging Study

    PubMed Central

    Sun, Yu; Lee, Renick; Chen, Yu; Collinson, Simon; Thakor, Nitish; Bezerianos, Anastasios; Sim, Kang

    2015-01-01

    Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical “small-world” architecture (high local clustering and short paths between nodes). Additional analysis revealed a more economical “small-world” architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus) exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders. PMID:25742013

  2. A different story on "Theory of Mind" deficit in adults with right hemisphere brain damage.

    PubMed

    Tompkins, Connie A; Scharp, Victoria L; Fassbinder, Wiltrud; Meigh, Kimberly M; Armstrong, Elizabeth M

    2008-01-01

    BACKGROUND: Difficulties in social cognition and interaction can characterise adults with unilateral right hemisphere brain damage (RHD). Some pertinent evidence involves their apparently poor reasoning from a "Theory of Mind" perspective, which requires a capacity to attribute thoughts, beliefs, and intentions in order to understand other people's behaviour. Theory of Mind is typically assessed with tasks that induce conflicting mental representations. Prior research with a commonly used text task reported that adults with RHD were less accurate in drawing causal inferences about mental states than at making non-mental-state causal inferences from control texts. However, the Theory of Mind and control texts differed in the number and nature of competing discourse entity representations. This stimulus discrepancy, together with the explicit measure of causal inferencing, likely put the adults with RHD at a disadvantage on the Theory of Mind texts. AIMS: This study revisited the question of Theory of Mind deficit in adults with RHD. The aforementioned Theory of Mind texts were used but new control texts were written to address stimulus discrepancies, and causal inferencing was assessed relatively implicitly. Adults with RHD were hypothesised not to display a Theory of Mind deficit under these conditions. METHODS #ENTITYSTARTX00026; PROCEDURES: The participants were 22 adults with unilateral RHD from cerebrovascular accident, and 38 adults without brain damage. Participants listened to spoken texts that targeted either mental-state or non-mental-state causal inferences. Each text was followed by spoken True/False probe sentences, to gauge target inference comprehension. Both accuracy and RT data were recorded. Data were analysed with mixed, two-way Analyses of Variance (Group by Text Type). OUTCOMES #ENTITYSTARTX00026; RESULTS: There was a main effect of Text Type in both accuracy and RT analyses, with a performance advantage for the Theory of Mind

  3. Automated voxel classification used with atlas-guided diffuse optical tomography for assessment of functional brain networks in young and older adults.

    PubMed

    Li, Lin; Cazzell, Mary; Babawale, Olajide; Liu, Hanli

    2016-10-01

    Atlas-guided diffuse optical tomography (atlas-DOT) is a computational means to image changes in cortical hemodynamic signals during human brain activities. Graph theory analysis (GTA) is a network analysis tool commonly used in functional neuroimaging to study brain networks. Atlas-DOT has not been analyzed with GTA to derive large-scale brain connectivity/networks based on near-infrared spectroscopy (NIRS) measurements. We introduced an automated voxel classification (AVC) method that facilitated the use of GTA with atlas-DOT images by grouping unequal-sized finite element voxels into anatomically meaningful regions of interest within the human brain. The overall approach included volume segmentation, AVC, and cross-correlation. To demonstrate the usefulness of AVC, we applied reproducibility analysis to resting-state functional connectivity measurements conducted from 15 young adults in a two-week period. We also quantified and compared changes in several brain network metrics between young and older adults, which were in agreement with those reported by a previous positron emission tomography study. Overall, this study demonstrated that AVC is a useful means for facilitating integration or combination of atlas-DOT with GTA and thus for quantifying NIRS-based, voxel-wise resting-state functional brain networks.

  4. Expression of connexin36 in the adult and developing rat brain.

    PubMed

    Belluardo, N; Mudò, G; Trovato-Salinaro, A; Le Gurun, S; Charollais, A; Serre-Beinier, V; Amato, G; Haefliger, J A; Meda, P; Condorelli, D F

    2000-05-19

    The distribution of connexin36 (Cx36) in the adult rat brain and retina has been analysed at the protein (immunofluorescence) and mRNA (in situ hybridization) level. Cx36 immunoreactivity, consisting primarily of round or elongated puncta, is highly enriched in specific brain regions (inferior olive and the olfactory bulb), in the retina, in the anterior pituitary and in the pineal gland, in agreement with the high levels of Cx36 mRNA in the same regions. A lower density of immunoreactive puncta can be observed in several brain regions, where only scattered subpopulations of cells express Cx36 mRNA. By combining in situ hybridization for Cx36 mRNA with immunohistochemistry for a general neuronal marker (NeuN), we found that neuronal cells are responsible for the expression of Cx36 mRNA in inferior olive, cerebellum, striatum, hippocampus and cerebral cortex. Cx36 mRNA was also demonstrated in parvalbumin-containing GABAergic interneurons of cerebral cortex, striatum, hippocampus and cerebellar cortex. Analysis of developing brain further revealed that Cx36 reaches a peak of expression in the first two weeks of postnatal life, and decreases sharply during the third week. Moreover, in these early stages of postnatal development Cx36 is detectable in neuronal populations that are devoid of Cx36 mRNA at the adult stage. The developmental changes of Cx36 expression suggest a participation of this connexin in the extensive interneuronal coupling which takes place in several regions of the early postnatal brain.

  5. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    PubMed

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc.

  6. Enhanced task related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation.

    PubMed

    Bowtell, Joanna L; Aboo-Bakkar, Zainie; Conway, Myra; Adlam, Anna-Lynne R; Fulford, Jonathan

    2017-03-01

    Blueberries are rich in flavonoids, which possess antioxidant and anti-inflammatory properties. High flavonoid intakes attenuate age-related cognitive decline, but data from human intervention studies are sparse. We investigated whether 12 weeks of blueberry concentrate supplementation improved brain perfusion, task-related activation and cognitive function in healthy older adults. Participants were randomised to consume either 30 ml blueberry concentrate providing 387 mg anthocyanidins (5 female, 7 male; age 67.5±3.0 y; BMI, 25.9±3.3 kg.m-2) or isoenergetic placebo (8 female, 6 male; age 69.0 ±3.3 y; BMI, 27.1±.4.0 kg.m-2). Pre- and post-supplementation, participants undertook a battery of cognitive function tests and a numerical Stroop test within a 1.5T MRI scanner while functional magnetic resonance images (fMRI) were continuously acquired. Quantitative resting brain perfusion was determined using an arterial spin labelling (ASL) technique, and blood biomarkers of inflammation and oxidative stress were measured. Significant increases in brain activity were observed in response to blueberry supplementation relative to the placebo group within Brodmann areas 4/6/10/21/40/44/45, precuneus, anterior cingulate, and insula/thalamus (p<0.001), as well as significant improvements in grey matter perfusion in the parietal (5.0±1.8 vs -2.9±2.4 %, p=0.013) and occipital (8.0±2.6 vs -0.7±3.2 %, p=0.031) lobes. There was also evidence suggesting improvement in working memory (two back test) after blueberry versus placebo supplementation (p=0.05). Supplementation with an anthocyanin rich blueberry concentrate improved brain perfusion and activation in brain areas associated with cognitive function in healthy older adults.

  7. Phosphorylated retinoblastoma protein (p-Rb) is involved in neuronal apoptosis after traumatic brain injury in adult rats.

    PubMed

    Liu, Wei; Liu, Xiaojuan; Yang, Huilin; Zhu, Xinhui; Yi, Hong; Zhu, Xuesong; Zhang, Jie

    2013-04-01

    Phosphorylated retinoblastoma protein (p-Rb), a well identified cell cycle related protein, is involved in regulating the biological functions of various cell types including neurons. One attractive biological function of p-Rb is releasing E2F transcription factor to induce S-phase entry and cellular proliferation of mitotic cells. However, some studies point out that the role of p-Rb in post-mitotic cells such as mature neurons is unique; it may induce cellular apoptosis rather than proliferation via regulating cell cycle reactivation. Up to now, the knowledge of p-Rb function in CNS is still limited. To investigate whether p-Rb is involved in CNS injury and repair, we performed a traumatic brain injury model in adult rats. Up-regulation of p-Rb was observed in the injured brain cortex by western blot analysis and immunohistochemistry staining. Terminal deoxynucleotidyl transferase deoxy-UTP-nick end labeling (TUNEL) and 4',6-diamidino-2-phenylindole (DAPI) staining suggested that p-Rb was relevant to neuronal apoptosis after brain injury. In addition, glutamate excitotoxic model of primary cortex neurons was introduced to further investigate the role of p-Rb in neuronal apoptosis; the result implied p-Rb was associated with cell cycle activation in the apoptotic neurons. Based on our data, we suggested that p-Rb might play an important role in neuronal apoptosis after traumatic brain injury in rat; which might also provide a basis for the further study on its role in regulating cell cycle re-entry in apoptotic neurons, and might gain a novel strategy for the clinical therapy for traumatic brain injury.

  8. The effect of methylphenidate intake on brain structure in adults with ADHD in a placebo-controlled randomized trial

    PubMed Central

    van Elst, Ludger Tebartz; Maier, Simon; Klöppel, Stefan; Graf, Erika; Killius, Carola; Rump, Marthe; Sobanski, Esther; Ebert, Dieter; Berger, Mathias; Warnke, Andreas; Matthies, Swantje; Perlov, Evgeniy; Philipsen, Alexandra

    2016-01-01

    Background Based on animal research several authors have warned that the application of methylphenidate, the first-line drug for the treatment of attention-deficit/hyperactivity disorder (ADHD), might have neurotoxic effects potentially harming the brain. We investigated whether methylphenidate application, over a 1-year period, results in cerebral volume decrease. Methods We acquired structural MRIs in a double-blind study comparing methylphenidate to placebo. Global and regional brain volumes were analyzed at baseline, after 3 months and after 12 months using diffeomorphic anatomic registration through exponentiated lie algebra. Results We included 131 adult patients with ADHD into the baseline sample, 98 into the 3-month sample (54 in the methylphenidate cohort and 44 in the placebo cohort) and 76 into the 1-year sample (37 in the methylphenidate cohort and 29 in the placebo cohort). Methylphenidate intake compared with placebo did not lead to any detectable cerebral volume loss; there was a trend toward bilateral cerebellar grey matter increase. Limitations Detecting possible neurotoxic effects of methylphenidate might require a longer observation period. Conclusion There is no evidence of grey matter volume loss after 1 year of methylphenidate treatment in adult patients with ADHD. PMID:27575717

  9. Aging-Dependent Changes in the Radiation Response of the Adult Rat Brain

    SciTech Connect

    Schindler, Matthew K. Forbes, M. Elizabeth; Robbins, Mike E.; Riddle, David R.

    2008-03-01

    Purpose: To assess the impact of aging on the radiation response in the adult rat brain. Methods and Materials: Male rats 8, 18, or 28 months of age received a single 10-Gy dose of whole-brain irradiation (WBI). The hippocampal dentate gyrus was analyzed 1 and 10 weeks later for sensitive neurobiologic markers associated with radiation-induced damage: changes in density of proliferating cells, immature neurons, total microglia, and activated microglia. Results: A significant decrease in basal levels of proliferating cells and immature neurons and increased microglial activation occurred with normal aging. The WBI induced a transient increase in proliferation that was greater in older animals. This proliferation response did not increase the number of immature neurons, which decreased after WBI in young rats, but not in old rats. Total microglial numbers decreased after WBI at all ages, but microglial activation increased markedly, particularly in older animals. Conclusions: Age is an important factor to consider when investigating the radiation response of the brain. In contrast to young adults, older rats show no sustained decrease in number of immature neurons after WBI, but have a greater inflammatory response. The latter may have an enhanced role in the development of radiation-induced cognitive dysfunction in older individuals.

  10. Activin in the Brain Modulates Anxiety-Related Behavior and Adult Neurogenesis

    PubMed Central

    Ageta, Hiroshi; Murayama, Akiko; Migishima, Rika; Kida, Satoshi; Tsuchida, Kunihiro; Yokoyama, Minesuke; Inokuchi, Kaoru

    2008-01-01

    Activin, a member of the transforming growth factor-β superfamily, is an endocrine hormone that regulates differentiation and proliferation of a wide variety of cells. In the brain, activin protects neurons from ischemic damage. In this study, we demonstrate that activin modulates anxiety-related behavior by analyzing ACM4 and FSM transgenic mice in which activin and follistatin (which antagonizes the activin signal), respectively, were overexpressed in a forebrain-specific manner under the control of the αCaMKII promoter. Behavioral analyses revealed that FSM mice exhibited enhanced anxiety compared to wild-type littermates, while ACM4 mice showed reduced anxiety. Importantly, survival of newly formed neurons in the subgranular zone of adult hippocampus was significantly decreased in FSM mice, which was partially rescued in ACM4/FSM double transgenic mice. Our findings demonstrate that the level of activin in the adult brain bi-directionally influences anxiety-related behavior. These results further suggest that decreases in postnatal neurogenesis caused by activin inhibition affect an anxiety-related behavior in adulthood. Activin and its signaling pathway may represent novel therapeutic targets for anxiety disorder as well as ischemic brain injury. PMID:18382659

  11. Acquisition of Visual Perception in Blind Adults Using the BrainPort Artificial Vision Device

    PubMed Central

    Pintar, Christine; Arnoldussen, Aimee; Fisher, Christopher

    2015-01-01

    OBJECTIVE. We sought to determine whether intensive low vision rehabilitation would confer any functional improvement in a sample of blind adults using the BrainPort artificial vision device. METHOD. Eighteen adults ages 28–69 yr (n = 10 men and n = 8 women) who had light perception only or worse vision bilaterally spent up to 6 hr per day for 1 wk undergoing structured rehabilitation interventions. The functional outcomes of object identification and word recognition were tested at baseline and after rehabilitation training. RESULTS. At baseline, participants were unable to complete the two functional assessments. After participation in the 1-wk training protocol, participants were able to use the BrainPort device to complete the two tasks with moderate success. CONCLUSION. Without training, participants were not able to perform above chance level using the BrainPort device. As artificial vision technologies become available, occupational therapy practitioners can play a key role in clients’ success or failure in using these devices. PMID:25553750

  12. Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis.

    PubMed

    Hernandez, Manuel E; Holtzer, Roee; Chaparro, Gioella; Jean, Kharine; Balto, Julia M; Sandroff, Brian M; Izzetoglu, Meltem; Motl, Robert W

    2016-11-15

    Mobility and cognitive impairments are common in persons with multiple sclerosis (MS), and are expected to worsen with increasing age. However, no studies, to date, in part due to limitations of conventional neuroimaging methods, have examined changes in brain activation patterns during active locomotion in older patients with MS. This study used functional Near Infrared Spectroscopy (fNIRS) to evaluate real-time neural activation differences in the pre-frontal cortex (PFC) between middle-aged to older adults with MS and healthy controls during single (Normal Walk; NW) and dual-task (Walking While Talking; WWT) locomotion tasks. Eight middle-aged to older adults with MS and eight healthy controls underwent fNIRS recording while performing the NW and WWT tasks with an fNIRS cap consisting of 16 optodes positioned over the forehead. The MS group had greater elevations in PFC oxygenation levels during WWT compared to NW than healthy controls. There was no walking performance difference between groups during locomotion. These findings suggest that middle-aged to older individuals with MS might be able to achieve similar levels of performance through the use of increased brain activation. This study is the first to investigate brain activation changes during the performance of simple and divided-attention locomotion tasks in MS using fNIRS.

  13. The association of brain structure with gait velocity in older adults: a quantitative volumetric analysis of brain MRI

    PubMed Central

    Katz, Mindy J.; Lipton, Michael L.; Lipton, Richard B.; Verghese, Joe

    2015-01-01

    Introduction While cortical processes play an important role in controlling locomotion, the underlying structural brain changes associated with slowing of gait in aging are not yet fully established. Our study aimed to examine the relationship between cortical gray matter volume (GM), white matter volume (WM), ventricular volume (VV), hippocampal and hippocampal subfield volumes, and gait velocity in older adults free of dementia. Methods Gait and cognitive performance was tested in 112 community-residing adults, age 70 years and over, participating in the Einstein Aging Study. Gait velocity (cm/s) was obtained using an instrumented walkway. Volumetric MRI measures were estimated using a FreeSurfer software. We examined the cross-sectional relationship of GM, WM, VV, and hippocampal total and subfield volumes and gait velocity using linear regression models. In complementary models, the effect of memory performance on the relationship between gait velocity and regional volumes was evaluated. Results Slower gait velocity was associated with smaller cortical GM and total hippocampal volumes. There was no association between gait velocity and WM or VV. Among hippocampal subfields, only smaller presubiculum volume was significantly associated with decrease in gait velocity. Addition of the memory performance to the models attenuated the association between gait velocity and all volumetric measures. Conclusions Our findings indicate that total GM and hippocampal volumes as well as specific hippocampal subfield volumes are inversely associated with locomotor function. These associations are probably affected by cognitive status of study population. PMID:25921321

  14. Organization of the histaminergic system in adult zebrafish (Danio rerio) brain: neuron number, location, and cotransmitters.

    PubMed

    Sundvik, Maria; Panula, Pertti

    2012-12-01

    Histamine is an essential factor in the ascending arousal system (AAS) during motivated behaviors. Histamine and hypocretin/orexin (hcrt) are proposed to be responsible for different aspects of arousal and wakefulness, histamine mainly for cognitive and motivated behaviors. In this study we visualized the entire histaminergic neuron population in adult male and female zebrafish brain and quantified the histaminergic neuron numbers. There were 40-45 histaminergic neurons in both male and female zebrafish brain. Further, we identified cotransmitters of histaminergic neurons in the ventrocaudal hypothalamus, i.e., around the posterior recess (PR) in adult zebrafish. Galanin, γ-aminobutyric acid (GABA), and thyrotropin-releasing hormone (TRH) were colocalized with histamine in some but not all neurons, a result that was verified by intracerebroventricular injections of colchicine into adult zebrafish. Fibers immunoreactive (ir) for galanin, GABA, TRH, or methionine-enkephalin (mENK) were dense in the ventrocaudal hypothalamus around the histaminergic neurons. In histamine-ir fibers TRH and galanin immunoreactivities were also detected in the ventral telencephalon. All these neurotransmitters are involved in maintaining the equilibrium of the sleep-wake state. Our results are in accordance with results from rats, further supporting the use of zebrafish as a tool to study molecular mechanisms underlying complex behaviors.

  15. Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine.

    PubMed

    Jedynak, Paulina; Kos, Tomasz; Sandi, Carmen; Kaczmarek, Leszek; Filipkowski, Robert K

    2014-09-01

    The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression.

  16. Traumatic Brain Injury among Older Adults at Level I and II Trauma Centers

    PubMed Central

    Cuthbert, Jeffrey P.; Whyte, John; Corrigan, John D.; Faul, Mark; Harrison-Felix, Cynthia

    2013-01-01

    Abstract Individuals 65 years of age and over have the highest rates of traumatic brain injury (TBI)-related hospitalizations and deaths, and older adults (defined variably across studies) have particularly poor outcomes after TBI. The factors predicting these outcomes remain poorly understood, and age-specific care guidelines for TBI do not exist. This study provides an overview of TBI in older adults using data from the National Trauma Data Bank (NTDB) gathered between 2007 and 2010, evaluates age group-specific trends in rates of TBI over time using U.S. Census data, and examines whether routinely collected information is able to predict hospital discharge status among older adults with TBI in the NTDB. Results showed a 20–25% increase in trauma center admissions for TBI among the oldest age groups (those >=75 years), relative to the general population, between 2007 and 2010. Older adults (>=65 years) with TBI tended to be white females who have incurred an injury from a fall resulting in a “severe” Abbreviated Injury Scale (AIS) score of the head. Older adults had more in-hospital procedures, such as neuroimaging and neurosurgery, tended to experience longer hospital stays, and were more likely to require continued medical care than younger adults. Older age, injury severity, and hypotension increased the odds of in-hospital death. The public health burden of TBI among older adults will likely increase as the Baby Boom generation ages. Improved primary and secondary prevention of TBI in this cohort is needed. PMID:23962046

  17. Experience with adults shapes multisensory representation of social familiarity in the brain of a songbird.

    PubMed

    George, Isabelle; Cousillas, Hugo; Richard, Jean-Pierre; Hausberger, Martine

    2012-01-01

    Social animals learn to perceive their social environment, and their social skills and preferences are thought to emerge from greater exposure to and hence familiarity with some social signals rather than others. Familiarity appears to be tightly linked to multisensory integration. The ability to differentiate and categorize familiar and unfamiliar individuals and to build a multisensory representation of known individuals emerges from successive social interactions, in particular with adult, experienced models. In different species, adults have been shown to shape the social behavior of young by promoting selective attention to multisensory cues. The question of what representation of known conspecifics adult-deprived animals may build therefore arises. Here we show that starlings raised with no experience with adults fail to develop a multisensory representation of familiar and unfamiliar starlings. Electrophysiological recordings of neuronal activity throughout the primary auditory area of these birds, while they were exposed to audio-only or audiovisual familiar and unfamiliar cues, showed that visual stimuli did, as in wild-caught starlings, modulate auditory responses but that, unlike what was observed in wild-caught birds, this modulation was not influenced by familiarity. Thus, adult-deprived starlings seem to fail to discriminate between familiar and unfamiliar individuals. This suggests that adults may shape multisensory representation of known individuals in the brain, possibly by focusing the young's attention on relevant, multisensory cues. Multisensory stimulation by experienced, adult models may thus be ubiquitously important for the development of social skills (and of the neural properties underlying such skills) in a variety of species.

  18. The adverse effects of reduced cerebral perfusion on cognition and brain structure in older adults with cardiovascular disease

    PubMed Central

    Alosco, Michael L; Gunstad, John; Jerskey, Beth A; Xu, Xiaomeng; Clark, Uraina S; Hassenstab, Jason; Cote, Denise M; Walsh, Edward G; Labbe, Donald R; Hoge, Richard; Cohen, Ronald A; Sweet, Lawrence H

    2013-01-01

    Background It is well established that aging and vascular processes interact to disrupt cerebral hemodynamics in older adults. However, the independent effects of cerebral perfusion on neurocognitive function among older adults remain poorly understood. We examined the associations among cerebral perfusion, cognitive function, and brain structure in older adults with varying degrees of vascular disease using perfusion magnetic resonance imaging (MRI) arterial spin labeling (ASL). Materials and methods 52 older adults underwent neuroimaging and were administered the Mini Mental State Examination (MMSE), the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and measures of attention/executive function. ASL and T1-weighted MRI were used to quantify total brain perfusion, total brain volume (TBV), and cortical thickness. Results Regression analyses showed reduced total brain perfusion was associated with poorer performance on the MMSE, RBANS total index, immediate and delayed memory composites, and Trail Making Test B. Reduced frontal lobe perfusion was associated with worse executive and memory function. A similar pattern emerged between temporal lobe perfusion and immediate memory. Regression analyses revealed that decreased total brain perfusion was associated with smaller TBV and mean cortical thickness. Regional effects of reduced total cerebral perfusion were found on temporal and parietal lobe volumes and frontal and temporal cortical thickness. Discussion Reduced cerebral perfusion is independently associated with poorer cognition, smaller TBV, and reduced cortical thickness in older adults. Conclusion Prospective studies are needed to clarify patterns of cognitive decline and brain atrophy associated with cerebral hypoperfusion. PMID:24363966

  19. Regional Brain Responses Are Biased Toward Infant Facial Expressions Compared to Adult Facial Expressions in Nulliparous Women

    PubMed Central

    Zhang, Dajun; Wei, Dongtao; Qiao, Lei; Wang, Xiangpeng; Che, Xianwei

    2016-01-01

    Recent neuroimaging studies suggest that neutral infant faces compared to neutral adult faces elicit greater activity in brain areas associated with face processing, attention, empathic response, reward, and movement. However, whether infant facial expressions evoke larger brain responses than adult facial expressions remains unclear. Here, we performed event-related functional magnetic resonance imaging in nulliparous women while they were presented with images of matched unfamiliar infant and adult facial expressions (happy, neutral, and uncomfortable/sad) in a pseudo-randomized order. We found that the bilateral fusiform and right lingual gyrus were overall more activated during the presentation of infant facial expressions compared to adult facial expressions. Uncomfortable infant faces compared to sad adult faces evoked greater activation in the bilateral fusiform gyrus, precentral gyrus, postcentral gyrus, posterior cingulate cortex-thalamus, and precuneus. Neutral infant faces activated larger brain responses in the left fusiform gyrus compared to neutral adult faces. Happy infant faces compared to happy adult faces elicited larger responses in areas of the brain associated with emotion and reward processing using a more liberal threshold of p < 0.005 uncorrected. Furthermore, the level of the test subjects’ Interest-In-Infants was positively associated with the intensity of right fusiform gyrus response to infant faces and uncomfortable infant faces compared to sad adult faces. In addition, the Perspective Taking subscale score on the Interpersonal Reactivity Index-Chinese was significantly correlated with precuneus activity during uncomfortable infant faces compared to sad adult faces. Our findings suggest that regional brain areas may bias cognitive and emotional responses to infant facial expressions compared to adult facial expressions among nulliparous women, and this bias may be modulated by individual differences in Interest-In-Infants and

  20. Restricted access to the environment and quality of life in adult survivors of childhood brain tumors.

    PubMed

    Brinkman, Tara M; Li, Zhenghong; Neglia, Joseph P; Gajjar, Amar; Klosky, James L; Allgood, Rachel; Stovall, Marilyn; Krull, Kevin R; Armstrong, Gregory T; Ness, Kirsten K

    2013-01-01

    Survivors of pediatric brain tumors (BTs) are at-risk for late effects which may affect mobility within and access to the physical environment. This study examined the prevalence of and risk factors for restricted environmental access in survivors of childhood BTs and investigated the associations between reduced environmental access, health-related quality of life (HRQOL), and survivors' social functioning. In-home evaluations were completed for 78 BT survivors and 78 population-based controls matched on age, sex, and zip-code. Chi-square tests and multivariable logistic regression models were used to calculate odds ratios (ORs) and 95 % confidence intervals (CIs) for poor environmental access and reduced HRQOL. The median age of survivors was 22 years at the time of study. Compared to controls, survivors were more likely to report avoiding most dimensions of their physical environment, including a single flight of stairs (p < 0.001), uneven surfaces (p < 0.001), traveling alone (p = 0.01), and traveling to unfamiliar places (p = 0.001). Overall, survivors were 4.8 times more likely to report poor environmental access (95 % CI 2.0-11.5, p < 0.001). In survivors, poor environmental access was associated with reduced physical function (OR = 3.6, 95 % CI 1.0-12.8, p = 0.04), general health (OR = 6.0, 95 % CI 1.8-20.6, p = 0.002), and social functioning (OR = 4.3, 95 % CI 1.1-17.3, p = 0.03). Adult survivors of pediatric BTs were more likely to avoid their physical environment than matched controls. Restricted environmental access was associated with reduced HRQOL and diminished social functioning. Interventions directed at improving physical mobility may have significant impact on survivor quality of life.

  1. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    PubMed

    Zhang, Kuan; Zhou, Yanzhao; Zhao, Tong; Wu, Liying; Huang, Xin; Wu, Kuiwu; Xu, Lun; Li, Dahu; Liu, Shuhong; Zhao, Yongqi; Fan, Ming; Zhu, Lingling

    2015-01-01

    Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCs)in vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr) and DG (approximately 10 Torr) were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr). Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  2. Methylmercury Induced Neurotoxicity and the Influence of Selenium in the Brains of Adult Zebrafish (Danio rerio).

    PubMed

    Rasinger, Josef Daniel; Lundebye, Anne-Katrine; Penglase, Samuel James; Ellingsen, Ståle; Amlund, Heidi

    2017-03-29

    The neurotoxicity of methylmercury (MeHg) is well characterised, and the ameliorating effects of selenium have been described. However, little is known about the molecular mechanisms behind this contaminant-nutrient interaction. We investigated the influence of selenium (as selenomethionine, SeMet) and MeHg on mercury accumulation and protein expression in the brain of adult zebrafish (Danio rerio). Fish were fed diets containing elevated levels of MeHg and/or SeMet in a 2 × 2 full factorial design for eight weeks. Mercury concentrations were highest in the brain tissue of MeHg-exposed fish compared to the controls, whereas lower levels of mercury were found in the brain of zebrafish fed both MeHg and SeMet compared with the fish fed MeHg alone. The expression levels of proteins associated with gap junction signalling, oxidative phosphorylation, and mitochondrial dysfunction were significantly (p < 0.05) altered in the brain of zebrafish after exposure to MeHg and SeMet alone or in combination. Analysis of upstream regulators indicated that these changes were linked to the mammalian target of rapamycin (mTOR) pathways, which were activated by MeHg and inhibited by SeMet, possibly through a reactive oxygen species mediated differential activation of RICTOR, the rapamycin-insensitive binding partner of mTOR.

  3. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides.

    PubMed

    Kizil, Caghan; Iltzsche, Anne; Thomas, Alvin Kuriakose; Bhattarai, Prabesh; Zhang, Yixin; Brand, Michael

    2015-01-01

    Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs) that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI), RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs) and identified two- polyR and Trans - that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael's addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.

  4. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides

    PubMed Central

    Thomas, Alvin Kuriakose; Bhattarai, Prabesh; Zhang, Yixin; Brand, Michael

    2015-01-01

    Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs) that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI), RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs) and identified two– polyR and Trans – that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael’s addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues. PMID:25894337

  5. Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration.

    PubMed

    Reimer, Michell M; Norris, Anneliese; Ohnmacht, Jochen; Patani, Rickie; Zhong, Zhen; Dias, Tatyana B; Kuscha, Veronika; Scott, Angela L; Chen, Yu-Chia; Rozov, Stanislav; Frazer, Sarah L; Wyatt, Cameron; Higashijima, Shin-ichi; Patton, E Elizabeth; Panula, Pertti; Chandran, Siddharthan; Becker, Thomas; Becker, Catherina G

    2013-06-10

    Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal.

  6. Expression of cyclin E in postmitotic neurons during development and in the adult mouse brain.

    PubMed

    Ikeda, Yayoi; Matsunaga, Yuko; Takiguchi, Masahito; Ikeda, Masa-Aki

    2011-01-01

    Cyclin E, a member of the G1 cyclins, is essential for the G1/S transition of the cell cycle in cultured cells, but its roles in vivo are not fully defined. The present study characterized the spatiotemporal expression profile of cyclin E in two representative brain regions in the mouse, the cerebral and cerebellar cortices. Western blotting showed that the levels of cyclin E increased towards adulthood. In situ hybridization and immunohistochemistry showed the distributions of cyclin E mRNA and protein were comparable in the cerebral cortex and the cerebellum. Immunohistochemistry for the proliferating cell marker, proliferating cell nuclear antigen (PCNA) revealed that cyclin E was expressed by both proliferating and non-proliferating cells in the cerebral cortex at embryonic day 12.5 (E12.5) and in the cerebellum at postnatal day 1 (P1). Subcellular localization in neurons was examined using immunofluorescence and western blotting. Cyclin E expression was nuclear in proliferating neuronal precursor cells but cytoplasmic in postmitotic neurons during embryonic development. Nuclear cyclin E expression in neurons remained faint in newborns, increased during postnatal development and was markedly decreased in adults. In various adult brain regions, cyclin E staining was more intense in the cytoplasm than in the nucleus in most neurons. These data suggest a role for cyclin E in the development and function of the mammalian central nervous system and that its subcellular localization in neurons is important. Our report presents the first detailed analysis of cyclin E expression in postmitotic neurons during development and in the adult mouse brain.

  7. Netrin-5 is highly expressed in neurogenic regions of the adult brain

    PubMed Central

    Yamagishi, Satoru; Yamada, Kohei; Sawada, Masato; Nakano, Suguru; Mori, Norio; Sawamoto, Kazunobu; Sato, Kohji

    2015-01-01

    Mammalian netrin family proteins are involved in targeting of axons, neuronal migration, and angiogenesis and act as repulsive and attractive guidance molecules. Netrin-5 is a new member of the netrin family with homology to the C345C domain of netrin-1. Unlike other netrin proteins, murine netrin-5 consists of two EGF motifs of the laminin V domain (LE) and the C345C domain, but lacks the N-terminal laminin VI domain and one of the three LE motifs. We generated a specific antibody against netrin-5 to investigate its expression pattern in the rodent adult brain. Strong netrin-5 expression was observed in the olfactory bulb (OB), rostral migrate stream (RMS), the subventricular zone (SVZ), and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus, where neurogenesis occurs in the adult brain. In the SVZ and RMS, netrin-5 expression was observed in Mash1-positive transit-amplifying cells and in Doublecortin (DCX)-positive neuroblasts, but not in GFAP-positive astrocytes. In the OB, netrin-5 expression was maintained in neuroblasts, but its level was decreased in NeuN-positive mature neurons. In the hippocampal SGZ, netrin-5 was observed in Mash1-positive cells and in DCX-positive neuroblasts, but not in GFAP-positive astrocytes, suggesting that netrin-5 expression occurs from type 2a to type 3 cells. These data suggest that netrin-5 is produced by both transit-amplifying cells and neuroblasts to control neurogenesis in the adult brain. PMID:25941474

  8. Distinct expression of Cbln family mRNAs in developing and adult mouse brains.

    PubMed

    Miura, Eriko; Iijima, Takatoshi; Yuzaki, Michisuke; Watanabe, Masahiko

    2006-08-01

    Cbln1 belongs to the C1q and tumour necrosis factor superfamily, and plays crucial roles as a cerebellar granule cell-derived transneuronal regulator for synapse integrity and plasticity in Purkinje cells. Although Cbln2-Cbln4 are also expressed in the brain and could form heteromeric complexes with Cbln1, their precise expressions remain unclear. Here, we investigated gene expression of the Cbln family in developing and adult C57BL mouse brains by reverse transcriptase-polymerase chain reaction (RT-PCR), Northern blot, and high-resolution in situ hybridization (ISH) analyses. In the adult brain, spatial patterns of mRNA expression were highly differential depending on Cbln subtypes. Notably, particularly high levels of Cbln mRNAs were expressed in some nuclei and neurons, whereas their postsynaptic targets often lacked or were low for any Cbln mRNAs, as seen for cerebellar granule cells/Purkinje cells, entorhinal cortex/hippocampus, intralaminar group of thalamic nuclei/caudate-putamen, and dorsal nucleus of the lateral lemniscus/central nucleus of the inferior colliculus. In the developing brain, Cbln1, 2, and 4 mRNAs appeared as early as embryonic day 10-13, and exhibited transient up-regulation during the late embryonic and neonatal periods. For example, Cbln2 mRNA was expressed in the cortical plate of the developing neocortex, displaying a high rostromedial to low caudolateral gradient. In contrast, Cbln3 mRNA was selective to cerebellar granule cells throughout development, and its onset was as late as postnatal day 7-10. These results will provide a molecular-anatomical basis for future studies that characterize roles played by the Cbln family.

  9. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains

    PubMed Central

    Weimann, James M.; Charlton, Carol A.; Brazelton, Timothy R.; Hackman, Robert C.; Blau, Helen M.

    2003-01-01

    We show here that cells within human adult bone marrow can contribute to cells in the adult human brain. Cerebellar tissues from female patients with hematologic malignancies, who had received chemotherapy, radiation, and a bone marrow transplant, were analyzed. Brain samples were obtained at autopsy from female patients who received male (sex-mismatched) or female (sex-matched, control) bone marrow transplants. Cerebella were evaluated in 10-μm-thick, formaldehyde-fixed, paraffin-embedded sections that encompassed up to ≈50% of a human Purkinje nucleus. A total of 5,860 Purkinje cells from sex-mismatched females and 3,202 Purkinje cells from sex-matched females were screened for Y chromosomes by epifluorescence. Confocal laser scanning microscopy allowed definitive identification of the sex chromosomes within the morphologically distinct Purkinje cells. In the brains of females who received male bone marrow, four Purkinje neurons were found that contained an X and a Y chromosome and two other Purkinje neurons contained more than a diploid number of sex chromosomes. No Y chromosomes were detected in the brains of sex-matched controls. The total frequency of male bone marrow contribution to female Purkinje cells approximated 0.1%. This study demonstrates that although during human development Purkinje neurons are no longer generated after birth, cells within the bone marrow can contribute to these CNS neurons even in adulthood. The underlying mechanism may be caused either by generation de novo of Purkinje neurons from bone marrow-derived cells or by fusion of marrow-derived cells with existing recipient Purkinje neurons. PMID:12576546

  10. Hippocampal Astrocyte Cultures from Adult and Aged Rats Reproduce Changes in Glial Functionality Observed in the Aging Brain.

    PubMed

    Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André

    2016-03-30

    Astrocytes are dynamic cells that maintain brain homeostasis, regulate neurotransmitter systems, and process synaptic information, energy metabolism, antioxidant defenses, and inflammatory response. Aging is a biological process that is closely associated with hippocampal astrocyte dysfunction. In this sense, we demonstrated that hippocampal astrocytes from adult and aged Wistar rats reproduce the glial functionality alterations observed in aging by evaluating several senescence, glutamatergic, oxidative and inflammatory parameters commonly associated with the aging process. Here, we show that the p21 senescence-associated gene and classical astrocyte markers, such as glial fibrillary acidic protein (GFAP), vimentin, and actin, changed their expressions in adult and aged astrocytes. Age-dependent changes were also observed in glutamate transporters (glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) and glutamine synthetase immunolabeling and activity. Additionally, according to in vivo aging, astrocytes from adult and aged rats showed an increase in oxidative/nitrosative stress with mitochondrial dysfunction, an increase in RNA oxidation, NADPH oxidase (NOX) activity, superoxide levels, and inducible nitric oxide synthase (iNOS) expression levels. Changes in antioxidant defenses were also observed. Hippocampal astrocytes also displayed age-dependent inflammatory response with augmentation of proinflammatory cytokine levels, such as TNF-α, IL-1β, IL-6, IL-18, and messenger RNA (mRNA) levels of cyclo-oxygenase 2 (COX-2). Furthermore, these cells secrete neurotrophic factors, including glia-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), S100 calcium-binding protein B (S100B) protein, and transforming growth factor-β (TGF-β), which changed in an age-dependent manner. Classical signaling pathways associated with aging, such as nuclear factor erythroid-derived 2-like 2 (Nrf2), nuclear factor kappa B (NFκ

  11. Differentiation in boron distribution in adult male and female rats' normal brain: a BNCT approach.

    PubMed

    Goodarzi, Samereh; Pazirandeh, Ali; Jameie, Seyed Behnamedin; Khojasteh, Nasrin Baghban

    2012-06-01

    Boron distribution in adult male and female rats' normal brain after boron carrier injection (0.005 g Boric Acid+0.005 g Borax+10 ml distilled water, pH: 7.4) was studied in this research. Coronal sections of control and trial animal tissue samples were irradiated with thermal neutrons. Using alpha autoradiography, significant differences in boron concentration were seen in forebrain, midbrain and hindbrain sections of male and female animal groups with the highest value, four hours after boron compound injection.

  12. Abstracting meaning from complex information (gist reasoning) in adult traumatic brain injury.

    PubMed

    Vas, Asha Kuppachi; Spence, Jeffrey; Chapman, Sandra Bond

    2015-01-01

    Gist reasoning (abstracting meaning from complex information) was compared between adults with moderate-to-severe traumatic brain injury (TBI, n = 30) at least one year post injury and healthy adults (n = 40). The study also examined the contribution of executive functions (working memory, inhibition, and switching) and memory (immediate recall and memory for facts) to gist reasoning. The correspondence between gist reasoning and daily function was also examined in the TBI group. Results indicated that the TBI group performed significantly lower than the control group on gist reasoning, even after adjusting for executive functions and memory. Executive function composite was positively associated with gist reasoning (p < .001). Additionally, performance on gist reasoning significantly predicted daily function in the TBI group beyond the predictive ability of executive function alone (p = .011). Synthesizing and abstracting meaning(s) from information (i.e., gist reasoning) could provide an informative index into higher order cognition and daily functionality.

  13. Age-related decreased inhibitory vs. excitatory gene expression in the adult autistic brain.

    PubMed

    van de Lagemaat, Louie N; Nijhof, Bonnie; Bosch, Daniëlle G M; Kohansal-Nodehi, Mahdokht; Keerthikumar, Shivakumar; Heimel, J Alexander

    2014-01-01

    Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction and communication, and restricted behavior and interests. A disruption in the balance of excitatory and inhibitory neurotransmission has been hypothesized to underlie these disorders. Here we demonstrate that genes of both pathways are affected by ASD, and that gene expression of inhibitory and excitatory genes is altered in the cerebral cortex of adult but not younger autistic individuals. We have developed a measure for the difference in the level of excitation and inhibition based on gene expression and observe that in this measure inhibition is decreased relative to excitation in adult ASD compared to control. This difference was undetectable in young autistic brains. Given that many psychiatric features of autism are already present at an early age, this suggests that the observed imbalance in gene expression is an aging phenomenon in ASD rather than its underlying cause.

  14. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    SciTech Connect

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  15. The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain

    PubMed Central

    2012-01-01

    Background Unlike mammals, zebrafish exhibits extensive neural regeneration after injury in adult stages of its lifetime due to the neurogenic activity of the radial glial cells. However, the genes involved in the regenerative neurogenesis response of the zebrafish brain are largely unknown. Thus, understanding the underlying principles of this regeneration capacity of the zebrafish brain is an interesting research realm that may offer vast clinical ramifications. Results In this paper, we characterized the expression pattern of cxcr5 and analyzed the function of this gene during adult neurogenesis and regeneration of the zebrafish telencephalon. We found that cxcr5 was upregulated transiently in the RGCs and neurons, and the expression in the immune cells such as leukocytes was negligible during both adult neurogenesis and regeneration. We observed that the transgenic misexpression of cxcr5 in the ventricular cells using dominant negative and full-length variants of the gene resulted in altered proliferation and neurogenesis response of the RGCs. When we knocked down cxcr5 using antisense morpholinos and cerebroventricular microinjection, we observed outcomes similar to the overexpression of the dominant negative cxcr5 variant. Conclusions Thus, based on our results, we propose that cxcr5 imposes a proliferative permissiveness to the radial glial cells and is required for differentiation of the RGCs to neurons, highlighting novel roles of cxcr5 in the nervous system of vertebrates. We therefore suggest that cxcr5 is an important cue for ventricular cell proliferation and regenerative neurogenesis in the adult zebrafish telencephalon. Further studies on the role of cxcr5 in mediating neuronal replenishment have the potential to produce clinical ramifications in efforts for regenerative therapeutic applications for human neurological disorders or acute injuries. PMID:22824261

  16. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain.

    PubMed

    Nokia, Miriam S; Anderson, Megan L; Shors, Tracey J

    2012-12-01

    Chemotherapy, especially if prolonged, disrupts attention, working memory and speed of processing in humans. Most cancer drugs that cross the blood-brain barrier also decrease adult neurogenesis. Because new neurons are generated in the hippocampus, this decrease may contribute to the deficits in working memory and related thought processes. The neurophysiological mechanisms that underlie these deficits are generally unknown. A possible mediator is hippocampal oscillatory activity within the theta range (3-12 Hz). Theta activity predicts and promotes efficient learning in healthy animals and humans. Here, we hypothesised that chemotherapy disrupts learning via decreases in hippocampal adult neurogenesis and theta activity. Temozolomide was administered to adult male Sprague-Dawley rats in a cyclic manner for several weeks. Treatment was followed by training with different types of eyeblink classical conditioning, a form of associative learning. Chemotherapy reduced both neurogenesis and endogenous theta activity, as well as disrupted learning and related theta-band responses to the conditioned stimulus. The detrimental effects of temozolomide only occurred after several weeks of treatment, and only on a task that requires the association of events across a temporal gap and not during training with temporally overlapping stimuli. Chemotherapy did not disrupt the memory for previously learned associations, a memory independent of (new neurons in) the hippocampus. In conclusion, prolonged systemic chemotherapy is associated with a decrease in hippocampal adult neurogenesis and theta activity that may explain the selective deficits in processes of learning that describe the 'chemobrain'.

  17. Population based MRI and DTI templates of the adult ferret brain and tools for voxelwise analysis.

    PubMed

    Hutchinson, E B; Schwerin, S C; Radomski, K L; Sadeghi, N; Jenkins, J; Komlosh, M E; Irfanoglu, M O; Juliano, S L; Pierpaoli, C

    2017-03-16

    Non-invasive imaging has the potential to play a crucial role in the characterization and translation of experimental animal models to investigate human brain development and disorders, especially when employed to study animal models that more accurately represent features of human neuroanatomy. The purpose of this study was to build and make available MRI and DTI templates and analysis tools for the ferret brain as the ferret is a well-suited species for pre-clinical MRI studies with folded cortical surface, relatively high white matter volume and body dimensions that allow imaging with pre-clinical MRI scanners. Four ferret brain templates were built in this study - in-vivo MRI and DTI and ex-vivo MRI and DTI - using brain images across many ferrets and region of interest (ROI) masks corresponding to established ferret neuroanatomy were generated by semi-automatic and manual segmentation. The templates and ROI masks were used to create a web-based ferret brain viewing software for browsing the MRI and DTI volumes with annotations based on the ROI masks. A second objective of this study was to provide a careful description of the imaging methods used for acquisition, processing, registration and template building and to demonstrate several voxelwise analysis methods including Jacobian analysis of morphometry differences between the female and male brain and bias-free identification of DTI abnormalities in an injured ferret brain. The templates, tools and methodological optimization presented in this study are intended to advance non-invasive imaging approaches for human-similar animal species that will enable the use of pre-clinical MRI studies for understanding and treating brain disorders.

  18. Spred-2 expression is associated with neural repair of injured adult zebrafish brain.

    PubMed

    Lim, Fei Tieng; Ogawa, Satoshi; Parhar, Ishwar S

    2016-11-01

    Sprouty-related protein-2 (Spred-2) is a negative regulator of extracellular signal-regulated kinases (ERK) pathway, which is important for cell proliferation, neuronal differentiation, plasticity and survival. Nevertheless, its general molecular characteristics such as gene expression patterns and potential role in neural repair in the brain remain unknown. Thus, this study aimed to characterise the expression of spred-2 in the zebrafish brain. Digoxigenin-in situ hybridization showed spred-2 mRNA-expressing cells were mainly seen in the proliferative zones such as the olfactory bulb, telencephalon, optic tectum, cerebellum, and the dorsal and ventral hypothalamus, and most of which were neuronal cells. To evaluate the potential role of spred-2 in neuro-regeneration, spred-2 gene expression was examined in the dorsal telencephalon followed by mechanical-lesion. Real-time PCR showed a significant reduction of spred-2 mRNA levels in the telencephalon on 1-day till 2-days post-lesion and gradually increased to normal levels as compared with intact. Furthermore, to confirm involvement of Spred-2 signalling in the cell proliferation after brain injury, double-labelling of spred-2 in-situ hybridization with immunofluorescence of BrdU and phosphorylated-ERK1/2 (p-ERK1/2), a downstream of Spred-2 was performed. Increase of BrdU and p-ERK1/2 immunoreactive cells suggest that a decrease in spred-2 after injury might associated with activation of the ERK pathway to stimulate cell proliferation in the adult zebrafish brain. The present study demonstrates the possible role of Spred-2 signalling in cell proliferative phase during the neural repair in the injured zebrafish brain.

  19. Exergame and Balance Training Modulate Prefrontal Brain Activity during Walking and Enhance Executive Function in Older Adults

    PubMed Central

    Eggenberger, Patrick; Wolf, Martin; Schumann, Martina; de Bruin, Eling D.

    2016-01-01

    Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE) or balance and stretching training (BALANCE). The 8-week intervention included three sessions of 30 min per week and was completed by 33 participants (mean age 74.9 ± 6.9 years). Prefrontal cortex (PFC) activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < 0.05 or trend, r = 0.25–0.36), while DANCE showed a larger reduction at the end of the 30-s walking task compared to BALANCE in the left PFC [F(1, 31) = 3.54, p = 0.035, r = 0.32]. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < 0.05 or trend, r = 0.31–0.50). The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults. PMID:27148041

  20. Exergame and Balance Training Modulate Prefrontal Brain Activity during Walking and Enhance Executive Function in Older Adults.

    PubMed

    Eggenberger, Patrick; Wolf, Martin; Schumann, Martina; de Bruin, Eling D

    2016-01-01

    Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE) or balance and stretching training (BALANCE). The 8-week intervention included three sessions of 30 min per week and was completed by 33 participants (mean age 74.9 ± 6.9 years). Prefrontal cortex (PFC) activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < 0.05 or trend, r = 0.25-0.36), while DANCE showed a larger reduction at the end of the 30-s walking task compared to BALANCE in the left PFC [F (1, 31) = 3.54, p = 0.035, r = 0.32]. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < 0.05 or trend, r = 0.31-0.50). The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults.

  1. Microarray expression profiling identifies genes, including cytokines, and biofunctions, as diapedesis, associated with a brain metastasis from a papillary thyroid carcinoma.

    PubMed

    Schulten, Hans-Juergen; Hussein, Deema; Al-Adwani, Fatima; Karim, Sajjad; Al-Maghrabi, Jaudah; Al-Sharif, Mona; Jamal, Awatif; Bakhashab, Sherin; Weaver, Jolanta; Al-Ghamdi, Fahad; Baeesa, Saleh S; Bangash, Mohammed; Chaudhary, Adeel; Al-Qahtani, Mohammed

    2016-01-01

    Brain metastatic papillary thyroid carcinomas (PTCs) are afflicted with unfavorable prognosis; however, the underlying molecular genetics of these rare metastases are virtually unknown. In this study, we compared whole transcript microarray expression profiles of a BRAF mutant, brain metastasis from a PTC, including its technical replicate (TR), with eight non-brain metastatic PTCs and eight primary brain tumors. The top 95 probe sets (false discovery rate (FDR) p-value < 0.05 and fold change (FC) > 2) that were differentially expressed between the brain metastatic PTC, including the TR, and both, non-brain metastatic PTCs and primary brain tumors were in the vast majority upregulated and comprise, e.g. ROS1, MYBPH, SLC18A3, HP, SAA2-SAA4, CP, CCL20, GFAP, RNU1-120P, DMBT1, XDH, CXCL1, PI3, and NAPSA. Cytokines were represented by 10 members in the top 95 probe sets. Pathway and network analysis (p-value < 0.05 and FC > 2) identified granulocytes adhesion and diapedesis as top canonical pathway. Most significant upstream regulators were lipopolysaccharide, TNF, NKkB (complex), IL1A, and CSF2. Top networks categorized under diseases & functions were entitled migration of cells, cell movement, cell survival, apoptosis, and proliferation of cells. Probe sets that were significantly shared between the brain metastatic PTC, the TR, and primary brain tumors include CASP1, CASP4, C1R, CC2D2B, RNY1P16, WDR72, LRRC2, ZHX2, CITED1, and the noncoding transcript AK128523. Taken together, this study identified a set of candidate genes and biofunctions implicated in, so far nearly uncharacterized, molecular processes of a brain metastasis from a PTC.

  2. Microarray expression profiling identifies genes, including cytokines, and biofunctions, as diapedesis, associated with a brain metastasis from a papillary thyroid carcinoma

    PubMed Central

    Schulten, Hans-Juergen; Hussein, Deema; Al-Adwani, Fatima; Karim, Sajjad; Al-Maghrabi, Jaudah; Al-Sharif, Mona; Jamal, Awatif; Bakhashab, Sherin; Weaver, Jolanta; Al-Ghamdi, Fahad; Baeesa, Saleh S; Bangash, Mohammed; Chaudhary, Adeel; Al-Qahtani, Mohammed

    2016-01-01

    Brain metastatic papillary thyroid carcinomas (PTCs) are afflicted with unfavorable prognosis; however, the underlying molecular genetics of these rare metastases are virtually unknown. In this study, we compared whole transcript microarray expression profiles of a BRAF mutant, brain metastasis from a PTC, including its technical replicate (TR), with eight non-brain metastatic PTCs and eight primary brain tumors. The top 95 probe sets (false discovery rate (FDR) p-value < 0.05 and fold change (FC) > 2) that were differentially expressed between the brain metastatic PTC, including the TR, and both, non-brain metastatic PTCs and primary brain tumors were in the vast majority upregulated and comprise, e.g. ROS1, MYBPH, SLC18A3, HP, SAA2-SAA4, CP, CCL20, GFAP, RNU1-120P, DMBT1, XDH, CXCL1, PI3, and NAPSA. Cytokines were represented by 10 members in the top 95 probe sets. Pathway and network analysis (p-value < 0.05 and FC > 2) identified granulocytes adhesion and diapedesis as top canonical pathway. Most significant upstream regulators were lipopolysaccharide, TNF, NKkB (complex), IL1A, and CSF2. Top networks categorized under diseases & functions were entitled migration of cells, cell movement, cell survival, apoptosis, and proliferation of cells. Probe sets that were significantly shared between the brain metastatic PTC, the TR, and primary brain tumors include CASP1, CASP4, C1R, CC2D2B, RNY1P16, WDR72, LRRC2, ZHX2, CITED1, and the noncoding transcript AK128523. Taken together, this study identified a set of candidate genes and biofunctions implicated in, so far nearly uncharacterized, molecular processes of a brain metastasis from a PTC. PMID:27822408

  3. Introduction of the Uppsala Traumatic Brain Injury register for regular surveillance of patient characteristics and neurointensive care management including secondary insult quantification and clinical outcome

    PubMed Central

    Nyholm, Lena; Howells, Tim; Enblad, Per

    2013-01-01

    Background To improve neurointensive care (NIC) and outcome for traumatic brain injury (TBI) patients it is crucial to define and monitor indexes of the quality of patient care. With this purpose we established the web-based Uppsala TBI register in 2008. In this study we will describe and analyze the data collected during the first three years of this project. Methods Data from the medical charts were organized in three columns containing: 1) Admission data; 2) Data from the NIC period including neurosurgery, type of monitoring, treatment, complications, neurological condition at discharge, and the amount of secondary insults; 3) Outcome six months after injury. Indexes of the quality of care implemented include: 1) Index of improvement; 2) Index of change; 3) The percentages of ‘Talk and die' and ‘Talk and deteriorate' patients. Results Altogether 314 patients were included 2008–2010: 66 women and 248 men aged 0–86 years. Automatic reports showed that the proportion of patients improving during NIC varied between 80% and 60%. The percentage of deteriorated patients was less than 10%. The percentage of Talk and die/Talk and deteriorate cases was <1%. The mean Glasgow Coma Score (Motor) improved from 5.04 to 5.68 during the NIC unit stay. The occurrences of secondary insults were less than 5% of good monitoring time for intracranial pressure (ICP) >25 mmHg, cerebral perfusion pressure (CPP) <50 mmHg, and systolic blood pressure <100 mmHg. Favorable outcome was achieved by 64% of adults. Conclusion The Uppsala TBI register enables the routine monitoring of NIC quality indexes. PMID:23837596

  4. Influence of the side of brain damage on postural upper-limb control including the scapula in stroke patients.

    PubMed

    Robertson, Johanna V G; Roche, Nicolas; Roby-Brami, Agnès

    2012-04-01

    Following stroke, control of both the contralesional (paretic) and ipsilesional (less affected) arms is altered. The purpose of this study was to analyse the consequences of stroke on joint rotations of both shoulder girdles, that is, glenohumeral (GH) and scapula motion. Because of hemispheric specialization, we hypothesized that changes would relate to the side of hemisphere damage. Nine stroke patients with left, and 9 with right hemisphere damage (LHD and RHD) and 9 healthy subjects were included. Reaching movements to targets positioned close, far and high in three directions were recorded using an electromagnetic system. Initial and final postures of the scapula, GH and elbow joint were evaluated. Inter-joint rotations throughout the movements were analysed using principal component analysis (PCA). The main finding was that initial and final postures of the contralesional and ipsilesional shoulders differed depending on the side of brain lesion. On the contralesional side, there was less scapula protraction and GH lateral rotation for both groups. Scapula tilt was less anterior in LHD patients, and GH elevation was greater in RHD patients. On the ipsilesional side, GH lateral rotation was reduced in both groups, and scapula protraction was reduced only for LHD patients. PCA confirmed that postures of both shoulders of the LHD group were substantially different to the healthy subjects, while only the contralesional arm of the RHD subjects differed. These results add to existing knowledge of hemispheric specialization, suggesting that the left hemisphere plays a greater role in bilateral joint postures than the right hemisphere.

  5. Modulating Astrocyte Transition after Stroke to Promote Brain Rescue and Functional Recovery: Emerging Targets Include Rho Kinase.

    PubMed

    Abeysinghe, Hima Charika S; Phillips, Ellie L; Chin-Cheng, Heung; Beart, Philip M; Roulston, Carli L

    2016-02-26

    Stroke is a common and serious condition, with few therapies. Whilst previous focus has been directed towards biochemical events within neurons, none have successfully prevented the progression of injury that occurs in the acute phase. New targeted treatments that promote recovery after stroke might be a better strategy and are desperately needed for the majority of stroke survivors. Cells comprising the neurovascular unit, including blood vessels and astrocytes, present an alternative target for supporting brain rescue and recovery in the late phase of stroke, since alteration in the unit also occurs in regions outside of the lesion. One of the major changes in the unit involves extensive morphological transition of astrocytes resulting in altered energy metabolism, decreased glutamate reuptake and recycling, and retraction of astrocyte end feed from both blood vessels and neurons. Whilst globally inhibiting transitional change in astrocytes after stroke is reported to result in further damage and functional loss, we discuss the available evidence to suggest that the transitional activation of astrocytes after stroke can be modulated for improved outcomes. In particular, we review the role of Rho-kinase (ROCK) in reactive gliosis and show that inhibiting ROCK after stroke results in reduced scar formation and improved functional recovery.

  6. Reading in the brain of children and adults: A meta‐analysis of 40 functional magnetic resonance imaging studies

    PubMed Central

    Martin, Anna; Schurz, Matthias; Kronbichler, Martin

    2015-01-01

    Abstract We used quantitative, coordinate‐based meta‐analysis to objectively synthesize age‐related commonalities and differences in brain activation patterns reported in 40 functional magnetic resonance imaging (fMRI) studies of reading in children and adults. Twenty fMRI studies with adults (age means: 23–34 years) were matched to 20 studies with children (age means: 7–12 years). The separate meta‐analyses of these two sets showed a pattern of reading‐related brain activation common to children and adults in left ventral occipito‐temporal (OT), inferior frontal, and posterior parietal regions. The direct statistical comparison between the two meta‐analytic maps of children and adults revealed higher convergence in studies with children in left superior temporal and bilateral supplementary motor regions. In contrast, higher convergence in studies with adults was identified in bilateral posterior OT/cerebellar and left dorsal precentral regions. The results are discussed in relation to current neuroanatomical models of reading and tentative functional interpretations of reading‐related activation clusters in children and adults are provided. Hum Brain Mapp 36:1963–1981, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:25628041

  7. Ribosomal protein L11 is related to brain maturation during the adult phase in Apis cerana cerana (Hymenoptera, Apidae).

    PubMed

    Meng, Fei; Lu, Wenjing; Yu, Feifei; Kang, Mingjiang; Guo, Xingqi; Xu, Baohua

    2012-05-01

    Ribosomal proteins (RPs) play pivotal roles in developmental regulation. The loss or mutation of ribosomal protein L11 (RPL11) induces various developmental defects. However, few RPs have been functionally characterized in Apis cerana cerana. In this study, we isolated a single copy gene, AccRPL11, and characterized its connection to brain maturation. AccRPL11 expression was highly concentrated in the adult brain and was significantly induced by abiotic stresses such as pesticides and heavy metals. Immunofluorescence assays demonstrated that AccRPL11 was localized to the medulla, lobula and surrounding tissues of esophagus in the brain. The post-transcriptional knockdown of AccRPL11 gene expression resulted in a severe decrease in adult brain than in other tissues. The expression levels of other brain development-related genes, p38, ERK2, CacyBP and CREB, were also reduced. Immunofluorescence signal attenuation was also observed in AccRPL11-rich regions of the brain in dsAccRPL11-injected honeybees. Taken together, these results suggest that AccRPL11 may be functional in brain maturation in honeybee adults.

  8. Ribosomal protein L11 is related to brain maturation during the adult phase in Apis cerana cerana (Hymenoptera, Apidae)

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Lu, Wenjing; Yu, Feifei; Kang, Mingjiang; Guo, Xingqi; Xu, Baohua

    2012-05-01

    Ribosomal proteins (RPs) play pivotal roles in developmental regulation. The loss or mutation of ribosomal protein L11 ( RPL11) induces various developmental defects. However, few RPs have been functionally characterized in Apis cerana cerana. In this study, we isolated a single copy gene, AccRPL11, and characterized its connection to brain maturation. AccRPL11 expression was highly concentrated in the adult brain and was significantly induced by abiotic stresses such as pesticides and heavy metals. Immunofluorescence assays demonstrated that AccRPL11 was localized to the medulla, lobula and surrounding tissues of esophagus in the brain. The post-transcriptional knockdown of AccRPL11 gene expression resulted in a severe decrease in adult brain than in other tissues. The expression levels of other brain development-related genes, p38, ERK2, CacyBP and CREB, were also reduced. Immunofluorescence signal attenuation was also observed in AccRPL11-rich regions of the brain in ds AccRPL11-injected honeybees. Taken together, these results suggest that AccRPL11 may be functional in brain maturation in honeybee adults.

  9. Effective factors on linguistic disorder during acute phase following traumatic brain injury in adults.

    PubMed

    Chabok, Shahrokh Yousefzadeh; Kapourchali, Sara Ramezani; Leili, Ehsan Kazemnezhad; Saberi, Alia; Mohtasham-Amiri, Zahra

    2012-06-01

    Traumatic brain injury (TBI) has been known to be the leading cause of breakdown and long-term disability in people under 45 years of age. This study highlights the effective factors on post-traumatic (PT) linguistic disorder and relations between linguistic and cognitive function after trauma in adults with acute TBI. A cross-sectional design was employed to study 60 post-TBI hospitalized adults aged 18-65 years. Post-traumatic (PT) linguistic disorder and cognitive deficit after TBI were respectively diagnosed using the Persian Aphasia Test (PAT) and Persian version of Mini-Mental State Examination (MMSE) at discharge. Primary post-resuscitation consciousness level was determined using the Glasgow Coma Scale (GCS). Paracilinical data was obtained by CT scan technique. Multiple logistic regression analysis illustrated that brain injury severity was the first powerful significant predictor of PT linguistic disorder after TBI and frontotemporal lesion was the second. It was also revealed that cognitive function score was significantly correlated with score of each language skill except repetition. Subsequences of TBI are more commonly language dysfunctions that demand cognitive flexibility. Moderate, severe and fronto-temporal lesion can increase the risk of processing deficit in linguistic macrostructure production and comprehension. The dissociation risk of cortical and subcortical pathways related to cognitive-linguistic processing due to intracranial lesions can augment possibility of lexical-semantic processing deficit in acute phase which probably contributes to later cognitive-communication disorder.

  10. Cortical neurogenesis in adult rats after ischemic brain injury: most new neurons fail to mature.

    PubMed

    Li, Qing-Quan; Qiao, Guan-Qun; Ma, Jun; Fan, Hong-Wei; Li, Ying-Bin

    2015-02-01

    The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial fibrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identified using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromodeoxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial fibrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our findings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  11. Cacna1c: Protecting young hippocampal neurons in the adult brain.

    PubMed

    De Jesús-Cortés, Héctor; Rajadhyaksha, Anjali M; Pieper, Andrew A

    2016-01-01

    Neuropsychiatric disease is the leading cause of disability in the United States, and fourth worldwide.(1,2) Not surprisingly, human genetic studies have revealed a common genetic predisposition for many forms of neuropsychiatric disease, potentially explaining why overlapping symptoms are commonly observed across multiple diagnostic categories. For example, the CACNA1C gene was recently identified in the largest human genome-wide association study to date as a risk loci held in common across 5 major forms of neuropsychiatric disease: bipolar disorder, schizophrenia, major depressive disorder (MDD), autism spectrum disorder and attention deficit-hyperactivity disorder.(3) This gene encodes for the Cav1.2 subunit of the L-type voltage-gated calcium channel (LTCC), accounting for 85% of LTCCs in the brain, while the Cav1.3 subunit comprises the remainder.(4) In neurons, LTCCs mediate calcium influx in response to membrane depolarization,(5) thereby regulating neurotransmission and gene expression. Here, we describe our recent finding that Cav1.2 also controls survival of young hippocampal neurons in the adult brain, which has been linked to the etiology and treatment of neuropsychiatric disease. We also describe the effective restoration of young hippocampal neuron survival in adult Cav1.2 forebrain-specific conditional knockout mice using the neuroprotective compound P7C3-A20.

  12. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain

    PubMed Central

    Currie, Ko W; Molinaro, Alyssa M; Pearson, Bret J

    2016-01-01

    The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx, which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand (Smed-hh), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS. DOI: http://dx.doi.org/10.7554/eLife.19735.001 PMID:27864883

  13. Nerve growth factor in the adult brain of a teleostean model for aging research: Nothobranchius furzeri.

    PubMed

    D'Angelo, L; Castaldo, L; Cellerino, A; de Girolamo, P; Lucini, C

    2014-07-01

    Nerve growth factor (NGF) acts on central nervous system neurons, regulating naturally occurring cell death, synaptic connectivity, fiber guidance and dendritic morphology. The dynamically regulated production of NGF beginning in development, extends throughout adult life and aging, exerting numerous roles through a surprising variety of neurons and glial cells. This study analyzes the localization of NGF in the brain of the teleost fish Nothobranchius furzeri, an emerging model for aging research due to its short lifespan. Immunochemical and immunohistochemical experiments were performed by employing an antibody mapping at the N-terminus of the mature chain human origin NGF. Western blot analysis revealed an intense and well defined band of 20 kDa, which corresponds to proNGF of N. furzeri. Immunohistochemistry revealed NGF immunoreactivity (IR) diffused throughout all regions of telencephalon, diencephalon, mesencephalon and rhomboencephalon. It was detected in neurons and in glial cells, the latter mostly lining the mesencephalic and rhomboencephalic ventricles. Particularly in neurons, NGF IR was localized in perikarya and, to a less extent, in fibers. The widespread distribution of proNGF suggests that it might modulate numerous physiological functions in the adult brain of N. furzeri. The present survey constitutes a baseline study to enhance the understanding of the mechanisms underlying the role of NGF during aging processes.

  14. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods

    PubMed Central

    Barth, Claudia; Villringer, Arno; Sacher, Julia

    2015-01-01

    Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo. PMID:25750611

  15. Physical Activity and Brain Function in Older Adults at Increased Risk for Alzheimer’s Disease

    PubMed Central

    Smith, J. Carson; Nielson, Kristy A.; Woodard, John L.; Seidenberg, Michael; Rao, Stephen M.

    2013-01-01

    Leisure-time physical activity (PA) and exercise training are known to help maintain cognitive function in healthy older adults. However, relatively little is known about the effects of PA on cognitive function or brain function in those at increased risk for Alzheimer’s disease through the presence of the apolipoproteinE epsilon4 (APOE-ε4) allele, diagnosis of mild cognitive impairment (MCI), or the presence of metabolic disease. Here, we examine the question of whether PA and exercise interventions may differentially impact cognitive trajectory, clinical outcomes, and brain structure and function among individuals at the greatest risk for AD. The literature suggests that the protective effects of PA on risk for future dementia appear to be larger in those at increased genetic risk for AD. Exercise training is also effective at helping to promote stable cognitive function in MCI patients, and greater cardiorespiratory fitness is associated with greater brain volume in early-stage AD patients. In APOE-ε4 allele carriers compared to non-carriers, greater levels of PA may be more effective in reducing amyloid burden and are associated with greater activation of semantic memory-related neural circuits. A greater research emphasis should be placed on randomized clinical trials for exercise, with clinical, behavioral, and neuroimaging outcomes in people at increased risk for AD. PMID:24961307

  16. Self-reported electrical appliance use and risk of adult brain tumors.

    PubMed

    Kleinerman, Ruth A; Linet, Martha S; Hatch, Elizabeth E; Tarone, Robert E; Black, Peter M; Selker, Robert G; Shapiro, William R; Fine, Howard A; Inskip, Peter D

    2005-01-15

    Electrical appliances produce the highest intensity exposures to residential extremely low frequency electromagnetic fields. The authors investigated whether appliances may be associated with adult brain tumors in a hospital-based case-control study at three centers in the United States from 1994 to 1998. A total of 410 glioma, 178 meningioma, and 90 acoustic neuroma cases and 686 controls responded to a self-administered questionnaire about 14 electrical appliances. There was little evidence of association between brain tumors and curling iron, heating pad, vibrating massager, electric blanket, heated water bed, sound system, computer, television, humidifier, microwave oven, and electric stove. Ever use of hair dryers was associated with glioma (odds ratio = 1.7, 95% confidence interval: 1.1, 2.5), but there was no evidence of increasing risk with increasing amount of use. In men, meningioma was associated with electric shaver use (odds ratio = 10.9, 95% confidence interval: 2.3, 50), and odds ratios increased with cumulative minutes of use, although they were based on only two nonexposed cases. Recall bias for appliances used regularly near the head or chance may provide an alternative explanation for the observed associations. Overall, results indicate that extremely low frequency electromagnetic fields from commonly used household appliances are unlikely to increase the risk of brain tumors.

  17. Expression of FoxP2 during zebrafish development and in the adult brain.

    PubMed

    Shah, Rina; Medina-Martinez, Olga; Chu, Li-Fang; Samaco, Rodney C; Jamrich, Milan

    2006-01-01

    Fox (forkhead) genes encode transcription factors that play important roles in the regulation of embryonic patterning as well as in tissue specific gene expression. Mutations in the human FOXP2 gene cause abnormal speech development. Here we report the structure and expression pattern of zebrafish FoxP2. In zebrafish, this gene is first expressed at the 20-somite stage in the presumptive telencephalon. At this stage there is a significant overlap of FoxP2 expression with the expression of the emx homeobox genes. However, in contrast to emx1, FoxP2 is not expressed in the pineal gland or in the pronephric duct. After 72 hours of development, the expression of zebrafish FoxP2 becomes more complex in the brain. The developing optic tectum becomes the major area of FoxP2 expression. In the adult brain, the highest concentrations of the FoxP2 transcript can be observed in the optic tectum. In the cerebellum, only the caudal lobes show high levels of Foxp2 expression. These regions correspond to the vestibulocerebellum of mammals. Several other regions of the brain also show high levels of Foxp2 expression.

  18. Long-chain omega-3 fatty acids improve brain function and structure in older adults.

    PubMed

    Witte, A Veronica; Kerti, Lucia; Hermannstädter, Henrike M; Fiebach, Jochen B; Schreiber, Stephan J; Schuchardt, Jan Philipp; Hahn, Andreas; Flöel, Agnes

    2014-11-01

    Higher intake of seafish or oil rich in long-chain omega-3 polyunsaturated fatty acids (LC-n3-FA) may be beneficial for the aging brain. We tested in a prospective interventional design whether high levels of supplementary LC-n3-FA would improve cognition, and addressed potential mechanisms underlying the effects. Sixty-five healthy subjects (50-75 years, 30 females) successfully completed 26 weeks of either fish oil (2.2 g/day LC-n3-FA) or placebo intake. Before and after the intervention period, cognitive performance, structural neuroimaging, vascular markers, and blood parameters were assayed. We found a significant increase in executive functions after LC-n3-FA compared with placebo (P = 0.023). In parallel, LC-n3-FA exerted beneficial effects on white matter microstructural integrity and gray matter volume in frontal, temporal, parietal, and limbic areas primarily of the left hemisphere, and on carotid intima media thickness and diastolic blood pressure. Improvements in executive functions correlated positively with changes in omega-3-index and peripheral brain-derived neurotrophic factor, and negatively with changes in peripheral fasting insulin. This double-blind randomized interventional study provides first-time evidence that LC-n3-FA exert positive effects on brain functions in healthy older adults, and elucidates underlying mechanisms. Our findings suggest novel strategies to maintain cognitive functions into old age.

  19. Neurobiological markers of exercise-related brain plasticity in older adults.

    PubMed

    Voss, Michelle W; Erickson, Kirk I; Prakash, Ruchika Shaurya; Chaddock, Laura; Kim, Jennifer S; Alves, Heloisa; Szabo, Amanda; Phillips, Siobhan M; Wójcicki, Thomas R; Mailey, Emily L; Olson, Erin A; Gothe, Neha; Vieira-Potter, Victoria J; Martin, Stephen A; Pence, Brandt D; Cook, Marc D; Woods, Jeffrey A; McAuley, Edward; Kramer, Arthur F

    2013-02-01

    The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age=66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF.

  20. Transcription levels of sirtuin family in neural stem cells and brain tissues of adult mice.

    PubMed

    Wang, H F; Li, Q; Feng, R L; Wen, T Q

    2012-09-10

    Neural stem cells (NSCs) has been used as a well-known model to investigate apoptosis, differentiation, maintenance of stem cells status, and therapy of neurological disease. The C17.2 NSCs line was produced after v-myc transformation of neural progenitor from mouse cerebellar cortex. Sirtuin family plays important roles involved in neuronal differentiation, genomic stability, lifespan, cell survival. However, little is known about gene expression variation of sirtuin family in C17.2 NSCs, primary NSCs, and different brain tissues in adult mice. Here, we confirmed that the mRNA expression levels of sirt2, 3, 4, 5, and 7 in E14.5 NSCs were significantly higher than in C17.2 NSCs, whereas that sirt 6 displayed an opposing mode. Moreover, a higher mRNA level of sirtuin family was observed in the adult mouse brain compared to C17.2 NSCs. In addition, histone deacetylase (HDAC) inhibitors nicotinamide and Trichostatin A (TSA) were used to explore differential changes at the transcriptional level of sirtuins. Results indicated that the expression of sirt1, sirt5 and sirt6 was significant downregulated by nicotinamide treatment. Whereas, a significant downregulation in sirt1 and sirt3 and a significant upregulation in sirt2, sirt4, sirt6, and sirt7 were observed in the treatment of TSA. Thus our studies indicate different sirtuin mRNA expression profiles between C17.2 NSCs, E14.5 NSCs and brain tissues, suggesting the transcriptional regulation of sirtuin family could be mediated by different histone acetylation.

  1. Organization and cellular arrangement of two neurogenic regions in the adult ferret (Mustela putorius furo) brain.

    PubMed

    Takamori, Yasuharu; Wakabayashi, Taketoshi; Mori, Tetsuji; Kosaka, Jun; Yamada, Hisao

    2014-06-01

    In the adult mammalian brain, two neurogenic regions have been characterized, the subventricular zone (SVZ) of the lateral ventricle (LV) and the subgranular zone (SGZ) of the dentate gyrus (DG). Despite remarkable knowledge of rodents, the detailed arrangement of neurogenic regions in most mammals is poorly understood. In this study, we used immunohistochemistry and cell type-specific antibodies to investigate the organization of two germinal regions in the adult ferret, which belongs to the order Carnivora and is widely used as a model animal with a gyrencephalic brain. From the SVZ to the olfactory bulb, doublecortin-positive cells tended to organize in chain-like clusters, which are surrounded by a meshwork of astrocytes. This structure is homologous to the rostral migratory stream (RMS) described in other species. Different from rodents, the horizontal limb of the RMS emerges directly from the LV, and the anterior region of the LV extends rostrally and reached the olfactory bulb. In the DG, glial fibrillary acidic protein-positive cells with long radial processes as well as doublecortin-positive cells are oriented in the SGZ. In both regions, doublecortin-positive cells showed characteristic morphology and were positive for polysialylated-neural cell adhesion molecule, beta-III tubulin, and lamin B1 (intense staining). Proliferating cells were detected in both regions using antibodies against proliferating cell nuclear antigen and phospho-histone H3. These observations demonstrate that the two neurogenic regions in ferrets have a similar cellular composition as those of other mammalian species despite anatomical differences in the brain.

  2. Sensitivity to theta-burst timing permits LTP in dorsal striatal adult brain slice

    PubMed Central

    Hawes, Sarah L.; Gillani, Fawad; Evans, Rebekah C.; Benkert, Elizabeth A.

    2013-01-01

    Long-term potentiation (LTP) of excitatory afferents to the dorsal striatum likely occurs with learning to encode new skills and habits, yet corticostriatal LTP is challenging to evoke reliably in brain slice under physiological conditions. Here we test the hypothesis that stimulating striatal afferents with theta-burst timing, similar to recently reported in vivo temporal patterns corresponding to learning, evokes LTP. Recording from adult mouse brain slice extracellularly in 1 mM Mg2+, we find LTP in dorsomedial and dorsolateral striatum is preferentially evoked by certain theta-burst patterns. In particular, we demonstrate that greater LTP is produced using moderate intraburst and high theta-range frequencies, and that pauses separating bursts of stimuli are critical for LTP induction. By altering temporal pattern alone, we illustrate the importance of burst-patterning for LTP induction and demonstrate that corticostriatal long-term depression is evoked in the same preparation. In accord with prior studies, LTP is greatest in dorsomedial striatum and relies on N-methyl-d-aspartate receptors. We also demonstrate a requirement for both Gq- and Gs/olf-coupled pathways, as well as several kinases associated with memory storage: PKC, PKA, and ERK. Our data build on previous reports of activity-directed plasticity by identifying effective values for distinct temporal parameters in variants of theta-burst LTP induction paradigms. We conclude that those variants which best match reports of striatal activity during learning behavior are most successful in evoking dorsal striatal LTP in adult brain slice without altering artificial cerebrospinal fluid. Future application of this approach will enable diverse investigations of plasticity serving striatal-based learning. PMID:23926032

  3. Brain system size and adult-adult play in primates: a comparative analysis of the roles of the non-visual neocortex and the amygdala.

    PubMed

    Pellis, Sergio M; Iwaniuk, Andrew N

    2002-08-21

    Recent studies have shown that contrary to expectation, larger-brained species within mammalian orders are not more likely to engage in play. This is true for juvenile rodents, juvenile marsupials and adult primates. Neither does the relative size of the neocortex predict the prevalence of play in species of marsupials and primates. Two methodological limitations may account for the lack of such relationships. Firstly, play may only vary systematically with specific brain areas, not overall size increases in brain tissue. Secondly, the play indices used to measure the variation in play across species may be insufficiently sensitive to the effects of changes in brain size. In this study, we attempt to deal with the first methodological problem. The adult-adult play fighting among species of primates was correlated with the relative size of the non-visual cortex and the amygdala. The statistical analyses used took into account the problems of scaling and corrected for degree of phylogenetic relatedness among the species. The size of the non-visual cortex failed to predict the prevalence of play fighting occurring in either sexual or non-sexual contexts. In contrast, the size of the amygdala significantly predicted the prevalence of sexual play, but not non-sexual play. That is, species with larger sized amygdala are more likely to engage in sexual play. These findings provide new insights into the role of different brain systems in the regulation of play behavior.

  4. Cognitive function and brain structure after recurrent mild traumatic brain injuries in young-to-middle-aged adults

    PubMed Central

    List, Jonathan; Ott, Stefanie; Bukowski, Martin; Lindenberg, Robert; Flöel, Agnes

    2015-01-01

    Recurrent mild traumatic brain injuries (mTBIs) are regarded as an independent risk factor for developing dementia in later life. We here aimed to evaluate associations between recurrent mTBIs, cognition, and gray matter volume and microstructure as revealed by structural magnetic resonance imaging (MRI) in the chronic phase after mTBIs in young adulthood. We enrolled 20 young-to-middle-aged subjects, who reported two or more sports-related mTBIs, with the last mTBI > 6 months prior to study enrolment (mTBI group), and 21 age-, sex- and education matched controls with no history of mTBI (control group). All participants received comprehensive neuropsychological testing, and high resolution T1-weighted and diffusion tensor MRI in order to assess cortical thickness (CT) and microstructure, hippocampal volume, and ventricle size. Compared to the control group, subjects of the mTBI group presented with lower CT within the right temporal lobe and left insula using an a priori region of interest approach. Higher number of mTBIs was associated with lower CT in bilateral insula, right middle temporal gyrus and right entorhinal area. Our results suggest persistent detrimental effects of recurrent mTBIs on CT already in young-to-middle-aged adults. If additional structural deterioration occurs during aging, subtle neuropsychological decline may progress to clinically overt dementia earlier than in age-matched controls, a hypothesis to be assessed in future prospective trials. PMID:26052275

  5. Purines regulate adult brain subventricular zone cell functions: contribution of reactive astrocytes.

    PubMed

    Boccazzi, Marta; Rolando, Chiara; Abbracchio, Maria P; Buffo, Annalisa; Ceruti, Stefania

    2014-03-01

    Brain injuries modulate activation of neural stem cells (NSCs) in the adult brain. In pathological conditions, the concentrations of extracellular nucleotides (eNTs) raise several folds, contribute to reactive gliosis, and possibly directly affect subventricular zone (SVZ) cell functioning. Among eNTs and derived metabolites, the P2Y1 receptor agonist ADP strongly promotes astrogliosis and might also influence SVZ progenitor activity. Here, we tested the ability of the stable P2Y1 agonist adenosine 5'-O-(2-thiodiphosphate) (ADPβS) to control adult NSC functions both in vitro and in vivo, with a focus on the possible effects exerted by reactive astrocytes. In the absence of growth factors, ADPβS promoted proliferation and differentiation of SVZ progenitors. Moreover, ADPβS-activated astrocytes markedly changed the pattern of released cytokines and chemokines, and strongly modulated neurosphere-forming capacity of SVZ progenitors. Notably, a significant enhancement in proliferation was observed when SVZ cells, initially grown in the supernatant of astrocytes exposed to ADPβS, were shifted to normal medium. In vivo, ADPβS administration in the lateral ventricle of adult mice by osmotic minipumps caused diffused reactive astrogliosis, and a strong response of SVZ progenitors. Indeed, proliferation of glial fibrillary acidic protein-positive NSCs increased and led to a significant expansion of SVZ transit-amplifying progenitors and neuroblasts. Lineage tracing experiments performed in the GLAST::CreERT2;Rosa-YFP transgenic mice further demonstrated that ADPβS promoted proliferation of glutamate/aspartate transporter-positive progenitors and sustained their progression toward the generation of rapidly dividing progenitors. Altogether, our results show that the purinergic system crucially affects SVZ progenitor activities both directly and through the involvement of reactive astrocytes.

  6. Stereotaxic Surgery for Excitotoxic Lesion of Specific Brain Areas in the Adult Rat

    PubMed Central

    Kirby, Elizabeth D.; Jensen, Kelly; Goosens, Ki A.; Kaufer, Daniela

    2012-01-01

    Many behavioral functions in mammals, including rodents and humans, are mediated principally by discrete brain regions. A common method for discerning the function of various brain regions for behavior or other experimental outcomes is to implement a localized ablation of function. In humans, patient populations with localized brain lesions are often studied for deficits, in hopes of revealing the underlying function of the damaged area. In rodents, one can experimentally induce lesions of specific brain regions. Lesion can be accomplished in several ways. Electrolytic lesions can cause localized damage but will damage a variety of cell types as well as traversing fibers from other brain regions that happen to be near the lesion site. Inducible genetic techniques using cell-type specific promoters may also enable site-specific targeting. These techniques are complex and not always practical depending on the target brain area. Excitotoxic lesion using stereotaxic surgery, by contrast, is one of the most reliable and practical methods of lesioning excitatory neurons without damaging local glial cells or traversing fibers. Here, we present a protocol for stereotaxic infusion of the excitotoxin, N-methyl-D-aspartate (NMDA), into the basolateral amygdala complex. Using anatomical indications, we apply stereotaxic coordinates to determine the location of our target brain region and lower an injection needle in place just above the target. We then infuse our excitotoxin into the brain, resulting in excitotoxic death of nearby neurons. While our experimental subject of choice is a rat, the same methods can be applied to other mammals, with the appropriate adjustments in equipment and coordinates. This method can be used on a variety of brain regions, including the basolateral amygdala1-6, other amygdala nuclei6, 7, hippocampus8, entorhinal cortex9 and prefrontal cortex10. It can also be used to infuse biological compounds such as viral vectors1, 11. The basic stereotaxic

  7. Adult sports-related traumatic brain injury in United States trauma centers.

    PubMed

    Winkler, Ethan A; Yue, John K; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Sports-related traumatic brain injury (TBI) is an important public health concern estimated to affect 300,000 to 3.8 million people annually in the United States. Although injuries to professional athletes dominate the media, this group represents only a small proportion of the overall population. Here, the authors characterize the demographics of sports-related TBI in adults from a community-based trauma population and identify predictors of prolonged hospitalization and increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from adults (age ≥ 18 years) across 5 sporting categories-fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged hospital length of stay (LOS), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α < 0.05, and the Bonferroni correction for multiple comparisons was applied for each outcome analysis. RESULTS From 2003 to 2012, in total, 4788 adult sports-related TBIs were documented in the NTDB, which represented 18,310 incidents nationally. Equestrian sports were the greatest contributors to sports-related TBI (45.2%). Mild TBI represented nearly 86% of injuries overall. Mean (± SEM) LOSs in the hospital or intensive care unit (ICU) were 4.25 ± 0.09 days and 1.60 ± 0.06 days, respectively. The mortality rate was 3.0% across all patients, but was statistically higher in TBI from roller sports (4.1%) and aquatic sports (7.7%). Age, hypotension on admission to the emergency department (ED), and the severity of head and extracranial injuries were statistically significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Traumatic

  8. Measuring inhibitory control in children and adults: brain imaging and mental chronometry.

    PubMed

    Houdé, Olivier; Borst, Grégoire

    2014-01-01

    Jean Piaget underestimated the cognitive capabilities of infants, preschoolers, and elementary schoolchildren, and overestimated the capabilities of adolescents and even adults which are often biased by illogical intuitions and overlearned strategies (i.e., "fast thinking" in Daniel Kahneman's words). The crucial question is now to understand why, despite rich precocious knowledge about physical and mathematical principles observed over the last three decades in infants and young children, older children, adolescents and even adults are nevertheless so often bad reasoners. We propose that inhibition of less sophisticated solutions (or heuristics) by the prefrontal cortex is a domain-general executive ability that supports children's conceptual insights associated with more advanced Piagetian stages, such as number-conservation and class inclusion. Moreover, this executive ability remains critical throughout the whole life and even adults may sometimes need "prefrontal pedagogy" in order to learn inhibiting intuitive heuristics (or biases) in deductive reasoning tasks. Here we highlight some of the discoveries from our lab in the field of cognitive development relying on two methodologies used for measuring inhibitory control: brain imaging and mental chronometry (i.e., the negative priming paradigm). We also show that this new approach opens an avenue for re-examining persistent errors in standard classroom-learning tasks.

  9. Measuring inhibitory control in children and adults: brain imaging and mental chronometry

    PubMed Central

    Houdé, Olivier; Borst, Grégoire

    2014-01-01

    Jean Piaget underestimated the cognitive capabilities of infants, preschoolers, and elementary schoolchildren, and overestimated the capabilities of adolescents and even adults which are often biased by illogical intuitions and overlearned strategies (i.e., “fast thinking” in Daniel Kahneman’s words). The crucial question is now to understand why, despite rich precocious knowledge about physical and mathematical principles observed over the last three decades in infants and young children, older children, adolescents and even adults are nevertheless so often bad reasoners. We propose that inhibition of less sophisticated solutions (or heuristics) by the prefrontal cortex is a domain-general executive ability that supports children’s conceptual insights associated with more advanced Piagetian stages, such as number-conservation and class inclusion. Moreover, this executive ability remains critical throughout the whole life and even adults may sometimes need “prefrontal pedagogy” in order to learn inhibiting intuitive heuristics (or biases) in deductive reasoning tasks. Here we highlight some of the discoveries from our lab in the field of cognitive development relying on two methodologies used for measuring inhibitory control: brain imaging and mental chronometry (i.e., the negative priming paradigm). We also show that this new approach opens an avenue for re-examining persistent errors in standard classroom-learning tasks. PMID:24994993

  10. Functional Connectivity Abnormalities of Brain Regions with Structural Deficits in Young Adult Male Smokers

    PubMed Central

    Bu, Limei; Yu, Dahua; Su, Shaoping; Ma, Yao; von Deneen, Karen M.; Luo, Lin; Zhai, Jinquan; Liu, Bo; Cheng, Jiadong; Guan, Yanyan; Li, Yangding; Bi, Yanzhi; Xue, Ting; Lu, Xiaoqi; Yuan, Kai

    2016-01-01

    Smoking is one of the most prevalent dependence disorders. Previous studies have detected structural and functional deficits in smokers. However, few studies focused on the changes of resting state functional connectivity (RSFC) of the brain regions with structural deficits in young adult smokers. Twenty-six young adult smokers and 26 well-matched healthy non-smokers participated in our study. Voxel-based morphometry (VBM) and RSFC were employed to investigate the structural and functional changes in young adult smokers. Compared with healthy non-smokers, young smokers showed increased gray matter (GM) volume in the left putamen and decreased GM volume in the left anterior cingulate cortex (ACC). Moreover, GM volume in the left ACC has a negative correlation trend with pack-years and GM volume in the left putamen was positively correlated with pack-years. The left ACC and putamen with abnormal volumes were chosen as the regions of interest (ROIs) for the RSFC analysis. We found that smokers showed increased RSFC between the left ACC and right amygdala and between the left putamen and right anterior insula. We revealed structural and functional deficits within the frontostriatal circuits in young smokers, which may shed new insights into the neural mechanisms of smoking. PMID:27757078

  11. Mapping of brain lipid binding protein (Blbp) in the brain of adult zebrafish, co-expression with aromatase B and links with proliferation.

    PubMed

    Diotel, Nicolas; Vaillant, Colette; Kah, Olivier; Pellegrini, Elisabeth

    2016-01-01

    Adult fish exhibit a strong neurogenic capacity due to the persistence of radial glial cells. In zebrafish, radial glial cells display well-established markers such as the estrogen-synthesizing enzyme (AroB) and the brain lipid binding protein (Blbp), which is known to strongly bind omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). While Blpb is mainly described in the telencephalon of adult zebrafish, its expression in the remaining regions of the brain is poorly documented. The present study was designed to further investigate Blbp expression in the brain, its co-expression with AroB, and its link with radial glial cells proliferation in zebrafish. We generated a complete and detailed mapping of Blbp expression in the whole brain and show its complete co-expression with AroB, except in some tectal and hypothalamic regions. By performing PCNA and Blbp immunohistochemistry on cyp19a1b-GFP (AroB-GFP) fish, we also demonstrated preferential Blbp expression in proliferative radial glial cells in almost all regions studied. To our knowledge, this is the first complete and detailed mapping of Blbp-expressing cells showing strong association between Blbp and radial glial cell proliferation in the adult brain of fish. Given that zebrafish is now recognized models for studying neurogenesis and brain repair, our data provide detailed characterization of Blbp in the entire brain and open up a broad field of research investigating the role of omega-3 polyunsaturated fatty acids in neural stem cell activity in fish.

  12. Trajectories of brain aging in middle-aged and older adults: regional and individual differences.

    PubMed

    Raz, Naftali; Ghisletta, Paolo; Rodrigue, Karen M; Kennedy, Kristen M; Lindenberger, Ulman

    2010-06-01

    The human brain changes with age. However, the rate and the trajectories of change vary among the brain regions and among individuals, and the reasons for these differences are unclear. In a sample of healthy middle-aged and older adults, we examined mean volume change and individual differences in the rate of change in 12 regional brain volumes over approximately 30 months. In addition to the baseline assessment, there were two follow-ups, 15 months apart. We observed significant average shrinkage of the hippocampus, entorhinal cortex, orbital-frontal cortex, and cerebellum in each of the intervals. Shrinkage of the hippocampus accelerated with time, whereas shrinkage of the caudate nucleus, prefrontal subcortical white matter, and corpus callosum emerged only at the second follow-up. Throughout both assessment intervals, the mean volumes of the lateral prefrontal and primary visual cortices, putamen, and pons did not change. Significant individual differences in shrinkage rates were observed in the lateral prefrontal cortex, the cerebellum, and all the white matter regions throughout the study, whereas additional regions (medial-temporal structures, the insula, and the basal ganglia) showed significant individual variation in change during the second follow-up. No individual variability was noted in the change of orbital frontal and visual cortices. In two white matter regions, we were able to identify factors associated with individual differences in brain shrinkage. In corpus callosum, shrinkage rate was greater in persons with hypertension, and in the pons, women and carriers of the ApoEepsilon4 allele exhibited declines not noted in the whole sample.

  13. Trajectories of brain aging in middle-aged and older adults: Regional and individual differences

    PubMed Central

    Raz, Naftali; Ghisletta, Paolo; Rodrigue, Karen M.; Kennedy, Kristen M.; Lindenberger, Ulman

    2010-01-01

    The human brain changes with age. However, the rate and the trajectories of change vary among the brain regions and among individuals, and the reasons for these differences are unclear. In a sample of healthy middle-aged and older adults, we examined mean volume change and individual differences in the rate of change in 12 regional brain volumes over approximately 30 months. In addition to the baseline assessment, there were two follow-ups, 15 months apart. We observed significant average shrinkage of the hippocampus, entorhinal cortex, orbital–frontal cortex, and cerebellum in each of the intervals. Shrinkage of the hippocampus accelerated with time, whereas shrinkage of the caudate nucleus, prefrontal subcortical white matter, and corpus callosum emerged only at the second follow-up. Throughout both assessment intervals, the mean volumes of the lateral prefrontal and primary visual cortices, putamen, and pons did not change. Significant individual differences in shrinkage rates were observed in the lateral prefrontal cortex, the cerebellum, and all the white matter regions throughout the study, whereas additional regions (medial–temporal structures, the insula, and the basal ganglia) showed significant individual variation in change during the second follow-up. No individual variability was noted in the change of orbital frontal and visual cortices. In two white matter regions, we were able to identify factors associated with individual differences in brain shrinkage. In corpus callosum, shrinkage rate was greater in persons with hypertension, and in the pons, women and carriers of the ApoEε4 allele exhibited declines not noted in the whole sample. PMID:20298790

  14. Higher brain BDNF gene expression is associated with slower cognitive decline in older adults

    PubMed Central

    Yu, Lei; Boyle, Patricia A.; Schneider, Julie A.; De Jager, Philip L.; Bennett, David A.

    2016-01-01

    Objectives: We tested whether brain-derived neurotrophic factor (BDNF) gene expression levels are associated with cognitive decline in older adults. Methods: Five hundred thirty-five older participants underwent annual cognitive assessments and brain autopsy at death. BDNF gene expression was measured in the dorsolateral prefrontal cortex. Linear mixed models were used to examine whether BDNF expression was associated with cognitive decline adjusting for age, sex, and education. An interaction term was added to determine whether this association varied with clinical diagnosis proximate to death (no cognitive impairment, mild cognitive impairment, or dementia). Finally, we examined the extent to which the association of Alzheimer disease (AD) pathology with cognitive decline varied by BDNF expression. Results: Higher brain BDNF expression was associated with slower cognitive decline (p < 0.001); cognitive decline was about 50% slower with the 90th percentile BDNF expression vs 10th. This association was strongest in individuals with dementia. The level of BDNF expression was lower in individuals with pathologic AD (p = 0.006), but was not associated with macroscopic infarcts, Lewy body disease, or hippocampal sclerosis. BDNF expression remained associated with cognitive decline in a model adjusting for age, sex, education, and neuropathologies (p < 0.001). Furthermore, the effect of AD pathology on cognitive decline varied by BDNF expression such that the effect was strongest for high levels of AD pathology (p = 0.015); thus, in individuals with high AD pathology (90th percentile), cognitive decline was about 40% slower with the 90th percentile BDNF expression vs 10th. Conclusions: Higher brain BDNF expression is associated with slower cognitive decline and may also reduce the deleterious effects of AD pathology on cognitive decline. PMID:26819457

  15. Prolongation of Relaxation Time in Extraocular Muscles With Brain Derived Neurotrophic Factor in Adult Rabbit

    PubMed Central

    Nelson, Krysta R.; Stevens, Shanlee M.; McLoon, Linda K.

    2016-01-01

    Purpose We tested the hypothesis that short-term treatment with brain derived neurotrophic factor (BDNF) would alter the contractile characteristics of rabbit extraocular muscle (EOM). Methods One week after injections of BDNF in adult rabbit superior rectus muscles, twitch properties were determined in treated and control muscles in vitro. Muscles were also examined for changes in mean cross-sectional areas, neuromuscular junction size, and percent of myofibers expressing specific myosin heavy chain isoforms, and sarcoendoplasmic reticulum calcium ATPases (SERCA) 1 and 2. Results Brain derived neurotrophic factor–treated muscles had prolonged relaxation times compared with control muscles. Time to 50% relaxation, time to 100% relaxation, and maximum rate of relaxation were increased by 24%, 27%, and 25%, respectively. No significant differences were seen in time to peak force, twitch force, or maximum rate of contraction. Brain derived neurotrophic factor treatment significantly increased mean cross-sectional areas of slow twitch and tonic myofibers, with increased areas ranging from 54% to 146%. Brain derived neurotrophic factor also resulted in an increased percentage of slow twitch myofibers in the orbital layers, ranging from 54% to 77%, and slow-tonic myofibers, ranging from 44% to 62%. No significant changes were seen SERCA1 or 2 expression or in neuromuscular junction size. Conclusions Short-term treatment with BDNF significantly prolonged the duration and rate of relaxation time and increased expression of both slow-twitch and slow-tonic myosin-expressing myofibers without changes in neuromuscular junctions or SERCA expression. The changes induced by BDNF treatment might have potential therapeutic value in dampening/reducing uncontrolled eye oscillations in nystagmus. PMID:27802489

  16. Immunolocalization of androgen receptors and aromatase enzyme in the adult musk shrew brain.

    PubMed

    Veney, S L; Rissman, E F

    2000-07-01

    In the brain and other tissues, estrogens are produced by aromatization of androgens. Biochemical data suggest that aromatase enzyme is regulated by the androgen receptor (AR). Neurons that contain either AR or aromatase (AROM) enzyme reside in many of the same brain regions. In this report, we examined the codistribution of AR- and AROM-enzyme-immunoreactive (-ir) neurons in several regions of the adult male and female musk shrew brain. Data were collected from the intermediate nucleus of the lateral septum (LS), medial anterior (BNSTMA) and medial posterointerior (BNSTMP) divisions of the bed nucleus of the stria terminalis, medial preoptic area (mPOA), ventromedial nucleus of the hypothalamus (VMN), medial (MeA), cortical and central nuclei of the amygdala. Males had significantly more AR-ir neurons in the BNSTMP, mPOA, VMN and LS as compared to females. With the exception of the BNSTMA and LS, males had more AROM-ir neurons in each region than females. Furthermore, males had significantly more double-labeled neurons than females in the BNSTMP, mPOA, VMN, LS and MeA. The percentage of AROM-ir neurons that also contained AR immunoreactivity ranged from 13 to 82% depending on sex and region. The highest percentage of dual-labeled neurons (79% in females and 82% in males) was found in the VMN. Taken together, these data show that there is extensive cellular colocalization of AR and AROM enzyme in specific regions of the musk shrew brain. We propose that in both sexes, androgen receptors may act as transcription factors to regulate AROM enzyme.

  17. Endothelial β-Catenin Signaling Is Required for Maintaining Adult Blood-Brain Barrier Integrity and CNS Homeostasis

    PubMed Central

    Tran, Khiem A.; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F.; Göthert, Joachim R.; Malik, Asrar B.; Valyi-Nagy, Tibor; Zhao, You-Yang

    2015-01-01

    Background The blood-brain barrier (BBB) formed by brain endothelial cells (ECs) interconnected by tight junctions (TJs) is essential for the homeostasis of the central nervous system (CNS). Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Methods and Results Using a mouse model with tamoxifen-inducible EC-restricted disruption of ctnnb1 (iCKO), here we show that endothelial β-catenin signaling is essential for maintaining BBB integrity and CNS homeostasis in adult. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and CNS inflammation, and all died postictal. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of specific TJ proteins Claudin-1 and -3 in adult brain ECs. The clinical relevance of the data is indicated by the observation of decreased expression of Claudin-1 and nuclear β-catenin in brain ECs of hemorrhagic lesions of hemorrhagic stroke patients. Conclusion These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity and CNS inflammation. PMID:26538583

  18. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β

    PubMed Central

    Iliff, Jeffrey J.; Wang, Minghuan; Liao, Yonghong; Plogg, Benjamin A.; Peng, Weiguo; Gundersen, Georg A.; Benveniste, Helene; Vates, G. Edward; Deane, Rashid; Goldman, Steven A.; Nagelhus, Erlend A.; Nedergaard, Maiken

    2013-01-01

    Because it lacks a lymphatic circulation, the brain must clear extracellular proteins by an alternative mechanism. The cerebrospinal fluid (CSF) functions as a sink for brain extracellular solutes, but it is not clear how solutes from the brain interstitium move from the parenchyma to the CSF. We demonstrate that a substantial portion of subarachnoid CSF cycles through the brain interstitial space. On the basis of in vivo two-photon imaging of small fluorescent tracers, we showed that CSF enters the parenchyma along paravascular spaces that surround penetrating arteries and that brain interstitial fluid is cleared along paravenous drainage pathways. Animals lacking the water channel aquaporin-4 (AQP4) in astrocytes exhibit slowed CSF influx through this system and a ~70% reduction in interstitial solute clearance, suggesting that the bulk fluid flow between these anatomical influx and efflux routes is supported by astrocytic water transport. Fluorescent-tagged amyloid β, a peptide thought to be pathogenic in Alzheimer’s disease, was transported along this route, and deletion of the Aqp4 gene suppressed the clearance of soluble amyloid β, suggesting that this pathway may remove amyloid β from the central nervous system. Clearance through paravenous flow may also regulate extracellular levels of proteins involved with neurodegenerative conditions, its impairment perhaps contributing to the mis-accumulation of soluble proteins. PMID:22896675

  19. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  20. Cardiorespiratory fitness and brain diffusion tensor imaging in adults over 80 years of age.

    PubMed

    Tian, Qu; Simonsick, Eleanor M; Erickson, Kirk I; Aizenstein, Howard J; Glynn, Nancy W; Boudreau, Robert M; Newman, Anne B; Kritchevsky, Stephen B; Yaffe, Kristine; Harris, Tamara; Rosano, Caterina

    2014-11-07

    A positive association between cardiorespiratory fitness (CRF) and white matter integrity has been consistently reported in older adults. However, it is unknown whether this association exists in adults over 80 with a range of chronic disease conditions and low physical activity participation, which can influence both CRF and brain health. This study examined whether higher CRF was associated with greater microstructural integrity of gray and white matter in areas related to memory and information processing in adults over 80 and examined moderating effects of chronic diseases and physical activity. CRF was measured as time to walk 400 m as quickly as possible with concurrent 3T diffusion tensor imaging in 164 participants (57.1% female, 40.3% black). Fractional anisotropy (FA) was computed for cingulum, uncinate and superior longitudinal fasciculi. Mean diffusivity (MD) was computed for dorsolateral prefrontal cortex, hippocampus, parahippocampus, and entorhinal cortex. Moderating effects were tested using hierarchical regression models. Higher CRF was associated with higher FA in cingulum and lower MD in hippocampus and entorhinal cortex (β, sex-adjusted p: -0.182, 0.019; 0.165, 0.035; and 0.220, 0.006, respectively). Hypertension attenuated the association with MD in entorhinal cortex. Moderating effects of chronic diseases and physical activity in walking and climbing stairs on these associations were not significant. The association of higher CRF with greater microstructural integrity in selected subcortical areas appears robust, even among very old adults with a range of chronic diseases. Intervention studies should investigate whether increasing CRF can preserve memory and information processing by improving microstructure and potential effects of hypertension management.

  1. Adult brains don't fully overcome biases that lead to incorrect performance during cognitive development: an fMRI study in young adults completing a Piaget-like task.

    PubMed

    Leroux, Gaëlle; Spiess, Jeanne; Zago, Laure; Rossi, Sandrine; Lubin, Amélie; Turbelin, Marie-Renée; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie; Houdé, Olivier; Joliot, Marc

    2009-03-01

    A current issue in developmental science is that greater continuity in cognition between children and adults may exist than is usually appreciated in Piaget-like (stages or 'staircase') models. This phenomenon has been demonstrated at the behavioural level, but never at the brain level. Here we show with functional magnetic resonance imaging (fMRI), for the first time, that adult brains do not fully overcome the biases of childhood. More specifically, the aim of this fMRI study was to evaluate whether the perceptual bias that leads to incorrect performance during cognitive development in a Piaget-like task is still a bias in the adult brain and hence requires an executive network to overcome it. Here, we compared two numerical-judgment tasks, one being a Piaget-like task with number-length interference (called 'INT') and the other being a control task with number-length covariation ('COV'). We also used a colour-detection task to control for stimuli numerosity, spatial distribution, and frequency. Our behavioural results confirmed that INT remains a difficult task for young adults. Indeed, response times were significantly higher in INT than in COV. Moreover, we observed that only in INT did response times increase linearly as a function of the number of items. The fMRI results indicate that the brain network common to INT and COV shows a large rightward functional asymmetry, emphasizing the visuospatial nature of these two tasks. When INT was compared with COV, activations were found within a right frontal network, including the pre-supplementary motor area, the anterior cingulate cortex, and the middle frontal gyrus, which probably reflect detection of the number/length conflict and inhibition of the 'length-equals-number' response strategy. Finally, activations related to visuospatial and quantitative processing, enhanced or specifically recruited in the Piaget-like task, were found in bilateral posterior areas.

  2. Current Self-Reported Symptoms of Attention Deficit/Hyperactivity Disorder Are Associated with Total Brain Volume in Healthy Adults

    PubMed Central

    Hoogman, Martine; Rijpkema, Mark; Janss, Luc; Brunner, Han; Fernandez, Guillen; Buitelaar, Jan; Franke, Barbara; Arias-Vásquez, Alejandro

    2012-01-01

    Background Reduced total brain volume is a consistent finding in children with Attention Deficit/Hyperactivity Disorder (ADHD). In order to get a better understanding of the neurobiology of ADHD, we take the first step in studying the dimensionality of current self-reported adult ADHD symptoms, by looking at its relation with total brain volume. Methodology/Principal Findings In a sample of 652 highly educated adults, the association between total brain volume, assessed with magnetic resonance imaging, and current number of self-reported ADHD symptoms was studied. The results showed an association between these self-reported ADHD symptoms and total brain volume. Post-hoc analysis revealed that the symptom domain of inattention had the strongest association with total brain volume. In addition, the threshold for impairment coincides with the threshold for brain volume reduction. Conclusions/Significance This finding improves our understanding of the biological substrates of self-reported ADHD symptoms, and suggests total brain volume as a target intermediate phenotype for future gene-finding in ADHD. PMID:22348063

  3. Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010

    PubMed Central

    Rouse, Chaturia; Gittleman, Haley; Ostrom, Quinn T.; Kruchko, Carol; Barnholtz-Sloan, Jill S.

    2016-01-01

    Background Years of potential life lost (YPLL) complement incidence and survival rates by measuring how much a patient's life is likely to be shortened by his or her cancer. In this study, we examine the impact of death due to brain and other central nervous system (CNS) tumors compared to other common cancers in adults by investigating the YPLL of adults in the United States. Methods Mortality and life table data were obtained from the Centers for Disease Control and Prevention's National Center for Health Statistics Vital Statistics Data for 2010. The study population included individuals aged 20 years or older at death who died from one of the selected cancers. YPLL was calculated by taking an individual's age at death and finding the corresponding expected remaining years of life using life table data. Results The cancers with the greatest mean YPLL were other malignant CNS tumors (20.65), malignant brain tumors (19.93), and pancreatic cancer (15.13) for males and malignant brain tumors (20.31), breast cancer (18.78), and other malignant CNS tumors (18.36) for females. For both sexes, non-Hispanic whites had the lowest YPLL, followed by non-Hispanic blacks, and Hispanics. Conclusion Malignant brain and other CNS tumors have the greatest mean YPLL, thereby reflecting their short survival time post diagnosis. These findings will hopefully motivate more research into mitigating the impact of these debilitating tumors. PMID:26459813

  4. Physical Activity Is Linked to Greater Moment-To-Moment Variability in Spontaneous Brain Activity in Older Adults

    PubMed Central

    Burzynska, Agnieszka Z.; Wong, Chelsea N.; Voss, Michelle W.; Cooke, Gillian E.; Gothe, Neha P.; Fanning, Jason; McAuley, Edward; Kramer, Arthur F.

    2015-01-01

    Higher cardiorespiratory fitness (CRF) and physical activity (PA) in old age are associated with greater brain structural and functional integrity, and higher cognitive functioning. However, it is not known how different aspects of lifestyle such as sedentariness, light PA (LI-PA), or moderate-to-vigorous physical activity (MV-PA) relate to neural activity in aging. In addition, it is not known whether the effects of PA on brain function differ or overlap with those of CRF. Here, we objectively measured CRF as oxygen consumption during a maximal exercise test and measured PA with an accelerometer worn for 7 days in 100 healthy but low active older adults (aged 60–80 years). We modeled the relationships between CRF, PA, and brain functional integrity using multivariate partial least squares analysis. As an index of functional brain integrity we used spontaneous moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD), known to be associated with better cognitive functioning in aging. We found that older adults who engaged more in LI-PA and MV-PA had greater SDBOLD in brain regions that play a role in integrating segregated functional domains in the brain and benefit from greater CRF or PA, such as precuneus, hippocampus, medial and lateral prefrontal, and temporal cortices. Our results suggest that engaging in higher intensity PA may have protective effects on neural processing in aging. Finally, we demonstrated that older adults with greater overall WM microstructure were those showing more LI-PA and MV-PA and greater SDBOLD. We conclude that SDBOLD is a promising correlate of functional brain health in aging. Future analyses will evaluate whether SDBOLD is modifiable with interventions aimed to increase PA and CRF in older adults. PMID:26244873

  5. Perivascular instruction of cell genesis and fate in the adult brain.

    PubMed

    Goldman, Steven A; Chen, Zhuoxun

    2011-10-26

    The perivascular niche for neurogenesis was first reported as the co-association of newly generated neurons and their progenitors with both dividing and mitotically quiescent endothelial cells in restricted regions of the brain in adult birds and mammals alike. This review attempts to summarize our present understanding of the interaction of blood vessels with neural stem and progenitor cells, addressing both glial and neuronal progenitor cell interactions in the perivascular niche. We review the molecular interactions that are most critical to the endothelial control of stem and progenitor cell mobilization and differentiation. The focus throughout will be on defining those perivascular ligand-receptor interactions shared among these systems, as well as those that clearly differ as a function of cell type and setting, by which specificity may be achieved in the development of targeted therapeutics.

  6. Self-administered written prompts to teach home accident prevention skills to adults with brain injuries.

    PubMed Central

    O'Reilly, M F; Green, G; Braunling-McMorrow, D

    1990-01-01

    This study evaluated the use of written checklists and task analyses as self-administered prompts to teach home accident prevention skills to 4 adults with brain injuries. Subsequent to baseline, participants used written checklists that identified potential in-home hazards but did not prompt behaviors necessary for hazard remediation. Written individualized task analyses, incorporating specific behavioral steps for correcting hazards that participants had failed to remediate during the checklist phase, were used to prompt appropriate responding when necessary. These were subsequently faded to transfer stimulus control to the natural conditions. A multiple probe technique across participants and settings was used. Results indicated that the checklist alone was sufficient to increase appropriate responses to many of the potential hazards. Individualized task analyses, when needed, resulted in appropriate remediation of all potential hazards. Generalization to untrained potential hazards occurred to some degree for all participants. Follow-up results showed that most skills trained were maintained over a 1-month period. PMID:2074235

  7. Clinical utility of the Wechsler Adult Intelligence Scale-Fourth Edition after traumatic brain injury.

    PubMed

    Donders, Jacobus; Strong, Carrie-Ann H

    2015-02-01

    The performance of 100 patients with traumatic brain injury (TBI) on the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) was compared with that of 100 demographically matched neurologically healthy controls. Processing Speed was the only WAIS-IV factor index that was able to discriminate between persons with moderate-severe TBI on the one hand and persons with either less severe TBI or neurologically healthy controls on the other hand. The Processing Speed index also had acceptable sensitivity and specificity when differentiating between patients with TBI who either did or did not have scores in the clinically significant range on the Trail Making Test. It is concluded that WAIS-IV Processing Speed has acceptable clinical utility in the evaluation of patients with moderate-severe TBI but that it should be supplemented with other measures to assure sufficient accuracy in the diagnostic process.

  8. Atypical brain laterality in adults with ADHD during dichotic listening for emotional intonation and words.

    PubMed

    Hale, T Sigi; Zaidel, Eran; McGough, James J; Phillips, Joseph M; McCracken, James T

    2006-01-01

    Few studies directly examined the nature of hemispheric specialization and interaction in ADHD. The present experiment investigated left/right brain dynamics in unmedicated right handed adults with ADHD (n = 19) and in controls (n = 19), using a dichotic listening task to assess hemispheric differences in word and emotion recognition. We also assessed how focusing attention on a single ear modulated lateralized performance and affected cross-callosal interference effects. Analysis of variance indicated that ADHD subjects showed reduced left hemisphere specialization, were better at processing emotions, and worse at processing words compared to controls. These differences were eliminated during focused attention. Finally, during presumed right hemisphere processing of linguistic stimuli, subjects with ADHD showed reduced left hemisphere interference. We concluded that ADHD subjects demonstrated greater right hemisphere and reduced left hemisphere contribution during this task relative to controls. We posit that these hemispheric differences were due to management or use of available cognitive resources rather than inherent capacity.

  9. Functional optoacoustic neuro-tomography of calcium fluxes in adult zebrafish brain in vivo.

    PubMed

    Deán-Ben, X Luís; Gottschalk, Sven; Sela, Gali; Shoham, Shy; Razansky, Daniel

    2017-03-01

    Genetically-encoded calcium indicators (GECIs) have revolutionized neuroimaging by enabling mapping of the activity of entire neuronal populations in vivo. Visualization of these powerful activity sensors has to date been limited to depth-restricted microscopic studies due to intense light scattering in the brain. We demonstrate, for the first time, in vivo real-time volumetric optoacoustic monitoring of calcium transients in adult transgenic zebrafish expressing the GCaMP5G calcium indicator. Fast changes in optoacoustic traces associated with GCaMP5G activity were detectable in the presence of other strongly absorbing endogenous chromophores, such as hemoglobin. The new functional optoacoustic neuroimaging method can visualize neural activity at penetration depths and spatio-temporal resolution scales not covered with the existing neuroimaging techniques.

  10. The evidence for increased L1 activity in the site of human adult brain neurogenesis.

    PubMed

    Kurnosov, Alexey A; Ustyugova, Svetlana V; Nazarov, Vadim I; Minervina, Anastasia A; Komkov, Alexander Yu; Shugay, Mikhail; Pogorelyy, Mikhail V; Khodosevich, Konstantin V; Mamedov, Ilgar Z; Lebedev, Yuri B

    2015-01-01

    Retroelement activity is a common source of polymorphisms in human genome. The mechanism whereby retroelements contribute to the intraindividual genetic heterogeneity by inserting into the DNA of somatic cells is gaining increasing attention. Brain tissues are suspected to accumulate genetic heterogeneity as a result of the retroelements somatic activity. This study aims to expand our understanding of the role retroelements play in generating somatic mosaicism of neural tissues. Whole-genome Alu and L1 profiling of genomic DNA extracted from the cerebellum, frontal cortex, subventricular zone, dentate gyrus, and the myocardium revealed hundreds of somatic insertions in each of the analyzed tissues. Interestingly, the highest concentration of such insertions was detected in the dentate gyrus-the hotspot of adult neurogenesis. Insertions of retroelements and their activity could produce genetically diverse neuronal subsets, which can be involved in hippocampal-dependent learning and memory.

  11. New Hippocampal Neurons Are Not Obligatory for Memory Formation; Cyclin D2 Knockout Mice with No Adult Brain Neurogenesis Show Learning

    ERIC Educational Resources Information Center

    Jaholkowski, Piotr; Kiryk, Anna; Jedynak, Paulina; Abdallah, Nada M. Ben; Knapska, Ewelina; Kowalczyk, Anna; Piechal, Agnieszka; Blecharz-Klin, Kamilla; Figiel, Izabela; Lioudyno, Victoria; Widy-Tyszkiewicz, Ewa; Wilczynski, Grzegorz M.; Lipp, Hans-Peter; Kaczmarek, Leszek; Filipkowski, Robert K.

    2009-01-01

    The role of adult brain neurogenesis (generating new neurons) in learning and memory appears to be quite firmly established in spite of some criticism and lack of understanding of what the new neurons serve the brain for. Also, the few experiments showing that blocking adult neurogenesis causes learning deficits used irradiation and various drugs…

  12. Activity-dependent Notch signalling in the hypothalamic-neurohypophysial system of adult mouse brains.

    PubMed

    Mannari, T; Miyata, S

    2014-08-01

    Notch signalling has a key role in cell fate specification in developing brains; however, recent studies have shown that Notch signalling also participates in the regulation of synaptic plasticity in adult brains. In the present study, we examined the expression of Notch3 and Delta-like ligand 4 (DLL4) in the hypothalamic-neurohypophysial system (HNS) of the adult mouse. The expression of DLL4 was higher in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) compared to adjacent hypothalamic regions. Double-labelling immunohistochemistry using vesicular GABA transporter and glutamate transporter revealed that DLL4 was localised at a subpopulation of excitatory and inhibitory axonal boutons against somatodendrites of arginine vasopressin (AVP)- and oxytocin (OXT)-containing magnocellular neurones. In the neurohypophysis (NH), the expression of DLL4 was seen at OXT- but not AVP-containing axonal terminals. The expression of Notch3 was seen at somatodendrites of AVP- and OXT-containing magnocellular neurones in the SON and PVN and at pituicytes in the NH. Chronic physiological stimulation by salt loading, which remarkably enhances the release of AVP and OXT, decreased the number of DLL4-immunoreactive axonal boutons in the SON and PVN. Moreover, chronic and acute osmotic stimulation promoted proteolytic cleavage of Notch3 to yield the intracellular fragments of Notch3 in the HNS. Thus, the present study demonstrates activity-dependent reduction of DLL4 expression and proteolytic cleavage of Notch3 in the HNS, suggesting that Notch signalling possibly participates in synaptic interaction in the hypothalamic nuclei and neuroglial interaction in the NH.

  13. Abnormal Brain Connectivity Patterns in Adults with ADHD: A Coherence Study

    PubMed Central

    Sato, João Ricardo; Hoexter, Marcelo Queiroz; Castellanos, Xavier Francisco; Rohde, Luis A.

    2012-01-01

    Studies based on functional magnetic resonance imaging (fMRI) during the resting state have shown decreased functional connectivity between the dorsal anterior cingulate cortex (dACC) and regions of the Default Mode Network (DMN) in adult patients with Attention-Deficit/Hyperactivity Disorder (ADHD) relative to subjects with typical development (TD). Most studies used Pearson correlation coefficients among the BOLD signals from different brain regions to quantify functional connectivity. Since the Pearson correlation analysis only provides a limited description of functional connectivity, we investigated functional connectivity between the dACC and the posterior cingulate cortex (PCC) in three groups (adult patients with ADHD, n = 21; TD age-matched subjects, n = 21; young TD subjects, n = 21) using a more comprehensive analytical approach – unsupervised machine learning using a one-class support vector machine (OC-SVM) that quantifies an abnormality index for each individual. The median abnormality index for patients with ADHD was greater than for TD age-matched subjects (p = 0.014); the ADHD and young TD indices did not differ significantly (p = 0.480); the median abnormality index of young TD was greater than that of TD age-matched subjects (p = 0.016). Low frequencies below 0.05 Hz and around 0.20 Hz were the most relevant for discriminating between ADHD patients and TD age-matched controls and between the older and younger TD subjects. In addition, we validated our approach using the fMRI data of children publicly released by the ADHD-200 Competition, obtaining similar results. Our findings suggest that the abnormal coherence patterns observed in patients with ADHD in this study resemble the patterns observed in young typically developing subjects, which reinforces the hypothesis that ADHD is associated with brain maturation deficits. PMID:23049834

  14. Ginkgo biloba extract facilitates recovery from penetrating brain injury in adult male rats.

    PubMed

    Attella, M J; Hoffman, S W; Stasio, M J; Stein, D G

    1989-07-01

    Adult, male Sprague-Dawley rats received 100 mg/kg Ginkgo biloba extract (GBE) intraperitoneally for 30 days. GBE reduced overall activity and decreased sensitivity to light in the open field maze. The rats were also less responsive to noxious stimuli after 13 days of treatment with GBE. After the last injection, all subjects were trained on a delayed-spatial alternation task. Subsequent to acquisition of the spatial task, the rats received either sham operations and saline or bilateral frontal cortex lesions treated with either saline or GBE. Thirty additional days of treatment began on the day of injury, and open field behavior, analgesia, and metabolic activity measurements were again measured. The rats with lesions treated with saline were more active than their GBE-treated counterparts and sham controls but there were no differences in response to illumination or noxious stimuli. Retention of the delayed-spatial alternation indicated that rats with lesions treated with GBE were less impaired than brain-injured subjects receiving saline treatment. Histological examination showed that GBE reduced the extent of brain swelling in response to the injury.

  15. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    PubMed

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace.

  16. Effect of stimulus intensity level on auditory middle latency response brain maps in human adults.

    PubMed

    Tucker, D A; Dietrich, S; McPherson, D L; Salamat, M T

    2001-05-01

    Auditory middle latency response (AMLR) brain maps were obtained in 11 young adults with normal hearing. AMLR waveforms were elicited with monaural clicks presented at three stimulus intensity levels (50, 70, and 90 dB nHL). Recordings were made for right and left ear stimulus presentations. All recordings were obtained in an eyes open/awake status for each subject. Peak-to-peak amplitudes and absolute latencies of the AMLR Pa and Pb waveforms were measured at the Cz electrode site. Pa and Pb waveforms were present 100 percent of the time in response to the 90 dB nHL presentation. The prevalence of Pa and Pb to the 70 dB nHL presentation varied from 86 to 95 percent. The prevalence of Pa and Pb to the 50 dB nHL stimulus never reached 100 percent, ranging in prevalence from 77 to 68 percent. No significant ear effect was seen for amplitude or latency measures of Pa or Pb. AMLR brain maps of the voltage field distributions of Pa and Pb waveforms showed different topographic features. Scalp topography of the Pa waveform was altered by a reduction in stimulus intensity level. At 90 dB nHL, the Pa brain map showed a large positivity midline over the frontal and central scalp areas. At lower stimulus intensity levels, frontal positivity was reduced, and scalp negativity over occipital regions was increased. Pb scalp topography was also altered by a reduction in stimulus intensity level. Varying the stimulus intensity significantly altered Pa and Pb distributions of amplitude and latency measures. Pa and Pb distributions were skewed regardless of stimulus intensity.

  17. Preservation of Essential Odor-Guided Behaviors and Odor-Based Reversal Learning after Targeting Adult Brain Serotonin Synthesis

    PubMed Central

    Carlson, Kaitlin S.

    2016-01-01

    Abstract The neurotransmitter serotonin (5-HT) is considered a powerful modulator of sensory system organization and function in a wide range of animals. The olfactory system is innervated by midbrain 5-HT neurons into both its primary and secondary odor-processing stages. Facilitated by this circuitry, 5-HT and its receptors modulate olfactory system function, including odor information input to the olfactory bulb. It is unknown, however, whether the olfactory system requires 5-HT for even its most basic behavioral functions. To address this question, we established a conditional genetic approach to specifically target adult brain tryptophan hydroxylase 2 (Tph2), encoding the rate-limiting enzyme in brain 5-HT synthesis, and nearly eliminate 5-HT from the mouse forebrain. Using this novel model, we investigated the behavior of 5-HT–depleted mice during performance in an olfactory go/no-go task. Surprisingly, the near elimination of 5-HT from the forebrain, including the olfactory bulbs, had no detectable effect on the ability of mice to perform the odor-based task. Tph2-targeted mice not only were able to learn the task, but also had levels of odor acuity similar to those of control mice when performing coarse odor discrimination. Both groups of mice spent similar amounts of time sampling odors during decision-making. Furthermore, odor reversal learning was identical between 5-HT–depleted and control mice. These results suggest that 5-HT neurotransmission is not necessary for the most essential aspects of olfaction, including odor learning, discrimination, and certain forms of cognitive flexibility. PMID:27896310

  18. The effects of cognitive-behavioral therapy on intrinsic functional brain networks in adults with attention-deficit/hyperactivity disorder.

    PubMed

    Wang, Xiaoli; Cao, Qingjiu; Wang, Jinhui; Wu, Zhaomin; Wang, Peng; Sun, Li; Cai, Taisheng; Wang, Yufeng

    2016-01-01

    Cognitive-behavioral therapy (CBT) is an efficacious psychological treatment for adults with attention-deficit/hyperactivity disorder (ADHD), but the neural processes underlying the benefits of CBT are not well understood. This study aims to unravel psychosocial mechanisms for treatment ADHD by exploring the effects of CBT on functional brain networks. Ten adults with ADHD were enrolled and resting-state functional magnetic resonance imaging scans were acquired before and after a 12-session CBT. Twelve age- and gender-matched healthy controls were also scanned. We constructed whole-brain functional connectivity networks using graph-theory approaches and further computed the changes of regional functional connectivity strength (rFCS) between pre- and post-CBT in ADHD for measuring the effects of CBT. The results showed that rFCS was increased in the fronto-parietal network and cerebellum, the brain regions that were most often affected by medication, in adults with ADHD following CBT. Furthermore, the enhanced functional coupling between bilateral superior parietal gyrus was positively correlated with the improvement of ADHD symptoms following CBT. Together, these findings provide evidence that CBT can selectively modulate the intrinsic network connectivity in the fronto-parietal network and cerebellum and suggest that the CBT may share common brain mechanism with the pharmacology in adults with ADHD.

  19. The Wechsler Adult Intelligence Scale-III and Malingering in Traumatic Brain Injury: Classification Accuracy in Known Groups

    ERIC Educational Resources Information Center

    Curtis, Kelly L.; Greve, Kevin W.; Bianchini, Kevin J.

    2009-01-01

    A known-groups design was used to determine the classification accuracy of Wechsler Adult Intelligence Scale-III (WAIS-III) variables in detecting malingered neurocognitive dysfunction (MND) in traumatic brain injury (TBI). TBI patients were classified into the following groups: (a) mild TBI not-MND (n = 26), (b) mild TBI MND (n = 31), and (c)…

  20. Long term running biphasically improves methylglyoxal-related metabolism, redox homeostasis and neurotrophic support within adult mouse brain cortex.

    PubMed

    Falone, Stefano; D'Alessandro, Antonella; Mirabilio, Alessandro; Petruccelli, Giacomo; Cacchio, Marisa; Di Ilio, Carmine; Di Loreto, Silvia; Amicarelli, Fernanda

    2012-01-01

    Oxidative stress and neurotrophic support decline seem to be crucially involved in brain aging. Emerging evidences indicate the pro-oxidant methylglyoxal (MG) as a key player in the age-related dicarbonyl stress and molecular damage within the central nervous system. Although exercise promotes the overproduction of reactive oxygen species, habitual exercise may retard cellular aging and reduce the age-dependent cognitive decline through hormetic adaptations, yet molecular mechanisms underlying beneficial effects of exercise are still largely unclear. In particular, whereas adaptive responses induced by exercise initiated in youth have been broadly investigated, the effects of chronic and moderate exercise begun in adult age on biochemical hallmarks of very early senescence in mammal brains have not been extensively studied. This research investigated whether a long-term, forced and moderate running initiated in adult age may affect the interplay between the redox-related profile and the oxidative-/MG-dependent molecular damage patterns in CD1 female mice cortices; as well, we investigated possible exercise-induced effects on the activity of the brain derived neurotrophic factor (BDNF)-dependent pathway. Our findings suggested that after a transient imbalance in almost all parameters investigated, the lately-initiated exercise regimen strongly reduced molecular damage profiles in brains of adult mice, by enhancing activities of the main ROS- and MG-targeting scavenging systems, as well as by preserving the BDNF-dependent signaling through the transition from adult to middle age.

  1. Brain Activity in Adults Who Stutter: Similarities across Speaking Tasks and Correlations with Stuttering Frequency and Speaking Rate

    ERIC Educational Resources Information Center

    Ingham, Roger J.; Grafton, Scott T.; Bothe, Anne K.; Ingham, Janis C.

    2012-01-01

    Many differences in brain activity have been reported between persons who stutter (PWS) and typically fluent controls during oral reading tasks. An earlier meta-analysis of imaging studies identified stutter-related regions, but recent studies report less agreement with those regions. A PET study on adult dextral PWS (n = 18) and matched fluent…

  2. Atypical Brain Activation during Simple & Complex Levels of Processing in Adult ADHD: An fMRI Study

    ERIC Educational Resources Information Center

    Hale, T. Sigi; Bookheimer, Susan; McGough, James J.; Phillips, Joseph M.; McCracken, James T.

    2007-01-01

    Objective: Executive dysfunction in ADHD is well supported. However, recent studies suggest that more fundamental impairments may be contributing. We assessed brain function in adults with ADHD during simple and complex forms of processing. Method: We used functional magnetic resonance imaging with forward and backward digit spans to investigate…

  3. Post-mortem brain pathology is related to declining respiratory function in community-dwelling older adults

    PubMed Central

    Buchman, Aron S.; Yu, Lei; Wilson, Robert S.; Dawe, Robert J.; VanderHorst, Veronique; Schneider, Julie A.; Bennett, David A.

    2015-01-01

    Damage to brain structures which constitute the distributed neural network that integrates respiratory muscle and pulmonary functions, can impair adequate ventilation and its volitional control. We tested the hypothesis that the level of brain pathology in older adults is associated with declining respiratory function measured during life. 1,409 older adults had annual testing with spirometry (SPI) and respiratory muscle strength (RMS) based on maximal inspiratory and maximal expiratory pressures (MEPs). Those who died underwent structured brain autopsy. On average, during 5 years of follow-up, SPI and RMS showed progressive decline which was moderately correlated (ρ = 0.57, p < 0.001). Among decedents (N = 447), indices of brain neuropathologies showed differential associations with declining SPI and RMS. Nigral neuronal loss was associated with the person-specific decline in SPI (Estimate, −0.016 unit/year, S.E. 0.006, p = 0.009) and reduction of the slope variance was equal to 4%. By contrast, Alzheimer’s disease (AD) pathology (Estimate, −0.030 unit/year, S.E. 0.009, p < 0.001) and macroscopic infarcts (−0.033 unit/year, S.E., 0.011, p = 0.003) were associated with the person-specific decline in RMS and reduction of the slope variance was equal to 7%. These results suggest that brain pathology is associated with the rate of declining respiratory function in older adults. PMID:26539108

  4. Comparison of specific absorption rate induced in brain tissues of a child and an adult using mobile phone

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2012-04-01

    The steady increase of mobile phone usage, especially mobile phones by children, has led to a rising concern about the possible adverse health effects of radio frequency electromagnetic field exposure. The objective of this work is to study whether there is a larger radio frequency energy absorption in the brain of a child compared to that of an adult. For this reason, three high-resolution models, two child head models (6 - and 11-year old) and one adult head model (34-year old) have been used in the study. A finite-difference time-domain method was employed to calculate the specific absorption rate (SAR) in the models from exposure to a generic handset at 1750 MHz. The results show that the SAR distributions in the human brain are age-dependent, and there is a deeper penetration of the absorbed SAR in the child's brain. The induced SAR can be significantly higher in subregions of the child's brain. In all of the examined cases, the SAR values in the brains of a child and an adult are well below the IEEE safety standard.

  5. Diazepam affects the nuclear thyroid hormone receptor density and their expression levels in adult rat brain.

    PubMed

    Constantinou, Caterina; Bolaris, Stamatis; Valcana, Theony; Margarity, Marigoula

    2005-07-01

    Thyroid hormones (THs) are involved in the occurrence of anxiety and affective disorders; however, the effects following an anxiolytic benzodiazepine treatment, such as diazepam administration, on the mechanism of action of thyroid hormones has not yet been investigated. The effect of diazepam on the in vitro nuclear T3 binding, on the relative expression of the TH receptors (TRs) and on the synaptosomal TH availability were examined in adult rat cerebral hemispheres 24 h after a single intraperitoneal dose (5 mg/kg BW) of this tranquillizer. Although, diazepam did not affect the availability of TH either in blood circulation or in the synaptosomal fraction, it decreased (33%) the nuclear T3 maximal binding density (B(max)). No differences were observed in the equilibrium dissociation constant (K(d)). The TRalpha2 variant (non-T3-binding) mRNA levels were increased by 33%, whereas no changes in the relative expression of the T3-binding isoforms of TRs (TRalpha1, TRbeta1) were observed. This study shows that a single intraperitoneal injection of diazepam affects within 24 h, the density of the nuclear TRs and their expression pattern. The latest effect occurs in an isoform-specific manner involving specifically the TRalpha2 mRNA levels in adult rat brain.

  6. Neuroprotective pathways: lifestyle activity, brain pathology, and cognition in cognitively normal older adults.

    PubMed

    Wirth, Miranka; Haase, Claudia M; Villeneuve, Sylvia; Vogel, Jacob; Jagust, William J

    2014-08-01

    This study used path analysis to examine effects of cognitive activity and physical activity on cognitive functioning in older adults, through pathways involving beta-amyloid (Aβ) burden, cerebrovascular lesions, and neural injury within the brain regions affected in Alzheimer's disease (AD). Ninety-two cognitively normal older adults (75.2 ± 5.6 years) reported lifetime cognitive activity and current physical activity using validated questionnaires. For each participant, we evaluated cortical Aβ burden (using [(11)C] labeled Pittsburgh-Compound-B positron emission tomography), cerebrovascular lesions (using magnetic resonance imaging-defined white matter lesion [WML]), and neural integrity within AD regions (using a multimodal neuroimaging biomarker). Path models (adjusted for age, gender, and education) indicated that higher lifetime cognitive activity and higher current physical activity was associated with fewer WMLs. Lower WML volumes were in turn related to higher neural integrity and higher global cognitive functioning. As shown previously, higher lifetime cognitive activity was associated with lower [(11)C] labeled Pittsburgh-Compound-B retention, which itself moderated the impact of neural integrity on cognitive functioning. Lifestyle activity may thus promote cognitive health in aging by protecting against cerebrovascular pathology and Aβ pathology thought to be relevant to AD development.

  7. Neuroprotective Pathways: Lifestyle activity, brain pathology and cognition in cognitively normal older adults

    PubMed Central

    Wirth, Miranka; Haase, Claudia M.; Villeneuve, Sylvia; Vogel, Jacob; Jagust, William J.

    2014-01-01

    This study used path analysis to examine effects of cognitive activity and physical activity on cognitive functioning in older adults, through pathways involving beta-amyloid (Aβ) burden, cerebrovascular lesions, and neural injury within brain regions affected in Alzheimer’s disease (AD). Ninety-two cognitively normal older adults (75.2±5.6 years) reported lifetime cognitive activity and current physical activity using validated questionnaires. For each participant, we evaluated cortical Aβ burden (using PIB-PET), cerebrovascular lesions (using MRI-defined white matter lesion (WML)), and neural integrity within AD regions (using a multimodal biomarker). Path models (adjusted for age, gender, and education) indicated that higher lifetime cognitive activity and higher current physical activity was associated with fewer WMLs. Lower WML volumes were in turn related to higher neural integrity and higher global cognitive functioning. As shown previously, higher lifetime cognitive activity was associated with lower PIB retention, which itself moderated the impact of neural integrity on cognitive functioning. Lifestyle activity may thus promote cognitive health in aging by protecting against cerebrovascular pathology and Aβ pathology thought to be relevant to AD development. PMID:24656834

  8. Atypical brain activation patterns during a face-to-face joint attention game in adults with autism spectrum disorder.

    PubMed

    Redcay, Elizabeth; Dodell-Feder, David; Mavros, Penelope L; Kleiner, Mario; Pearrow, Mark J; Triantafyllou, Christina; Gabrieli, John D; Saxe, Rebecca

    2013-10-01

    Joint attention behaviors include initiating one's own and responding to another's bid for joint attention to an object, person, or topic. Joint attention abilities in autism are pervasively atypical, correlate with development of language and social abilities, and discriminate children with autism from other developmental disorders. Despite the importance of these behaviors, the neural correlates of joint attention in individuals with autism remain unclear. This paucity of data is likely due to the inherent challenge of acquiring data during a real-time social interaction. We used a novel experimental set-up in which participants engaged with an experimenter in an interactive face-to-face joint attention game during fMRI data acquisition. Both initiating and responding to joint attention behaviors were examined as well as a solo attention (SA) control condition. Participants included adults with autism spectrum disorder (ASD) (n = 13), a mean age- and sex-matched neurotypical group (n = 14), and a separate group of neurotypical adults (n = 22). Significant differences were found between groups within social-cognitive brain regions, including dorsal medial prefrontal cortex (dMPFC) and right posterior superior temporal sulcus (pSTS), during the RJA as compared to SA conditions. Region-of-interest analyses revealed a lack of signal differentiation between joint attention and control conditions within left pSTS and dMPFC in individuals with ASD. Within the pSTS, this lack of differentiation was characterized by reduced activation during joint attention and relative hyper-activation during SA. These findings suggest a possible failure of developmental neural specialization within the STS and dMPFC to joint attention in ASD.

  9. The electrophysiology of the olfactory-hippocampal circuit in the isolated and perfused adult mammalian brain in vitro.

    PubMed

    de Curtis, M; Paré, D; Llinás, R R

    1991-10-01

    The viability and general electrophysiological properties of the limbic system in the adult mammalian brain isolated and maintained in vitro by arterial perfusion are described. The isolated brain preparation combines the advantages of intact synaptic connectivity and accessibility of different areas of the encephalic mass with those of the in vitro approach, i.e., stability and control of the ionic environment. Extracellular field potential as well as intracellular recordings were performed at different levels in the limbic system of isolated adult guinea pig brains. The results demonstrate that in the piriform, entorhinal, and hippocampal cortices, the intrinsic electrical properties of individual cells as well as the spontaneous and evoked electrical activity in the neuronal ensembles they comprise, were virtually identical to those observed in vivo. The properties of the limbic system loop were determined.

  10. Brain training in older adults: evidence of transfer to memory span performance and pseudo-Matthew effects.

    PubMed

    McDougall, Siné; House, Becky

    2012-01-01

    In this study the effects of 'brain training' using the Nintendo DS Brain Training program were examined in two groups of older adults; the cognitive performance of an experimental group (n = 21) who were asked to use the Nintendo DS regularly over a 6-week period was compared with the control group (n = 20). Groups were matched on age (mean age = 74 years), education, computer experience, daily activities (time spent reading or watching television), and initial scores of Wechsler Adult Intelligence Scale. Analyses revealed that improvements were primarily in the Digit Span Test, specifically Digits Backwards. Although the Brain Training package appeared to have some efficacy, other factors such as perceived quality of life and perceived cognitive functioning were at least equally important in determining training outcomes. The implications of these findings for cognitive training are discussed.

  11. The Influence of Organized Physical Activity (Including Gymnastics) on Young Adult Skeletal Traits: Is Maturity Phase Important?

    PubMed

    Bernardoni, Brittney; Scerpella, Tamara A; Rosenbaum, Paula F; Kanaley, Jill A; Raab, Lindsay N; Li, Quefeng; Wang, Sijian; Dowthwaite, Jodi N

    2015-05-01

    We prospectively evaluated adolescent organized physical activity (PA) as a factor in adult female bone traits. Annual DXA scans accompanied semiannual records of anthropometry, maturity, and PA for 42 participants in this preliminary analysis (criteria: appropriately timed DXA scans at ~1 year premenarche [predictor] and ~5 years postmenarche [dependent variable]). Regression analysis evaluated total adolescent interscan PA and PA over 3 maturity subphases as predictors of young adult bone outcomes: 1) bone mineral content (BMC), geometry, and strength indices at nondominant distal radius and femoral neck; 2) subhead BMC; 3) lumbar spine BMC. Analyses accounted for baseline gynecological age (years pre- or postmenarche), baseline bone status, adult body size and interscan body size change. Gymnastics training was evaluated as a potentially independent predictor, but did not improve models for any outcomes (p > .07). Premenarcheal bone traits were strong predictors of most adult outcomes (semipartial r2 = .21-0.59, p ≤ .001). Adult 1/3 radius and subhead BMC were predicted by both total PA and PA 1-3 years postmenarche (p < .03). PA 3-5 years postmenarche predicted femoral narrow neck width, endosteal diameter, and buckling ratio (p < .05). Thus, participation in organized physical activity programs throughout middle and high school may reduce lifetime fracture risk in females.

  12. The Influence of Organized Physical Activity (including Gymnastics) on Young Adult Skeletal Traits: Is Maturity Phase Important?

    PubMed Central

    Bernardoni, Brittney; Scerpella, Tamara A.; Rosenbaum, Paula F.; Kanaley, Jill A.; Raab, Lindsay N.; Li, Quefeng; Wang, Sijian; Dowthwaite, Jodi N.

    2015-01-01

    We prospectively evaluated adolescent organized physical activity (PA) as a factor in adult female bone traits. Annual DXA scans accompanied semi-annual records of anthropometry, maturity and PA for 42 participants in this preliminary analysis (criteria: appropriately timed DXA scans at ~1 year pre-menarche [predictor] and ~5 years post-menarche [dependent variable]). Regression analysis evaluated total adolescent inter-scan PA and PA over 3 maturity sub-phases as predictors of young adult bone outcomes: 1) bone mineral content (BMC), geometry and strength indices at non-dominant distal radius and femoral neck; 2) sub-head BMC; 3) lumbar spine BMC. Analyses accounted for baseline gynecological age (years pre- or post-menarche), baseline bone status, adult body size and inter-scan body size change. Gymnastics training was evaluated as a potentially independent predictor, but did not improve models for any outcomes (p<0.07). Pre-menarcheal bone traits were strong predictors of most adult outcomes (semi-partial r2 = 0.21-0.59, p≤0.001). Adult 1/3 radius and sub-head BMC were predicted by both total PA and PA 1-3 years post-menarche (p<0.03). PA 3-5 years post-menarche predicted femoral narrow neck width, endosteal diameter and buckling ratio (p<0.05). Thus, participation in organized physical activity programs throughout middle and high school may reduce lifetime fracture risk in females. PMID:25386845

  13. Functional Integration of Adult-Born Hippocampal Neurons after Traumatic Brain Injury

    PubMed Central

    Villasana, Laura E.; Kim, Kristine N.

    2015-01-01

    Abstract Traumatic brain injury (TBI) increases hippocampal neurogenesis, which may contribute to cognitive recovery after injury. However, it is unknown whether TBI-induced adult-born neurons mature normally and functionally integrate into the hippocampal network. We assessed the generation, morphology, and synaptic integration of new hippocampal neurons after a controlled cortical impact (CCI) injury model of TBI. To label TBI-induced newborn neurons, we used 2-month-old POMC-EGFP mice, which transiently and specifically express EGFP in immature hippocampal neurons, and doublecortin-CreERT2 transgenic mice crossed with Rosa26-CAG-tdTomato reporter mice, to permanently pulse-label a cohort of adult-born hippocampal neurons. TBI increased the generation, outward migration, and dendritic complexity of neurons born during post-traumatic neurogenesis. Cells born after TBI had profound alterations in their dendritic structure, with increased dendritic branching proximal to the soma and widely splayed dendritic branches. These changes were apparent during early dendritic outgrowth and persisted as these cells matured. Whole-cell recordings from neurons generated during post-traumatic neurogenesis demonstrate that they are excitable and functionally integrate into the hippocampal circuit. However, despite their dramatic morphologic abnormalities, we found no differences in the rate of their electrophysiological maturation, or their overall degree of synaptic integration when compared to age-matched adult-born cells from sham mice. Our results suggest that cells born after TBI participate in information processing, and receive an apparently normal balance of excitatory and inhibitory inputs. However, TBI-induced changes in their anatomic localization and dendritic projection patterns could result in maladaptive network properties. PMID:26478908

  14. Proteomic and transcriptomic study of brain microvessels in neonatal and adult mice

    PubMed Central

    Porte, Baptiste; Chatelain, Clémence; Hardouin, Julie; Derambure, Céline; Zerdoumi, Yasmine; Hauchecorne, Michèle; Dupré, Nicolas; Bekri, Soumeya; Gonzalez, Bruno; Marret, Stéphane; Cosette, Pascal

    2017-01-01

    Infants born before 29 weeks gestation incur a major risk of preterm encephalopathy and subependymal/intracerebral/intraventricular haemorrhage. In mice, an ontogenic window of haemorrhage risk was recorded up to 5 days after birth in serpine1 knock-out animals. Using proteome and transcriptome approaches in mouse forebrain microvessels, we previously described the remodelling of extracellular matrix and integrins likely strengthening the vascular wall between postnatal day 5 (P5) and P10. Haemorrhage is the ultimate outcome of vessel damage (i.e., during ischaemia), although discreet vessel insults may be involved in the aetiology of preterm encephalopathy. In this study, we examined proteins identified by mass spectrometry and segregating in gene ontology pathways in forebrain microvessels in P5, P10, and adult wild type mice. In parallel, comparative transcript levels were obtained using RNA hybridization microarrays and enriched biological pathways were extracted from genes exhibiting at least a two-fold change in expression. Five major biological functions were observed in those genes detected both as proteins and mRNA expression undergoing at least a two-fold change in expression in one or more age comparisons: energy metabolism, protein metabolism, antioxidant function, ion exchanges, and transport. Adult microvessels exhibited the highest protein and mRNA expression levels for a majority of genes. Energy metabolism–enriched gene ontology pathways pointed to the preferential occurrence of glycolysis in P5 microvessels cells versus P10 and adult preparations enriched in aerobic oxidative enzymes. Age-dependent levels of RNA coding transport proteins at the plasma membrane and mitochondria strengthened our findings based on protein data. The data suggest that immature microvessels have fewer energy supply alternatives to glycolysis than mature structures. In the context of high energy demand, this constraint might account for vascular damage and maintenance

  15. Presenilin-1 regulates neural progenitor cell differentiation in the adult brain

    PubMed Central

    Gadadhar, Archana; Marr, Robert; Lazarov, Orly

    2011-01-01

    Presenilin-1 (PS1) is the catalytic core of the aspartyl protease γ-secretase. Previous genetic studies using germ-line deletion of PS1 and conditional knockout mice demonstrated that PS1 plays an essential role in neuronal differentiation during neural development, but it remained unclear whether PS1 plays a similar role in neurogenesis in the adult brain. Here we show that neural progenitor cells infected with lentiviral vectors expressing short interfering RNA (siRNA) for the exclusive knockdown of PS1 in the neurogenic microenvironments, exhibit a dramatic enhancement of cell differentiation. Infected cells differentiated into neurons, astrocytes and oligodendrocytes, suggesting that multipotentiality of neural progenitor cells is not affected by reduced levels of PS1. Neurosphere cultures treated with γ-secretase inhibitors exhibit a similar phenotype of enhanced cell differentiation, suggesting that PS1 function in neural progenitor cells is γ-secretase-dependent. Neurospheres infected with lentiviral vectors expressing siRNA for the targeting of PS1 differentiated even in the presence of the proliferation factors epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), suggesting that PS1 dominates EFG and bFGF signaling pathways. Reduction of PS1 expression in neural progenitor cells was accompanied by a decrease in epidermal growth factor receptor (EGFR) and β-catenin expression level, suggesting that they are downstream essential transducers of PS1 signaling in adult neural progenitor cells. These findings suggest a physiological role for PS1 in adult neurogenesis, and a potential target for the manipulation of neural progenitor cell differentiation. PMID:21325529

  16. Adaptive Modulation of Adult Brain Gray and White Matter to High Altitude: Structural MRI Studies

    PubMed Central

    Zhang, Jiaxing; Zhang, Haiyan; Li, Jinqiang; Chen, Ji; Han, Qiaoqing; Lin, Jianzhong; Yang, Tianhe; Fan, Ming

    2013-01-01

    The aim of this study was to investigate brain structural alterations in adult immigrants who adapted to high altitude (HA). Voxel-based morphometry analysis of gray matter (GM) volumes, surface-based analysis of cortical thickness, and Tract-Based Spatial Statistics analysis of white matter fractional anisotropy (FA) based on MRI images were conducted on 16 adults (20–22 years) who immigrated to the Qinghai-Tibet Plateau (2300–4400 m) for 2 years. They had no chronic mountain sickness. Control group consisted of 16 matched sea level subjects. A battery of neuropsychological tests was also conducted. HA immigrants showed significantly decreased GM volumes in the right postcentral gyrus and right superior frontal gyrus, and increased GM volumes in the right middle frontal gyrus, right parahippocampal gyrus, right inferior and middle temporal gyri, bilateral inferior ventral pons, and right cerebellum crus1. While there was some divergence in the left hemisphere, surface-based patterns of GM changes in the right hemisphere resembled those seen for VBM analysis. FA changes were observed in multiple WM tracts. HA immigrants showed significant impairment in pulmonary function, increase in reaction time, and deficit in mental rotation. Parahippocampal and middle frontal GM volumes correlated with vital capacity. Superior frontal GM volume correlated with mental rotation and postcentral GM correlated with reaction time. Paracentral lobule and frontal FA correlated with mental rotation reaction time. There might be structural modifications occurred in the adult immigrants during adaptation to HA. The changes in GM may be related to impaired respiratory function and psychological deficits. PMID:23874692

  17. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures

    PubMed Central

    Bergey, Gregory K.; Mizrahi, Eli M.; Goldman, Alica; King-Stephens, David; Nair, Dileep; Srinivasan, Shraddha; Jobst, Barbara; Gross, Robert E.; Shields, Donald C.; Barkley, Gregory; Salanova, Vicenta; Olejniczak, Piotr; Cole, Andrew; Cash, Sydney S.; Noe, Katherine; Wharen, Robert; Worrell, Gregory; Murro, Anthony M.; Edwards, Jonathan; Duchowny, Michael; Spencer, David; Smith, Michael; Geller, Eric; Gwinn, Ryder; Skidmore, Christopher; Eisenschenk, Stephan; Berg, Michel; Heck, Christianne; Van Ness, Paul; Fountain, Nathan; Rutecki, Paul; Massey, Andrew; O'Donovan, Cormac; Labar, Douglas; Duckrow, Robert B.; Hirsch, Lawrence J.; Courtney, Tracy; Sun, Felice T.; Seale, Cairn G.

    2015-01-01

    Objective: The long-term efficacy and safety of responsive direct neurostimulation was assessed in adults with medically refractory partial onset seizures. Methods: All participants were treated with a cranially implanted responsive neurostimulator that delivers stimulation to 1 or 2 seizure foci via chronically implanted electrodes when specific electrocorticographic patterns are detected (RNS System). Participants had completed a 2-year primarily open-label safety study (n = 65) or a 2-year randomized blinded controlled safety and efficacy study (n = 191); 230 participants transitioned into an ongoing 7-year study to assess safety and efficacy. Results: The average participant was 34 (±11.4) years old with epilepsy for 19.6 (±11.4) years. The median preimplant frequency of disabling partial or generalized tonic-clonic seizures was 10.2 seizures a month. The median percent seizure reduction in the randomized blinded controlled trial was 44% at 1 year and 53% at 2 years (p < 0.0001, generalized estimating equation) and ranged from 48% to 66% over postimplant years 3 through 6 in the long-term study. Improvements in quality of life were maintained (p < 0.05). The most common serious device-related adverse events over the mean 5.4 years of follow-up were implant site infection (9.0%) involving soft tissue and neurostimulator explantation (4.7%). Conclusions: The RNS System is the first direct brain responsive neurostimulator. Acute and sustained efficacy and safety were demonstrated in adults with medically refractory partial onset seizures arising from 1 or 2 foci over a mean follow-up of 5.4 years. This experience supports the RNS System as a treatment option for refractory partial seizures. Classification of evidence: This study provides Class IV evidence that for adults with medically refractory partial onset seizures, responsive direct cortical stimulation reduces seizures and improves quality of life over a mean follow-up of 5.4 years. PMID:25616485

  18. Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted Reelin in the adult rat brain.

    PubMed

    Ramos-Moreno, Tania; Galazo, Maria J; Porrero, Cesar; Martínez-Cerdeño, Verónica; Clascá, Francisco

    2006-01-01

    Reelin, a large extracellular matrix glycoprotein, is secreted by several neuron populations in the developing and adult rodent brain. Secreted Reelin triggers a complex signaling pathway by binding lipoprotein and integrin membrane receptors in target cells. Reelin signaling regulates migration and dendritic growth in developing neurons, while it can modulate synaptic plasticity in adult neurons. To identify which adult neural circuits can be modulated by Reelin-mediated signaling, we systematically mapped the distribution of Reelin in adult rat brain using sensitive immunolabeling techniques. Results show that the distribution of intracellular and secreted Reelin is both very widespread and specific. Some interneuron and projection neuron populations in the cerebral cortex contain Reelin. Numerous striatal neurons are weakly immunoreactive for Reelin and these cells are preferentially located in striosomes. Some thalamic nuclei contain Reelin-immunoreactive cells. Double-immunolabeling for GABA and Reelin reveals that the Reelin-immunoreactive cells in the visual thalamus are the intrinsic thalamic interneurons. High local concentrations of extracellular Reelin selectively outline several dendrite spine-rich neuropils. Together with previous mRNA data, our observations suggest abundant axoplasmic transport and secretion in pathways such as the retino-collicular tract, the entorhino-hippocampal ('perforant') path, the lateral olfactory tract or the parallel fiber system of the cerebellum. A preferential secretion of Reelin in these neuropils is consistent with reports of rapid, activity-induced structural changes in adult brain circuits.

  19. Longitudinal alterations to brain function, structure, and cognitive performance in healthy older adults: A fMRI-DTI study.

    PubMed

    Hakun, Jonathan G; Zhu, Zude; Brown, Christopher A; Johnson, Nathan F; Gold, Brian T

    2015-05-01

    Cross-sectional research has shown that older adults tend to have different frontal cortex activation patterns, poorer brain structure, and lower task performance than younger adults. However, relationships between longitudinal changes in brain function, brain structure, and cognitive performance in older adults are less well understood. Here we present the results of a longitudinal, combined fMRI-DTI study in cognitive normal (CN) older adults. A two time-point study was conducted in which participants completed a task switching paradigm while fMRI data was collected and underwent the identical scanning protocol an average of 3.3 years later (SD=2 months). We observed longitudinal fMRI activation increases in bilateral regions of lateral frontal cortex at time point 2. These fMRI activation increases were associated with longitudinal declines in WM microstructure in a portion of the corpus callosum connecting the increasingly recruited frontal regions. In addition, the fMRI activation increase in the left VLPFC was associated with longitudinal increases in response latencies. Taken together, our results suggest that local frontal activation increases in CN older adults may in part reflect a response to reduced inter-hemispheric signaling mechanisms.

  20. Longitudinal Alterations to Brain Function, Structure, and Cognitive Performance in Healthy Older Adults: a fMRI-DTI study

    PubMed Central

    Hakun, Jonathan G.; Zhu, Zude; Brown, Christopher A.; Johnson, Nathan F.; Gold, Brian T.

    2015-01-01

    Cross-sectional research has shown that older adults tend to have different frontal cortex activation patterns, poorer brain structure, and lower task performance than younger adults. However, relationships between longitudinal changes in brain function, brain structure, and cognitive performance in older adults are less well understood. Here we present the results of a longitudinal, combined fMRI-DTI study in cognitive normal (CN) older adults. A two time-point study was conducted in which participants completed a task switching paradigm while fMRI data was collected and underwent the identical scanning protocol an average of 3.3 years later (SD = 2 months). We observed longitudinal fMRI activation increases in bilateral regions of lateral frontal cortex at time point 2. These fMRI activation increases were associated with longitudinal declines in WM microstructure in a portion of the corpus callosum connecting the increasingly recruited frontal regions. In addition, the fMRI activation increase in the left VLPFC was associated with longitudinal increases in response latencies. Taken together, our results suggest that local frontal activation increases in CN older adults may in part reflect a response to reduced inter-hemispheric signaling mechanisms. PMID:25862416

  1. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    PubMed

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model.

  2. The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain.

    PubMed

    Vo, Tam; Carulli, Daniela; Ehlert, Erich M E; Kwok, Jessica C F; Dick, Gunnar; Mecollari, Vasil; Moloney, Elizabeth B; Neufeld, Gera; de Winter, Fred; Fawcett, James W; Verhaagen, Joost

    2013-09-01

    In the adult rodent brain, subsets of neurons are surrounded by densely organised extracellular matrix called perineuronal nets (PNNs). PNNs consist of hyaluronan, tenascin-R, chondroitin sulphate proteoglycans (CSPGs), and the link proteins Crtl1 and Bral2. PNNs restrict plasticity at the end of critical periods and can be visualised with Wisteria floribunda agglutinin (WFA). Using a number of antibodies raised against the different regions of semaphorin3A (Sema3A) we demonstrate that this secreted chemorepulsive axon guidance protein is localised to WFA-positive PNNs around inhibitory interneurons in the cortex and several other PNN-bearing neurons throughout the brain and co-localises with aggrecan, versican, phosphacan and tenascin-R. Chondroitinase ABC (ChABC) was injected in the cortex to degrade glycosaminoglycans (GAGs) from the CSPGs, abolishing WFA staining of PNNs around the injection site. Sema3A-positive nets were no longer observed in the area devoid of WFA staining. In mice lacking the link protein Crtl1 in the CNS only vestigial PNNs are present, and in these mice there were no Sema3A-positive PNN structures. A biochemical analysis shows that Sema3A protein binds with high-affinity to CS-GAGs and aggrecan and versican extracted from PNNs in the adult rat brain, and a significant proportion of Sema3A is retrieved in brain extracts that are enriched in PNN-associated GAGs. The Sema3A receptor components PlexinA1 and A4 are selectively expressed by inhibitory interneurons in the cortex that are surrounded by Sema3A positive PNNs. We conclude that the chemorepulsive axon guidance molecule Sema3A is present in PNNs of the adult rodent brain, bound to the GAGs of the CSPGs. These observations suggest a novel concept namely that chemorepulsive axon guidance molecules like Sema3A may be important functional attributes of PNNs in the adult brain.

  3. Decreased lysosomal storage in the adult MPS VII mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high levels of beta-glucuronidase.

    PubMed

    Taylor, R M; Wolfe, J H

    1997-07-01

    A deficiency of beta-glucuronidase (GUSB) causes the multisystem progressive degenerative syndrome, mucopolysaccharidosis (MPS) type VII (Sly disease), which includes mental retardation. Animal homologues of MPS VII (ref. 3, 4) are models for testing somatic gene transfer approaches to treat the central nervous system in this and other lysosomal storage disorders. Previous attempts to correct murine MPS VII by gene therapy have successfully treated lesions in some organs but not in the brain. Other experimental modalities have forestalled some disease progression in the brain, but only if done at birth, before the onset of severe lesions, when the animals are phenotypically normal. We tested whether therapeutic amounts of GUSB could be delivered to the diseased adult brain by transplanting cells engineered to super-secrete the normal enzyme for export to surrounding neural tissues. Lysosomal distention was cleared from neurons and glial cells in the vicinity of the grafts, showing that the secreted enzyme could reach the diseased cells and reverse lesions in the severely diseased brain. The ability to correct established lesions will be important for the treatment of many lysosomal storage diseases affecting the brain, because most patients are not diagnosed until lesions are advanced enough to affect phenotype or developmental milestones in early childhood, and some forms of the diseases do not become apparent until later in life.

  4. Thinking about seeing: perceptual sources of knowledge are encoded in the theory of mind brain regions of sighted and blind adults.

    PubMed

    Koster-Hale, Jorie; Bedny, Marina; Saxe, Rebecca

    2014-10-01

    Blind people's inferences about how other people see provide a window into fundamental questions about the human capacity to think about one another's thoughts. By working with blind individuals, we can ask both what kinds of representations people form about others' minds, and how much these representations depend on the observer having had similar mental states themselves. Thinking about others' mental states depends on a specific group of brain regions, including the right temporo-parietal junction (RTPJ). We investigated the representations of others' mental states in these brain regions, using multivoxel pattern analyses (MVPA). We found that, first, in the RTPJ of sighted adults, the pattern of neural response distinguished the source of the mental state (did the protagonist see or hear something?) but not the valence (did the protagonist feel good or bad?). Second, these neural representations were preserved in congenitally blind adults. These results suggest that the temporo-parietal junction contains explicit, abstract representations of features of others' mental states, including the perceptual source. The persistence of these representations in congenitally blind adults, who have no first-person experience with sight, provides evidence that these representations emerge even in the absence of relevant first-person perceptual experiences.

  5. Thinking about Seeing: perceptual sources of knowledge are encoded in the theory of mind brain regions of sighted and blind adults

    PubMed Central

    Koster-Hale, Jorie; Bedny, Marina; Saxe, Rebecca

    2014-01-01

    Blind people's inferences about how other people see provide a window into fundamental questions about the human capacity to think about one another's thoughts. By working with blind individuals, we can ask both what kinds of representations people form about others’ minds, and how much these representations depend on the observer having had similar mental states themselves. Thinking about others’ mental states depends on a specific group of brain regions, including the right temporo-parietal junction (RTPJ). We investigated the representations of others’ mental states in these brain regions, using multivoxel pattern analyses (MVPA). We found that, first, in the RTPJ of sighted adults, the pattern of neural response distinguished the source of the mental state (did the protagonist see or hear something?) but not the valence (did the protagonist feel good or bad?). Second, these neural representations were preserved in congenitally blind adults. These results suggest that the temporo-parietal junction contains explicit, abstract representations of features of others’ mental states, including the perceptual source. The persistence of these representations in congenitally blind adults, who have no first-person experience with sight, provides evidence that these representations emerge even in the absence of first-person perceptual experiences. PMID:24960530

  6. Long-term tracing of the BrdU label-retaining cells in adult rat brain.

    PubMed

    Zhang, Lei; Li, Haihong; Zeng, Shaopeng; Chen, Lu; Fang, Zeman; Huang, Qingjun

    2015-03-30

    Stem cells have been shown to be label-retaining, slow-cycling cells. In the adult mammalian central nervous system, the distribution of the stem cells is inconsistent among previous studies. The purpose of the present study was to determine the distribution of BrdU-LRCs and the cell types of the BrdU-LRCs in rat brain. To label BrdU-LRCs in rat brain, six newborn rats were administered intraperitoneal injections of BrdU 50mg/kg/time twice a day at 2h intervals, over four consecutive days. The BrdU-LRCs were detected by immunohistochemistry, the cell types were examined by double immunofluorescence staining for BrdU/GFAP and BrdU/MAP2, and the percentage of BrdU-LRCs was calculated following a chase period of 24 weeks post-injection. We observed that BrdU-LRCs distributed extensively in rat brain. In the LV, DG, striatum, cerebellum and neocortex, the percentage of BrdU-LRCs was 11.3 ± 2.5%, 10.9 ± 1.3%, 6.4 ± 1.2%, 5.6 ± 0.8%, and 4.9 ± 0.6%, respectively. The highest density of BrdU-LRCs was in LV and DG, the known stem cell sites in adult mammalian brain. Both BrdU/GFAP and BrdU/MAP2 double-staining cells could be detected in the above five brain subregions. Ongoing cell production was widespread in the adult mammalian brain, which would allow us to reevaluate the capacity and potentiality of the brain in homeostasis, wound repair, and regeneration.

  7. Adult Asylum Seekers from the Middle East Including Syria in Central Europe: What Are Their Health Care Problems?

    PubMed Central

    Pfortmueller, Carmen Andrea; Schwetlick, Miriam; Mueller, Thomas; Lehmann, Beat; Exadaktylos, Aristomenis Konstantinos

    2016-01-01

    Background Forced displacement related to persecution and violent conflict has reached a new peak in recent years. The primary aim of this study is to provide an initial overview of the acute and chronic health care problems of asylum seekers from the Middle East, with special emphasis on asylum seekers from Syria. Methods Our retrospective data analysis comprised adult patients presenting to our emergency department between 01.11.2011 and 30.06.2014 with the official resident status of an “asylum seeker” or “refugee” from the Middle East. Results In total, 880 patients were included in the study. Of these, 625 (71.0%) were male and 255 (29.0%) female. The median age was 34 (range 16–84). 222 (25.2%) of our patients were from Syria. The most common reason for presentation was surgical (381, 43.3%), followed by medical (321, 36.5%) and psychiatric (137, 15.6%). In patients with surgical presentations, trauma-related problems were most common (n = 196, 50.6%). Within the group of patients with medical presentation, acute infectious diseases were most common (n = 141, 43.9%), followed by neurological problems (n = 70, 21.8%) and gastrointestinal problems (n = 47, 14.6%). There were no differences between Syrian and non-Syrian refugees concerning surgical or medical admissions. The most common chronic disorder of unclear significance was chronic gastrointestinal problems (n = 132, 15%), followed by chronic musculoskeletal problems (n = 108, 12.3%) and chronic headaches (n = 78, 8.9%). Patients from Syria were significantly younger and more often suffered from a post-traumatic stress disorder than patients of other nationalities (p<0.0001, and p = 0.05, respectively). Conclusion Overall a remarkable number of our very young group of patients suffered from psychiatric disorders and unspecified somatic symptoms. Asylum seekers should be carefully evaluated when presenting to a medical facility and physicians should be aware of the high incidence of unspecified

  8. Distinctions Among Circulating Antibody Secreting Cell Populations, Including B-1 Cells, in Human Adult Peripheral Blood1

    PubMed Central

    Quách, Tâm D.; Rodríguez-Zhurbenko, Nely; Hopkins, Thomas J.; Guo, Xiaoti; Vázquez, Ana María Hernández; Li, Wentian; Rothstein, Thomas L.

    2015-01-01

    Human antibody secreting cell (ASC) populations in circulation are not well studied. In addition to B-1 (CD20+CD27+CD38lo/intCD43+) cell and the conventional plasmablast (CD20-CD27hiCD38hi) cell populations, here we identified a novel B cell population termed 20+38hi B cells (CD20+CD27hiCD38hi) that spontaneously secretes antibody. At steady state, 20+38hi B cells are distinct from plasmablasts on the basis of CD20 expression, amount of antibody production, frequency of mutation, and diversity of B cell receptor repertoire. However, cytokine treatment of 20+38hi B cells induces loss of CD20 and acquisition of CD138, suggesting that 20+38hi B cells are precursors to plasmablasts, or pre-plasmablasts. We then evaluated similarities and differences between CD20+CD27+CD38lo/intCD43+ B-1 cells, CD20+CD27hiCD38hi 20+38hi B cells, CD20-CD27hiCD38hi plasmablasts, and CD20+CD27+CD38lo/intCD43- memory B cells. We found that B-1 cells differ from 20+38hi B cells and plasmablasts in numbers of ways, including antigen expression, morphological appearance, transcriptional profiling, antibody skewing, antibody repertoire, and secretory response to stimulation. In terms of gene expression, B-1 cells align more closely with memory B cells than with 20+38hi B cells or plasmablasts, but differ in that memory B cells do not express antibody secretion related genes. We found that, B-1 cell antibodies utilize Vh4-34, which is often associated with autoreactivity, 3 to 6-fold more often than other B cell populations. Along with selective production of IgM anti-PC, this data suggests that human B-1 cells might be preferentially selected for autoreactivity/natural-specificity. In sum, our results indicate that human healthy adult peripheral blood at steady state consists of 3 distinct ASC populations. PMID:26740107

  9. Write Me a Ream: A Course in Controlled Composition for Job Training and Adult Education (includes handbook).

    ERIC Educational Resources Information Center

    Kunz, Linda Ann; Viscount, Robert R.

    This handbook for teachers and the accompanying student workbook are the basic materials in a course on controlled composition that can be used for on-the-job training, adult education, or as part of a writing course for students at various grade levels. Controlled composition is a program for improving expository writing skills; the program…

  10. BRAIN ABNORMALITIES IN YOUNG ADULTS AT GENETIC RISK FOR AUTOSOMAL DOMINANT ALZHEIMER’S DISEASE: A CROSS-SECTIONAL STUDY

    PubMed Central

    Reiman, Eric M.; Quiroz, Yakeel T.; Fleisher, Adam S.; Chen, Kewei; Velez-Pardo, Carlos; Jimenez-Del-Rio, Marlene; Fagan, Anne M.; Shah, Aarti R.; Alvarez, Sergio; Arbelaez, Andrés; Giraldo, Margarita; Acosta-Baena, Natalia; Sperling, Reisa A.; Dickerson, Brad; Stern, Chantal E.; Tirado, Victoria; Munoz, Claudia; Reiman, Rebecca A.; Huentelman, Matthew J.; Alexander, Gene E.; Langbaum, Jessica B.S.; Kosik, Kenneth S.; Tariot, Pierre N.; Lopera, Francisco

    2013-01-01

    Summary Background We previously detected functional brain imaging abnormalities in young adults at genetic risk for late-onset Alzheimer’s disease (AD). Here, we sought to characterize structural and functional magnetic resonance imaging (MRI), cerebrospinal fluid (CSF), and plasma biomarker abnormalities in young adults at risk for autosomal dominant early-onset AD. Biomarker measurements were characterized and compared in presenilin 1 (PSEN1) E280A mutation carriers and non-carriers from the world’s largest known autosomal dominant early-onset AD kindred, more than two decades before the carriers’ estimated median age of 44 at the onset of mild cognitive impairment (MCI) and before their estimated age of 28 at the onset of amyloid-β (Aβ) plaque deposition. Methods Biomarker data for this cross-sectional study were acquired in Antioquia, Colombia between July and August, 2010. Forty-four participants from the Colombian Alzheimer’s Prevention Initiative (API) Registry had structural MRIs, functional MRIs during associative memory encoding/novel viewing and control tasks, and cognitive assessments. They included 20 mutation carriers and 24 non-carriers, who were cognitively normal, 18-26 years old and matched for their gender, age, and educational level. Twenty of the participants, including 10 mutation carriers and 10 non-carriers, had lumbar punctures and venipunctures. Primary outcome measures included task-dependent hippocampal/parahippocampal activations and precuneus/posterior cingulate deactivations, regional gray matter reductions, CSF Aβ1-42, total tau and phospho-tau181 levels, and plasma Aβ1-42 levels and Aβ1-42/Aβ1-40 ratios. Structural and functional MRI data were compared using automated brain mapping algorithms and AD-related search regions. Cognitive and fluid biomarkers were compared using Mann-Whitney tests. Findings The mutation carrier and non-carrier groups did not differ significantly in their dementia ratings, neuropsychological

  11. New neurons in the adult brain: The role of sleep and consequences of sleep loss

    PubMed Central

    Meerlo, Peter; Mistlberger, Ralph E.; Jacobs, Barry L.; Heller, H. Craig; McGinty, Dennis

    2009-01-01

    Research over the last few decades has firmly established that new neurons are generated in selected areas of the adult mammalian brain, particularly the dentate gyrus of the hippocampal formation and the subventricular zone of the lateral ventricles. The function of adult-born neurons is still a matter of debate. In the case of the hippocampus, integration of new cells in to the existing neuronal circuitry may be involved in memory processes and the regulation of emotionality. In recent years, various studies have examined how the production of new cells and their development into neurons is affected by sleep and sleep loss. While disruption of sleep for a period shorter than one day appears to have little effect on the basal rate of cell proliferation, prolonged restriction or disruption of sleep may have cumulative effects leading to a major decrease in hippocampal cell proliferation, cell survival and neurogenesis. Importantly, while short sleep deprivation may not affect the basal rate of cell proliferation, one study in rats shows that even mild sleep restriction may interfere with the increase in neurogenesis that normally occurs with hippocampus-dependent learning. Since sleep deprivation also disturbs memory formation, these data suggest that promoting survival, maturation and integration of new cells may be an unexplored mechanism by which sleep supports learning and memory processes. Most methods of sleep deprivation that have been employed affect both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Available data favor the hypothesis that decreases in cell proliferation are related to a reduction in REM sleep, whereas decreases in the number of cells that subsequently develop into adult neurons may be related to reductions in both NREM and REM sleep. The mechanisms by which sleep loss affects different aspects of adult neurogenesis are unknown. It has been proposed that adverse effects of sleep disruption may be mediated by stress and

  12. Inference generation during text comprehension by adults with right hemisphere brain damage: activation failure versus multiple activation.

    PubMed

    Tompkins, Connie A; Fassbinder, Wiltrud; Lehman Blake, Margaret; Baumgaertner, Annette; Jayaram, Nandini

    2004-12-01

    Evidence conflicts as to whether adults with right hemisphere brain damage (RHD) generate inferences during text comprehension. M. Beeman (1993) reported that adults with RHD fail to activate the lexical-semantic bases of routine bridging inferences, which are necessary for comprehension. But other evidence indicates that adults with RHD activate multiple interpretations in various comprehension domains. In addition, the activation of contextually inappropriate interpretations is prolonged for many adults with RHD and predicts poor discourse comprehension. This study contrasted Beeman's activation failure hypothesis with the prediction that adults with RHD would generate multiple interpretations in text comprehension. The relation between activation of textually incompatible inferences and discourse comprehension was also investigated for this group. Thirty-seven adults with RHD and 34 without brain damage listened to brief narratives that required a bridging inference (BI) to integrate the text-final sentence. This final sentence, when isolated from its text, was strongly biased toward a contextually incompatible alternate interpretation (AI). Auditory phoneme strings were presented for lexical decision immediately after each text's initial and final sentence. Adults with RHD were both faster and more accurate in making lexical decisions to BI-related target words in final-sentence position than in initial-sentence position. Thus, contrary to the activation failure hypothesis, adults with RHD generated the lexical-semantic foundations of BIs where they were required by the text. AI generation was evident in accuracy data as well, but not in response time data. This result is partially consistent with the multiple activation view. Finally, greater activation for contextually incompatible interpretations was associated with poorer discourse comprehension performance by adults with RHD.

  13. The Gut-Brain Axis, Including the Microbiome, Leaky Gut and Bacterial Translocation: Mechanisms and Pathophysiological Role in Alzheimer's Disease.

    PubMed

    Köhler, Cristiano A; Maes, Michael; Slyepchenko, Anastasiya; Berk, Michael; Solmi, Marco; Lanctôt, Krista L; Carvalho, André F

    2016-01-01

    Alzheimer's disease (AD), the most common form of dementia, is a progressive disorder manifested by gradual memory loss and subsequent impairment in mental and behavioral functions. Though the primary risk factor for AD is advancing age, other factors such as diabetes mellitus, hyperlipidemia, obesity, vascular factors and depression play a role in its pathogenesis. The human gastrointestinal tract has a diverse commensal microbial population, which has bidirectional interactions with the human host that are symbiotic in health, and in addition to nutrition, digestion, plays major roles in inflammation and immunity. The most prevalent hypothesis for AD is the amyloid hypothesis, which states that changes in the proteolytic processing of the amyloid precursor protein leads to the accumulation of the amyloid beta (Aβ) peptide. Aβ then triggers an immune response that drives neuroinflammation and neurodegeneration in AD. The specific role of gut microbiota in modulating neuro-immune functions well beyond the gastrointestinal tract may constitute an important influence on the process of neurodegeneration. We first review the main mechanisms involved in AD physiopathology. Then, we review the alterations in gut microbiota and gut-brain axis that might be relevant to mediate or otherwise affect AD pathogenesis, especially those associated with aging. We finally summarize possible mechanisms that could mediate the involvement of gut-brain axis in AD physiopathology, and propose an integrative model.

  14. Grafting of genetically manipulated cells into adult brain: toward graft-gene therapy.

    PubMed

    Uchida, K; Toya, S

    1996-06-01

    Accumulating evidence has shown that functional recoveries in various kinds of animal models of neurodegenerative diseases can be achieved by grafting fetal neurons into the brain. On the basis of these successful results, clinical trials are under way to determine whether human fetal mesencephalic tissue can ameliorate motor functions in patients with Parkinson's disease. Recent autopsy findings of parkinsonian patient implanted with human fetal mesencephalic tissue clearly revealed that the fetal neuronal graft can survive for extended period of time in the human brain and densely reinnervate the surrounding host striatal tissue. It is, however, still important to obtain more practical, effective and ethically justifiable donor material for the future clinical application of the procedures. Desirable properties for the donor cells include long-term survival in the host brain, neuronal cell type for the reconstruction of damaged neural circuits, and susceptibility to genetic manipulation for the practical use. With the development of molecular biology techniques, genetic modification and transplantation of the donor neuronal cells might be a feasible way to cure many kinds of central nervous system diseases toward a "graft-gene therapy".

  15. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits

    PubMed Central

    Dennie, Donnahue; Louboutin, Jean-Pierre; Strayer, David S

    2016-01-01

    Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells

  16. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits.

    PubMed

    Dennie, Donnahue; Louboutin, Jean-Pierre; Strayer, David S

    2016-04-26

    Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells

  17. Effects of methylphenidate on resting-state brain activity in normal adults: an fMRI study.

    PubMed

    Zhu, Yihong; Gao, Bin; Hua, Jianming; Liu, Weibo; Deng, Yichao; Zhang, Lijie; Jiang, Biao; Zang, Yufeng

    2013-02-01

    Methylphenidate (MPH) is one of the most commonly used stimulants for the treatment of attention deficit hyperactivity disorder (ADHD). Although several studies have evaluated the effects of MPH on human brain activation during specific cognitive tasks using functional magnetic resonance imaging (fMRI), few studies have focused on spontaneous brain activity. In the current study, we investigated the effect of MPH on the intra-regional synchronization of spontaneous brain activity during the resting state in 18 normal adult males. A handedness questionnaire and the Wechsler Adult Intelligence Scale were applied before medication, and a resting-state fMRI scan was obtained 1 h after medication (20 mg MPH or placebo, order counterbalanced between participants). We demonstrated that: (1) there were no significant differences in the performance of behavioral tasks between the MPH and placebo groups; (2) the left middle and superior temporal gyri had stronger MPHrelated regional homogeneity (ReHo); and (3) the left lingual gyrus had weaker MPH-related ReHo. Our findings showed that the ReHo in some brain areas changes with MPH compared to placebo in normal adults, even though there are no behavioral differences. This method can be applied to patients with mental illness who may be treated with MPH, and be used to compare the difference between patients taking MPH and normal participants, to help reveal the mechanism of how MPH works.

  18. Effects of Unpredictable Variable Prenatal Stress (UVPS) on Bdnf DNA Methylation and Telomere Length in the Adult Rat Brain

    NASA Technical Reports Server (NTRS)

    Blaze, Jennifer; Asok, A.; Moyer, E. L.; Roth, T. L.; Ronca, A. E.

    2015-01-01

    In utero exposure to stress can shape neurobiological and behavioral outcomes in offspring, producing vulnerability to psychopathology later in life. Animal models of prenatal stress likewise have demonstrated long-­-term alterations in brain function and behavioral deficits in offspring. For example, using a rodent model of unpredictable variable prenatal stress (UVPS), in which dams are exposed to unpredictable, variable stress across pregnancy, we have found increased body weight and anxiety-­-like behavior in adult male, but not female, offspring. DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could be responsible for the long-­-term effects of UVPS. Here, we measured methylation of brain-­-derived neurotrophic factor (bdnf), a gene important in development and plasticity, and telomere length in the brains of adult offspring from the UVPS model. Results indicate that prenatally stressed adult males have greater methylation in the medial prefrontal cortex (mPFC) compared to non-­-stressed controls, while females have greater methylation in the ventral hippocampus compared to controls. Further, prenatally stressed males had shorter telomeres than controls in the mPFC. These findings demonstrate the ability of UVPS to produce epigenetic alterations and changes in telomere length across behaviorally-­-relevant brain regions, which may have linkages to the phenotypic outcomes.

  19. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain.

    PubMed

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2015-11-26

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur.

  20. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain

    PubMed Central

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2015-01-01

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. DOI: http://dx.doi.org/10.7554/eLife.11290.001 PMID:26609811

  1. Voluntary Running Prevents Progressive Memory Decline and Increases Adult Hippocampal Neurogenesis and Growth Factor Expression After Whole-Brain Irradiation

    PubMed Central

    Wong-Goodrich, Sarah J.E.; Pfau, Madeline L.; Flores, Catherine T.; Fraser, Jennifer A.; Williams, Christina L.; Jones, Lee W.

    2010-01-01

    Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention, and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to four months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting one month after sham- or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdU) immunolabeling and ELISA indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdU+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor, and occurred despite irradiation-induced elevations in hippocampal pro-inflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention. PMID:20884629

  2. Intrinsic Functional Connectivity in the Adult Brain and Success in Second-Language Learning.

    PubMed

    Chai, Xiaoqian J; Berken, Jonathan A; Barbeau, Elise B; Soles, Jennika; Callahan, Megan; Chen, Jen-Kai; Klein, Denise

    2016-01-20

    There is considerable variability in an individual's ability to acquire a second language (L2) during adulthood. Using resting-state fMRI data acquired before training in English speakers who underwent a 12 week intensive French immersion training course, we investigated whether individual differences in intrinsic resting-state functional connectivity relate to a person's ability to acquire an L2. We focused on two key aspects of language processing--lexical retrieval in spontaneous speech and reading speed--and computed whole-brain functional connectivity from two regions of interest in the language network, namely the left anterior insula/frontal operculum (AI/FO) and the visual word form area (VWFA). Connectivity between the left AI/FO and left posterior superior temporal gyrus (STG) and between the left AI/FO and dorsal anterior cingulate cortex correlated positively with improvement in L2 lexical retrieval in spontaneous speech. Connectivity between the VWFA and left mid-STG correlated positively with improvement in L2 reading speed. These findings are consistent with the different language functions subserved by subcomponents of the language network and suggest that the human capacity to learn an L2 can be predicted by an individual's intrinsic functional connectivity within the language network. Significance statement: There is considerable variability in second-language learning abilities during adulthood. We investigated whether individual differences in intrinsic functional connectivity in the adult brain relate to success in second-language learning, using resting-state functional magnetic resonance imaging in English speakers who underwent a 12 week intensive French immersion training course. We found that pretraining functional connectivity within two different language subnetworks correlated strongly with learning outcome in two different language skills: lexical retrieval in spontaneous speech and reading speed. Our results suggest that the human

  3. Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors

    PubMed Central

    Dunbar, E. M.; Coats, B. S.; Shroads, A. L.; Langaee, T.; Lew, A.; Forder, J. R.; Shuster, J. J.; Wagner, D. A.

    2015-01-01

    Summary Background Recurrent malignant brain tumors (RMBTs) carry a poor prognosis. Dichloroacetate (DCA) activates mitochondrial oxidative metabolism and has shown activity against several human cancers. Design We conducted an open-label study of oral DCA in 15 adults with recurrent WHO grade III – IV gliomas or metastases from a primary cancer outside the central nervous system. The primary objective was detection of a dose limiting toxicity for RMBTs at 4 weeks of treatment, defined as any grade 4 or 5 toxicity, or grade 3 toxicity directly attributable to DCA, based on the National Cancer Institute’s Common Toxicity Criteria for Adverse Events, version 4.0. Secondary objectives involved safety, tolerability and hypothesis-generating data on disease status. Dosing was based on haplotype variation in glutathione transferase zeta 1/maleylacetoacetate isomerase (GSTZ1/MAAI), which participates in DCA and tyrosine catabolism. Results Eight patients completed at least 1 four week cycle. During this time, no dose-limiting toxicities occurred. No patient withdrew because of lack of tolerance to DCA, although 2 subjects experienced grade 0–1 distal parasthesias that led to elective withdrawal and/or dose-adjustment. All subjects completing at least 1 four week cycle remained clinically stable during this time and remained on DCA for an average of 75.5 days (range 26–312). Conclusions Chronic, oral DCA is feasible and well-tolerated in patients with recurrent malignant gliomas and other tumors metastatic to the brain using the dose range established for metabolic diseases. The importance of genetic-based dosing is confirmed and should be incorporated into future trials of chronic DCA administration. PMID:24297161

  4. Postnatal day 7 ethanol treatment causes persistent reductions in adult mouse brain volume and cortical neurons with sex specific effects on neurogenesis.

    PubMed

    Coleman, Leon G; Oguz, Ipek; Lee, Joohwi; Styner, Martin; Crews, Fulton T

    2012-09-01

    Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of late gestational alcohol exposure (Ikonomidou et al., 2000). To investigate the long-term effects of P7 ethanol treatment on adult brain, mice received either two doses of saline or ethanol on P7 (2.5 g/kg, s.c., 2 h apart) and were assessed as adults (P82) for brain volume (using postmortem MRI) and cellular architecture (using immunohistochemistry). Adult mice that received P7 ethanol had reduced MRI total brain volume (4%) with multiple brain regions being reduced in both males and females. Immunohistochemistry indicated reduced frontal cortical parvalbumin immunoreactive (PV + IR) interneurons (18-33%) and reduced Cux1+IR layer II pyramidal neurons (15%) in both sexes. Interestingly, markers of adult hippocampal neurogenesis differed between sexes, with only ethanol treated males showing increased doublecortin and Ki67 expression (52 and 57% respectively) in the dentate gyrus, consistent with increased neurogenesis compared to controls. These findings suggest that P7 ethanol treatment causes persistent reductions in adult brain volume and frontal cortical neurons in both males and females. Increased adult neurogenesis in males, but not females, is consistent with differential adaptive responses to P7 ethanol toxicity between the sexes. One day of ethanol exposure, e.g. P7, causes persistent adult brain dysmorphology.

  5. Assessing blood brain barrier dynamics or identifying or measuring selected substances, including ethanol or toxins, in a subject by analyzing Raman spectrum signals

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2008-01-01

    A non-invasive method for analyzing the blood-brain barrier includes obtaining a Raman spectrum of a selected portion of the eye and monitoring the Raman spectrum to ascertain a change to the dynamics of the blood brain barrier.Also, non-invasive methods for determining the brain or blood level of an analyte of interest, such as glucose, drugs, alcohol, poisons, and the like, comprises: generating an excitation laser beam at a selected wavelength (e.g., at a wavelength of about 400 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor, vitreous humor, or one or more conjunctiva vessels in the eye is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated portion of the eye; and then determining the blood level or brain level (intracranial or cerebral spinal fluid level) of an analyte of interest for the subject from the Raman spectrum. In certain embodiments, the detecting step may be followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level and/or brain level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing methods are also disclosed.

  6. Unique and interactive effect of anxiety and depressive symptoms on cognitive and brain function in young and older adults

    PubMed Central

    Dotson, Vonetta M.; Szymkowicz, Sarah M.; Kirton, Joshua W.; McLaren, Molly E.; Green, Mackenzie L.; Rohani, Jessica Y.

    2014-01-01

    Objective Depression and anxiety and are associated with cognitive deficits and brain changes, especially in older adults. Despite the frequent co-occurrence of these conditions, cognitive neuroscience studies examining comorbid depression and anxiety are limited. The goal of the present study was to examine the unique and combined effect of depressive and anxiety symptoms on cognitive and brain functioning in young and older adults. Methods Seventy-one healthy, community-dwelling adults between the ages of 18 and 81 were administered a neuropsychological battery and completed the Center for Epidemiologic Studies Depression Scale (CES-D) and the trait form of the State-Trait Anxiety Inventory (STAI-T). A subset of 25 participants also underwent functional magnetic resonance imaging (fMRI) scanning while completing the n-back working memory task. Results Total depressive symptoms, depressed mood symptoms, and somatic symptoms were associated with deficits in speed, working memory and executive functions, especially in older adults. Symptoms of lack of well-being were not associated with any neuropsychological test. Anxiety was associated with better attention and working memory. Moreover, anxiety modified the relationship between depressive symptoms and executive functioning in older adults, as elevated depressive symptoms were associated with worse performance at low levels of anxiety, but not at higher anxiety levels. Similarly, analysis of fMRI data showed that total depressive symptoms and depressed mood symptoms were associated with decreased activity in the superior frontal gyrus at low anxiety levels, but not at high anxiety levels. Conclusion Results confirm previous reports that subthreshold depression and anxiety impact cognitive and brain functioning and suggest that the interaction of depression and anxiety results in distinct cognitive and brain changes. Findings highlight the importance of assessing and controlling for symptoms of depression and

  7. PANK2 gene analysis confirms genetic heterogeneity in neurodegeneration with brain iron accumulation (NBIA) but mutations are rare in other types of adult neurodegenerative disease.

    PubMed

    Matarin, M M; Singleton, A B; Houlden, H

    2006-10-23

    Mutations in the pantothenate kinase 2 gene (PANK2) are the cause of pantothenate kinase associated neurodegeneration (PKAN), an autosomal recessive (AR) disorder characterized by motor symptoms as such as dystonia or parkinsonism, mental retardation, retinitis pigmentosa and iron accumulation in the brain. As many neurodegenerative conditions have similar clinical features we screened a number of adult and childhood onset movement disorders for PANK2 mutation. This included cases with neurodegeneration and brain iron accumulation, corticobasal degeneartion, progressive supranuclear palsy (PSP), Parkinson's disease (PD), multiple system atropy, giant axonal neuropathy (GAN), neuroaxonal dystrophy (NAD), Guam dementia and HARP syndrome (pallido-pyramidal syndrome and hypoprebetalipoproteinemia, acanthocytosis, retinitis pigmentosa and pallidal degeneration). From our series of patients one patient with PKAN and a progressive severe dystonic syndrome, cerebellar ataxia, retinitis pigmentosa and eventual anarthria had a novel combination of two compound heterozygote mutations identified in the PANK2 gene, G-->A transition at base 1238 (G411R) and a C-->A transition at base 1184 (A395E). In the patient with HARP syndrome two compound heterozygote mutations (Met327Thr and IVS5-1 G to T) in the PANK2 gene were found. No other mutations were found in any of the other patient groups, suggesting that PANK2 mutations are not associated with the aetiology of these adult degenerative conditions and confirms the genetic heterogeneity in neurodegeneration with brain iron accumulation.

  8. Symptom-correlated brain regions in young adults with combined-type ADHD: Their organization, variability, and relation to behavioral performance

    PubMed Central

    Depue, Brendan E.; Burgess, Gregory C.; Willcutt, Erik G.; Bidwell, L. Cinnamon; Ruzic, Luka; Banich, Marie T.

    2010-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a widely diagnosed psychiatric disorder of childhood that may continue to manifest itself during adulthood. Across adults and children, inattention appears to be the most developmentally stable symptomatology of ADHD. To determine the neural systems that may be linked to such symptoms, the association between brain activation in a group of young adults in the face of an attentional challenge (the Stroop task) and inattentive symptoms was examined with functional magnetic resonance imaging. The results implicated a broad array of brain regions that are linked to behaviors compromised in ADHD, including executive function/cognitive control (prefrontal cortex, dorsal striatum), reward and motivational circuitry (ventral striatum), and stimulus representation and timing (posterior cortex and cerebellum). Also implicating these regions as being important for the manifestation of ADHD symptoms, the variability in the size of the BOLD signal across individuals was significantly higher for the ADHD group than for the control group, and variability across the time series in individuals with ADHD was linked to symptom severity and behavioral performance. The results suggest that a diverse set of brain structures is linked to ADHD symptoms and that the variability of activation within these regions may contribute to compromised attentional control. PMID:20399622

  9. Symptom-correlated brain regions in young adults with combined-type ADHD: their organization, variability, and relation to behavioral performance.

    PubMed

    Depue, Brendan E; Burgess, Gregory C; Willcutt, Erik G; Bidwell, L Cinnamon; Ruzic, Luka; Banich, Marie T

    2010-05-30

    Attention Deficit Hyperactivity Disorder (ADHD) is a widely diagnosed psychiatric disorder of childhood that may continue to manifest itself during adulthood. Across adults and children, inattention appears to be the most developmentally stable symptomatology of ADHD. To determine the neural systems that may be linked to such symptoms, the association between brain activation in a group of young adults in the face of an attentional challenge (the Stroop task) and inattentive symptoms was examined with functional magnetic resonance imaging. The results implicated a broad array of brain regions that are linked to behaviors compromised in ADHD, including executive function/cognitive control (prefrontal cortex, dorsal striatum), reward and motivational circuitry (ventral striatum), and stimulus representation and timing (posterior cortex and cerebellum). Also implicating these regions as being important for the manifestation of ADHD symptoms, the variability in the size of the BOLD signal across individuals was significantly higher for the ADHD group than for the control group, and variability across the time series in individuals with ADHD was linked to symptom severity and behavioral performance. The results suggest that a diverse set of brain structures is linked to ADHD symptoms and that the variability of activation within these regions may contribute to compromised attentional control.

  10. Cyclohexane produces behavioral deficits associated with astrogliosis and microglial reactivity in the adult hippocampus mouse brain.

    PubMed

    Campos-Ordonez, Tania; Zarate-Lopez, David; Galvez-Contreras, Alma Y; Moy-Lopez, Norma; Guzman-Muniz, Jorge; Gonzalez-Perez, Oscar

    2015-05-01

    Cyclohexane is a volatile substance that has been utilized as a safe substitute of several organic solvents in diverse industrial processes, such as adhesives, paints, paint thinners, fingernail polish, lacquers, and rubber industry. A number of these commercial products are ordinarily used as inhaled drugs. However, it is not well known whether cyclohexane has noxious effects in the central nervous system. The aim of this study was to analyze the effects of cyclohexane inhalation on motor behavior, spatial memory, and reactive gliosis in the hippocampus of adult mice. We used a model that mimics recreational drug use in male Balb/C mice (P60), divided into two groups: controls and the cyclohexane group (exposed to 9,000 ppm of cyclohexane for 30 days). Both groups were then evaluated with a functional observational battery (FOB) and the Morris water maze (MWM). Furthermore, the relative expression of AP endonuclease 1 (APE1), and the number of astrocytes (GFAP+ cells) and microglia (Iba1+ cells) were quantified in the hippocampal CA1 and CA3 areas. Our findings indicated that cyclohexane produced severe functional deficits during a recreational exposure as assessed by the FOB. The MWM did not show statistically significant changes in the acquisition and retention of spatial memory. Remarkably, a significant increase in the number of astrocytes and microglia cells, as well as in the cytoplasmic processes of these cells were observed in the hippocampal CA1 and CA3 areas of cyclohexane-exposed mice. This cellular response was associated with an increase in the expression of APE1 in the same brain regions. In summary, cyclohexane exposure produces functional deficits that are associated with an important increase in the APE1 expression as well as the number of astrocytes and microglia cells and their cytoplasmic complexity in the CA1 and CA3 regions of the adult hippocampus.

  11. Hospitalized Traumatic Brain Injury: Low Trauma Center Utilization and High Interfacility Transfers among Older Adults

    PubMed Central

    Faul, Mark; Xu, Likang; Sasser, Scott M.

    2016-01-01

    Objective Guidelines suggest that Traumatic Brain Injury (TBI) related hospitalizations are best treated at Level I or II trauma centers because of continuous neurosurgical care in these settings. This population-based study examines TBI hospitalization treatment paths by age groups. Methods Trauma center utilization and transfers by age groups were captured by examining the total number of TBI hospitalizations from National Inpatient Sample (NIS) and the number of TBI hospitalizations and transfers in the Trauma Data Bank National Sample Population (NTDB-NSP). TBI cases were defined using diagnostic codes. Results Of the 351,555 TBI related hospitalizations in 2012, 47.9% (n = 168,317) were directly treated in a Level I or II trauma center, and an additional 20.3% (n = 71,286) were transferred to a Level I or II trauma center. The portion of the population treated at a trauma center (68.2%) was significantly lower than the portion of the U.S. population who has access to a major trauma center (90%). Further, nearly half of all transfers to a Level I or II trauma center were adults aged 55 and older (p < 0.001) and that 20.2% of pediatric patients arrive by non-ambulatory means. Conclusion Utilization of trauma center resources for hospitalized TBIs may be low considering the established lower mortality rate associated with treatment at Level I or II trauma centers. The higher transfer rate for older adults may suggest rapid decline amid an unrecognized initial need for a trauma center care. A better understanding of hospital destination decision making is needed for patients with TBI. PMID:26986195

  12. A Novel Model of Traumatic Brain Injury in Adult Zebrafish Demonstrates Response to Injury and Treatment Comparable with Mammalian Models.

    PubMed

    McCutcheon, Victoria; Park, Eugene; Liu, Elaine; Sobhebidari, Pooya; Tavakkoli, Jahan; Wen, Xiao-Yan; Baker, Andrew J

    2016-12-20

    Traumatic brain injury (TBI) is a leading cause of death and morbidity in industrialized countries with considerable associated health care costs. The cost and time associated with pre-clinical development of TBI therapeutics is lengthy and expensive with a poor track record of successful translation to the clinic. The zebrafish is an emerging model organism in research with unique technical and genomic strengths in the study of disease and development. Its high degree of genetic homology and cell signaling pathways relative to mammalian species and amenability to high and medium throughput assays has potential to accelerate the rate of therapeutic drug identification. Accordingly, we developed a novel closed-head model of TBI in adult zebrafish using a targeted, pulsed, high-intensity focused ultrasound (pHIFU) to induce mechanical injury of the brain. Western blot results indicated altered microtubule and neurofilament expression as well as increased expression of cleaved caspase-3 and beta APP (β-APP; p < 0.05). We used automated behavioral tracking software to evaluate locomotor deficits 24 and 48 h post-injury. Significant behavioral impairment included decreased swim distance and velocity (p < 0.05), as well as heightened anxiety and altered group social dynamics. Responses to injury were pHIFU dose-dependent and modifiable with MK-801, MDL-28170, or temperature modulation. Together, results indicate that the zebrafish exhibits responses to injury and intervention similar to mammalian TBI pathophysiology and suggest the potential for use to rapidly evaluate therapeutic compounds with high efficiency.

  13. Theory and experiments on time-resolved reflectance from adult heads for functional tomographic imaging of brain activities

    NASA Astrophysics Data System (ADS)

    Tanifuji, T.; Suzuki, M.

    2014-02-01

    Finite difference time domain (FDTD) analysis has been formulated for predicting time-resolved reflectance from an adult head model with brain grooves containing a non-scattering layer. Mean delay (MD) dependences on source detector separation (d) and time-resolved reflectance calculated using the FDTD analysis were compared with in vivo experiments of human heads. It is shown that the theoretical and experimental MD dependences on d and the time-resolved reflectance are well predicted by FDTD analysis. These results have shown that tomographic imaging of brain activities is promising, which improves depth sensitivities by enhancing the contribution of late photons in time-resolved systems.

  14. Influence of brain-derived neurotrophic factor and apolipoprotein E genetic variants on hemispheric and lateral ventricular volume of young healthy adults

    PubMed Central

    Sidiropoulos, Christos; Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Mitsias, Panayiotis; Alexopoulos, Panagiotis; Richter-Schmidinger, Tanja; Reichel, Martin; Lewczuk, Piotr; Doerfler, Arnd; Kornhuber, Johannes

    2011-01-01

    Objective Brain-derived neurotrophic factor (BDNF) and apolipoprotein E (ApoE) are thought to be implicated in a variety of neuronal processes, including cell growth, resilience to noxious stimuli and synaptic plasticity. A Val to Met substitution at codon 66 in the BDNF protein has been associated with a variety of neuropsychiatric conditions. The ApoE4 allele is considered a risk factor for late-onset Alzheimer’s disease, but its effects on young adults are less clear. We sought to investigate the effects of those two polymorphisms on hemispheric and lateral ventricular volumes of young healthy adults. Methods Hemispheric and lateral ventricular volumes of 144 healthy individuals, aged 19–35 years, were measured using high resolution magnetic resonance imaging and data were correlated with BDNF and ApoE genotypes. Results There were no correlations between BDNF or ApoE genotype and hemispheric or lateral ventricular volumes. Conclusion These findings indicate that it is unlikely that either the BDNF Val66Met or ApoE polymorphisms exert any significant effect on hemispheric or lateral ventricular volume. However, confounding epistatic genetic effects as well as relative insensitivity of the volumetric methods used cannot be ruled out. Further imaging analyses are warranted to better define any genetic influence of the BDNF Val6Met and ApoE polymorphism on brain structure of young healthy adults. PMID:21701702

  15. [Adolescent and Young Adults (AYAS) brain tumor national Web conference. On behalf of ANOCEF, GO-AJA and SFCE societies].

    PubMed

    Frappaz, Didier; Sunyach, Marie-Pierre; Le Rhun, Emilie; Blonski, Marie; Laurence, Valérie; Bonneville Levard, Alice; Loiseau, Hugues; Meyronnet, David; Callies, Arnaud; Laigle-Donadey, F; Faure Conter, Cecile

    2016-12-01

    The skills of adult versus pediatric neuro-oncologists are not completely similar though additive. Because the tumors and their protocols are different and the tolerance and expected sequelae are specific. Multidisciplinary meetings including adult and pediatric neuro-oncologists are warranted to share expertise. Since 2008, a weekly national web based conference was held in France. Any patient with the following criteria could be discussed: Adolescent and Young Adults aged between 15 and 25 years, and any adult with a pediatric type pathology, including medulloblastoma, germ cell tumors, embryonic tumors, ependymoma, pilocytic astrocytoma.

  16. Neuroanatomical distribution of the orphan GPR50 receptor in adult sheep and rodent brains.

    PubMed

    Batailler, M; Mullier, A; Sidibe, A; Delagrange, P; Prévot, V; Jockers, R; Migaud, M

    2012-05-01

    GPR50, formerly known as melatonin-related receptor, is one of three subtypes of the melatonin receptor subfamily, together with the MT(1) and MT(2) receptors. By contrast to these two high-affinity receptor subtypes and despite its high identity with the melatonin receptor family, GPR50 does not bind melatonin or any other known ligand. Specific and reliable immunological tools are therefore needed to be able to elucidate the physiological functions of this orphan receptor that are still largely unknown. We have generated and validated a new specific GPR50 antibody against the ovine GPR50 and used it to analyse the neuroanatomical distribution of the GPR50 in sheep, rat and mouse whole brain. We demonstrated that GPR50-positive cells are widely distributed in various regions, including the hypothalamus and the pars tuberalis of the pituitary, in all the three species studied. GPR50 expressing cells are abundant in the dorsomedial nucleus of the hypothalamus, the periventricular nucleus and the median eminence. In rodents, immunohistochemical studies revealed a broader distribution pattern for the GPR50 protein. GPR50 immunoreactivity is found in the medial preoptic area (MPA), the lateral septum, the lateral hypothalamic area, the bed nucleus of the stria terminalis, the vascular organ of the laminae terminalis and several regions of the amygdala, including the medial nuclei of amygdala. Additionally, in the rat brain, GPR50 protein was localised in the CA1 pyramidal cell layer of the dorsal hippocampus. In mice, moderate to high numbers of GPR50-positive cells were also found in the subfornical organ. Taken together, these results provide an enlarged distribution of GPR50 protein, give further insight into the organisation of the melatoninergic system, and may lay the framework for future studies on the role of the GPR50 in the brain.

  17. Effects of neurofeedback training on the brain wave of adults with forward head posture

    PubMed Central

    Oh, Hyun-Ju; Song, Gui-Bin

    2016-01-01

    [Purpose] The purpose of the present study was to examine the effects of neurofeedback training on electroencephalogram changes in the cervical spine in adults with forward head posture through x-ray. [Subjects and Methods] The subjects of the study were 40 college students with forward head posture, randomly divided into a neurofeedback training group (NFTG, n=20) and a control group (CG, n=20). The neurofeedback training group performed six sessions of pottery and archery games, each for two minutes, three times per week for four weeks, while using the neurofeedback system. [Results] There were significant effects within and between groups in terms of the Delta wave, the Theta wave, the Alpha wave, the Beta wave, or the sensory motor rhythm. Especially, the Delta wave, Beta wave, and the sensory motor rhythm were showed significant effects between the groups. [Conclusion] It is thought that neurofeedback training, a training approach to self-regulate brain waves, enhances concentration and relaxation without stress, as well as an increase in attention, memory, and verbal cognitive performance. Therefore an effective intervention method to improve neck pain and daily activities. PMID:27821966

  18. Novel Kv3 glycoforms differentially expressed in adult mammalian brain contain sialylated N-glycans.

    PubMed

    Schwalbe, Ruth A; Corey, Melissa J; Cartwright, Tara A

    2008-02-01

    The N-glycan pool of mammalian brain contains remarkably high levels of sialylated N-glycans. This study provides the first evidence that voltage-gated K+ channels Kv3.1, Kv3.3, and Kv3.4, possess distinct sialylated N-glycan structures throughout the central nervous system of the adult rat. Electrophoretic migration patterns of Kv3.1, Kv3.3, and Kv3.4 glycoproteins from spinal cord, hypothalamus, thalamus, cerebral cortex, hippocampus, and cerebellum membranes digested with glycosidases were used to identify the various glycoforms. Differences in the migration of Kv3 proteins were attributed to the desialylated N-glycans. Expression levels of the Kv3 proteins were highest in cerebellum, whereas those of Kv3.1 and Kv3.3 were much lower in the other 5 regions. The lowest level of Kv3.1 was expressed in the hypothalamus, whereas the lowest levels of Kv3.3 were expressed in both thalamus and hypothalamus. The other regions expressed intermediate levels of Kv3.3, with spinal cord expressing the highest. The expression level of Kv3.4 in the hippocampus was slightly lower than that in cerebellum, and was closely followed by the other 4 regions, with spinal cord expressing the lowest level. We suggest that novel Kv3 glycoforms may endow differences in channel function and expression among regions throughout the central nervous system.

  19. Adverse Outcomes Among Homeless Adolescents and Young Adults Who Report a History of Traumatic Brain Injury

    PubMed Central

    Harpin, Scott B.; Grubenhoff, Joseph A.; Rivara, Frederick P.

    2014-01-01

    Objectives. We examined the prevalence of self-reported traumatic brain injury (TBI) among homeless young people and explored whether sociodemographic characteristics, mental health diagnoses, substance use, exposure to violence, or difficulties with activities of daily living (ADLs) were associated with TBI. Methods. We analyzed data from the Wilder Homelessness Study, in which participants were recruited in 2006 and 2009 from streets, shelters, and locations in Minnesota that provide services to homeless individuals. Participants completed 30-minute interviews to collect information about history of TBI, homelessness, health status, exposure to violence (e.g., childhood abuse, assault), and other aspects of functioning. Results. Of the 2732 participating adolescents and young adults, 43% reported a history of TBI. Participants with TBI became homeless at a younger age and were more likely to report mental health diagnoses, substance use, suicidality, victimization, and difficulties with ADLs. The majority of participants (51%) reported sustaining their first injury prior to becoming homeless or at the same age of their first homeless episode (10%). Conclusions. TBI occurs frequently among homeless young people and is a marker of adverse outcomes such as mental health difficulties, suicidal behavior, substance use, and victimization. PMID:25122029

  20. Effects of neurofeedback training on the brain wave of adults with forward head posture.

    PubMed

    Oh, Hyun-Ju; Song, Gui-Bin

    2016-10-01

    [Purpose] The purpose of the present study was to examine the effects of neurofeedback training on electroencephalogram changes in the cervical spine in adults with forward head posture through x-ray. [Subjects and Methods] The subjects of the study were 40 college students with forward head posture, randomly divided into a neurofeedback training group (NFTG, n=20) and a control group (CG, n=20). The neurofeedback training group performed six sessions of pottery and archery games, each for two minutes, three times per week for four weeks, while using the neurofeedback system. [Results] There were significant effects within and between groups in terms of the Delta wave, the Theta wave, the Alpha wave, the Beta wave, or the sensory motor rhythm. Especially, the Delta wave, Beta wave, and the sensory motor rhythm were showed significant effects between the groups. [Conclusion] It is thought that neurofeedback training, a training approach to self-regulate brain waves, enhances concentration and relaxation without stress, as well as an increase in attention, memory, and verbal cognitive performance. Therefore an effective intervention method to improve neck pain and daily activities.

  1. Distribution of the inositol 1,4,5-trisphosphate receptor, P400, in adult rat brain.

    PubMed

    Rodrigo, J; Suburo, A M; Bentura, M L; Fernández, T; Nakade, S; Mikoshiba, K; Martínez-Murillo, R; Polak, J M

    1993-11-15

    The distribution of the inositol 1,4,5-trisphosphate receptor protein, P400, was investigated in adult rat brain by immunocytochemistry with the monoclonal antibody 4C11 raised against mouse cerebellar inositol 1,4,5-trisphosphate receptor protein. Immunoreactive neuronal cell bodies were detected in the cerebral cortex, the claustrum, the endopiriform nucleus, the corpus callosum, the anterior olfactory nuclei, the olfactory tubercle, the nucleus accumbens, the lateral septum, the bed nucleus of the stria terminalis, the hippocampal formation, the dentate gyrus, the caudate-putamen, the fundus striatum, the amygdaloid complex, the thalamus, the caudolateral part of the hypothalamus, the supramammillary nuclei, the substantia nigra, the pedunculopontine tegmental nucleus, the ventrotegmental area, the Purkinje cells in the cerebellum, the dorsal cochlear nucleus, the subnucleus oralis and caudalis of trigeminal nerve, and the dorsal horn of the spinal cord. Immunoreactive fibres were found in the medial forebrain bundle, the globus pallidus, the stria terminalis, the pyramidal tract, the spinal tract of trigeminal nerve, and the ventral horn of spinal cord. Nerve fibres forming a dense plexus ending in terminal-like boutons were detected in relation to nonimmunoreactive neurons of the dentate, interpositus, and fastigial nuclei of the cerebellum and around neurons of the vestibular nuclei. This receptor protein binds a specific second messenger, inositol 1,4,5-trisphosphate, which produces a mobilization of intracellular Ca2+ and a modulation of transmitter release.

  2. Fat brains, greedy genes, and parent power: a biobehavioural risk model of child and adult obesity.

    PubMed

    Carnell, Susan; Kim, Yale; Pryor, Katherine

    2012-06-01

    We live in a world replete with opportunities to overeat highly calorific, palatable foods - yet not everyone becomes obese. Why? We propose that individuals show differences in appetitive traits (e.g. food cue responsiveness, satiety sensitivity) that manifest early in life and predict their eating behaviours and weight trajectories. What determines these traits? Parental feeding restriction is associated with higher child adiposity, pressure to eat with lower adiposity, and both strategies with less healthy eating behaviours, while authoritative feeding styles coincide with more positive outcomes. But, on the whole, twin and family studies argue that nature has a greater influence than nurture on adiposity and eating behaviour, and behavioural investigations of genetic variants that are robustly associated with obesity (e.g. FTO) confirm that genes influence appetite. Meanwhile, a growing body of neuroimaging studies in adults, children and high risk populations suggests that structural and functional variation in brain networks associated with reward, emotion and control might also predict appetite and obesity, and show genetic influence. Together these different strands of evidence support a biobehavioural risk model of obesity development. Parental feeding recommendations should therefore acknowledge the powerful - but modifiable - contribution of genetic and neurological influences to children's eating behaviour.

  3. CPG15 regulates synapse stability in the developing and adult brain

    PubMed Central

    Fujino, Tadahiro; Leslie, Jennifer H.; Eavri, Ronen; Chen, Jerry L.; Lin, Walter C.; Flanders, Genevieve H.; Borok, Erzsebet; Horvath, Tamas L.; Nedivi, Elly

    2011-01-01

    Use-dependent selection of optimal connections is a key feature of neural circuit development and, in the mature brain, underlies functional adaptation, such as is required for learning and memory. Activity patterns guide circuit refinement through selective stabilization or elimination of specific neuronal branches and synapses. The molecular signals that mediate activity-dependent synapse and arbor stabilization and maintenance remain elusive. We report that knockout of the activity-regulated gene cpg15 in mice delays developmental maturation of axonal and dendritic arbors visualized by anterograde tracing and diolistic labeling, respectively. Electrophysiology shows that synaptic maturation is also delayed, and electron microscopy confirms that many dendritic spines initially lack functional synaptic contacts. While circuits eventually develop, in vivo imaging reveals that spine maintenance is compromised in the adult, leading to a gradual attrition in spine numbers. Loss of cpg15 also results in poor learning. cpg15 knockout mice require more trails to learn, but once they learn, memories are retained. Our findings suggest that CPG15 acts to stabilize active synapses on dendritic spines, resulting in selective spine and arbor stabilization and synaptic maturation, and that synapse stabilization mediated by CPG15 is critical for efficient learning. PMID:22190461

  4. Effect of brain structure and function on reward anticipation in children and adults with attention deficit hyperactivity disorder combined subtype.

    PubMed

    Kappel, Viola; Lorenz, Robert C; Streifling, Martina; Renneberg, Babette; Lehmkuhl, Ulrike; Ströhle, Andreas; Salbach-Andrae, Harriet; Beck, Anne

    2015-07-01

    Attention deficit hyperactivity disorder (ADHD) is associated with decreased ventral-striatal responsiveness during reward anticipation. However, previous research mostly focused on adults with heterogeneous ADHD subtype and divers drug treatment status while studies in children with ADHD are sparse. Moreover, it remains unclear to what degree ADHD is characterized by a delay of normal brain structure or function maturation. We therefore attempt to determine whether results from structural and functional magnetic resonance imaging (fMRI) are associated with childhood and adult ADHD combined subtype (ADHD-CT). This study used fMRI to compare VS structure and function of 30 participants with ADHD-CT (16 adults, 14 children) and 30 controls (20 adults, 10 children), using a monetary incentive delay task. Joint analyses of structural and functional imaging data were conducted with Biological Parametric Mapping. Reward anticipation elicited decreased ventral-striatal responsiveness in adults but not in children with ADHD-CT. Children and adults with ADHD showed reduced ventral-striatal volume. Taking these gray matter differences into account, the results remained the same. These results suggest that decreased ventral-striatal responsiveness during reward anticipation is present in adults but not in children with ADHD-CT, irrespective of structural characteristics. The question arises whether ventral-striatal hypoactivity is an ADHD correlate that develops during the course of illness.

  5. Anatomy of the Brain

    MedlinePlus

    ... Young Adult Guidelines For brain tumor information and support Call: 800-886-ABTA (2282) or Complete our contact form Brain Tumor Information Brain Anatomy Brain Structure Neuron Anatomy Brain Tumor Symptoms Diagnosis Types of ...

  6. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function

    PubMed Central

    Garza-Lombó, Carla; Gonsebatt, María E.

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  7. Cardiovascular risks and brain function: a functional magnetic resonance imaging study of executive function in older adults.

    PubMed

    Chuang, Yi-Fang; Eldreth, Dana; Erickson, Kirk I; Varma, Vijay; Harris, Gregory; Fried, Linda P; Rebok, George W; Tanner, Elizabeth K; Carlson, Michelle C

    2014-06-01

    Cardiovascular (CV) risk factors, such as hypertension, diabetes, and hyperlipidemia are associated with cognitive impairment and risk of dementia in older adults. However, the mechanisms linking them are not clear. This study aims to investigate the association between aggregate CV risk, assessed by the Framingham general cardiovascular risk profile, and functional brain activation in a group of community-dwelling older adults. Sixty participants (mean age: 64.6 years) from the Brain Health Study, a nested study of the Baltimore Experience Corps Trial, underwent functional magnetic resonance imaging using the Flanker task. We found that participants with higher CV risk had greater task-related activation in the left inferior parietal region, and this increased activation was associated with poorer task performance. Our results provide insights into the neural systems underlying the relationship between CV risk and executive function. Increased activation of the inferior parietal region may offer a pathway through which CV risk increases risk for cognitive impairment.

  8. FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder.

    PubMed

    Lai, Cecilia S L; Gerrelli, Dianne; Monaco, Anthony P; Fisher, Simon E; Copp, Andrew J

    2003-11-01

    Disruption of FOXP2, a gene encoding a forkhead-domain transcription factor, causes a severe developmental disorder of verbal communication, involving profound articulation deficits, accompanied by linguistic and grammatical impairments. Investigation of the neural basis of this disorder has been limited previously to neuroimaging of affected children and adults. The discovery of the gene responsible, FOXP2, offers a unique opportunity to explore the relevant neural mechanisms from a molecular perspective. In the present study, we have determined the detailed spatial and temporal expression pattern of FOXP2 mRNA in the developing brain of mouse and human. We find expression in several structures including the cortical plate, basal ganglia, thalamus, inferior olives and cerebellum. These data support a role for FOXP2 in the development of corticostriatal and olivocerebellar circuits involved in motor control. We find intriguing concordance between regions of early expression and later sites of pathology suggested by neuroimaging. Moreover, the homologous pattern of FOXP2/Foxp2 expression in human and mouse argues for a role for this gene in development of motor-related circuits throughout mammalian species. Overall, this study provides support for the hypothesis that impairments in sequencing of movement and procedural learning might be central to the FOXP2-related speech and language disorder.

  9. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    ClinicalTrials.gov

    2017-01-17

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  10. Differential Modulation of Rhythmic Brain Activity in Healthy Adults by a T-Type Calcium Channel Blocker: An MEG Study.

    PubMed

    Walton, Kerry D; Maillet, Emeline L; Garcia, John; Cardozo, Timothy; Galatzer-Levy, Isaac; Llinás, Rodolfo R

    2017-01-01

    1-octanol is a therapeutic candidate for disorders involving the abnormal activation of the T-type calcium current since it blocks this current specifically. Such disorders include essential tremor and a group of neurological and psychiatric disorders resulting from thalamocortical dysrhythmia (TCD). For example, clinically, the observable phenotype in essential tremor is the tremor itself. The differential diagnostic of TCD is not based only on clinical signs and symptoms. Rather, TCD incorporates an electromagnetic biomarker, the presence of abnormal thalamocortical low frequency brain oscillations. The effect of 1-octanol on brain activity has not been tested. As a preliminary step to such a TCD study, we examined the short-term effects of a single dose of 1-octanol on resting brain activity in 32 healthy adults using magnetoencephalograpy. Visual inspection of baseline power spectra revealed that the subjects fell into those with strong low frequency activity (set 2, n = 11) and those without such activity, but dominated by an alpha peak (set 1, n = 22). Cross-validated linear discriminant analysis, using mean spectral density (MSD) in nine frequency bands as predictors, found overall that 82.5% of the subjects were classified as determined by visual inspection. The effect of 1-octanol on the MSD in narrow frequency bands differed between the two subject groups. In set 1 subjects the MSD increased in the 4.5-6.5Hz and 6.5-8.5 Hz bands. This was consistent with a widening of the alpha peak toward lower frequencies. In the set two subjects the MSD decrease in the 2.5-4.5 Hz and 4.5-6.5 Hz bands. This decreased power is consistent with the blocking effect of 1-octanol on T-type calcium channels. The subjects reported no adverse effects of the 1-octanol. Since stronger low frequency activity is characteristic of patients with TCD, 1-octanol and other T-type calcium channel blockers are good candidates for treatment of this group of disorders following a placebo

  11. Differential Modulation of Rhythmic Brain Activity in Healthy Adults by a T-Type Calcium Channel Blocker: An MEG Study

    PubMed Central

    Walton, Kerry D.; Maillet, Emeline L.; Garcia, John; Cardozo, Timothy; Galatzer-Levy, Isaac; Llinás, Rodolfo R.

    2017-01-01

    1-octanol is a therapeutic candidate for disorders involving the abnormal activation of the T-type calcium current since it blocks this current specifically. Such disorders include essential tremor and a group of neurological and psychiatric disorders resulting from thalamocortical dysrhythmia (TCD). For example, clinically, the observable phenotype in essential tremor is the tremor itself. The differential diagnostic of TCD is not based only on clinical signs and symptoms. Rather, TCD incorporates an electromagnetic biomarker, the presence of abnormal thalamocortical low frequency brain oscillations. The effect of 1-octanol on brain activity has not been tested. As a preliminary step to such a TCD study, we examined the short-term effects of a single dose of 1-octanol on resting brain activity in 32 healthy adults using magnetoencephalograpy. Visual inspection of baseline power spectra revealed that the subjects fell into those with strong low frequency activity (set 2, n = 11) and those without such activity, but dominated by an alpha peak (set 1, n = 22). Cross-validated linear discriminant analysis, using mean spectral density (MSD) in nine frequency bands as predictors, found overall that 82.5% of the subjects were classified as determined by visual inspection. The effect of 1-octanol on the MSD in narrow frequency bands differed between the two subject groups. In set 1 subjects the MSD increased in the 4.5-6.5Hz and 6.5–8.5 Hz bands. This was consistent with a widening of the alpha peak toward lower frequencies. In the set two subjects the MSD decrease in the 2.5–4.5 Hz and 4.5–6.5 Hz bands. This decreased power is consistent with the blocking effect of 1-octanol on T-type calcium channels. The subjects reported no adverse effects of the 1-octanol. Since stronger low frequency activity is characteristic of patients with TCD, 1-octanol and other T-type calcium channel blockers are good candidates for treatment of this group of disorders following a

  12. Brain abscesses associated with right-to-left shunts in adults.

    PubMed

    Memon, Kashif A; Cleveland, Kerry O; Gelfand, Michael S

    2012-04-01

    Although brain abscesses are frequently cryptogenic in origin, bacteria must reach the brain either by direct or hematogenous spread. Right-to-left shunts, caused either by intrapulmonary vascular malformations or congenital heart defects, may allow microorganisms to evade the normal host defenses in the lungs and lead to development of brain abscesses. Two patients recently presented with brain abscesses and were found to have conditions associated with right-to-left shunts. The diagnosis of brain abscess should prompt the clinician to consider right-to-left shunts as a possible predisposing condition for brain abscess.

  13. Brain-specific tropomyosins TMBr-1 and TMBr-3 have distinct patterns of expression during development and in adult brain.

    PubMed Central

    Stamm, S; Casper, D; Lees-Miller, J P; Helfman, D M

    1993-01-01

    In this study we report on the developmental and regional expression of two brain-specific isoforms of tropomyosin, TMBr-1 and TMBr-3, that are generated from the rat alpha-tropomyosin gene via the use of alternative promoters and alternative RNA splicing. Western blot analysis using an exon-specific peptide polyclonal antibody revealed that the two isoforms are differentially expressed in development with TMBr-3 appearing in the embryonic brain at 16 days of gestation, followed by the expression of TMBr-1 at 20 days after birth. TMBr-3 was detected in all brain regions examined, whereas TMBr-1 was detected predominantly in brain areas that derived from the prosencephalon. Immunocytochemical studies on mixed primary cultures made from rat embryonic midbrain indicate that expression of the brain-specific epitope is restricted to neurons. The developmental pattern and neuronal localization of these forms of tropomyosin suggest that these isoforms have a specialized role in the development and plasticity of the nervous system. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7694294

  14. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats.

    PubMed

    Hua, Kun; Schindler, Matthew K; McQuail, Joseph A; Forbes, M Elizabeth; Riddle, David R

    2012-01-01

    Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like brain irradiation and

  15. Non-Exercise Estimated Cardiorespiratory Fitness: Associations with Brain Structure, Cognition, and Memory Complaints in Older Adults

    PubMed Central

    McAuley, Edward; Szabo, Amanda N.; Mailey, Emily L.; Erickson, Kirk I.; Voss, Michelle; White, Siobhan M.; Wójcicki, Thomas R.; Gothe, Neha; Olson, Erin A.; Mullen, Sean P.; Kramer, Arthur F.

    2011-01-01

    There is increasing evidence that cardiorespiratory fitness (CRF) is associated with brain structure and function, and improvements in CRF through exercise training have been associated with neural and cognitive functioning in older adults. The objectives of this study were to validate the use of a non-exercise estimate of CRF, and to examine its association with cognitive function, brain structure and subjective memory complaints. Low active, older adults (N = 86; M age= 65.14) completed a physician-supervised maximal exercise test, a 1-mile timed walk, several measures of cognitive function, and a 3 Tesla structural MRI. Fitness was also calculated from an equation derived by (Jurca et al., 2005) based on age, sex, body mass index, resting heart rate, and self-reported physical activity level. Analyses indicated that all three measures of CRF were significantly correlated with one another. In addition, measures of cognitive function, hippocampus volume, and memory complaints were significantly correlated with each measure of fitness. These findings have implications for using a low-risk, low-cost, non-exercise estimate of CRF in determining fitness associations with brain structure and cognitive function in older adults. As such, this measure may have utility for larger population based studies. Further validation is required, as is determination of whether such relationships hold over the course of exercise interventions. PMID:21808657

  16. Whole-brain grey matter density predicts balance stability irrespective of age and protects older adults from falling.

    PubMed

    Boisgontier, Matthieu P; Cheval, Boris; van Ruitenbeek, Peter; Levin, Oron; Renaud, Olivier; Chanal, Julien; Swinnen, Stephan P

    2016-03-01

    Functional and structural imaging studies have demonstrated the involvement of the brain in balance control. Nevertheless, how decisive grey matter density and white matter microstructural organisation are in predicting balance stability, and especially when linked to the effects of ageing, remains unclear. Standing balance was tested on a platform moving at different frequencies and amplitudes in 30 young and 30 older adults, with eyes open and with eyes closed. Centre of pressure variance was used as an indicator of balance instability. The mean density of grey matter and mean white matter microstructural organisation were measured using voxel-based morphometry and diffusion tensor imaging, respectively. Mixed-effects models were built to analyse the extent to which age, grey matter density, and white matter microstructural organisation predicted balance instability. Results showed that both grey matter density and age independently predicted balance instability. These predictions were reinforced when the level of difficulty of the conditions increased. Furthermore, grey matter predicted balance instability beyond age and at least as consistently as age across conditions. In other words, for balance stability, the level of whole-brain grey matter density is at least as decisive as being young or old. Finally, brain grey matter appeared to be protective against falls in older adults as age increased the probability of losing balance in older adults with low, but not moderate or high grey matter density. No such results were observed for white matter microstructural organisation, thereby reinforcing the specificity of our grey matter findings.

  17. Probabilistic tractography using Q-ball imaging and particle filtering: application to adult and in-utero fetal brain studies.

    PubMed

    Pontabry, J; Rousseau, F; Oubel, E; Studholme, C; Koob, M; Dietemann, J-L

    2013-04-01

    By assuming that orientation information of brain white matter fibers can be inferred from Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) measurements, tractography algorithms provide an estimation of the brain connectivity in vivo. The two key ingredients of tractography are the diffusion model (tensor, high-order tensor, Q-ball, etc.) and the means to deal with uncertainty during the tracking process (deterministic vs probabilistic mathematical framework). In this paper, we investigate the use of an analytical Q-ball model for the diffusion data within a well-formalized particle filtering framework. The proposed method is validated and compared to other tracking algorithms on the MICCAI'09 contest Fiber Cup phantom. Tractographies of in vivo adult and fetal brain Diffusion-Weighted Images (DWIs) are also shown to illustrate the robustness of the algorithm.

  18. Similar brain activation during false belief tasks in a large sample of adults with and without autism.

    PubMed

    Dufour, Nicholas; Redcay, Elizabeth; Young, Liane; Mavros, Penelope L; Moran, Joseph M; Triantafyllou, Christina; Gabrieli, John D E; Saxe, Rebecca

    2013-01-01

    Reading about another person's beliefs engages 'Theory of Mind' processes and elicits highly reliable brain activation across individuals and experimental paradigms. Using functional magnetic resonance imaging, we examined activation during a story task designed to elicit Theory of Mind processing in a very large sample of neurotypical (N = 462) individuals, and a group of high-functioning individuals with autism spectrum disorders (N = 31), using both region-of-interest and whole-brain analyses. This large sample allowed us to investigate group differences in brain activation to Theory of Mind tasks with unusually high sensitivity. There were no differences between neurotypical participants and those diagnosed with autism spectrum disorder. These results imply that the social cognitive impairments typical of autism spectrum disorder can occur without measurable changes in the size, location or response magnitude of activity during explicit Theory of Mind tasks administered to adults.

  19. Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model.

    PubMed

    Acosta, Sandra A; Tajiri, Naoki; Shinozuka, Kazutaka; Ishikawa, Hiroto; Grimmig, Bethany; Diamond, David M; Diamond, David; Sanberg, Paul R; Bickford, Paula C; Kaneko, Yuji; Borlongan, Cesar V

    2013-01-01

    The long-term consequences of traumatic brain injury (TBI), specifically the detrimental effects of inflammation on the neurogenic niches, are not very well understood. In the present in vivo study, we examined the prolonged pathological outcomes of experimental TBI in different parts of the rat brain with special emphasis on inflammation and neurogenesis. Sixty days after moderate controlled cortical impact injury, adult Sprague-Dawley male rats were euthanized and brain tissues harvested. Antibodies against the activated microglial marker, OX6, the cell cycle-regulating protein marker, Ki67, and the immature neuronal marker, doublecortin, DCX, were used to estimate microglial activation, cell proliferation, and neuronal differentiation, respectively, in the subventricular zone (SVZ), subgranular zone (SGZ), striatum, thalamus, and cerebral peduncle. Stereology-based analyses revealed significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle. In parallel, significant decrements in Ki67-positive proliferating cells in SVZ and SGZ, but only trends of reduced DCX-positive immature neuronal cells in SVZ and SGZ were detected relative to sham control group. These results indicate a progressive deterioration of the TBI brain over time characterized by elevated inflammation and suppressed neurogenesis. Therapeutic intervention at the chronic stage of TBI may confer abrogation of these deleterious cell death processes.

  20. Mouse embryonic stem cell-derived cells reveal niches that support neuronal differentiation in the adult rat brain.

    PubMed

    Maya-Espinosa, Guadalupe; Collazo-Navarrete, Omar; Millán-Aldaco, Diana; Palomero-Rivero, Marcela; Guerrero-Flores, Gilda; Drucker-Colín, René; Covarrubias, Luis; Guerra-Crespo, Magdalena

    2015-02-01

    A neurogenic niche can be identified by the proliferation and differentiation of its naturally residing neural stem cells. However, it remains unclear whether "silent" neurogenic niches or regions suitable for neural differentiation, other than the areas of active neurogenesis, exist in the adult brain. Embryoid body (EB) cells derived from embryonic stem cells (ESCs) are endowed with a high potential to respond to specification and neuralization signals of the embryo. Hence, to identify microenvironments in the postnatal and adult rat brain with the capacity to support neuronal differentiation, we transplanted dissociated EB cells to conventional neurogenic and non-neurogenic regions. Our results show a neuronal differentiation pattern of EB cells that was dependent on the host region. Efficient neuronal differentiation of EB cells occurred within an adjacent region to the rostral migratory stream. EB cell differentiation was initially patchy and progressed toward an even distribution along the graft by 15-21 days post-transplantation, giving rise mostly to GABAergic neurons. EB cells in the striatum displayed a lower level of neuronal differentiation and derived into a significant number of astrocytes. Remarkably, when EB cells were transplanted to the striatum of adult rats after a local ischemic stroke, increased number of neuroblasts and neurons were observed. Unexpectedly, we determined that the adult substantia nigra pars compacta, considered a non-neurogenic area, harbors a robust neurogenic environment. Therefore, neurally uncommitted cells derived from ESCs can detect regions that support neuronal differentiation within the adult brain, a fundamental step for the development of stem cell-based replacement therapies.

  1. Expression, synaptic localization, and developmental regulation of Ack1/Pyk1, a cytoplasmic tyrosine kinase highly expressed in the developing and adult brain.

    PubMed

    Ureña, Jesús Mariano; La Torre, Anna; Martínez, Albert; Lowenstein, Eve; Franco, Neus; Winsky-Sommerer, Raphaelle; Fontana, Xavier; Casaroli-Marano, Ricardo; Ibáñez-Sabio, Miguel Angel; Pascual, Marta; Del Rio, José Antonio; de Lecea, Luis; Soriano, Eduardo

    2005-09-19

    Cytosolic tyrosine kinases play a critical role both in neural development and in adult brain function and plasticity. Here we isolated a cDNA with high homology to human Ack1 and mouse Tnk2. This cDNA directs the expression of a 125-kD protein that can be autophosphorylated in tyrosines. Initially, this clone was named Pyk1 for proline-rich tyrosine kinase (Lev et al., 1995); however, since it corresponds to the mouse homolog of Ack1, here we called it Ack1/Pyk1. In this study we show that Ack1/Pyk1 mRNA and protein is highly expressed in the developing and adult brain. The highest levels of Ack1/Pyk1 expression were detected in the hippocampus, neocortex, and cerebellum. Electron microscopy studies showed that Ack1/Pyk1 protein is expressed in these regions both at dendritic spines and presynaptic axon terminals, indicating a role in synaptic function. Furthermore, we demonstrate that Ack1/Pyk1 mRNA levels are strongly upregulated by increased neural activity, produced by intraperitoneal kainate injections. During development, Ack1/Pyk1 was also expressed in the proliferative ventricular zones and in postmitotic maturing neurons. In neuronal cultures, Ack1/Pyk1 was detected in developing dendrites and axons, including dendritic tips and growth cones. Moreover, Ack1/Pyk1 colocalized with Cdc42 GTPase in neuronal cultures and coimmunoprecipitated with Cdc42 in HEK 293T cells. Altogether, our findings indicate that Ack1/Pyk1 tyrosine kinase may be involved both in adult synaptic function and plasticity and in brain development.

  2. Objectively measured physical activity, brain atrophy, and white matter lesions in older adults with mild cognitive impairment.

    PubMed

    Doi, Takehiko; Makizako, Hyuma; Shimada, Hiroyuki; Tsutsumimoto, Kota; Hotta, Ryo; Nakakubo, Sho; Park, Hyuntae; Suzuki, Takao

    2015-02-01

    Physical activity may help to prevent or delay brain atrophy. Numerous studies have shown associations between physical activity and age-related changes in the brain. However, most of these studies involved self-reported physical activity, not objectively measured physical activity. Therefore, the aim of this study was to examine the association between objectively measured physical activity, as determined using accelerometers, and brain magnetic resonance imaging (MRI) measures in older adults with mild cognitive impairment (MCI). We analyzed 323 older subjects with MCI (mean age 71.4 years) who were recruited from the participants of the Obu Study of Health Promotion for the Elderly. We recorded demographic data and measured physical activity using a tri-axial accelerometer. Physical activity was classified as light-intensity physical activity (LPA) or moderate-to-vigorous physical activity (MVPA). Brain atrophy and the severity of white matter lesions (WML) were determined by MRI. Low levels of LPA and MVPA were associated with severe WML. Subjects with severe WML were older, had lower mobility, and had greater brain atrophy than subjects with mild WML (all P<0.05). Multivariate analysis revealed that more MVPA was associated with less brain atrophy, even after adjustment for WML (β=-0.126, P=0.015), but LPA was not (β=-0.102, P=0.136). Our study revealed that objectively measured physical activity, especially MVPA, was associated with brain atrophy in MCI subjects, even after adjusting for WML. These findings support the hypothesis that physical activity plays a crucial role in maintaining brain health.

  3. Expression of fragile X mental retardation protein in neurons and glia of the developing and adult mouse brain.

    PubMed

    Gholizadeh, Shervin; Halder, Sebok Kumar; Hampson, David R

    2015-01-30

    Fragile X syndrome is the most common inherited form of mental retardation and autism. It is caused by a reduction or elimination of the expression of fragile X mental retardation protein (FMRP). Because fragile X syndrome is a neurodevelopmental disorder, it is important to fully document the cell type expression in the developing CNS to provide a better understanding of the molecular function of FMRP, and the pathogenesis of the syndrome. We investigated FMRP expression in the brain using double-labeling immunocytochemistry and cell type markers for neurons (NeuN), astrocytes (S100β), microglia (Iba-1), and oligodendrocyte precursor cells (NG2). The hippocampus, striatum, cingulate cortex, retrosplenial cortex, corpus callosum and cerebellum were assessed in wild-type C57/BL6 mice at postnatal days 0, 10, 20, and adult. Our results demonstrate that FMRP is ubiquitously expressed in neurons at all times and brain regions studied, except for corpus callosum where FMRP was predominantly present in astrocytes at all ages. FMRP expression in Iba-1 and NG2-positive cells was detected at postnatal day 0 and 10 and gradually decreased to very low or undetectable levels in postnatal day 20 and adult mice. Our results reveal that in addition to continuous and extensive expression in neurons in the immature and mature brain, FMRP is also present in astrocytes, oligodendrocyte precursor cells, and microglia during the early and mid-postnatal developmental stages of brain maturation. Prominent expression of FMRP in glia during these crucial stages of brain development suggests an important contribution to normal brain function, and in its absence, to the fragile X phenotype.

  4. Development and psychometric properties of an informant assessment scale of theory of mind for adults with traumatic brain injury.

    PubMed

    Zhang, Dengke; Pang, Yanxia; Cai, Weixiong; Fazio, Rachel L; Ge, Jianrong; Su, Qiaorong; Xu, Shuiqin; Pan, Yinan; Chen, Sanmei; Zhang, Hongwei

    2016-08-01

    Impairment of theory of mind (ToM) is a common phenomenon following traumatic brain injury (TBI) that has clear effects on patients' social functioning. A growing body of research has focused on this area, and several methods have been developed to assess ToM deficiency. Although an informant assessment scale would be useful for examining individuals with TBI, very few studies have adopted this approach. The purpose of the present study was to develop an informant assessment scale of ToM for adults with traumatic brain injury (IASToM-aTBI) and to test its reliability and validity with 196 adults with TBI and 80 normal adults. A 44-item scale was developed following a literature review, interviews with patient informants, consultations with experts, item analysis, and exploratory factor analysis (EFA). The following three common factors were extracted: social interaction, understanding of beliefs, and understanding of emotions. The psychometric analyses indicate that the scale has good internal consistency reliability, split-half reliability, test-retest reliability, inter-rater reliability, structural validity, discriminate validity and criterion validity. These results provide preliminary evidence that supports the reliability and validity of the IASToM-aTBI as a ToM assessment tool for adults with TBI.

  5. Adolescent, but not adult, binge ethanol exposure leads to persistent global reductions of choline acetyltransferase expressing neurons in brain.

    PubMed

    Vetreno, Ryan P; Broadwater, Margaret; Liu, Wen; Spear, Linda P; Crews, Fulton T

    2014-01-01

    During the adolescent transition from childhood to adulthood, notable maturational changes occur in brain neurotransmitter systems. The cholinergic system is composed of several distinct nuclei that exert neuromodulatory control over cognition, arousal, and reward. Binge drinking and alcohol abuse are common during this stage, which might alter the developmental trajectory of this system leading to long-term changes in adult neurobiology. In Experiment 1, adolescent intermittent ethanol (AIE; 5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) treatment led to persistent, global reductions of choline acetyltransferase (ChAT) expression. Administration of the Toll-like receptor 4 agonist lipopolysaccharide to young adult rats (P70) produced a reduction in ChAT+IR that mimicked AIE. To determine if the binge ethanol-induced ChAT decline was unique to the adolescent, Experiment 2 examined ChAT+IR in the basal forebrain following adolescent (P28-P48) and adult (P70-P90) binge ethanol exposure. Twenty-five days later, ChAT expression was reduced in adolescent, but not adult, binge ethanol-exposed animals. In Experiment 3, expression of ChAT and vesicular acetylcholine transporter expression was found to be significantly reduced in the alcoholic basal forebrain relative to moderate drinking controls. Together, these data suggest that adolescent binge ethanol decreases adult ChAT expression, possibly through neuroimmune mechanisms, which might impact adult cognition, arousal, or reward sensitivity.

  6. Combination Immunosuppressive Therapy Including Rituximab for Epstein-Barr Virus-Associated Hemophagocytic Lymphohistiocytosis in Adult-Onset Still's Disease

    PubMed Central

    Schäfer, Eva Johanna; Jung, Wolfram

    2016-01-01

    Hemophagocytic lymphopcytosis (HLH) is a life-threatening condition. It can occur either as primary form with genetic defects or secondary to other conditions, such as hematological or autoimmune diseases. Certain triggering factors can predispose individuals to the development of HLH. We report the case of a 25-year-old male patient who was diagnosed with HLH in the context of adult-onset Still's disease (AOSD) during a primary infection with Epstein-Barr virus (EBV). During therapy with anakinra and dexamethasone, he was still symptomatic with high-spiking fevers, arthralgia, and sore throat. His laboratory values showed high levels of ferritin and C-reactive protein. His condition improved after the addition of rituximab and cyclosporine to his immunosuppressive regimen with prednisolone and anakinra. This combination therapy led to a sustained clinical and serological remission of his condition. While rituximab has been used successfully for HLH in the context of EBV-associated lymphoma, its use in autoimmune diseases is uncommon. We hypothesize that the development of HLH was triggered by a primary EBV infection and that rituximab led to elimination of EBV-infected B-cells, while cyclosporine ameliorated the cytokine excess. We therefore propose that this combination immunosuppressive therapy might be successfully used in HLH occurring in the context of autoimmune diseases. PMID:28018698

  7. Advanced BrainAGE in older adults with type 2 diabetes mellitus

    PubMed Central

    Franke, Katja; Gaser, Christian; Manor, Brad; Novak, Vera

    2013-01-01

    Aging alters brain structure and function and diabetes mellitus (DM) may accelerate this process. This study investigated the effects of type 2 DM on individual brain aging as well as the relationships between individual brain aging, risk factors, and functional measures. To differentiate a pattern of brain atrophy that deviates from normal brain aging, we used the novel BrainAGE approach, which determines the complex multidimensional aging pattern within the whole brain by applying established kernel regression methods to anatomical brain magnetic resonance images (MRI). The “Brain Age Gap Estimation” (BrainAGE) score was then calculated as the difference between chronological age and estimated brain age. 185 subjects (98 with type 2 DM) completed an MRI at 3Tesla, laboratory and clinical assessments. Twenty-five subjects (12 with type 2 DM) also completed a follow-up visit after 3.8 ± 1.5 years. The estimated brain age of DM subjects was 4.6 ± 7.2 years greater than their chronological age (p = 0.0001), whereas within the control group, estimated brain age was similar to chronological age. As compared to baseline, the average BrainAGE scores of DM subjects increased by 0.2 years per follow-up year (p = 0.034), whereas the BrainAGE scores of controls did not change between baseline and follow-up. At baseline, across all subjects, higher BrainAGE scores were associated with greater smoking and alcohol consumption, higher tumor necrosis factor alpha (TNFα) levels, lower verbal fluency scores and more severe deprepession. Within the DM group, higher BrainAGE scores were associated with longer diabetes duration (r = 0.31, p = 0.019) and increased fasting blood glucose levels (r = 0.34, p = 0.025). In conclusion, type 2 DM is independently associated with structural changes in the brain that reflect advanced aging. The BrainAGE approach may thus serve as a clinically relevant biomarker for the detection of abnormal patterns of brain aging associated with type 2

  8. Brain energy metabolism and intracranial pressure in idiopathic adult hydrocephalus syndrome

    PubMed Central

    Agren-Wilsson, A; Eklund, A; Koskinen, L; Bergenheim, A; Malm, J

    2005-01-01

    Background: The symptoms in idiopathic adult hydrocephalus syndrome (IAHS) are consistent with pathology involving the periventricular white matter, presumably reflecting ischaemia and CSF hydrodynamic disturbance. Objective: To investigate whether a change in intracranial pressure (ICP) can affect energy metabolism in deep white matter. Methods: A microdialysis catheter, a brain tissue oxygen tension probe, and an ICP transducer were inserted into the periventricular white matter 0–7 mm from the right frontal horn in 10 patients with IAHS. ICP and intracerebral PtiO2 were recorded continuously during lumbar CSF constant pressure infusion test. ICP was raised to pressure levels of 35 and 45 mm Hg for 10 minutes each, after which CSF drainage was undertaken. Microdialysis samples were collected every three minutes and analysed for glucose, lactate, pyruvate, and glutamate. Results: When raising the ICP, a reversible drop in the extracellular concentrations of glucose, lactate, and pyruvate was found. Comparing the values during baseline to values at the highest pressure level, the fall in glucose, lactate, and pyruvate was significant (p<0.05, Wilcoxon sign rank). There was no change in glutamate or the lactate to pyruvate ratio during ICP elevation. PtiO2 did not decrease during ICP elevation, but was significantly increased following CSF drainage. Conclusions: Raising intracranial pressure induces an immediate and reversible change in energy metabolism in periventricular white matter, without any sign of ischaemia. Theoretically, frequent ICP peaks (B waves) over a long period could eventually cause persisting axonal disturbance and subsequently the symptoms noted in IAHS. PMID:16024885

  9. Brain structures and functional connectivity associated with individual differences in Internet tendency in healthy young adults.

    PubMed

    Li, Weiwei; Li, Yadan; Yang, Wenjing; Zhang, Qinglin; Wei, Dongtao; Li, Wenfu; Hitchman, Glenn; Qiu, Jiang

    2015-04-01

    Internet addiction (IA) incurs significant social and financial costs in the form of physical side-effects, academic and occupational impairment, and serious relationship problems. The majority of previous studies on Internet addiction disorders (IAD) have focused on structural and functional abnormalities, while few studies have simultaneously investigated the structural and functional brain alterations underlying individual differences in IA tendencies measured by questionnaires in a healthy sample. Here we combined structural (regional gray matter volume, rGMV) and functional (resting-state functional connectivity, rsFC) information to explore the neural mechanisms underlying IAT in a large sample of 260 healthy young adults. The results showed that IAT scores were significantly and positively correlated with rGMV in the right dorsolateral prefrontal cortex (DLPFC, one key node of the cognitive control network, CCN), which might reflect reduced functioning of inhibitory control. More interestingly, decreased anticorrelations between the right DLPFC and the medial prefrontal cortex/rostral anterior cingulate cortex (mPFC/rACC, one key node of the default mode network, DMN) were associated with higher IAT scores, which might be associated with reduced efficiency of the CCN and DMN (e.g., diminished cognitive control and self-monitoring). Furthermore, the Stroop interference effect was positively associated with the volume of the DLPFC and with the IA scores, as well as with the connectivity between DLPFC and mPFC, which further indicated that rGMV variations in the DLPFC and decreased anticonnections between the DLPFC and mPFC may reflect addiction-related reduced inhibitory control and cognitive efficiency. These findings suggest the combination of structural and functional information can provide a valuable basis for further understanding of the mechanisms and pathogenesis of IA.

  10. Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult.

    PubMed

    Braak, H; Braak, E

    1986-01-01

    The pigmentoarchitectonic analysis of the human nucleus niger reveals three main territories: Pars compacta, pars diffusa and pars reticulata. Seven subnuclei are recognized within the pars compacta. The nerve cell types forming the nucleus niger were investigated using a Golgi de-impregnation technique in combination with counterstaining of intraneuronally deposited pigment granules. Three principal types of neurons were defined: Type I was a medium-sized to large neuron, mainly encountered in the pars compacta, giving off a few thick and sparsely branching dendrites. These cells were richly endowed with elongated patches of Nissl material that were mainly found in the peripheral portions of the dendrites. One pole of the cell body contained tightly packed neuromelanin granules. Type II neurons were mainly found in the pars reticulata. They were variable in size and shape and generated, similar to type I neurons, extended and sparsely branching dendrites. Type II neurons were devoid of neuromelanin. A considerable number of these cells were lacking in lipofuscin deposits as well. Type III neurons occurred in all portions of the nuclear complex. The small cell body gave rise to a few thin and spineless dendrites. The axon and filiform processes of the dendrites showed small varicosities irregularly spaced apart. The pale cytoplasm contained small and intensely stained lipofuscin granules, which did not tend to agglomerate. Intraneuronally deposited neuromelanin and lipofuscin pigment can be considered a natural marker of the neuronal type in the nucleus niger of the human adult. The technique and the data provide a basis for investigations of the aged and the diseased human brain.

  11. Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence.

    PubMed

    Traniello, Ian M; Sîrbulescu, Ruxandra F; Ilieş, Iulian; Zupanc, Günther K H

    2014-05-01

    Adult neurogenesis, the generation of new neurons in the adult central nervous system, is a reported feature of all examined vertebrate species. However, a dramatic decline in the rates of cell proliferation and neuronal differentiation occurs in mammals, typically starting near the onset of sexual maturation. In the present study, we examined possible age-related changes associated with adult neurogenesis in the brain of brown ghost knifefish (Apteronotus leptorhynchus), a teleost fish distinguished by its enormous neurogenic potential. Contrary to the well-established alterations in the mammalian brain during aging, in the brain of this teleostean species we could not find evidence for any significant age-related decline in the absolute levels of stem/progenitor cell proliferation, neuronal and glial differentiation, or long-term survival of newly generated cells. Moreover, there was no indication that the amount of glial fibrillary acidic protein or the number of apoptotic cells in the brain was altered significantly over the course of adult life. We hypothesize that this first demonstration of negligible cellular senescence in the vertebrate brain is related to the continued growth of this species and to the lack of reproductive senescence during adulthood. The establishment of the adult brain of this species as a novel model of negligible senescence provides new opportunities for the advancement of our understanding of the biology of aging and the fundamental mechanisms that underlie senescence in the brain.

  12. Intraindividual variability in physical and emotional functioning: comparison of adults with traumatic brain injuries and healthy adults.

    PubMed

    Burton, Catherine L; Hultsch, David F; Strauss, Esther; Hunter, Michael A

    2002-08-01

    Recent research has shown that individuals with certain neurological conditions demonstrate greater intraindividual variability on cognitive tasks compared to healthy controls. The present study investigated intraindividual variability in the domains of physical functioning and affect/stress in three groups: adults with mild head injuries, adults with moderate/severe head injuries, and healthy adults. Participants were assessed on 10 occasions and results indicated that (a) individuals with head injuries demonstrated greater variability in dominant finger dexterity and right grip strength than the healthy controls; (b) increased variability tended to be associated with poorer performance/report both within and across tasks; and (c) increased variability on one task was associated with increased variability on other tasks. The findings suggest that increased variability in physical function, as well as cognitive function, represents an indicator of neurological compromise.

  13. Susceptibility of juvenile and adult blood–brain barrier to endothelin-1: regulation of P-glycoprotein and breast cancer resistance protein expression and transport activity

    PubMed Central

    2012-01-01

    Background P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) play a critical role in keeping neurotoxic substances from entering the brain. We and others have previously reported an impact of inflammation on the regulation of adult blood–brain barrier (BBB) efflux transporters. However, studies in children have not been done. From the pediatric clinical perspective, it is important to understand how the central nervous system (CNS) and BBB drug efflux transporters differ in childhood from those of adults under normal and inflammatory conditions. Therefore, we examined and compared the regulation of P-gp and BCRP expression and transport activity in young and adult BBB and investigated the molecular mechanisms underlying inflammatory responses. Methods Rats at postnatal day (P) P21 and P84, corresponding to the juvenile and adult stages of human brain maturation, respectively, were treated with endothelin-1 (ET-1) given by the intracerebroventricular (icv) route. Twenty-four hours later, we measured P-gp and BCRP protein expression in isolated brain capillary by immunoblotting as well as by transport activity in vivo by measuring the unbound drug partitioning coefficient of the brain (Kp,uu,brain) of known efflux transporter substrates administered intravenously. Glial activation was measured by immunohistochemistry. The release of cytokines/chemokines (interleukins-1α, 1-β (IL-1β), -6 (IL-6), -10 (IL-10), monocyte chemoattractant protein (MCP-1/CCL2), fractalkine and tissue inhibitor of metalloproteinases-1 (TIMP-1)) were simultaneously measured in brain and serum samples using the Agilent Technology cytokine microarray. Results We found that juvenile and adult BBBs exhibited similar P-gp and BCRP transport activities in the normal physiological conditions. However, long-term exposure of the juvenile brain to low-dose of ET-1 did not change BBB P-gp transport activity but tended to decrease BCRP transport activity in the juvenile brain, while a

  14. Activities of 3β-HSD and Aromatase in Slices of Developing and Adult Zebra Finch Brain

    PubMed Central

    Tam, Helen; Schlinger, Barney A.

    2009-01-01

    Sex steroids influence the development and function of the songbird brain. Developmentally, the neural circuitry underlying song undergoes masculine differentiation under the influence of estradiol. In adults, estradiol stimulates song behavior and the seasonal growth of song control circuits. There is good reason to believe that these neuroactive estrogens are synthesized in the brain. At all ages, estrogens could act at the lateral ventricle, during migration, or where song nuclei exist or will form. We investigated the activity of two critical steroidogenic enzymes, 3β-hydroxysteroid dehydrogenase/isomerase (3βHSD) and aromatase, using a slice culture system. Sagittal brain slices were collected from juvenile (posthatch day 20) and adult zebra finches containing either the lateral ventricle, where neurons are born, or the telencephalic song nuclei HVC and RA. The slices were incubated with 3H dehydroepiandrosterone or 3H-androstenedione. Activity was determined by isolating certain products of 3βHSD (5α-androstanedione, 5β-androstanedione, estrone, and estradiol) and aromatase (estrone and estradiol). Activities of both 3βHSD and aromatase were detected in all slices and were confirmed using specific enzyme inhibitors. We found no significant difference in activity between adult males and females in either region for either enzyme. Juvenile female slices containing the lateral ventricle, however, showed greater levels of 3βHSD activity than did similar slices from age-matched males. Determination of the activity of these critical steroidogenic enzymes in slice culture has implications for the role of neurosteroids in brain development. PMID:16919626

  15. A different story on “Theory of Mind” deficit in adults with right hemisphere brain damage

    PubMed Central

    Tompkins, Connie A.; Scharp, Victoria L.; Fassbinder, Wiltrud; Meigh, Kimberly M.; Armstrong, Elizabeth M.

    2009-01-01

    Background Difficulties in social cognition and interaction can characterise adults with unilateral right hemisphere brain damage (RHD). Some pertinent evidence involves their apparently poor reasoning from a “Theory of Mind” perspective, which requires a capacity to attribute thoughts, beliefs, and intentions in order to understand other people’s behaviour. Theory of Mind is typically assessed with tasks that induce conflicting mental representations. Prior research with a commonly used text task reported that adults with RHD were less accurate in drawing causal inferences about mental states than at making non-mental-state causal inferences from control texts. However, the Theory of Mind and control texts differed in the number and nature of competing discourse entity representations. This stimulus discrepancy, together with the explicit measure of causal inferencing, likely put the adults with RHD at a disadvantage on the Theory of Mind texts. Aims This study revisited the question of Theory of Mind deficit in adults with RHD. The aforementioned Theory of Mind texts were used but new control texts were written to address stimulus discrepancies, and causal inferencing was assessed relatively implicitly. Adults with RHD were hypothesised not to display a Theory of Mind deficit under these conditions. Methods & Procedures The participants were 22 adults with unilateral RHD from cerebrovascular accident, and 38 adults without brain damage. Participants listened to spoken texts that targeted either mental-state or non-mental-state causal inferences. Each text was followed by spoken True/False probe sentences, to gauge target inference comprehension. Both accuracy and RT data were recorded. Data were analysed with mixed, two-way Analyses of Variance (Group by Text Type). Outcomes & Results There was a main effect of Text Type in both accuracy and RT analyses, with a performance advantage for the Theory of Mind/mental-state inference stimuli. The control group

  16. Distribution and characterization of doublecortin-expressing cells and fibers in the brain of the adult pigeon (Columba livia).

    PubMed

    Melleu, F F; Santos, T S; Lino-de-Oliveira, C; Marino-Neto, J

    2013-01-01

    Doublecortin (DCX) is a microtubule-associated protein essential for the migration of immature neurons in the developing and adult vertebrate brain. Herein, the distribution of DCX-immunoreactive (DCX-ir) cells in the prosencephalon of the adult pigeon (Columba livia) is described, in order to collect the evidence of their immature neural phenotype and to investigate their putative place of origin. Bipolar and multipolar DCX-ir cells were observed to be widespread throughout the parenchyma of the adult pigeon forebrain. Small, bipolar and fusiform DCX-ir cells were especially concentrated at the tips of the lateral walls of the lateral ventricles (VZ) and sparsely distributed in the remaining ependyma. Multipolar DCX-ir cells populated the pallial regions. None of these DCX-ir cells seemed to co-express NeuN or GFAP, suggesting that they were immature neurons. Two different migratory-like routes of DCX-ir cells from the VZ toward different targets in the parenchyma were putatively identified: (i) rostral migratory-like bundle; and (ii) lateral migratory-like bundle. In addition, pial surface bundles and intra-ependymal fascicles were also observed. Pigeons treated with 5-bromo-desoxyuridine (BrdU, 3 intraperitoneal injections of 100mg/kg 2h apart, sacrificed 2h after last injection) displayed BrdU-immunoreactive cells (BrdU-ir) in VZ and ependyma whereas the parenchyma was free of such cells. Despite the regional overlapping, there was no evidence of double-labeling between BrdU and DCX. Therefore, the VZ in the brain of adult pigeons seems to have rapidly dividing cells as putative progenitors of newborn neurons populating the forebrain. The distribution of the newborn neurons in the avian prosencephalon and their migration pathways appear to be larger than in mammals, suggesting that the morphological turnover of forebrain circuits is an important mechanism for brain plasticity in avian species during adulthood.

  17. Changes in the modulation of brain activity during context encoding vs. context retrieval across the adult lifespan.

    PubMed

    Ankudowich, E; Pasvanis, S; Rajah, M N

    2016-06-14

    Age-related de