Science.gov

Sample records for adult cardiac cells

  1. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells.

    PubMed

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; MacLellan, W Robb; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  2. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  3. Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function

    PubMed Central

    Pagliari, Stefania; Jelinek, Jakub; Grassi, Gabriele; Forte, Giancarlo

    2014-01-01

    The identification of different pools of cardiac progenitor cells resident in the adult mammalian heart opened a new era in heart regeneration as a means to restore the loss of functional cardiac tissue and overcome the limited availability of donor organs. Indeed, resident stem cells are believed to participate to tissue homeostasis and renewal in healthy and damaged myocardium although their actual contribution to these processes remain unclear. The poor outcome in terms of cardiac regeneration following tissue damage point out at the need for a deeper understanding of the molecular mechanisms controlling CPC behavior and fate determination before new therapeutic strategies can be developed. The regulation of cardiac resident stem cell fate and function is likely to result from the interplay between pleiotropic signaling pathways as well as tissue- and cell-specific regulators. Such a modular interaction—which has already been described in the nucleus of a number of different cells where transcriptional complexes form to activate specific gene programs—would account for the unique responses of cardiac progenitors to general and tissue-specific stimuli. The study of the molecular determinants involved in cardiac stem/progenitor cell regulatory mechanisms may shed light on the processes of cardiac homeostasis in health and disease and thus provide clues on the actual feasibility of cardiac cell therapy through tissue-specific progenitors. PMID:25071583

  4. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells.

    PubMed

    Ye, Lei; Haider, Husnain Kh; Sim, Eugene K W

    2006-01-01

    The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type. PMID:16380640

  5. Constitutive properties of adult mammalian cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Richardson, K.; Cowles, M. K.; Buckley, J. M.; Koide, M.; Cowles, B. A.; Gharpuray, V.; Cooper, G. 4th

    1998-01-01

    BACKGROUND: The purpose of this study was to determine whether changes in the constitutive properties of the cardiac muscle cell play a causative role in the development of diastolic dysfunction. METHODS AND RESULTS: Cardiocytes from normal and pressure-hypertrophied cats were embedded in an agarose gel, placed on a stretching device, and subjected to a change in stress (sigma), and resultant changes in cell strain (epsilon) were measured. These measurements were used to examine the passive elastic spring, viscous damping, and myofilament activation. The passive elastic spring was assessed in protocol A by increasing the sigma on the agarose gel at a constant rate to define the cardiocyte sigma-versus-epsilon relationship. Viscous damping was assessed in protocol B from the loop area between the cardiocyte sigma-versus-epsilon relationship during an increase and then a decrease in sigma. In both protocols, myofilament activation was minimized by a reduction in [Ca2+]i. Myofilament activation effects were assessed in protocol C by defining cardiocyte sigma versus epsilon during an increase in sigma with physiological [Ca2+]i. In protocol A, the cardiocyte sigma-versus-epsilon relationship was similar in normal and hypertrophied cells. In protocol B, the loop area was greater in hypertrophied than normal cardiocytes. In protocol C, the sigma-versus-epsilon relation in hypertrophied cardiocytes was shifted to the left compared with normal cells. CONCLUSIONS: Changes in viscous damping and myofilament activation in combination may cause pressure-hypertrophied cardiocytes to resist changes in shape during diastole and contribute to diastolic dysfunction.

  6. Cardiac imaging in adults

    SciTech Connect

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  7. Cardiac regenerative potential of cardiosphere-derived cells from adult dog hearts

    PubMed Central

    Hensley, Michael Taylor; de Andrade, James; Keene, Bruce; Meurs, Kathryn; Tang, Junnan; Wang, Zegen; Caranasos, Thomas G; Piedrahita, Jorge; Li, Tao-Sheng; Cheng, Ke

    2015-01-01

    The regenerative potential of cardiosphere-derived cells (CDCs) for ischaemic heart disease has been demonstrated in mice, rats, pigs and a recently completed clinical trial. The regenerative potential of CDCs from dog hearts has yet to be tested. Here, we show that canine CDCs can be produced from adult dog hearts. These cells display similar phenotypes in comparison to previously studied CDCs derived from rodents and human beings. Canine CDCs can differentiate into cardiomyocytes, smooth muscle cells and endothelial cells in vitro. In addition, conditioned media from canine CDCs promote angiogenesis but inhibit cardiomyocyte death. In a doxorubicin-induced mouse model of dilated cardiomyopathy (DCM), intravenous infusion of canine CDCs improves cardiac function and decreases cardiac fibrosis. Histology revealed that injected canine CDCs engraft in the mouse heart and increase capillary density. Out study demonstrates the regenerative potential of canine CDCs in a mouse model of DCM. PMID:25854418

  8. Adult stem cells and biocompatible scaffolds as smart drug delivery tools for cardiac tissue repair.

    PubMed

    Pagliari, Stefania; Romanazzo, Sara; Mosqueira, Diogo; Pinto-do-Ó, Perpetua; Aoyagi, Takao; Forte, Giancarlo

    2013-01-01

    The contribution of adult stem cells to cardiac repair is mostly ascribed to an indirect paracrine effect, rather than to their actual engraftment and differentiation into new contractile and vascular cells. This effect consists in a direct reduction of host cell death, promotion of neovascularization, and in a "bystander effect" on local inflammation. A number of cytokines secreted by adult stem/progenitor cells has been proposed to be responsible for the consistent beneficial effect reported in the early attempts to deliver different stem cell subsets to the injured myocardium. Aiming to maximize their beneficial activity on the diseased myocardium, the genetic modification of adult stem cells to enhance and/or control the secretion of specific cytokines would turn them into active drug delivery vectors. On the other hand, engineering biocompatible scaffolds as to release paracrine factors could result in multiple advantages: (1) achieve a local controlled release of the drug of interest, thus minimizing off-target effects, (2) enhance stem cell retention in the injured area and (3) boost the beneficial paracrine effects exerted by adult stem cells on the host tissue. In the present review, a critical overview of the state-of-the-art in the modification of stem cells and the functionalization of biocompatible scaffolds to deliver beneficial soluble factors to the injured myocardium is offered. Besides the number of concerns to be addressed before a clinical application can be foreseen for such concepts, this path could translate into the generation of active scaffolds as smart cell and drug delivery systems for cardiac repair. PMID:23745554

  9. The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult.

    PubMed

    Nadal-Ginard, Bernardo; Ellison, Georgina M; Torella, Daniele

    2014-11-01

    Resident cardiac stem cells in embryonic, neonatal and adult mammalian heart have been identified by different membrane markers and transcription factors. However, despite a flurry of publications no consensus has been reached on the identity and actual regenerative effects of the adult cardiac stem cells. Intensive research on the adult mammalian heart's capacity for self-renewal of its muscle cell mass has led to a consensus that new cardiomyocytes (CMs) are indeed formed throughout adult mammalian life albeit at a disputed frequency. The physiological significance of this renewal, the origin of the new CMs, and the rate of adult CM turnover are still highly debated. Myocyte replacement, particularly after injury, was originally attributed to differentiation of a stem cell compartment. More recently, it has been reported that CMs are mainly replaced by the division of pre-existing post-mitotic CMs. These latter results, if confirmed, would shift the target of regenerative therapy toward boosting mature CM cell-cycle re-entry. Despite this controversy, it is documented that the adult endogenous c-kit(pos) cardiac stem cells (c-kit(pos) eCSCs) participate in adaptations to myocardial stress, and, when transplanted into the myocardium, regenerate most cardiomyocytes and microvasculature lost in an infarct. Nevertheless, the in situ myogenic potential of adult c-kit(pos) cardiac cells has been questioned. To revisit the regenerative potential of c-kit(pos) eCSCs, we have recently employed experimental protocols of severe diffuse myocardial damage in combination with several genetic murine models and cell transplantation approaches showing that eCSCs are necessary and sufficient for CM regeneration, leading to complete cellular, anatomical, and functional myocardial recovery. Here we will review the available data on adult eCSC biology and their regenerative potential placing it in the context of the different claimed mechanisms of CM replacement. These data are in

  10. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult.

    PubMed

    Silva, A C; Rodrigues, S C; Caldeira, J; Nunes, A M; Sampaio-Pinto, V; Resende, T P; Oliveira, M J; Barbosa, M A; Thorsteinsdóttir, S; Nascimento, D S; Pinto-do-Ó, P

    2016-10-01

    A main challenge in cardiac tissue engineering is the limited data on microenvironmental cues that sustain survival, proliferation and functional proficiency of cardiac cells. The aim of our study was to evaluate the potential of fetal (E18) and adult myocardial extracellular matrix (ECM) to support cardiac cells. Acellular three-dimensional (3D) bioscaffolds were obtained by parallel decellularization of fetal- and adult-heart explants thereby ensuring reliable comparison. Acellular scaffolds retained main constituents of the cardiac ECM including distinctive biochemical and structural meshwork features of the native equivalents. In vitro, fetal and adult ECM-matrices supported 3D culture of heart-derived Sca-1(+) progenitors and of neonatal cardiomyocytes, which migrated toward the center of the scaffold and displayed elongated morphology and excellent viability. At the culture end-point, more Sca-1(+) cells and cardiomyocytes were found adhered and inside fetal bioscaffolds, compared to the adult. Higher repopulation yields of Sca-1(+) cells on fetal ECM relied on β1-integrin independent mitogenic signals. Sca-1(+) cells on fetal bioscaffolds showed a gene expression profile that anticipates the synthesis of a permissive microenvironment for cardiomyogenesis. Our findings demonstrate the superior potential of the 3D fetal microenvironment to support and instruct cardiac cells. This knowledge should be integrated in the design of next-generation biomimetic materials for heart repair. PMID:27424216

  11. Isolation and Culture of Adult Mouse Cardiomyocytes for Cell Signaling and in vitro Cardiac Hypertrophy

    PubMed Central

    Li, Daxiang; Wu, Jian; Bai, Yan; Zhao, Xiaochen; Liu, Lijun

    2014-01-01

    Technological advances have made genetically modified mice, including transgenic and gene knockout mice, an essential tool in many research fields. Adult cardiomyocytes are widely accepted as a good model for cardiac cellular physiology and pathophysiology, as well as for pharmaceutical intervention. Genetically modified mice preclude the need for complicated cardiomyocyte infection processes to generate the desired genotype, which are inefficient due to cardiomyocytes’ terminal differentiation. Isolation and culture of high quantity and quality functional cardiomyocytes will dramatically benefit cardiovascular research and provide an important tool for cell signaling transduction research and drug development. Here, we describe a well-established method for isolation of adult mouse cardiomyocytes that can be implemented with little training. The mouse heart is excised and cannulated to an isolated heart system, then perfused with a calcium-free and high potassium buffer followed by type II collagenase digestion in Langendorff retrograde perfusion mode. This protocol yields a consistent result for the collection of functional adult mouse cardiomyocytes from a variety of genetically modified mice. PMID:24894542

  12. Three-Dimensional Adult Cardiac Extracellular Matrix Promotes Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Fong, Ashley H; Romero-López, Mónica; Heylman, Christopher M; Keating, Mark; Tran, David; Sobrino, Agua; Tran, Anh Q; Pham, Hiep H; Fimbres, Cristhian; Gershon, Paul D; Botvinick, Elliot L; George, Steven C; Hughes, Christopher C W

    2016-08-01

    Pluripotent stem cell-derived cardiomyocytes (CMs) have great potential in the development of new therapies for cardiovascular disease. In particular, human induced pluripotent stem cells (iPSCs) may prove especially advantageous due to their pluripotency, their self-renewal potential, and their ability to create patient-specific cell lines. Unfortunately, pluripotent stem cell-derived CMs are immature, with characteristics more closely resembling fetal CMs than adult CMs, and this immaturity has limited their use in drug screening and cell-based therapies. Extracellular matrix (ECM) influences cellular behavior and maturation, as does the geometry of the environment-two-dimensional (2D) versus three-dimensional (3D). We therefore tested the hypothesis that native cardiac ECM and 3D cultures might enhance the maturation of iPSC-derived CMs in vitro. We demonstrate that maturation of iPSC-derived CMs was enhanced when cells were seeded into a 3D cardiac ECM scaffold, compared with 2D culture. 3D cardiac ECM promoted increased expression of calcium-handling genes, Junctin, CaV1.2, NCX1, HCN4, SERCA2a, Triadin, and CASQ2. Consistent with this, we find that iPSC-derived CMs in 3D adult cardiac ECM show increased calcium signaling (amplitude) and kinetics (maximum upstroke and downstroke) compared with cells in 2D. Cells in 3D culture were also more responsive to caffeine, likely reflecting an increased availability of calcium in the sarcoplasmic reticulum. Taken together, these studies provide novel strategies for maturing iPSC-derived CMs that may have applications in drug screening and transplantation therapies to treat heart disease. PMID:27392582

  13. O-GlcNAcylation Negatively Regulates Cardiomyogenic Fate in Adult Mouse Cardiac Mesenchymal Stromal Cells.

    PubMed

    Zafir, Ayesha; Bradley, James A; Long, Bethany W; Muthusamy, Senthilkumar; Li, Qianhong; Hill, Bradford G; Wysoczynski, Marcin; Prabhu, Sumanth D; Bhatnagar, Aruni; Bolli, Roberto; Jones, Steven P

    2015-01-01

    In both preclinical and clinical studies, cell transplantation of several cell types is used to promote repair of damaged organs and tissues. Nevertheless, despite the widespread use of such strategies, there remains little understanding of how the efficacy of cell therapy is regulated. We showed previously that augmentation of a unique, metabolically derived stress signal (i.e., O-GlcNAc) improves survival of cardiac mesenchymal stromal cells; however, it is not known whether enhancing O-GlcNAcylation affects lineage commitment or other aspects of cell competency. In this study, we assessed the role of O-GlcNAc in differentiation of cardiac mesenchymal stromal cells. Exposure of these cells to routine differentiation protocols in culture increased markers of the cardiomyogenic lineage such as Nkx2.5 and connexin 40, and augmented the abundance of transcripts associated with endothelial and fibroblast cell fates. Differentiation significantly decreased the abundance of O-GlcNAcylated proteins. To determine if O-GlcNAc is involved in stromal cell differentiation, O-GlcNAcylation was increased pharmacologically during the differentiation protocol. Although elevated O-GlcNAc levels did not significantly affect fibroblast and endothelial marker expression, acquisition of cardiomyocyte markers was limited. In addition, increasing O-GlcNAcylation further elevated smooth muscle actin expression. In addition to lineage commitment, we also evaluated proliferation and migration, and found that increasing O-GlcNAcylation did not significantly affect either; however, we found that O-GlcNAc transferase--the protein responsible for adding O-GlcNAc to proteins--is at least partially required for maintaining cellular proliferative and migratory capacities. We conclude that O-GlcNAcylation contributes significantly to cardiac mesenchymal stromal cell lineage and function. O-GlcNAcylation and pathological conditions that may affect O-GlcNAc levels (such as diabetes) should be

  14. [Stem cells and cardiac regeneration].

    PubMed

    Perez Millan, Maria Ines; Lorenti, Alicia

    2006-01-01

    Stem cells are defined by virtue of their functional attributes: absence of tissue specific differentitated markers, capable of proliferation, able to self-maintain the population, able to produce a large number of differentiated, functional progeny, able to regenerate the tissue after injury. Cell therapy is an alternative for the treatment of several diseases, like cardiac diseases (cell cardiomyoplasty). A variety of stem cells could be used for cardiac repair: from cardiac and extracardiac sources. Each cell type has its own profile of advantages, limitations, and practicability issues in specific clinical settings. Differentiation of bone marrow stem cells to cardiomyocyte-like cells have been observed under different culture conditions. The presence of resident cardiac stem cell population capable of differentiation into cardiomyocyte or vascular lineage suggests that these cells could be used for cardiac tissue repair, and represent a great promise for clinical application. Stem cells mobilization by cytokines may also offer a strategy for cardiac regeneration. The use of stem cells (embryonic and adult) may hold the key to replacing cells lost in many devastating diseases. This potential benefit is a major focus for stem cell research. PMID:17240634

  15. Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts.

    PubMed

    Chimenti, Isotta; Gaetani, Roberto; Barile, Lucio; Forte, Elvira; Ionta, Vittoria; Angelini, Francesco; Frati, Giacomo; Messina, Elisa; Giacomello, Alessandro

    2012-01-01

    The successful isolation and ex vivo expansion of resident cardiac stem/progenitor cells from human heart biopsies has allowed us to study their biological characteristics and their applications in therapeutic approaches for the repair of ischemic/infarcted heart, the preparation of tissue-engineered cardiac grafts and, possibly, the design of cellular kits for drug screening applications. From the first publication of the original method in 2004, several adjustments and slight changes have been introduced to optimize and adjust the procedure to the evolving experimental and translational needs. Moreover, due to the wide applicability of such a method (which is based on the exploitation of intrinsic functional properties of cells with regenerative properties that are present in most tissues), the key steps of this procedure have been used to derive several kinds of tissue-specific adult stem cells for preclinical or clinical purposes.In order to define the original procedure, complete with the up-to-date modifications introduced through the years, an exhaustive description of the current protocol is performed in this chapter, with particular attention in highlighting critical steps and troubleshoots. The procedure described here consists of modular steps, that could be employed to derive cells from any kind of tissue biopsy, and needs to be considered the gold standard of all the so-called "explant methods" or "cardiosphere methods," and it represents a milestone in the clinical translation of autologous cell therapy. PMID:22610568

  16. Cardiac progenitor cells for heart repair

    PubMed Central

    Le, TYL; Chong, JJH

    2016-01-01

    Stem cell therapy is being investigated as an innovative and promising strategy to restore cardiac function in patients with heart failure. Several stem cell populations, including adult (multipotent) stem cells from developed organs and tissues, have been tested for cardiac repair with encouraging clinical and pre-clinical results. The heart has been traditionally considered a post-mitotic organ, however, this view has recently changed with the identification of stem/progenitor cells residing within the adult heart. Given their cardiac developmental origins, these endogenous cardiac progenitor cells (CPCs) may represent better candidates for cardiac cell therapy compared with stem cells from other organs such as the bone marrow and adipose tissue. This brief review will outline current research into CPC populations and their cardiac repair/regenerative potential. PMID:27551540

  17. Cardiac Rehabilitation in Older Adults.

    PubMed

    Schopfer, David W; Forman, Daniel E

    2016-09-01

    The biology of aging and the pathophysiology of cardiovascular disease (CVD) overlap, with the effect that CVD is endemic in the growing population of older adults. Moreover, CVD in older adults is usually complicated by age-related complexities, including multimorbidity, polypharmacy, frailty, and other intricacies that add to the risks of ambiguous symptoms, deconditioning, iatrogenesis, falls, disability, and other challenges. Cardiac rehabilitation (CR) is a comprehensive lifestyle program that can have particular benefit for older patients with cardiovascular conditions. Although CR was originally designed primarily as an exercise training program for younger adults after a myocardial infarction or coronary artery bypass surgery, it has evolved as a comprehensive lifestyle program (promoting physical activity as well as education, diet, risk reduction, and adherence) for a broader range of CVD (coronary heart disease, heart failure, and valvular heart disease). It provides a valuable opportunity to address and moderate many of the challenges pertinent for the large and growing population of older adults with CVD. Cardiac rehabilitation promotes physical function (cardiorespiratory fitness as well as strength and balance) that helps overcome disease and deconditioning as well as related vulnerabilities such as disability, frailty, and falls. Similarly, CR facilitates education, monitoring, and guidance to reduce iatrogenesis and promote adherence. Furthermore, CR fosters cognition, socialization, and independence in older patients. Yet despite all its conceptual benefits, CR is significantly underused in older populations. This review discusses benefits and the paradoxical underuse of CR, as well as evolving models of care that may achieve greater application and efficacy. PMID:27297002

  18. A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds

    PubMed Central

    Pagliari, Stefania; Tirella, Annalisa; Ahluwalia, Arti; Duim, Sjoerd; Goumans, Marie-Josè; Aoyagi, Takao; Forte, Giancarlo

    2014-01-01

    The vascularization of tissue engineered products represents a key issue in regenerative medicine which needs to be addressed before the translation of these protocols to the bedside can be foreseen. Here we propose a multistep procedure to prepare pre-vascularized three-dimensional (3D) cardiac bio-substitutes using dynamic cell cultures and highly porous biocompatible gelatin scaffolds. The strategy adopted exploits the peculiar differentiation potential of two distinct subsets of adult stem cells to obtain human vascularized 3D cardiac tissues. In the first step of the procedure, human mesenchymal stem cells (hMSCs) are seeded onto gelatin scaffolds to provide interconnected vessel-like structures, while human cardiomyocyte progenitor cells (hCMPCs) are stimulated in vitro to obtain their commitment toward the cardiac phenotype. The use of a modular bioreactor allows the perfusion of the whole scaffold, providing superior performance in terms of cardiac tissue maturation and cell survival. Both the cell culture on natural-derived polymers and the continuous medium perfusion of the scaffold led to the formation of a densely packaged proto-tissue composed of vascular-like and cardiac-like cells, which might complete maturation process and interconnect with native tissue upon in vivo implantation. In conclusion, the data obtained through the approach here proposed highlight the importance to provide stem cells with complementary signals in vitro able to resemble the complexity of cardiac microenvironment. PMID:24917827

  19. mTOR Complexes Repress Hypertrophic Agonist-Stimulated Expression of Connective Tissue Growth Factor in Adult Cardiac Muscle Cells.

    PubMed

    Sundararaj, Kamala; Pleasant, Dorea L; Moschella, Phillip C; Panneerselvam, Kavin; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2016-02-01

    Connective tissue growth factor (CTGF) is a fibrogenic cytokine that promotes fibrosis in various organs. In the heart, both cardiomyocytes (CM) and cardiac fibroblasts have been reported as a source of CTGF expression, aiding cardiac fibrosis. Although the mammalian target of rapamycin (mTOR) forms 2 distinct complexes, mTORC1 and mTORC2, and plays a central role in integrating biochemical signals for protein synthesis and cellular homeostasis, we explored its role in CTGF expression in adult feline CM. CM were stimulated with 10 μM phenylephrine (PE), 200 nM angiotensin (Ang), or 100 nM insulin for 24 hours. PE and Ang, but not insulin, caused an increase in CTGF mRNA expression with the highest expression observed with PE. Inhibition of mTOR with torin1 but not rapamycin significantly enhanced PE-stimulated CTGF expression. Furthermore, silencing of raptor and rictor using shRNA adenoviral vectors to suppress mTORC1 and mTORC2, respectively, or blocking phosphatidylinositol 3-kinase (PI3K) signaling with LY294002 (LY) or Akt signaling by dominant-negative Akt expression caused a substantial increase in PE-stimulated CTGF expression as measured by both mRNA and secreted protein levels. However, studies with dominant-negative delta isoform of protein kinase C demonstrate that delta isoform of protein kinase C is required for both agonist-induced CTGF expression and mTORC2/Akt-mediated CTGF suppression. Finally, PE-stimulated CTGF expression was accompanied with a corresponding increase in Smad3 phosphorylation and pretreatment of cells with SIS3, a Smad3 specific inhibitor, partially blocked the PE-stimulated CTGF expression. Therefore, a PI3K/mTOR/Akt axis plays a suppressive role on agonist-stimulated CTGF expression where the loss of this mechanism could be a contributing factor for the onset of cardiac fibrosis in the hypertrophying myocardium. PMID:26371948

  20. Effects of pressure- or volume-overload hypertrophy on passive stiffness in isolated adult cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Kato, S.; Koide, M.; Cooper, G. 4th; Zile, M. R.

    1996-01-01

    It has been hypothesized that the changes in myocardial stiffness induced by chronic hemodynamic overloading are dependent on changes in the passive stiffness of the cardiac muscle cell (cardiocyte). However, no previous studies have examined the passive constitutive properties of cardiocytes isolated from animals with myocardial hypertrophy. Accordingly, changes in relative passive stiffness of cardiocytes isolated from animals with chronic pressure- or volume-overload hypertrophy were determined by examining the effects of anisosmotic stress on cardiocyte size. Anisosmotic stress was produced by altering superfusate osmolarity. Hypertrophied cardiocytes were enzymatically isolated from 16 adult cats with right ventricular (RV) pressure-overload hypertrophy induced by pulmonary artery banding (PAB) and from 6 adult cats with RV volume-overload hypertrophy induced by creating an atrial septal defect (ASD). Left ventricular (LV) cardiocytes from each cat served as nonhypertrophied, normally loaded, same-animal controls. Superfusate osmolarity was decreased from 305 +/- 3 to 135 +/- 5 mosM and increased to 645 +/- 4 mosM. During anisosmotic stress, there were no significant differences between hypertrophied RV and normal LV cardiocytes in pressure overload PAB cats with respect to percent change in cardiocyte area (47 +/- 2% in RV vs. 48 +/- 2% in LV), diameter (46 +/- 3% in RV vs. 48 +/- 2% in LV), or length (2.4 +/- 0.2% in RV vs. 2.0 +/- 0.3% in LV), or sarcomere length (1.5 +/- 0.1% in RV vs. 1.3 +/- 0.3% in LV). Likewise, there were no significant differences in cardiocyte strain between hypertrophied RV and normal LV cardiocytes from ASD cats. In conclusion, chronic pressure-overload hypertrophy and chronic volume-overload hypertrophy did not alter the cardiocyte response to anisosmotic stress. Thus chronic overload hypertrophy did not alter relative passive cardiocyte stiffness.

  1. Cardiac cell proliferation assessed by EdU, a novel analysis of cardiac regeneration.

    PubMed

    Zeng, Bin; Tong, Suiyang; Ren, Xiaofeng; Xia, Hao

    2016-08-01

    Emerging evidence suggests that mammalian hearts maintain the capacity for cardiac regeneration. Rapid and sensitive identification of cardiac cellular proliferation is prerequisite for understanding the underlying mechanisms and strategies of cardiac regeneration. The following immunologically related markers of cardiac cells were analyzed: cardiac transcription factors Nkx2.5 and Gata 4; specific marker of cardiomyocytes TnT; endothelial cell marker CD31; vascular smooth muscle marker smooth muscle myosin IgG; cardiac resident stem cells markers IsL1, Tbx18, and Wt1. Markers were co-localized in cardiac tissues of embryonic, neonatal, adult, and pathological samples by 5-ethynyl-2'-deoxyuridine (EdU) staining. EdU was also used to label isolated neonatal cardiomyocytes in vitro. EdU robustly labeled proliferating cells in vitro and in vivo, co-immunostaining with different cardiac cells markers. EdU can rapidly and sensitively label proliferating cardiac cells in developmental and pathological states. Cardiac cell proliferation assessed by EdU is a novel analytical tool for investigating the mechanism and strategies of cardiac regeneration in response to injury. PMID:25480318

  2. Stimulating Cardiac Muscle by Light: Cardiac Optogenetics by Cell Delivery

    PubMed Central

    Jia, Zhiheng; Valiunas, Virginijus; Lu, Zongju; Bien, Harold; Liu, Huilin; Wang, Hong-Zhang; Rosati, Barbara; Brink, Peter R.; Cohen, Ira S.; Entcheva, Emilia

    2011-01-01

    Background After the recent cloning of light-sensitive ion channels and their expression in mammalian cells, a new field, optogenetics, emerged in neuroscience, allowing for precise perturbations of neural circuits by light. However, functionality of optogenetic tools has not been fully explored outside neuroscience; and a non-viral, non-embryogenesis based strategy for optogenetics has not been shown before. Methods and Results We demonstrate the utility of optogenetics to cardiac muscle by a tandem cell unit (TCU) strategy, where non-excitable cells carry exogenous light-sensitive ion channels, and when electrically coupled to cardiomyocytes, produce optically-excitable heart tissue. A stable channelrhodopsin2 (ChR2) expressing cell line was developed, characterized and used as a cell delivery system. The TCU strategy was validated in vitro in cell pairs with adult canine myocytes (for a wide range of coupling strengths) and in cardiac syncytium with neonatal rat cardiomyocytes. For the first time, we combined optical excitation and optical imaging to capture light-triggered muscle contractions and high-resolution propagation maps of light-triggered electrical waves, found to be quantitatively indistinguishable from electrically-triggered waves. Conclusions Our results demonstrate feasibility to control excitation and contraction in cardiac muscle by light using the TCU approach. Optical pacing in this case uses less energy, offers superior spatiotemporal control, remote access and can serve not only as an elegant tool in arrhythmia research, but may form the basis for a new generation of light-driven cardiac pacemakers and muscle actuators. The TCU strategy is extendable to (non-viral) stem cell therapy and is directly relevant to in vivo applications. PMID:21828312

  3. Cardiac Regeneration and Stem Cells.

    PubMed

    Zhang, Yiqiang; Mignone, John; MacLellan, W Robb

    2015-10-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world. PMID:26269526

  4. Generation of cardiac pacemaker cells by programming and differentiation.

    PubMed

    Husse, Britta; Franz, Wolfgang-Michael

    2016-07-01

    A number of diseases are caused by faulty function of the cardiac pacemaker and described as "sick sinus syndrome". The medical treatment of sick sinus syndrome with electrical pacemaker implants in the diseased heart includes risks. These problems may be overcome via "biological pacemaker" derived from different adult cardiac cells or pluripotent stem cells. The generation of cardiac pacemaker cells requires the understanding of the pacing automaticity. Two characteristic phenomena the "membrane-clock" and the "Ca(2+)-clock" are responsible for the modulation of the pacemaker activity. Processes in the "membrane-clock" generating the spontaneous pacemaker firing are based on the voltage-sensitive membrane ion channel activity starting with slow diastolic depolarization and discharging in the action potential. The influence of the intracellular Ca(2+) modulating the pacemaker activity is characterized by the "Ca(2+)-clock". The generation of pacemaker cells started with the reprogramming of adult cardiac cells by targeted induction of one pacemaker function like HCN1-4 overexpression and enclosed in an activation of single pacemaker specific transcription factors. Reprogramming of adult cardiac cells with the transcription factor Tbx18 created cardiac cells with characteristic features of cardiac pacemaker cells. Another key transcription factor is Tbx3 specifically expressed in the cardiac conduction system including the sinoatrial node and sufficient for the induction of the cardiac pacemaker gene program. For a successful cell therapeutic practice, the generated cells should have all regulating mechanisms of cardiac pacemaker cells. Otherwise, the generated pacemaker cells serve only as investigating model for the fundamental research or as drug testing model for new antiarrhythmics. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel

  5. Mammalian Cardiac Regeneration After Fetal Myocardial Infarction Requires Cardiac Progenitor Cell Recruitment

    PubMed Central

    Allukian, Myron; Xu, Junwang; Morris, Michael; Caskey, Robert; Dorsett-Martin, Wanda; Plappert, Theodore; Griswold, Michael; Gorman, Joseph H.; Gorman, Robert C.; Liechty, Kenneth W.

    2013-01-01

    Background In contrast to the adult, fetal sheep consistently regenerate functional myocardium after myocardial infarction. We hypothesize that this regeneration is due to the recruitment of cardiac progenitor cells to the infarct by stromal-derived factor-1α (SDF-1α) and that its competitive inhibition will block the regenerative fetal response. Methods A 20% apical infarct was created in adult and fetal sheep by selective permanent coronary artery ligation. Lentiviral overexpression of mutant SDF-1α competitively inhibited SDF-1α in fetal infarcts. Echocardiography was performed to assess left ventricular function and infarct size. Cardiac progenitor cell recruitment and proliferation was assessed in fetal infarcts at 1 month by immunohistochemistry for nkx2.5 and 5-bromo-2-deoxyuridine. Results Competitive inhibition of SDF-1α converted the regenerative fetal response into a reparative response, similar to the adult. SDF-inhibited fetal infarcts demonstrated significant infarct expansion by echocardiography (p < 0.001) and a significant decrease in the number of nkx2.5+ cells repopulating the infarct (p < 0.001). Conclusions The fetal regenerative response to myocardial infarction requires the recruitment of cardiac progenitor cells and is dependent on SDF1α. This novel model of mammalian cardiac regeneration after myocardial infarction provides a powerful tool to better understand cardiac progenitor cell biology and to develop strategies to cardiac regeneration in the adult. PMID:23816072

  6. Stem cells and exosomes in cardiac repair.

    PubMed

    Singla, Dinender K

    2016-04-01

    Cardiac diseases currently lead in the number of deaths per year, giving rise an interest in transplanting embryonic and adult stem cells as a means to improve damaged tissue from conditions such as myocardial infarction and coronary artery disease. After testing these cells as a treatment option in both animal and human models, it is believed that these cells improve the damaged tissue primarily through the release of autocrine and paracrine factors. Major concerns such as teratoma formation, immune response, difficulty harvesting cells, and limited cell proliferation and differentiation, hinder the routine use of these cells as a treatment option in the clinic. The advent of stem cell-derived exosomes circumvent those concerns, while still providing the growth factors, miRNA, and additional cell protective factors that aid in repairing and regenerating the damaged tissue. These exosomes have been found to be anti-apoptotic, anti-fibrotic, pro-angiogenic, as well as enhance cardiac differentiation, all of which are key to repairing damaged tissue. As such, stem cell derived exosomes are considered to be a potential new and novel approach in the treatment of various cardiac diseases. PMID:26848944

  7. Harnessing the secretome of cardiac stem cells as therapy for ischemic heart disease.

    PubMed

    Khanabdali, Ramin; Rosdah, Ayeshah A; Dusting, Gregory J; Lim, Shiang Y

    2016-08-01

    Adult stem cells continue to promise opportunities to repair damaged cardiac tissue. However, precisely how adult stem cells accomplish cardiac repair, especially after ischemic damage, remains controversial. It has been postulated that the clinical benefit of adult stem cells for cardiovascular disease results from the release of cytokines and growth factors by the transplanted cells. Studies in animal models of myocardial infarction have reported that such paracrine factors released from transplanted adult stem cells contribute to improved cardiac function by several processes. These include promoting neovascularization of damaged tissue, reducing inflammation, reducing fibrosis and scar formation, as well as protecting cardiomyocytes from apoptosis. In addition, these factors might also stimulate endogenous repair by activating cardiac stem cells. Interestingly, stem cells discovered to be resident in the heart appear to be functionally superior to extra-cardiac adult stem cells when transplanted for cardiac repair and regeneration. In this review, we discuss the therapeutic potential of cardiac stem cells and how the proteins secreted from these cells might be harnessed to promote repair and regeneration of damaged cardiac tissue. We also highlight how recent controversies about the efficacy of adult stem cells in clinical trials of ischemic heart disease have not dampened enthusiasm for the application of cardiac stem cells and their paracrine factors for cardiac repair: the latter have proved superior to the mesenchymal stem cells used in most clinical trials in the past, some of which appear to have been conducted with sub-optimal rigor. PMID:26903387

  8. Abnormalities in Cardiac Structure and Function in Adults with Sickle Cell Disease are not Associated with Pulmonary Hypertension

    PubMed Central

    Knight-Perry, Jessica E.; de las Fuentes, Lisa; Waggoner, Alan D.; Hoffmann, Raymond G.; Blinder, Morey A.; Dávila-Román, Victor G.; Field, Joshua J.

    2011-01-01

    Background In sickle cell disease (SCD), pulmonary hypertension (assessed by tricuspid regurgitant jet [TRJ] velocity ≥ 2.5 m/s) is associated with increased mortality. The relationships between TRJ velocity, left ventricular (LV) and right ventricular (RV) systolic and diastolic function (i.e., relaxation and compliance) have not been well characterized in SCD. Design and Methods Prospective study of 53 ambulatory SCD adults (age, mean: 34 years; range 21-65 years) and 33 African American controls to define the relationship between LV and RV function and TRJ velocity by use of echocardiography. Results SCD subjects had larger left and right atrial volumes and increased LV mass compared to controls. When SCD cases were compared to controls, LV and RV relaxation (i.e., E’) were similar. Among SCD subjects, pulmonary hypertension (TRJ ≥ 2.5 m/s) was present in 40% of cases. Higher TRJ velocity was correlated with larger LA volumes and areas in SCD cases. Additionally, some measures of LV (peak A, lateral and septal annulus E/E’) and RV compliance (TV E/E’) were correlated with TRJ velocity. No other measures of LV/RV systolic function or LV diastolic function (i.e., relaxation and compliance) were associated with TRJ velocity. Conclusions Ambulatory adults with SCD exhibited structural (i.e., LV and RV chamber enlargement) and functional (i.e., higher surrogate measures of LV and RV filling pressure) abnormalities compared to the control group. In SCD subjects, few abnormalities of LV and RV structure/function were associated with TRJ velocity. PMID:21873028

  9. Mechanically induced orientation of adult rat cardiac myocytes in vitro

    NASA Technical Reports Server (NTRS)

    Samuel, J.-L.; Vandenburgh, H. H.

    1990-01-01

    The present study describes the spatial orientation of a population of freshly isolated adult rat cardiac myocytes using a computerized mechanical cell stimulator device for tissue cultured cells. A continuous unidirectional stretch of the substratum at 60 to 400 microns/min for 120 to 30 min, respectively, during the cell attachment period in a serum-free medium was found to induce a significant threefold increase in the number of rod-shaped myocytes oriented parallel to the direction of movement. The myocytes orient less well with unidirectional substratum stretching after their adhesion to the substratum. Adult myocytes plated onto a substratum undergoing continuous 10-percent stretch-relaxation cycling show no significant change in the myocyte orientation or cytoskeletal organization. In addition to the type of mechanical activity, orientation of rod-shaped myocytes is dependent on the speed of the substratum, the final stretch amplitude, and the timing between initiation of substratum stretching and adhesion of myocytes to the substratum.

  10. Mesenchymal stem cells for cardiac cell therapy.

    PubMed

    Choi, Yeong-Hoon; Kurtz, Andreas; Stamm, Christof

    2011-01-01

    Despite refinements of medical and surgical therapies, heart failure remains a fatal disease. Myocardial infarction is the most common cause of heart failure, and only palliative measures are available to relieve symptoms and prolong the patient's life span. Because mammalian cardiomyocytes irreversibly exit the cell cycle at about the time of birth, the heart has traditionally been considered to lack any regenerative capacity. This paradigm, however, is currently shifting, and the cellular composition of the myocardium is being targeted by various regeneration strategies. Adult progenitor and stem cell treatment of diseased human myocardium has been carried out for more than 10 years (Menasche et al., 2001; Stamm et al., 2003), and it has become clear that, in humans, the regenerative capacity of hematopoietic stem cells and endothelial progenitor cells, despite potent proangiogenic effects, is limited (Stamm et al., 2009). More recently, mesenchymal stem cells (MSCs) and related cell types are being evaluated in preclinical models of heart disease as well as in clinical trials (see Published Clinical Trials, below). MSCs have the capacity to self-renew and to differentiate into lineages that normally originate from the embryonic mesenchyme (connective tissues, blood vessels, blood-related organs) (Caplan, 1991; Prockop, 1997; Pittenger et al., 1999). The current definition of MSCs includes plastic adherence in cell culture, specific surface antigen expression (CD105(+)/CD90(+)/CD73(+), CD34(-)/CD45(-)/CD11b(-) or CD14(-)/CD19(-) or CD79α(-)/HLA-DR1(-)), and multilineage in vitro differentiation potential (osteogenic, chondrogenic, and adipogenic) (Dominici et al., 2006 ). If those criteria are not met completely, the term "mesenchymal stromal cells" should be used for marrow-derived adherent cells, or other terms for MSC-like cells of different origin. For the purpose of this review, MSCs and related cells are discussed in general, and cell type

  11. Adult stem cells and tissue repair.

    PubMed

    Körbling, M; Estrov, Z; Champlin, R

    2003-08-01

    Recently, adult stem cells originating from bone marrow or peripheral blood have been suggested to contribute to repair and genesis of cells specific for liver, cardiac and skeletal muscle, gut, and brain tissue. The mechanism involved has been termed transdifferentiation, although other explanations including cell fusion have been postulated. Using adult stem cells to generate or repair solid organ tissue obviates the immunologic, ethical, and teratogenic issues that accompany embryonic stem cells. PMID:12931235

  12. Adult cardiac fibroblast proliferation is modulated by calcium/calmodulin-dependent protein kinase II in normal and hypertrophied hearts.

    PubMed

    Martin, Tamara P; Lawan, Ahmed; Robinson, Emma; Grieve, David J; Plevin, Robin; Paul, Andrew; Currie, Susan

    2014-02-01

    Increased adult cardiac fibroblast proliferation results in an increased collagen deposition responsible for the fibrosis accompanying pathological remodelling of the heart. The mechanisms regulating cardiac fibroblast proliferation remain poorly understood. Using a minimally invasive transverse aortic banding (MTAB) mouse model of cardiac hypertrophy, we have assessed fibrosis and cardiac fibroblast proliferation. We have investigated whether calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) regulates proliferation in fibroblasts isolated from normal and hypertrophied hearts. It is known that CaMKIIδ plays a central role in cardiac myocyte contractility, but nothing is known of its role in adult cardiac fibroblast function. The MTAB model used here produces extensive hypertrophy and fibrosis. CaMKIIδ protein expression and activity is upregulated in MTAB hearts and, specifically, in cardiac fibroblasts isolated from hypertrophied hearts. In response to angiotensin II, cardiac fibroblasts isolated from MTAB hearts show increased proliferation rates. Inhibition of CaMKII with autocamtide inhibitory peptide inhibits proliferation in cells isolated from both sham and MTAB hearts, with a significantly greater effect evident in MTAB cells. These results are the first to show selective upregulation of CaMKIIδ in adult cardiac fibroblasts following cardiac hypertrophy and to assign a previously unrecognised role to CaMKII in regulating adult cardiac fibroblast function in normal and diseased hearts. PMID:23881186

  13. Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined Factors.

    PubMed

    Lalit, Pratik A; Salick, Max R; Nelson, Daryl O; Squirrell, Jayne M; Shafer, Christina M; Patel, Neel G; Saeed, Imaan; Schmuck, Eric G; Markandeya, Yogananda S; Wong, Rachel; Lea, Martin R; Eliceiri, Kevin W; Hacker, Timothy A; Crone, Wendy C; Kyba, Michael; Garry, Daniel J; Stewart, Ron; Thomson, James A; Downs, Karen M; Lyons, Gary E; Kamp, Timothy J

    2016-03-01

    Several studies have reported reprogramming of fibroblasts into induced cardiomyocytes; however, reprogramming into proliferative induced cardiac progenitor cells (iCPCs) remains to be accomplished. Here we report that a combination of 11 or 5 cardiac factors along with canonical Wnt and JAK/STAT signaling reprogrammed adult mouse cardiac, lung, and tail tip fibroblasts into iCPCs. The iCPCs were cardiac mesoderm-restricted progenitors that could be expanded extensively while maintaining multipotency to differentiate into cardiomyocytes, smooth muscle cells, and endothelial cells in vitro. Moreover, iCPCs injected into the cardiac crescent of mouse embryos differentiated into cardiomyocytes. iCPCs transplanted into the post-myocardial infarction mouse heart improved survival and differentiated into cardiomyocytes, smooth muscle cells, and endothelial cells. Lineage reprogramming of adult somatic cells into iCPCs provides a scalable cell source for drug discovery, disease modeling, and cardiac regenerative therapy. PMID:26877223

  14. Primary cardiac spindle cell tumor in a dog

    PubMed Central

    Asakawa, Midori G.; Ames, Marisa K.; Kim, Yongbaek

    2013-01-01

    An adult Labrador retriever dog was presented with respiratory signs and heart murmur. Echocardiography and thoracic radiographs revealed a heart base mass infiltrating the left atrial wall. Microscopically, neoplastic tissues consisted of spindle cells and abundant extracellular matrix. Based on histochemical stain and immunohistochemistry, a diagnosis of primary cardiac sarcoma was made. PMID:24155460

  15. Mesenchymal stem cells and cardiac repair

    PubMed Central

    Nesselmann, Catharina; Ma, Nan; Bieback, Karen; Wagner, Wolfgang; Ho, Anthony; Konttinen, Yrjö T; Zhang, Hao; Hinescu, Mihail E; Steinhoff, Gustav

    2008-01-01

    Accumulating clinical and experimental evidence indicates that mesenchymal stem cells (MSCs) are promising cell types in the treatment of cardiac dysfunction. They may trigger production of reparative growth factors, replace damaged cells and create an environment that favours endogenous cardiac repair. However, identifying mechanisms which regulate the role of MSCs in cardiac repair is still at work. To achieve the maximal clinical benefits, ex vivo manipulation can further enhance MSC therapeutic potential. This review focuses on the mechanism of MSCs in cardiac repair, with emphasis on ex vivo manipulation. PMID:18684237

  16. Cardiac issues in adults with the mucopolysaccharidoses: current knowledge and emerging needs.

    PubMed

    Braunlin, Elizabeth; Wang, Raymond

    2016-08-15

    The growing availability of innovative treatments for rare genetic diseases with a cardiac component-such as the mucopolysaccharidoses (MPSs)-has changed these syndromes from 'back of the textbook' curiosities of childhood to chronic, but rare, adult cardiac conditions that require both centres of expertise and knowledgeable subspecialists. The MPSs are inherited progressive lysosomal storage diseases, occurring in about 1:25 000 births and resulting from absence of functional hydrolases responsible for the degradation of glycosaminoglycans, naturally occurring complex sugars ubiquitous throughout the body. In the heart, accumulation of glycosaminoglycans occurs within the cardiac valves, the epicardial coronary arteries, the myocytes and cardiac interstitium and the walls of the great vessels. As a consequence, cardiac valve regurgitation and stenosis, diffuse coronary artery stenosis, myocardial dysfunction and aortic root dilation often occur. Haematopoietic cell transplantation and enzyme replacement therapy have changed the previously lethal natural history of the MPSs to one of survival well into adulthood. Despite this improved lifespan, the left-sided cardiac valves continue to show progressive functional involvement and cardiac valve replacement is not uncommon, especially in adults. The risk of any intervention is increased in these patients because of the systemic effects of the disease on the respiratory system and cervical cord. Our current understanding of other cardiac issues in adults with the MPSs, especially with the coronary circulation and myocardium, is meagre and more needs to be known to effectively care for this emerging population of adults. Incorporation of the MPSs, as well as other now-treatable rare diseases, into the educational curriculum of current and future adult subspecialists is an important next step. PMID:27102649

  17. Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents.

    PubMed

    Bayes-Genis, Antoni; Soler-Botija, Carolina; Farré, Jordi; Sepúlveda, Pilar; Raya, Angel; Roura, Santiago; Prat-Vidal, Cristina; Gálvez-Montón, Carolina; Montero, José Anastasio; Büscher, Dirk; Izpisúa Belmonte, Juan Carlos

    2010-11-01

    Myocardial infarction caused by vascular occlusion results in the formation of nonfunctional fibrous tissue. Cumulative evidence indicates that cell therapy modestly improves cardiac function; thus, novel cell sources with the potential to repair injured tissue are actively sought. Here, we identify and characterize a cell population of cardiac adipose tissue-derived progenitor cells (ATDPCs) from biopsies of human adult cardiac adipose tissue. Cardiac ATDPCs express a mesenchymal stem cell-like marker profile (strongly positive for CD105, CD44, CD166, CD29 and CD90) and have immunosuppressive capacity. Moreover, cardiac ATDPCs have an inherent cardiac-like phenotype and were able to express de novo myocardial and endothelial markers in vitro but not to differentiate into adipocytes. In addition, when cardiac ATDPCs were transplanted into injured myocardium in mouse and rat models of myocardial infarction, the engrafted cells expressed cardiac (troponin I, sarcomeric α-actinin) and endothelial (CD31) markers, vascularization increased, and infarct size was reduced in mice and rats. Moreover, significant differences between control and cell-treated groups were found in fractional shortening and ejection fraction, and the anterior wall remained significantly thicker 30days after cardiac delivery of ATDPCs. Finally, cardiac ATDPCs secreted proangiogenic factors under in vitro hypoxic conditions, suggesting a paracrine effect to promote local vascularization. Our results indicate that the population of progenitor cells isolated from human cardiac adipose tissue (cardiac ATDPCs) may be valid candidates for future use in cell therapy to regenerate injured myocardium. PMID:20713059

  18. Resident c-kit(+) cells in the heart are not cardiac stem cells.

    PubMed

    Sultana, Nishat; Zhang, Lu; Yan, Jianyun; Chen, Jiqiu; Cai, Weibin; Razzaque, Shegufta; Jeong, Dongtak; Sheng, Wei; Bu, Lei; Xu, Mingjiang; Huang, Guo-Ying; Hajjar, Roger J; Zhou, Bin; Moon, Anne; Cai, Chen-Leng

    2015-01-01

    Identifying a bona fide population of cardiac stem cells (CSCs) is a critical step for developing cell-based therapies for heart failure patients. Previously, cardiac c-kit(+) cells were reported to be CSCs with a potential to become myocardial, endothelial and smooth muscle cells in vitro and after cardiac injury. Here we provide further insights into the nature of cardiac c-kit(+) cells. By targeting the c-kit locus with multiple reporter genes in mice, we find that c-kit expression rarely co-localizes with the expression of the cardiac progenitor and myogenic marker Nkx2.5, or that of the myocardial marker, cardiac troponin T (cTnT). Instead, c-kit predominantly labels a cardiac endothelial cell population in developing and adult hearts. After acute cardiac injury, c-kit(+) cells retain their endothelial identity and do not become myogenic progenitors or cardiomyocytes. Thus, our work strongly suggests that c-kit(+) cells in the murine heart are endothelial cells and not CSCs. PMID:26515110

  19. Resident c-kit+ cells in the heart are not cardiac stem cells

    PubMed Central

    Sultana, Nishat; Zhang, Lu; Yan, Jianyun; Chen, Jiqiu; Cai, Weibin; Razzaque, Shegufta; Jeong, Dongtak; Sheng, Wei; Bu, Lei; Xu, Mingjiang; Huang, Guo-Ying; Hajjar, Roger J.; Zhou, Bin; Moon, Anne; Cai, Chen-Leng

    2015-01-01

    Identifying a bona fide population of cardiac stem cells (CSCs) is a critical step for developing cell-based therapies for heart failure patients. Previously, cardiac c-kit+ cells were reported to be CSCs with a potential to become myocardial, endothelial and smooth muscle cells in vitro and after cardiac injury. Here we provide further insights into the nature of cardiac c-kit+ cells. By targeting the c-kit locus with multiple reporter genes in mice, we find that c-kit expression rarely co-localizes with the expression of the cardiac progenitor and myogenic marker Nkx2.5, or that of the myocardial marker, cardiac troponin T (cTnT). Instead, c-kit predominantly labels a cardiac endothelial cell population in developing and adult hearts. After acute cardiac injury, c-kit+ cells retain their endothelial identity and do not become myogenic progenitors or cardiomyocytes. Thus, our work strongly suggests that c-kit+ cells in the murine heart are endothelial cells and not CSCs. PMID:26515110

  20. Cardiac Cell Lineages that Form the Heart

    PubMed Central

    Meilhac, Sigolène M.; Lescroart, Fabienne; Blanpain, Cédric; Buckingham, Margaret E.

    2014-01-01

    Myocardial cells ensure the contractility of the heart, which also depends on other mesodermal cell types for its function. Embryological experiments had identified the sources of cardiac precursor cells. With the advent of genetic engineering, novel tools have been used to reconstruct the lineage tree of cardiac cells that contribute to different parts of the heart, map the development of cardiac regions, and characterize their genetic signature. Such knowledge is of fundamental importance for our understanding of cardiogenesis and also for the diagnosis and treatment of heart malformations. PMID:25183852

  1. Stem cell sources for cardiac regeneration.

    PubMed

    Roccio, M; Goumans, M J; Sluijter, J P G; Doevendans, P A

    2008-03-01

    Cell-based cardiac repair has the ambitious aim to replace the malfunctioning cardiac muscle developed after myocardial infarction, with new contractile cardiomyocytes and vessels. Different stem cell populations have been intensively studied in the last decade as a potential source of new cardiomyocytes to ameliorate the injured myocardium, compensate for the loss of ventricular mass and contractility and eventually restore cardiac function. An array of cell types has been explored in this respect, including skeletal muscle, bone marrow derived stem cells, embryonic stem cells (ESC) and more recently cardiac progenitor cells. The best-studied cell types are mouse and human ESC cells, which have undisputedly been demonstrated to differentiate into cardiomyocyte and vascular lineages and have been of great help to understand the differentiation process of pluripotent cells. However, due to their immunogenicity, risk of tumor development and the ethical challenge arising from their embryonic origin, they do not provide a suitable cell source for a regenerative therapy approach. A better option, overcoming ethical and allogenicity problems, seems to be provided by bone marrow derived cells and by the recently identified cardiac precursors. This report will overview current knowledge on these different cell types and their application in cardiac regeneration and address issues like implementation of delivery methods, including tissue engineering approaches that need to be developed alongside. PMID:18427385

  2. Human Embryonic Stem Cells and Cardiac Repair

    PubMed Central

    Zhu, Wei-Zhong; Hauch, Kip; Xu, Chunhui; Laflamme, Michael A.

    2008-01-01

    The muscle lost after a myocardial infarction is replaced with non-contractile scar tissue, often initiating heart failure. Whole-organ cardiac transplantation is the only currently available clinical means of replacing the lost muscle, but this option is limited by the inadequate supply of donor hearts. Thus, cell-based cardiac repair has attracted considerable interest as an alternative means of ameliorating cardiac injury. Because of their tremendous capacity for expansion and unquestioned cardiac potential, pluripotent human embryonic stem cells (hESCs) represent an attractive candidate cell source for obtaining cardiomyocytes and other useful mesenchymal cell types for such therapies. hESC-derived cardiomyocytes (hESC-CMs) exhibit a committed cardiac phenotype and robust proliferative capacity, and recent testing in rodent infarct models indicates that they can partially remuscularize injured hearts and improve contractile function. Although the latter successes give good reason for optimism, considerable challenges remain to the successful application of hESCs to cardiac repair, including the need for preparations of high cardiac purity, improved methods of delivery, and approaches to overcome immune rejection and other causes of graft cell death. This review will describe the phenotype of hESC-CMs and preclinical experience with these cells and will consider strategies to overcoming the aforementioned challenges. PMID:18657407

  3. Factors controlling cardiac neural crest cell migration

    PubMed Central

    Hutson, Mary R

    2010-01-01

    Cardiac neural crest cells originate as part of the postotic caudal rhombencephalic neural crest stream. Ectomesenchymal cells in this stream migrate to the circumpharyngeal ridge and then into the caudal pharyngeal arches where they condense to form first a sheath and then the smooth muscle tunics of the persisting pharyngeal arch arteries. A subset of the cells continues migrating into the cardiac outflow tract where they will condense to form the aorticopulmonary septum. Cell signaling, extracellular matrix and cell-cell contacts are all critical for the initial migration, pauses, continued migration and condensation of these cells. This Review elucidates what is currently known about these factors. PMID:20890117

  4. Translational aspects of cardiac cell therapy

    PubMed Central

    Chen, Cheng-Han; Sereti, Konstantina-Ioanna; Wu, Benjamin M; Ardehali, Reza

    2015-01-01

    Cell therapy has been intensely studied for over a decade as a potential treatment for ischaemic heart disease. While initial trials using skeletal myoblasts, bone marrow cells and peripheral blood stem cells showed promise in improving cardiac function, benefits were found to be short-lived likely related to limited survival and engraftment of the delivered cells. The discovery of putative cardiac ‘progenitor’ cells as well as the creation of induced pluripotent stem cells has led to the delivery of cells potentially capable of electromechanical integration into existing tissue. An alternative strategy involving either direct reprogramming of endogenous cardiac fibroblasts or stimulation of resident cardiomyocytes to regenerate new myocytes can potentially overcome the limitations of exogenous cell delivery. Complimentary approaches utilizing combination cell therapy and bioengineering techniques may be necessary to provide the proper milieu for clinically significant regeneration. Clinical trials employing bone marrow cells, mesenchymal stem cells and cardiac progenitor cells have demonstrated safety of catheter based cell delivery, with suggestion of limited improvement in ventricular function and reduction in infarct size. Ongoing trials are investigating potential benefits to outcome such as morbidity and mortality. These and future trials will clarify the optimal cell types and delivery conditions for therapeutic effect. PMID:26119413

  5. Allogenic benefit in stem cell therapy: cardiac repair and regeneration.

    PubMed

    Al-Daccak, R; Charron, D

    2015-09-01

    Stem cell (SC)-based therapies are a developing mean to repair, restore, maintain, or enhance organ functioning through life span. They are in particular a fast track to restore function in failing heart. Various types of SCs have been used in experimental and clinical studies showing the potential of these cells to revolutionize the treatment of heart diseases. Autologous cells have been privileged to overpass immunological barriers. The field has progressed tremendously and the hurdles, which have been largely overlooked in the excitement over the expected benefit the immunogenicity, have been revealed. Also, manufacturing of patient-specific clinical grade SC product, whether adult stem or reprogrammed induced pluripotent SCs, and the availability of these cells in sufficient amounts and status when needed is questionable. In contrast, adult SCs derived from healthy donors, thus allogeneic, have the advantage to be immediately available as an 'off-the-shelf' therapeutic product. The challenge is to overcome the immunological barriers to their transplantation. Recent research provided new insights into the mode of action and immune behavior of SCs in autologous as well as allogeneic settings. Lessons are learned and immune paradigms are changing: allogenicity, if balanced could be part of the dynamic and durable mechanisms that are critical to sustain cardiac regeneration and repair. We discuss the hurdles, lessons, and advances accomplished in the field through the progressive journey of cardiac-derived stem/progenitor cells toward allogeneic cardiac regenerative/reparative therapy. PMID:26206374

  6. Venoarterial Extracorporeal Membrane Oxygenation in Adults With Cardiac Arrest.

    PubMed

    Patel, Jignesh K; Schoenfeld, Elinor; Parnia, Sam; Singer, Adam J; Edelman, Norman

    2016-07-01

    Cardiac arrest (CA) is a major cause of morbidity and mortality worldwide. Despite the use of conventional cardiopulmonary resuscitation (CPR), rates of return of spontaneous circulation and survival with minimal neurologic impairment remain low. Utilization of venoarterial extracorporeal membrane oxygenation (ECMO) for CA in adults is steadily increasing. Propensity-matched cohort studies have reported outcomes associated with ECMO use to be superior to that of conventional CPR alone in in-hospital patients with CA. In this review, we discuss the mechanism, indications, complications, and evidence for ECMO in CA in adults. PMID:25922385

  7. Homeobox Protein Hop Functions in the Adult Cardiac Conduction System

    PubMed Central

    Ismat, Fraz A.; Zhang, Maozhen; Kook, Hyun; Huang, Bin; Zhou, Rong; Ferrari, Victor A.; Epstein, Jonathan A.; Patel, Vickas V.

    2006-01-01

    Hop is an unusual homeobox gene expressed in the embryonic and adult heart. Hop acts downstream of Nkx2–5 during development, and Nkx2–5 mutations are associated with cardiac conduction system (CCS) defects. Inactivation of Hop in the mouse is lethal in half of the expected null embryos. Here, we show that Hop is expressed strongly in the adult CCS. Hop−/− adult mice display conduction defects below the atrioventricular node (AVN) as determined by invasive electrophysiological testing. These defects are associated with decreased expression of connexin40. Our results suggest that Hop functions in the adult CCS and demonstrate conservation of molecular hierarchies between embryonic myocardium and the specialized conduction tissue of the mature heart. PMID:15790958

  8. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy.

    PubMed

    Hasan, Anwarul; Waters, Renae; Roula, Boustany; Dana, Rahbani; Yara, Seif; Alexandre, Toubia; Paul, Arghya

    2016-07-01

    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field. PMID:26953627

  9. Engineered Tissue Patch for Cardiac Cell Therapy

    PubMed Central

    Zhang, Jianyi

    2015-01-01

    Opinion statement Cell therapy can be administered via injections delivered directly into the myocardium or as engineered cardiac tissue patches, which are the subject of this review. Engineered cardiac patches can be created from sheets of interconnected cells or by suspending the cells in a scaffold of material that is designed to mimic the native extracellular matrix. The sheet-based approach produces patches with well-aligned and electronically coupled cardiomyocytes, but cell-containing scaffolds are more readily vascularized by the host's circulatory system and, consequently, are currently more suitable for applications that require a thicker patch. Cell patches can also be modified for the co-delivery of peptides that may promote cell survival and activate endogenous repair mechanisms; nevertheless, techniques for controlling inflammation, limiting apoptosis, and improving vascular growth need continue to be developed to make it a therapeutic modality for patients with myocardial infarction. PMID:26122908

  10. Heart Regeneration with Embryonic Cardiac Progenitor Cells and Cardiac Tissue Engineering

    PubMed Central

    Tian, Shuo; Liu, Qihai; Gnatovskiy, Leonid; Ma, Peter X.; Wang, Zhong

    2015-01-01

    Myocardial infarction (MI) is the leading cause of death worldwide. Recent advances in stem cell research hold great potential for heart tissue regeneration through stem cell-based therapy. While multiple cell types have been transplanted into MI heart in preclinical studies or clinical trials, reduction of scar tissue and restoration of cardiac function have been modest. Several challenges hamper the development and application of stem cell-based therapy for heart regeneration. Application of cardiac progenitor cells (CPCs) and cardiac tissue engineering for cell therapy has shown great promise to repair damaged heart tissue. This review presents an overview of the current applications of embryonic CPCs and the development of cardiac tissue engineering in regeneration of functional cardiac tissue and reduction of side effects for heart regeneration. We aim to highlight the benefits of the cell therapy by application of CPCs and cardiac tissue engineering during heart regeneration. PMID:26744736

  11. Mechanical communication in cardiac cell synchronized beating

    NASA Astrophysics Data System (ADS)

    Nitsan, Ido; Drori, Stavit; Lewis, Yair E.; Cohen, Shlomi; Tzlil, Shelly

    2016-05-01

    Cell-cell communication, which enables cells to coordinate their activity and is essential for growth, development and function, is usually ascribed a chemical or electrical origin. However, cells can exert forces and respond to environment elasticity and to mechanical deformations created by their neighbours. The extent to which this mechanosensing ability facilitates intercellular communication remains unclear. Here we demonstrate mechanical communication between cells directly for the first time, providing evidence for a long-range interaction that induces long-lasting alterations in interacting cells. We show that an isolated cardiac cell can be trained to beat at a given frequency by mechanically stimulating the underlying substrate. Deformations are induced using an oscillatory mechanical probe that mimics the deformations generated by a beating neighbouring cardiac cell. Unlike electrical field stimulation, the probe-induced beating rate is maintained by the cell for an hour after the stimulation stops, implying that long-term modifications occur within the cell. These long-term alterations provide a mechanism for cells that communicate mechanically to be less variable in their electromechanical delay. Mechanical coupling between cells therefore ensures that the final outcome of action potential pacing is synchronized beating. We further show that the contractile machinery is essential for mechanical communication.

  12. Nucleostemin Rejuvenates Cardiac Progenitor Cells and Antagonizes Myocardial Aging

    PubMed Central

    Hariharan, Nirmala; Quijada, Pearl; Mohsin, Sadia; Joyo, Anya; Samse, Kaitlen; Monsanto, Megan; De La Torre, Andrea; Avitabile, Daniele; Ormachea, Lucia; McGregor, Michael J.; Tsai, Emily J; Sussman, Mark A.

    2015-01-01

    BACKGROUND Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy with elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. OBJECTIVES The goal is to demonstrate that NS preserves characteristics associated with “stemness” in CPCs and antagonizes myocardial senescence and aging. METHODS CPCs isolated from human fetal (FhCPC) and adult failing (AhCPC) hearts, as well as young (YCPC) and old mice (OCPC), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with one functional allele of NS (NS+/−) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. RESULTS NS expression is decreased in AhCPCs relative to FhCPC, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S phase progression, diminished expression of stemness markers and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of “stemness.” Early cardiac aging with decline in cardiac function, increase in senescence markers p53 and p16, telomere attrition, and accompanied CPC exhaustion is evident in NS+/− mice. CONCLUSIONS Youthful properties and antagonism of

  13. Improving Cell Engraftment in Cardiac Stem Cell Therapy

    PubMed Central

    Xie, Xiaoyun

    2016-01-01

    Myocardial infarction (MI) affects millions of people worldwide. MI causes massive cardiac cell death and heart function decrease. However, heart tissue cannot effectively regenerate by itself. While stem cell therapy has been considered an effective approach for regeneration, the efficacy of cardiac stem cell therapy remains low due to inferior cell engraftment in the infarcted region. This is mainly a result of low cell retention in the tissue and poor cell survival under ischemic, immune rejection and inflammatory conditions. Various approaches have been explored to improve cell engraftment: increase of cell retention using biomaterials as cell carriers; augmentation of cell survival under ischemic conditions by preconditioning cells, genetic modification of cells, and controlled release of growth factors and oxygen; and enhancement of cell survival by protecting cells from excessive inflammation and immune surveillance. In this paper, we review current progress, advantages, disadvantages, and potential solutions of these approaches. PMID:26783405

  14. Innovation in basic science: stem cells and their role in the treatment of paediatric cardiac failure--opportunities and challenges.

    PubMed

    Kaushal, Sunjay; Jacobs, Jeffrey Phillip; Gossett, Jeffrey G; Steele, Ann; Steele, Peter; Davis, Craig R; Pahl, Elfriede; Vijayan, Kalpana; Asante-Korang, Alfred; Boucek, Robert J; Backer, Carl L; Wold, Loren E

    2009-11-01

    Heart failure is a leading cause of death worldwide. Current therapies only delay progression of the cardiac disease or replace the diseased heart with cardiac transplantation. Stem cells represent a recently discovered novel approach to the treatment of cardiac failure that may facilitate the replacement of diseased cardiac tissue and subsequently lead to improved cardiac function and cardiac regeneration. A stem cell is defined as a cell with the properties of being clonogenic, self-renewing, and multipotent. In response to intercellular signalling or environmental stimuli, stem cells differentiate into cells derived from any of the three primary germ layers: ectoderm, endoderm, and mesoderm, a powerful advantage for regenerative therapies. Meanwhile, a cardiac progenitor cell is a multipotent cell that can differentiate into cells of any of the cardiac lineages, including endothelial cells and cardiomyocytes. Stem cells can be classified into three categories: (1) adult stem cells, (2) embryonic stem cells, and (3) induced pluripotential cells. Adult stem cells have been identified in numerous organs and tissues in adults, including bone-marrow, skeletal muscle, adipose tissue, and, as was recently discovered, the heart. Embryonic stem cells are derived from the inner cell mass of the blastocyst stage of the developing embryo. Finally through transcriptional reprogramming, somatic cells, such as fibroblasts, can be converted into induced pluripotential cells that resemble embryonic stem cells. Four classes of stem cells that may lead to cardiac regeneration are: (1) Embryonic stem cells, (2) Bone Marrow derived stem cells, (3) Skeletal myoblasts, and (4) Cardiac stem cells and cardiac progenitor cells. Embryonic stem cells are problematic because of several reasons: (1) the formation of teratomas, (2) potential immunologic cellular rejection, (3) low efficiency of their differentiation into cardiomyocytes, typically 1% in culture, and (4) ethical and political

  15. Anemia and red blood cell transfusion in critically ill cardiac patients

    PubMed Central

    2014-01-01

    Anemia and red blood cell (RBC) transfusion occur frequently in hospitalized patients with cardiac disease. In this narrative review, we report the epidemiology of anemia and RBC transfusion in hospitalized adults and children (excluding premature neonates) with cardiac disease, and on the outcome of anemic and transfused cardiac patients. Both anemia and RBC transfusion are common in cardiac patients, and both are associated with mortality. RBC transfusion is the only way to rapidly treat severe anemia, but is not completely safe. In addition to hemoglobin (Hb) concentration, the determinant(s) that should drive a practitioner to prescribe a RBC transfusion to cardiac patients are currently unclear. In stable acyanotic cardiac patients, Hb level above 70 g/L in children and above 70 to 80 g/L in adults appears safe. In cyanotic children, Hb level above 90 g/L appears safe. The appropriate threshold Hb level for unstable cardiac patients and for children younger than 28 days is unknown. The optimal transfusion strategy in cardiac patients is not well characterized. The threshold at which the risk of anemia outweighs the risk of transfusion is not known. More studies are needed to determine when RBC transfusion is indicated in hospitalized patients with cardiac disease. PMID:25024880

  16. Hypoxia/Reoxygenation Cardiac Injury and Regeneration in Zebrafish Adult Heart

    PubMed Central

    Pompilio, Giulio; Verduci, Lorena; Colombo, Gualtiero I.; Milano, Giuseppina; Guerrini, Uliano; Squadroni, Lidia; Cotelli, Franco; Pozzoli, Ombretta; Capogrossi, Maurizio C.

    2013-01-01

    Aims the adult zebrafish heart regenerates spontaneously after injury and has been used to study the mechanisms of cardiac repair. However, no zebrafish model is available that mimics ischemic injury in mammalian heart. We developed and characterized zebrafish cardiac injury induced by hypoxia/reoxygenation (H/R) and the regeneration that followed it. Methods and Results adult zebrafish were kept either in hypoxic (H) or normoxic control (C) water for 15 min; thereafter fishes were returned to C water. Within 2–6 hours (h) after reoxygenation there was evidence of cardiac oxidative stress by dihydroethidium fluorescence and protein nitrosylation, as well as of inflammation. We used Tg(cmlc2:nucDsRed) transgenic zebrafish to identify myocardial cell nuclei. Cardiomyocyte apoptosis and necrosis were evidenced by TUNEL and Acridine Orange (AO) staining, respectively; 18 h after H/R, 9.9±2.6% of myocardial cell nuclei were TUNEL+ and 15.0±2.5% were AO+. At the 30-day (d) time point myocardial cell death was back to baseline (n = 3 at each time point). We evaluated cardiomyocyte proliferation by Phospho Histone H3 (pHH3) or Proliferating Cell Nuclear Antigen (PCNA) expression. Cardiomyocyte proliferation was apparent 18–24 h after H/R, it achieved its peak 3–7d later, and was back to baseline at 30d. 7d after H/R 17.4±2.3% of all cardiomyocytes were pHH3+ and 7.4±0.6% were PCNA+ (n = 3 at each time point). Cardiac function was assessed by 2D-echocardiography and Ventricular Diastolic and Systolic Areas were used to compute Fractional Area Change (FAC). FAC decreased from 29.3±2.0% in normoxia to 16.4±1.8% at 18 h after H/R; one month later ventricular function was back to baseline (n = 12 at each time point). Conclusions zebrafish exposed to H/R exhibit evidence of cardiac oxidative stress and inflammation, myocardial cell death and proliferation. The initial decrease in ventricular function is followed by full recovery. This model more closely

  17. cap alpha. -skeletal and. cap alpha. -cardiac actin genes are coexpressed in adult human skeletal muscle and heart

    SciTech Connect

    Gunning, P.; Ponte, P.; Blau, H.; Kedes, L.

    1983-11-01

    The authors determined the actin isotypes encoded by 30 actin cDNA clones previously isolated from an adult human muscle cDNA library. Using 3' untranslated region probes, derived from ..cap alpha.. skeletal, ..beta..- and ..gamma..-actin cDNAs and from an ..cap alpha..-cardiac actin genomic clone, they showed that 28 of the cDNAs correspond to ..cap alpha..-skeletal actin transcripts. Unexpectedly, however, the remaining two cDNA clones proved to derive from ..cap alpha..-cardiac actin mRNA. Sequence analysis confirmed that the two skeletal muscle ..cap alpha..-cardiac actin cDNAs are derived from transcripts of the cloned ..cap alpha..-cardiac actin gene. Comparison of total actin mRNA levels in adult skeletal muscle and adult heart revealed that the steady-state levels in skeletal muscle are about twofold greater, per microgram of total cellular RNA, than those in heart. Thus, in skeletal muscle and in heart, both of the sarcomeric actin mRNA isotypes are quite abundant transcripts. They conclude that ..cap alpha..-skeletal and ..cap alpha..-cardiac actin genes are coexpressed as an actin pair in human adult striated muscles. Since the smooth-muscle actins (aortic and stomach) and the cytoplasmic actins (..beta.. and ..gamma..) are known to be coexpressed in smooth muscle and nonmuscle cells, respectively, they postulate that coexpression of actin pairs may be a common feature of mammalian actin gene expression in all tissues.

  18. Cyclosporin in cell therapy for cardiac regeneration.

    PubMed

    Jansen Of Lorkeers, S J; Hart, E; Tang, X L; Chamuleau, M E D; Doevendans, P A; Bolli, R; Chamuleau, S A J

    2014-07-01

    Stem cell therapy is a promising strategy in promoting cardiac repair in the setting of ischemic heart disease. Clinical and preclinical studies have shown that cell therapy improves cardiac function. Whether autologous or allogeneic cells should be used, and the need for immunosuppression in non-autologous settings, is a matter of debate. Cyclosporin A (CsA) is frequently used in preclinical trials to reduce cell rejection after non-autologous cell therapy. The direct effect of CsA on the function and survival of stem cells is unclear. Furthermore, the appropriate daily dosage of CsA in animal models has not been established. In this review, we discuss the pros and cons of the use of CsA on an array of stem cells both in vitro and in vivo. Furthermore, we present a small collection of data put forth by our group supporting the efficacy and safety of a specific daily CsA dosage in a pig model. PMID:24831573

  19. Ketamine in adult cardiac surgery and the cardiac surgery Intensive Care Unit: An evidence-based clinical review

    PubMed Central

    Mazzeffi, Michael; Johnson, Kyle; Paciullo, Christopher

    2015-01-01

    Ketamine is a unique anesthetic drug that provides analgesia, hypnosis, and amnesia with minimal respiratory and cardiovascular depression. Because of its sympathomimetic properties it would seem to be an excellent choice for patients with depressed ventricular function in cardiac surgery. However, its use has not gained widespread acceptance in adult cardiac surgery patients, perhaps due to its perceived negative psychotropic effects. Despite this limitation, it is receiving renewed interest in the United States as a sedative and analgesic drug for critically ill-patients. In this manuscript, the authors provide an evidence-based clinical review of ketamine use in cardiac surgery patients for intensive care physicians, cardio-thoracic anesthesiologists, and cardio-thoracic surgeons. All MEDLINE indexed clinical trials performed during the last 20 years in adult cardiac surgery patients were included in the review. PMID:25849690

  20. Single-cell transcriptome and epigenomic reprogramming of cardiomyocyte-derived cardiac progenitor cells.

    PubMed

    Chen, Xin; Chakravarty, Tushar; Zhang, Yiqiang; Li, Xiaojin; Zhong, Jiang F; Wang, Charles

    2016-01-01

    The molecular basis underlying the dedifferentiation of mammalian adult cardiomyocytes (ACMs) into myocyte-derived cardiac progenitor cells (mCPCs) during cardiac tissue regeneration is poorly understood. We present data integrating single-cell transcriptome and whole-genome DNA methylome analyses of mouse mCPCs to understand the epigenomic reprogramming governing their intrinsic cellular plasticity. Compared to parental cardiomyocytes, mCPCs display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlating well with the methylome, our single-cell transcriptomic data show that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implanting mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. This dataset suggests that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. Understanding cardiomyocyte epigenomic reprogramming may enable the design of future clinical therapies that induce cardiac regeneration, and prevent heart failure. PMID:27622691

  1. A Statistically Enhanced Spectral Counting Approach to TCDD Cardiac Toxicity in the Adult Zebrafish Heart

    PubMed Central

    Zhang, Jiang; Lanham, Kevin A; Heideman, Warren; Peterson, Richard E.; Li, Lingjun

    2013-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant and teratogen that produces cardiac toxicity in the developing zebrafish. Here we adopted a label free quantitative proteomic approach based on normalized spectral abundance factor (NSAF) to investigate the disturbance of the cardiac proteome induced by TCDD in the adult zebrafish heart. The protein expression level changes between heart samples from TCDD treated and control zebrafish were systematically evaluated by a large scale MudPIT analysis which incorporated triplicate analyses for both control and TCDD exposed heart proteomic samples to overcome the data dependant variation in shotgun proteomic experiments and obtain a statistically significant protein dataset with improved quantification confidence. A total of 519 and 443 proteins were identified in hearts collected from control and TCDD treated zebrafish, respectively, among which 106 proteins showed statistically significant expression changes. After correcting for the experimental variation between replicate analyses by statistical evaluation, 55 proteins exhibited NSAF ratio above 2 and 43 proteins displayed NSAF ratio smaller than 0.5, with statistical significance by t-test (p < 0.05). The proteins identified as altered by TCDD encompass a wide range of biological functions including calcium handling, myocardium cell architecture, energy production and metabolism, mitochondrial homeostasis, and stress response. Collectively, our results indicate that TCDD exposure alters the adult zebrafish heart in a way that could result in cardiac hypertrophy and heart failure, and suggests a potential mechanism for the diastolic dysfunction observed in TCDD exposed embryos. PMID:23682714

  2. Knowledge Management in Cardiac Surgery: The Second Tehran Heart Center Adult Cardiac Surgery Database Report

    PubMed Central

    Abbasi, Kyomars; Karimi, Abbasali; Abbasi, Seyed Hesameddin; Ahmadi, Seyed Hossein; Davoodi, Saeed; Babamahmoodi, Abdolreza; Movahedi, Namdar; Salehiomran, Abbas; Shirzad, Mahmood; Bina, Peyvand

    2012-01-01

    Background: The Adult Cardiac Surgery Databank (ACSD) of Tehran Heart Center was established in 2002 with a view to providing clinical prediction rules for outcomes of cardiac procedures, developing risk score systems, and devising clinical guidelines. This is a general analysis of the collected data. Methods: All the patients referred to Tehran Heart Center for any kind of heart surgery between 2002 and 2008 were included, and their demographic, medical, clinical, operative, and postoperative data were gathered. This report presents general information as well as in-hospital mortality rates regarding all the cardiac procedures performed in the above time period. Results: There were 24959 procedures performed: 19663 (78.8%) isolated coronary artery bypass grafting surgeries (CABGs); 1492 (6.0%) isolated valve surgeries; 1437 (5.8%) CABGs concomitant with other procedures; 832 (3.3%) CABGs combined with valve surgeries; 722 (2.9%) valve surgeries concomitant with other procedures; 545 (2.2%) surgeries other than CABG or valve surgery; and 267 (1.1%) CABGs concomitant with valve and other types of surgery. The overall mortality was 205 (1.04%), with the lowest mortality rate (0.47%) in the isolated CABGs and the highest (4.49%) in the CABGs concomitant with valve surgeries and other types of surgery. Meanwhile, the overall mortality rate was higher in the female patients than in the males (1.90% vs. 0.74%, respectively). Conclusion: Isolated CABG was the most prevalent procedure at our center with the lowest mortality rate. However, the overall mortality was more prevalent in our female patients. This database can serve as a platform for the participation of the other countries in the region in the creation of a regional ACSD. PMID:23304179

  3. Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix.

    PubMed

    Xu, Yanyi; Patnaik, Sourav; Guo, Xiaolei; Li, Zhenqing; Lo, Wilson; Butler, Ryan; Claude, Andrew; Liu, Zhenguo; Zhang, Ge; Liao, Jun; Anderson, Peter M; Guan, Jianjun

    2014-08-01

    Stem cell therapy has the potential to regenerate heart tissue after myocardial infarction (MI). The regeneration is dependent upon cardiac differentiation of the delivered stem cells. We hypothesized that timing of the stem cell delivery determines the extent of cardiac differentiation as cell differentiation is dependent on matrix properties such as biomechanics, structure and morphology, and these properties in cardiac extracellular matrix (ECM) continuously vary with time after MI. In order to elucidate the relationship between ECM properties and cardiac differentiation, we created an in vitro model based on ECM-mimicking fibers and a type of cardiac progenitor cell, cardiosphere-derived cells (CDCs). A simultaneous fiber electrospinning and cell electrospraying technique was utilized to fabricate constructs. By blending a highly soft hydrogel with a relatively stiff polyurethane and modulating fabrication parameters, tissue constructs with similar cell adhesion property but different global modulus, single fiber modulus, fiber density and fiber alignment were achieved. The CDCs remained alive within the constructs during a 1week culture period. CDC cardiac differentiation was dependent on the scaffold modulus, fiber volume fraction and fiber alignment. Two constructs with relatively low scaffold modulus, ∼50-60kPa, most significantly directed the CDC differentiation into mature cardiomyocytes as evidenced by gene expressions of cardiac troponin T (cTnT), calcium channel (CACNA1c) and cardiac myosin heavy chain (MYH6), and protein expressions of cardiac troponin I (cTnI) and connexin 43 (CX43). Of these two low-modulus constructs, the extent of differentiation was greater for lower fiber alignment and higher fiber volume fraction. These results suggest that cardiac ECM properties may have an effect on cardiac differentiation of delivered stem cells. PMID:24769114

  4. Cardiac Cells Beating in Culture: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  5. Stem cell therapy for cardiac regeneration: hits and misses.

    PubMed

    Padda, Jagjit; Sequiera, Glen Lester; Sareen, Niketa; Dhingra, Sanjiv

    2015-10-01

    Cardiac injury and loss of cardiomyocytes is a causative as well as a resultant condition of cardiovascular disorders, which are the leading cause of death throughout the world. This loss of cardiomyocytes cannot be completely addressed through the currently available drugs being administered, which mainly function only in relieving the symptoms. There is a huge potential being investigated for regenerative and cell replacement therapies through recruiting stem cells of various origins namely embryonic, reprogramming/induction, and adult tissue. These sources are being actively studied for translation to clinical scenarios. In this review, we attempt to discuss some of these promising scenarios, including the clinical trials and the obstacles that need to be overcome, and hope to address the direction in which stem cell therapy is heading. PMID:26443930

  6. Design and formulation of functional pluripotent stem cell-derived cardiac microtissues

    PubMed Central

    Thavandiran, Nimalan; Dubois, Nicole; Mikryukov, Alexander; Massé, Stéphane; Beca, Bogdan; Simmons, Craig A.; Deshpande, Vikram S.; McGarry, J. Patrick; Chen, Christopher S.; Nanthakumar, Kumaraswamy; Keller, Gordon M.; Radisic, Milica; Zandstra, Peter W.

    2013-01-01

    Access to robust and information-rich human cardiac tissue models would accelerate drug-based strategies for treating heart disease. Despite significant effort, the generation of high-fidelity adult-like human cardiac tissue analogs remains challenging. We used computational modeling of tissue contraction and assembly mechanics in conjunction with microfabricated constraints to guide the design of aligned and functional 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues that we term cardiac microwires (CMWs). Miniaturization of the platform circumvented the need for tissue vascularization and enabled higher-throughput image-based analysis of CMW drug responsiveness. CMW tissue properties could be tuned using electromechanical stimuli and cell composition. Specifically, controlling self-assembly of 3D tissues in aligned collagen, and pacing with point stimulation electrodes, were found to promote cardiac maturation-associated gene expression and in vivo-like electrical signal propagation. Furthermore, screening a range of hPSC-derived cardiac cell ratios identified that 75% NKX2 Homeobox 5 (NKX2-5)+ cardiomyocytes and 25% Cluster of Differentiation 90 OR (CD90)+ nonmyocytes optimized tissue remodeling dynamics and yielded enhanced structural and functional properties. Finally, we demonstrate the utility of the optimized platform in a tachycardic model of arrhythmogenesis, an aspect of cardiac electrophysiology not previously recapitulated in 3D in vitro hPSC-derived cardiac microtissue models. The design criteria identified with our CMW platform should accelerate the development of predictive in vitro assays of human heart tissue function. PMID:24255110

  7. Cell-Specific Cardiac Electrophysiology Models

    PubMed Central

    Groenendaal, Willemijn; Ortega, Francis A.; Kherlopian, Armen R.; Zygmunt, Andrew C.; Krogh-Madsen, Trine; Christini, David J.

    2015-01-01

    The traditional cardiac model-building paradigm involves constructing a composite model using data collected from many cells. Equations are derived for each relevant cellular component (e.g., ion channel, exchanger) independently. After the equations for all components are combined to form the composite model, a subset of parameters is tuned, often arbitrarily and by hand, until the model output matches a target objective, such as an action potential. Unfortunately, such models often fail to accurately simulate behavior that is dynamically dissimilar (e.g., arrhythmia) to the simple target objective to which the model was fit. In this study, we develop a new approach in which data are collected via a series of complex electrophysiology protocols from single cardiac myocytes and then used to tune model parameters via a parallel fitting method known as a genetic algorithm (GA). The dynamical complexity of the electrophysiological data, which can only be fit by an automated method such as a GA, leads to more accurately parameterized models that can simulate rich cardiac dynamics. The feasibility of the method is first validated computationally, after which it is used to develop models of isolated guinea pig ventricular myocytes that simulate the electrophysiological dynamics significantly better than does a standard guinea pig model. In addition to improving model fidelity generally, this approach can be used to generate a cell-specific model. By so doing, the approach may be useful in applications ranging from studying the implications of cell-to-cell variability to the prediction of intersubject differences in response to pharmacological treatment. PMID:25928268

  8. Fetal-Adult Cardiac Transcriptome Analysis in Rats with Contrasting Left Ventricular Mass Reveals New Candidates for Cardiac Hypertrophy

    PubMed Central

    Grabowski, Katja; Riemenschneider, Mona; Schulte, Leonard; Witten, Anika; Schulz, Angela; Stoll, Monika; Kreutz, Reinhold

    2015-01-01

    Reactivation of fetal gene expression patterns has been implicated in common cardiac diseases in adult life including left ventricular (LV) hypertrophy (LVH) in arterial hypertension. Thus, increased wall stress and neurohumoral activation are discussed to induce the return to expression of fetal genes after birth in LVH. We therefore aimed to identify novel potential candidates for LVH by analyzing fetal-adult cardiac gene expression in a genetic rat model of hypertension, i.e. the stroke-prone spontaneously hypertensive rat (SHRSP). To this end we performed genome-wide transcriptome analysis in SHRSP to identify differences in expression patterns between day 20 of fetal development (E20) and adult animals in week 14 in comparison to a normotensive rat strain with contrasting low LV mass, i.e. Fischer (F344). 15232 probes were detected as expressed in LV tissue obtained from rats at E20 and week 14 (p < 0.05) and subsequently screened for differential expression. We identified 24 genes with SHRSP specific up-regulation and 21 genes with down-regulation as compared to F344. Further bioinformatic analysis presented Efcab6 as a new candidate for LVH that showed only in the hypertensive SHRSP rat differential expression during development (logFC = 2.41, p < 0.001) and was significantly higher expressed in adult SHRSP rats compared with adult F344 (+ 76%) and adult normotensive Wistar-Kyoto rats (+ 82%). Thus, it represents an interesting new target for further functional analyses and the elucidation of mechanisms leading to LVH. Here we report a new approach to identify candidate genes for cardiac hypertrophy by combining the analysis of gene expression differences between strains with a contrasting cardiac phenotype with a comparison of fetal-adult cardiac expression patterns. PMID:25646840

  9. Cardiac Regeneration Using Pluripotent Stem Cells – Progression to Large Animal Models

    PubMed Central

    Chong, James J.H.; Murry, Charles E.

    2014-01-01

    Pluripotent stem cells (PSCs) have indisputable cardiomyogenic potential and therefore have been intensively investigated as a potential cardiac regenerative therapy. Current directed differentiation protocols are able to produce high yields of cardiomyocytes from PSCs and studies in small animal models of cardiovascular disease have proven sustained engraftment and functional efficacy. Therefore, the time is ripe for cardiac regenerative therapies using PSC derivatives to be tested in large animal models that more closely resemble the hearts of humans. In this review, we discuss the results of our recent study using human embryonic stem cell derived cardiomyocytes (hESC-CM) in a non-human primate model of ischemic cardiac injury. Large scale remuscularization, electromechanical coupling and short-term arrhythmias demonstrated by our hESC-CM grafts are discussed in the context of other studies using Adult Stem Cells for cardiac regeneration. PMID:25087896

  10. Perioperative Hemoglobin Trajectory in Adult Cardiac Surgical Patients

    PubMed Central

    Scott, David A.; Tung, Hon-Ming Andrew; Slater, Reuben

    2015-01-01

    Abstract: Preoperative anemia and nadir hemoglobin (Hb) during cardiopulmonary bypass (CPB) have been identified as significant risk factors for blood transfusion during cardiac surgery. The aim of this study was to confirm the association between preoperative anemia, perioperative fluid management, and blood transfusion. In addition, the proportion of elective cardiac surgery patients presenting for surgery with anemia was identified to examine whether the opportunity exists for timely diagnosis and intervention. Data from referral until hospital discharge were comprehensively reviewed over a 12-month period for all nonemergency cardiac surgical patients operated on in our institution. Of the 342 patients identified, elective cases were referred a median of 35 days before preoperative clinic and operated on a median of 14 days subsequently. Subacute cases had a median of 3 days from referral to surgery. As per the World Health Organization (WHO) criteria for anemia, 24.2% of elective and 29.6% of subacute patients were anemic. Blood transfusion was administered to 46.2% of patients during their admission. Transfusion was more likely in patients who were female (odds ratio [OR]: 2.45, 95%confidence interval [CI]: 1.28–4.70), had a low body mass index (BMI) (OR: .89, 95% CI: .84–.94), preoperative anemia (OR: 5.15, 95% CI: 2.59–10.24), or renal impairment (OR: 5.44, 95% CI: 2.42–12.22). Hemodilution minimization strategies reduced the Hb fall during CPB, but not transfusion rates. This study identifies a high prevalence of preoperative anemia with sufficient time for elective referrals to undergo appropriate diagnosis and interventions. It also confirms that low red cell mass (anemia and low BMI) and renal impairment are predictors of perioperative blood transfusion. Perfusion strategies to reduce hemodilution are effective at minimizing the intraoperative fall in Hb concentration but did not influence transfusion rate. PMID:26543251

  11. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5

    PubMed Central

    Belian, Elisa; Noseda, Michela; Abreu Paiva, Marta S.; Leja, Thomas; Sampson, Robert; Schneider, Michael D.

    2015-01-01

    Adult cardiac stem cells (CSCs) express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd)—a co-activator not only for serum response factor, but also for Gata4 and Tbx5—is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT), and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains). MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized. In summary: (1) GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2) Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3) Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate. PMID

  12. Regenerative cell imaging in cardiac repair.

    PubMed

    Moudgil, Rohit; Dick, Alexander J

    2014-11-01

    Heart disease continues to be a leading cause of death in the Western world. Although strides have been made in prevention and management of coronary artery disease, lost myocardium after an ischemic event remains at the core of the morbidity and the mortality. Poor regenerative capacity of the myocardium has led to the study of cell-based therapies to restore anatomical, functional, and viable myocardium. To that end, stem cells are undifferentiated cells that are self-renewing, clonogenic, and pluripotent and therefore ideal for the restorative job. However, to refine the technique of cell-based therapy, in vivo molecular assessment is imperative to monitor cell survival and their effect on myocardial restoration. Direct imaging of the behaviour of cells after implantation into living subjects can offer great insight into their mechanisms of action, and their therapeutic efficacy. In this article we explore current knowledge of various imaging modalities that have been used to assess in vivo cellular and molecular events after administration of stem cells in injured myocardium. The goal of the article is to provide a comprehensive overview of the literature, highlight various imaging modalities, and suggest some of the key concepts on the horizon in cardiac stem cell imaging. PMID:25442433

  13. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: 2016 Update on Outcomes and Quality.

    PubMed

    D'Agostino, Richard S; Jacobs, Jeffrey P; Badhwar, Vinay; Paone, Gaetano; Rankin, J Scott; Han, Jane M; McDonald, Donna; Shahian, David M

    2016-01-01

    The Society of Thoracic Surgeons Adult Cardiac Database is one of the longest-standing, largest, and most highly regarded clinical data registries in health care. It serves as the foundation for all quality measurement and improvement activities of The Society of Thoracic Surgeons. This report summarizes current aggregate national outcomes in adult cardiac surgery and reviews database-related activities in the areas of quality measurement and performance improvement. PMID:26616408

  14. Drug and cell delivery for cardiac regeneration.

    PubMed

    Hastings, Conn L; Roche, Ellen T; Ruiz-Hernandez, Eduardo; Schenke-Layland, Katja; Walsh, Conor J; Duffy, Garry P

    2015-04-01

    The spectrum of ischaemic cardiomyopathy, encompassing acute myocardial infarction to congestive heart failure is a significant clinical issue in the modern era. This group of diseases is an enormous source of morbidity and mortality and underlies significant healthcare costs worldwide. Cardiac regenerative therapy, whereby pro-regenerative cells, drugs or growth factors are administered to damaged and ischaemic myocardium has demonstrated significant potential, especially preclinically. While some of these strategies have demonstrated a measure of success in clinical trials, tangible clinical translation has been slow. To date, the majority of clinical studies and a significant number of preclinical studies have utilised relatively simple delivery methods for regenerative therapeutics, such as simple systemic administration or local injection in saline carrier vehicles. Here, we review cardiac regenerative strategies with a particular focus on advanced delivery concepts as a potential means to enhance treatment efficacy and tolerability and ultimately, clinical translation. These include (i) delivery of therapeutic agents in biomaterial carriers, (ii) nanoparticulate encapsulation, (iii) multimodal therapeutic strategies and (iv) localised, minimally invasive delivery via percutaneous transcatheter systems. PMID:25172834

  15. Adult-Onset Still's Disease and Cardiac Tamponade: A Rare Association

    PubMed Central

    Silva, Doroteia; de Jesus Silva, Maria; André, Rui; Varela, Manuel Gato; Diogo, António Nunes

    2015-01-01

    Adult-onset Still's disease is a rare disorder with potentially severe clinical features, including cardiac involvement. This systemic inflammatory disease of unknown origin should be considered in the differential diagnosis of pericarditis, with or without pericardial effusion. Cardiac tamponade is a very rare sequela that requires an invasive approach, such as percutaneous or surgical pericardial drainage, in addition to the usual conservative therapy. The authors describe a case of adult-onset Still's disease rendered more difficult by pericarditis and cardiac tamponade, and they briefly review the literature on this entity. PMID:26175648

  16. Cardiac Cell Culture Model (CCCM) as a Left Ventricle Mimic for Cardiac Tissue Generation

    PubMed Central

    Nguyen, Mai-Dung; Tinney, Joseph P.; Yuan, Fangping; Roussel, Thomas J.; El-Baz, Ayman; Giridharan, Guruprasad; Keller, Bradley B.; Sethu, Palaniappan

    2013-01-01

    A major challenge in cardiac tissue engineering is the delivery of hemodynamic mechanical cues that play a critical role in the early development and maturation of cardiomyocytes. Generation of functional cardiac tissue capable of replacing or augmenting cardiac function therefore requires physiologically relevant environments that can deliver complex mechanical cues for cardiomyocyte functional maturation. The goal of this work is the development and validation of a cardiac cell culture model (CCCM) microenvironment that accurately mimics pressure-volume changes seen in the left ventricle and to use this system to achieve cardiac cell maturation under conditions where mechanical loads such as pressure and stretch are gradually increased from the unloaded state to conditions seen in vivo. The CCCM platform, consisting of a cell culture chamber integrated within a flow loop was created to accomplish culture of 10 day chick embryonic ventricular cardiomyocytes subject to 4 days of stimulation (10 mm Hg, ~13% stretch at a frequency of 2 Hz). Results clearly show that CCCM conditioned cardiomyocytes accelerate cardiomyocyte structural and functional maturation in comparison to static unloaded controls as evidenced by increased proliferation, alignment of actin cytoskeleton, bundle-like sarcomeric α-actinin expression, higher pacing beat rate at lower threshold voltages and increased shortening. These results confirm the CCCM microenvironment can accelerate immature cardiac cell structural and functional maturation for potential cardiac regenerative applications. PMID:23952579

  17. Alteration of cardiac progenitor cell potency in GRMD dogs.

    PubMed

    Cassano, M; Berardi, E; Crippa, S; Toelen, J; Barthelemy, I; Micheletti, R; Chuah, M; Vandendriessche, T; Debyser, Z; Blot, S; Sampaolesi, M

    2012-01-01

    Among the animal models of Duchenne muscular dystrophy (DMD), the Golden Retriever muscular dystrophy (GRMD) dog is considered the best model in terms of size and pathological onset of the disease. As in human patients presenting with DMD or Becker muscular dystrophies (BMD), the GRMD is related to a spontaneous X-linked mutation of dystrophin and is characterized by myocardial lesions. In this respect, GRMD is a useful model to explore cardiac pathogenesis and for the development of therapeutic protocols. To investigate whether cardiac progenitor cells (CPCs) isolated from healthy and GRMD dogs may differentiate into myocardial cell types and to test the feasibility of cell therapy for cardiomyopathies in a preclinical model of DMD, CPCs were isolated from cardiac biopsies of healthy and GRMD dogs. Gene profile analysis revealed an active cardiac transcription network in both healthy and GRMD CPCs. However, GRMD CPCs showed impaired self-renewal and cardiac differentiation. Population doubling and telomerase analyses highlighted earlier senescence and proliferation impairment in progenitors isolated from GRMD cardiac biopsies. Immunofluorescence analysis revealed that only wt CPCs showed efficient although not terminal cardiac differentiation, consistent with the upregulation of cardiac-specific proteins and microRNAs. Thus, the pathological condition adversely influences the cardiomyogenic differentiation potential of cardiac progenitors. Using PiggyBac transposon technology we marked CPCs for nuclear dsRed expression, providing a stable nonviral gene marking method for in vivo tracing of CPCs. Xenotransplantation experiments in neonatal immunodeficient mice revealed a valuable contribution of CPCs to cardiomyogenesis with homing differences between wt and dystrophic progenitors. These results suggest that cardiac degeneration in dystrophinopathies may account for the progressive exhaustion of local cardiac progenitors and shed light on cardiac stemness in

  18. Adult Stem and Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Geraerts, Martine; Verfaillie, Catherine M.

    The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.

  19. Bone Marrow Is a Reservoir for Cardiac Resident Stem Cells

    PubMed Central

    Liu, Na; Qi, Xin; Han, Zhibo; Liang, Lu; Kong, Deling; Han, Zhongchao; Zhao, Shihua; He, Zuo-Xiang; Li, Zongjin

    2016-01-01

    Resident cardiac stem cells (CSCs) represent a responsive stem cell reservoir within the adult myocardium and have a significant function in myocardial homeostasis and injury. However, the distribution, origin, homing and possible therapeutic benefits of CSCs are still under discussion. Here we investigated whether bone marrow (BM) stem cells could contribute to repopulating the pool of CSCs in heart. The engraftment of BM cells in heart was detected at a low level after BM transplantation (BMT) and ischemia/reperfusion (I/R) could increase BM cells engraftment but not significant. We clarified that more than 50% CSCs are derived from BM and confirmed that BM-derived CSCs have similar characteristics with the host CSCs. Furthermore, we transplanted BM-derived CSCs into heart ischemia models and presented evidence for the first time that BM-derived CSCs can differentiate into cardiomyocytes in vivo. In conclusions, BM stem cells could be a potential back-up source of CSCs for restoring heart function after injury or maintaining homeostasis of CSCs. PMID:27345618

  20. Bone Marrow Is a Reservoir for Cardiac Resident Stem Cells.

    PubMed

    Liu, Na; Qi, Xin; Han, Zhibo; Liang, Lu; Kong, Deling; Han, Zhongchao; Zhao, Shihua; He, Zuo-Xiang; Li, Zongjin

    2016-01-01

    Resident cardiac stem cells (CSCs) represent a responsive stem cell reservoir within the adult myocardium and have a significant function in myocardial homeostasis and injury. However, the distribution, origin, homing and possible therapeutic benefits of CSCs are still under discussion. Here we investigated whether bone marrow (BM) stem cells could contribute to repopulating the pool of CSCs in heart. The engraftment of BM cells in heart was detected at a low level after BM transplantation (BMT) and ischemia/reperfusion (I/R) could increase BM cells engraftment but not significant. We clarified that more than 50% CSCs are derived from BM and confirmed that BM-derived CSCs have similar characteristics with the host CSCs. Furthermore, we transplanted BM-derived CSCs into heart ischemia models and presented evidence for the first time that BM-derived CSCs can differentiate into cardiomyocytes in vivo. In conclusions, BM stem cells could be a potential back-up source of CSCs for restoring heart function after injury or maintaining homeostasis of CSCs. PMID:27345618

  1. Mesenchymal stem cell-derived exosomes: A novel potential therapeutic avenue for cardiac regeneration.

    PubMed

    Safari, S; Malekvandfard, F; Babashah, S; Alizadehasl, A; Sadeghizadeh, M; Motavaf, M

    2016-01-01

    Coronary artery diseases (CADs) represent a significant cause of death worldwide. During recent decades the rate of cardiovascular mortality has been declined as a result of modern medicine and surgery. However, despite the fact that cardiac cells, including cardiomyocytes (CMCs), vascular smooth muscle cells (VSMC) and vascular endothelial cells (VEC), can be regenerated by cardiac adult stem cell, the regenerative capacity of these cells are limited and inadequate to functionally regenerate heart damaged tissue. Thus, growth reserve of the heart fails to restore the structural integrity of the myocardium after infarction and healing is associated with scar formation. An explanation for this is that cardiac reside stem cells are present throughout the infarction site but die rapidly by apoptosis. Furthermore, microenvironment surrounding the damage site is not promising for the cells survival and renewal. Hence, recent advances in the stem cell therapy have emerged as an attractive approach to replace the lost cells. In this context, mesenchymal stem cells (MSCs) has considered as one of the most promising candidates for regeneration of cardiac cells, lost upon injury. The regenerative capacity of MSCs has primarily been centered on the hypothesis that these cells would engraft, differentiate and replace damaged cardiac cells. However, experimental and clinical observations so far have failed to establish if this differentiated is considerably relevant to MSCs cardiac regenerative properties. Recent reports have suggested that these therapeutic properties, at least in part, are mediated by paracrine factors released from MSCs. This review provides a concise summary of current evidences supporting the paracrine hypothesis of MSCs. In particular, the scope of this review focuses on the role of MSC-derived exosome (MSC-EXs) as a therapeutic modality for the treatment of CADs, particularly ischemic myocardial dysfunctions. PMID:27453275

  2. Neonatal Heart-Enriched miR-708 Promotes Differentiation of Cardiac Progenitor Cells in Rats

    PubMed Central

    Deng, Shengqiong; Zhao, Qian; Zhou, Xianjin; Zhang, Lin; Bao, Luer; Zhen, Lixiao; Zhang, Yuzhen; Fan, Huimin; Liu, Zhongmin; Yu, Zuoren

    2016-01-01

    Cardiovascular disease is becoming the leading cause of death throughout the world. However, adult hearts have limited potential for regeneration after pathological injury, partly due to the quiescent status of stem/progenitor cells. Reactivation of cardiac stem/progenitor cells to create more myocyte progeny is one of the key steps in the regeneration of a damaged heart. In this study, miR-708 was identified to be enriched in the neonatal cardiomyocytes of rats, but this has not yet been proven in adult humans. A lower level of miR-708 in c-kit(+) stem/progenitor cells was detected compared to non-progenitors. Overexpression of miR-708 induced cardiomyocyte differentiation of cardiac stem/progenitor cells. This finding strengthened the potential of applying miRNAs in the regeneration of injured hearts, and this indicates that miR-708 could be a novel candidate for treatment of heart diseases. PMID:27338347

  3. Neonatal Heart-Enriched miR-708 Promotes Differentiation of Cardiac Progenitor Cells in Rats.

    PubMed

    Deng, Shengqiong; Zhao, Qian; Zhou, Xianjin; Zhang, Lin; Bao, Luer; Zhen, Lixiao; Zhang, Yuzhen; Fan, Huimin; Liu, Zhongmin; Yu, Zuoren

    2016-01-01

    Cardiovascular disease is becoming the leading cause of death throughout the world. However, adult hearts have limited potential for regeneration after pathological injury, partly due to the quiescent status of stem/progenitor cells. Reactivation of cardiac stem/progenitor cells to create more myocyte progeny is one of the key steps in the regeneration of a damaged heart. In this study, miR-708 was identified to be enriched in the neonatal cardiomyocytes of rats, but this has not yet been proven in adult humans. A lower level of miR-708 in c-kit(+) stem/progenitor cells was detected compared to non-progenitors. Overexpression of miR-708 induced cardiomyocyte differentiation of cardiac stem/progenitor cells. This finding strengthened the potential of applying miRNAs in the regeneration of injured hearts, and this indicates that miR-708 could be a novel candidate for treatment of heart diseases. PMID:27338347

  4. Older Adults in Cardiac Rehabilitation: A New Strategy for Enhancing Physical Function.

    ERIC Educational Resources Information Center

    Rejeski, W. Jack; Foy, Capri Gabrielle; Brawley, Lawrence R.; Brubaker, Peter H.; Focht, Brian C.; Norris, James L., III; Smith, Marci L.

    2002-01-01

    Contrasted the effect of a group-mediated cognitive- behavioral intervention (GMCB) versus traditional cardiac rehabilitation (CRP) upon changes in objective and self-reported physical function of older adults after 3 months of exercise therapy. Both groups improved significantly. Adults with lower function at the outset of the intervention…

  5. 5-azacytidine promotes the transdifferentiation of cardiac cells to skeletal myocytes.

    PubMed

    Kaur, Keerat; Yang, Jinpu; Eisenberg, Carol A; Eisenberg, Leonard M

    2014-10-01

    The DNA methylation inhibitor 5-azacytidine is widely used to stimulate the cardiac differentiation of stem cells. However, 5-azacytidine has long been employed as a tool for stimulating skeletal myogenesis. Yet, it is unclear whether the ability of 5-azacytidine to promote both cardiac and skeletal myogenesis is dependent strictly on the native potential of the starting cell population or if this drug is a transdifferentiation agent. To address this issue, we examined the effect of 5-azacytidine on cultures of adult mouse atrial tissue, which contains cardiac but not skeletal muscle progenitors. Exposure to 5-azacytidine caused atrial cells to elongate and increased the presence of fat globules within the cultures. 5-Azacytidine also induced expression of the skeletal myogenic transcription factors MyoD and myogenin. 5-Azacytidine pretreatments allowed atrial cells to undergo adipogenesis or skeletal myogenesis when subsequently cultured with either insulin and dexamethasone or low-serum media, respectively. The presence of skeletal myocytes in atrial cultures was indicated by dual staining for myogenin and sarcomeric α-actin. These data demonstrate that 5-azacytidine converts cardiac cells to noncardiac cell types and suggests that this drug has a compromised efficacy as a cardiac differentiation factor. PMID:25090621

  6. Use of Mesenchymal Stem Cells for Therapy of Cardiac Disease

    PubMed Central

    Karantalis, Vasileios; Hare, Joshua M.

    2015-01-01

    Despite substantial clinical advances over the past 65 years, cardiovascular disease remains the leading cause of death in America. The past 15 years has witnessed major basic and translational interest in the use of stem and/or precursor cells as a therapeutic agent for chronically injured organs. Among the cell types under investigation, adult mesenchymal stem cells (MSCs) are widely studied and in early stage clinical studies show promise for repair and regeneration of cardiac tissues. The ability of MSCs to differentiate into mesoderm and non-mesoderm derived tissues, their immunomodulatory effects, their availability and their key role in maintaining and replenishing endogenous stem cell niches have rendered them one of the most heavily investigated and clinically tested type of stem cell. Accumulating data from preclinical and early phase clinical trials document their safety when delivered as either autologous or allogeneic forms in a range of cardiovascular diseases, but also importantly define parameters of clinical efficacy that justify further investigation in larger clinical trials. Here, we review the biology of MSCs, their interaction with endogenous molecular and cellular pathways, and their modulation of immune responses. Additionally, we discuss factors that enhance their proliferative and regenerative ability and factors that may hinder their effectiveness in the clinical setting. PMID:25858066

  7. Animal Models of Cardiac Disease and Stem Cell Therapy

    PubMed Central

    Ou, Lailiang; Li, Wenzhong; Liu, Yi; Zhang, Yue; Jie, Shen; Kong, Deling; Steinhoff, Gustav; Ma, Nan

    2010-01-01

    Animal models that mimic cardiovascular diseases are indispensable tools for understanding the mechanisms underlying the diseases at the cellular and molecular level. This review focuses on various methods in preclinical research to create small animal models of cardiac diseases, such as myocardial infarction, dilated cardiomyopathy, heart failure, myocarditis and cardiac hypertrophy, and the related stem cell treatment for these diseases. PMID:21258568

  8. A role for matrix stiffness in the regulation of cardiac side population cell function.

    PubMed

    Qiu, Yiling; Bayomy, Ahmad F; Gomez, Marcus V; Bauer, Michael; Du, Ping; Yang, Yanfei; Zhang, Xin; Liao, Ronglih

    2015-05-01

    The mechanical properties of the local microenvironment may have important influence on the fate and function of adult tissue progenitor cells, altering the regenerative process. This is particularly critical following a myocardial infarction, in which the normal, compliant myocardial tissue is replaced with fibrotic, stiff scar tissue. In this study, we examined the effects of matrix stiffness on adult cardiac side population (CSP) progenitor cell behavior. Ovine and murine CSP cells were isolated and cultured on polydimethylsiloxane substrates, replicating the elastic moduli of normal and fibrotic myocardium. Proliferation capacity and cell cycling were increased in CSP cells cultured on the stiff substrate with an associated reduction in cardiomyogeneic differentiation and accelerated cell ageing. In addition, culture on stiff substrate stimulated upregulation of extracellular matrix and adhesion proteins gene expression in CSP cells. Collectively, we demonstrate that microenvironment properties, including matrix stiffness, play a critical role in regulating progenitor cell functions of endogenous resident CSP cells. Understanding the effects of the tissue microenvironment on resident cardiac progenitor cells is a critical step toward achieving functional cardiac regeneration. PMID:25724498

  9. A role for matrix stiffness in the regulation of cardiac side population cell function

    PubMed Central

    Qiu, Yiling; Bayomy, Ahmad F.; Gomez, Marcus V.; Bauer, Michael; Du, Ping; Yang, Yanfei; Zhang, Xin

    2015-01-01

    The mechanical properties of the local microenvironment may have important influence on the fate and function of adult tissue progenitor cells, altering the regenerative process. This is particularly critical following a myocardial infarction, in which the normal, compliant myocardial tissue is replaced with fibrotic, stiff scar tissue. In this study, we examined the effects of matrix stiffness on adult cardiac side population (CSP) progenitor cell behavior. Ovine and murine CSP cells were isolated and cultured on polydimethylsiloxane substrates, replicating the elastic moduli of normal and fibrotic myocardium. Proliferation capacity and cell cycling were increased in CSP cells cultured on the stiff substrate with an associated reduction in cardiomyogeneic differentiation and accelerated cell ageing. In addition, culture on stiff substrate stimulated upregulation of extracellular matrix and adhesion proteins gene expression in CSP cells. Collectively, we demonstrate that microenvironment properties, including matrix stiffness, play a critical role in regulating progenitor cell functions of endogenous resident CSP cells. Understanding the effects of the tissue microenvironment on resident cardiac progenitor cells is a critical step toward achieving functional cardiac regeneration. PMID:25724498

  10. Down-Regulation of Replication Factor C-40 (RFC40) Causes Chromosomal Missegregation in Neonatal and Hypertrophic Adult Rat Cardiac Myocytes

    PubMed Central

    Oka, Masahiko; Ochi, Rikuo; Jong, Chian Ju; Gebb, Sarah; Benjamin, John; Schaffer, Stephen; Hobart, Holly H.; Downey, James; McMurtry, Ivan; Gupte, Rakhee

    2012-01-01

    Background Adult mammalian cardiac myocytes are generally assumed to be terminally differentiated; nonetheless, a small fraction of cardiac myocytes have been shown to replicate during ventricular remodeling. However, the expression of Replication Factor C (RFC; RFC140/40/38/37/36) and DNA polymerase δ (Pol δ) proteins, which are required for DNA synthesis and cell proliferation, in the adult normal and hypertrophied hearts has been rarely studied. Methods We performed qRT-PCR and Western blot analysis to determine the levels of RFC and Pol δ message and proteins in the adult normal cardiac myocytes and cardiac fibroblasts, as well as in adult normal and pulmonary arterial hypertension induced right ventricular hypertrophied hearts. Immunohistochemical analyses were performed to determine the localization of the re-expressed DNA replication and cell cycle proteins in adult normal (control) and hypertrophied right ventricle. We determined right ventricular cardiac myocyte polyploidy and chromosomal missegregation/aneuploidy using Fluorescent in situ hybridization (FISH) for rat chromosome 12. Results RFC40-mRNA and protein was undetectable, whereas Pol δ message was detectable in the cardiac myocytes isolated from control adult hearts. Although RFC40 and Pol δ message and protein significantly increased in hypertrophied hearts as compared to the control hearts; however, this increase was marginal as compared to the fetal hearts. Immunohistochemical analyses revealed that in addition to RFC40, proliferative and mitotic markers such as cyclin A, phospho-Aurora A/B/C kinase and phospho-histone 3 were also re-expressed/up-regulated simultaneously in the cardiac myocytes. Interestingly, FISH analyses demonstrated cardiac myocytes polyploidy and chromosomal missegregation/aneuploidy in these hearts. Knock-down of endogenous RFC40 caused chromosomal missegregation/aneuploidy and decrease in the rat neonatal cardiac myocyte numbers. Conclusion Our novel findings

  11. Determinants of HIV-related cardiac disease among adults in north central Nigeria

    PubMed Central

    Isiguzo, Godsent; Okeahialam, Basil; Danbauchi, Solomon; Odili, Augustin; Iroezindu, Michael

    2013-01-01

    Objective The aim of the present study was to evaluate the determinants of HIV-related cardiac disease (HRCD) among adults in north central Nigeria. This was a hospital-based cross-sectional study recruiting patients who were HIV positive attending the HIV clinic at Jos University teaching Hospital, Nigeria. Methods A total of 200 adults who were HIV positive and aged ≥18 years were consecutively recruited. All patients were administered a questionnaire and underwent clinical examination, laboratory investigation for haemoglobin estimation, CD4 cell count, viral load, serum lipid profile, hepatitis B surface antigen, anti-hepatitis C virus antibody, electrocardiogram and two-dimensional echocardiography Doppler studies. The outcome measure was echocardiography-defined cardiac disease, such as systolic dysfunction, diastolic dysfunction, isolated left ventricular dilatation, right ventricular dysfunction or pulmonary hypertension. Results The mean age of the study population was 38±9 years. The majority (71%) were women and were on average younger than the men (36±8 years vs 47±9 years, p<0.0002). Highly active anti-retroviral therapy (HAART) use was seen in 84.4% of subjects. The median CD4 cell count for the study population was 358 cells/µL; the count was 459 (95% CI 321 to 550) cells/µL for subjects without HRCD and 193 (95% CI 126 to 357) cells/µL for subjects with HRCD (p<0.001). HAART-naive subjects with HRCD had a mean CD4 cell count of 121 cells/µL vs 200 cells/µL for those on HAART (p<0.01). CD4 cell count (OR = 0.25, 95% CI 0.15 to 0.45) and duration of diagnosis (OR=3.88, 95% CI 1.20 to 13.71) were the significant determinants of HRCD on multivariate analysis. Conclusions Duration of HIV diagnosis and degree of immunosuppression were the significant determinants of HRCD. There is therefore a need to reduce cardiovascular morbidity in patients infected with HIV through early diagnosis/sustained use of HAART, early screening for HRCD

  12. Provision of Transition Education and Referral Patterns from Pediatric Cardiology to Adult Cardiac Care.

    PubMed

    Harbison, Anna L; Grady, Stafford; Chi, Kevin; Fernandes, Susan M

    2016-02-01

    ACC/AHA guidelines recommend a structured preparation for and transfer to adult-oriented cardiac care for adult survivors of pediatric onset heart disease (POHD). Given this, we sought to describe the transition and transfer practices for a cohort of young adults with POHD and to determine factors associated with successful transfer to adult-oriented cardiac care. We performed a single-center, retrospective chart review on patients ≥18 years of age, with POHD likely to require lifelong cardiac care, who were seen in outpatient pediatric cardiology (PC) between 2008 and 2011. Successful transfer was defined as the subsequent attendance at adult cardiology (AC) within 2 years of PC visit. We identified 118 patients who met study criteria. Mean age 22.4 ± 2.0 years, 59 % male, 64 % white and 40 % Hispanic. Mean transition education topics noted was 3.3 ± 1.8 out of 20 and covered the underlying cardiac disease (89 %), follow-up and current medications (56 %) and exercise limitations (34 %). Recommendations for follow-up were AC (57 %) and PC (33 %). Of those told to transfer to AC, 79 % successfully transferred. Characteristics of successful transfer included: prior cardiac surgery (p = 0.008), cardiac medication use (p = 0.006) and frequency of follow-up ≤1 year (p = 0.037). One-quarter of all subjects did not follow-up within at least 2 years. Despite published guidelines, transition education appears lacking and the approach to transfer to adult cardiac care is not consistent. Given the increased risk of morbidity and mortality in this patient population, standardization of transition education and transfer processes appear warranted. PMID:26385471

  13. Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies

    PubMed Central

    Davis, Darryl R; Kizana, Eddy; Terrovitis, John; Barth, Andreas S.; Zhang, Yiqiang; Smith, Rachel Ruckdeschel; Miake, Junichiro; Marbán, Eduardo

    2010-01-01

    The adult heart contains reservoirs of progenitor cells that express embryonic and stem cell-related antigens. While these antigenically-purified cells are promising candidates for autologous cell therapy, clinical application is hampered by their limited abundance and tedious isolation methods. Methods that involve an intermediate cardiosphere-forming step have proven successful and are being tested clinically, but it is unclear whether the cardiosphere step is necessary. Accordingly, we investigated the molecular profile and functional benefit of cells that spontaneously emigrate from cardiac tissue in primary culture. Adult Wistar-Kyoto rat hearts were minced, digested and cultured as separate anatomical regions. Loosely-adherent cells that surround the plated tissue were harvested weekly for a total of five harvests. Genetic lineage tracing demonstrated that a small proportion of the direct outgrowth from cardiac samples originates from myocardial cells. This outgrowth contains sub-populations of cells expressing embryonic (SSEA-1) and stem cell-related antigens (c-Kit, abcg2) that varied with time in culture but not with the cardiac chamber of origin. This direct outgrowth, and its expanded progeny, underwent marked in vitro angiogenic/cardiogenic differentiation and cytokine secretion (IGF-1, VGEF). In vivo effects included long-term functional benefits as gauged by MRI following cell injection in a rat model of myocardial infarction. Outgrowth cells afforded equivalent functional benefits to cardiosphere-derived cells, which require more processing steps to manufacture. These results provide the basis for a simplified and efficient process to generate autologous cardiac progenitor cells (and mesenchymal supporting cells) to augment clinically-relevant approaches for myocardial repair. PMID:20211627

  14. Moderate Physical Activity in Healthy Adults Is Associated With Cardiac Remodeling

    PubMed Central

    Dawes, Timothy J.W.; Corden, Ben; Cotter, Sorcha; de Marvao, Antonio; Walsh, Roddy; Ware, James S.; Cook, Stuart A.

    2016-01-01

    Background— Cardiac mass and volumes are often elevated in athletes, but it is not known whether moderate physical activity is also associated with cardiac dilatation and hypertrophy in a healthy adult population. Methods and Results— In total, 1096 adults (54% female, median age 39 years) without cardiovascular disease or cardiomyopathy-associated genetic variants underwent cardiac magnetic resonance imaging to determine biventricular volumes and function. Physical activity was assessed using a validated activity questionnaire. The relationship between cardiac parameters and activity was assessed using multiple linear regression adjusting for age, sex, race, and systolic blood pressure. Logistic regression was performed to determine the effect of activity on the likelihood of subjects having cardiac dilatation or hypertrophy according to standard cardiac magnetic resonance normal ranges. Increasing physical activity was associated with greater left ventricular (LV) mass (β=0.23; P<0.0001) and elevated LV and right ventricular volumes (LV: β=0.26, P<0.0001; right ventricular: β=0.26, P<0.0001). Physical activity had a larger effect on cardiac parameters than systolic blood pressure (0.06≤β≤0.21) and a similar effect to age (−0.20≤β≤−0.31). Increasing physical activity was a risk factor for meeting imaging criteria for LV hypertrophy (adjusted odds ratio 2.1; P<0.0001), LV dilatation (adjusted odds ratio 2.2; P<0.0001), and right ventricular dilatation (adjusted odds ratio 2.2; P<0.0001). Conclusions— Exercise-related cardiac remodeling is not confined to athletes, and there is a risk of overdiagnosing cardiac dilatation or hypertrophy in a proportion of active, healthy adults. PMID:27502059

  15. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  16. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    PubMed Central

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-01-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of the matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examined the role of matrix rigidity on the cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using an genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of the already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes. PMID:24311969

  17. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells.

    PubMed

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z; Gimzewski, James K; Nakano, Atsushi

    2013-08-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of the matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examined the role of matrix rigidity on the cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using an genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of the already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes. PMID:24311969

  18. Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells.

    PubMed

    Campbell, C R; Berman, A E; Weintraub, N L; Tang, Y L

    2016-03-01

    Injured or ischemic cardiac tissue has limited intrinsic capacity for regeneration. While stem cell transplantation is a promising approach to stimulating cardiac repair, its success in humans has thus far been limited. Harnessing the therapeutic benefits of stem cells requires a better understanding of their mechanisms of action and methods to optimize their function. Cardiac stem cells (CSC) represent a particularly effective cellular source for cardiac repair, and pre-conditioning CSC with electrical stimulation (EleS) was demonstrated to further enhance their function, although the mechanisms are unknown. Recent studies suggest that transplanted stem cells primarily exert their effects through communicating with endogenous tissues via the release of exosomes containing cardioprotective molecules such as miRNAs, which upon uptake by recipient cells may stimulate survival, proliferation, and angiogenesis. Exosomes are also effective therapeutic agents in isolation and may provide a feasible alternative to stem cell transplantation. We hypothesize that EleS enhances CSC-mediated cardiac repair through its beneficial effects on production of cardioprotective exosomes. Moreover, we hypothesize that the beneficial effects of biventricular pacing in patients with heart failure may in part result from EleS-induced preconditioning of endogenous CSC to promote cardiac repair. With future research, our hypothesis may provide applications to optimize stem cell therapy and augment current pacing protocols, which may significantly advance the treatment of patients with heart disease. PMID:26880625

  19. Dental stem cells as an alternative source for cardiac regeneration.

    PubMed

    Xin, Loo Zhang; Govindasamy, Vijayendran; Musa, Sabri; Abu Kasim, Noor Hayaty

    2013-10-01

    Dental tissues contains stem cells or progenitors that have high proliferative capacity, are clonogenic in vitro and demonstrate the ability to differentiate to multiple type cells involving neurons, bone, cartilage, fat and smooth muscle. Numerous experiments have demonstrated that the multipotent stem cells are not rejected by immune system and therefore it may be possible to use these cells in allogeneic settings. In addition, these remarkable cells are easily abundantly available couple with less invasive procedure in isolating comparing to bone marrow aspiration. Here we proposed dental stem cells as candidate for cardiac regeneration based on its immature characteristic and propensity towards cardiac lineage via PI3-Kinase/Aktsignalling pathway. PMID:23932760

  20. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration.

    PubMed

    Condorelli, G; Borello, U; De Angelis, L; Latronico, M; Sirabella, D; Coletta, M; Galli, R; Balconi, G; Follenzi, A; Frati, G; Cusella De Angelis, M G; Gioglio, L; Amuchastegui, S; Adorini, L; Naldini, L; Vescovi, A; Dejana, E; Cossu, G

    2001-09-11

    The concept of tissue-restricted differentiation of postnatal stem cells has been challenged by recent evidence showing pluripotency for hematopoietic, mesenchymal, and neural stem cells. Furthermore, rare but well documented examples exist of already differentiated cells in developing mammals that change fate and trans-differentiate into another cell type. Here, we report that endothelial cells, either freshly isolated from embryonic vessels or established as homogeneous cells in culture, differentiate into beating cardiomyocytes and express cardiac markers when cocultured with neonatal rat cardiomyocytes or when injected into postischemic adult mouse heart. Human umbilical vein endothelial cells also differentiate into cardiomyocytes under similar experimental conditions and transiently coexpress von Willebrand factor and sarcomeric myosin. In contrast, neural stem cells, which efficiently differentiate into skeletal muscle, differentiate into cardiomyocytes at a low rate. Fibroblast growth factor 2 and bone morphogenetic protein 4, which activate cardiac differentiation in embryonic cells, do not activate cardiogenesis in endothelial cells or stimulate trans-differentiation in coculture, suggesting that different signaling molecules are responsible for cardiac induction during embryogenesis and in successive periods of development. The fact that endothelial cells can generate cardiomyocytes sheds additional light on the plasticity of endothelial cells during development and opens perspectives for cell autologous replacement therapies. PMID:11535818

  1. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration

    PubMed Central

    Condorelli, G.; Borello, U.; De Angelis, L.; Latronico, M.; Sirabella, D.; Coletta, M.; Galli, R.; Balconi, G.; Follenzi, A.; Frati, G.; Cusella De Angelis, M. G.; Gioglio, L.; Amuchastegui, S.; Adorini, L.; Naldini, L.; Vescovi, A.; Dejana, E.; Cossu, G.

    2001-01-01

    The concept of tissue-restricted differentiation of postnatal stem cells has been challenged by recent evidence showing pluripotency for hematopoietic, mesenchymal, and neural stem cells. Furthermore, rare but well documented examples exist of already differentiated cells in developing mammals that change fate and trans-differentiate into another cell type. Here, we report that endothelial cells, either freshly isolated from embryonic vessels or established as homogenous cells in culture, differentiate into beating cardiomyocytes and express cardiac markers when cocultured with neonatal rat cardiomyocytes or when injected into postischemic adult mouse heart. Human umbilical vein endothelial cells also differentiate into cardiomyocytes under similar experimental conditions and transiently coexpress von Willebrand factor and sarcomeric myosin. In contrast, neural stem cells, which efficiently differentiate into skeletal muscle, differentiate into cardiomyocytes at a low rate. Fibroblast growth factor 2 and bone morphogenetic protein 4, which activate cardiac differentiation in embryonic cells, do not activate cardiogenesis in endothelial cells or stimulate trans-differentiation in coculture, suggesting that different signaling molecules are responsible for cardiac induction during embryogenesis and in successive periods of development. The fact that endothelial cells can generate cardiomyocytes sheds additional light on the plasticity of endothelial cells during development and opens perspectives for cell autologous replacement therapies. PMID:11535818

  2. Conventional hemofiltration during cardiopulmonary bypass increases the serum lactate level in adult cardiac surgery

    PubMed Central

    Soliman, Rabie; Fouad, Eman; Belghith, Makhlouf; Abdelmageed, Tarek

    2016-01-01

    Objective: To evaluate the effect of hemofiltration during cardiopulmonary bypass on lactate level in adult patients who underwent cardiac surgery. Design: An observational study. Setting: Prince Sultan cardiac center, Riyadh, Saudi Arabia. Participants: The study included 283 patients classified into two groups: Hemofiltration group (n=138), hemofiltration was done during CPB. Control group (n = 145), patients without hemofiltration. Interventions: Hemofiltration during cardiopulmonary bypass. Measurements and Main Results: Monitors included hematocrit, lactate levels, mixed venous oxygen saturation, amount of fluid removal during hemofiltration and urine output. The lactate elevated in group H than group C (P < 0.05), and the PH showed metabolic acidosis in group H (P < 0.05). The mixed venous oxygen saturation decreased in group H than group C (P < 0.05). The number of transfused packed red blood cells was lower in group H than group C (P < 0.05). The hematocrit was higher in group H than group C (P < 0.05). The urine output was lower in group H than group C (P < 0.05). Conclusions: Hemofiltration during cardiopulmonary bypass leads to hemoconcentration, elevated lactate level and increased inotropic support. There are some recommendations for hemofiltration: First; Hemofiltration should be limited for patients with impaired renal function, positive fluid balance, reduced response to diuretics or prolonged bypass time more than 2 hours. Second; Minimal amount of fluids should be administered to maintain adequate cardiac output and reduction of priming volumes is preferable to maintain controlled hemodilution. Third; it should be done before weaning of or after cardiopulmonary bypass and not during the whole time of cardiopulmonary bypass. PMID:26750673

  3. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    PubMed

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  4. Impact of hepatic cirrhosis on outcome in adult cardiac surgery.

    PubMed

    Dimarakis, Ioannis; Grant, Stuart; Corless, Rebecca; Velissaris, Theodore; Prince, Martin; Bridgewater, Ben; Asimakopoulos, George

    2015-02-01

    Increasing prevalence of hepatic disease is likely to translate in a growing number of patients with significant hepatic disease requiring cardiac surgery. Available cardiac risk stratification models do not address the risk associated with hepatic disease. However, weighted mean mortality rates based on previous studies of cardiac surgery in patients with hepatic disease demonstrate operative mortality rates that range from 9.88% (standard deviation [SD] 9.69) for patients in Child-Turcotte-Pugh (CTP) class A cirrhosis to 69.23% (SD 28.55) for patients with CTP class C cirrhosis. This review comprehensively appraises the pathophysiology of hepatic disease, reported clinical outcomes and considerations for risk stratification. PMID:25291160

  5. Use of del Nido Cardioplegia for Adult Cardiac Surgery at the Cleveland Clinic: Perfusion Implications

    PubMed Central

    Kim, Kuna; Ball, Clifford; Grady, Patrick; Mick, Stephanie

    2014-01-01

    Abstract: Cardiac arrest by cardioplegia provides a reproducible and safe method to induce and maintain electromechanical cardiac quiescence. Techniques of intraoperative myocardial protection are constantly evolving. For the past three decades, modified Buckberg cardioplegia solution has been used for adult cardiac surgery at the Cleveland Clinic. This formulation serves as the crystalloid component, which is delivered 4:1 with oxygenated patient’s blood to crystalloid. Meanwhile, our use of the del Nido cardioplegia solution in adult patients, heretofore primarily used in pediatric cardiac surgical centers, has been increasing over the past several years. Single-dose, cold blood del Nido cardioplegia can be delivered antegrade if the duration of the operation will be limited and if there is no significant coronary artery disease or aortic insufficiency that would limit the distribution of cardioplegia. The addition of del Nido cardioplegia to our cardioplegia armamentarium allows us to customize our myocardial protection strategies for different surgical needs. This article aims to provide information on technical aspects of del Nido cardioplegia in adult cardiac surgery and its use at the Cleveland Clinic in the adult surgical population. PMID:26357803

  6. Pharmacologic And Genetic Strategies To Enhance Cell Therapy For Cardiac Regeneration

    PubMed Central

    Kanashiro-Takeuchi, Rosemeire M.; Schulman, Ivonne Hernandez; Hare, Joshua M.

    2012-01-01

    Cell-based therapy is emerging as an exciting potential therapeutic approach for cardiac regeneration following myocardial infarction (MI). As heart failure (HF) prevalence increases over time, development of new interventions designed to aid cardiac recovery from injury are crucial and should be considered more broadly. In this regard, substantial efforts to enhance the efficacy and safety of cell therapy are continuously growing along several fronts, including modifications to improve the reprogramming efficiency of inducible pluripotent stem cells (iPS), genetic engineering of adult stem cells, and administration of growth factors or small molecules to activate regenerative pathways in the injured heart. These interventions are emerging as potential therapeutic alternatives and/or adjuncts based on their potential to promote stem cell homing, proliferation, differentiation, and/or survival. Given the promise of therapeutic interventions to enhance the regenerative capacity of multipotent stem cells as well as specifically guide endogenous or exogenous stem cells into a cardiac lineage, their application in cardiac regenerative medicine should be the focus of future clinical research. This article is part of a Special Issue entitled ‘Key Signaling Molecules Special Issue’. PMID:21645519

  7. Alpha actin isoforms expression in human and rat adult cardiac conduction system.

    PubMed

    Orlandi, Augusto; Hao, Hiroyuki; Ferlosio, Amedeo; Clément, Sophie; Hirota, Seiichi; Spagnoli, Luigi Giusto; Gabbiani, Giulio; Chaponnier, Christine

    2009-04-01

    In the adult heart, cardiac muscle comprises the working myocardium and the conduction system (CS). The latter includes the sinoatrial node (SAN), the internodal tract or bundle (IB), the atrioventricular node (AVN), the atrioventricular bundle (AVB), the bundle branches (BB) and the peripheral Purkinje fibers (PF). Most of the information concerning the phenotypic features of CS tissue derives from the characterization of avian and rodent developing hearts; data concerning the expression of actin isoforms in adult CS cardiomyocytes are scarce. Using specific antibodies, we investigated the distribution of alpha-skeletal (alpha-SKA), alpha-cardiac (alpha-CA), alpha-smooth muscle (alpha-SMA) actin isoforms and other muscle-typical proteins in the CS of human and rat hearts at different ages. SAN and IB cardiomyocytes were characterized by the presence of alpha-SMA, alpha-CA, calponin and caldesmon, whereas alpha-SKA and vimentin were absent. Double immunofluorescence demonstrated the co-localisation of alpha-SMA and alpha-CA in I-bands of SAN cardiomyocytes. AVN, AVB, BB and PF cardiomyocytes were alpha-SMA, calponin, caldesmon and vimentin negative, and alpha-CA and alpha-SKA positive. No substantial differences in actin isoform distribution were observed in human and rat hearts, except for the presence of isolated subendocardial alpha-SMA positive cardiomyocytes co-expressing alpha-CA in the ventricular septum of the rat. Aging did not influence CS cardiomyocyte actin isoform expression profile. These findings support the concept that cardiomyocytes of SAN retain the phenotype of a developing myogenic cell throughout the entire life span. PMID:19281784

  8. Finding the rhythm of sudden cardiac death: new opportunities using induced pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Sallam, Karim; Li, Yingxin; Sager, Philip T; Houser, Steven R; Wu, Joseph C

    2015-06-01

    Sudden cardiac death is a common cause of death in patients with structural heart disease, genetic mutations, or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with sudden cardiac death. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology, including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single-ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell-derived cardiomyocytes resemble, but are not identical, adult human cardiomyocytes and provide a new platform for studying arrhythmic disorders leading to sudden cardiac death. A variety of platforms exist to phenotype cellular models, including conventional and automated patch clamp, multielectrode array, and computational modeling. Induced pluripotent stem cell-derived cardiomyocytes have been used to study long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy, and other hereditary cardiac disorders. Although induced pluripotent stem cell-derived cardiomyocytes are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of sudden cardiac death. PMID:26044252

  9. NH2-terminal truncations of cardiac troponin I and cardiac troponin T produce distinct effects on contractility and calcium homeostasis in adult cardiomyocytes

    PubMed Central

    Wei, Hongguang

    2014-01-01

    Cardiac troponin I (TnI) has an NH2-terminal extension that is an adult heart-specific regulatory structure. Restrictive proteolytic truncation of the NH2-terminal extension of cardiac TnI occurs in normal hearts and is upregulated in cardiac adaptation to hemodynamic stress or β-adrenergic deficiency. NH2-terminal truncated cardiac TnI (cTnI-ND) alters the conformation of the core structure of cardiac TnI similarly to that produced by PKA phosphorylation of Ser23/24 in the NH2-terminal extension. At organ level, cTnI-ND enhances ventricular diastolic function. The NH2-terminal region of cardiac troponin T (TnT) is another regulatory structure that can be selectively cleaved via restrictive proteolysis. Structural variations in the NH2-terminal region of TnT also alter the molecular conformation and function. Transgenic mouse hearts expressing NH2-terminal truncated cardiac TnT (cTnT-ND) showed slower contractile velocity to prolong ventricular rapid-ejection time, resulting in higher stroke volume. Our present study compared the effects of cTnI-ND and cTnT-ND in cardiomyocytes isolated from transgenic mice on cellular morphology, contractility, and calcium kinetics. Resting cTnI-ND, but not cTnT-ND, cardiomyocytes had shorter length than wild-type cells with no change in sarcomere length. cTnI-ND, but not cTnT-ND, cardiomyocytes produced higher contractile amplitude and faster shortening and relengthening velocities in the absence of external load than wild-type controls. Although the baseline and peak levels of cytosolic Ca2+ were not changed, Ca2+ resequestration was faster in both cTnI-ND and cTnT-ND cardiomyocytes than in wild-type control. The distinct effects of cTnI-ND and cTnT-ND demonstrate their roles in selectively modulating diastolic or systolic functions of the heart. PMID:25518962

  10. Polymer microfiber meshes facilitate cardiac differentiation of c-kit(+) human cardiac stem cells.

    PubMed

    Kan, Lijuan; Thayer, Patrick; Fan, Huimin; Ledford, Benjamin; Chen, Miao; Goldstein, Aaron; Cao, Guohua; He, Jia-Qiang

    2016-09-10

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit(+) human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5µm) elastomeric meshes consisting of aligned 1.7µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increased expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. PMID:27481582

  11. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice.

    PubMed

    Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J

    2016-05-01

    GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1. PMID:27035649

  12. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts

    PubMed Central

    Liu, Yu; Chen, Li; Diaz, Andrea Diaz; Benham, Ashley; Xu, Xueping; Wijaya, Cori S.; Fa’ak, Faisal; Luo, Weijia; Soibam, Benjamin; Azares, Alon; Yu, Wei; Lyu, Qiongying; Stewart, M. David; Gunaratne, Preethi; Cooney, Austin; McConnell, Bradley K.; Schwartz, Robert J.

    2016-01-01

    Mesp1 directs multipotential cardiovascular cell fates, even though it’s transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1’s transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1Cre/+; Rosa26EYFP/+ ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells. PMID:27538477

  13. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts.

    PubMed

    Liu, Yu; Chen, Li; Diaz, Andrea Diaz; Benham, Ashley; Xu, Xueping; Wijaya, Cori S; Fa'ak, Faisal; Luo, Weijia; Soibam, Benjamin; Azares, Alon; Yu, Wei; Lyu, Qiongying; Stewart, M David; Gunaratne, Preethi; Cooney, Austin; McConnell, Bradley K; Schwartz, Robert J

    2016-01-01

    Mesp1 directs multipotential cardiovascular cell fates, even though it's transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1's transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1(Cre/+); Rosa26(EYFP/+) ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells. PMID:27538477

  14. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio.

    PubMed

    Furlan, Sandra; Mosole, Simone; Murgia, Marta; Nagaraj, Nagarjuna; Argenton, Francesco; Volpe, Pompeo; Nori, Alessandra

    2016-04-01

    Calsequestrin (Casq) is a high capacity, low affinity Ca(2+)-binding protein, critical for Ca(2+)-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located. PMID:26585961

  15. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring

    PubMed Central

    Beauchamp, Brittany; Thrush, A. Brianne; Quizi, Jessica; Antoun, Ghadi; McIntosh, Nathan; Al-Dirbashi, Osama Y.; Patti, Mary-Elizabeth; Harper, Mary-Ellen

    2015-01-01

    Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk. PMID:26182362

  16. Secondary Sphere Formation Enhances the Functionality of Cardiac Progenitor Cells

    PubMed Central

    Cho, Hyun-Jai; Lee, Ho-Jae; Youn, Seock-Won; Koh, Seok-Jin; Won, Joo-Yun; Chung, Yeon-Ju; Cho, Hyun-Ju; Yoon, Chang-Hwan; Lee, Sae-Won; Lee, Eun Ju; Kwon, Yoo-Wook; Lee, Hae-Young; Lee, Sang Hun; Ho, Won-Kyung; Park, Young-Bae; Kim, Hyo-Soo

    2012-01-01

    Loss of cardiomyocytes impairs cardiac function after myocardial infarction (MI). Recent studies suggest that cardiac stem/progenitor cells could repair the damaged heart. However, cardiac progenitor cells are difficult to maintain in terms of purity and multipotency when propagated in two-dimensional culture systems. Here, we investigated a new strategy that enhances potency and enriches progenitor cells. We applied the repeated sphere formation strategy (cardiac explant → primary cardiosphere (CS) formation → sphere-derived cells (SDCs) in adherent culture condition → secondary CS formation by three-dimensional culture). Cells in secondary CS showed higher differentiation potentials than SDCs. When transplanted into the infarcted myocardium, secondary CSs engrafted robustly, improved left ventricular (LV) dysfunction, and reduced infarct sizes more than SDCs did. In addition to the cardiovascular differentiation of transplanted secondary CSs, robust vascular endothelial growth factor (VEGF) synthesis and secretion enhanced neovascularization in the infarcted myocardium. Microarray pathway analysis and blocking experiments using E-selectin knock-out hearts, specific chemicals, and small interfering RNAs (siRNAs) for each pathway revealed that E-selectin was indispensable to sphere initiation and ERK/Sp1/VEGF autoparacrine loop was responsible for sphere maturation. These results provide a simple strategy for enhancing cellular potency for cardiac repair. Furthermore, this strategy may be implemented to other types of stem/progenitor cell-based therapy. PMID:22713697

  17. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  18. Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction.

    PubMed

    Tokunaga, Masakuni; Liu, Mei-Lan; Nagai, Toshio; Iwanaga, Koji; Matsuura, Katsuhisa; Takahashi, Toshinao; Kanda, Masato; Kondo, Naomichi; Wang, Pin; Naito, Atsuhiko T; Komuro, Issei

    2010-12-01

    Implantation of various types of cells into the heart has been reported to be effective for heart failure, however, it is unknown what kinds of cells are most suitable for myocardial repair. To examine which types of cells are most effective, we injected cell-Puramatrix™ (PM) complex into the border area and overlaid the cell-PM patch on the myocardial infarction (MI) area. We compared cardiac morphology and function at 2 weeks after transplantation. Among clonal stem cell antigen-1 positive cardiac progenitors with PM (cSca-1/PM), bone marrow mononuclear cells with PM (BM/PM), skeletal myoblasts with PM (SM/PM), adipose tissue-derived mesenchymal cells with PM (AMC/PM), PM alone (PM), and non-treated MI group (MI), the infarct area of cSca-1/PM was smaller than that of BM/PM, SM/PM, PM and MI. cSca-1/PM and AMC/PM attenuated ventricular enlargement and restored cardiac function in comparison with MI. Capillary density in the infarct area of cSca-1/PM was higher than that of other five groups. The percentage of TUNEL positive cardiomyocytes in the infarct area of cSca-1/PM was lower than that of MI and PM. cSca-1 secreted VEGF and some of them differentiated into cardiomyocytes and vascular smooth muscle cells. These results suggest that transplantation of cSca-1/PM most effectively prevents cardiac remodeling and dysfunction through angiogenesis, inhibition of apoptosis and myocardial regeneration. PMID:20869968

  19. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system.

    PubMed Central

    Balligand, J L; Kelly, R A; Marsden, P A; Smith, T W; Michel, T

    1993-01-01

    Nitric oxide (NO) synthesized from L-arginine is a ubiquitous intracellular chemical messenger and is involved in signal transduction in diverse mammalian cells, including vascular endothelium and neuronal tissues. The role of the NO-signaling pathway in the direct modulation of cardiac function is less well characterized. In this report, the effects of inhibitors of NO synthase (NOS) were examined in isolated neonatal and adult rat ventricular myocytes exposed to either muscarinic or adrenergic agonists. Carbachol (10 microM) caused a 91% inhibition of the spontaneous beating rate of cultured neonatal rat cardiac myocytes. N omega-monomethyl-L-arginine, an L-arginine analog that inhibits NOS, and methylene blue, an inhibitor of NO, blocked the negative chronotropic effect of carbachol but had no effect on the basal beating rate of these cells. The inhibition by N omega-monomethyl-L-arginine of the negative chronotropic effect of carbachol was reversed by adding excess L-arginine. The negative chronotropic effect of carbachol was also mimicked by analogs of cGMP, a second messenger implicated in mediating the action of NO in other cell types. Production of NO could be detected directly in carbachol-stimulated neonatal myocytes by using a reporter cell bioassay. The regulation of adrenergic responsiveness by the NO signaling system was also documented in studies of adult cardiac myocyte contractility. The NOS inhibitor N omega-nitro-L-arginine significantly increased the inotropic effect of the beta-adrenergic agonist isoproterenol on electrically stimulated adult rat ventricular myocytes, whereas this inhibitor had no effect on basal contractility. Inhibition of NO production by N omega-monomethyl-L-arginine in these cells, as measured by reporter cell bioassay, was also reversible with excess L-arginine. Thus, the physiologic response of isolated neonatal and adult ventricular myocytes to both muscarinic cholinergic and beta-adrenergic stimulation is mediated, at

  20. Self-organization of rat cardiac cells into contractile 3-D cardiac tissue.

    PubMed

    Baar, Keith; Birla, Ravi; Boluyt, Marvin O; Borschel, Gregory H; Arruda, Ellen M; Dennis, Robert G

    2005-02-01

    The mammalian heart is not known to regenerate following injury. Therefore, there is great interest in developing viable tissue-based models for cardiac assist. Recent years have brought numerous advances in the development of scaffold-based models of cardiac tissue, but a self-organizing model has yet to be described. Here, we report the development of an in vitro cardiac tissue without scaffolding materials in the contractile region. Using an optimal concentration of the adhesion molecule laminin, a confluent layer of neonatal rat cardiomyogenic cells can be induced to self-organize into a cylindrical construct, resembling a papillary muscle, which we have termed a cardioid. Like endogenous heart tissue, cardioids contract spontaneously and can be electrically paced between 1 and 5 Hz indefinitely without fatigue. These engineered cardiac tissues also show an increased rate of spontaneous contraction (chronotropy), increased rate of relaxation (lusitropy), and increased force production (inotropy) in response to epinephrine. Cardioids have a developmental protein phenotype that expresses both alpha- and beta-tropomyosin, very low levels of SERCA2a, and very little of the mature isoform of cardiac troponin T. PMID:15574489

  1. Prospects for In Vitro Myofilament Maturation in Stem Cell-Derived Cardiac Myocytes

    PubMed Central

    Schwan, Jonas; Campbell, Stuart G

    2015-01-01

    Cardiomyocytes derived from human stem cells are quickly becoming mainstays of cardiac regenerative medicine, in vitro disease modeling, and drug screening. Their suitability for such roles may seem obvious, but assessments of their contractile behavior suggest that they have not achieved a completely mature cardiac muscle phenotype. This could be explained in part by an incomplete transition from fetal to adult myofilament protein isoform expression. In this commentary, we review evidence that supports this hypothesis and discuss prospects for ultimately generating engineered heart tissue specimens that behave similarly to adult human myocardium. We suggest approaches to better characterize myofilament maturation level in these in vitro systems, and illustrate how new computational models could be used to better understand complex relationships between muscle contraction, myofilament protein isoform expression, and maturation. PMID:26085788

  2. Mammalian Fetal Cardiac Regeneration Following Myocardial Infarction is Associated with Differential Gene Expression Compared to the Adult

    PubMed Central

    Zgheib, Carlos; Allukian, Myron W.; Xu, Junwang; Morris, Michael W.; Caskey, Robert C.; Herdrich, Benjamin J.; Hu, Junyi; Gorman, Joseph H.; Gorman, Robert C.; Liechty, Kenneth W.

    2014-01-01

    Background In adults, MI results in a brisk inflammatory response, myocardium loss and scar formation. We have recently reported the first mammalian large animal model of cardiac regeneration following MI in fetal sheep. We hypothesize that the fetus ability to regenerate functional myocardium following MI is due to differential gene expression regulating the response to MI in the fetus compared to the adult. Methods MI was created in adult (n=4) or early gestation fetal (n=4) sheep. Tissue harvested after 3 or 30 days, RNA extracted for microarray, followed by PCA and global gene expression analysis for the gene ontology (GO) terms: “response to wounding”, “inflammatory response”, “extracellular matrix”, “cell cycle”, “cell migration”, “cell proliferation” and “apoptosis”. Results PCA demonstrated that the global gene expression pattern in adult infarcts was distinctly different from uninfarcted region at 3 days and remained different 30 days post-MI. In contrast, gene expression in the fetal infarct was different from the uninfarcted region at 3 days, but by 30 days it returned to a baseline expression pattern similar to the uninfarcted region. 3 days post-MI there was an increase in the expression of genes related to all GO terms in fetal and adult infarcts, but this increase was much more pronounced in adults. By 30 days, the fetal gene expression returned to baseline, whereas in the adult remained significantly elevated. Conclusions These data demonstrate that the global gene expression pattern is dramatically different in the fetal regenerative response to MI compared to the adult response and may partly be responsible for the regeneration. PMID:24792251

  3. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation.

    PubMed

    Epelman, Slava; Lavine, Kory J; Beaudin, Anna E; Sojka, Dorothy K; Carrero, Javier A; Calderon, Boris; Brija, Thaddeus; Gautier, Emmanuel L; Ivanov, Stoyan; Satpathy, Ansuman T; Schilling, Joel D; Schwendener, Reto; Sergin, Ismail; Razani, Babak; Forsberg, E Camilla; Yokoyama, Wayne M; Unanue, Emil R; Colonna, Marco; Randolph, Gwendalyn J; Mann, Douglas L

    2014-01-16

    Cardiac macrophages are crucial for tissue repair after cardiac injury but are not well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6c(hi) monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins, and strategies to regulate compartment size. PMID:24439267

  4. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9.

    PubMed

    Carroll, Kelli J; Makarewich, Catherine A; McAnally, John; Anderson, Douglas M; Zentilin, Lorena; Liu, Ning; Giacca, Mauro; Bassel-Duby, Rhonda; Olson, Eric N

    2016-01-12

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart. PMID:26719419

  5. Cell electrospinning cardiac patches for tissue engineering the heart.

    PubMed

    Ehler, Elisabeth; Jayasinghe, Suwan N

    2014-09-21

    Cell electrospinning has tremendous applicability to a wide range of uses within both the laboratory and clinic. This has directly resulted from the technology's unique ability to immobilize multiple cell types with a wide range of molecules simultaneously within a fiber during the scaffold generation process. The technology has been shown to generate many cell laden complex architectures from true three-dimensional sheets to those multi-core vessels. Although those studies have demonstrated the versatility of this platform biotechnology, we show here for the first time the ability to immobilize primary cardiac myocytes within these fibers in our quest to develop this technology for creating three-dimensional cardiac patches which could be used for repairing, replacing and rejuvenating damaged, diseased and/or ageing cardiac tissues. These advances are unrivalled by any other technology currently available in the regenerative medicine toolbox, and have many interesting ramifications for repairing a damaged heart. PMID:25058315

  6. Cardiac tissue engineering and regeneration using cell-based therapy

    PubMed Central

    Alrefai, Mohammad T; Murali, Divya; Paul, Arghya; Ridwan, Khalid M; Connell, John M; Shum-Tim, Dominique

    2015-01-01

    Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells. PMID:25999743

  7. Plasma High Sensitivity Troponin T Levels in Adult Survivors of Childhood Leukaemias: Determinants and Associations with Cardiac Function

    PubMed Central

    Cheung, Yiu-fai; Yu, Wei; Cheuk, Daniel Ka-leung; Cheng, Frankie Wai-tsoi; Yang, Janet Yee-kwan; Yau, Jeffrey Ping-wa; Ho, Karin Ka-huen; Li, Chi-kong; Li, Rever Chak-ho; Yuen, Hui-leung; Ling, Alvin Siu-cheung; Li, Vivian Wing-yi; Wong, Wai-keung; Tsang, Kwong-cheong; Chan, Godfrey Chi-fung

    2013-01-01

    Background We sought to quantify plasma high sensitivity cardiac troponin (hs-cTnT) levels, their determinants, and their associations with left ventricular (LV) myocardial deformation in adult survivors of childhood acute leukaemias. Methods and Results One hundred adult survivors (57 males) of childhood acute leukaemias, aged 24.1±4.2 years, and 42 age-matched controls (26 males) were studied. Plasma cTnT was determined using a highly sensitive assay. Genotyping of NAD(P)H oxidase and multidrug resistance protein polymorphisms was performed. Left ventricular function was assessed by conventional, three-dimensional, and speckle tracking echocardiography. The medians (interquartile range) of hs-cTnT in male and female survivors were 4.9 (4.2 to 7.2) ng/L and 1.0 (1.0 to 3.5) ng/L, respectively. Nineteen survivors (13 males, 6 females) (19%) had elevated hs-cTnT (>95th centile of controls). Compared to those without elevated hs-TnT levels, these subjects had received larger cumulative anthracycline dose and were more likely to have leukaemic relapse, stem cell transplant, and cardiac irradiation. Their LV systolic and early diastolic myocardial velocities, isovolumic acceleration, and systolic longitudinal strain rate were significantly lower. Survivors having CT/TT at CYBA rs4673 had higher hs-cTnT levels than those with CC genotype. Functionally, increased hs-cTnT levels were associated with worse LV longitudinal systolic strain and systolic and diastolic strain rates. Conclusions Increased hs-cTnT levels occur in a significant proportion of adult survivors of childhood acute leukaemias and are associated with larger cumulative anthracycline dose received, history of leukaemic relapse, stem cell transplant, and cardiac irradiation, genetic variants in free radical metabolism, and worse LV myocardial deformation. PMID:24204736

  8. Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells

    SciTech Connect

    Nakanishi, Chiaki; Yamagishi, Masakazu; Yamahara, Kenichi; Hagino, Ikuo; Mori, Hidezo; Sawa, Yoshiki; Yagihara, Toshikatsu; Kitamura, Soichiro; Nagaya, Noritoshi

    2008-09-12

    Mesenchymal stem cells (MSC) transplantation has been proved to be promising strategy to treat the failing heart. The effect of MSC transplantation is thought to be mediated mainly in a paracrine manner. Recent reports have suggested that cardiac progenitor cells (CPC) reside in the heart. In this study, we investigated whether MSC had paracrine effects on CPC in vitro. CPC were isolated from the neonatal rat heart using an explant method. MSC were isolated from the adult rat bone marrow. MSC-derived conditioned medium promoted proliferation of CPC and inhibited apoptosis of CPC induced by hypoxia and serum starvation. Chemotaxis chamber assay demonstrated that MSC-derived conditioned medium enhanced migration of CPC. Furthermore, MSC-derived conditioned medium upregulated expression of cardiomyocyte-related genes in CPC such as {beta}-myosin heavy chain ({beta}-MHC) and atrial natriuretic peptide (ANP). In conclusion, MSC-derived conditioned medium had protective effects on CPC and enhanced their migration and differentiation.

  9. Neurological symptoms and cerebrovascular accidents: manifestations of left-sided cardiac tumours in adults

    PubMed Central

    Said, S.A.M.; Droste, H.T.; Baart, J.C.; Klaver, M.M.; Sie, H.T.

    2004-01-01

    We present two adult patients with a left-sided cardiac tumour in whom the diagnosis was established by transthoracic and transoesophageal echocardiography. They both presented with a cerebrovascular accident. Cardiac surgery for tumour excision was offered but refused by one and successfully performed in the other. In one of the patients, right femoro-crural bypass was undertaken because of arterial insufficiency. The patient who refused surgical intervention died secondary to severe septic shock. In the other patient serial transthoracic and transoesophageal echocardiography showed no tumour recurrence at four years of follow-up post tumour extirpation. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:25696276

  10. Dual transcriptional activator and repressor roles of TBX20 regulate adult cardiac structure and function

    PubMed Central

    Sakabe, Noboru J.; Aneas, Ivy; Shen, Tao; Shokri, Leila; Park, Soo-Young; Bulyk, Martha L.; Evans, Sylvia M.; Nobrega, Marcelo A.

    2012-01-01

    The ongoing requirement in adult heart for transcription factors with key roles in cardiac development is not well understood. We recently demonstrated that TBX20, a transcriptional regulator required for cardiac development, has key roles in the maintenance of functional and structural phenotypes in adult mouse heart. Conditional ablation of Tbx20 in adult cardiomyocytes leads to a rapid onset and progression of heart failure, with prominent conduction and contractility phenotypes that lead to death. Here we describe a more comprehensive molecular characterization of the functions of TBX20 in adult mouse heart. Coupling genome-wide chromatin immunoprecipitation and transcriptome analyses (RNA-Seq), we identified a subset of genes that change expression in Tbx20 adult cardiomyocyte-specific knockout hearts which are direct downstream targets of TBX20. This analysis revealed a dual role for TBX20 as both a transcriptional activator and a repressor, and that each of these functions regulates genes with very specialized and distinct molecular roles. We also show how TBX20 binds to its targets genome-wide in a context-dependent manner, using various cohorts of co-factors to either promote or repress distinct genetic programs within adult heart. Our integrative approach has uncovered several novel aspects of TBX20 and T-box protein function within adult heart. Sequencing data accession number (http://www.ncbi.nlm.nih.gov/geo): GSE30943. PMID:22328084

  11. [Langerhans cell histiocytosis in adults].

    PubMed

    Néel, A; Artifoni, M; Donadieu, J; Lorillon, G; Hamidou, M; Tazi, A

    2015-10-01

    Langerhans cell histiocytosis (LCH) is a rare disease characterized by the infiltration of one or more organs by Langerhans cell-like dendritic cells, most often organized in granulomas. The disease has been initially described in children. The clinical picture of LCH is highly variable. Bone, skin, pituitary gland, lung, central nervous system, lymphoid organs are the main organs involved whereas liver and intestinal tract localizations are less frequently encountered. LCH course ranges from a fulminant multisystem disease to spontaneous resolution. Several randomized controlled trials have enable pediatricians to refine the management of children with LCH. Adult LCH has some specific features and poses distinct therapeutic challenges, knowing that data on these patients are limited. Herein, we will provide an overview of current knowledge regarding adult LCH and its management. We will also discuss recent advances in the understanding of the disease, (i.e. the role of BRAF oncogene) that opens the way toward targeted therapies. PMID:26150351

  12. Stimulating endogenous cardiac repair

    PubMed Central

    Finan, Amanda; Richard, Sylvain

    2015-01-01

    The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration, a combination of these approaches could ameliorate the overall repair process to incorporate the participation of multiple cellular players. PMID:26484341

  13. GATA factors efficiently direct cardiac fate from embryonic stem cells.

    PubMed

    Turbendian, Harma K; Gordillo, Miriam; Tsai, Su-Yi; Lu, Jia; Kang, Guoxin; Liu, Ting-Chun; Tang, Alice; Liu, Susanna; Fishman, Glenn I; Evans, Todd

    2013-04-01

    The GATA4 transcription factor is implicated in promoting cardiogenesis in combination with other factors, including TBX5, MEF2C and BAF60C. However, when expressed in embryonic stem cells (ESCs), GATA4 was shown to promote endoderm, not cardiac mesoderm. The capacity of related GATA factors to promote cardiogenesis is untested. We found that expression of the highly related gene, Gata5, very efficiently promotes cardiomyocyte fate from murine ESCs. Gata5 directs development of beating sheets of cells that express cardiac troponin T and show a full range of action potential morphologies that are responsive to pharmacological stimulation. We discovered that by removing serum from the culture conditions, GATA4 and GATA6 are each also able to efficiently promote cardiogenesis in ESC derivatives, with some distinctions. Thus, GATA factors can function in ESC derivatives upstream of other cardiac transcription factors to direct the efficient generation of cardiomyocytes. PMID:23487308

  14. Comparison of cardiac refractory periods in children and adults.

    PubMed

    DuBrow, W; Fisher, E A; Amaty-Leon, G; Denes, P; Wu, D; Rosen, K; Hastreiter, A R

    1975-03-01

    Atrial (A) and A-V nodal (AVN) effective and functional refractory periods (ERP & FRP) were determined by atrial extrastimulus technique in 40 children, aged 7 months to 16 years, with normal P-R intervals and QRS durations. These data were compared to adult data at longest cycle lengths (CL) assuring atrial capture. All values are listed in msec as means plus or minus standard errors of the means. CL was 566 plus or minus 15 in children and 699 plus or minus 29 in adults (P less than .001). Refractory periods (RP) in children and adults were, respectively: AERP 196 plus or minus 9 and 239 plus or minus 13 (P less than .01), AFRP 225 plus or minus 8 and 284 plus or minus 11 (P less than .001), AVNERP 239 plus or minus 11 and 293 plus or minus 7 (P smaller than .001), AVNFRP 360 plus or minus 13 and 403 plus or minus 7 (P smaller than .005). RP were then compared at three equivalent CL ranges: CL1, 850-600; CL2 599-460; CL3 459-280. The following RP were significantly shorter in children (P smaller than .05-.001): AERP, AFRP, AVENERP and AVNFRP at CL2 and CL3. RP of the bundle branches were compared and tended to be shorter in children. In conclusion, atrial and A-V nodal ERP and FRP are shorter in children than adults. This shortening is only partially related to the shorter CL in children. These data are germane to understanding the maturation of the conduction system in man. PMID:1139759

  15. Anthracycline-induced cardiac injury using a cardiac cell line: potential for gene therapy studies.

    PubMed

    L'Ecuyer, T; Horenstein, M S; Thomas, R; Vander Heide, R

    2001-11-01

    Anthracyclines are effective antitumor agents whose chief limitation has been cardiotoxicity directly related to free radical production. Therefore, strategies designed to selectively overexpress antioxidant proteins in the heart could protect against drug-induced toxicity and allow higher doses of chemotherapy. However, to date an adequate cardiac model system that is susceptible to anthracycline injury and can express foreign genes in a controlled fashion has been lacking. Developing a cardiac model system would permit examination of the relationship between the expression level of a potentially protective foreign gene and the degree of protection from injury. In this study we have examined the potential of the H9C2 rat cardiac myocyte cell line in this regard. H9C2 cells differentiate in a reproducible fashion, as shown by progressive increases in muscle tropomyosin-expressing cells, the organization of this thin filament protein, and the percentage of muscle cells contained within myotubes. Exposure of this cell line to the anthracycline doxorubicin produces cell injury as indicated by release of the intracellular enzyme lactate dehydrogenase into the culture medium. This injury is preceded by generation of reactive oxygen species, indicated by fluorescence after loading with carboxy-dichlorodihydrofluorescein diacetate. Stable transfection of H9C2 cells with a plasmid producing a tetracycline transactivator protein allows foreign genes to be expressed at a level tightly controlled by the concentration of tetracycline in the culture medium. Since H9C2 cells differentiate, can be injured by anthracycline exposure, and can express foreign genes at controllable levels, this is a suitable system in which to design genetic approaches to prevent this important clinical problem. PMID:11708868

  16. Cell Therapy in Ischemic Heart Disease: Interventions That Modulate Cardiac Regeneration

    PubMed Central

    Schaun, Maximiliano I.; Eibel, Bruna; Kristocheck, Melissa; Sausen, Grasiele; Machado, Luana; Koche, Andreia; Markoski, Melissa M.

    2016-01-01

    The incidence of severe ischemic heart disease caused by coronary obstruction has progressively increased. Alternative forms of treatment have been studied in an attempt to regenerate myocardial tissue, induce angiogenesis, and improve clinical conditions. In this context, cell therapy has emerged as a promising alternative using cells with regenerative potential, focusing on the release of paracrine and autocrine factors that contribute to cell survival, angiogenesis, and tissue remodeling. Evidence of the safety, feasibility, and potential effectiveness of cell therapy has emerged from several clinical trials using different lineages of adult stem cells. The clinical benefit, however, is not yet well established. In this review, we discuss the therapeutic potential of cell therapy in terms of regenerative and angiogenic capacity after myocardial ischemia. In addition, we addressed nonpharmacological interventions that may influence this therapeutic practice, such as diet and physical training. This review brings together current data on pharmacological and nonpharmacological approaches to improve cell homing and cardiac repair. PMID:26880938

  17. Toward clinical application of stem cells for cardiac regeneration.

    PubMed

    Stubbs, Samantha L; Crook, Jeremy M; Morrison, Wayne A; Newcomb, Andrew E

    2011-03-01

    Heart failure affects more than 10% of the Australian population over age 65, and the ageing population will ensure continued growth of this significant problem. There are various treatment options available, but the growing field of regenerative therapy offers promise to restore or replace tissue lost in those with either congenital or acquired cardiac defects. Stem cells have many potential properties, but they need multiple discussed qualities to succeed in this field such as ease of harvest and multiplication, and most importantly minimal ethical concerns. There are multiple cell types available and one of the challenges will be to find the most appropriate cell type for cardiac regeneration. Cardiac tissue engineering is being explored using both in vitro and in vivo techniques. In vitro methods are primarily limited in terms of the vascularisation and size of the construct. In vivo engineered constructs overcome these limitations in early models, but they are still not ready for human trials. This review aims to provide the reader with an outline of the cell-based and tissue engineering therapies currently being used and developed for cardiac regeneration, as well as some insight into the potential problems that may hamper its progress in the future. PMID:20650685

  18. Mesenchymal stem cells: Biology, patho-physiology, translational findings, and therapeutic implications for cardiac disease

    PubMed Central

    Williams, Adam R.; Hare, Joshua M.

    2013-01-01

    Mesenchymal stem cells (MSCs) are a prototypic adult stem cell with capacity for self-renewal and differentiation with a broad tissue distribution. Initially described in bone marrow, MSCs have the capacity to differentiate into mesodermal and non-mesodermal derived tissues. The endogenous role for MSCs is maintenance of stem cell niches (classically the hematopoietic), and as such MSCs participate in organ homeostasis, wound healing, and successful aging. From a therapeutic perspective, and facilitated by the ease of preparation and immunologic privilege, MSCs are emerging as an extremely promising therapeutic agent for tissue regeneration. Studies in animal models of myocardial infarction (MI) demonstrate the ability of transplanted MSCs to engraft and differentiate into cardiomyocytes and vasculature cells, recruit endogenous cardiac stem cells, and secrete a wide array of paracrine factors. Together these properties can be harnessed to both prevent and reverse remodeling in the ischemically injured ventricle. In proof-of-concept and phase I clinical trials, MSC therapy improve LV function, induces reverse remodeling, and decreases scar size. This article reviews the current understanding of MSC biology, mechanism of action in cardiac repair, translational findings, and early clinical trial data of MSC therapy for cardiac disease. PMID:21960725

  19. Audio-visual relaxation training for anxiety, sleep, and relaxation among Chinese adults with cardiac disease.

    PubMed

    Tsai, Sing-Ling

    2004-12-01

    The long-term effect of an audio-visual relaxation training (RT) treatment involving deep breathing, exercise, muscle relaxation, guided imagery, and meditation was compared with routine nursing care for reducing anxiety, improving sleep, and promoting relaxation in Chinese adults with cardiac disease. This research was a quasi-experimental, two-group, pretest-posttest study. A convenience sample of 100 cardiology patients (41 treatment, 59 control) admitted to one large medical center hospital in the Republic of China (ROC) was studied for 1 year. The hypothesized relationships were supported. RT significantly (p <.05) improved anxiety, sleep, and relaxation in the treatment group as compared to the control group. It appears audio-visual RT might be a beneficial adjunctive therapy for adult cardiac patients. However, considerable further work using stronger research designs is needed to determine the most appropriate instructional methods and the factors that contribute to long-term consistent practice of RT with Chinese populations. PMID:15514963

  20. Physical Therapy Management for Adult Patients Undergoing Cardiac Surgery: A Canadian Practice Survey

    PubMed Central

    Anderson, Cathy M.; Jackson, Jennifer; Lucy, S. Deborah; Prendergast, Monique; Sinclair, Susanne

    2010-01-01

    ABSTRACT Purpose: To determine current Canadian physical therapy practice for adult patients requiring routine care following cardiac surgery. Methods: A telephone survey was conducted of a selected sample (n=18) of Canadian hospitals performing cardiac surgery to determine cardiorespiratory care, mobility, exercises, and education provided to patients undergoing cardiac surgery. Results: An average of 21 cardiac surgeries per week (range: 6–42) were performed, with an average length of stay of 6.4 days (range: 4.0–10.6). Patients were seen preoperatively at 7 of 18 sites and on postoperative day 1 (POD-1) at 16 of 18 sites. On POD-1, 16 sites performed deep breathing and coughing, 7 used incentive spirometers, 13 did upper-extremity exercises, and 12 did lower-extremity exercises. Nine sites provided cardiorespiratory treatment on POD-3. On POD-1, patients were dangled at 17 sites and mobilized out of bed at 13. By POD-3, patients ambulated 50–120 m per session 2–5 times per day. Sternal precautions were variable, but the lifting limit was reported as ranging between 5 lb and 10 lb. Conclusions: Canadian physical therapists reported the provision of cardiorespiratory treatment after POD-1. According to current available evidence, this level of care may be unnecessary for uncomplicated patients following cardiac surgery. In addition, some sites provide cardiorespiratory treatment techniques that are not supported by evidence in the literature. Further research is required. PMID:21629599

  1. Can the direct cardiac effects of the electric pulses generated by the TASER X26 cause immediate or delayed sudden cardiac arrest in normal adults?

    PubMed

    Ideker, Raymond E; Dosdall, Derek J

    2007-09-01

    There is only a small amount of experimental data about whether the TASER X26, a nonlethal weapon that delivers a series of brief electrical pulses to cause involuntary muscular contraction to temporarily incapacitate an individual, can initiate ventricular fibrillation to cause sudden cardiac arrest either immediately or sometime after its use. Therefore, this paper uses the fundamental law of electrostimulation and experimental data from the literature to estimate the likelihood of such events. Because of the short duration of the TASER pulses, the large duration of the cardiac cell membrane time constant, the small fraction of current from electrodes on the body surface that passes through the heart, and the resultant high pacing threshold from the body surface, the fundamental law of electrostimulation predicts that the TASER pulses will not stimulate an ectopic beat in the large majority of normal adults. Since the immediate initiation of ventricular fibrillation in a normal heart requires a very premature stimulated ectopic beat and the threshold for such premature beats is higher than less premature beats, it is unlikely that TASER pulses can immediately initiate ventricular fibrillation in such individuals through the direct effect of the electric field generated through the heart by the TASER. In the absence of preexisting heart disease, the delayed development of ventricular fibrillation requires the electrical stimuli to cause electroporation or myocardial necrosis. However, the electrical thresholds for electroporation and necrosis are many times higher than that required to stimulate an ectopic beat. Therefore, it is highly unlikely that the TASER X26 can cause ventricular fibrillation minutes to hours after its use through direct cardiac effects of the electric field generated by the TASER. PMID:17721165

  2. Adult stem cells: the therapeutic potential of skeletal muscle.

    PubMed

    Saini, Amarjit; Stewart, Claire E H

    2006-05-01

    Embryonic stem cells have revolutionised our understanding of normal and deregulated growth and development. The potential to produce cells and tissues as needed offers enormous therapeutic potential. The use of these cells, however, is accompanied by ongoing ethical, religious and biomedical issues. The expansion potential and plasticity of adult stem cells have therefore received much interest. Adult skeletal muscle is highly adaptable, responding to both the hypertrophic and degenerative stresses placed upon it. This extreme plasticity is in part regulated by resident stem cells. In addition to regenerating muscle, if exposed to osteogenic or adipogenic inducers, these cells spontaneously form osteoblasts or adipocytes. The potential for and heterogeneity of muscle stem cells is underscored by the observation that CD45+ muscle side population cells are capable of reconstituting bone marrow in lethally irradiated mice and of contributing to neo-vascularisation of regenerating muscle. Finally, first attempts to replace infarcted myocardium relied on injection of skeletal myoblasts into the heart. Cells successfully engrafted and cardiac function was improved. Harnessing their differentiation/trans-differentiation capacity provides enormous potential for adult stem cells. In this review, current understanding of the different stem cells within muscle will be discussed as will their potential utility for regenerative medicine. PMID:18220864

  3. Stem cell niches in the adult mouse heart

    PubMed Central

    Urbanek, Konrad; Cesselli, Daniela; Rota, Marcello; Nascimbene, Angelo; De Angelis, Antonella; Hosoda, Toru; Bearzi, Claudia; Boni, Alessandro; Bolli, Roberto; Kajstura, Jan; Anversa, Piero; Leri, Annarosa

    2006-01-01

    Cardiac stem cells (CSCs) have been identified in the adult heart, but the microenvironment that protects the slow-cycling, undifferentiated, and self-renewing CSCs remains to be determined. We report that the myocardium possesses interstitial structures with the architectural organization of stem cell niches that harbor long-term BrdU-retaining cells. The recognition of long-term label-retaining cells provides functional evidence of resident CSCs in the myocardium, indicating that the heart is an organ regulated by a stem cell compartment. Cardiac niches contain CSCs and lineage-committed cells, which are connected to supporting cells represented by myocytes and fibroblasts. Connexins and cadherins form gap and adherens junctions at the interface of CSCs–lineage-committed cells and supporting cells. The undifferentiated state of CSCs is coupled with the expression of α4-integrin, which colocalizes with the α2-chain of laminin and fibronectin. CSCs divide symmetrically and asymmetrically, but asymmetric division predominates, and the replicating CSC gives rise to one daughter CSC and one daughter committed cell. By this mechanism of growth kinetics, the pool of primitive CSCs is preserved, and a myocyte progeny is generated together with endothelial and smooth muscle cells. Thus, CSCs regulate myocyte turnover that is heterogeneous across the heart, faster at the apex and atria, and slower at the base–midregion of the ventricle. PMID:16754876

  4. Cell cultures as models of cardiac mechanoelectric feedback

    PubMed Central

    Zhang, Yibing; Sekar, Rajesh B.; McCulloch, Andrew D.; Tung, Leslie

    2008-01-01

    Although stretch-activated currents have been extensively studied in isolated cells and intact hearts in the context of mechanoelectric feedback (MEF) in the heart, quantitative data regarding other mechanical parameters such as pressure, shear, bending, etc, are still lacking at the multicellular level. Cultured cardiac cell monolayers have been used increasingly in the past decade as an in vitro model for the studies of fundamental mechanisms that underlie normal and pathological electrophysiology at the tissue level. Optical mapping makes possible multisite recording and analysis of action potentials and wavefront propagation, suitable for monitoring the electrophysiological activity of the cardiac cell monolayer under a wide variety of controlled mechanical conditions. In this paper, we review methodologies that have been developed or could be used to mechanically perturb cell monolayers, and present some new results on the acute effects of pressure, shear stress and anisotropic strain on cultured neonatal rat ventricular myocyte (NRVM) monolayers. PMID:18384846

  5. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    PubMed

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue. PMID:23420554

  6. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure.

    PubMed

    Mosqueira, Diogo; Pagliari, Stefania; Uto, Koichiro; Ebara, Mitsuhiro; Romanazzo, Sara; Escobedo-Lucea, Carmen; Nakanishi, Jun; Taniguchi, Akiyoshi; Franzese, Ornella; Di Nardo, Paolo; Goumans, Marie José; Traversa, Enrico; Pinto-do-Ó, Perpetua; Aoyagi, Takao; Forte, Giancarlo

    2014-03-25

    Stem cell responsiveness to extracellular matrix (ECM) composition and mechanical cues has been the subject of a number of investigations so far, yet the molecular mechanisms underlying stem cell mechano-biology still need full clarification. Here we demonstrate that the paralog proteins YAP and TAZ exert a crucial role in adult cardiac progenitor cell mechano-sensing and fate decision. Cardiac progenitors respond to dynamic modifications in substrate rigidity and nanopattern by promptly changing YAP/TAZ intracellular localization. We identify a novel activity of YAP and TAZ in the regulation of tubulogenesis in 3D environments and highlight a role for YAP/TAZ in cardiac progenitor proliferation and differentiation. Furthermore, we show that YAP/TAZ expression is triggered in the heart cells located at the infarct border zone. Our results suggest a fundamental role for the YAP/TAZ axis in the response of resident progenitor cells to the modifications in microenvironment nanostructure and mechanics, thereby contributing to the maintenance of myocardial homeostasis in the adult heart. These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design. PMID:24483337

  7. Cardiac repair and regeneration: the Rubik's cube of cell therapy for heart disease.

    PubMed

    Boudoulas, Konstantinos D; Hatzopoulos, Antonis K

    2009-01-01

    Acute ischemic injury and chronic cardiomyopathies damage healthy heart tissue. Dead cells are gradually replaced by a fibrotic scar, which disrupts the normal electromechanical continuum of the ventricular muscle and compromises its pumping capacity. Recent studies in animal models of ischemic cardiomyopathy suggest that transplantation of various stem cell preparations can improve heart recovery after injury. The first clinical trials in patients produced some encouraging results, showing modest benefits. Most of the positive effects are probably because of a favorable paracrine influence of stem cells on the disease microenvironment. Stem cell therapy attenuates inflammation, reduces apoptosis of surrounding cells, induces angiogenesis, and lessens the extent of fibrosis. However, little new heart tissue is formed. The current challenge is to find ways to improve the engraftment, long-term survival and appropriate differentiation of transplanted stem cells within the cardiovascular tissue. Hence, there has been a surge of interest in pluripotent stem cells with robust cardiogenic potential, as well as in the inherent repair and regenerative mechanisms of the heart. Recent discoveries on the biology of adult stem cells could have relevance for cardiac regeneration. Here, we discuss current developments in the field of cardiac repair and regeneration, and present our ideas about the future of stem cell therapy. PMID:19553696

  8. Tai Chi as an adjunct physical activity for adults aged 45 years and older enrolled in phase III cardiac rehabilitation

    PubMed Central

    Taylor-Piliae, Ruth E; Silva, Edna; Sheremeta, Sharon Peachey

    2015-01-01

    Background Cardiac rehabilitation improves physical, cognitive and psychosocial functioning, yet services are greatly underutilized with increasing patterns of attrition over time. Tai Chi has been suggested as a possible adjunct to cardiac rehabilitation exercise training. Aim To describe differences in physical, cognitive and psychosocial functioning among adults ≥ 45 years old attending phase III cardiac rehabilitation, who have or have not self-selected Tai Chi exercise as an adjunct physical activity. Methods A cross-sectional design compared subjects attending group-based Wu style Tai Chi classes plus cardiac rehabilitation, with cardiac rehabilitation only. Subjects had a battery of physical and cognitive functioning tests administered to examine aerobic endurance, balance, strength, and flexibility, verbal retrieval/recall, attention, concentration and tracking. Subjects completed a health survey to ascertain cardiac event information, medical history, and psychosocial functioning (i.e. health-related quality of life, stress, depressive symptoms, social support, and Tai Chi self-efficacy). Results A total of 51 subjects (75% married, 84% college-educated, 96% White/European-American) participated. Subjects were on average 70 (± 8) years old and had attended cardiac rehabilitation for 45 (± 37) months. Approximately 45% (n = 23) attended Tai Chi classes plus cardiac rehabilitation, while 55% (n = 28) attended cardiac rehabilitation only. Subjects attending Tai Chi plus cardiac rehabilitation had better balance, perceived physical health, and Tai Chi self-efficacy compared to those attending cardiac rehabilitation only (p ≤ 0.03). Conclusion Tai Chi can be easily implemented in any community/cardiac rehabilitation facility, and may offer adults additional options after a cardiac event. PMID:21095159

  9. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    PubMed Central

    Perea-Gil, Isaac; Monguió-Tortajada, Marta; Gálvez-Montón, Carolina; Bayes-Genis, Antoni; Borràs, Francesc E.; Roura, Santiago

    2015-01-01

    Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs) with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs). Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ) was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells. PMID:25861626

  10. Modern perspectives on numerical modeling of cardiac pacemaker cell.

    PubMed

    Maltsev, Victor A; Yaniv, Yael; Maltsev, Anna V; Stern, Michael D; Lakatta, Edward G

    2014-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent "coupled-clock" theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  11. Optical Imaging of Voltage and Calcium in Cardiac Cells & Tissues

    PubMed Central

    Herron, Todd J.; Lee, Peter; Jalife, José

    2012-01-01

    Cardiac optical mapping has proven to be a powerful technology for studying cardiovascular function and disease. The development and scientific impact of this methodology are well documented. Because of its relevance in cardiac research, this imaging technology advances at a rapid pace. Here we review technological and scientific developments during the past several years and look also towards the future. First we explore key components of a modern optical mapping setup, focusing on 1) new camera technologies, 2) powerful light-emitting-diodes (from ultraviolet to red) for illumination, 3) improved optical filter technology, 4) new synthetic and optogenetic fluorescent probes, 5) optical mapping with motion and contraction, 6) new multi-parametric optical mapping techniques and 7) photon scattering effects in thick tissue preparations. We then look at recent optical mapping studies in single cells, cardiomyocyte monolayers, atria and whole hearts. Finally, we briefly look into the possible future roles of optical mapping in the development of regenerative cardiac research, cardiac cell therapies, and molecular genetic advances. PMID:22343556

  12. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell

    PubMed Central

    Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.

    2015-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  13. Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle

    PubMed Central

    Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio

    2015-01-01

    Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398

  14. Rescue of neonatal cardiac dysfunction in mice by administration of cardiac progenitor cells in utero

    PubMed Central

    Liu, Xiaoli; Hall, Sean R. R.; Wang, Zhihong; Huang, He; Ghanta, Sailaja; Di Sante, Moises; Leri, Annarosa; Anversa, Piero; Perrella, Mark A.

    2015-01-01

    Striated preferentially expressed gene (Speg) is a member of the myosin light chain kinase family. We previously showed that disruption of the Speg gene locus in mice leads to a dilated cardiomyopathy with immature-appearing cardiomyocytes. Here we show that cardiomyopathy of Speg−/− mice arises as a consequence of defects in cardiac progenitor cell (CPC) function, and that neonatal cardiac dysfunction can be rescued by in utero injections of wild-type CPCs into Speg−/− foetal hearts. CPCs harvested from Speg−/− mice display defects in clone formation, growth and differentiation into cardiomyocytes in vitro, which are associated with cardiac dysfunction in vivo. In utero administration of wild-type CPCs into the hearts of Speg−/− mice results in CPC engraftment, differentiation and myocardial maturation, which rescues Speg−/− mice from neonatal heart failure and increases the number of live births by fivefold. We propose that in utero administration of CPCs may have future implications for treatment of neonatal heart diseases. PMID:26593099

  15. Cardiac manifestations of sickle cell anaemia in Sudanese children

    PubMed Central

    Ali, Ghada O. M.; Abdal Gader, Yahya S.; Abuzedi, Elfatih S.; Attalla, Bakhieta A. I.

    2012-01-01

    Sickle cell anaemia (SCA) is one of the commonest chronic hemolytic anaemias in the Sudan; it is a disease with high mortality and morbidity. This study was conducted aiming to observe the clinical pattern of cardiac abnormalities in children with sickle cell anaemia, and to assess the relationship between the cardiac abnormalities and the severity of the disease. The study was conducted in sickle cell disease clinic at Khartoum Children Emergency Hospital. The study group consisted of 289 patients with sickle cell anaemia, age range from 6 months to 18 years. Data were collected using a questionnaire which include full history, clinical examination findings, chest x-rays, and Electro-cardiography. Tachycardia, systolic murmurs, and cardiomegaly were detected in 28%, 61%, and 54% of patients with SCA respectively. Left ventricular dilatation was observed in 51% of the study group, while right ventricular dilatation was observed in 22% of the patients. Left and right atrial dilatations were observed in 16% and 6% of the patients respectively. Contractility, ejection fraction (EF) were found almost always normal in all study subjects. Chamber dilatations were not associated with any abnormality in Left ventricular functions. Hemglobin (Hb) levels correlated negatively with cardiomegaly. Left Ventricular End Diastolic Dimension (LVEDD) correlates negatively with Hb levels and positively with the severity index. Only four patients (1%) had abnormal valves. In conclusion, cardiac abnormalities in patients with SCA correlate with the age of the patients and the severity of the disease. PMID:27493331

  16. Cardiac manifestations of sickle cell anaemia in Sudanese children.

    PubMed

    Ali, Ghada O M; Abdal Gader, Yahya S; Abuzedi, Elfatih S; Attalla, Bakhieta A I

    2012-01-01

    Sickle cell anaemia (SCA) is one of the commonest chronic hemolytic anaemias in the Sudan; it is a disease with high mortality and morbidity. This study was conducted aiming to observe the clinical pattern of cardiac abnormalities in children with sickle cell anaemia, and to assess the relationship between the cardiac abnormalities and the severity of the disease. The study was conducted in sickle cell disease clinic at Khartoum Children Emergency Hospital. The study group consisted of 289 patients with sickle cell anaemia, age range from 6 months to 18 years. Data were collected using a questionnaire which include full history, clinical examination findings, chest x-rays, and Electro-cardiography. Tachycardia, systolic murmurs, and cardiomegaly were detected in 28%, 61%, and 54% of patients with SCA respectively. Left ventricular dilatation was observed in 51% of the study group, while right ventricular dilatation was observed in 22% of the patients. Left and right atrial dilatations were observed in 16% and 6% of the patients respectively. Contractility, ejection fraction (EF) were found almost always normal in all study subjects. Chamber dilatations were not associated with any abnormality in Left ventricular functions. Hemglobin (Hb) levels correlated negatively with cardiomegaly. Left Ventricular End Diastolic Dimension (LVEDD) correlates negatively with Hb levels and positively with the severity index. Only four patients (1%) had abnormal valves. In conclusion, cardiac abnormalities in patients with SCA correlate with the age of the patients and the severity of the disease. PMID:27493331

  17. Presence of satellite cells in a cardiac rhabdomyoma.

    PubMed

    Trillo, A A; Holleman, I L; White, J T

    1978-05-01

    Cardiac rhabdomyoma is the most common tumour of the heart in infancy and childhood. The clinical presentation, diagnosis and histopathological characteristics have been extensively studied; however, reports on the ultrastructure and histogenesis of this lesion are scanty and inconclusive. The case to be discussed is that of a 10-year-old male who presented with a cardiac rhabdomyoma occupying almost the entire ventricular apex. Ultrastructurally, the rhabdomyoma cells have a central, deeply-indented nucleus surrounded by an admixture of mitochondria and sarcomeres. The remainder of the cytoplasm is occupied by pools of glycogen granules, randomly-orientated myofibrils and small mitochondria. Intercellular junctions are numerous and consist of alternating zonula occludens and macula adherens. Typical satellite cells, sharing a common basement lamina are seen apposed to the rhabdomyoma cells. It is tempting to postulate that the proliferation of the rhabdomyoma cells is accomplished by differentiation of satellite cells, a process known to occur in skeletal muscle. Ultrastructurally, the rhabdomyoma cells are indistinguishable from Purkinje cells. The presence of Purkinje-like cells in ectopic locations within the heart and their association with satellite cells is likely a form of embryological atavism. PMID:669594

  18. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  19. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium

    PubMed Central

    Noseda, Michela; Harada, Mutsuo; McSweeney, Sara; Leja, Thomas; Belian, Elisa; Stuckey, Daniel J.; Abreu Paiva, Marta S.; Habib, Josef; Macaulay, Iain; de Smith, Adam J.; al-Beidh, Farah; Sampson, Robert; Lumbers, R. Thomas; Rao, Pulivarthi; Harding, Sian E.; Blakemore, Alexandra I. F.; Eirik Jacobsen, Sten; Barahona, Mauricio; Schneider, Michael D.

    2015-01-01

    Cardiac progenitor/stem cells in adult hearts represent an attractive therapeutic target for heart regeneration, though (inter)-relationships among reported cells remain obscure. Using single-cell qRT–PCR and clonal analyses, here we define four subpopulations of cardiac progenitor/stem cells in adult mouse myocardium all sharing stem cell antigen-1 (Sca1), based on side population (SP) phenotype, PECAM-1 (CD31) and platelet-derived growth factor receptor-α (PDGFRα) expression. SP status predicts clonogenicity and cardiogenic gene expression (Gata4/6, Hand2 and Tbx5/20), properties segregating more specifically to PDGFRα+ cells. Clonal progeny of single Sca1+ SP cells show cardiomyocyte, endothelial and smooth muscle lineage potential after cardiac grafting, augmenting cardiac function although durable engraftment is rare. PDGFRα− cells are characterized by Kdr/Flk1, Cdh5, CD31 and lack of clonogenicity. PDGFRα+/CD31− cells derive from cells formerly expressing Mesp1, Nkx2-5, Isl1, Gata5 and Wt1, distinct from PDGFRα−/CD31+ cells (Gata5 low; Flk1 and Tie2 high). Thus, PDGFRα demarcates the clonogenic cardiogenic Sca1+ stem/progenitor cell. PMID:25980517

  20. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium.

    PubMed

    Noseda, Michela; Harada, Mutsuo; McSweeney, Sara; Leja, Thomas; Belian, Elisa; Stuckey, Daniel J; Abreu Paiva, Marta S; Habib, Josef; Macaulay, Iain; de Smith, Adam J; al-Beidh, Farah; Sampson, Robert; Lumbers, R Thomas; Rao, Pulivarthi; Harding, Sian E; Blakemore, Alexandra I F; Jacobsen, Sten Eirik; Barahona, Mauricio; Schneider, Michael D

    2015-01-01

    Cardiac progenitor/stem cells in adult hearts represent an attractive therapeutic target for heart regeneration, though (inter)-relationships among reported cells remain obscure. Using single-cell qRT-PCR and clonal analyses, here we define four subpopulations of cardiac progenitor/stem cells in adult mouse myocardium all sharing stem cell antigen-1 (Sca1), based on side population (SP) phenotype, PECAM-1 (CD31) and platelet-derived growth factor receptor-α (PDGFRα) expression. SP status predicts clonogenicity and cardiogenic gene expression (Gata4/6, Hand2 and Tbx5/20), properties segregating more specifically to PDGFRα(+) cells. Clonal progeny of single Sca1(+) SP cells show cardiomyocyte, endothelial and smooth muscle lineage potential after cardiac grafting, augmenting cardiac function although durable engraftment is rare. PDGFRα(-) cells are characterized by Kdr/Flk1, Cdh5, CD31 and lack of clonogenicity. PDGFRα(+)/CD31(-) cells derive from cells formerly expressing Mesp1, Nkx2-5, Isl1, Gata5 and Wt1, distinct from PDGFRα(-)/CD31(+) cells (Gata5 low; Flk1 and Tie2 high). Thus, PDGFRα demarcates the clonogenic cardiogenic Sca1(+) stem/progenitor cell. PMID:25980517

  1. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  2. More Than Tiny Sacks: Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair.

    PubMed

    Kishore, Raj; Khan, Mohsin

    2016-01-22

    Stem cell therapy provides immense hope for regenerating the pathological heart, yet has been marred by issues surrounding the effectiveness, unclear mechanisms, and survival of the donated cell population in the ischemic myocardial milieu. Poor survival and engraftment coupled to inadequate cardiac commitment of the adoptively transferred stem cells compromises the improvement in cardiac function. Various alternative approaches to enhance the efficacy of stem cell therapies and to overcome issues with cell therapy have been used with varied success. Cell-free components, such as exosomes enriched in proteins, messenger RNAs, and miRs characteristic of parental stem cells, represent a potential approach for treating cardiovascular diseases. Recently, exosomes from different kinds of stem cells have been effectively used to promote cardiac function in the pathological heart. The aim of this review is to summarize current research efforts on stem cell exosomes, including their potential benefits and limitations to develop a potentially viable therapy for cardiovascular problems. PMID:26838317

  3. Cardiac morphology and blood pressure in the adult zebrafish.

    PubMed

    Hu, N; Yost, H J; Clark, E B

    2001-09-01

    Zebrafish has become a popular model for the study of cardiovascular development. We performed morphologic analysis on 3 months postfertilization zebrafish hearts (n > or = 20) with scanning electron microscopy, hematoxylin and eosin staining and Masson's trichrome staining, and morphometric analysis on cell organelles with transmission electron photomicrographs. We measured atrial, ventricular, ventral, and dorsal aortic blood pressures (n > or = 5) with a servonull system. The atrioventricular orifice was positioned on the dorsomedial side of the anterior ventricle, surmounted by the single-chambered atrium. The atrioventricular valve was free of tension apparati but supported by papillary bands to prevent retrograde flow. The ventricle was spanned with fine trabeculae perpendicular to the compact layer and perforated with a subepicardial network of coronary arteries, which originated from the efferent branchial arteries by means of the main coronary vessel. Ventricular myocytes were larger than those in the atrium (P < 0.05) with abundant mitochondria close to the sarcolemmal. Sarcoplasmic reticulum was sparse in zebrafish ventricle. Bulbus arteriosus was located anterior to the ventricle, and functioned as an elastic reservoir to absorb the rapid rise of pressure during ventricular contraction. The dense matrix of collagen interspersed across the entire bulbus arteriosus exemplified the characteristics of vasculature smooth muscle. There were pressure gradients from atrium to ventricle, and from ventral to dorsal aorta, indicating that the valves and the branchial arteries, respectively, were points of resistance to blood flow. These data serve as a framework for structure-function investigations of the zebrafish cardiovascular system. PMID:11505366

  4. TRPV-1-mediated elimination of residual iPS cells in bioengineered cardiac cell sheet tissues

    PubMed Central

    Matsuura, Katsuhisa; Seta, Hiroyoshi; Haraguchi, Yuji; Alsayegh, Khaled; Sekine, Hidekazu; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Yamazaki, Kenji; Okano, Teruo

    2016-01-01

    The development of a suitable strategy for eliminating remaining undifferentiated cells is indispensable for the use of human-induced pluripotent stem (iPS) cell-derived cells in regenerative medicine. Here, we show for the first time that TRPV-1 activation through transient culture at 42 °C in combination with agonists is a simple and useful strategy to eliminate iPS cells from bioengineered cardiac cell sheet tissues. When human iPS cells were cultured at 42 °C, almost all cells disappeared by 48 hours through apoptosis. However, iPS cell-derived cardiomyocytes and fibroblasts maintained transcriptional and protein expression levels, and cardiac cell sheets were fabricated after reducing the temperature. TRPV-1 expression in iPS cells was upregulated at 42 °C, and iPS cell death at 42 °C was TRPV-1-dependent. Furthermore, TRPV-1 activation through thermal or agonist treatment eliminated iPS cells in cardiac tissues for a final concentration of 0.4% iPS cell contamination. These findings suggest that the difference in tolerance to TRPV-1 activation between iPS cells and iPS cell-derived cardiac cells could be exploited to eliminate remaining iPS cells in bioengineered cell sheet tissues, which will further reduce the risk of tumour formation. PMID:26888607

  5. Integrative Modeling of Electrical Properties of Pacemaker Cardiac Cells

    NASA Astrophysics Data System (ADS)

    Grigoriev, M.; Babich, L.

    2016-06-01

    This work represents modeling of electrical properties of pacemaker (sinus) cardiac cells. Special attention is paid to electrical potential arising from transmembrane current of Na+, K+ and Ca2+ ions. This potential is calculated using the NaCaX model. In this respect, molar concentration of ions in the intercellular space which is calculated on the basis of the GENTEX model is essential. Combined use of two different models allows referring this approach to integrative modeling.

  6. Spatial localization of ryanodine receptors in human cardiac cells.

    PubMed

    Vallmitjana, A; Nolla, C; Herraiz-Martínez, A; Hove-Madsen, L; Benítez, R

    2015-08-01

    We present a novel image processing method to determine the location of ryanodine receptors in cardiac cells. A semi-automatic manual validation by an expert has been used in order to establish the performance of the segmentation method. The approach provides high accuracy under different experimental conditions and it is robust to common sources of noise including experimental, molecular and biological fluctuations. PMID:26737732

  7. Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes

    PubMed Central

    Agarwal, Shailesh R.; MacDougall, David A.; Tyser, Richard; Pugh, Sara D.; Calaghan, Sarah C.; Harvey, Robert D.

    2011-01-01

    β1-Adrenergic receptors (β1ARs) and E-type prostaglandin receptors (EPRs) both produce compartmentalized cAMP responses in cardiac myocytes. The role of cholesterol-dependent lipid rafts in producing these compartmentalized responses was investigated in adult rat ventricular myocytes. β1ARs were found in lipid raft and non-lipid raft containing membrane fractions, while EPRs were only found in non-lipid raft fractions. Furthermore, β1AR activation enhanced the L-type Ca2+ current, intracellular Ca2+ transient, and myocyte shortening, while EPR activation had no effect, consistent with the idea that these functional responses are regulated by cAMP produced by receptors found in lipid raft domains. Using methyl-β-cyclodextrin to disrupt lipid rafts by depleting membrane cholesterol did not eliminate compartmentalized behavior, but it did selectively alter specific receptor-mediated responses. Cholesterol depletion enhanced the sensitivity of functional responses produced by β1ARs without having any effect on EPR activation. Changes in cAMP activity were also measured in intact cells using two different FRET-based biosensors: a type II PKA-based probe to monitor cAMP in subcellular compartments that include microdomains associated with caveolar lipid rafts and a freely diffusible Epac2-based probe to monitor total cytosolic cAMP. β1AR and EPR activation elicited responses detected by both FRET probes. However, cholesterol depletion only affected β1AR responses detected by the PKA probe. These results indicate that lipid rafts alone are not sufficient to explain the difference between β1AR and EPR responses. They also suggest that β1AR regulation of myocyte contraction involves the local production of cAMP by a subpopulation of receptors associated with caveolar lipid rafts. PMID:21115018

  8. Cardiac Repair by Embryonic Stem-Derived cells

    PubMed Central

    Rubart, M.

    2008-01-01

    Cell transplantation approaches offer the potential to promote regenerative growth of diseased hearts. It is well established that donor cardiomyocytes stably engraft into recipient hearts when injected directly into the myocardial wall. Moreover, the transplanted donor cardiomyocytes participate in a functional syncytium with the host myocardium. Thus, transplantation of donor cardiomyocytes resulted in at least partial restoration of lost muscle mass. It is also well established that embryonic stem (ES) cells differentiate into cells of ecto-, endo-, and mesodermal lineages when cultured under appropriate conditions in vitro. Robust cardiomyogenic differentiation was frequently observed in spontaneously differentiating ES cultures. Cellular, molecular and physiologic analyses indicated that ES-derived cells were bona fide cardiomyocytes, with in vitro characteristics typical for cells obtained from early stages of cardiac development. Thus, ES-derived cardiomyocytes constitute a viable source of donor cells for cell transplantation therapies. PMID:16370325

  9. "String theory" of c-kit(pos) cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results.

    PubMed

    Keith, Matthew C L; Bolli, Roberto

    2015-03-27

    Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kit(pos) cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have (facetiously) dubbed this conceptual construct "string theory" of c-kit(pos) cardiac cells because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kit(pos) cells derived from the first heart field exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kit(pos) cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype (resembling bone marrow mesenchymal stem/stromal cells), and are capable of contributing significantly only to nonmyocytic lineages (fibroblasts, smooth muscle cells, and endothelial cells). If these 2 populations (first heart field and proepicardium) express different levels of c-kit, the cardiomyogenic potential of first heart field progenitors might be reconciled with recent results of c-kit(pos) cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, noncardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c

  10. Cardiac cell survival and reversibility of myocardial ischemia.

    PubMed

    Rashed, E; Depre, C

    2006-12-01

    Because of a limited capacity for cell regeneration, the cardiac tissue, when submitted to ischemic stress, may activate endogenous mechanisms of cell survival resulting in physiological conditions of adaptation to ischemia, known as myocardial stunning, ischemic preconditioning and myocardial hibernation. These conditions result from a switch in gene and protein expression, which sustains cardiac cell survival in a context of oxygen deprivation and during the stress of reperfusion. Understanding how the molecular adaptation of the cardiac myocyte during stress sustains its survival in these conditions might help to define novel mechanisms of endogenous myocardial salvage, in order to expand the conditions of maintained cellular viability and functional salvage of the ischemic myocardium. This review summarizes recent progress made in the study of the molecular pathways controlling reversible ischemic dysfunction, and the unraveling of novel genomic paradigms. We also focus on the discovery and characterization of novel genes, which further increase our knowledge of myocardial ischemia and open novel therapeutic possibilities for ischemic heart disease. PMID:18942527

  11. Abnormal Heart Rate Turbulence Predicts Cardiac Mortality in Low, Intermediate and High Risk Older Adults

    PubMed Central

    Stein, Phyllis K.; Barzilay, Joshua I.

    2011-01-01

    Introduction We examined whether heart rate turbulence (HRT) adds to traditional risk factors for cardiac mortality in older adults at low, intermediate and high risk. Methods and Results N=1298, age ≥65 years, with 24-hour Holter recordings were studied. HRT, which quantifies heart rate response to ventricular premature contractions, was categorized as: both turbulence onset (TO) and turbulence slope (TS) normal; TO abnormal; TS abnormal; or both abnormal. Independent risks for cardiac mortality associated with HRT or, for comparison, elevated C-reactive protein (CRP) (>3.0 mg/L), were calculated using Cox regression analysis adjusted for traditional cardiovascular disease risk factors and stratified by the presence of no, isolated subclinical (i.e., intermediate risk) or clinical CVD. Having both TS and TO abnormal compared to both normal was associated with cardiac mortality in the low risk group [HR 7.9, 95% CI 2.8–22.5, (p<0.001)]. In the high and intermediate risk groups, abnormal TS and TO ([HR 2.2, 95% CI 1.5–4.0, p=0.016] and [HR 2.7, 95% CI 1.2–5.9, p=0.012]), respectively, were also significantly associated with cardiac mortality. In contrast, elevated CRP was associated with increased cardiac mortality risk only in low risk individuals [HR 2.5, 95% CI 1.3–5.1, p=0.009]. In the low risk group, the c-statistic was 0.706 for the base model, 0.725 for the base model with CRP, and 0.767 for the base model with HRT. Conclusions Abnormal HRT independently adds to risk stratification of low, intermediate and high risk individuals but appears to add especially to the stratification of those considered at low risk. PMID:21134026

  12. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration.

    PubMed

    Gaebel, Ralf; Ma, Nan; Liu, Jun; Guan, Jianjun; Koch, Lothar; Klopsch, Christian; Gruene, Martin; Toelk, Anita; Wang, Weiwei; Mark, Peter; Wang, Feng; Chichkov, Boris; Li, Wenzhong; Steinhoff, Gustav

    2011-12-01

    Recent study showed that mesenchymal stem cells (MSC) could inhibit apoptosis of endothelial cells in hypoxic condition, increase their survival, and stimulate the angiogenesis process. In this project we applied Laser-Induced-Forward-Transfer (LIFT) cell printing technique and prepared a cardiac patch seeded with human umbilical vein endothelial cells (HUVEC) and human MSC (hMSC) in a defined pattern for cardiac regeneration. We seeded HUVEC and hMSC in a defined pattern on a Polyester urethane urea (PEUU) cardiac patch. On control patches an equal amount of cells was randomly seeded without LIFT. Patches were cultivated in vitro or transplanted in vivo to the infarcted zone of rat hearts after LAD-ligation. Cardiac performance was measured by left ventricular catheterization 8 weeks post infarction. Thereafter hearts were perfused with fluorescein tomato lectin for the assessment of functional blood vessels and stored for histology analyses. We demonstrated that LIFT-derived cell seeding pattern definitely modified growth characteristics of co-cultured HUVEC and hMSC leading to increased vessel formation and found significant functional improvement of infarcted hearts following transplantation of a LIFT-tissue engineered cardiac patch. Further, we could show enhanced capillary density and integration of human cells into the functionally connected vessels of murine vascular system. LIFT-based Tissue Engineering of cardiac patches for the treatment of myocardial infarction might improve wound healing and functional preservation. PMID:21911255

  13. Cardiac Progenitor Cell Commitment is Inhibited by Nuclear Akt Expression

    PubMed Central

    Fischer, Kimberlee M.; Din, Shabana; Gude, Natalie; Konstandin, Mathias H.; Wu, Weitao; Quijada, Pearl; Sussman, Mark A.

    2011-01-01

    Rationale Stem cell therapies to regenerate damaged cardiac tissue represent a novel approach to treat heart disease. However, the majority of adoptively transferred stem cells delivered to damaged myocardium do not survive long enough to impart protective benefits, resulting in modest functional improvements. Strategies to improve survival and proliferation of stem cells show promise for significantly enhancing cardiac function and regeneration. Objective Determine if injected cardiac progenitor cells (CPCs) genetically modified to overexpress nuclear Akt (CPCeA) increase structural and functional benefits to infarcted myocardium relative to control CPCs. Methods and Results CPCeA exhibit significantly increased proliferation and secretion of paracrine factors compared to CPCs. However, CPCeA exhibit impaired capacity for lineage commitment in vitro. Infarcted hearts receiving intramyocardial injection of CPCeA have increased recruitment of endogenous c-kit cells compared to CPCs, but neither population provides long-term functional and structural improvements compared to saline injected controls. Pharmacologic inhibition of Akt alleviated blockade of lineage commitment in CPCeA. Conclusions Although overexpression of nuclear Akt promotes rapid proliferation and secretion of protective paracrine factors, the inability of CPCeA to undergo lineage commitment hinders their capacity to provide functional or structural benefits to infarcted hearts. Despite enhanced recruitment of endogenous CPCs, lack of functional improvement in CPCeA treated hearts demonstrates CPC lineage commitment is essential to the regenerative response. Effective stem cell therapies must promote cellular survival and proliferation without inhibiting lineage commitment. Since CPCeA exhibit remarkable proliferative potential, an inducible system mediating nuclear Akt expression could be useful to augment cell therapy approaches. PMID:21350213

  14. Cardiac Repair and Regeneration: The Value of Cell Therapies

    PubMed Central

    Lerman, Daniel Alejandro; Alotti, Nasri; Ume, Kiddy Levente; Péault, Bruno

    2016-01-01

    Ischaemic heart disease is the predominant contributor to cardiovascular morbidity and mortality; one million myocardial Infarctions occur per year in the USA, while more than five million patients suffer from chronic heart failure. Recently, heart failure has been singled out as an epidemic and is a staggering clinical and public health problem associated with significant mortality, morbidity and healthcare expenditures, particularly among those aged ≥65 years. Death rates have improved dramatically over the last four decades, but new approaches are nevertheless urgently needed for those patients who go on to develop ventricular dysfunction and chronic heart failure. Over the past decade, stem cell transplantation has emerged as a promising therapeutic strategy for acute or chronic ischaemic cardiomyopathy. Multiple candidate cell types have been used in preclinical animal models and in humans to repair or regenerate the injured heart, either directly or indirectly (through paracrine effects), including: embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), neonatal cardiomyocytes, skeletal myoblasts (SKMs), endothelial progenitor cells, bone marrow mononuclear cells (BMMNCs), mesenchymal stem cells (MSCs) and, most recently, cardiac stem cells (CSCs). Although no consensus has emerged yet, the ideal cell type for the treatment of heart disease should: (a) improve heart function; (b) create healthy and functional cardiac muscle and vasculature, integrated into the host tissue; (c) be amenable to delivery by minimally invasive clinical methods; (d) be available ′off the shelf′ as a standardised reagent; (e) be tolerated by the immune system; (f) be safe oncologically, i.e. not create tumours; and (g) circumvent societal ethical concerns. At present, it is not clear whether such a ′perfect′ stem cell exists; what is apparent, however, is that some cell types are more promising than others. In this brief review, we provide ongoing data on

  15. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: 2016 Update on Research.

    PubMed

    Badhwar, Vinay; Rankin, J Scott; Jacobs, Jeffrey P; Shahian, David M; Habib, Robert H; D'Agostino, Richard S; Thourani, Vinod H; Suri, Rakesh M; Prager, Richard L; Edwards, Fred H

    2016-07-01

    The Society of Thoracic Surgeons Adult Cardiac Database (ACSD) is an international voluntary effort that is the foundation of our specialty's efforts in clinical performance assessment and quality improvement. Containing nearly 6,000,000 patient records, the ACSD is a robust resource for clinical research. Seven major original publications and four review articles were generated from the ACSD in 2015. The risk-adjusted outcome analyses and quality measures reported in these studies have made substantial contributions to inform daily clinical practice. This report summarizes the ACSD-based research efforts published in 2015. PMID:27262913

  16. The nuclear membranes in hypertrophied human cardiac muscle cells.

    PubMed Central

    Ferrans, V. J.; Jones, M.; Maron, B. J.; Roberts, W. C.

    1975-01-01

    Nuclear membranes of cardiac muscle cells were studied in 134 patients with cardiac hypertrophy of various causes. Abnormalities observed consisted of: a) increased foldings and convolutions; b) nuclear pseudoinclusions formed by cytoplasmic organelles protruding into saccular invaginations of the nuclear membranes, and c) intranuclear tubules. The increased foldings and convolutions of the nuclear membranes and the nuclear pseudoinclusions appear to result from synthesis of nuclear membranes in excess of that needed to accommodate the increase in nuclear volume which occurs in hypertrophy. Intranuclear tubules were found in 6 patients and consisted of tubular invaginations, 400 to 650 A in diameter, of the inner nuclear membranes into the nucleoplasm. Some of these tubules were straight and cylindrical, and were associated with a peripheral layer of marginated chromatin; others were not associated with chromatin, appeared coiled and followed irregular courses. Intranuclear tubules in cardiac muscle cells probably represent an extreme cellular response to the stimulus of hypertrophy. Images Fig 21 Fig 11 Fig 12 Fig 13 Fig 14 Fig 1 Fig 15 Fig 2 Figs 3 and 4 Fig 5 Fig 16 Fig 17 Fig 6 Fig 18 Fig 7 Fig 8 Fig 9 Fig 10 Fig 19 Fig 20 PMID:164122

  17. “String Theory” of c-kitpos Cardiac Cells: A New Paradigm Regarding the Nature of These Cells That May Reconcile Apparently Discrepant Results

    PubMed Central

    Keith, Matthew C. L.; Bolli, Roberto

    2015-01-01

    Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kitpos cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have dubbed this conceptual construct “string theory of c-kitpos cardiac cells” because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kitpos cells derived from the first heart field (FHF) exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kitpos cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype, and are capable of contributing significantly only to non-myocytic lineages (fibroblasts, smooth muscle cells, endothelial cells). If these two populations (FHF and proepicardium) express different levels of c-kit, the cardiomyogenic potential of FHF progenitors might be reconciled with recent results of c-kitpos cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, non-cardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c-kitpos cell administration to ischemically damaged hearts despite the observed paucity of cardiomyogenic

  18. Progenitor cells in the adult pancreas.

    PubMed

    Holland, Andrew M; Góñez, L Jorge; Harrison, Leonard C

    2004-01-01

    The beta-cell mass in the adult pancreas possesses the ability to undergo limited regeneration following injury. Identifying the progenitor cells involved in this process and understanding the mechanisms leading to their maturation will open new avenues for the treatment of type 1 diabetes. However, despite steady advances in determining the molecular basis of early pancreatic development, the identification of pancreatic stem cells or beta-cell progenitors and the molecular mechanisms underlying beta-cell regeneration remain unclear. Recent advances in the directed differentiation of embryonic and adult stem cells has heightened interest in the possible application of stem cell therapy in the treatment of type 1 diabetes. Drawing on the expanding knowledge of pancreas development, beta-cell regeneration and stem cell research, this review focuses on progenitor cells in the adult pancreas as a potential source of beta-cells. PMID:14737742

  19. Applying the Gender Lens to Risk Factors and Outcome after Adult Cardiac Surgery

    PubMed Central

    Eifert, Sandra; Guethoff, Sonja; Kaczmarek, Ingo; Beiras-Fernandez, Andres; Seeland, Ute; Gulbins, Helmut; Seeburger, Jörg; Deutsch, Oliver; Jungwirth, Bettina; Katsari, Elpiniki; Dohmen, Pascal; Pfannmueller, Bettina; Hultgren, Rebecka; Schade, Ina; Kublickiene, Karolina; Mohr, Friedrich W.; Gansera, Brigitte

    2014-01-01

    Summary Background Applying the gender lens to risk factors and outcome after adult cardiac surgery is of major clinical interest, as the inclusion of sex and gender in research design and analysis may guarantee more comprehensive cardiovascular science and may consecutively result in a more effective surgical treatment as well as cost savings in cardiac surgery. Methods We have reviewed classical cardiovascular risk factors (diabetes, arterial hypertension, hyperlipidemia, smoking) according to a gender-based approach. Furthermore, we have examined comorbidities such as depression, renal insufficiency, and hormonal influences in regard to gender. Gender-sensitive economic aspects have been evaluated, surgical outcome has been analyzed, and cardiovascular research has been considered from a gender perspective. Results The influence of typical risk factors and outcome after cardiac surgery has been evaluated from a gender perspective, and the gender-specific distribution of these risk factors is reported on. The named comorbidities are listed. Economic aspects demonstrated a gender gap. Outcome after coronary and valvular surgeries as well as after heart transplantation are displayed in this regard. Results after postoperative use of intra-aortic balloon pump are shown. Gender-related aspects of clinical and biomedical cardiosurgical research are reported. Conclusions Female gender has become an independent risk factor of survival after the majority of cardiosurgical procedures. Severely impaired left ventricular ejection fraction independently predicts survival in men, whereas age does in females. PMID:26288584

  20. Impact of adiposity on cardiac structure in adult life: the childhood determinants of adult health (CDAH) study

    PubMed Central

    2014-01-01

    Background We have examined the association between adiposity and cardiac structure in adulthood, using a life course approach that takes account of the contribution of adiposity in both childhood and adulthood. Methods The Childhood Determinants of Adult Health study (CDAH) is a follow-up study of 8,498 children who participated in the 1985 Australian Schools Health and Fitness Survey (ASHFS). The CDAH follow-up study included 2,410 participants who attended a clinic examination. Of these, 181 underwent cardiac imaging and provided complete data. The measures were taken once when the children were aged 9 to 15 years, and once in adult life, aged 26 to 36 years. Results There was a positive association between adult left ventricular mass (LVM) and childhood body mass index (BMI) in males (regression coefficient (β) 0.41; 95% confidence interval (CI): 0.14 to 0.67; p = 0.003), and females (β = 0.53; 95% CI: 0.34 to 0.72; p < 0.001), and with change in BMI from childhood to adulthood (males: β = 0.27; 95% CI: 0.04 to 0.51; p < 0.001, females: β = 0.39; 95% CI: 0.20 to 0.58; p < 0.001), after adjustment for confounding factors (age, fitness, triglyceride levels and total cholesterol in adulthood). After further adjustment for known potential mediating factors (systolic BP and fasting plasma glucose in adulthood) the relationship of LVM with childhood BMI (males: β = 0.45; 95% CI: 0.19 to 0.71; p = 0.001, females: β = 0.49; 95% CI: 0.29 to 0.68; p < 0.001) and change in BMI (males: β = 0.26; 95% CI: 0.04 to 0.49; p = 0.02, females: β = 0.40; 95% CI: 0.20 to 0.59; p < 0.001) did not change markedly. Conclusions Adiposity and increased adiposity from childhood to adulthood appear to have a detrimental effect on cardiac structure. PMID:24980215

  1. ISL1 and JMJD3 synergistically control cardiac differentiation of embryonic stem cells.

    PubMed

    Wang, Yang; Li, Yuejiao; Guo, Chen; Lu, Qin; Wang, Weiping; Jia, Zhuqing; Chen, Ping; Ma, Kangtao; Reinberg, Danny; Zhou, Chunyan

    2016-08-19

    ISL1 is expressed in cardiac progenitor cells and plays critical roles in cardiac lineage differentiation and heart development. Cardiac progenitor cells hold great potential for clinical and translational applications. However, the mechanisms underlying ISL1 function in cardiac progenitor cells have not been fully elucidated. Here we uncover a hierarchical role of ISL1 in cardiac progenitor cells, showing that ISL1 directly regulates hundreds of potential downstream target genes that are implicated in cardiac differentiation, through an epigenetic mechanism. Specifically, ISL1 promotes the demethylation of tri-methylation of histone H3K27 (H3K27me3) at the enhancers of key downstream target genes, including Myocd and Mef2c, which are core cardiac transcription factors. ISL1 physically interacts with JMJD3, a H3K27me3 demethylase, and conditional depletion of JMJD3 leads to impaired cardiac progenitor cell differentiation, phenocopying that of ISL1 depletion. Interestingly, ISL1 is not only responsible for the recruitment of JMJD3 to specific target loci during cardiac progenitor differentiation, but also modulates its demethylase activity. In conclusion, ISL1 and JMJD3 partner to alter the cardiac epigenome, instructing gene expression changes that drive cardiac differentiation. PMID:27105846

  2. Cardiac Progenitor Cell Cycling Stimulated by Pim-1 Kinase

    PubMed Central

    Cottage, Christopher T.; Bailey, Brandi; Fischer, Kimberlee M.; Avitable, Daniele; Collins, Brett; Tuck, Savilla; Quijada, Pearl; Gude, Natalie; Alvarez, Roberto; Muraski, John; Sussman, Mark A.

    2011-01-01

    Rationale Cardioprotective effects of Pim-1 kinase have been previously reported but the underlying mechanistic basis may involve a combination of cellular and molecular mechanisms that remain unresolved. The elucidation of the mechanistic basis for Pim-1 mediated cardioprotection provides important insights for designing therapeutic interventional strategies to treat heart disease. Objective Effects of cardiac-specific Pim-1 kinase expression on the cardiac progenitor cell (CPC) population were examined to determine whether Pim-1 mediates beneficial effects through augmenting CPC activity. Methods and Results Transgenic mice created with cardiac-specific Pim-1 overexpression (Pim-wt) exhibit enhanced Pim-1 expression in both cardiomyocytes and CPCs, both of which show increased proliferative activity assessed using 5-bromodeoxyuridine (BrdU), Ki-67, and c-Myc relative to nontransgenic controls. However, the total number of CPCs was not increased in the Pim-wt hearts during normal postnatal growth or after infarction challenge. These results suggest that Pim-1 overexpression leads to asymmetric division resulting in maintenance of the CPC population. Localization and quantitation of cell fate determinants Numb and α-adaptin by confocal microscopy were used to assess frequency of asymmetric division in the CPC population. Polarization of Numb in mitotic phospho-histone positive cells demonstrates asymmetric division in 65% of the CPC population in hearts of Pim-wt mice versus 26% in nontransgenic hearts after infarction challenge. Similarly, Pim-wt hearts had fewer cells with uniform α-adaptin staining indicative of symmetrically dividing CPCs, with 36% of the CPCs versus 73% in nontransgenic sections. Conclusions These findings define a mechanistic basis for enhanced myocardial regeneration in transgenic mice overexpressing Pim-1 kinase. PMID:20075333

  3. [Transfer of cardiac catheterisation from a paediatric to an adult cardiological centre: results at 3 years].

    PubMed

    Agnoletti, G; Boudjemline, Y; Ladouceur, M; Iserin, L

    2007-05-01

    The advances of surgical and interventional treatment of congenital heart diseases have allowed a large number of patients with congenital heart disease to reach adult age. This population involves almost 0.3/1000 of total population in West Europe and North America and can be estimated around 200000 patients in France. Patients with operated Tetralogy of Fallot, benign forms of pulmonary atresia with ventricular septal defect, simple or complex transposition of the great arteries usually survive beyond childhood. These patients can need repeated interventions to treat lesions of native or reconstructed pulmonary arteries and/or aortic arch, to occlude residual shunts, to treat pulmonary incompetence. More complex heart diseases such as single ventricle, rarely allow survival until the adult age. The majority of these patients undergo heart transplant, often made difficult by multiple cardiac surgeries, anomalies of pulmonary arteries, chronic cyanosis, aorto-pulmonary shunts. Patients with relatively simple or complex congenital heart diseases need to be followed-up in specialized units, like those created more than twenty years ago in the United States, Canada, and United Kingdom. Interventional cardiac catheterisation play a major role in the management of this population. The results of 3 years of activity in a new centre treating GUCH patients are illustrated. PMID:17646764

  4. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity

    PubMed Central

    Quevedo, Henry C.; Hatzistergos, Konstantinos E.; Oskouei, Behzad N.; Feigenbaum, Gary S.; Rodriguez, Jose E.; Valdes, David; Pattany, Pradip M.; Zambrano, Juan P.; Hu, Qinghua; McNiece, Ian; Heldman, Alan W.; Hare, Joshua M.

    2009-01-01

    The mechanism(s) underlying cardiac reparative effects of bone marrow-derived mesenchymal stem cells (MSC) remain highly controversial. Here we tested the hypothesis that MSCs regenerate chronically infarcted myocardium through mechanisms comprising long-term engraftment and trilineage differentiation. Twelve weeks after myocardial infarction, female swine received catheter-based transendocardial injections of either placebo (n = 4) or male allogeneic MSCs (200 million; n = 6). Animals underwent serial cardiac magnetic resonance imaging, and in vivo cell fate was determined by co-localization of Y-chromosome (Ypos) cells with markers of cardiac, vascular muscle, and endothelial lineages. MSCs engrafted in infarct and border zones and differentiated into cardiomyocytes as ascertained by co-localization with GATA-4, Nkx2.5, and α-sarcomeric actin. In addition, Ypos MSCs exhibited vascular smooth muscle and endothelial cell differentiation, contributing to large and small vessel formation. Infarct size was reduced from 19.3 ± 1.7% to 13.9 ± 2.0% (P < 0.001), and ejection fraction (EF) increased from 35.0 ± 1.7% to 41.3 ± 2.7% (P < 0.05) in MSC but not placebo pigs over 12 weeks. This was accompanied by increases in regional contractility and myocardial blood flow (MBF), particularly in the infarct border zone. Importantly, MSC engraftment correlated with functional recovery in contractility (R = 0.85, P < 0.05) and MBF (R = 0.76, P < 0.01). Together these findings demonstrate long-term MSC survival, engraftment, and trilineage differentiation following transplantation into chronically scarred myocardium. MSCs are an adult stem cell with the capacity for cardiomyogenesis and vasculogenesis which contribute, at least in part, to their ability to repair chronically scarred myocardium. PMID:19666564

  5. Endogenous cardiac stem cells for the treatment of heart failure

    PubMed Central

    Fuentes, Tania; Kearns-Jonker, Mary

    2013-01-01

    Stem cell-based therapies hold promise for regenerating the myocardium after injury. Recent data obtained from phase I clinical trials using endogenous cardiovascular progenitors isolated directly from the heart suggest that cell-based treatment for heart patients using stem cells that reside in the heart provides significant functional benefit and an improvement in patient outcome. Methods to achieve improved engraftment and regeneration may extend this therapeutic benefit. Endogenous cardiovascular progenitors have been tested extensively in small animals to identify cells that improve cardiac function after myocardial infarction. However, the relative lack of large animal models impedes translation into clinical practice. This review will exclusively focus on the latest research pertaining to humans and large animals, including both endogenous and induced sources of cardiovascular progenitors. PMID:24426784

  6. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    PubMed

    Carreira, Vinicius S; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  7. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  8. [Cardiac invasion of ATLL cells and therapeutic effects of local along with systemic treatments].

    PubMed

    Imoto, S; Nakagawa, T; Ito, M

    1989-07-01

    We report a rare case of adult T cell leukemia/lymphoma (ATLL) in which cardiac invasion was clinically demonstrated and treated effectively. A 45-year-old female was admitted because of exertional dyspnea and cervical tumors. The leukocyte count was 19,100/microliters with 20% of flower cells. HTLV-I antibody was positive. She was diagnosed as ATLL and treated with VEPA. She got remission for a short duration which was followed by relapse. OPEC was started as salvage therapy. In the course, extensive pericardial effusion was found in chest X-P. Pericardial puncture demonstrated ATLL cells and high titer of free IL-2 receptor (57,400U/ml) in the effusion. It was diagnosed as pericardial invasion of ATLL cells. Chemotherapy was started with new combination of drugs (cisplatin, mitoxantrone, ifosfamide, and prednisolone). Concomitantly pericardial drainage was performed and the drugs were administered directly into the pericardial cavity. The clinical improvement was obtained and pericardial effusion did not appear thereafter. She died 4 months after the diagnosis of cardiac invasion. On autopsy myocardial invasion was identified. The pericardium widely adhered and effusion measured 42 ml. PMID:2810792

  9. A Novel Class of Human Cardiac Stem Cells

    PubMed Central

    Moccetti, Tiziano; Leri, Annarosa; Goichberg, Polina; Rota, Marcello; Anversa, Piero

    2015-01-01

    Following the recognition that hematopoietic stem cells improve the outcome of myocardial infarction in animal models, bone marrow mononuclear cells, CD34-positive cells and mesenchymal stromal cells have been introduced clinically. The intracoronary or intramyocardial injection of these cell classes has been shown to be safe and to produce a modest but significant enhancement in systolic function. However, the identification of resident cardiac stem cells in the human heart (hCSCs) has created great expectation concerning the potential implementation of this category of autologous cells for the management of the human disease. Although phase 1 clinical trials have been conducted with encouraging results, the search for the most powerful hCSC for myocardial regeneration is in its infancy. This manuscript discusses the efforts performed in our laboratory to characterize the critical biological variables that define the growth reserve of hCSCs. Based on the theory of the immortal DNA template, we propose that stem cells retaining the old DNA represent one of the most powerful cells for myocardial regeneration. Similarly, the expression of insulin-like growth factor-1 receptors in hCSCs recognizes a cell phenotype with superior replicating reserve. However, the impressive recovery in ventricular hemodynamics and anatomy mediated by clonal hCSCs carrying the “mother” DNA underscores the clinical relevance of this hCSC class for the treatment of human heart failure. PMID:25807105

  10. Cardiomyogenic potential of c-kit+ expressing cells derived from neonatal and adult mouse hearts

    PubMed Central

    Zaruba, Marc-Michael; Soonpaa, Mark; Reuter, Sean; Field, Loren J.

    2010-01-01

    Summary Background c-kit is a receptor tyrosine kinase family member expressed in hematopoietic stem cells. c-kit is also transiently expressed in cardiomyocyte precursors during development, and in a rare cell population in the normal adult heart. Here, the cardiomyogenic potential of c-kit+ cells isolated from normal neonatal, normal adult and infarcted adult mouse hearts was evaluated. Methods and Results Magnetic activated cell sorting (MACS) was used to prepare c-kit+ cells from the hearts of ACT-EGFP/MHC-nLAC double transgenic mice. These animals exhibit widespread enhanced green fluorescent protein (EGFP) expression and cardiomyocyte-restricted nuclear β-galactosidase activity, thus permitting simultaneous tracking of cell survival and differentiation. A subset of the c-kit+ cells from double transgenic neonatal hearts acquired a cardiomyogenic phenotype when co-cultured with fetal cardiomyocytes (2.4% of all EGFP+ cells screened), but not when cultured alone or when co-cultured with mouse fibroblasts (0.03% and 0.05% of the EGFP+ cells screened, respectively). In contrast, c-kit+ cells from normal adult double transgenic hearts failed to undergo cardiomyogenic differentiation when co-cultured with non-transgenic fetal cardiomyocytes (>18,000 EGFP+ cells screened) or when transplanted into normal or infarcted adult mouse hearts (14 EGFP+ grafts examined). A single c-kit+ cell from an infarcted double transgenic adult heart was observed to acquire a cardiomyogenic phenotype in co-culture (>37,000 EGFP+ cells screened). Conclusions These data suggest that the ability of cardiac-resident c-kit+ cells to acquire a cardiomyogenic phenotype is subject to temporal limitations, or alternatively that the cardiomyogenic population is lost. Elucidation of the underlying molecular basis may permit robust cardiomyogenic induction in adult-derived cardiac c-kit+ cells. PMID:20421520

  11. The Role of MicroRNAs in Cardiac Stem Cells

    PubMed Central

    Purvis, Nima; Bahn, Andrew; Katare, Rajesh

    2015-01-01

    Stem cells are considered as the next generation drug treatment in patients with cardiovascular disease who are resistant to conventional treatment. Among several stem cells used in the clinical setting, cardiac stem cells (CSCs) which reside in the myocardium and epicardium of the heart have been shown to be an effective option for the source of stem cells. In normal circumstances, CSCs primarily function as a cell store to replace the physiologically depleted cardiovascular cells, while under the diseased condition they have been shown to experimentally regenerate the diseased myocardium. In spite of their major functional role, molecular mechanisms regulating the CSCs proliferation and differentiation are still unknown. MicroRNAs (miRs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Recent studies have demonstrated the important role of miRs in regulating stem cell proliferation and differentiation, as well as other physiological and pathological processes related to stem cell function. This review summarises the current understanding of the role of miRs in CSCs. A deeper understanding of the mechanisms by which miRs regulate CSCs may lead to advances in the mode of stem cell therapies for the treatment of cardiovascular diseases. PMID:25802528

  12. Cardiac stem cell therapy: Have we put too much hype in which cell type to use?

    PubMed

    Ye, Jianqin; Yeghiazarians, Yerem

    2015-09-01

    Injection of various stem cells has been tested with the hopes of improving cardiac function after a myocardial infarction (MI). However, there is continued controversy as to which cell type is best for repair. Due to technical differences in cell isolation, processing, delivery, and cardiac functional assessment by various investigators, it has been difficult to directly compare the results of different cells. Using same techniques to evaluate the efficacy of different cell types, we have separately delivered bone marrow cells (BMCs), cardiospheres (CSs), CS-derived Sca-1(+)/CD45(-) cells, human embryonic stem cell-derived cardiomyocytes, and BMC extract into infarcted murine myocardium and found that all of these treatments reduce infarct size and improve cardiac function post-MI similarly without one regimen being superior to another. The beneficial effects appear to be via paracrine influences. Different progenitors lead to improved cardiac function post-MI, but it is premature to hype any specific cell type at this time. PMID:26024953

  13. Mesenchymal Stem Cells for Cardiac Regenerative Therapy: Optimization of Cell Differentiation Strategy

    PubMed Central

    Shen, Han; Wang, Ying; Zhang, Zhiwei; Yang, Junjie; Hu, Shijun; Shen, Zhenya

    2015-01-01

    With the high mortality rate, coronary heart disease (CHD) has currently become a major life-threatening disease. The main pathological change of myocardial infarction (MI) is the induction of myocardial necrosis in infarction area which finally causes heart failure. Conventional treatments cannot regenerate the functional cell efficiently. Recent researches suggest that mesenchymal stem cells (MSCs) are able to differentiate into multiple lineages, including cardiomyocyte-like cells in vitro and in vivo, and they have been used for the treatment of MI to repair the injured myocardium and improve cardiac function. In this review, we will focus on the recent progress on MSCs derived cardiomyocytes for cardiac regeneration after MI. PMID:26339251

  14. Myocyte-Depleted Engineered Cardiac Tissues Support Therapeutic Potential of Mesenchymal Stem Cells

    PubMed Central

    Serrao, Gregory W.; Turnbull, Irene C.; Ancukiewicz, Damian; Kim, Do Eun; Kao, Evan; Cashman, Timothy J.; Hadri, Lahouaria; Hajjar, Roger J.

    2012-01-01

    The therapeutic potential of mesenchymal stem cells (MSCs) for restoring cardiac function after cardiomyocyte loss remains controversial. Engineered cardiac tissues (ECTs) offer a simplified three-dimensional in vitro model system to evaluate stem cell therapies. We hypothesized that contractile properties of dysfunctional ECTs would be enhanced by MSC treatment. ECTs were created from neonatal rat cardiomyocytes with and without bone marrow-derived adult rat MSCs in a type-I collagen and Matrigel scaffold using custom elastomer molds with integrated cantilever force sensors. Three experimental groups included the following: (1) baseline condition ECT consisting only of myocytes, (2) 50% myocyte-depleted ECT, modeling a dysfunctional state, and (3) 50% myocyte-depleted ECT plus 10% MSC, modeling dysfunctional myocardium with intervention. Developed stress (DS) and pacing threshold voltage (VT) were measured using 2-Hz field stimulation at 37°C on culture days 5, 10, 15, and 20. By day 5, DS of myocyte-depleted ECTs was significantly lower than baseline, and VT was elevated. In MSC-supplemented ECTs, DS and VT were significantly better than myocyte-depleted values, approaching baseline ECTs. Findings were similar through culture day 15, but lost significance at day 20. Trends in DS were partly explained by changes in the cell number and alignment with time. Thus, supplementing myocyte-depleted ECTs with MSCs transiently improved contractile function and compensated for a 50% loss of cardiomyocytes, mimicking recent animal studies and clinical trials and supporting the potential of MSCs for myocardial therapy. PMID:22500611

  15. Biorealistic cardiac cell culture platforms with integrated monitoring of extracellular action potentials

    PubMed Central

    Trantidou, Tatiana; Terracciano, Cesare M.; Kontziampasis, Dimitrios; Humphrey, Eleanor J.; Prodromakis, Themistoklis

    2015-01-01

    Current platforms for in vitro drug development utilize confluent, unorganized monolayers of heart cells to study the effect on action potential propagation. However, standard cell cultures are of limited use in cardiac research, as they do not preserve important structural and functional properties of the myocardium. Here we present a method to integrate a scaffolding technology with multi-electrode arrays and deliver a compact, off-the-shelf monitoring platform for growing biomimetic cardiac tissue. Our approach produces anisotropic cultures with conduction velocity (CV) profiles that closer resemble native heart tissue; the fastest impulse propagation is along the long axis of the aligned cardiomyocytes (CVL) and the slowest propagation is perpendicular (CVT), in contrast to standard cultures where action potential propagates isotropically (CVL ≈ CVT). The corresponding anisotropy velocity ratios (CVL/CVT = 1.38 – 2.22) are comparable with values for healthy adult rat ventricles (1.98 – 3.63). The main advantages of this approach are that (i) it provides ultimate pattern control, (ii) it is compatible with automated manufacturing steps and (iii) it is utilized through standard cell culturing protocols. Our platform is compatible with existing read-out equipment and comprises a prompt method for more reliable CV studies. PMID:26053434

  16. Myocyte-depleted engineered cardiac tissues support therapeutic potential of mesenchymal stem cells.

    PubMed

    Serrao, Gregory W; Turnbull, Irene C; Ancukiewicz, Damian; Kim, Do Eun; Kao, Evan; Cashman, Timothy J; Hadri, Lahouaria; Hajjar, Roger J; Costa, Kevin D

    2012-07-01

    The therapeutic potential of mesenchymal stem cells (MSCs) for restoring cardiac function after cardiomyocyte loss remains controversial. Engineered cardiac tissues (ECTs) offer a simplified three-dimensional in vitro model system to evaluate stem cell therapies. We hypothesized that contractile properties of dysfunctional ECTs would be enhanced by MSC treatment. ECTs were created from neonatal rat cardiomyocytes with and without bone marrow-derived adult rat MSCs in a type-I collagen and Matrigel scaffold using custom elastomer molds with integrated cantilever force sensors. Three experimental groups included the following: (1) baseline condition ECT consisting only of myocytes, (2) 50% myocyte-depleted ECT, modeling a dysfunctional state, and (3) 50% myocyte-depleted ECT plus 10% MSC, modeling dysfunctional myocardium with intervention. Developed stress (DS) and pacing threshold voltage (VT) were measured using 2-Hz field stimulation at 37°C on culture days 5, 10, 15, and 20. By day 5, DS of myocyte-depleted ECTs was significantly lower than baseline, and VT was elevated. In MSC-supplemented ECTs, DS and VT were significantly better than myocyte-depleted values, approaching baseline ECTs. Findings were similar through culture day 15, but lost significance at day 20. Trends in DS were partly explained by changes in the cell number and alignment with time. Thus, supplementing myocyte-depleted ECTs with MSCs transiently improved contractile function and compensated for a 50% loss of cardiomyocytes, mimicking recent animal studies and clinical trials and supporting the potential of MSCs for myocardial therapy. PMID:22500611

  17. Peruvoside, a Cardiac Glycoside, Induces Primitive Myeloid Leukemia Cell Death.

    PubMed

    Feng, Qian; Leong, Wa Seng; Liu, Liang; Chan, Wai-In

    2016-01-01

    Despite the available chemotherapy and treatment, leukemia remains a difficult disease to cure due to frequent relapses after treatment. Among the heterogeneous leukemic cells, a rare population referred as the leukemic stem cell (LSC), is thought to be responsible for relapses and drug resistance. Cardiac glycosides (CGs) have been used in treating heart failure despite its toxicity. Recently, increasing evidence has demonstrated its new usage as a potential anti-cancer drug. Ouabain, one of the CGs, specifically targeted CD34⁺CD38(-) leukemic stem-like cells, but not the more mature CD34⁺CD38⁺ leukemic cells, making this type of compounds a potential treatment for leukemia. In search of other potential anti-leukemia CGs, we found that Peruvoside, a less studied CG, is more effective than Ouabain and Digitoxin at inducing cell death in primitive myeloid leukemia cells without obvious cytotoxicity on normal blood cells. Similar to Ouabain and Digitoxin, Peruvoside also caused cell cycle arrest at G₂/M stage. It up-regulates CDKN1A expression and activated the cleavage of Caspase 3, 8 and PARP, resulting in apoptosis. Thus, Peruvoside showed potent anti-leukemia effect, which may serve as a new anti-leukemia agent in the future. PMID:27110755

  18. Advancements in Induced Pluripotent Stem Cell Technology for Cardiac Regenerative Medicine

    PubMed Central

    Suh, Carol Y.; Wang, Zelun; Bártulos, Oscar; Qyang, Yibing

    2014-01-01

    Cardiovascular diseases remain the leading causes of morbidity and mortality in the developed world. Cellular based cardiac regenerative therapy serves as a potential approach to treating cardiovascular diseases. Although various cellular types have been tested, induced pluripotent stem cells are regarded as a promising cell source for therapy. In this review, we will highlight some of the advances in generating induced pluripotent stem cells and differentiation to cardiac cells. We will also discuss the progress in modeling cardiovascular diseases using induced pluripotent stem cell derived cardiac cells. As we continue to make progress in induced pluripotent stem cell and cardiac differentiation technology, we will become closer to application of cardiac regenerative medicine. PMID:24651517

  19. Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition.

    PubMed Central

    Di Lisa, F; Blank, P S; Colonna, R; Gambassi, G; Silverman, H S; Stern, M D; Hansford, R G

    1995-01-01

    1. The relation between mitochondrial membrane potential (delta psi m) and cell function was investigated in single adult rat cardiac myocytes during anoxia and reoxygenation. delta psi m was studied by loading myocytes with JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'- tetra-ethylbenzimidazolylcarbocyanine iodide), a fluorescent probe characterized by two emission peaks (539 and 597 nm with excitation at 490 nm) corresponding to monomer and aggregate forms of the dye. 2. De-energizing conditions applied to mitochondria, cell suspensions or single cells decreased the aggregate emission and increased the monomer emission. This latter result cannot be explained by changes of JC-1 concentration in the aqueous mitochondrial matrix phase indicating that hydrophobic interaction of the probe with membranes has to be taken into account to explain JC-1 fluorescence properties in isolated mitochondria or intact cells. 3. A different sensitivity of the two JC-1 forms to delta psi m changes was shown in isolated mitochondria by the effects of ADP and FCCP and the calibration with K+ diffusion potentials. The monomer emission was responsive to values of delta psi m below 140 mV, which hardly modified the aggregate emission. Thus JC-1 represents a unique double sensor which can provide semi-quantitative information in both low and high potential ranges. 4. At the onset of glucose-free anoxia the epifluorescence of individual myocytes studied in the single excitation (490 nm)-double emission (530 and 590 nm) mode showed a gradual decline of the aggregate emission, which reached a plateau while electrically stimulated (0.2 Hz) contraction was still retained. The subsequent failure of contraction was followed by the rise of the emission at 530 nm, corresponding to the monomer form of the dye, concomitantly with the development of rigor contracture. 5. The onset of the rigor was preceded by the increase in intracellular Mg2+ concentration ([Mg2+]i) monitored by mag-indo-1 epifluorescence

  20. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    SciTech Connect

    Weinberger, Florian Mehrkens, Dennis Starbatty, Jutta Nicol, Philipp Eschenhagen, Thomas

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  1. Tailoring Material Properties of Cardiac Matrix Hydrogels to Induce Endothelial Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Jeffords, Megan E.; Wu, Jinglei; Shah, Mickey; Hong, Yi; Zhang, Ge

    2015-01-01

    Cardiac matrix hydrogel has shown great promise as an injectable biomaterial due to the possession of cardiac-specific extracellular matrix composition. A cardiac matrix hydrogel facilitating neovascularization will further improve its therapeutic outcomes in cardiac repair. In this study, we explored the feasibility of tailoring material properties of cardiac matrix hydrogels using a natural compound, genipin, to promote endothelial differentiation of stem cells. Our results demonstrated that the genipin crosslinking could increase the mechanical properties of the cardiac matrix hydrogel to a stiffness range promoting endothelial differentiation of human mesenchymal stem cells (hMSCs). It also decreased the swelling ratio and prolonged degradation without altering gelation time. Human mesenchymal stem cells cultured on the genipin crosslinked cardiac matrix hydrogels showed great viability. After 1-day culture, hMSCs demonstrated down-regulation of early endothelial marker expression and up-regulation of mature endothelial marker expression. Especially for 1 mM genipin crosslinked cardiac matrix hydrogels, hMSCs showed particularly significant expression of mature endothelial cell marker vWF. These attractive results indicate the potential of using genipin crosslinked cardiac matrix hydrogels to promote rapid vascularization for cardiac infarction treatment through minimally invasive therapy. PMID:25946697

  2. Systems Approaches to Preventing Transplanted Cell Death in Cardiac Repair

    PubMed Central

    Robey, Thomas E.; Saiget, Mark K; Reinecke, Hans; Murry, Charles E.

    2008-01-01

    Stem cell transplantation may repair the injured heart, but tissue regeneration is limited by death of transplanted cells. Most cell death occurs in the first few days post-transplantation, likely from a combination of ischemia, anoikis and inflammation. Interventions known to enhance transplanted cell survival include heat shock, over-expressing anti-apoptotic proteins, free radical scavengers, anti-inflammatory therapy and co-delivery of extracellular matrix molecules. Combinatorial use of such interventions markedly enhances graft cell survival, but death still remains a significant problem. We review these challenges to cardiac cell transplantation and present an approach to systematically address them. Most anti-death studies use histology to assess engraftment, which is time- and labor-intensive. To increase throughput, we developed two biochemical approaches to follow graft viability in the mouse heart. The first relies on LacZ enyzmatic activity to track genetically modified cells, and the second quantifies human genomic DNA content using repetitive Alu sequences. Both show linear relationships between input cell number and biochemical signal, but require correction for the time lag between cell death and loss of signal. Once optimized, they permit detection of as few as 1 graft cell in 40,000 host cells. Pro-survival effects measured biochemically at three days predict long-term histological engraftment benefits. These methods permitted identification of carbamylated erythropoietin (CEPO) as a pro-survival factor for human embryonic stem cell-derived cardiomyocyte grafts. CEPO’s effects were additive to heat shock, implying independent survival pathways. This system should permit combinatorial approaches to enhance graft viability in a fraction of the time required for conventional histology. PMID:18466917

  3. Clinical grade adult stem cell banking

    PubMed Central

    Thirumala, Sreedhar; Goebel, W Scott

    2009-01-01

    There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. PMID:20046678

  4. Dynamic Measurement of Hemodynamic Parameters and Cardiac Preload in Adults with Dengue: A Prospective Observational Study

    PubMed Central

    Thanachartwet, Vipa; Wattanathum, Anan; Sahassananda, Duangjai; Wacharasint, Petch; Chamnanchanunt, Supat; Khine Kyaw, Ei; Jittmittraphap, Akanitt; Naksomphun, Mali; Surabotsophon, Manoon; Desakorn, Varunee

    2016-01-01

    Few previous studies have monitored hemodynamic parameters to determine the physiological process of dengue or examined inferior vena cava (IVC) parameters to assess cardiac preload during the clinical phase of dengue. From January 2013 to July 2015, we prospectively studied 162 hospitalized adults with confirmed dengue viral infection using non-invasive cardiac output monitoring and bedside ultrasonography to determine changes in hemodynamic and IVC parameters and identify the types of circulatory shock that occur in patients with dengue. Of 162 patients with dengue, 17 (10.5%) experienced dengue shock and 145 (89.5%) did not. In patients with shock, the mean arterial pressure was significantly lower on day 6 after fever onset (P = 0.045) and the pulse pressure was significantly lower between days 4 and 7 (P<0.05). The stroke volume index and cardiac index were significantly decreased between days 4 and 15 and between days 5 and 8 after fever onset (P<0.05), respectively. A significant proportion of patients with dengue shock had an IVC diameter <1.5 cm and IVC collapsibility index >50% between days 4 and 5 (P<0.05). Hypovolemic shock was observed in 9 (52.9%) patients and cardiogenic shock in 8 (47.1%), with a median (interquartile range) time to shock onset of 6.0 (5.0–6.5) days after fever onset, which was the median day of defervescence. Intravascular hypovolemia occurred before defervescence, whereas myocardial dysfunction occurred on the day of defervescence until 2 weeks after fever onset. Hypovolemic shock and cardiogenic shock each occurred in approximately half of the patients with dengue shock. Therefore, dynamic measures to estimate changes in hemodynamic parameters and preload should be monitored to ensure adequate fluid therapy among patients with dengue, particularly patients with dengue shock. PMID:27196051

  5. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny.

    PubMed

    Haddad, Rami; Kasneci, Amanda; Mepham, Kathryn; Sebag, Igal A; Chalifour, Lorraine E

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5-14.5. At 3months, male progeny were left sedentary or were swim trained for 4weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. PMID:23142472

  6. Comparative Analysis of Telomerase Activity in CD117+CD34+ Cardiac Telocytes with Bone Mesenchymal Stem Cells, Cardiac Fibroblasts and Cardiomyocytes

    PubMed Central

    Li, Yuan-Yuan; Lu, Shan-Shan; Xu, Ting; Zhang, Hong-Qi; Li, Hua

    2015-01-01

    Background: This study characterized the cardiac telocyte (TC) population both in vivo and in vitro, and investigated its telomerase activity related to mitosis. Methods: Using transmission electron microscopy and a phase contrast microscope, the typical morphological features of cardiac TCs were observed; by targeting the cell surface proteins CD117 and CD34, CD117+CD34+ cardiac TCs were sorted via flow cytometry and validated by immunofluorescence based on the primary cell culture. Then the optimized basal nutrient medium for selected population was examined with the cell counting kit 8. Under this conditioned medium, the process of cell division was captured, and the telomerase activity of CD117+CD34+ cardiac TCs was detected in comparison with bone mesenchymal stem cells (BMSCs), cardiac fibroblasts (CFBs), cardiomyocytes (CMs). Results: Cardiac TCs projected characteristic telopodes with thin segments (podomers) in alternation with dilation (podoms). In addition, 64% of the primary cultured cardiac TCs were composed of CD117+CD34+ cardiac TCs; which was verified by immunofluorescence. In a live cell imaging system, CD117+CD34+ cardiac TCs were observed to enter into cell division in a short time, followed by an significant invagination forming across the middle of the cell body. Using a real-time quantitative telomeric-repeat amplification assay, the telomerase concentration in CD117+CD34+ cardiac TCs was obviously lower than in BMSCs and CFBs, and significantly higher than in CMs. Conclusions: Cardiac TCs represent a unique cell population and CD117+CD34+ cardiac TCs have relative low telomerase activity that differs from BMSCs, CFBs and CMs and thus they might play an important role in maintaining cardiac homeostasis. PMID:26168836

  7. Induced Pluripotent Stem Cells and Their Use in Cardiac and Neural Regenerative Medicine

    PubMed Central

    Skalova, Stepanka; Svadlakova, Tereza; Qureshi, Wasay Mohiuddin Shaikh; Dev, Kapil; Mokry, Jaroslav

    2015-01-01

    Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson’s, Alzheimer’s and Huntington’s disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges. PMID:25689424

  8. Plasma Fatty Acid Binding Protein 4 and Risk of Sudden Cardiac Death in Older Adults

    PubMed Central

    Djoussé, Luc; Maziarz, Marlena; Biggs, Mary L.; Ix, Joachim H.; Zieman, Susan J.; Kizer, Jorge R.; Lemaitre, Rozenn N.; Mozaffarian, Dariush; Tracy, Russell P.; Mukamal, Kenneth J.; Siscovick, David S.; Sotoodehnia, Nona

    2013-01-01

    Although fatty acid binding protein 4 (FABP4) may increase risk of diabetes and exert negative cardiac inotropy, it is unknown whether plasma concentrations of FABP4 are associated with incidence of sudden cardiac death (SCD). We prospectively analyzed data on 4,560 participants of the Cardiovascular Health Study. FABP4 was measured at baseline using ELISA, and SCD events were adjudicated through review of medical records. We used Cox proportional hazards to estimate effect measures. During a median followup of 11.8 years, 146 SCD cases occurred. In a multivariable model adjusting for demographic, lifestyle, and metabolic factors, relative risk of SCD associated with each higher standard deviation (SD) of plasma FABP4 was 1.15 (95% CI: 0.95–1.38), P = 0.15. In a secondary analysis stratified by prevalent diabetes status, FABP4 was associated with higher risk of SCD in nondiabetic participants, (RR per SD higher FABP4: 1.33 (95% CI: 1.07–1.65), P = 0.009) but not in diabetic participants (RR per SD higher FABP4: 0.88 (95% CI: 0.62–1.27), P = 0.50), P for diabetes-FABP4 interaction 0.049. In summary, a single measure of plasma FABP4 obtained later in life was not associated with the risk of SCD in older adults overall. Confirmation of our post-hoc results in nondiabetic people in other studies is warranted. PMID:24455402

  9. CALCIUM-DRIVEN TRANSCRIPTION OF CARDIAC SPECIFYING GENE PROGRAM IN LIVER STEM CELLS

    EPA Science Inventory

    We have previously shown that a cloned liver stem cell line (WB F344) acquires a cardiac phenotype when seeded in a cardiac microenvironment in vivo and ex vivo. Here we investigated the mechanisms of this transdifferentiation in early (<72 hr) WB F344 cell, rat neonatal ventricu...

  10. EFFECTS OF PARTICULATE MATTER (PM) ON CARDIAC CELLS

    EPA Science Inventory

    Although epidemiology studies, clinical studies, and animal studies indicate that particulate matter (PM) can affect cardiac function, there is no real understanding of the underlying cellular, biochemical, and molecular processes response for PM-induced cardiac dysfunction. It i...

  11. A Cyclin D2-Rb Pathway Regulates Cardiac Myocyte Size and RNA Polymerase III After Biomechanical Stress in Adult Myocardium

    PubMed Central

    Angelis, Ekaterini; Garcia, Alejandro; Chan, Shing S.; Schenke-Layland, Katja; Ren, Shuxen; Goodfellow, Sarah J.; Jordan, Maria C.; Roos, Kenneth P.; White, Robert J.; MacLellan, W. Robb

    2008-01-01

    Normally, cell cycle progression is tightly coupled to the accumulation of cell mass; however, the mechanisms whereby proliferation and cell growth are linked are poorly understood. We have identified Cyclin D2 (CycD2), a G1 cyclin implicated in mediating S phase entry, as a potential regulator of hypertrophic growth in adult post mitotic myocardium. To examine the role of CycD2 and its downstream targets, we subjected CycD2-null mice to mechanical stress. Hypertrophic growth in response to transverse aortic constriction (TAC) was attenuated in CycD2 null compared to wildtype mice. Blocking the increase in CycD2 in response to hypertrophic agonists prevented phosphorylation of CycD2-target Rb in vitro and mice deficient for Rb had potentiated hypertrophic growth. Hypertrophic growth requires new protein synthesis and transcription of tRNA genes by RNA pol III, which increases with hypertrophic signals. This load-induced increase in RNA pol III activity is augmented in Rb-deficient hearts. Rb binds and represses Brf-1 and TBP, subunits of RNA pol III-specific transcription factor B, in adult myocardium under basal conditions. However this association is disrupted in response to TAC. RNA pol III activity is unchanged in CycD2-/- myocardium after TAC, and there is no dissociation of TBP from Rb. These investigations identify an essential role for the CycD2-Rb pathway as a governor of cardiac myocyte enlargement in response to biomechanical stress and, more fundamentally, as a regulator of the load-induced activation of RNA pol III. PMID:18420946

  12. Phthalate Exposure Changes the Metabolic Profile of Cardiac Muscle Cells

    PubMed Central

    Swift, Luther M.; Kay, Matthew W.; Lee, Norman H.; Sarvazyan, Narine

    2012-01-01

    Background: Phthalates are common plasticizers present in medical-grade plastics and other everyday products. They can also act as endocrine-disrupting chemicals and have been linked to the rise in metabolic disorders. However, the effect of phthalates on cardiac metabolism remains largely unknown. Objectives: We examined the effect of di(2-ethylhexyl)phthalate (DEHP) on the metabolic profile of cardiomyocytes because alterations in metabolic processes can lead to cell dysfunction. Methods: Neonatal rat cardiomyocytes were treated with DEHP at a concentration and duration comparable to clinical exposure (50–100 μg/mL, 72 hr). We assessed the effect of DEHP on gene expression using microarray analysis. Physiological responses were examined via fatty acid utilization, oxygen consumption, mitochondrial mass, and Western blot analysis. Results: Exposure to DEHP led to up-regulation of genes associated with fatty acid transport, esterification, mitochondrial import, and β-oxidation. The functional outcome was an increase in myocyte fatty acid–substrate utilization, oxygen consumption, mitochondrial mass, PPARα (peroxisome proliferator-activated receptor α) protein expression, and extracellular acidosis. Treatment with a PPARα agonist (Wy-14643) only partially mimicked the effects observed in DEHP-treated cells. Conclusions: Data suggest that DEHP exposure results in metabolic remodeling of cardiomyocytes, whereby cardiac cells increase their dependence on fatty acids for energy production. This fuel switch may be regulated at both the gene expression and posttranscription levels. Our findings have important clinical implications because chronic dependence on fatty acids is associated with an accumulation in lipid intermediates, lactate, protons, and reactive oxygen species. This dependence can sensitize the heart to ischemic injury and ventricular dysfunction. PMID:22672789

  13. Cellular cardiac electrophysiology modeling with Chaste and CellML

    PubMed Central

    Cooper, Jonathan; Spiteri, Raymond J.; Mirams, Gary R.

    2014-01-01

    Chaste is an open-source C++ library for computational biology that has well-developed cardiac electrophysiology tissue simulation support. In this paper, we introduce the features available for performing cardiac electrophysiology action potential simulations using a wide range of models from the Physiome repository. The mathematics of the models are described in CellML, with units for all quantities. The primary idea is that the model is defined in one place (the CellML file), and all model code is auto-generated at compile or run time; it never has to be manually edited. We use ontological annotation to identify model variables describing certain biological quantities (membrane voltage, capacitance, etc.) to allow us to import any relevant CellML models into the Chaste framework in consistent units and to interact with them via consistent interfaces. This approach provides a great deal of flexibility for analysing different models of the same system. Chaste provides a wide choice of numerical methods for solving the ordinary differential equations that describe the models. Fixed-timestep explicit and implicit solvers are provided, as discussed in previous work. Here we introduce the Rush–Larsen and Generalized Rush–Larsen integration techniques, made available via symbolic manipulation of the model equations, which are automatically rearranged into the forms required by these approaches. We have also integrated the CVODE solvers, a ‘gold standard’ for stiff systems, and we have developed support for symbolic computation of the Jacobian matrix, yielding further increases in the performance and accuracy of CVODE. We discuss some of the technical details of this work and compare the performance of the available numerical methods. Finally, we discuss how this is generalized in our functional curation framework, which uses a domain-specific language for defining complex experiments as a basis for comparison of model behavior. PMID:25610400

  14. Cellular cardiac electrophysiology modeling with Chaste and CellML.

    PubMed

    Cooper, Jonathan; Spiteri, Raymond J; Mirams, Gary R

    2014-01-01

    Chaste is an open-source C++ library for computational biology that has well-developed cardiac electrophysiology tissue simulation support. In this paper, we introduce the features available for performing cardiac electrophysiology action potential simulations using a wide range of models from the Physiome repository. The mathematics of the models are described in CellML, with units for all quantities. The primary idea is that the model is defined in one place (the CellML file), and all model code is auto-generated at compile or run time; it never has to be manually edited. We use ontological annotation to identify model variables describing certain biological quantities (membrane voltage, capacitance, etc.) to allow us to import any relevant CellML models into the Chaste framework in consistent units and to interact with them via consistent interfaces. This approach provides a great deal of flexibility for analysing different models of the same system. Chaste provides a wide choice of numerical methods for solving the ordinary differential equations that describe the models. Fixed-timestep explicit and implicit solvers are provided, as discussed in previous work. Here we introduce the Rush-Larsen and Generalized Rush-Larsen integration techniques, made available via symbolic manipulation of the model equations, which are automatically rearranged into the forms required by these approaches. We have also integrated the CVODE solvers, a 'gold standard' for stiff systems, and we have developed support for symbolic computation of the Jacobian matrix, yielding further increases in the performance and accuracy of CVODE. We discuss some of the technical details of this work and compare the performance of the available numerical methods. Finally, we discuss how this is generalized in our functional curation framework, which uses a domain-specific language for defining complex experiments as a basis for comparison of model behavior. PMID:25610400

  15. Endothelial deletion of ADAM17 in mice results in defective remodeling of the semilunar valves and cardiac dysfunction in adults

    PubMed Central

    Wilson, Carole L.; Gough, Peter J.; Chang, Cindy A.; Chan, Christina K.; Frey, Jeremy M.; Liu, Yonggang; Braun, Kathleen R.; Chin, Michael T.; Wight, Thomas N.; Raines, Elaine W.

    2013-01-01

    Global inactivation of the metalloproteinase ADAM17 during mouse development results in perinatal lethality and abnormalities of the heart, including late embryonic cardiomegaly and thickened semilunar and atrioventricular valves. These defects have been attributed in part to a lack of ADAM17-mediated processing of HB-EGF, as absence of soluble HB-EGF results in similar phenotypes. Because valvular mesenchymal cells are largely derived from cardiac endothelial cells, we generated mice with a floxed Adam17 allele and crossed these animals with Tie2-Cre transgenics to focus on the role of endothelial ADAM17 in valvulogenesis. We find that although hearts from late-stage embryos with ablation of endothelial ADAM17 appear normal, an increase in valve size and cell number is evident, but only in the semilunar cusps. Unlike Hbegf−/− valves, ADAM17-null semilunar valves do not differ from controls in acute cell proliferation at embryonic day 14.5 (E14.5), suggesting compensatory processing of HB-EGF. However, levels of the proteoglycan versican are significantly reduced in mutant hearts early in valve remodeling (E12.5). After birth, aortic valve cusps from mutants are not only hyperplastic but also show expansion of the glycosaminoglycan-rich component, with the majority of adults exhibiting aberrant compartmentalization of versican and increased deposition of collagen. The inability of mutant outflow valve precursors to transition into fully mature cusps is associated with decreased postnatal viability, progressive cardiomegaly, and systolic dysfunction. Together, our data indicate that ADAM17 is required in valvular endothelial cells for regulating cell content as well as extracellular matrix composition and organization in semilunar valve remodeling and homeostasis. PMID:23354118

  16. Antiarrhythmic effect of growth factor-supplemented cardiac progenitor cells in chronic infarcted heart.

    PubMed

    Savi, Monia; Bocchi, Leonardo; Rossi, Stefano; Frati, Caterina; Graiani, Gallia; Lagrasta, Costanza; Miragoli, Michele; Di Pasquale, Elisa; Stirparo, Giuliano G; Mastrototaro, Giuseppina; Urbanek, Konrad; De Angelis, Antonella; Macchi, Emilio; Stilli, Donatella; Quaini, Federico; Musso, Ezio

    2016-06-01

    c-Kit(pos) cardiac progenitor cells (CPCs) represent a successful approach in healing the infarcted heart and rescuing its mechanical function, but electrophysiological consequences are uncertain. CPC mobilization promoted by hepatocyte growth factor (HGF) and IGF-1 improved electrogenesis in myocardial infarction (MI). We hypothesized that locally delivered CPCs supplemented with HGF + IGF-1 (GFs) can concur in ameliorating electrical stability of the regenerated heart. Adult male Wistar rats (139 rats) with 4-wk-old MI or sham conditions were randomized to receive intramyocardial injection of GFs, CPCs, CPCs + GFs, or vehicle (V). Enhanced green fluorescent protein-tagged CPCs were used for cell tracking. Vulnerability to stress-induced arrhythmia was assessed by telemetry-ECG. Basic cardiac electrophysiological properties were examined by epicardial multiple-lead recording. Hemodynamic function was measured invasively. Hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. Compared with V and at variance with individual CPCs, CPCs + GFs approximately halved arrhythmias in all animals, restoring cardiac anisotropy toward sham values. GFs alone reduced arrhythmias by less than CPCs + GFs, prolonging ventricular refractoriness without affecting conduction velocity. Concomitantly, CPCs + GFs reactivated the expression levels of Connexin-43 and Connexin-40 as well as channel proteins of key depolarizing and repolarizing ion currents differently than sole GFs. Mechanical function and anatomical remodeling were equally improved by all regenerative treatments, thus exhibiting a divergent behavior relative to electrical aspects. Conclusively, we provided evidence of distinctive antiarrhythmic action of locally injected GF-supplemented CPCs, likely attributable to retrieval of Connexin-43, Connexin-40, and Cav1.2 expression, favoring intercellular coupling and spread of excitation in mended heart. PMID:26993221

  17. Generation of human secondary cardiospheres as a potent cell processing strategy for cell-based cardiac repair.

    PubMed

    Cho, Hyun-Jai; Lee, Ho-Jae; Chung, Yeon-Ju; Kim, Ju-Young; Cho, Hyun-Ju; Yang, Han-Mo; Kwon, Yoo-Wook; Lee, Hae-Young; Oh, Byung-Hee; Park, Young-Bae; Kim, Hyo-Soo

    2013-01-01

    Cell therapy is a promising approach for repairing damaged heart. However, there are large rooms to be improved in therapeutic efficacy. We cultured a small quantity (5-10 mg) of heart biopsy tissues from 16 patients who received heart transplantation. We produced primary and secondary cardiospheres (CSs) using repeated three-dimensional culture strategy and characterized the cells. Approximately 5000 secondary CSs were acquired after 45 days. Genetic analysis confirmed that the progenitor cells in the secondary CSs originated from the innate heart, but not from extra-cardiac organs. The expressions of Oct4 and Nanog were significantly induced in secondary CSs compared with adherent cells derived from primary CSs. Those expressions in secondary CSs were higher in a cytokine-deprived medium than in a cytokine-supplemented one, suggesting that formation of the three-dimensional structure was important to enhance stemness whereas supplementation with various cytokines was not essential. Signal blocking experiments showed that the ERK and VEGF pathways are indispensable for sphere formation. To optimize cell processing, we compared four different methods of generating spheres. Method based on the hanging-drop or AggreWell™ was superior to that based on the poly-d-lysine-coated dish or Petri dish with respect to homogeneity of the product, cellular potency and overall simplicity of the process. When transplanted into the ischemic myocardium of immunocompromised mice, human secondary CSs differentiated into cardiomyocytes and endothelial cells. These results demonstrate that generation of secondary CSs from a small quantity of adult human cardiac tissue is a feasible and effective cell processing strategy to improve the therapeutic efficacy of cell therapy. PMID:23103158

  18. Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells.

    PubMed

    Salabei, Joshua K; Lorkiewicz, Pawel K; Mehra, Parul; Gibb, Andrew A; Haberzettl, Petra; Hong, Kyung U; Wei, Xiaoli; Zhang, Xiang; Li, Qianhong; Wysoczynski, Marcin; Bolli, Roberto; Bhatnagar, Aruni; Hill, Bradford G

    2016-06-24

    Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair. PMID:27151219

  19. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages

    SciTech Connect

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J.; Fernandez, Anne

    2008-04-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal {beta} III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.

  20. Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons?

    PubMed

    Liao, Song-Yan; Tse, Hung-Fat

    2013-01-01

    Heart failure after myocardial infarction is the leading cause of mortality and morbidity worldwide. Existing medical and interventional therapies can only reduce the loss of cardiomyocytes during myocardial infarction but are unable to replenish the permanent loss of cardiomyocytes after the insult, which contributes to progressive pathological left ventricular remodeling and progressive heart failure. As a result, cell-based therapies using multipotent (adult) stem cells and pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells) have been explored as potential therapeutic approaches to restore cardiac function in heart failure. Nevertheless, the optimal cell type with the best therapeutic efficacy and safety for heart regeneration is still unknown. In this review, the potential pros and cons of different types of multipotent (adult) stem cells and pluripotent stem cells that have been investigated in preclinical and clinical studies are reviewed, and the future perspective of stem cell-based therapy for heart regeneration is discussed. PMID:24476362

  1. Podocalyxin-like protein 1 is a relevant marker for human c-kit(pos) cardiac stem cells.

    PubMed

    Moscoso, Isabel; Tejados, Naiara; Barreiro, Olga; Sepúlveda, Pilar; Izarra, Alberto; Calvo, Enrique; Dorronsoro, Akaitz; Salcedo, Juan Manuel; Sádaba, Rafael; Díez-Juan, Antonio; Trigueros, César; Bernad, Antonio

    2016-07-01

    Cardiac progenitor cells (CPCs) from adult myocardium offer an alternative cell therapy approach for ischaemic heart disease. Improved clinical performance of CPCs in clinical trials requires a comprehensive definition of their biology and specific interactions with the environment. In this work we characterize specific human CPC surface markers and study some of their related functions. c-kit(pos) human CPCs (hCPCs) were characterized for cell surface marker expression, pluripotency, early and late cardiac differentiation markers and therapeutic activity in a rat model of acute myocardial infarction. The results indicate that hCPCs are a mesenchymal stem cell (MSC)-like population, with a similar immunoregulatory capacity. A partial hCPC membrane proteome was analysed by liquid chromatography-mass spectrometry/mass spectrometry and 36 proteins were identified. Several, including CD26, myoferlin and podocalyxin-like protein 1 (PODXL), have been previously described in other stem-cell systems. Suppression and overexpression analysis demonstrated that PODXL regulates hCPC activation, migration and differentiation; it also modulates their local immunoregulatory capacity. Therefore, hCPCs are a resident cardiac population that shares many features with hMSCs, including their capacity for local immunoregulation. Expression of PODXL appears to favour the immature state of hCPCs, while its downregulation facilitates their differentiation. Copyright © 2016 John Wiley & Sons, Ltd. PMID:23897803

  2. HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells.

    PubMed

    Rossini, Alessandra; Zacheo, Antonella; Mocini, David; Totta, Pierangela; Facchiano, Antonio; Castoldi, Raffaella; Sordini, Paolo; Pompilio, Giulio; Abeni, Damiano; Capogrossi, Maurizio C; Germani, Antonia

    2008-04-01

    High Mobility Box 1 Protein (HMGB1) is a cytokine released into the extracellular space by necrotic cells and activated macrophages in response to injury. We recently demonstrated that HMGB1 administration into the mouse heart during acute myocardial infarction induces cardiac tissue regeneration by activating resident cardiac c-kit+ cells (CSCs) and significantly enhances left ventricular function. In the present study it was analyzed the hypothesis that human cardiac fibroblasts (cFbs) exposed to HMGB1 may exert a paracrine effect on mouse and human CSCs. Human cFbs expressed the HMGB1 receptor RAGE. Luminex technology and ELISA assays revealed that HMGB1 significantly enhanced VEGF, PlGF, Mip-1alpha, IFN-gamma, GM-CSF, Il-10, Il-1beta, Il-4, Il-1ra, Il-9 and TNF-alpha in cFbs cell culture medium. HMGB1-stimulated cFbs conditioned media induced CSC migration and proliferation. These effects were significantly higher to those obtained when HMGB1 was added directly to the culture medium. In conclusion, we provide evidence that HMGB1 may act in a paracrine manner stimulating growth factor, cytokine and chemokine release by cFbs which, in turn, modulate CSC function. Via this mechanism HMGB1 may contribute to cardiac tissue regeneration. PMID:18328501

  3. Hypoxia in early pregnancy induces cardiac dysfunction in adult offspring of Rattus norvegicus, a non-hypoxia-adapted species.

    PubMed

    Hauton, David

    2012-11-01

    Environmental stresses such as hypoxia can alter the development of the fetus that are manifested later in life, but the impact of early maternal hypoxia (MH) on cardiac performance, coronary flow and catecholamine responsiveness in adult offspring is less clear. The effects of exposure to chronic hypoxia (FIO(2)=0.12) in early intrauterine development (days E1-10) on cardiac performance of the adult offspring were estimated using the Langendorff-perfused rat heart. Cardiac dysfunction is presented as increased end-diastolic volume, with decreased ventricular stiffness in both male and female adult offspring (P<0.01 for both). While developed pressures were preserved in female MH rats, males demonstrated a decrease in systolic function, estimated as peak developed pressure (P<0.01). Challenge with dobutamine (300 nM), an adrenergic positive inotrope, increased cardiac work for control rats (P<0.01 for male and female rats) but not in MH-male rats. Coronary flow was reduced (P<0.01) and SERCA2 protein expression increased (2-fold, P<0.05) in female offspring, while eNOS protein levels were increased (2.5-fold, P<0.05) in females. This suggests gender-specific differences in compensatory responses to early MH, with female rats increasing calcium turnover to improve contractility and increasing coronary flow through increased expression of eNOS protein, partially restoring coronary perfusion while male rats show little compensation. PMID:22892476

  4. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    SciTech Connect

    Haddad, Rami; Kasneci, Amanda; Mepham, Kathryn; Sebag, Igal A.; and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  5. Are neonatal stem cells as effective as adult stem cells in providing ischemic protection?

    PubMed Central

    Markel, Troy A.; Crisostomo, Paul R.; Manukyan, Maiuxi C.; Al-Azzawi, Dalia; Herring, Christine M.; Lahm, Tim; Novotny, Nathan M.; Meldrum, Daniel R.

    2009-01-01

    Background Bone marrow stem cells (BMSCs) may be a novel treatment modality for organ ischemia, possibly through beneficial paracrine mechanisms. However, stem cells from older hosts exhibit decreased function during stress. We therefore hypothesized that: 1) BMSCs derived from neonatal hosts would provide protection to ischemic myocardium; and 2) neonatal stem cells would enhance post-ischemic myocardial recovery above that seen with adult stem cell therapy. Materials and Methods Female adult Sprague-Dawley rat hearts were subjected to an ischemia/reperfusion protocol via Langendorff isolated heart preparation (15 minutes equilibration, 25 minutes ischemia, and 60 minutes reperfusion). BMSCs were harvested from adult and neonatal mice and cultured through several passages under normal conditions (37 C, 5% CO2/air). Immediately prior to ischemia, one million adult or neonatal BMSCs were infused into the coronary circulation. Cardiac functional parameters were continuously recorded. Results Pretreatment with adult BMSCs significantly increased post-ischemic myocardial recovery as noted by improved left ventricular developed pressure, end diastolic pressure, contractility, and rate of relaxation. Neonatal stem cells, however, did not cause any noticeable improvement in myocardial functional parameters following ischemia. Conclusion Neonatal and adult BMSCs are distinctly different in the degree of beneficial tissue protection that they can provide. The data herein suggests that a critical age exists as to when stem cells become fully activated to provide their beneficial protective properties. Defining the genes that initiate these protective properties may allow for genetic amplification of beneficial signals, and the generation of “super stem cells” that provide maximum protection to ischemic tissues. PMID:18805555

  6. Adult stem-like cells in kidney.

    PubMed

    Hishikawa, Keiichi; Takase, Osamu; Yoshikawa, Masahiro; Tsujimura, Taro; Nangaku, Masaomi; Takato, Tsuyoshi

    2015-03-26

    Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitor cell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration. PMID:25815133

  7. Gene Transfer into Cardiac Myocytes

    PubMed Central

    Lang, Sarah E.; Westfall, Margaret V.

    2016-01-01

    Traditional methods for DNA transfection are often inefficient and toxic for terminally differentiated cells, such as cardiac myocytes. Vector-based gene transfer is an efficient approach for introducing exogenous cDNA into these types of primary cell cultures. In this chapter, separate protocols for adult rat cardiac myocyte isolation and gene transfer with recombinant adenovirus are provided and are routinely utilized for studying the effects of sarcomeric proteins on myofilament function. PMID:25836585

  8. Making it stick: chasing the optimal stem cells for cardiac regeneration

    PubMed Central

    Quijada, Pearl; Sussman, Mark A

    2014-01-01

    Despite the increasing use of stem cells for regenerative-based cardiac therapy, the optimal stem cell population(s) remains in a cloud of uncertainty. In the past decade, the field has witnessed a surge of researchers discovering stem cell populations reported to directly and/or indirectly contribute to cardiac regeneration through processes of cardiomyogenic commitment and/or release of cardioprotective paracrine factors. This review centers upon defining basic biological characteristics of stem cells used for sustaining cardiac integrity during disease and maintenance of communication between the cardiac environment and stem cells. Given the limited successes achieved so far in regenerative therapy, the future requires development of unprecedented concepts involving combinatorial approaches to create and deliver the optimal stem cell(s) that will enhance myocardial healing. PMID:25340282

  9. Sleep Disorders in Adult Sickle Cell Patients

    PubMed Central

    Sharma, Sunil; Efird, Jimmy T.; Knupp, Charles; Kadali, Renuka; Liles, Darla; Shiue, Kristin; Boettger, Peter; Quan, Stuart F.

    2015-01-01

    Study Objectives: While sleep apnea has been studied in children with sickle cell disease (SCD), little is known about sleep disorders in adult sickle cell patients. The objective of this study was to evaluate sleep disordered breathing and its polysomnographic characteristics in adult patients with sickle cell disease. Methods: The analysis cohort included 32 consecutive adult SCD patients who underwent a comprehensive sleep evaluation and overnight polysomnography in an accredited sleep center after reporting symptoms suggesting disordered sleep or an Epworth Sleepiness Scale score ≥ 10. Epworth score, sleep parameters, comorbid conditions, and narcotic use were reviewed and compared in patients with and without sleep disordered breathing. SCD complication rates in the two groups also were compared. Results: In adult SCD patients who underwent overnight polysomnography, we report a high prevalence (44%) of sleep disordered breathing. Disease severity was mild to moderate (mean apnea-hypopnea index = 17/h (95% CI: 10–24/h). Concomitant sleep disorders, including insomnia complaints (57%) and delayed sleep-phase syndrome (57%), also were common in this population. In this limited cohort, we did not find increased SCD complications associated with sleep disordered breathing in adult patients with sickle cell disease. Conclusions: A high burden of sleep disordered breathing and other sleep-related complaints were identified in the adult sickle cell population. Our results provide important information on this unique population. Citation: Sharma S, Efird JT, Knupp C, Kadali R, Liles D, Shiue K, Boettger P, Quan SF. Sleep disorders in adult sickle cell patients. J Clin Sleep Med 2015;11(3):219–223. PMID:25515282

  10. Sudden cardiac death in adults with congenitally corrected transposition of the great arteries

    PubMed Central

    McCombe, A; Touma, F; Jackson, D; Canniffe, C; Choudhary, P; Pressley, L; Tanous, D; Robinson, Peter J; Celermajer, D

    2016-01-01

    Background Congenitally corrected transposition of the great arteries (ccTGA) is a rare congenital heart disease. There have been only few reports of sudden cardiac death (SCD) in patients with ccTGA and reasonable ventricular function. Methods A retrospective review of the medical records of all patients attending our adult congenital heart centre, with known ccTGA. Results From a database of over 3500 adult patients with congenital heart disease, we identified 39 (∼1%) with ccTGA and ‘two-ventricle’ circulations. 65% were male. The mean age at diagnosis was 12.4±11.4 years and the mean age at last time of review was 34.3±11.3 years. 24 patients (56%) had a history of surgical intervention. 8 (19%) had had pacemaker implantation and 2 had had a defibrillator implanted for non-sustained ventricular tachycardia (NSVT). In 544 years of patient follow-up, there had been five cases of SCD in our population; 1 death per 109 patient-years. Two of these patients had had previously documented supraventricular or NSVT. However, they were all classified as New York Heart Association (NYHA) class I or II, and systemic (right) ventricular function had been recorded as normal, mildly or mildly–moderately impaired, at most recent follow-up. Conclusions Our experience suggests the need for improved risk stratification and/or surveillance for malignant arrhythmia in adults with ccTGA, even in those with reasonable functional class on ventricular function. PMID:27493760

  11. Hospital Resource Utilization for Common Noncardiac Diagnoses in Adult Survivors of Single Cardiac Ventricle.

    PubMed

    Seckeler, Michael D; Moe, Tabitha G; Thomas, Ian D; Meziab, Omar; Andrews, Jennifer; Heller, Elissa; Klewer, Scott E

    2015-12-01

    Single ventricle congenital heart disease (SV CHD) has transformed from a nearly universally fatal condition to a chronic illness. As the number of adults living with SV CHD continues to increase, there needs to be an understanding of health care resource utilization (HCRU), particularly for noncardiac conditions, for this patient population. We performed a retrospective database review of the University HealthSystem Consortium Clinical Database/Resource Manager for adult patients with SV CHD hospitalized for noncardiac conditions from January 2011 to November 2014. Patients with SV CHD were identified using International Classification of Disease (ICD)-9 codes associated with SV CHD (hypoplastic left heart, tricuspid atresia, and SV) and stratified into 2 groups by age (18 to 29 years and 30 to 40 years). Direct cost, length of stay (LOS), intensive care unit (ICU) admission rate and mortality data were compared with age-matched patients without CHD. There were 2,083,651 non-CHD and 590 SV CHD admissions in Group 1 and 2,131,046 non-CHD and 297 SV CHD admissions in Group 2. There was no difference in LOS in Group 1, but there were higher costs for several diagnoses. LOS and costs were higher for several diagnoses in Group 2. ICU admission rate and in-hospital mortality were higher for several diagnoses for patients with SV CHD in both groups. In conclusion, adults with SV CHD admitted for noncardiac diagnoses have higher HCRU (longer LOS and higher ICU admission rates) compared with similarly aged patients without CHD. These findings stress the importance of good primary care in this population with complex, chronic cardiac disease to prevent hospitalizations and higher HCRU. PMID:26455384

  12. Adult Stem Cell Responses to Nanostimuli

    PubMed Central

    Tsimbouri, Penelope M.

    2015-01-01

    Adult or mesenchymal stem cells (MSCs) have been found in different tissues in the body, residing in stem cell microenvironments called “stem cell niches”. They play different roles but their main activity is to maintain tissue homeostasis and repair throughout the lifetime of an organism. Their ability to differentiate into different cell types makes them an ideal tool to study tissue development and to use them in cell-based therapies. This differentiation process is subject to both internal and external forces at the nanoscale level and this response of stem cells to nanostimuli is the focus of this review. PMID:26193326

  13. Regeneration of infarcted myocardium with resveratrol-modified cardiac stem cells

    PubMed Central

    Gorbunov, Nikolai; Petrovski, Goran; Gurusamy, Narasimman; Ray, Diptarka; Kim, Do Han; Das, Dipak K

    2012-01-01

    Abstract The major problem in stem cell therapy includes viability and engraftment efficacy of stem cells after transplantation. Indeed, the vast majority of host-transfused cells do not survive beyond 24–72 hrs. To increase the survival and engraftment of implanted cardiac stem cells in the host, we developed a technique of treating these cells with resveratrol, and tested it in a rat model of left anterior descending (LAD) occlusion. Multi-potent clonogenic cardiac stem cells isolated from rat heart and stably transfected with EGFP were pre-treated with 2.5 μM resveratrol for 60 min. Rats were anaesthetized, hearts opened and the LAD occluded to induce heart attack. One week later, the cardiac reduced environment was confirmed in resveratrol treated rat hearts by the enhanced expression of nuclear factor-E2-related factor-2 (Nrf2) and redox effector factor-1 (Ref-1). M-mode echocardiography after stem cell therapy, showed improvement in cardiac function (left ventricular ejection fraction, fractional shortening and cardiac output) in both, the treated and control group after 7 days, but only resveratrol-modified stem cell group revealed improvement in cardiac function at the end of 1, 2 and 4 months time. The improvement of cardiac function was accompanied by enhanced stem cell survival and engraftment as demonstrated by the expression of cell proliferation marker Ki67 and differentiation of stem cells towards the regeneration of the myocardium as demonstrated by the expression of EGFP up to 4 months after LAD occlusion in the resveratrol-treated stem cell group. Expression of stromal cell-derived factor and myosin conclusively demonstrated homing of stem cells in the infarcted myocardium, its regeneration leading to improvement of cardiac function. PMID:21352470

  14. Adult Stem Cells and Diseases of Aging

    PubMed Central

    Boyette, Lisa B.; Tuan, Rocky S.

    2014-01-01

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  15. Adult Stem Cells and Diseases of Aging.

    PubMed

    Boyette, Lisa B; Tuan, Rocky S

    2014-01-21

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  16. Met signaling in cardiomyocytes is required for normal cardiac function in adult mice.

    PubMed

    Arechederra, María; Carmona, Rita; González-Nuñez, María; Gutiérrez-Uzquiza, Alvaro; Bragado, Paloma; Cruz-González, Ignacio; Cano, Elena; Guerrero, Carmen; Sánchez, Aránzazu; López-Novoa, José Miguel; Schneider, Michael D; Maina, Flavio; Muñoz-Chápuli, Ramón; Porras, Almudena

    2013-12-01

    Hepatocyte growth factor (HGF) and its receptor, Met, are key determinants of distinct developmental processes. Although HGF exerts cardio-protective effects in a number of cardiac pathologies, it remains unknown whether HGF/Met signaling is essential for myocardial development and/or physiological function in adulthood. We therefore investigated the requirement of HGF/Met signaling in cardiomyocyte for embryonic and postnatal heart development and function by conditional inactivation of the Met receptor in cardiomyocytes using the Cre-α-MHC mouse line (referred to as α-MHCMet-KO). Although α-MHCMet-KO mice showed normal heart development and were viable and fertile, by 6 months of age, males developed cardiomyocyte hypertrophy, associated with interstitial fibrosis. A significant upregulation in markers of myocardial damage, such as β-MHC and ANF, was also observed. By the age of 9 months, α-MHCMet-KO males displayed systolic cardiac dysfunction. Mechanistically, we provide evidence of a severe imbalance in the antioxidant defenses in α-MHCMet-KO hearts involving a reduced expression and activity of catalase and superoxide dismutase, with consequent reactive oxygen species accumulation. Similar anomalies were observed in females, although with a slower kinetics. We also found that Met signaling down-regulation leads to an increase in TGF-β production and a decrease in p38MAPK activation, which may contribute to phenotypic alterations displayed in α-MHCMet-KO mice. Consistently, we show that HGF acts through p38α to upregulate antioxidant enzymes in cardiomyocytes. Our results highlight that HGF/Met signaling in cardiomyocytes plays a physiological cardio-protective role in adult mice by acting as an endogenous regulator of heart function through oxidative stress control. PMID:23994610

  17. Beating and insulting children as a risk for adult cancer, cardiac disease and asthma.

    PubMed

    Hyland, Michael E; Alkhalaf, Ahmed M; Whalley, Ben

    2013-12-01

    The use of physical punishment for children is associated with poor psychological and behavioral outcomes, but the causal pathway is controversial, and the effects on later physical health unknown. We conducted a cross-sectional survey of asthma, cancer, and cardiac patients (150 in each category, 75 male) recruited from outpatient clinics and 250 healthy controls (125 male). All participants were 40-60 years old and citizens of Saudi Arabia, where the use of beating and insults is an acceptable parenting style. Demographic data and recalled frequency of beatings and insults as a child were assessed on an 8-point scale. Beating and insults were highly correlated (ρ = 0.846). Propensity score matching was used to control for demographic differences between the disease and healthy groups. After controlling for differences, more frequent beating (once or more per month) and insults were associated with a significantly increased risk for cancer (RR = 1.7), cardiac disease (RR = 1.3) and asthma (RR = 1.6), with evidence of increased risk for cancer and asthma with beating frequency of once every 6 months or more. Our results show that a threatening parenting style of beating and insults is associated with increased risk for somatic disease, possibly because this form of parenting induces stress. Our findings are consistent with previous research showing that child abuse and other early life stressors adversely affect adult somatic health, but provide evidence that the pathogenic effects occur also with chronic minor stress. A stress-inducing parenting style, even when normative, has long term adverse health consequences. PMID:23054177

  18. 28. Embryonic and adult stem cell therapy.

    PubMed

    Henningson, Carl T; Stanislaus, Marisha A; Gewirtz, Alan M

    2003-02-01

    Stem cells are characterized by the ability to remain undifferentiated and to self-renew. Embryonic stem cells derived from blastocysts are pluripotent (able to differentiate into many cell types). Adult stem cells, which were traditionally thought to be monopotent multipotent, or tissue restricted, have recently also been shown to have pluripotent properties. Adult bone marrow stem cells have been shown to be capable of differentiating into skeletal muscle, brain microglia and astroglia, and hepatocytes. Stem cell lines derived from both embryonic stem and embryonic germ cells (from the embryonic gonadal ridge) are pluripotent and capable of self-renewal for long periods. Therefore embryonic stem and germ cells have been widely investigated for their potential to cure diseases by repairing or replacing damaged cells and tissues. Studies in animal models have shown that transplantation of fetal, embryonic stem, or embryonic germ cells may be able to treat some chronic diseases. In this review, we highlight recent developments in the use of stem cells as therapeutic agents for three such diseases: Diabetes, Parkinson disease, and congestive heart failure. We also discuss the potential use of stem cells as gene therapy delivery cells and the scientific and ethical issues that arise with the use of human stem cells. PMID:12592319

  19. High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker.

    PubMed

    Choi, He Yun; Park, Ji Hye; Jang, Woong Bi; Ji, Seung Taek; Jung, Seok Yun; Kim, Da Yeon; Kang, Songhwa; Kim, Yeon Ju; Yun, Jisoo; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang-Mo

    2016-07-01

    Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes. PMID:27350339

  20. High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker

    PubMed Central

    Choi, He Yun; Park, Ji Hye; Jang, Woong Bi; Ji, Seung Taek; Jung, Seok Yun; Kim, Da Yeon; Kang, Songhwa; Kim, Yeon Ju; Yun, Jisoo; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang-Mo

    2016-01-01

    Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes. PMID:27350339

  1. Developmental stage-specific regulation of atrial natriuretic factor gene transcription in cardiac cells.

    PubMed Central

    Argentin, S; Ardati, A; Tremblay, S; Lihrmann, I; Robitaille, L; Drouin, J; Nemer, M

    1994-01-01

    Cardiac myocytes undergo a major genetic switch within the first week of postnatal development, when cell division ceases terminally and many cardiac genes are either activated or silenced. We have developed stage-specific cardiocyte cultures to analyze transcriptional control of the rat atrial natriuretic factor (ANF) gene to identify the mechanisms underlying tissue-specific and developmental regulation of this gene in the heart. The first 700 bp of ANF flanking sequences was sufficient for cardiac muscle- and stage-specific expression in both atrial and ventricular myocytes, and a cardiac muscle-specific enhancer was localized between -136 and -700 bp. Deletion of this enhancer markedly reduced promoter activity in cardiac myocytes and derepressed ANF promoter activity in nonexpressing cells. Two distinct domains of the enhancer appeared to contribute differentially to cardiac specificity depending on the differentiation stage of the myocytes. DNase I footprinting of the enhancer domain active in differentiated cells revealed four putative regulatory elements including an A+T-rich region and a CArG element. Deletion mutagenesis and promoter reconstitution assays revealed an important role for the CArG-containing element exclusively in cardiac cells, where its activity was switched on in differentiated myocytes. Transcriptional activity of the ANF-CArG box correlated with the presence of a cardiac- and stage-specific DNA-binding complex which was not recognized by the c-fos serum response element. Thus, the use of this in vitro model system representing stage-specific cardiac development unraveled the presence of different regulatory mechanisms for transcription of the ANF gene during cardiac differentiation and may be useful for studying the regulatory pathways of other genes that undergo switching during cardiac myogenesis. Images PMID:8264645

  2. PIWI-interacting RNA (piRNA) signatures in human cardiac progenitor cells.

    PubMed

    Vella, Serena; Gallo, Alessia; Lo Nigro, Antonio; Galvagno, Daniele; Raffa, Giuseppe Maria; Pilato, Michele; Conaldi, Pier Giulio

    2016-07-01

    Cardiac progenitors, such as cardiospheres and cardiosphere-derived cells, represent an attractive cell source for cardiac regeneration. The PIWI-interacting RNAs, piRNAs, are an intriguing class of small non-coding RNAs, implicated in the regulation of epigenetic state, maintenance of genomic integrity and stem cell functions. Although non-coding RNAs are an exploiting field in cardiovascular research, the piRNA signatures of cardiac progenitors has not been evaluated yet.We profiled, through microarrays, 15,311 piRNAs expressed in cardiospheres, cardiosphere-derived cells and cardiac fibroblasts. Results showed a set of differentially expressed piRNAs (fold change ≥2, p<0.01): 641 piRNAs were upregulated and 1,301 downregulated in the cardiospheres compared to cardiosphere-derived cells, while 255 and 708 piRNAs resulted up- and down-regulated, respectively, if compared to cardiac fibroblasts. We also identified 181 piRNAs that are overexpressed and 129 are downregulated in cardiosphere-derived cells respect to cardiac fibroblasts.Bioinformatics analysis showed that the deregulated piRNAs were mainly distributed on few chromosomes, suggesting that piRNAs are organized in discrete genomic clusters.Furthermore, the bioinformatics search showed that the most upregulated piRNAs target transposons, especially belonged to LINE-1 class, as validated by qRT-PCR. This reduction is also associated to an activation of AKT signaling, which is beneficial for cardiac regeneration.The present study is the first to show a highly consistent piRNA expression pattern for human cardiac progenitors, likely responsible of their different regenerative power. Moreover, this piRNome analysis may provide new methods for characterize cardiac progenitors and may shed new light on the understanding the complex molecular mechanisms of cardiac regeneration. PMID:27131603

  3. Does Parsonnet scoring model predict mortality following adult cardiac surgery in India?

    PubMed Central

    Srilata, Moningi; Padhy, Narmada; Padmaja, Durga; Gopinath, Ramachandran

    2015-01-01

    Aims and Objectives: To validate the Parsonnet scoring model to predict mortality following adult cardiac surgery in Indian scenario. Materials and Methods: A total of 889 consecutive patients undergoing adult cardiac surgery between January 2010 and April 2011 were included in the study. The Parsonnet score was determined for each patient and its predictive ability for in-hospital mortality was evaluated. The validation of Parsonnet score was performed for the total data and separately for the sub-groups coronary artery bypass grafting (CABG), valve surgery and combined procedures (CABG with valve surgery). The model calibration was performed using Hosmer–Lemeshow goodness of fit test and receiver operating characteristics (ROC) analysis for discrimination. Independent predictors of mortality were assessed from the variables used in the Parsonnet score by multivariate regression analysis. Results: The overall mortality was 6.3% (56 patients), 7.1% (34 patients) for CABG, 4.3% (16 patients) for valve surgery and 16.2% (6 patients) for combined procedures. The Hosmer–Lemeshow statistic was <0.05 for the total data and also within the sub-groups suggesting that the predicted outcome using Parsonnet score did not match the observed outcome. The area under the ROC curve for the total data was 0.699 (95% confidence interval 0.62–0.77) and when tested separately, it was 0.73 (0.64–0.81) for CABG, 0.79 (0.63–0.92) for valve surgery (good discriminatory ability) and only 0.55 (0.26–0.83) for combined procedures. The independent predictors of mortality determined for the total data were low ejection fraction (odds ratio [OR] - 1.7), preoperative intra-aortic balloon pump (OR - 10.7), combined procedures (OR - 5.1), dialysis dependency (OR - 23.4), and re-operation (OR - 9.4). Conclusions: The Parsonnet score yielded a good predictive value for valve surgeries, moderate predictive value for the total data and for CABG and poor predictive value for combined

  4. Native Cardiac Extracellular Matrix Hydrogels for Cultivation of Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Freytes, Donald O; O’Neill, John D; Duan-Arnold, Yi; Wrona, Emily; Vunjak-Novakovic, Gordana

    2015-01-01

    Summary Biomaterial scaffolds made of native and synthetic materials are designed to serve as a structural and informational template for cell attachment and tissue formation. The use of native extracellular matrix (ECM) is of special interest for the culture of cardiac stem and progenitor cells due to the presence of intrinsic regulatory factors regulating cardiac function. We describe here how to obtain native ECM hydrogels from porcine hearts for the culture of human embryonic, induced pluripotent, and somatic stem cells for cardiac tissue engineering and regenerative medicine applications. PMID:25070328

  5. Natural cardiac extracellular matrix hydrogels for cultivation of human stem cell-derived cardiomyocytes.

    PubMed

    Freytes, Donald O; O'Neill, John D; Duan-Arnold, Yi; Wrona, Emily A; Vunjak-Novakovic, Gordana

    2014-01-01

    Biomaterial scaffolds made of natural and synthetic materials are designed to serve as a structural and informational template for cell attachment and tissue formation. The use of native extracellular matrix (ECM) is of special interest for the culture of cardiac stem and progenitor cells due to the presence of intrinsic regulatory factors regulating cardiac function. We describe here how to obtain native ECM hydrogels from porcine hearts for the culture of human embryonic, induced pluripotent, and somatic stem cells for cardiac tissue engineering and regenerative medicine applications. PMID:25070328

  6. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4.

    PubMed

    Xiao, J; Pan, Y; Li, X H; Yang, X Y; Feng, Y L; Tan, H H; Jiang, L; Feng, J; Yu, X Y

    2016-01-01

    Cardiac progenitor cells derived from adult heart have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are known to mediate cell-cell communication by transporting cell-derived proteins and nucleic acids, including various microRNAs (miRNAs). Here we investigated the cardiac progenitor cell (CPC)-derived exosomal miRNAs on protecting myocardium under oxidative stress. Sca1(+)CPCs-derived exosomes were purified from conditional medium, and identified by nanoparticle trafficking analysis (NTA), transmission electron microscopy and western blotting using CD63, CD9 and Alix as markers. Exosomes production was measured by NTA, the result showed that oxidative stress-induced CPCs secrete more exosomes compared with normal condition. Although six apoptosis-related miRNAs could be detected in two different treatment-derived exosomes, only miR-21 was significantly upregulated in oxidative stress-induced exosomes compared with normal exosomes. The same oxidative stress could cause low miR-21 and high cleaved caspase-3 expression in H9C2 cardiac cells. But the cleaved caspase-3 was significantly decreased when miR-21 was overexpressed by transfecting miR-21 mimic. Furthermore, miR-21 mimic or inhibitor transfection and luciferase activity assay confirmed that programmed cell death 4 (PDCD4) was a target gene of miR-21, and miR-21/PDCD4 axis has an important role in anti-apoptotic effect of H9C2 cell. Western blotting and Annexin V/PI results demonstrated that exosomes pre-treated H9C2 exhibited increased miR-21 whereas decreased PDCD4, and had more resistant potential to the apoptosis induced by the oxidative stress, compared with non-treated cells. These findings revealed that CPC-derived exosomal miR-21 had an inhibiting role in the apoptosis pathway through downregulating PDCD4. Restored miR-21/PDCD4 pathway using CPC-derived exosomes could protect myocardial cells against oxidative stress-related apoptosis. Therefore

  7. A quality assurance programme for cell salvage in cardiac surgery.

    PubMed

    Kelleher, A; Davidson, S; Gohil, M; Machin, M; Kimberley, P; Hall, J; Banya, W

    2011-10-01

    At the same time as cell salvage was introduced into our institution for all patients undergoing cardiac surgery with cardiopulmonary bypass, we established a supporting programme of quality assurance to reassure clinicians regarding safety and efficacy. Data collected in patients operated on between 2001 and 2007 included pre- and post-wash heparin concentration, haemoglobin concentration and free haemoglobin concentration. Cell salvage was used in 6826 out of a total of 7243 patients (94%). Post-wash heparin concentration was consistently low (always < 0.4 IU.ml(-1)). There was a significant decrease in post-wash haemoglobin concentration in 2003 compared to 2001, from a median (IQR [range]) of 19.6 (16.7-22.2 [12.9-25.5]) g.dl(-1) to 17.5 (13.6-20.8 [12.6-23.7]) g.dl(-1) (p < 0.015). In addition, there was a significant increase in free plasma haemoglobin in 2006 compared to 2001, from 0.5 (0.3-0.8 [0.1-2.6]) g.l(-1) to 0.8 (0.3-1.4 [0.3-5.2]) g.l(-1) (p < 0.001). This programme led to the detection of a change in operator behaviour in 2003 and progressive machine deterioration resulting in appropriate fleet replacement in 2006. You can respond to this article at http://www.anaesthesiacorrespondence.com. PMID:21883128

  8. Efficient Generation of Cardiac Purkinje Cells from ESCs by Activating cAMP Signaling

    PubMed Central

    Tsai, Su-Yi; Maass, Karen; Lu, Jia; Fishman, Glenn I.; Chen, Shuibing; Evans, Todd

    2015-01-01

    Summary Dysfunction of the specialized cardiac conduction system (CCS) is associated with life-threatening arrhythmias. Strategies to derive CCS cells, including rare Purkinje cells (PCs), would facilitate models for mechanistic studies and drug discovery and also provide new cellular materials for regenerative therapies. A high-throughput chemical screen using CCS:lacz and Contactin2:egfp (Cntn2:egfp) reporter embryonic stem cell (ESC) lines was used to discover a small molecule, sodium nitroprusside (SN), that efficiently promotes the generation of cardiac cells that express gene profiles and generate action potentials of PC-like cells. Imaging and mechanistic studies suggest that SN promotes the generation of PCs from cardiac progenitors initially expressing cardiac myosin heavy chain and that it does so by activating cyclic AMP signaling. These findings provide a strategy to derive scalable PCs, along with insight into the ontogeny of CCS development. PMID:26028533

  9. Primary Cardiac T-Cell Lymphoma Localized in the Mitral Valve.

    PubMed

    Motomatsu, Yuma; Oishi, Yasuhisa; Matsunaga, Shogo; Onitsuka, Hirofumi; Yamamoto, Hidetaka; Zaitsu, Eiko; Yamada, Yuichi; Kohashi, Kenichi; Oda, Yoshinao; Tominaga, Ryuji

    2016-06-01

    Primary cardiac lymphoma is a rare cardiac tumor, and usually originates from B cells and involves the right side of the heart. We present an extremely rare case of primary cardiac T-cell lymphoma involving the mitral valve alone. A 58-year-old woman who was positive for human T-cell leukemia virus 1 underwent mitral valve replacement because of severe mitral regurgitation. The postoperative pathologic diagnosis of the mitral valve was T-cell lymphoma. Further evaluation revealed no malignancy, except for the mitral valve. To the best of our knowledge, this is the first case of primary cardiac T-cell lymphoma localized in the mitral valve. PMID:27211945

  10. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice

    PubMed Central

    Falk, Darin J; Soustek, Meghan S; Todd, Adrian Gary; Mah, Cathryn S; Cloutier, Denise A; Kelley, Jeffry S; Clement, Nathalie; Fuller, David D; Byrne, Barry J

    2015-01-01

    Pompe disease is an autosomal recessive genetic disorder characterized by a deficiency of the enzyme responsible for degradation of lysosomal glycogen (acid α-glucosidase (GAA)). Cardiac dysfunction and respiratory muscle weakness are primary features of this disorder. To attenuate the progressive and rapid accumulation of glycogen resulting in cardiorespiratory dysfunction, adult Gaa–/– mice were administered a single systemic injection of rAAV2/9-DES-hGAA (AAV9-DES) or bimonthly injections of recombinant human GAA (enzyme replacement therapy (ERT)). Assessment of cardiac function and morphology was measured 1 and 3 months after initiation of treatment while whole-body plethysmography and diaphragmatic contractile function was evaluated at 3 months post-treatment in all groups. Gaa–/– animals receiving either AAV9-DES or ERT demonstrated a significant improvement in cardiac function and diaphragmatic contractile function as compared to control animals. AAV9-DES treatment resulted in a significant reduction in cardiac dimension (end diastolic left ventricular mass/gram wet weight; EDMc) at 3 months postinjection. Neither AAV nor ERT therapy altered minute ventilation during quiet breathing (eupnea). However, breathing frequency and expiratory time were significantly improved in AAV9-DES animals. These results indicate systemic delivery of either strategy improves cardiac function but AAV9-DES alone improves respiratory parameters at 3 months post-treatment in a murine model of Pompe disease. PMID:26029718

  11. Adult neural stem cells stake their ground

    PubMed Central

    Lim, Daniel A.; Alvarez-Buylla, Arturo

    2014-01-01

    The birth of new neurons in the walls of the adult brain lateral ventricles has captured the attention of many neuroscientists for over two decades, yielding key insights into the identity and regulation of neural stem cells (NSCs). In the adult ventricular-subventricular zone (V-SVZ), NSCs are a specialized form of astrocyte that generates several types of neurons for the olfactory bulb. Here we discuss recent findings regarding the unique organization of the V-SVZ NSCs niche, the multiple regulatory controls of neuronal production, the distinct regional identities of adult NSCs, and the epigenetic mechanisms that maintain adult neurogenesis. Understanding how V-SVZ NSCs establish and maintain lifelong neurogenesis continues to provide surprising insights into the cellular and molecular regulation of neural development. PMID:25223700

  12. Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3{beta} signaling

    SciTech Connect

    Tateishi, Kento |; Ashihara, Eishi; Honsho, Shoken |; Takehara, Naofumi; Nomura, Tetsuyaital |; Takahashi, Tomosaburo; Ueyama, Tomomi; Yamagishi, Masaaki; Yaku, Hitoshi; Matsubara, Hiroaki |. E-mail: matsubah@koto.kpu-m.ac.jp; Oh, Hidemasa . E-mail: hidemasa@kuhp.kyoto-u.ac.jp

    2007-01-19

    Recent evidence suggested that human cardiac stem cells (hCSCs) may have the clinical application for cardiac repair; however, their characteristics and the regulatory mechanisms of their growth have not been fully investigated. Here, we show the novel property of hCSCs with respect to their origin and tissue distribution in human heart, and demonstrate the signaling pathway that regulates their growth and survival. Telomerase-active hCSCs were predominantly present in the right atrium and outflow tract of the heart (infant > adult) and had a mesenchymal cell-like phenotype. These hCSCs expressed the embryonic stem cell markers and differentiated into cardiomyocytes to support cardiac function when transplanted them into ischemic myocardium. Inhibition of Akt pathway impaired the hCSC proliferation and induced apoptosis, whereas inhibition of glycogen synthase kinase-3 (GSK-3) enhanced their growth and survival. We conclude that hCSCs exhibit mesenchymal features and that Akt/GSK-3{beta} may be crucial modulators for hCSC maintenance in human heart.

  13. Adrenergic responsiveness is reduced, while baseline cardiac function is preserved in old adult conscious monkeys

    NASA Technical Reports Server (NTRS)

    Sato, N.; Kiuchi, K.; Shen, Y. T.; Vatner, S. F.; Vatner, D. E.

    1995-01-01

    To examine the physiological deficit to adrenergic stimulation with aging, five younger adult (3 +/- 1 yr old) and nine older adult (17 +/- 1 yr old) healthy monkeys were studied after instrumentation with a left ventricular (LV) pressure gauge, aortic and left atrial catheters, and aortic flow probes to measure cardiac output directly. There were no significant changes in baseline hemodynamics in conscious older monkeys. For example, an index of contractility, the first derivative of LV pressure (LV dP/dt) was similar (3,191 +/- 240, young vs. 3,225 +/- 71 mmHg/s, old) as well as in isovolumic relaxation, tau (24.3 +/- 1.7 ms, young vs. 23.0 +/- 1.0 ms, old) was similar. However, inotropic, lusitropic, and chronotropic responses to isoproterenol (Iso; 0.1 micrograms/kg), norepinephrine (NE; 0.4 micrograms/kg), and forskolin (For; 75 nmol/kg) were significantly (P < 0.05) depressed in older monkeys. For example. Iso increased LV dP/dt by by 146 +/- 14% in younger monkeys and by only 70 +/- 5% in older monkeys. Iso also reduced tau more in younger monkeys (-28 +/- 7%) compared with older monkeys (-13 +/- 3%). Furthermore, peripheral vascular responsiveness to Iso, NE, For, and phenylephrine (PE; 5 micrograms/kg) was significantly (P < 0.05) reduced in older monkeys. For example, phenylephrine (5 micrograms/kg) increased total peripheral resistence by 69 +/- 4% in younger monkeys and by only 45 +/- 3% in older monkeys. Thus in older monkeys without associated cardiovascular disease, baseline hemodynamics are preserved, but adrenergic receptor responsiveness is reduced systemically, not just in the heart.

  14. Bioreactance Is Not Interchangeable with Thermodilution for Measuring Cardiac Output during Adult Liver Transplantation

    PubMed Central

    Han, Sangbin; Lee, Jong Hwan; Kim, Gaabsoo; Ko, Justin Sangwook; Choi, Soo Joo; Kwon, Ji Hae; Heo, Burn Young; Gwak, Mi Sook

    2015-01-01

    Background Thermodilution technique using a pulmonary artery catheter is widely used for the assessment of cardiac output (CO) in patients undergoing liver transplantation. However, the unclearness of the risk-benefit ratio of this method has led to an interest in less invasive modalities. Thus, we evaluated whether noninvasive bioreactance CO monitoring is interchangeable with thermodilution technique. Methods Nineteen recipients undergoing adult-to-adult living donor liver transplantation were enrolled in this prospective observational study. COs were recorded automatically by the two devices and compared simultaneously at 3-minute intervals. The Bland–Altman plot was used to evaluate the agreement between bioreactance and thermodilution. Clinically acceptable agreement was defined as a percentage error of limits of agreement <30%. The four quadrant plot was used to evaluate concordance between bioreactance and thermodilution. Clinically acceptable concordance was defined as a concordance rate >92%. Results A total of 2640 datasets were collected. The mean CO difference between the two techniques was 0.9 l/min, and the 95% limits of agreement were -3.5 l/min and 5.4 l/min with a percentage error of 53.9%. The percentage errors in the dissection, anhepatic, and reperfusion phase were 50.6%, 56.1%, and 53.5%, respectively. The concordance rate between the two techniques was 54.8%. Conclusion Bioreactance and thermodilution failed to show acceptable interchangeability in terms of both estimating CO and tracking CO changes in patients undergoing liver transplantation. Thus, the use of bioreactance as an alternative CO monitoring to thermodilution, in spite of its noninvasiveness, would be hard to recommend in these surgical patients. PMID:26017364

  15. Tissue engineering using adult stem cells.

    PubMed

    Eberli, Daniel; Atala, Anthony

    2006-01-01

    Patients with a variety of diseases may be treated with transplanted tissues and organs. However, there is a shortage of donor tissues and organs, which is worsening yearly because of the aging population. Scientists in the field of tissue engineering are applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The stem cell field is also advancing rapidly, opening new options for cellular therapy and tissue engineering. The use of adult stem cells for tissue engineering applications is promising. This chapter discusses applications of these new technologies for the engineering of tissues and organs. The first part provides an overview of regenerative medicine and tissue engineering techniques; the second highlights different adult stem cell populations used for tissue regeneration. PMID:17161702

  16. Canadian Cardiovascular Society 2009 Consensus Conference on the management of adults with congenital heart disease: Complex congenital cardiac lesions

    PubMed Central

    Silversides, Candice K; Oechslin, Erwin; Schwerzmann, Markus; Muhll, Isabelle Vonder; Khairy, Paul; Horlick, Eric; Landzberg, Mike; Meijboom, Folkert; Warnes, Carole; Therrien, Judith

    2010-01-01

    With advances in pediatric cardiology and cardiac surgery, the population of adults with congenital heart disease (CHD) has increased. In the current era, there are more adults with CHD than children. This population has many unique issues and needs. They have distinctive forms of heart failure and their cardiac disease can be associated with pulmonary hypertension, thromboemboli, complex arrhythmias and sudden death. Medical aspects that need to be considered relate to the long-term and multisystemic effects of single ventricle physiology, cyanosis, systemic right ventricles, complex intracardiac baffles and failing subpulmonary right ventricles. Since the 2001 Canadian Cardiovascular Society Consensus Conference report on the management of adults with CHD, there have been significant advances in the field of adult CHD. Therefore, new clinical guidelines have been written by Canadian adult CHD physicians in collaboration with an international panel of experts in the field. Part III of the guidelines includes recommendations for the care of patients with complete transposition of the great arteries, congenitally corrected transposition of the great arteries, Fontan operations and single ventricles, Eisenmenger’s syndrome, and cyanotic heart disease. Topics addressed include genetics, clinical outcomes, recommended diagnostic workup, surgical and interventional options, treatment of arrhythmias, assessment of pregnancy risk and follow-up requirements. The complete document consists of four manuscripts, which are published online in the present issue of The Canadian Journal of Cardiology. The complete document and references can also be found at www.ccs.ca or www.cachnet.org. PMID:20352139

  17. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: Effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure wo...

  18. Epigenetic regulation in adult stem cells and cancers

    PubMed Central

    2013-01-01

    Adult stem cells maintain tissue homeostasis by their ability to both self-renew and differentiate to distinct cell types. Multiple signaling pathways have been shown to play essential roles as extrinsic cues in maintaining adult stem cell identity and activity. Recent studies also show dynamic regulation by epigenetic mechanisms as intrinsic factors in multiple adult stem cell lineages. Emerging evidence demonstrates intimate crosstalk between these two mechanisms. Misregulation of adult stem cell activity could lead to tumorigenesis, and it has been proposed that cancer stem cells may be responsible for tumor growth and metastasis. However, it is unclear whether cancer stem cells share commonalities with normal adult stem cells. In this review, we will focus on recent discoveries of epigenetic regulation in multiple adult stem cell lineages. We will also discuss how epigenetic mechanisms regulate cancer stem cell activity and probe the common and different features between cancer stem cells and normal adult stem cells. PMID:24172544

  19. Activated macrophages as a feeder layer for growth of resident cardiac progenitor cells.

    PubMed

    Sepúlveda, Diana E; Cabeza Meckert, Patricia; Locatelli, Paola; Olea, Fernanda D; Pérez, Néstor G; Pinilla, Oscar A; Díaz, Romina G; Crottogini, Alberto; Laguens, Rubén P

    2016-08-01

    The adult heart contains a population of cardiac progenitor cells (CPCs). Growing and collecting an adequate number of CPCs demands complex culture media containing growth factors. Since activated macrophages secrete many growth factors, we investigated if activated isolated heart cells seeded on a feeder layer of activated peritoneal macrophages (PM) could result in CPCs and if these, in turn, could exert cardioprotection in rats with myocardial infarction (MI). Heart cells of inbred Wistar rats were isolated by collagenase digestion and cultured on PM obtained 72 h after intraperitoneal injection of 12 ml thioglycollate. Cells (1 × 10(6)) exhibiting CPC phenotype (immunohistochemistry) were injected in the periphery of rat MI 10 min after coronary artery occlusion. Control rats received vehicle. Three weeks later, left ventricular (LV) function (echocardiogram) was assessed, animals were euthanized and the hearts removed for histological studies. Five to six days after seeding heart cells on PM, spherical clusters composed of small bright and spherical cells expressing mostly c-Kit and Sca-1 antigens were apparent. After explant, those clusters developed cobblestone-like monolayers that expressed smooth muscle actin and sarcomeric actin and were successfully transferred for more than ten passages. When injected in the MI periphery, many of them survived at 21 days after coronary ligature, improved LV ejection fraction and decreased scar size as compared with control rats. CPC-derived cells with cardiocyte and smooth muscle phenotypes can be successfully grown on a feeder layer of activated syngeneic PM. These cells decreased scar size and improved heart function in rats with MI. PMID:25432330

  20. Cardiac mast cells regulate myocyte ANP release via histamine H2 receptor in beating rabbit atria.

    PubMed

    Li, Dan; Wen, Jin Fu; Jin, Jing Yu; Quan, He Xiu; Cho, Kyung Woo

    2009-06-01

    It has been shown that histamine inhibits atrial natriuretic peptide (ANP) release. Because cardiac mast cells are the principal source of histamine in the heart, we hypothesized that cardiac mast cells are involved in the regulation of atrial ANP release. To test the hypothesis, experiments were performed in perfused beating rabbit atria allowing atrial pacing and measurements of changes in atrial stroke volume, intraatrial pulse pressure and myocyte ANP release. Mast cell degranulation with Compound 48/80 decreased atrial myocyte ANP release, and the response was blocked by a selective histamine H(2) receptor blocker, cimetidine, indicating that histamine was responsible for the decrease in ANP release. Mast cell stabilization with cromolyn blocked the Compound 48/80-induced decrease in ANP release. These data suggest that mast cell-derived histamine is involved in the regulation of cardiac ANP release. Thus, the cardiac mast cell-cardiomyocyte communication via the histamine-ANP pathway may implicate in the cardiac disorder associated with mast cell degranulation such as in acute coronary syndrome or cardiac hypertrophy. PMID:19328828

  1. Induced Pluripotent Stem Cell-Derived Cardiac Progenitors Differentiate to Cardiomyocytes and Form Biosynthetic Tissues

    PubMed Central

    Chakraborty, Syandan; Chellapan, Malathi; Bursac, Nenad; Leong, Kam W.

    2013-01-01

    The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS) cells, which once differentiated allow for the enrichment of Nkx2-5(+) cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+) cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors’ ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological screening and

  2. Cell contact as an independent factor modulating cardiac myocyte hypertrophy and survival in long-term primary culture

    NASA Technical Reports Server (NTRS)

    Clark, W. A.; Decker, M. L.; Behnke-Barclay, M.; Janes, D. M.; Decker, R. S.

    1998-01-01

    Cardiac myocytes maintained in cell culture develop hypertrophy both in response to mechanical loading as well as to receptor-mediated signaling mechanisms. However, it has been shown that the hypertrophic response to these stimuli may be modulated through effects of intercellular contact achieved by maintaining cells at different plating densities. In this study, we show that the myocyte plating density affects not only the hypertrophic response and features of the differentiated phenotype of isolated adult myocytes, but also plays a significant role influencing myocyte survival in vitro. The native rod-shaped phenotype of freshly isolated adult myocytes persists in an environment which minimizes myocyte attachment and spreading on the substratum. However, these conditions are not optimal for long-term maintenance of cultured adult cardiac myocytes. Conditions which promote myocyte attachment and spreading on the substratum, on the other hand, also promote the re-establishment of new intercellular contacts between myocytes. These contacts appear to play a significant role in the development of spontaneous activity, which enhances the redevelopment of highly differentiated contractile, junctional, and sarcoplasmic reticulum structures in the cultured adult cardiomyocyte. Although it has previously been shown that adult cardiac myocytes are typically quiescent in culture, the addition of beta-adrenergic agonists stimulates beating and myocyte hypertrophy, and thereby serves to increase the level of intercellular contact as well. However, in densely-plated cultures with intrinsically high levels of intercellular contact, spontaneous contractile activity develops without the addition of beta-adrenergic agonists. In this study, we compare the function, morphology, and natural history of adult feline cardiomyocytes which have been maintained in cultures with different levels of intercellular contact, with and without the addition of beta-adrenergic agonists

  3. Modeling the Force Frequency Relation of a Cardiac Cell

    NASA Astrophysics Data System (ADS)

    Le, Duy Manh; Dvornikov, Alexey V.; Lai, Pik-Yin; Chan, Chi-Keung

    2012-02-01

    Recent pacing experiments with hearts of rat have discovered that the contractile response of the hearts can have an unexpected slow non-monotonic response. This later observation cannot be explained by the existing excitation-contraction coupling model. A new discrete map model of the EC coupling is developed to understand these experimental findings. It is found that the biphasic response and the slow time scale can be reproduced when a calcium feedback based on calcium regulation mechanism of the cell is introduced. Furthermore, this model can also reproduce the nonlinear dynamical properties of the system; such as the period doubling in the response of the contractile forces during a step change in the pacing period. The force frequency relation curve generated by the model also compare well with previous published data. Our findings suggest that the feedback is really needed to understand the calcium transient when pacing frequency is changed and the calcium regulation is very important for the calcium handling of cardiac myocytes.

  4. Role of Cytosolic Calcium Diffusion in Murine Cardiac Purkinje Cells

    PubMed Central

    Limbu, Bijay; Shah, Kushal; Weinberg, Seth H.; Deo, Makarand

    2016-01-01

    Cardiac Purkinje cells (PCs) are morphologically and electrophysiologically different from ventricular myocytes and, importantly, exhibit distinct calcium (Ca2+) homeostasis. Recent studies suggest that PCs are more susceptible to action potential (AP) abnormalities than ventricular myocytes; however, the exact mechanisms are poorly understood. In this study, we utilized a detailed biophysical mathematical model of a murine PC to systematically examine the role of cytosolic Ca2+ diffusion in shaping the AP in PCs. A biphasic spatiotemporal Ca2+ diffusion process, as recorded experimentally, was implemented in the model. In this study, we investigated the role of cytosolic Ca2+ dynamics on AP and ionic current properties by varying the effective Ca2+ diffusion rate. It was observed that AP morphology, specifically the plateau, was affected due to changes in the intracellular Ca2+ dynamics. Elevated Ca2+ concentration in the sarcolemmal region activated inward sodium–Ca2+ exchanger (NCX) current, resulting in a prolongation of the AP plateau at faster diffusion rates. Artificially clamping the NCX current to control values completely reversed the alterations in the AP plateau, thus confirming the role of NCX in modifying the AP morphology. Our results demonstrate that cytosolic Ca2+ diffusion waves play a significant role in shaping APs of PCs and could provide mechanistic insights in the increased arrhythmogeneity of PCs. PMID:27478391

  5. Symptomatic cardiac metastasis responding to pazopanib in a patient with renal cell carcinoma.

    PubMed

    Behzadigohar, Ramin; Rosenthal, Mark A; Tran, Ben

    2015-06-01

    We report a case of an 82-year-old man with renal cell carcinoma who developed a cardiac metastasis within the interventricular septum. He had been under watchful waiting for indolent metastatic renal cell carcinoma for many years before developing symptoms consistent with heart failure. At this time, a 44 mm interventricular septal mass, consistent with a cardiac metastasis, was identified as the cause of his symptoms. Pazopanib was initiated which led to both a clinical and radiological response. PMID:26068633

  6. UNBS1450, a steroid cardiac glycoside inducing apoptotic cell death in human leukemia cells.

    PubMed

    Juncker, Tom; Cerella, Claudia; Teiten, Marie-Hélène; Morceau, Franck; Schumacher, Marc; Ghelfi, Jenny; Gaascht, François; Schnekenburger, Michael; Henry, Estelle; Dicato, Mario; Diederich, Marc

    2011-01-01

    Cardiac steroids are used to treat various diseases including congestive heart failure and cancer. The aim of this study was to investigate the anti-leukemic activity of UNBS1450, a hemi-synthetic cardenolide belonging to the cardiac steroid glycoside family. Here, we report that, at low nanomolar concentrations, UNBS1450 induces apoptotic cell death. Subsequently, we have investigated the molecular mechanisms leading to apoptosis activation. Our results show that UNBS1450 inhibits NF-κB transactivation and triggers apoptosis by cleavage of pro-caspases 8, 9 and 3/7, by decreasing expression of anti-apoptotic Mcl-1 and by recruitment of pro-apoptotic Bak and Bax protein eventually resulting in cell death. PMID:20849830

  7. Resident cardiac stem cells and their role in stem cell therapies for myocardial repair.

    PubMed

    Mayfield, Audrey E; Tilokee, Everad L; Davis, Darryl R

    2014-11-01

    Despite advances in treatment, heart failure remains one of the top killers in Canada. This recognition motivated a new research focus to harness the fundamental repair properties of the human heart. Since then, cardiac stem cells (CSCs) have emerged as a promising cell candidate to regenerate damaged hearts. The rationale of this approach is simple with ex vivo amplification of CSCs from clinical-grade biopsies, followed by delivery to areas of injury, where they engraft and regenerate the heart. In this review we will summarize recent advances and discuss future developments in CSC-mediated cardiac repair to treat the growing number of Canadians living with and dying from heart failure. PMID:25092406

  8. Radiation Exposure Decreases the Quantity and Quality of Cardiac Stem Cells in Mice

    PubMed Central

    Luo, Lan; Urata, Yoshishige; Yan, Chen; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Tou, Fang-Fang; Xie, Yucai; Li, Tao-Sheng

    2016-01-01

    Radiation exposure may increase cardiovascular disease risks; however, the precise molecular/cellular mechanisms remain unclear. In the present study, we examined the hypothesis that radiation impairs cardiac stem cells (CSCs), thereby contributing to future cardiovascular disease risks. Adult C57BL/6 mice were exposed to 3 Gy γ-rays, and heart tissues were collected 24 hours later for further experiments. Although c-kit-positive cells were rarely found, radiation exposure significantly induced apoptosis and DNA damage in the cells of the heart. The ex vivo expansion of CSCs from freshly harvested atrial tissues showed a significantly lower production of CSCs in irradiated mice compared with healthy mice. The proliferative activity of CSCs evaluated by Ki-67 expression was not significantly different between the groups. However, compared to the healthy control, CSCs expanded from irradiated mice showed significantly lower telomerase activity, more 53BP1 foci in the nuclei, lower expression of c-kit and higher expression of CD90. Furthermore, CSCs expanded from irradiated mice had significantly poorer potency in the production of insulin-like growth factor-1. Our data suggest that radiation exposure significantly decreases the quantity and quality of CSCs, which may serve as sensitive bio-parameters for predicting future cardiovascular disease risks. PMID:27195709

  9. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    PubMed

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26801961

  10. Unique multipotent cells in adult human mesenchymal cell populations

    PubMed Central

    Kuroda, Yasumasa; Kitada, Masaaki; Wakao, Shohei; Nishikawa, Kouki; Tanimura, Yukihiro; Makinoshima, Hideki; Goda, Makoto; Akashi, Hideo; Inutsuka, Ayumu; Niwa, Akira; Shigemoto, Taeko; Nabeshima, Yoko; Nakahata, Tatsutoshi; Nabeshima, Yo-ichi; Fujiyoshi, Yoshinori; Dezawa, Mari

    2010-01-01

    We found adult human stem cells that can generate, from a single cell, cells with the characteristics of the three germ layers. The cells are stress-tolerant and can be isolated from cultured skin fibroblasts or bone marrow stromal cells, or directly from bone marrow aspirates. These cells can self-renew; form characteristic cell clusters in suspension culture that express a set of genes associated with pluripotency; and can differentiate into endodermal, ectodermal, and mesodermal cells both in vitro and in vivo. When transplanted into immunodeficient mice by local or i.v. injection, the cells integrated into damaged skin, muscle, or liver and differentiated into cytokeratin 14-, dystrophin-, or albumin-positive cells in the respective tissues. Furthermore, they can be efficiently isolated as SSEA-3(+) cells. Unlike authentic ES cells, their proliferation activity is not very high and they do not form teratomas in immunodeficient mouse testes. Thus, nontumorigenic stem cells with the ability to generate the multiple cell types of the three germ layers can be obtained through easily accessible adult human mesenchymal cells without introducing exogenous genes. These unique cells will be beneficial for cell-based therapy and biomedical research. PMID:20421459

  11. Trial protocol for a randomised controlled trial of red cell washing for the attenuation of transfusion-associated organ injury in cardiac surgery: the REDWASH trial

    PubMed Central

    Murphy, G J; Verheyden, V; Wozniak, M; Sullo, N; Dott, W; Bhudia, S; Bittar, N; Morris, T; Ring, A; Tebbatt, A; Kumar, T

    2016-01-01

    Introduction It has been suggested that removal of proinflammatory substances that accumulate in stored donor red cells by mechanical cell washing may attenuate inflammation and organ injury in transfused cardiac surgery patients. This trial will test the hypotheses that the severity of the postoperative inflammatory response will be less and postoperative recovery faster if patients undergoing cardiac surgery receive washed red cells compared with standard care (unwashed red cells). Methods and analysis Adult (≥16 years) cardiac surgery patients identified at being at increased risk for receiving large volume red cell transfusions at 1 of 3 UK cardiac centres will be randomly allocated in a 1:1 ratio to either red cell washing or standard care. The primary outcome is serum interleukin-8 measured at 5 postsurgery time points up to 96 h. Secondary outcomes will include measures of inflammation, organ injury and volumes of blood transfused and cost-effectiveness. Allocation concealment, internet-based randomisation stratified by operation type and recruiting centre, and blinding of outcome assessors will reduce the risk of bias. The trial will test the superiority of red cell washing versus standard care. A sample size of 170 patients was chosen in order to detect a small-to-moderate target difference, with 80% power and 5% significance (2-tailed). Ethics and dissemination The trial protocol was approved by a UK ethics committee (reference 12/EM/0475). The trial findings will be disseminated in scientific journals and meetings. Trial registration number ISRCTN 27076315. PMID:26977309

  12. Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells.

    PubMed

    Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala; Quijada, Pearl; Ilves, Kelli; Völkers, Mirko; Ormachea, Lucia; De La Torre, Andrea; Orogo, Amabel M; Alvarez, Roberto; Din, Shabana; Mohsin, Sadia; Monsanto, Megan; Fischer, Kimberlee M; Dembitsky, Walter P; Gustafsson, Åsa B; Sussman, Mark A

    2015-05-29

    Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics. PMID:25882843

  13. Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells

    PubMed Central

    Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala; Quijada, Pearl; Ilves, Kelli; Völkers, Mirko; Ormachea, Lucia; De La Torre, Andrea; Orogo, Amabel M.; Alvarez, Roberto; Din, Shabana; Mohsin, Sadia; Monsanto, Megan; Fischer, Kimberlee M.; Dembitsky, Walter P.; Gustafsson, Åsa B.; Sussman, Mark A.

    2015-01-01

    Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics. PMID:25882843

  14. Strategies to Enhance the Effectiveness of Adult Stem Cell Therapy for Ischemic Heart Diseases Affecting the Elderly Patients

    PubMed Central

    Khatiwala, Roshni

    2016-01-01

    Myocardial infarctions and chronic ischemic heart disease both commonly and disproportionately affect elderly patients more than any other patient population. Despite available treatments, heart tissue is often permanently damaged as a result of cardiac injury. This review aims to summarize recent literature proposing the use of modified autologous adult stem cells to promote healing of post-infarct cardiac tissue. This novel cellular treatment involves isolation of adult stem cells from the patient, in vitro manipulation of these stem cells, and subsequent transplantation back into the patient’s own heart to accelerate healing. One of the hindrances affecting this process is that cardiac issues are increasingly common in elderly patients, and stem cells recovered from their tissues tend to be pre-senescent or already in senescence. As a result, harsh in vitro manipulations can cause the aged stem cells to undergo massive in vivo apoptosis after transplantation. The consensus in literature is that inhibition or reversal of senescence onset in adult stem cells would be of utmost benefit. In fact, it is believed that this strategy may lower stem cell mortality and coerce aged stem cells into adopting more resilient phenotypes similar to that of their younger counterparts. This review will discuss a selection of the most efficient and most-recent strategies used experimentally to enhance the effectiveness of current stem cell therapies for ischemic heart diseases. PMID:26779896

  15. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells.

    PubMed

    Lee, Hyunjung; Park, Jinyoung; Kim, Eunice EunKyeong; Yoo, Young Sook; Song, Eun Joo

    2016-05-01

    The Ubiquitin proteasome system (UPS) plays roles in protein degradation, cell cycle control, and growth and inflammatory cell signaling. Dysfunction of UPS in cardiac diseases has been seen in many studies. Cholesterol acts as an inducer of cardiac hypertrophy. In this study, the effect of proteasome inhibitors on the cholesterol-induced hypertrophic growth in H9c2 cells is examined in order to observe whether UPS is involved in cardiac hypertrophy. The treatment of proteasome inhibitors MG132 and Bortezomib markedly reduced cellular surface area and mRNA expression of β-MHC in cholesterol-induced cardiac hypertrophy. In addition, activated AKT and ERK were significantly attenuated by MG132 and Bortezomib in cholesterol- induced cardiac hypertrophy. We demonstrated that cholesterol- induced cardiac hypertrophy was suppressed by proteasome inhibitors. Thus, regulatory mechanism of cholesterol- induced cardiac hypertrophy by proteasome inhibitors may provide a new therapeutic strategy to prevent the progression of heart failure. [BMB Reports 2016; 49(5): 270-275]. PMID:26592933

  16. Mesenchymal stem cells for cardiac therapy: practical challenges and potential mechanisms.

    PubMed

    Cashman, Timothy J; Gouon-Evans, Valerie; Costa, Kevin D

    2013-06-01

    Cell based treatments for myocardial infarction have demonstrated efficacy in the laboratory and in phase I clinical trials, but the understanding of such therapies remains incomplete. Mesenchymal stem cells (MSCs) are classically defined as maintaining the ability to generate mesenchyme-derived cell types, namely adipocytes, chondrocytes and osteocytes. Recent evidence suggests these cells may in fact harbor much greater potency than originally realized, as several groups have found that MSCs can form cardiac lineage cells in vitro. Additionally, experimental coculture of MSCs with cardiomyocytes appears to improve contractile function of the latter. Bolstered by such findings, several clinical trials have begun to test MSC transplantation for improving post-infarct cardiac function in human patients. The results of these trials have been mixed, underscoring the need to develop a deeper understanding of the underlying stem cell biology. To help synthesize the breadth of studies on the topic, this paper discusses current challenges in the field of MSC cellular therapies for cardiac repair, including methods of cell delivery and the identification of molecular markers that accurately specify the therapeutically relevant mesenchymal cell types. The various possible mechanisms of MSC mediated cardiac improvement, including somatic reprogramming, transdifferentiation, paracrine signaling, and direct electrophysiological coupling are also reviewed. Finally, we consider the traditional cell culture microenvironment, and the promise of cardiac tissue engineering to provide biomimetic in vitro model systems to more faithfully investigate MSC biology, helping to safely and effectively translate exciting discoveries in the laboratory to meaningful therapies in the clinic. PMID:22577007

  17. Adipose stem cell sheets improved cardiac function in the rat myocardial infarction, but did not alter cardiac contractile responses to β-adrenergic stimulation.

    PubMed

    Otsuki, Yuki; Nakamura, Yoshinobu; Harada, Shingo; Yamamoto, Yasutaka; Ogino, Kazuhide; Morikawa, Kumi; Ninomiya, Haruaki; Miyagawa, Shigeru; Sawa, Yoshiki; Hisatome, Ichiro; Nishimura, Motonobu

    2015-01-01

    Adipose stem cells (ASCs) are a source of regenerative cells available for autologous transplantation to hearts. We compared protective actions of ASC sheets on rat myocardial infarction (MI) in comparison with those of skeletal myoblast cell sheets. Their effects on infarcted hearts were evaluated by biological, histochemical as well as physiological analyses. ASC sheets secreted higher concentrations of angiogenic factors (HGF, VEGF, and bFGF; P < 0.05) under normoxic and hypoxic conditions than those of myoblast cell sheets, associated with reduction of cell apoptosis (P < 0.05). Like myoblast cell sheets, ASC sheets improved cardiac function (P < 0.05) and decreased the plasma level of ANP (P < 0.05) in MI hearts. ASC sheets restored cardiac remodeling characterized by fibrosis, cardiac hypertrophy and impaired angiogenesis (P < 0.05), which was associated with increases in angiogenic factors (P < 0.05). In isolated perfused rat hearts, ASC sheets improved both systolic and diastolic functions, which was comparable to cardiac functions of myoblast cell sheets, while both cell sheets failed to restore cardiac contractile response to either isoproterenol, pimobendan or dibutyryl cAMP. These results indicated that ASC sheets improved cardiac function and remodeling of MI hearts mediated by their paracrine action and this improvement was comparable to those by myoblast cell sheets. PMID:25749147

  18. Geophysical variables and behavior: CIII. Days with sudden infant deaths and cardiac arrhythmias in adults share a factor with PC1 geomagnetic pulsations: implications for pursuing mechanism.

    PubMed

    Persinger, M A; O'Connor, R P

    2001-06-01

    If geomagnetic-mediated stimuli trigger many sudden infant deaths, then the days in which they and hospital admissions for cardiac arrhythmias for adults occur should share a similar source of variance. Factor analyses of the days in which a sudden infant death occurred in Ontario or adults were admitted for one of eight categories of cardiac crisis in the Sudbury (Ontario) Region for the year 1984 supported the hypothesis. This factor, with which infant deaths and adult cardiac arrhythmias each shared about 40% of their variance, also shared about 40% of the variance with a factor with which about 35% of the variance in daily occurrence of geomagnetic pulsations (0.2 Hz to 5 Hz) was associated. These results are consistent with the important role of geomagnetic variables in the occurrence of transient electrical anomalies in brain function rather than cardiac blood flow. PMID:11453188

  19. Cardiac Progenitor Cells in Myocardial Infarction Wound Healing: A Critical Review

    PubMed Central

    Morris, Michael W.; Liechty, Kenneth W.

    2013-01-01

    Significance Coronary artery disease is a major cause of morbidity and mortality as the loss of functional myocardium drives progressive ventricular remodeling and subsequent heart failure. Medical management has significantly improved outcomes for acute myocardial infarction (MI); however, improved strategies are needed to regenerate functional myocardium and prevent the progression to heart failure. Cytotherapy using cardiac progenitor cells (PCs) to regenerate functional myocardium holds tremendous potential; however, a better understanding of PC biology is needed. Recent Advances Reports of cardiac regeneration in lower animals have been reported in the last decade. However, just recently, two separate models of mammalian cardiac regeneration have been published and offer potential to better define PC biology, including PC recruitment, differentiation, proliferation, and integration. Critical Issues Numerous clinical trials have been completed or are ongoing to evaluate possible cytotherapy options in the treatment of acute and chronic ischemic cardiac disease. To date, results have demonstrated improvements in cardiac function as a result of paracrine effects of cytotherapy, but regeneration of functional myocardium has yet to be observed. Future Directions Future translation of cardiac PC biology from these models is necessary to promote regenerative cardiac healing following MI and to prevent the progression to heart failure following the loss of functional myocardium. Knowledge gained from mammalian models of cardiac regeneration will allow for the development of therapeutic regimens in the treatment of heart failure. PMID:24527353

  20. Centrifugal pump and roller pump in adult cardiac surgery: a meta-analysis of randomized controlled trials.

    PubMed

    Saczkowski, Richard; Maklin, Michelle; Mesana, Thierry; Boodhwani, Munir; Ruel, Marc

    2012-08-01

    Centrifugal pump (CP) and roller pump (RP) designs are the dominant main arterial pumps used in cardiopulmonary bypass (CPB). Trials reporting clinical outcome measures comparing CP and RP are controversial. Therefore, a meta-analysis was undertaken to evaluate clinical variables from randomized controlled trials (RCTs). Keyword searches were performed on Medline (1966-2011), EmBase (1980-2011), and CINAHL (1981-2011) for studies comparing RP and CP as the main arterial pump in adult CPB. Pooled fixed-effects estimates for dichotomous and continuous data were calculated as an odds ratio and weighted-mean difference, respectively. The P value was utilized to assess statistical significance (P < 0.05) between CP and RP groups. Eighteen RCTs met inclusion criteria, which represented 1868 patients (CP = 961, RP = 907). The prevailing operation was isolated coronary artery bypass graft surgery (CP = 88%, RP = 87%). Fixed-effects pooled estimates were performed for end-of-CPB (ECP) and postoperative day one (PDO) for platelet count (ECP: P = 0.51, PDO: P = 0.16), plasma free hemoglobin (ECP: P = 0.36, PDO: P = 0.24), white blood cell count (ECP: P = 0.21, PDO: P = 0.66), and hematocrit (ECP: P = 0.06, PDO: P = 0.51). No difference was demonstrated for postoperative blood loss (P = 0.65) or red blood cell transfusion (P = 0.71). Intensive care unit length of stay (P = 0.30), hospital length of stay (P = 0.33), and mortality (P = 0.91) were similar between the CP and RP groups. Neurologic outcomes were not amenable to pooled analysis; nevertheless, the results were inconclusive. There was no reported pump-related malfunction or mishap. The meta-analysis of RCTs comparing CP and RP in adult cardiac surgery suggests no significant difference for hematological variables, postoperative blood loss, transfusions, neurological outcomes, or mortality. PMID:22804106

  1. IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction

    PubMed Central

    Tejada, Thor; Tan, Lin; Torres, Rebecca A.; Calvert, John W.; Lambert, Jonathan P.; Zaidi, Madiha; Husain, Murtaza; Berce, Maria D.; Naib, Hussain; Pejler, Gunnar; Abrink, Magnus; Graham, Robert M.; Lefer, David J.; Naqvi, Nawazish; Husain, Ahsan

    2016-01-01

    Heart disease is a leading cause of death in adults. Here, we show that a few days after coronary artery ligation and reperfusion, the ischemia-injured heart elaborates the cardioprotective polypeptide, insulin-like growth factor-1 (IGF-1), which activates IGF-1 receptor prosurvival signaling and improves cardiac left ventricular systolic function. However, this signaling is antagonized by the chymase, mouse mast cell protease 4 (MMCP-4), which degrades IGF-1. We found that deletion of the gene encoding MMCP-4 (Mcpt4), markedly reduced late, but not early, infarct size by suppressing IGF-1 degradation and, consequently, diminished cardiac dysfunction and adverse structural remodeling. Our findings represent the first demonstration to our knowledge of tissue IGF-1 regulation through proteolytic degradation and suggest that chymase inhibition may be a viable therapeutic approach to enhance late cardioprotection in postischemic heart disease. PMID:27274047

  2. Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction

    PubMed Central

    Davy, Philip MC; Lye, Kevin D; Mathews, Juanita; Owens, Jesse B; Chow, Alice Y; Wong, Livingston; Moisyadi, Stefan; Allsopp, Richard C

    2015-01-01

    Background Adipose tissue is an abundant and potent source of adult stem cells for transplant therapy. In this study, we present our findings on the potential application of adipose-derived stem cells (ASCs) as well as induced cardiac-like progenitors (iCPs) derived from ASCs for the treatment of myocardial infarction. Methods and results Human bone marrow (BM)-derived stem cells, ASCs, and iCPs generated from ASCs using three defined cardiac lineage transcription factors were assessed in an immune-compromised mouse myocardial infarction model. Analysis of iCP prior to transplant confirmed changes in gene and protein expression consistent with a cardiac phenotype. Endpoint analysis was performed 1 month posttransplant. Significantly increased endpoint fractional shortening, as well as reduction in the infarct area at risk, was observed in recipients of iCPs as compared to the other recipient cohorts. Both recipients of iCPs and ASCs presented higher myocardial capillary densities than either recipients of BM-derived stem cells or the control cohort. Furthermore, mice receiving iCPs had a significantly higher cardiac retention of transplanted cells than all other groups. Conclusion Overall, iCPs generated from ASCs outperform BM-derived stem cells and ASCs in facilitating recovery from induced myocardial infarction in mice. PMID:26604802

  3. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review.

    PubMed

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-05-30

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field. PMID:27426082

  4. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review

    PubMed Central

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-01-01

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field. PMID:27426082

  5. Adult stem cells in the knifefish cerebellum.

    PubMed

    Sîrbulescu, Ruxandra F; Ilieş, Iulian; Vitalo, Antonia G; Trull, Krystal; Zhu, Jenny; Traniello, Ian M; Zupanc, Günther K H

    2015-01-01

    Adult neurogenesis has been described in dozens of brain regions in teleost fish, with the largest number of new neurons being generated in the cerebellum. Here, we characterized the cerebellar neural stem/progenitor cells (NSPCs) in the brown ghost knifefish (Apteronotus leptorhynchus), an established model system of adult neurogenesis. The majority of the new cerebellar cells arise from neurogenic niches located medially, at the interface of the dorsal/ventral molecular layers and the granular layer. NSPCs within these niches give rise to transit-amplifying progenitors which populate the molecular layer, where they continue to proliferate during their migration toward target areas in the granular layer. At any given time, the majority of proliferating cells are located in the molecular layer. Immunohistochemical staining revealed that the stem cell markers Sox2, Meis1/2/3, Islet1, and, to a lesser extent, Pax6, are widely expressed in all regions of the adult cerebellum. A large subpopulation of these NSPCs coexpress S100, GFAP, and/or vimentin, indicating astrocytic identity. This is further supported by the specific effect of the gliotoxin l-methionine sulfoximine, which leads to a targeted decrease in the number of GFAP+ cells that coexpress Sox2 or the proliferation marker PCNA. Pulse-chase analysis of the label size associated with new cells after administration of 5-bromo-2'-deoxyuridine demonstrated that, on average, two additional cell divisions occur after completion of the initial mitotic cycle. Overall numbers of NSPCs in the cerebellum niches increase consistently over time, presumably in parallel with the continuous growth of the brain. PMID:25044932

  6. Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel

    PubMed Central

    Tao, Ze-Wei; Mohamed, Mohamed; Hogan, Matthew; Gutierrez, Laura; Birla, Ravi K.

    2014-01-01

    Engineered cardiac tissues have been constructed with primary or stem cell-derived cardiac cells on natural or synthetic scaffolds. They represent a tremendous potential for treatment of injured areas through addition of tensional support and delivery of sufficient cells. In this study 1 to 6 million (M) neonatal cardiac cells were seeded on fibrin gels to fabricate cardiac tissue patches, and the effects of culture time and cell density on spontaneous contraction rates, twitch forces and paced response frequencies were measured. Electrocardiograms and signal volume index of connexin 43 were also analyzed. Patches of 1–6M cell densities exhibited maximal contraction rates between 305–410 bpm within the first 4 days after plating; low cell densities (1–3M) patches sustained rhythmic contraction longer than high cell densities (4–6M). Patches with 1–6 M cell densities generated contractile forces in the range 2.245–14.065 mN/mm3 on days 4–6. Upon patch formation, a paced response frequency of approximately 6 Hz was obtained, and decreased to approximately 3 Hz after 6 days of culture. High cell density patches contained a thicker real cardiac tissue layer which generated higher R wave amplitudes; however, low density patches had a greater signal volume index of connexin 43. In addition, all patches manifested endothelial cell growth and robust nuclear division. The present study demonstrates that the proper time for in vivo implantation of this cardiac construct is just at patch formation and patches with 3–4M cell densities are the best candidates. PMID:24771636

  7. Human Cardiac-Derived Adherent Proliferating Cells Reduce Murine Acute Coxsackievirus B3-Induced Myocarditis

    PubMed Central

    Miteva, Kapka; Haag, Marion; Peng, Jun; Savvatis, Kostas; Becher, Peter Moritz; Seifert, Martina; Warstat, Katrin; Westermann, Dirk; Ringe, Jochen; Sittinger, Michael; Schultheiss, Heinz-Peter

    2011-01-01

    Background Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs). They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties. We explored whether CAPs application could be a novel strategy to improve acute Coxsackievirus B3 (CVB3)-induced myocarditis. Methodology/Principal Findings To evaluate the safety of our approach, we first analyzed the expression of the coxsackie- and adenovirus receptor (CAR) and the co-receptor CD55 on CAPs, which are both required for effective CVB3 infectivity. We could demonstrate that CAPs only minimally express both receptors, which translates to minimal CVB3 copy numbers, and without viral particle release after CVB3 infection. Co-culture of CAPs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis and viral progeny release. In addition, CAPs reduced CD4 and CD8 T cell proliferation. All CAPs-mediated protective effects were nitric oxide- and interleukin-10-dependent and required interferon-γ. In an acute murine model of CVB3-induced myocarditis, application of CAPs led to a decrease of cardiac apoptosis, cardiac CVB3 viral load and improved left ventricular contractility parameters. This was associated with a decline in cardiac mononuclear cell activity, an increase in T regulatory cells and T cell apoptosis, and an increase in left ventricular interleukin-10 and interferon-γ mRNA expression. Conclusions We conclude that CAPs are a unique type of cardiac-derived cells and promising tools to improve acute CVB3-induced myocarditis. PMID:22174827

  8. Inscribing Optical Excitability to Non-Excitable Cardiac Cells: Viral Delivery of Optogenetic Tools in Primary Cardiac Fibroblasts.

    PubMed

    Yu, Jinzhu; Entcheva, Emilia

    2016-01-01

    We describe in detail a method to introduce optogenetic actuation tools, a mutant version of channelrhodopsin-2, ChR2(H134R), and archaerhodopsin (ArchT), into primary cardiac fibroblasts (cFB) in vitro by adenoviral infection to yield quick, robust, and consistent expression. Instructions on adjusting infection parameters such as the multiplicity of infection and virus incubation duration are provided to generalize the method for different lab settings or cell types. Specific conditions are discussed to create hybrid co-cultures of the optogenetically modified cFB and non-transformed cardiomyocytes to obtain light-sensitive excitable cardiac syncytium, including stencil-patterned cell growth. We also describe an all-optical framework for the functional testing of responsiveness of these opsins in cFB. The presented methodology provides cell-specific tools for the mechanistic investigation of the functional bioelectric contribution of different non-excitable cells in the heart and their electrical coupling to cardiomyocytes under different conditions. PMID:26965132

  9. Inscribing Optical Excitability to Non-Excitable Cardiac Cells: Viral Delivery of Optogenetic Tools in Primary Cardiac Fibroblasts

    PubMed Central

    Yu, Jinzhu; Entcheva, Emilia

    2016-01-01

    We describe in detail a method to introduce optogenetic actuation tools, a mutant version of channelrhodopsin- 2, ChR2(H134R), and archaerhodopsin (ArchT), into primary cardiac fibroblasts (cFB) in vitro by adenoviral infection to yield quick, robust, and consistent expression. Instructions on adjusting infection parameters such as the multiplicity of infection and virus incubation duration are provided to generalize the method for different lab settings or cell types. Specific conditions are discussed to create hybrid co-cultures of the optogenetically modified cFB and non-transformed cardiomyocytes to obtain light- sensitive excitable cardiac syncytium, including stencil-patterned cell growth. We also describe an all-optical framework for the functional testing of responsiveness of these opsins in cFB. The presented methodology provides cell-specific tools for the mechanistic investigation of the functional bioelectric contribution of different non-excitable cells in the heart and their electrical coupling to cardiomyocytes under different conditions. PMID:26965132

  10. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells

    PubMed Central

    Palazzolo, Giacomo; Quattrocelli, Mattia; Toelen, Jaan; Dominici, Roberto; Tettamenti, Guido; Barthelemy, Inès; Blot, Stephane; Gijsbers, Rik; Cassano, Marco

    2016-01-01

    The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs). We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C), known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis. PMID:26681949

  11. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells.

    PubMed

    Palazzolo, Giacomo; Quattrocelli, Mattia; Toelen, Jaan; Dominici, Roberto; Anastasia, Luigi; Tettamenti, Guido; Barthelemy, Inès; Blot, Stephane; Gijsbers, Rik; Cassano, Marco; Sampaolesi, Maurilio

    2016-01-01

    The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs). We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C), known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis. PMID:26681949

  12. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    SciTech Connect

    Madonna, Rosalinda; Shelat, Harnath; Xue, Qun; Willerson, James T.; De Caterina, Raffaele; Geng, Yong-Jian

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiac myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.

  13. Does short preoperative statin therapy prevent infectious complications in adults undergoing cardiac or non-cardiac surgery?

    PubMed Central

    Li, Hua; Lin, Yuan-Long; Diao, Shu-Ling; Ma, Bao-Xin; Liu, Xian-Liang

    2016-01-01

    Objectives: To evaluate the effect of preoperative statin therapy on the incidence of postoperative infection. Methods: This systematic review of the literature was carried out in August 2015. Studies were retrieved via PubMed, Embase, and the Cochrane Library (1980 to 2015), and the reference files were limited to English-language articles. We used a standardized protocol, and a meta-analysis was performed for data abstraction. Results: Five studies comprising 1,362 patients qualified for the analysis. The incidence of postoperative infections in the statin group (1.1%) was not significantly lower than that in the placebo group (2.4%), with a risk ratio (RR) of 0.56 (95% confidence interval [CI] 0.24-1.33, p=0.19). Patients of 3 studies underwent cardiac surgery. The aggregated results of these studies failed to show significant differences in postoperative infection when a fixed effects model was used (RR: 0.39; 95% CI: 0.08-1.97, p=0.26]. Conclusions: We failed to find sufficient evidence to support the association between statin use and postoperative infectious complications. The absence of any evidence for a beneficial effect in available randomized trials reduces the likelihood of a causal effect as reported in observational studies. PMID:27146610

  14. Aerobic exercise training reduces cardiac function in adult male offspring exposed to prenatal hypoxia.

    PubMed

    Reyes, Laura M; Kirschenman, Raven; Quon, Anita; Morton, Jude S; Shah, Amin; Davidge, Sandra T

    2015-09-01

    Intrauterine growth restriction (IUGR) has been associated with increased susceptibility to myocardial ischemia-reperfusion (I/R) injury. Exercise is an effective preventive intervention for cardiovascular diseases; however, it may be detrimental in conditions of compromised health. The aim of this study was to determine whether exercise training can improve cardiac performance after I/R injury in IUGR offspring. We used a hypoxia-induced IUGR model by exposing pregnant Sprague-Dawley rats to 21% oxygen (control) or hypoxic (11% oxygen; IUGR) conditions from gestational day 15 to 21. At 10 wk of age, offspring were randomized to a sedentary group or to a 6-wk exercise protocol. Transthoracic echocardiography assessments were performed after 6 wk. Twenty-four hours after the last bout of exercise, ex vivo cardiac function was determined using a working heart preparation. With exercise training, there was improved baseline cardiac performance in male control offspring but a reduced baseline cardiac performance in male IUGR exercised offspring (P < 0.05). In male offspring, exercise decreased superoxide generation in control offspring, while in IUGR offspring, it had the polar opposite effect (interaction P ≤ 0.05). There was no effect of IUGR or exercise on cardiac function in female offspring. In conclusion, in male IUGR offspring, exercise may be a secondary stressor on cardiac function. A reduction in cardiac performance along with an increase in superoxide production in response to exercise was observed in this susceptible group. PMID:26157059

  15. In Vivo Tracking of Cell Therapies for Cardiac Diseases with Nuclear Medicine

    PubMed Central

    Moreira, Mayra Lorena; da Costa Medeiros, Priscylla; de Souza, Sergio Augusto Lopes; Rosado-de-Castro, Paulo Henrique

    2016-01-01

    Even though heart diseases are amongst the main causes of mortality and morbidity in the world, existing treatments are limited in restoring cardiac lesions. Cell transplantations, originally developed for the treatment of hematologic ailments, are presently being explored in preclinical and clinical trials for cardiac diseases. Nonetheless, little is known about the possible efficacy and mechanisms for these therapies and they are the center of continuous investigation. In this scenario, noninvasive imaging techniques lead to greater comprehension of cell therapies. Radiopharmaceutical cell labeling, firstly developed to track leukocytes, has been used successfully to evaluate the migration of cell therapies for myocardial diseases. A substantial rise in the amount of reports employing this methodology has taken place in the previous years. We will review the diverse radiopharmaceuticals, imaging modalities, and results of experimental and clinical studies published until now. Also, we report on current limitations and potential advances of radiopharmaceutical labeling for cell therapies in cardiac diseases. PMID:26880951

  16. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    NASA Astrophysics Data System (ADS)

    Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-11-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.

  17. Endogenous Mechanisms of Cardiac Regeneration.

    PubMed

    Xiang, M S W; Kikuchi, K

    2016-01-01

    Zebrafish possess a remarkable capacity for cardiac regeneration throughout their lifetime, providing a model for investigating endogenous cellular and molecular mechanisms regulating myocardial regeneration. By contrast, adult mammals have an extremely limited capacity for cardiac regeneration, contributing to mortality and morbidity from cardiac diseases such as myocardial infarction and heart failure. However, the viewpoint of the mammalian heart as a postmitotic organ was recently revised based on findings that the mammalian heart contains multiple undifferentiated cell types with cardiogenic potential as well as a robust regenerative capacity during a short period early in life. Although it occurs at an extremely low level, continuous cardiomyocyte turnover has been detected in adult mouse and human hearts, which could potentially be enhanced to restore lost myocardium in damaged human hearts. This review summarizes and discusses recent advances in the understanding of endogenous mechanisms of cardiac regeneration. PMID:27572127

  18. The secretome of myocardial telocytes modulates the activity of cardiac stem cells

    PubMed Central

    Albulescu, Radu; Tanase, Cristiana; Codrici, Elena; Popescu, Daniela I; Cretoiu, Sanda M; Popescu, Laurentiu M

    2015-01-01

    Telocytes (TCs) are interstitial cells that are present in numerous organs, including the heart interstitial space and cardiac stem cell niche. TCs are completely different from fibroblasts. TCs release extracellular vesicles that may interact with cardiac stem cells (CSCs) via paracrine effects. Data on the secretory profile of TCs and the bidirectional shuttle vesicular signalling mechanism between TCs and CSCs are scarce. We aimed to characterize and understand the in vitro effect of the TC secretome on CSC fate. Therefore, we studied the protein secretory profile using supernatants from mouse cultured cardiac TCs. We also performed a comparative secretome analysis using supernatants from rat cultured cardiac TCs, a pure CSC line and TCs-CSCs in co-culture using (i) high-sensitivity on-chip electrophoresis, (ii) surface-enhanced laser desorption/ionization time-of-flight mass spectrometry and (iii) multiplex analysis by Luminex-xMAP. We identified several highly expressed molecules in the mouse cardiac TC secretory profile: interleukin (IL)-6, VEGF, macrophage inflammatory protein 1α (MIP-1α), MIP-2 and MCP-1, which are also present in the proteome of rat cardiac TCs. In addition, rat cardiac TCs secrete a slightly greater number of cytokines, IL-2, IL-10, IL-13 and some chemokines like, GRO-KC. We found that VEGF, IL-6 and some chemokines (all stimulated by IL-6 signalling) are secreted by cardiac TCs and overexpressed in co-cultures with CSCs. The expression levels of MIP-2 and MIP-1α increased twofold and fourfold, respectively, when TCs were co-cultured with CSCs, while the expression of IL-2 did not significantly differ between TCs and CSCs in mono culture and significantly decreased (twofold) in the co-culture system. These data suggest that the TC secretome plays a modulatory role in stem cell proliferation and differentiation. PMID:26176909

  19. The secretome of myocardial telocytes modulates the activity of cardiac stem cells.

    PubMed

    Albulescu, Radu; Tanase, Cristiana; Codrici, Elena; Popescu, Daniela I; Cretoiu, Sanda M; Popescu, Laurentiu M

    2015-08-01

    Telocytes (TCs) are interstitial cells that are present in numerous organs, including the heart interstitial space and cardiac stem cell niche. TCs are completely different from fibroblasts. TCs release extracellular vesicles that may interact with cardiac stem cells (CSCs) via paracrine effects. Data on the secretory profile of TCs and the bidirectional shuttle vesicular signalling mechanism between TCs and CSCs are scarce. We aimed to characterize and understand the in vitro effect of the TC secretome on CSC fate. Therefore, we studied the protein secretory profile using supernatants from mouse cultured cardiac TCs. We also performed a comparative secretome analysis using supernatants from rat cultured cardiac TCs, a pure CSC line and TCs-CSCs in co-culture using (i) high-sensitivity on-chip electrophoresis, (ii) surface-enhanced laser desorption/ionization time-of-flight mass spectrometry and (iii) multiplex analysis by Luminex-xMAP. We identified several highly expressed molecules in the mouse cardiac TC secretory profile: interleukin (IL)-6, VEGF, macrophage inflammatory protein 1α (MIP-1α), MIP-2 and MCP-1, which are also present in the proteome of rat cardiac TCs. In addition, rat cardiac TCs secrete a slightly greater number of cytokines, IL-2, IL-10, IL-13 and some chemokines like, GRO-KC. We found that VEGF, IL-6 and some chemokines (all stimulated by IL-6 signalling) are secreted by cardiac TCs and overexpressed in co-cultures with CSCs. The expression levels of MIP-2 and MIP-1α increased twofold and fourfold, respectively, when TCs were co-cultured with CSCs, while the expression of IL-2 did not significantly differ between TCs and CSCs in mono culture and significantly decreased (twofold) in the co-culture system. These data suggest that the TC secretome plays a modulatory role in stem cell proliferation and differentiation. PMID:26176909

  20. [Cardiac MRI in the follow-up of adult congenital cardiomyopathy patients].

    PubMed

    Monney, P; Stalder, N; Clair, M; Vogt, P; Schwitter, J; Meijboom, E J; Bouchardy, J

    2011-06-01

    Magnetic resonance imaging is a rapidly developing modality in cardiology. It offers an excellent image definition and a large field of view, allowing a more accurate morphological assessment of cardiac malformations. Due to its unique versatility and its ability to provide myocardial tissue characterization, cardiac magnetic resonance (CMR) is now recognized as a central imaging modality for a wide range of congenital heart diseases, including assessment of post-surgical cardiac anatomy, quantification of valvular disease and detection of myocardial ischemia. CMR provides useful diagnostic information without any radiation exposure, and improves the global management of patients with congenital heart disease. PMID:21717692

  1. Cardiac Non-myocyte Cells Show Enhanced Pharmacological Function Suggestive of Contractile Maturity in Stem Cell Derived Cardiomyocyte Microtissues.

    PubMed

    Ravenscroft, Stephanie M; Pointon, Amy; Williams, Awel W; Cross, Michael J; Sidaway, James E

    2016-07-01

    The immature phenotype of stem cell derived cardiomyocytes is a significant barrier to their use in translational medicine and pre-clinical in vitro drug toxicity and pharmacological analysis. Here we have assessed the contribution of non-myocyte cells on the contractile function of co-cultured human embryonic stem cell derived cardiomyocytes (hESC-CMs) in spheroid microtissue format. Microtissues were formed using a scaffold free 96-well cell suspension method from hESC-CM cultured alone (CM microtissues) or in combination with human primary cardiac microvascular endothelial cells and cardiac fibroblasts (CMEF microtissues). Contractility was characterized with fluorescence and video-based edge detection. CMEF microtissues displayed greater Ca(2+ )transient amplitudes, enhanced spontaneous contraction rate and remarkably enhanced contractile function in response to both positive and negative inotropic drugs, suggesting a more mature contractile phenotype than CM microtissues. In addition, for several drugs the enhanced contractile response was not apparent when endothelial cell or fibroblasts from a non-cardiac tissue were used as the ancillary cells. Further evidence of maturity for CMEF microtissues was shown with increased expression of genes that encode proteins critical in cardiac Ca(2+ )handling (S100A1), sarcomere assembly (telethonin/TCAP) and β-adrenergic receptor signalling. Our data shows that compared with single cell-type cardiomyocyte in vitro models, CMEF microtissues are superior at predicting the inotropic effects of drugs, demonstrating the critical contribution of cardiac non-myocyte cells in mediating functional cardiotoxicity. PMID:27125969

  2. Cardiac Non-myocyte Cells Show Enhanced Pharmacological Function Suggestive of Contractile Maturity in Stem Cell Derived Cardiomyocyte Microtissues

    PubMed Central

    Ravenscroft, Stephanie M.; Pointon, Amy; Williams, Awel W.; Cross, Michael J.; Sidaway, James E.

    2016-01-01

    The immature phenotype of stem cell derived cardiomyocytes is a significant barrier to their use in translational medicine and pre-clinical in vitro drug toxicity and pharmacological analysis. Here we have assessed the contribution of non-myocyte cells on the contractile function of co-cultured human embryonic stem cell derived cardiomyocytes (hESC-CMs) in spheroid microtissue format. Microtissues were formed using a scaffold free 96-well cell suspension method from hESC-CM cultured alone (CM microtissues) or in combination with human primary cardiac microvascular endothelial cells and cardiac fibroblasts (CMEF microtissues). Contractility was characterized with fluorescence and video-based edge detection. CMEF microtissues displayed greater Ca2+ transient amplitudes, enhanced spontaneous contraction rate and remarkably enhanced contractile function in response to both positive and negative inotropic drugs, suggesting a more mature contractile phenotype than CM microtissues. In addition, for several drugs the enhanced contractile response was not apparent when endothelial cell or fibroblasts from a non-cardiac tissue were used as the ancillary cells. Further evidence of maturity for CMEF microtissues was shown with increased expression of genes that encode proteins critical in cardiac Ca2+ handling (S100A1), sarcomere assembly (telethonin/TCAP) and β-adrenergic receptor signalling. Our data shows that compared with single cell-type cardiomyocyte in vitro models, CMEF microtissues are superior at predicting the inotropic effects of drugs, demonstrating the critical contribution of cardiac non-myocyte cells in mediating functional cardiotoxicity. PMID:27125969

  3. Cellular and Molecular Characterization of Human Cardiac Stem Cells Reveals Key Features Essential for Their Function and Safety

    PubMed Central

    Vahdat, Sadaf; Mousavi, Seyed Ahmad; Omrani, Gholamreza; Gholampour, Maziar; Sotoodehnejadnematalahi, Fattah; Ghazizadeh, Zaniar; Gharechahi, Javad

    2015-01-01

    Cell therapy of heart diseases is emerging as one of the most promising known treatments in recent years. Transplantation of cardiac stem cells (CSCs) may be one of the best strategies to cure adult or pediatric heart diseases. As these patient-derived stem cells need to be isolated from small heart biopsies, it is important to select the best isolation method and CSC subpopulation with the best cardiogenic functionality. We employed three different protocols including c-KIT+ cell sorting, clonogenic expansion, and explants culture to isolate c-KIT+ cells, clonogenic expansion-derived cells (CEDCs), and cardiosphere-derived cells (CDCs), respectively. Evaluation of isolated CSC characteristics in vitro and after rat myocardial infarction (MI) model transplantation revealed that although c-KIT+ and CDCs had higher MI regenerative potential, CEDCs had more commitment into cardiomyocytes and needed lower passages that were essential to reach a definite cell count. Furthermore, genome-wide expression analysis showed that subsequent passages caused changes in characteristics of cells, downregulation of cell cycle-related genes, and upregulation of differentiation and carcinogenic genes, which might lead to senescence, commitment, and possible tumorigenicity of the cells. Because of different properties of CSC subpopulations, we suggest that appropriate CSCs subpopulation should be chosen based on their experimental or clinical use. PMID:25867933

  4. Cellular and molecular characterization of human cardiac stem cells reveals key features essential for their function and safety.

    PubMed

    Vahdat, Sadaf; Mousavi, Seyed Ahmad; Omrani, Gholamreza; Gholampour, Maziar; Sotoodehnejadnematalahi, Fattah; Ghazizadeh, Zaniar; Gharechahi, Javad; Baharvand, Hossein; Salekdeh, Ghasem Hosseini; Aghdami, Nasser

    2015-06-15

    Cell therapy of heart diseases is emerging as one of the most promising known treatments in recent years. Transplantation of cardiac stem cells (CSCs) may be one of the best strategies to cure adult or pediatric heart diseases. As these patient-derived stem cells need to be isolated from small heart biopsies, it is important to select the best isolation method and CSC subpopulation with the best cardiogenic functionality. We employed three different protocols including c-KIT(+) cell sorting, clonogenic expansion, and explants culture to isolate c-KIT(+) cells, clonogenic expansion-derived cells (CEDCs), and cardiosphere-derived cells (CDCs), respectively. Evaluation of isolated CSC characteristics in vitro and after rat myocardial infarction (MI) model transplantation revealed that although c-KIT(+) and CDCs had higher MI regenerative potential, CEDCs had more commitment into cardiomyocytes and needed lower passages that were essential to reach a definite cell count. Furthermore, genome-wide expression analysis showed that subsequent passages caused changes in characteristics of cells, downregulation of cell cycle-related genes, and upregulation of differentiation and carcinogenic genes, which might lead to senescence, commitment, and possible tumorigenicity of the cells. Because of different properties of CSC subpopulations, we suggest that appropriate CSCs subpopulation should be chosen based on their experimental or clinical use. PMID:25867933

  5. Progesterone induces adult mammary stem cell expansion.

    PubMed

    Joshi, Purna A; Jackson, Hartland W; Beristain, Alexander G; Di Grappa, Marco A; Mote, Patricia A; Clarke, Christine L; Stingl, John; Waterhouse, Paul D; Khokha, Rama

    2010-06-10

    Reproductive history is the strongest risk factor for breast cancer after age, genetics and breast density. Increased breast cancer risk is entwined with a greater number of ovarian hormone-dependent reproductive cycles, yet the basis for this predisposition is unknown. Mammary stem cells (MaSCs) are located within a specialized niche in the basal epithelial compartment that is under local and systemic regulation. The emerging role of MaSCs in cancer initiation warrants the study of ovarian hormones in MaSC homeostasis. Here we show that the MaSC pool increases 14-fold during maximal progesterone levels at the luteal dioestrus phase of the mouse. Stem-cell-enriched CD49fhi cells amplify at dioestrus, or with exogenous progesterone, demonstrating a key role for progesterone in propelling this expansion. In aged mice, CD49fhi cells display stasis upon cessation of the reproductive cycle. Progesterone drives a series of events where luminal cells probably provide Wnt4 and RANKL signals to basal cells which in turn respond by upregulating their cognate receptors, transcriptional targets and cell cycle markers. Our findings uncover a dynamic role for progesterone in activating adult MaSCs within the mammary stem cell niche during the reproductive cycle, where MaSCs are putative targets for cell transformation events leading to breast cancer. PMID:20445538

  6. Selective Differentiation into Hematopoietic and Cardiac Cells from Pluripotent Stem Cells Based on the Expression of Cell Surface Markers.

    PubMed

    Okada, Atsumasa; Tashiro, Katsuhisa; Yamaguchi, Tomoko; Kawabata, Kenji

    2016-01-01

    Flk1-expressing (+) mesodermal cells are useful source for the generation of hematopoietic cells and cardiomyocytes from pluripotent stem cells (PSCs). However, they have been reported as a heterogenous population that includes hematopoietic and cardiac progenitors. Therefore, to provide a method for a highly efficient production of hematopoietic cells and cardiomyocytes, cell surface markers are often used for separating these progenitors in Flk1(+) cells. Our recent study has shown that the expression of coxsackievirus and adenovirus receptor (CAR), a tight junction component molecule, could divide mouse and human PSC- and mouse embryo-derived Flk1(+) cells into Flk1(+)CAR(-) and Flk1(+)CAR(+) cells. Flk1(+)CAR(-) and Flk1(+)CAR(+) cells efficiently differentiated into hematopoietic cells and cardiomyocytes, respectively. These results indicate that CAR is a novel cell surface marker for separating PSC-derived Flk1(+) mesodermal cells into hematopoietic and cardiac progenitors. We herein describe a differentiation method from PSCs into hematopoietic cells and cardiomyocytes based on CAR expression. PMID:26138986

  7. EMPOWERING ADULT STEM CELLS FOR MYOCARDIAL REGENERATION

    PubMed Central

    Mohsin, Sadia; Siddiqi, Sailay; Collins, Brett; Sussman, Mark A.

    2012-01-01

    Treatment strategies for heart failure remain a high priority for ongoing research due to the profound unmet need in clinical disease coupled with lack of significant translational progress. The underlying issue is the same whether the cause is acute damage, chronic stress from disease, or aging: progressive loss of functional cardiomyocytes and diminished hemodynamic output. To stave off cardiomyocyte losses, a number of strategic approaches have been embraced in recent years involving both molecular and cellular approaches to augment myocardial structure and performance. Resultant excitement surrounding regenerative medicine in the heart has been tempered by realizations that reparative processes in the heart are insufficient to restore damaged myocardium to normal functional capacity and that cellular cardiomyoplasty is hampered by poor survival, proliferation, engraftment and differentiation of the donated population. To overcome these limitations, a combination of molecular and cellular approaches needs to be adopted involving use of genetic engineering to enhance resistance to cell death and increase regenerative capacity. This review will highlight biological properties of approached to potentiate stem cell-mediated regeneration to promote enhanced myocardial regeneration, persistence of donated cells, and long lasting tissue repair. Optimizing cell delivery and harnessing the power of survival signaling cascades for ex vivo genetic modification of stem cells prior to reintroduction into the patient will be critical to enhance the efficacy of cellular cardiomyoplasty. Once this goal is achieved, then cell-based therapy has great promise for treatment of heart failure to combat the loss of cardiac structure and function associated with acute damage, chronic disease or aging. PMID:22158649

  8. Alternative Splicing in the Differentiation of Human Embryonic Stem Cells into Cardiac Precursors

    PubMed Central

    Salomonis, Nathan; Nelson, Brandon; Vranizan, Karen; Pico, Alexander R.; Hanspers, Kristina; Kuchinsky, Allan; Ta, Linda; Mercola, Mark; Conklin, Bruce R.

    2009-01-01

    The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs) is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org), we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation. PMID:19893621

  9. Simple measurement of the apparent viscosity of a cell from only one picture: Application to cardiac stem cells

    NASA Astrophysics Data System (ADS)

    Plaza, G. R.; Marí, N.; Gálvez, B. G.; Bernal, A.; Guinea, G. V.; Daza, R.; Pérez-Rigueiro, J.; Solanas, C.; Elices, M.

    2014-11-01

    Mechanical deformability of cells is a key property that influences their ability to migrate and their contribution to tissue development and regeneration. We analyze here the possibility of characterizing the overall deformability of cells by their apparent viscosity, using a simplified method to estimate that parameter. The proposed method simplifies the quantitative analysis of micropipette-aspiration experiments. We have studied by this procedure the overall apparent viscosity of cardiac stem cells, which are considered a promising tool to regenerate damaged cardiac tissue. Comparison with the apparent viscosity of low-viscosity cells such as immune-system cells suggests that treatments to reduce the viscosity of these cells could enhance their ability to repair damaged cardiac tissue.

  10. A Role for RE-1-Silencing Transcription Factor in Embryonic Stem Cells Cardiac Lineage Specification.

    PubMed

    Aksoy, Irene; Marcy, Guillaume; Chen, Jiaxuan; Divakar, Ushashree; Kumar, Vibhor; John-Sanchez, Daniel; Rahmani, Mehran; Buckley, Noel J; Stanton, Lawrence W

    2016-04-01

    During development, lineage specification is controlled by several signaling pathways involving various transcription factors (TFs). Here, we studied the RE-1-silencing transcription factor (REST) and identified an important role of this TF in cardiac differentiation. Using mouse embryonic stem cells (ESC) to model development, we found that REST knockout cells lost the ability to differentiate into the cardiac lineage. Detailed analysis of specific lineage markers expression showed selective downregulation of endoderm markers in REST-null cells, thus contributing to a loss of cardiogenic signals. REST regulates cardiac differentiation of ESCs by negatively regulating the Wnt/β-catenin signaling pathway and positively regulating the cardiogenic TF Gata4. We propose here a new role for REST in cell fate specification besides its well-known repressive role of neuronal differentiation. PMID:26864965

  11. In-hospital resuscitation: recognising and responding to adults in cardiac arrest.

    PubMed

    Simpson, Elizabeth

    2016-08-17

    Survival rates following in-hospital cardiac arrest remain low. The majority of patients who survive a cardiac arrest will be in a monitored environment, have a witnessed cardiac arrest and present with a shockable rhythm, usually ventricular fibrillation. Nurses have a responsibility to preserve safety, which requires the ability to accurately assess patients for signs of deterioration in physical health, and to provide assistance when an emergency arises in practice. Nurses must work within the limits of their competence and be able to establish the urgency of a situation. Nurses in all areas of practice must be able to recognise the signs of cardiac arrest and know the prompt response sequence required to improve the patient's chances of survival. This article focuses on inpatient resuscitation in acute healthcare environments and is aimed at staff who may be the first to respond to an in-hospital cardiac arrest. This does not include specialist units such as neurosurgery, intensive therapy units and cardiac catheterisation laboratories, where medical experts are available and clinical priorities may differ. PMID:27533415

  12. Sufficient myocardial protection of del Nido cardioplegia regardless of ventricular mass and myocardial ischemic time in adult cardiac surgical patients

    PubMed Central

    Kim, Ji Seong; Jeong, Jin Hee; Moon, Sin Ju; Ahn, Hyuk

    2016-01-01

    Background Del Nido (DN) cardioplegic solution (CPS) has been widely used during pediatric cardiac surgery. However, its use in the field of adult cardiac surgery is not popular yet. We evaluated efficacy of DN cardioplegia in adult cardiac surgical patients. Methods Fifty-three adult patients (mean age, 54±16 years) who underwent cardiovascular surgery using DN cardioplegia were enrolled. Myocardial troponin I (TnI) level up to three days after surgery and early clinical outcomes were evaluated. Propensity score matching was performed to compare these results with those after surgery using blood cardioplegia (BC). Results DN cardioplegia was infused with an initial dose of 1,126±221 mL, and an additional 500 mL was reinfused in 15 patients 91 minutes after initial infusion. After release of aortic cross clamp (ACC), spontaneous defibrillation was achieved in 94.3% (50/53). The peak TnI level after surgery was 9.8 ng/mL (range, 2.0–90.2 ng/mL). Linear regression models demonstrated that neither left ventricular mass (LVM) nor ACC time was associated with increased level of peak TnI (P=0.928 and 0.595, respectively). Early mortality occurred in one patient (1.9%). Postoperative complications included atrial fibrillation (n=18, 34.0%), acute kidney injury (n=4, 7.5%), low cardiac output syndrome (n=1, 1.9%), and respiratory complications (n=1, 1.9%). Propensity score matching extracted 39 pairs. Spontaneous defibrillation was achieved more frequently in the DN than BC groups (37/39 vs. 12/39, P<0.001). Peak level and serial changes of TnI were not statistically different between the two groups (P=0.085 and 0.959, respectively). There were also no significant differences in early mortality and postoperative complication rates between the two groups. Conclusions DN cardioplegia is as effective as BC for adult patients in terms of myocardial protection and early clinical outcomes.

  13. The Emerging Prominence of the Cardiac Mast Cell as a Potent Mediator of Adverse Myocardial Remodeling

    PubMed Central

    Janicki, Joseph S.; Brower, Gregory L.; Levick, Scott P.

    2015-01-01

    Cardiac mast cells store and release a variety of biologically active mediators, several of which have been implicated in the activation of matrix metalloproteinases in the volume-overloaded heart, while others are involved in the fibrotic process in pressure-overloaded hearts. Increased numbers of mast cells have been reported in explanted human hearts with dilated cardiomyopathy and in animal models of experimentally induced hypertension, myocardial infarction, and chronic cardiac volume overload. Also, there is evolving evidence implicating the cardiac mast cell as having a major role in the adverse remodeling underlying these cardiovascular disorders. Thus, the cardiac mast cell is the focus of this chapter that begins with a historical background, followed by sections on methods for their isolation and characterization, endogenous secretagogues, phenotype, and ability of estrogen to alter their phenotype so as to provide cardioprotection. Finally the role of mast cells in myocardial remodeling secondary to a sustained cardiac volume overload, hypertension, and ischemic injury and future research directions are discussed. PMID:25388248

  14. DJ-1 protects against cell death following acute cardiac ischemia–reperfusion injury

    PubMed Central

    Dongworth, R K; Mukherjee, U A; Hall, A R; Astin, R; Ong, S-B; Yao, Z; Dyson, A; Szabadkai, G; Davidson, S M; Yellon, D M; Hausenloy, D J

    2014-01-01

    Novel therapeutic targets are required to protect the heart against cell death from acute ischemia–reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson's disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia–reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1L166P and DJ-1Cys106A mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection. PMID:24577080

  15. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation.

    PubMed

    Luna-Zurita, Luis; Prados, Belén; Grego-Bessa, Joaquim; Luxán, Guillermo; del Monte, Gonzalo; Benguría, Alberto; Adams, Ralf H; Pérez-Pomares, José María; de la Pompa, José Luis

    2010-10-01

    Cardiac valve formation is crucial for embryonic and adult heart function. Valve malformations constitute the most common congenital cardiac defect, but little is known about the molecular mechanisms regulating valve formation and homeostasis. Here, we show that endocardial Notch1 and myocardial Bmp2 signal integration establish a valve-forming field between 2 chamber developmental domains. Patterning occurs through the activation of endocardial epithelial-to-mesenchymal transition (EMT) exclusively in prospective valve territories. Mice with constitutive endocardial Notch1 activity ectopically express Hey1 and Heyl. They also display an activated mesenchymal gene program in ventricles and a partial (noninvasive) EMT in vitro that becomes invasive upon BMP2 treatment. Snail1, TGF-β2, or Notch1 inhibition reduces BMP2-induced ventricular transformation and invasion, whereas BMP2 treatment inhibits endothelial Gsk3β, stabilizing Snail1 and promoting invasiveness. Integration of Notch and Bmp2 signals is consistent with Notch1 signaling being attenuated after myocardial Bmp2 deletion. Notch1 activation in myocardium extends Hey1 expression to nonchamber myocardium, represses Bmp2, and impairs EMT. In contrast, Notch deletion abrogates endocardial Hey gene transcription and extends Bmp2 expression to the ventricular endocardium. This embryonic Notch1-Bmp2-Snail1 relationship may be relevant in adult valve disease, in which decreased NOTCH signaling causes valve mesenchyme cell formation, fibrosis, and calcification. PMID:20890042

  16. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease.

    PubMed

    Braitsch, Caitlin M; Kanisicak, Onur; van Berlo, Jop H; Molkentin, Jeffery D; Yutzey, Katherine E

    2013-12-01

    During embryonic heart development, the transcription factors Tcf21, Wt1, and Tbx18 regulate activation and differentiation of epicardium-derived cells, including fibroblast lineages. Expression of these epicardial progenitor factors and localization of cardiac fibrosis were examined in mouse models of cardiovascular disease and in human diseased hearts. Following ischemic injury in mice, epicardial fibrosis is apparent in the thickened layer of subepicardial cells that express Wt1, Tbx18, and Tcf21. Perivascular fibrosis with predominant expression of Tcf21, but not Wt1 or Tbx18, occurs in mouse models of pressure overload or hypertensive heart disease, but not following ischemic injury. Areas of interstitial fibrosis in ischemic and hypertensive hearts actively express Tcf21, Wt1, and Tbx18. In all areas of fibrosis, cells that express epicardial progenitor factors are distinct from CD45-positive immune cells. In human diseased hearts, differential expression of Tcf21, Wt1, and Tbx18 also is detected with epicardial, perivascular, and interstitial fibrosis, indicating conservation of reactivated developmental mechanisms in cardiac fibrosis in mice and humans. Together, these data provide evidence for distinct fibrogenic mechanisms that include Tcf21, separate from Wt1 and Tbx18, in different fibroblast populations in response to specific types of cardiac injury. PMID:24140724

  17. Epigenetic Regulation of Cardiac Differentiation of Embryonic Stem Cells and Tissues.

    PubMed

    Jebeniani, Imen; Leschik, Julia; Puceat, Michel

    2016-01-01

    Specific gene transcription is a key biological process that underlies cell fate decision during embryonic development. The biological process is mediated by transcription factors which bind genomic regulatory regions including enhancers and promoters of cardiac constitutive genes. DNA is wrapped around histones that are subjected to chemical modifications. Modifications of histones further lead to repressed, activated or poised gene transcription, thus bringing another level of fine tuning regulation of gene transcription. Embryonic Stem cells (ES cells) recapitulate within embryoid bodies (i.e., cell aggregates) or in 2D culture the early steps of cardiac development. They provide in principle enough material for chromatin immunoprecipitation (ChIP), a technology broadly used to identify gene regulatory regions. Furthermore, human ES cells represent a human cell model of cardiogenesis. At later stages of development, mouse embryonic tissues allow for investigating specific epigenetic landscapes required for determination of cell identity. Herein, we describe protocols of ChIP, sequential ChIP followed by PCR or ChIP-sequencing using ES cells, embryoid bodies and cardiac specific embryonic regions. These protocols allow to investigating the epigenetic regulation of cardiac gene transcription. PMID:27285123

  18. Systemic mastocytosis presenting as cardiac tamponade with CD25(+) pericardial mast cells.

    PubMed

    Sukrithan, Vineeth K; Salamon, Jason N; Berulava, Giorgi; Sibinga, Nicholas E; Verma, Amit

    2016-03-01

    In this first-in-literature case, we describe a patient with Systemic mastocytosis presenting with life-threatening cardiac tamponade associated with the presence of aberrant mast cells in the pericardium. Procedures involving surgical incisions through the pericardium in such cases can lead to uncontrolled mast cell degranulation leading to circulatory collapse. PMID:27014452

  19. Transient Mesp1 expression: a driver of cardiac cell fate determination.

    PubMed

    Liu, Yu; Schwartz, Robert J

    2013-01-01

    Mesp1 sits on the tip of the cardiac regulatory hierarchy, recent evidences support that it is regulated by stem cell factor Oct4, early gastrulation signal canonical Wnts and a couple of T-box factors, T and Eomes. With other transcription factors, Mesp1 programs/reprograms human cells toward cardiomyocytes. PMID:23584093

  20. zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish

    PubMed Central

    Chen, Chen-Hui; Durand, Ellen; Wang, Jinhu; Zon, Leonard I.; Poss, Kenneth D.

    2013-01-01

    The zebrafish has become a standard model system for stem cell and tissue regeneration research, based on powerful genetics, high tissue regenerative capacity and low maintenance costs. Yet, these studies can be challenged by current limitations of tissue visualization techniques in adult animals. Here we describe new imaging methodology and present several ubiquitous and tissue-specific luciferase-based transgenic lines, which we have termed zebraflash, that facilitate the assessment of regeneration and engraftment in freely moving adult zebrafish. We show that luciferase-based live imaging reliably estimates muscle quantity in an internal organ, the heart, and can longitudinally follow cardiac regeneration in individual animals after major injury. Furthermore, luciferase-based detection enables visualization and quantification of engraftment in live recipients of transplanted hematopoietic stem cell progeny, with advantages in sensitivity and gross spatial resolution over fluorescence detection. Our findings present a versatile resource for monitoring and dissecting vertebrate stem cell and regeneration biology. PMID:24198277

  1. Functional TRPV2 and TRPV4 channels in human cardiac c-kit(+) progenitor cells.

    PubMed

    Che, Hui; Xiao, Guo-Sheng; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2016-06-01

    The cellular physiology and biology of human cardiac c-kit(+) progenitor cells has not been extensively characterized and remains an area of active research. This study investigates the functional expression of transient receptor potential vanilloid (TRPV) and possible roles for this ion channel in regulating proliferation and migration of human cardiac c-kit(+) progenitor cells. We found that genes coding for TRPV2 and TRPV4 channels and their proteins are significantly expressed in human c-kit(+) cardiac stem cells. Probenecid, an activator of TRPV2, induced an increase in intracellular Ca(2+) (Ca(2+) i ), an effect that may be attenuated or abolished by the TRPV2 blocker ruthenium red. The TRPV4 channel activator 4α-phorbol 12-13-dicaprinate induced Ca(2+) i oscillations, which can be inhibited by the TRPV4 blocker RN-1734. The alteration of Ca(2+) i by probenecid or 4α-phorbol 12-13-dicprinate was dramatically inhibited in cells infected with TRPV2 short hairpin RNA (shRNA) or TRPV4 shRNA. Silencing TRPV2, but not TRPV4, significantly reduced cell proliferation by arresting cells at the G0/G1 boundary of the cell cycle. Cell migration was reduced by silencing TRPV2 or TRPV4. Western blot revealed that silencing TRPV2 decreased expression of cyclin D1, cyclin E, pERK1/2 and pAkt, whereas silencing TRPV4 only reduced pAkt expression. Our results demonstrate for the first time that functional TRPV2 and TRPV4 channels are abundantly expressed in human cardiac c-kit(+) progenitor cells. TRPV2 channels, but not TRPV4 channels, participate in regulating cell cycle progression; moreover, both TRPV2 and TRPV4 are involved in migration of human cardiac c-kit(+) progenitor cells. PMID:26865051

  2. Targeting Cardiac Mast Cells: Pharmacological Modulation of the Local Renin-Angiotensin System

    PubMed Central

    Reid, Alicia C.; Brazin, Jacqueline A.; Morrey, Christopher; Silver, Randi B.; Levi, Roberto

    2012-01-01

    Enhanced production of angiotensin II and excessive release of norepinephrine in the ischemic heart are major causes of arrhythmias and sudden cardiac death. Mast cell-dependent mechanisms are pivotal in the local formation of angiotensin II and modulation of norepinephrine release in cardiac pathophysiology. Cardiac mast cells increase in number in myocardial ischemia and are located in close proximity to sympathetic neurons expressing angiotensin AT1- and histamine H3-receptors. Once activated, cardiac mast cells release a host of potent pro-inflammatory and pro-fibrotic cytokines, chemokines, preformed mediators (e.g., histamine) and proteases (e.g., renin). In myocardial ischemia, angiotensin II (formed locally from mast cell-derived renin) and histamine (also released from local mast cells) respectively activate AT1- and H3-receptors on sympathetic nerve endings. Stimulation of angiotensin AT1-receptors is arrhythmogenic whereas H3-receptor activation is cardioprotective. It is likely that in ischemia/reperfusion the balance may be tipped toward the deleterious effects of mast cell renin, as demonstrated in mast cell-deficient mice, lacking mast cell renin and histamine in the heart. In these mice, no ventricular fibrillation occurs at reperfusion following ischemia, as opposed to wild-type hearts which all fibrillate. Preventing mast cell degranulation in the heart and inhibiting the activation of a local reninangiotensin system, hence abolishing its detrimental effects on cardiac rhythmicity, appears to be more significant than the loss of histamine-induced cardioprotection. This suggests that therapeutic targets in the treatment of myocardial ischemia, and potentially congestive heart failure and hypertension, should include prevention of mast cell degranulation, mast cell renin inhibition, local ACE inhibition, ANG II antagonism and H3-receptor activation. PMID:22103845

  3. EphB4 Forward-Signaling Regulates Cardiac Progenitor Development in Mouse ES Cells

    PubMed Central

    Liu, Yanfeng; Hoyle, Dixie L.; Shen, Wei-Feng; Wu, Li-Qun; Wang, Zack Z.

    2015-01-01

    Eph receptor (Eph)-ephrin signaling plays an important role in organ development and tissue regeneration. Bidirectional signaling of EphB4– ephrinB2 regulates cardiovascular development. To assess the role of EphB4–ephrinB2 signaling in cardiac lineage development, we utilized two GFP reporter systems in embryonic stem (ES) cells, in which the GFP transgenes were expressed in Nkx2.5+ cardiac progenitor cells and in α-MHC+ cardiomyocytes, respectively. We found that both EphB4 and ephrinB2 were expressed in Nkx2.5-GFP+ cardiac progenitor cells, but not in α-MHC-GFP+ cardiomyocytes during cardiac lineage differentiation of ES cells. An antagonist of EphB4, TNYL-RAW peptides, that block the binding of EphB4 and ephrinB2, impaired cardiac lineage development in ES cells. Inhibition of EphB4–ephrinB2 signaling at different time points during ES cell differentiation demonstrated that the interaction of EphB4 and ephrinB2 was required for the early stage of cardiac lineage development. Forced expression of human full-length EphB4 or intracellular domain-truncated EphB4 in EphB4-null ES cells was established to investigate the role of EphB4-forward signaling in ES cells. Interestingly, while full-length EphB4 was able to restore the cardiac lineage development in EphB4-null ES cells, the truncated EphB4 that lacks the intracellular domain of tyrosine kinase and PDZ motif failed to rescue the defect of cardiomyocyte development, suggesting that EphB4 intracellular domain is essential for the development of cardiomyocytes. Our study provides evidence that receptor-kinase-dependent EphB4-forward signaling plays a crucial role in the development of cardiac progenitor cells. PMID:25359705

  4. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.

    PubMed

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T; Sorensen, Staci A; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-02-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. We constructed a cellular taxonomy of one cortical region, primary visual cortex, in adult mice on the basis of single-cell RNA sequencing. We identified 49 transcriptomic cell types, including 23 GABAergic, 19 glutamatergic and 7 non-neuronal types. We also analyzed cell type-specific mRNA processing and characterized genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we found that some of our transcriptomic cell types displayed specific and differential electrophysiological and axon projection properties, thereby confirming that the single-cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548

  5. Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics

    PubMed Central

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-01-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548

  6. Molecular Hallmarks of Adult T Cell Leukemia

    PubMed Central

    Yamagishi, Makoto; Watanabe, Toshiki

    2012-01-01

    The molecular hallmarks of adult T cell leukemia (ATL) comprise outstanding deregulations of signaling pathways that control the cell cycle, resistance to apoptosis, and proliferation of leukemic cells, all of which have been identified by early excellent studies. Nevertheless, we are now confronted the therapeutic difficulties of ATL that is a most aggressive T cell leukemia/lymphoma. Using next-generation strategies, emerging molecular characteristics such as specific surface markers and an additional catalog of signals affecting the fate of leukemic cells have been added to the molecular hallmarks that constitute an organizing principle for rationalizing the complexities of ATL. Although human T cell leukemia virus type 1 is undoubtedly involved in ATL leukemogenesis, most leukemic cells do not express the viral protein Tax. Instead, cellular gene expression changes dominate homeostasis disorders of infected cells and characteristics of ATL. In this review, we summarize the state of the art of ATL molecular pathology, which supports the biological properties of leukemic cells. In addition, we discuss the recent discovery of two molecular hallmarks of potential generality; an abnormal microRNA pattern and epigenetic reprogramming, which strongly involve the imbalance of the molecular network of lymphocytes. Global analyses of ATL have revealed the functional impact of crosstalk between multifunctional pathways. Clinical and biological studies on signaling inhibitory agents have also revealed novel oncogenic drivers that can be targeted in future. ATL cells, by deregulation of such pathways and their interconnections, may become masters of their own destinies. Recognizing and understanding of the widespread molecular applicability of these concepts will increasingly affect the development of novel strategies for treating ATL. PMID:23060864

  7. Label-free separation of human embryonic stem cells (hESCs) and their cardiac derivatives using Raman spectroscopy

    SciTech Connect

    Chan, J W; Lieu, D K; Huser, T R; Li, R A

    2008-09-08

    Self-renewable, pluripotent human embryonic stem cells (hESCs) can be differentiated into cardiomyocytes (CMs), providing an unlimited source of cells for transplantation therapies. However, unlike certain cell lineages such as hematopoietic cells, CMs lack specific surface markers for convenient identification, physical separation, and enrichment. Identification by immunostaining of cardiac-specific proteins such as troponin requires permeabilization, which renders the cells unviable and non-recoverable. Ectopic expression of a reporter protein under the transcriptional control of a heart-specific promoter for identifying hESC-derived CMs (hESC-CMs) is useful for research but complicates potential clinical applications. The practical detection and removal of undifferentiated hESCs in a graft, which may lead to tumors, is also critical. Here, we demonstrate a non-destructive, label-free optical method based on Raman scattering to interrogate the intrinsic biochemical signatures of individual hESCs and their cardiac derivatives, allowing cells to be identified and classified. By combining the Raman spectroscopic data with multivariate statistical analysis, our results indicate that hESCs, human fetal left ventricular CMs, and hESC-CMs can be identified by their intrinsic biochemical characteristics with an accuracy of 96%, 98% and 66%, respectively. The present study lays the groundwork for developing a systematic and automated method for the non-invasive and label-free sorting of (i) high-quality hESCs for expansion, and (ii) ex vivo CMs (derived from embryonic or adult stem cells) for cell-based heart therapies.

  8. Electrophysiological Modeling of Cardiac Ventricular Function: From Cell to Organ

    PubMed Central

    Winslow, R. L.; Scollan, D. F.; Holmes, A.; Yung, C. K.; Zhang, J.; Jafri, M. S.

    2005-01-01

    Three topics of importance to modeling the integrative function of the heart are reviewed. The first is modeling of the ventricular myocyte. Emphasis is placed on excitation-contraction coupling and intracellular Ca2+ handling, and the interpretation of experimental data regarding interval-force relationships. Second, data on use of diffusion tensor magnetic resonance (DTMR) imaging for measuring the anatomical structure of the cardiac ventricles are presented. A method for the semi-automated reconstruction of the ventricles using a combination of gradient recalled acquisition in the steady state (GRASS) and DTMR images is described. Third, we describe how these anatomically and biophysically based models of the cardiac ventricles can be implemented on parallel computers. PMID:11701509

  9. Adult Mesenchymal Stem Cells and Radiation Injury.

    PubMed

    Kiang, Juliann G

    2016-08-01

    Recent understanding of the cellular and molecular signaling activations in adult mesenchymal stem cells (MSCs) has provided new insights into their potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal for tissue repair and recovery after radiation injury. Thus far, MSCs have been characterized extensively and shown to be useful in mitigation and therapy for acute radiation syndrome and cognitive dysfunction. Use of MSCs for treating radiation injury alone or in combination with additional trauma is foreseeable. PMID:27356065

  10. Desmin enters the nucleus of cardiac stem cells and modulates Nkx2.5 expression by participating in transcription factor complexes that interact with the nkx2.5 gene

    PubMed Central

    Fuchs, Christiane; Gawlas, Sonja; Heher, Philipp; Nikouli, Sofia; Paar, Hannah; Ivankovic, Mario; Schultheis, Martina; Klammer, Julia; Gottschamel, Teresa; Capetanaki, Yassemi; Weitzer, Georg

    2016-01-01

    ABSTRACT The transcription factor Nkx2.5 and the intermediate filament protein desmin are simultaneously expressed in cardiac progenitor cells during commitment of primitive mesoderm to the cardiomyogenic lineage. Up-regulation of Nkx2.5 expression by desmin suggests that desmin may contribute to cardiogenic commitment and myocardial differentiation by directly influencing the transcription of the nkx2.5 gene in cardiac progenitor cells. Here, we demonstrate that desmin activates transcription of nkx2.5 reporter genes, rescues nkx2.5 haploinsufficiency in cardiac progenitor cells, and is responsible for the proper expression of Nkx2.5 in adult cardiac side population stem cells. These effects are consistent with the temporary presence of desmin in the nuclei of differentiating cardiac progenitor cells and its physical interaction with transcription factor complexes bound to the enhancer and promoter elements of the nkx2.5 gene. These findings introduce desmin as a newly discovered and unexpected player in the regulatory network guiding cardiomyogenesis in cardiac stem cells. PMID:26787680

  11. Pro: early extubation in the operating room following cardiac surgery in adults.

    PubMed

    Singh, Karen E; Baum, Victor C

    2012-12-01

    There is growing evidence that the general current approach in many centers of continued mechanical ventilation following cardiac surgery has evolved through historical experience rather than having a strong physiological basis in current practice. There is evidence going back several decades supporting very early (in the operating room [OR]) extubation in pediatric cardiac anesthesia. The authors provide evidence from numerous sources showing that extubation in the OR or shortly after arrival in the ICU is safe and cost-effective and is not prevented by the type of cardiac surgery or the use of cardiopulmonary bypass. They query if the paradigm should not be reversed and very early extubation be the routine unless contraindicated. Like any anesthetic technique, appropriate patient selection is called for, but this technique is widely appropriate. PMID:22798230

  12. Efficient Differentiation of Human Induced Pluripotent Stem Cells Generates Cardiac Cells That Provide Protection Following Myocardial Infarction in the Rat

    PubMed Central

    Carr, Carolyn; Yang, Cheng Tao; Stuckey, Daniel J.; Clarke, Kieran; Watt, Suzanne M.

    2012-01-01

    Induced pluripotent stem (iPS) cells are being used increasingly to complement their embryonic counterparts to understand and develop the therapeutic potential of pluripotent cells. Our objectives were to identify an efficient cardiac differentiation protocol for human iPS cells as monolayers, and demonstrate that the resulting cardiac progenitors could provide a therapeutic benefit in a rodent model of myocardial infarction. Herein, we describe a 14-day protocol for efficient cardiac differentiation of human iPS cells as a monolayer, which routinely yielded a mixed population in which over 50% were cardiomyocytes, endothelium, or smooth muscle cells. When differentiating, cardiac progenitors from day 6 of this protocol were injected into the peri-infarct region of the rat heart; after coronary artery ligation and reperfusion, we were able to show that human iPS cell-derived cardiac progenitor cells engrafted, differentiated into cardiomyocytes and smooth muscle, and persisted for at least 10 weeks postinfarct. Hearts injected with iPS-derived cells showed a nonsignificant trend toward protection from decline in function after myocardial infarction, as assessed by magnetic resonance imaging at 10 weeks, such that the ejection fraction at 10 weeks in iPS treated hearts was 62%±4%, compared to that of control infarcted hearts at 45%±9% (P<0.2). In conclusion, we demonstrated efficient cardiac differentiation of human iPS cells that gave rise to progenitors that were retained within the infarcted rat heart, and reduced remodeling of the heart after ischemic damage. PMID:22182484

  13. Cell swelling impairs dye coupling in adult rat ventricular myocytes. Cell volume as a regulator of cell communication

    PubMed Central

    De Mello, WC

    2013-01-01

    The influence of cell swelling on cell communication was investigated in cardiomyocytes isolated from the ventricle of adult rats. Measurements of dye coupling were performed in cell pairs using intracellular dialysis of Lucifer Yellow CH. The pipette was attached to one cell of the pair and after a gig ohm seal was achieved, the membrane was ruptured by a brief suction allowing the dye to diffuse from the pipette into the cell. Fluorescence of the dye in the injected as well as in non-dialyzed cell of the pair was continuously monitored. The results indicate that in cell pairs exposed to hypotonic solution the cell volume was increased by about 60% within 35 min and the dye coupling was significantly reduced by cell swelling. Calculation of gap junction permeability (P(j)) assuming an the intracellular volume accessible to intracellular diffusion of the dye as 12% of total cell volume, showed an average P(j) value of 0.16 ± 0.04 × 10−4 cm/s (n = 35) in the control and 0.89 ± 1.1 × 10−5 cm (n = 40) for cells exposed to hypotonic solution (P < 0.05). Similar results were found assuming intracellular volumes accessible to the dye of 20 and 30% of total cell volume, respectively. Cell swelling did not change the rate of intracellular diffusion of the dye. The results, which indicate that cell volume is an important regulator of gap junction permeability, have important implications to myocardial ischemia and heart failure as well as to heart pharmacology because changes in cell volume caused by drugs and transmitters can impair cell communication with consequent generation of slow conduction and cardiac arrhythmias. PMID:20512611

  14. The modulation of cardiac progenitor cell function by hydrogel-dependent Notch1activation

    PubMed Central

    Boopathy, Archana V.; Che, Pao Lin; Somasuntharam, Inthirai; Fiore, Vincent F.; Cabigas, E. Bernadette; Ban, Kiwon; Brown, Milton E.; Narui, Yoshie; Barker, Thomas H.; Yoon, Young-sup; Salaita, Khalid; García, Andrés J.; Davis, Michael E.

    2014-01-01

    Myocardial infarction is the leading cause of death worldwide and phase I clinical trials utilizing cardiac progenitor cells (CPCs) have shown promising outcomes. Notch1 signaling plays a critical role in cardiac development and in the survival, cardiogenic lineage commitment, and differentiation of cardiac stem/progenitor cells. In this study, we functionalized self-assembling peptide (SAP) hydrogels with a peptide mimic of the Notch1 ligand Jagged1 (RJ) to evaluate the therapeutic benefit of CPC delivery in the hydrogels in a rat model of myocardial infarction. The behavior of CPCs cultured in the 3D hydrogels in vitro including gene expression, proliferation, and growth factor production was evaluated. Interestingly, we observed Notch1 activation to be dependent on hydrogel polymer density/stiffness with synergistic increase in presence of RJ. Our results show that RJ mediated Notch1 activation depending on hydrogel concentration differentially regulated cardiogenic gene expression, proliferation, and growth factor production in CPCs in vitro. In rats subjected to experimental myocardial infarction, improvement in acute retention and cardiac function was observed following cell therapy in RJ hydrogels compared to unmodified or scrambled peptide containing hydrogels. This study demonstrates the potential therapeutic benefit of functionalizing SAP hydrogels with RJ for CPC based cardiac repair. PMID:24974008

  15. Pax3 and Tbx5 specify whether PDGFRα+ cells assume skeletal or cardiac muscle fate in differentiating ES cells

    PubMed Central

    Magli, Alessandro; Schnettler, Erin; Swanson, Scott A; Borges, Luciene; Hoffman, Kirsta; Stewart, Ron; Thomson, James A; Keirstead, Susan A.; Perlingeiro, Rita C. R.

    2014-01-01

    Embryonic stem (ES) cells represent an ideal model to study how lineage decisions are established during embryonic development. Using a doxycycline-inducible mouse ES cell line, we have previously shown that expression of the transcriptional activator Pax3 in early mesodermal cells leads to the robust generation of paraxial mesoderm progenitors that ultimately differentiate into skeletal muscle precursors. Here we show that the ability of this transcription factor to induce the skeletal myogenic cell fate occurs at the expenses of the cardiac lineage. Our results show that the PDGFRα+FLK1− sub-fraction represents the main population affected by Pax3, through down-regulation of several transcripts encoding for proteins involved in cardiac development. We demonstrate that although Nkx2-5, Tbx5 and Gata4 negatively affect Pax3 skeletal myogenic activity, the cardiac potential of embryoid body (EB)-derived cultures is restored solely by forced expression of Tbx5. Taking advantage of this model, we employed an unbiased genome wide approach to identify genes whose expression is rescued by Tbx5, and which could represent important regulators of cardiac development. These findings elucidate mechanisms regulating the commitment of mesodermal cells in the early embryo and identify the Tbx5 cardiac transcriptome. PMID:24677751

  16. Adult stem cell-based apexogenesis

    PubMed Central

    Li, Yao; Shu, Li-Hong; Yan, Ming; Dai, Wen-Yong; Li, Jun-Jun; Zhang, Guang-Dong; Yu, Jin-Hua

    2014-01-01

    Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here. PMID:25332909

  17. Adult stem cell-based apexogenesis.

    PubMed

    Li, Yao; Shu, Li-Hong; Yan, Ming; Dai, Wen-Yong; Li, Jun-Jun; Zhang, Guang-Dong; Yu, Jin-Hua

    2014-06-26

    Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here. PMID:25332909

  18. [Pulmonary Langerhans cell histiocytosis in adults].

    PubMed

    Feuillet, Séverine; Giroux-Leprieur, Bénédicte; Tazi, Abdellatif

    2010-01-01

    Pulmonary Langerhans-cell histiocytosis in adults is a rare condition of unknown etiology characterized by the accumulation of Langerhans cells organized in granulomas involving the distal bronchioles and destroying their walls. It occurs in young subjects who smoke, with frequency peaking between 20 and 40 years. High-resolution thoracic CT is essential for diagnosis; in typical forms it shows a combination of nodules, cavitary nodules, thick-walled cysts, and thin-walled cysts. Diagnostic certainty requires a surgical lung biopsy, by videothoracoscopy, but only if a specialist considers it indicated. It is difficult to predict the disease course for any given patient. A prospective multicenter cohort study currently underway should provide more information about the natural history of this disease. Management is empirical, for efficacy has not been proved for any treatment. Stopping smoking is especially important to prevent the added development of chronic obstructive pulmonary disease (COPD), cardiovascular complications, or the onset of bronchopulmonary cancer, the frequency of which appears elevated in these patients. Oral corticosteroids are used to treat disease progression, especially in the symptomatic mainly nodular forms, but their efficacy for respiratory function has not been shown. Vinblastine, the reference treatment for multisystem forms of Langerhans-cell histiocytosis, is not indicated for pulmonary involvement in adults. Better knowledge of the pathogenic mechanisms involved in this condition should eventually make it possible to develop innovative treatment strategies. The creation of the national reference center for Langerhans-cell histiocytosis has given new momentum to clinical and pathophysiologic research on this orphan disease. PMID:19959324

  19. Sertoli Cells Maintain Leydig Cell Number and Peritubular Myoid Cell Activity in the Adult Mouse Testis

    PubMed Central

    Monteiro, Ana; Milne, Laura; Cruickshanks, Lyndsey; Jeffrey, Nathan; Guillou, Florian; Freeman, Tom C.; Mitchell, Rod T.; Smith, Lee B.

    2014-01-01

    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health. PMID:25144714

  20. Lay Referral Patterns Involved in Cardiac Treatment Decision Making among Middle-Aged and Older Adults

    ERIC Educational Resources Information Center

    Schoenberg, Nancy E.; Amey, Cheryl H.; Stoller, Eleanor Palo; Muldoon, Susan B.

    2003-01-01

    Purpose: This study examined age and contextually related factors that are influential in lay referral patterns during cardiac treatment decision making. Design and Methods: A complementary design was used. The Myocardial Infarction (MI) Onset Study identified demographic correlates of who sought medical care for 1,388 MI (heart attack) survivors.…

  1. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    PubMed Central

    Månsson-Broberg, Agneta; Rodin, Sergey; Bulatovic, Ivana; Ibarra, Cristián; Löfling, Marie; Genead, Rami; Wärdell, Eva; Felldin, Ulrika; Granath, Carl; Alici, Evren; Le Blanc, Katarina; Smith, C.I. Edvard; Salašová, Alena; Westgren, Magnus; Sundström, Erik; Uhlén, Per; Arenas, Ernest; Sylvén, Christer; Tryggvason, Karl; Corbascio, Matthias; Simonson, Oscar E.; Österholm, Cecilia; Grinnemo, Karl-Henrik

    2016-01-01

    Summary The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo. PMID:27052314

  2. Uterine-derived progenitor cells are immunoprivileged and effectively improve cardiac regeneration when used for cell therapy.

    PubMed

    Ludke, Ana; Wu, Jun; Nazari, Mansoreh; Hatta, Kota; Shao, Zhengbo; Li, Shu-Hong; Song, Huifang; Ni, Nathan C; Weisel, Richard D; Li, Ren-Ke

    2015-07-01

    Cell therapy to prevent cardiac dysfunction after myocardial infarction (MI) is less effective in aged patients because aged cells have decreased regenerative capacity. Allogeneic transplanted stem cells (SCs) from young donors are usually rejected. Maintaining transplanted SC immunoprivilege may dramatically improve regenerative outcomes. The uterus has distinct immune characteristics, and we showed that reparative uterine SCs home to the myocardium post-MI. Here, we identify immunoprivileged uterine SCs and assess their effects on cardiac regeneration after allogeneic transplantation. We found more than 20% of cells in the mouse uterus have undetectable MHC I expression by flow cytometry. Uterine MHC I((neg)) and MHC I((pos)) cells were separated by magnetic cell sorting. The MHC I((neg)) population expressed the SC markers CD34, Sca-1 and CD90, but did not express MHC II or c-kit. In vitro, MHC I((neg)) and ((pos)) SCs show colony formation and endothelial differentiation capacity. In mixed leukocyte co-culture, MHC I((neg)) cells showed reduced cell death and leukocyte proliferation compared to MHC I((pos)) cells. MHC I((neg)) and ((pos)) cells had significantly greater angiogenic capacity than mesenchymal stem cells. The benefits of intramyocardial injection of allogeneic MHC I((neg)) cells after MI were comparable to syngeneic bone marrow cell transplantation, with engraftment in cardiac tissue and limited recruitment of CD4 and CD8 cells up to 21 days post-MI. MHC I((neg)) cells preserved cardiac function, decreased infarct size and improved regeneration post-MI. This new source of immunoprivileged cells can induce neovascularization and could be used as allogeneic cell therapy for regenerative medicine. PMID:25939780

  3. The Current Status of iPS Cells in Cardiac Research and Their Potential for Tissue Engineering and Regenerative Medicine

    PubMed Central

    Martins, Ana M.; Vunjak-Novakovic, Gordana

    2015-01-01

    The recent availability of human cardiomyocytes derived from induced pluripotent stem (iPS) cells opens new opportunities to build in vitro models of cardiac disease, screening for new drugs, and patient-specific cardiac therapy. Notably, the use of iPS cells enables studies in the wide pool of genotypes and phenotypes. We describe progress in reprogramming of induced pluripotent stem (iPS) cells towards the cardiac lineage/differentiation. The focus is on challenges of cardiac disease modeling using iPS cells and their potential to produce safe, effective and affordable therapies/applications with the emphasis of cardiac tissue engineering. We also discuss implications of human iPS cells to biological research and some of the future needs. PMID:24425421

  4. Functional properties of cells obtained from human cord blood CD34+ stem cells and mouse cardiac myocytes in coculture.

    PubMed

    Orlandi, Alessia; Pagani, Francesca; Avitabile, Daniele; Bonanno, Giuseppina; Scambia, Giovanni; Vigna, Elisa; Grassi, Francesca; Eusebi, Fabrizio; Fucile, Sergio; Pesce, Maurizio; Capogrossi, Maurizio C

    2008-04-01

    Prior in vitro studies suggested that different types of hematopoietic stem cells may differentiate into cardiomyocytes. The present work examined whether human CD34(+) cells from the human umbilical cord blood (hUCB), cocultured with neonatal mouse cardiomyocytes, acquire the functional properties of myocardial cells and express human cardiac genes. hUCB CD34(+) cells were cocultured onto cardiomyocytes following an infection with a lentivirus-encoding enhanced green fluorescent protein (EGFP). After 7 days, mononucleated EGFP(+) cells were tested for their electrophysiological features by patch clamp and for cytosolic [Ca(2+)] ([Ca(2+)](i)) homeostasis by [Ca(2+)](i) imaging of X-rhod1-loaded cells. Human Nkx2.5 and GATA-4 expression was examined in cocultured cell populations by real-time RT-PCR. EGFP(+) cells were connected to surrounding cells by gap junctions, acquired electrophysiological properties similar to those of cardiomyocytes, and showed action potential-associated [Ca(2+)](i) transients. These cells also exhibited spontaneous sarcoplasmic reticulum [Ca(2+)](i) oscillations and the associated membrane potential depolarization. However, RT-PCR of both cell populations showed no upregulation of human-specific cardiac genes. In conclusion, under our experimental conditions, hUCB CD34(+) cells cocultured with murine cardiomyocytes formed cells that exhibited excitation-contraction coupling features similar to those of cardiomyocytes. However, the expression of human-specific cardiac genes was undetectable by RT-PCR. PMID:18223188

  5. Effects of anisosmotic stress on cardiac muscle cell length, diameter, area, and sarcomere length

    NASA Technical Reports Server (NTRS)

    Tanaka, R.; Barnes, M. A.; Cooper, G. 4th; Zile, M. R.

    1996-01-01

    The purpose of this study was to examine the effects of anisosmotic stress on adult mammalian cardiac muscle cell (cardiocyte) size. Cardiocyte size and sarcomere length were measured in cardiocytes isolated from 10 normal rats and 10 normal cats. Superfusate osmolarity was decreased from 300 +/- 6 to 130 +/- 5 mosM and increased to 630 +/- 8 mosM. Cardiocyte size and sarcomere length increased progressively when osmolarity was decreased, and there were no significant differences between cat and rat cardiocytes with respect to percent change in cardiocyte area or diameter; however, there were significant differences in cardiocyte length (2.8 +/- 0.3% in cat vs. 6.1 +/- 0.3% in rat, P < 0.05) and sarcomere length (3.3 +/- 0.3% in cat vs. 6.1 +/- 0.3% in rat, P < 0.05). To determine whether these species-dependent differences in length were related to diastolic interaction of the contractile elements or differences in relative passive stiffness, cardiocytes were subjected to the osmolarity gradient 1) during treatment with 7 mM 2,3-butanedione monoxime (BDM), which inhibits cross-bridge interaction, or 2) after pretreatment with 1 mM ethylene glycol-bis(beta-aminoethyl ether)-N, N,N',N'-tetraacetic acid (EGTA), a bivalent Ca2+ chelator. Treatment with EGTA or BDM abolished the differences between cat and rat cardiocytes. Species-dependent differences therefore appeared to be related to the degree of diastolic cross-bridge association and not differences in relative passive stiffness. In conclusion, the osmolarity vs. cell size relation is useful in assessing the cardiocyte response to anisosmotic stress and may in future studies be useful in assessing changes in relative passive cardiocyte stiffness produced by pathological processes.

  6. Effects of acupuncture at the acupoints of 12 meridians on gastrointestinal and cardiac electricity in healthy adults.

    PubMed

    Chang, Xiao-Rong; Yan, Jie; Shen, Jing; Liu, Mi; Wang, Xiao-Juan

    2010-09-01

    The effect of acupuncture at the acupoints of 12 meridians on gastrointestinal and cardiac electricity in healthy adults was studied. Specific regulation between meridian points and viscera was also investigated. An electrogastrogram (EGG), electrointestinogram (EIG), carotid pulse graph, phonocardiogram and electrocardiogram were obtained in 30 healthy adults before and after acupuncture at various acupoints of 12 meridians. The effects of acupuncture on the amplitude and frequency of the EGG, EIG, pre-ejection period and the left ventricular ejection time were then analyzed. Acupuncture revealed that LR3 decreased the amplitude of the EGG while LI11 (Quchi), SJ5 (Waiguan), ST36 (Zusanli), SP9 (Yinlingquan) and SI6 (Yanglao) increased the amplitude. Multiple comparisons among the latter five acupoints indicated that there were significant differences between SP9, LI11, SJ5 and ST36 (p < 0.01, p < 0.01, p < 0.05) and SI6, LI11 and SJ5 (p < 0.01, p < 0.05). SP9 effected EGG amplitude the most, followed by SI6, ST36, SJ5 and LI11. Four acupoints increased the amplitude of the EIG (p < 0.05), including HT5 (Tongli), GB34 (Yanglingquan), SP9 and SI6. No significant differences were observed between these acupoints, but SI6 showed the most obvious effect on EIG amplitude, followed by GB34, SP9 and HT5. No significant effects on the frequency of the gastrointestinal slow wave or on cardiac function indexes were observed. Effects were observed, however, on pre-ejection period and left ventricular ejection time. Routine acupuncture had no detrimental effects on the stomach, intestine and heart in healthy adults, but instead regulated physiological function within a normal range. These findings demonstrate the existence of specific connections between the meridian points and the viscera. The results suggest that multiple meridians control the same viscus, and the same meridian can regulate the functions of multiple viscera. PMID:20869017

  7. Isolation and characterization of embryonic stem cell-derived cardiac Purkinje cells.

    PubMed

    Maass, Karen; Shekhar, Akshay; Lu, Jia; Kang, Guoxin; See, Fiona; Kim, Eugene E; Delgado, Camila; Shen, Steven; Cohen, Lisa; Fishman, Glenn I

    2015-04-01

    The cardiac Purkinje fiber network is composed of highly specialized cardiomyocytes responsible for the synchronous excitation and contraction of the ventricles. Computational modeling, experimental animal studies, and intracardiac electrical recordings from patients with heritable and acquired forms of heart disease suggest that Purkinje cells (PCs) may also serve as critical triggers of life-threatening arrhythmias. Nonetheless, owing to the difficulty in isolating and studying this rare population of cells, the precise role of PC in arrhythmogenesis and the underlying molecular mechanisms responsible for their proarrhythmic behavior are not fully characterized. Conceptually, a stem cell-based model system might facilitate studies of PC-dependent arrhythmia mechanisms and serve as a platform to test novel therapeutics. Here, we describe the generation of murine embryonic stem cells (ESC) harboring pan-cardiomyocyte and PC-specific reporter genes. We demonstrate that the dual reporter gene strategy may be used to identify and isolate the rare ESC-derived PC (ESC-PC) from a mixed population of cardiogenic cells. ESC-PC display transcriptional signatures and functional properties, including action potentials, intracellular calcium cycling, and chronotropic behavior comparable to endogenous PC. Our results suggest that stem-cell derived PC are a feasible new platform for studies of developmental biology, disease pathogenesis, and screening for novel antiarrhythmic therapies. PMID:25524238

  8. Cardiac glycoside-induced cell death and Rho/Rho kinase pathway: Implication of different regulation in cancer cell lines.

    PubMed

    Özdemir, Aysun; Şimay, Yaprak Dilber; İbişoğlu, Burçin; Yaren, Biljana; Bülbül, Döne; Ark, Mustafa

    2016-05-01

    Previously, we demonstrated that the Rho/ROCK pathway is involved in ouabain-induced apoptosis in HUVEC. In the current work, we investigated whether the Rho/ROCK pathway is functional during cardiac glycosides-induced cytotoxic effects in cancer cell lines, as well as in non-tumor cells. For that purpose, we evaluated the role of ROCK activation in bleb formation and cell migration over upstream and downstream effectors in addition to ROCK cleavage after cardiac glycosides treatment. All three cardiac glycosides (ouabain, digoxin and bufalin) induced cell death in HeLa and HepG2 cells and increased the formation of blebbing in HeLa cells. In contrast to our previous study, ROCK inhibitor Y27632 did not prevent bleb formation. Observation of ROCK II cleavage after ouabain, digoxin and oxaliplatin treatments in HeLa and/or HepG2 cells suggested that cleavage is independent of cell type and cell death induction. While inhibiting cleavage of ROCK II by the caspase inhibitors z-VAD-fmk, z-VDVAD-fmk and z-DEVD-fmk, evaluation of caspase 2 siRNA ineffectiveness on this truncation indicated that caspase-dependent ROCK II cleavage is differentially regulated in cancer cell lines. In HeLa cells, ouabain induced the activation of ROCK, although it did not induce phosphorylation of ERM, an upstream effector. While Y27632 inhibited the migration of HeLa cells, 10nM ouabain had no effect on cell migration. In conclusion, these findings indicate that the Rho/ROCK pathway is regulated differently in cancer cell lines compared to normal cells during cardiac glycosides-induced cell death. PMID:27017918

  9. pH-Sensitive and Thermosensitive Hydrogels as Stem-Cell Carriers for Cardiac Therapy.

    PubMed

    Li, Zhenqing; Fan, Zhaobo; Xu, Yanyi; Lo, Wilson; Wang, Xi; Niu, Hong; Li, Xiaofei; Xie, Xiaoyun; Khan, Mahmood; Guan, Jianjun

    2016-05-01

    Stem-cell therapy has the potential to regenerate damaged heart tissue after a heart attack. Injectable hydrogels may be used as stem-cell carriers to improve cell retention in the heart tissue. However, current hydrogels are not ideal to serve as cell carriers because most of them block blood vessels after solidification. In addition, these hydrogels have a relatively slow gelation rate (typically >60 s), which does not allow them to quickly solidify upon injection, so as to efficiently hold cells in the heart tissue. As a result, the hydrogels and cells are squeezed out of the tissue, leading to low cell retention. To address these issues, we have developed hydrogels that can quickly solidify at the pH of an infarcted heart (6-7) at 37 °C but cannot solidify at the pH of blood (7.4) at 37 °C. These hydrogels are also clinically attractive because they can be injected through catheters commonly used for minimally invasive surgeries. The hydrogels were synthesized by free-radical polymerization of N-isopropylacrylamide, propylacrylic acid, hydroxyethyl methacrylate-co-oligo(trimethylene carbonate), and methacrylate poly(ethylene oxide) methoxy ester. Hydrogel solutions were injectable through 0.2-mm-diameter catheters at pH 8.0 at 37 °C, and they can quickly form solid gels under pH 6.5 at 37 °C. All of the hydrogels showed pH-dependent degradation and mechanical properties with less mass loss and greater complex shear modulus at pH 6.5 than at pH 7.4. When cardiosphere-derived cells (CDCs) were encapsulated in the hydrogels, the cells were able to survive during a 7-day culture period. The surviving cells were differentiated into cardiac cells, as evidenced by the expression of cardiac markers at both the gene and protein levels, such as cardiac troponin T, myosin heavy chain α, calcium channel CACNA1c, cardiac troponin I, and connexin 43. The gel integrity was found to largely affect CDC cardiac differentiation. These results suggest that the developed dual

  10. Autologous Transplantation of Bone Marrow Adult Stem Cells for the Treatment of Idiopathic Dilated Cardiomyopathy

    PubMed Central

    Westphal, Ricardo João; Bueno, Ronaldo Rocha Loures; Galvão, Paulo Bezerra de Araújo; Zanis Neto, José; Souza, Juliano Mendes; Guérios, Ênio Eduardo; Senegaglia, Alexandra Cristina; Brofman, Paulo Roberto; Pasquini, Ricardo; da Cunha, Claudio Leinig Pereira

    2014-01-01

    Background Morbimortality in patients with dilated idiopathic cardiomyopathy is high, even under optimal medical treatment. Autologous infusion of bone marrow adult stem cells has shown promising preliminary results in these patients. Objective Determine the effectiveness of autologous transplantation of bone marrow adult stem cells on systolic and diastolic left ventricular function, and on the degree of mitral regurgitation in patients with dilated idiopathic cardiomyopathy in functional classes NYHA II and III. Methods We administered 4,54 x 108 ± 0,89 x 108 bone marrow adult stem cells into the coronary arteries of 24 patients with dilated idiopathic cardiomyopathy in functional classes NYHA II and III. Changes in functional class, systolic and diastolic left ventricular function and degree of mitral regurgitation were assessed after 3 months, 6 months and 1 year. Results During follow-up, six patients (25%) improved functional class and eight (33.3%) kept stable. Left ventricular ejection fraction improved 8.9%, 9.7% e 13.6%, after 3, 6 and 12 months (p = 0.024; 0.017 and 0.018), respectively. There were no significant changes neither in diastolic left ventricular function nor in mitral regurgitation degree. A combined cardiac resynchronization and implantable cardioversion defibrillation was implanted in two patients (8.3%). Four patients (16.6%) had sudden death and four patients died due to terminal cardiac failure. Average survival of these eight patients was 2.6 years. Conclusion Intracoronary infusion of bone marrow adult stem cells was associated with an improvement or stabilization of functional class and an improvement in left ventricular ejection fraction, suggesting the efficacy of this intervention. There were no significant changes neither in left ventricular diastolic function nor in the degree of mitral regurgitation. PMID:25590932

  11. TBX1 Represses Vegfr2 Gene Expression and Enhances the Cardiac Fate of VEGFR2+ Cells

    PubMed Central

    Lania, Gabriella; Ferrentino, Rosa; Baldini, Antonio

    2015-01-01

    The T-box transcription factor TBX1 has critical roles in maintaining proliferation and inhibiting differentiation of cardiac progenitor cells of the second heart field (SHF). Haploinsufficiency of the gene that encodes it is a cause of congenital heart disease. Here, we developed an embryonic stem (ES) cell-based model in which Tbx1 expression can be modulated by tetracycline. Using this model, we found that TBX1 down regulates the expression of VEGFR2, and we confirmed this finding in vivo during embryonic development. In addition, we found a Vegfr2 domain of expression, not previously described, in the posterior SHF and this expression is extended by loss of Tbx1. VEGFR2 has been previously described as a marker of a subpopulation of cardiac progenitors. Clonal analysis of ES-derived VEGFR2+ cells indicated that 12.5% of clones expressed three markers of cardiac lineage (cardiomyocyte, smooth muscle and endothelium). However, a pulse of Tbx1 expression was sufficient to increase the percentage to 20.8%. In addition, the percentage of clones expressing markers of multiple cardiac lineages increased from 41.6% to 79.1% after Tbx1 pulse. These results suggest that TBX1 plays a role in maintaining a progenitor state in VEGFR2+ cells. PMID:26382615

  12. Enhanced Effect of Human Cardiac Stem Cells and Bone Marrow Mesenchymal Stem Cells to Reduce Infarct Size and Restore Cardiac Function after Myocardial Infarction

    PubMed Central

    Williams, Adam R.; Hatzistergos, Konstantinos E.; Addicott, Benjamin; McCall, Fred; Carvalho, Decio; Suncion, Viky; Morales, Azorides R.; Silva, Jose Da; Sussman, Mark A.; Heldman, Alan W.; Hare, Joshua M.

    2013-01-01

    Background As mesenchymal stem cells (MSCs) induce proliferation and differentiation of c-kit+ cardiac stem cells (CSCs) in vivo and in vitro, we hypothesized that combining human (h)MSCs with c-kit+ hCSCs produces greater infarct size reduction compared to either cell administered alone after MI. Methods and Results Yorkshire swine underwent balloon occlusion of the LAD coronary artery followed by reperfusion, and were immunosuppressed after MI with cyclosporine and methylprednisolone. Intramyocardial injection of either: combination hCSCs/hMSCs (1M/200M, n=5), hCSCs alone (1M, n=5), hMSCs alone (200M, n=5), or placebo (PBS, n=5) was administered to the infarct border zones at 14 days post-MI. Phenotypic response to cell therapy was assessed by cardiac MRI and micromanometer conductance catheterization hemodynamics. While each cell therapy group had reduced MI size relative to placebo (p<0.05), the MI size reduction was 2-fold greater in combination vs. either cell therapy alone (p<0.05). Accompanying enhanced MI size reduction was substantial improvement in LV chamber compliance (end-diastolic pressure volume relationship, p<0.01) and contractility (preload recruitable stroke work and dP/dtmax, p<0.05) in combination treated swine. EF was restored to baseline in cell treated pigs, while placebo pigs had persistently depressed LV function (p<0.05). Immunohistochemistry showed 7-fold enhanced engraftment of stem cells in the combination therapy group vs. either cell type alone (P<0.001). Conclusions Combining hMSCs and hCSCs as a cell therapeutic enhances scar size reduction, and restores diastolic and systolic function toward normal after MI. Taken together these findings illustrate important biological interactions between c-kit+ CSCs and MSCs that enhance cell-based therapeutic responses. PMID:23224061

  13. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

    SciTech Connect

    Zhao, Zhuo; Wang, Hao; Lin, Marina; Groban, Leanne

    2015-03-27

    Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression.

  14. Self-Healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy.

    PubMed

    Dong, Ruonan; Zhao, Xin; Guo, Baolin; Ma, Peter X

    2016-07-13

    Cell therapy is a promising strategy to regenerate cardiac tissue for myocardial infarction. Injectable hydrogels with conductivity and self-healing ability are highly desirable as cell delivery vehicles for cardiac regeneration. Here, we developed self-healable conductive injectable hydrogels based on chitosan-graft-aniline tetramer (CS-AT) and dibenzaldehyde-terminated poly(ethylene glycol) (PEG-DA) as cell delivery vehicles for myocardial infarction. Self-healed electroactive hydrogels were obtained after mixing CS-AT and PEG-DA solutions at physiological conditions. Rapid self-healing behavior was investigated by rheometer. Swelling behavior, morphology, mechanical strength, electrochemistry, conductivity, adhesiveness to host tissue and antibacterial property of the injectable hydrogels were fully studied. Conductivity of the hydrogels is ∼10(-3) S·cm(-1), which is quite close to native cardiac tissue. Proliferation of C2C12 myoblasts in the hydrogel showed its good biocompatibility. After injection, viability of C2C12 cells in the hydrogels showed no significant difference with that before injection. Two different cell types were successfully encapsulated in the hydrogels by self-healing effect. Cell delivery profile of C2C12 myoblasts and H9c2 cardiac cells showed a tunable release rate, and in vivo cell retention in the conductive hydrogels was also studied. Subcutaneous injection and in vivo degradation of the hydrogels demonstrated their injectability and biodegradability. Together, these self-healing conductive biodegradable injectable hydrogels are excellent candidates as cell delivery vehicle for cardiac repair. PMID:27311127

  15. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice.

    PubMed

    Nagata, Hiroki; Ii, Masaaki; Kohbayashi, Eiko; Hoshiga, Masaaki; Hanafusa, Toshiaki; Asahi, Michio

    2016-02-01

    Adipose-derived stem cells (AdSCs) have recently been shown to differentiate into cardiovascular lineage cells. However, little is known about the fat tissue origin-dependent differences in AdSC function and differentiation potential. AdSC-rich cells were isolated from subcutaneous, visceral, cardiac (CA), and subscapular adipose tissue from mice and their characteristics analyzed. After four different AdSC types were cultured with specific differentiation medium, immunocytochemical analysis was performed for the assessment of differentiation into cardiovascular cells. We then examined the in vitro differentiation capacity and therapeutic potential of AdSCs in ischemic myocardium using a mouse myocardial infarction model. The cell density and proliferation activity of CA-derived AdSCs were significantly increased compared with the other adipose tissue-derived AdSCs. Immunocytochemistry showed that CA-derived AdSCs had the highest appearance rates of markers for endothelial cells, vascular smooth muscle cells, and cardiomyocytes among the AdSCs. Systemic transfusion of CA-derived AdSCs exhibited the highest cardiac functional recovery after myocardial infarction and the high frequency of the recruitment to ischemic myocardium. Moreover, long-term follow-up of the recruited CA-derived AdSCs frequently expressed cardiovascular cell markers compared with the other adipose tissue-derived AdSCs. Cardiac adipose tissue could be an ideal source for isolation of therapeutically effective AdSCs for cardiac regeneration in ischemic heart diseases. Significance: The present study found that cardiac adipose-derived stem cells have a high potential to differentiate into cardiovascular lineage cells (i.e., cardiomyocytes, endothelial cells, and vascular smooth muscle cells) compared with stem cells derived from other adipose tissue such as subcutaneous, visceral, and subscapular adipose tissue. Notably, only a small number of supracardiac adipose-derived stem cells that were

  16. Care for the adult family members of victims of unexpected cardiac death.

    PubMed

    Zalenski, Robert; Gillum, Richard F; Quest, Tammie E; Griffith, James L

    2006-12-01

    More than 300,000 sudden coronary deaths occur annually in the United States, despite declining cardiovascular death rates. In 2000, deaths from heart disease left an estimated 190,156 new widows and 68,493 new widowers. A major unanswered question for emergency providers is whether the immediate care of the loved ones left behind by the deceased should be a therapeutic task for the staff of the emergency department in the aftermath of a fatal cardiac arrest. Based on a review of the literature, the authors suggest that more research is needed to answer this question, to assess the current immediate needs and care of survivors, and to find ways to improve care of the surviving family of unexpected cardiac death victims. This would include improving quality of death disclosure, improving care for relatives during cardiopulmonary resuscitation of their family member, and improved methods of referral for services for prevention of psychological and cardiovascular morbidity during bereavement. PMID:16946285

  17. Persistent Disparities in Adult Hematopoietic Cell Transplantation.

    PubMed

    Crockett, David G; Loberiza, Fausto R

    2015-09-01

    The use of large databases has provided advancements in the understanding of racial, ethnic, and socioeconomic disparities in the field of adult hematopoietic cell transplants (HCT). Disparities exist on individual, institutional, and systemic levels for both allogeneic and autologous HCT. We reviewed the most recent publications that utilized large databases to elucidate disparities in HCT and placed them into historical context of the other major studies in the field. Two emerging themes were identified. These themes are persistent inequalities in both allogeneic HCT and autologous HCT for myeloma and the importance of improving homogeneity of care in HCT. Minimization of inequalities can be achieved only with an understanding of the persistent barriers that exist in the field. PMID:26104908

  18. Association between hemoglobin levels and clinical outcomes in adult patients after in-hospital cardiac arrest: a retrospective cohort study.

    PubMed

    Wang, Chih-Hung; Huang, Chien-Hua; Chang, Wei-Tien; Tsai, Min-Shan; Yu, Ping-Hsun; Wang, An-Yi; Chen, Nai-Chuan; Chen, Wen-Jone

    2016-08-01

    In addition to cardiac output, oxygen delivery is determined by the amount of oxygen carried by hemoglobin, which is estimated by the product of hemoglobin level and peripheral hemoglobin oxygen saturation (SpO2). Optimal hemoglobin concentration for post-cardiac arrest syndrome (PCAS) has not yet been investigated thoroughly. We conducted a retrospective observational study in a single medical center. We included adult patients between 2006 and 2012 who experienced in-hospital cardiac arrest, and achieved sustained return of spontaneous circulation (ROSC). We used multivariable logistic regression analysis to identify factors associated with favorable neurological status at hospital discharge, defined as a score of 1 or 2 on the Cerebral Performance Category scale. Minimum hemoglobin concentration and SpO2 during the initial 24 h after ROSC were used for analysis. Anemia was defined by the World Health Organization criteria as a hemoglobin concentration <12 g/dL in women and <13 g/dL in men. Of the 426 patients included in our analysis, 387 patients (90.8 %) met the criteria for anemia. The mean minimum hemoglobin concentration among all the patients was 9.2 g/dL. The product of hemoglobin × SpO2 was correlated with a favorable neurological outcome (odds ratio 1.003, 95 % confidence interval 1.002-1.004). According to recommended SpO2 by resuscitation guidelines (94-98 %), we calculated the corresponding range of minimum required hemoglobin concentration to be 8.6-9.0 g/dL for a favorable neurological outcome. Anemia common among PCAS patients. Neurological outcome in PCAS might be correlated with hemoglobin concentration following resuscitation. PMID:26758060

  19. Genesis of myocardial repair with cardiac progenitor cells and tissue engineering

    PubMed Central

    Sim, Eugene K W; Haider, Husnain Kh; Lila, Nermine; Schussler, Olivier; Chachques, Juan C; Ye, Lei

    2010-01-01

    Background There is mounting evidence to suggest that the heart has regenerative potential in the event of myocardial injury. Recent studies have shown that a resident population of cardiac progenitor cells (CPCs) in the heart contains both vasculogenic and myogenic lineages. CPCs are able to migrate to the site of injury in the heart for participation in the healing process. The resident CPCs in the heart may also be activated through outside pharmacological intervention to promote their participation in the intrinsic repair process. In the light of these characteristics, CPCs provide a logical source for the heart cell therapy. During the regenerative cardiac process, stem cell niches (a specialised environment surrounding stem cells) provide crucial support needed for their maintenance. Discussion Compromised niche function may lead to the selection of stem cells that no longer depend on self-renewal factors produced by its environment. The objective of stem cell transplantation associated with tissue-engineered approaches is to create a new modality in the treatment of heart failure. The use of efficient scaffolds will aid to re-establish a favourable microenvironment for stem cell survival, multiplication, differentiation and function. Cardiac tissue engineering using natural and/or synthetic materials in this regard provides a novel possibility in cardiovascular therapeutics. PMID:27325955

  20. Risks of packed red blood cell transfusion in patients undergoing cardiac surgery.

    PubMed

    Gerber, David R

    2012-12-01

    Packed red blood cell (PRBC) transfusion is common in patients undergoing cardiac surgery. Evidence has accumulated demonstrating that such patients can tolerate relatively low hemoglobins, and an extensive body of literature has developed demonstrating that patients undergoing such surgery who receive PRBC are at risk for several adverse outcomes including increased mortality, atrial fibrillation, and more postoperative infections, as well as numerous other complications. The PubMed database was searched for the English language literature on the topic of PRBC transfusion and outcomes in patients undergoing cardiac surgery, as well as alternatives to this intervention. Data were reviewed to assess the impact of transfusion in patients undergoing cardiac surgery on mortality, cardiac, infectious, and pulmonary, as well as a variety of miscellaneous complications. Patients receiving PRBC were consistently identified as being at higher risk for complications in all categories. The limited prospective data were consistent with the retrospective data, which comprised most of the literature. The preponderance of the literature suggests that patients undergoing cardiac surgery can tolerate lower hemoglobin/hematocrit values than traditionally appreciated. Most published data also indicate that PRBC transfusion should be reserved for patients with an identifiable clinical/physiologic indication fir this intervention, consistent with recent specialty society guidelines. PMID:22762927

  1. The tight junction protein CAR regulates cardiac conduction and cell–cell communication

    PubMed Central

    Lisewski, Ulrike; Shi, Yu; Wrackmeyer, Uta; Fischer, Robert; Chen, Chen; Schirdewan, Alexander; Jüttner, Rene; Rathjen, Fritz; Poller, Wolfgang; Radke, Michael H.; Gotthardt, Michael

    2008-01-01

    The Coxsackievirus-adenovirus receptor (CAR) is known for its role in virus uptake and as a protein of the tight junction. It is predominantly expressed in the developing brain and heart and reinduced upon cardiac remodeling in heart disease. So far, the physiological functions of CAR in the adult heart are largely unknown. We have generated a heart-specific inducible CAR knockout (KO) and found impaired electrical conduction between atrium and ventricle that increased with progressive loss of CAR. The underlying mechanism relates to the cross talk of tight and gap junctions with altered expression and localization of connexins that affect communication between CAR KO cardiomyocytes. Our results indicate that CAR is not only relevant for virus uptake and cardiac remodeling but also has a previously unknown function in the propagation of excitation from the atrium to the ventricle that could explain the association of arrhythmia and Coxsackievirus infection of the heart. PMID:18794341

  2. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo

    PubMed Central

    Kokkinopoulos, Ioannis; Ishida, Hidekazu; Saba, Rie; Ruchaya, Prashant; Cabrera, Claudia; Struebig, Monika; Barnes, Michael; Terry, Anna; Kaneko, Masahiro; Shintani, Yasunori; Coppen, Steven; Shiratori, Hidetaka; Ameen, Torath; Mein, Charles; Hamada, Hiroshi; Suzuki, Ken; Yashiro, Kenta

    2015-01-01

    In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study. PMID:26469858

  3. [Pulmonary complications in adult sickle cell disease].

    PubMed

    Maître, B; Mekontso-Dessap, A; Habibi, A; Bachir, D; Parent, F; Godeau, B; Galacteros, F

    2011-02-01

    Sickle cell disease is an autosomal genetic condition which represents the most frequent genetic disease in Île-de-France and Caribbean islands. The main clinical manifestations can be divided into infectious disease, hemolytic anemia and vaso-occlusive events. Pulmonary complications represent 20 to 30% of mortality due to sickle cell and can be divided into acute and chronic events. Acute chest syndrome (ACS) is an acute lung injury often preceded by a vaso-occlusive crisis and triggered by different factors including: hypoventilation, pulmonary infectious disease and vascular occlusions. These occlusions can be secondary to fat embolism, thrombosis or sickling. Treatment is mainly supportive combining oxygen supplementation adequate hydration analgesia and sedation. Exchange transfusion may be indicated in severe forms of ACS, characterized by a right ventricular dysfunction and acute respiratory failure. Pulmonary hypertension is the most serious chronic complication. Its frequency is estimated at 6% in adult patients and is more often described in patients with venous ulcers and higher levels of chronic hemolysis. Prognosis is poor with 12.5% of patients dying in the first two years following diagnosis irrespective of the actual pulmonary artery pressure level. There are currently limited data on the effects of any treatment modality. Other respiratory complications such as sleep disorders and nocturnal hypoxemia, infiltrative lung disease and exertional dyspnea are described and should be considered. PMID:21402228

  4. [Progress in treating diabetes mellitus with adult stem cells].

    PubMed

    Zhang, Lixin; Teng, Chunbo; An, Tiezhu

    2008-02-01

    Diabetes mellitus is a metabolic diseases, mainly including type 1 and type 2 diabetes. Treatment for type 1 and part of type 2 often involves regular insulin injection. However, this treatment neither precisely controls the blood sugar levels, nor prevents the diabetes complications. Transplantation of islets of Langerhans offers an attractive strategy for diabetes therapies, but its wide application has been limited by donor shortage and immunological rejection after transplantation. Stem cells with strong proliferation capacity and multipotential may be potential cell sources in diabetes therapies. For this, adult stem cells are interesting because of absence of teratoma formation and ethnical problems. Adult pancreatic stem cells (PSCs) really exist and could produce insulin-secreting cells both under the condition of pancreatic injury and in vitro culture, but lack of effective markers to enrich PSCs hampers the studies of exploring the expanding and differentiating conditions in vitro. Some other adult stem cells, such as hepatic stem cells, marrow stem cells or intestine stem cells, were also suggested to transdifferentiate into insulin-producing cells under special culture conditions in vitro or by genetic modifications. Moreover, transplanting these adult stem cells-derived insulin-secreting cells into the diabetic mouse could cure diabetes. Thus, adult stem cells would supply the abundant beta-cell sources for cell replacement therapy of diabetes. PMID:18464596

  5. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction.

    PubMed

    Gaetani, Roberto; Feyen, Dries A M; Verhage, Vera; Slaats, Rolf; Messina, Elisa; Christman, Karen L; Giacomello, Alessandro; Doevendans, Pieter A F M; Sluijter, Joost P G

    2015-08-01

    Cardiac cell therapy suffers from limitations related to poor engraftment and significant cell death after transplantation. In this regard, ex vivo tissue engineering is a tool that has been demonstrated to increase cell retention and survival. The aim of our study was to evaluate the therapeutic potential of a 3D-printed patch composed of human cardiac-derived progenitor cells (hCMPCs) in a hyaluronic acid/gelatin (HA/gel) based matrix. hCMPCs were printed in the HA/gel matrix (30 × 10(6) cells/ml) to form a biocomplex made of six perpendicularly printed layers with a surface of 2 × 2 cm and thickness of 400 μm, in which they retained their viability, proliferation and differentiation capability. The printed biocomplex was transplanted in a mouse model of myocardial infarction (MI). The application of the patch led to a significant reduction in adverse remodeling and preservation of cardiac performance as was shown by both MRI and histology. Furthermore, the matrix supported the long-term in vivo survival and engraftment of hCMPCs, which exhibited a temporal increase in cardiac and vascular differentiation markers over the course of the 4 week follow-up period. Overall, we developed an effective and translational approach to enhance hCMPC delivery and action in the heart. PMID:26043062

  6. Galectin-1 Prevents Infection and Damage Induced by Trypanosoma cruzi on Cardiac Cells

    PubMed Central

    Benatar, Alejandro F.; García, Gabriela A.; Bua, Jacqeline; Cerliani, Juan P.; Postan, Miriam; Tasso, Laura M.; Scaglione, Jorge; Stupirski, Juan C.; Toscano, Marta A.

    2015-01-01

    Background Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection. Methodology and Principal Findings Here we investigated the contribution of galectin–1 (Gal–1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL–1 cardiac cells to Gal–1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal–1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL–1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal–1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal–1 to the cell surface. Consistent with these data, Gal–1 deficient (Lgals1-/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain. Conclusion/Significance Our results indicate that Gal–1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions. PMID:26451839

  7. Notch-1 Mediated Cardiac Protection following Embryonic and Induced Pluripotent Stem Cell Transplantation in Doxorubicin-Induced Heart Failure

    PubMed Central

    Merino, Hilda; Singla, Dinender K.

    2014-01-01

    Doxorubicin (DOX), an effective chemotherapeutic drug used in the treatment of various cancers, is limited in its clinical applications due to cardiotoxicity. Recent studies suggest that transplanted adult stem cells inhibit DOX-induced cardiotoxicity. However, the effects of transplanted embryonic stem (ES) and induced pluripotent stem (iPS) cells are completely unknown in DOX-induced left ventricular dysfunction following myocardial infarction (MI). In brief, C57BL/6 mice were divided into five groups: Sham, DOX-MI, DOX-MI+cell culture (CC) media, DOX-MI+ES cells, and DOX-MI+iPS cells. Mice were injected with cumulative dose of 12 mg/kg of DOX and 2 weeks later, MI was induced by coronary artery ligation. Following ligation, 5×104 ES or iPS cells were delivered into the peri-infarct region. At day 14 post-MI, echocardiography was performed, mice were sacrificed, and hearts were harvested for further analyses. Our data reveal apoptosis was significantly inhibited in ES and iPS cell transplanted hearts compared with respective controls (DOX-MI+ES: 0.48±0.06% and DOX-MI+iPS: 0.33±0.05% vs. DOX-MI: 1.04±0.07% and DOX-MI+CC: 0.96±0.21%; p<0.05). Furthermore, a significant increase in levels of Notch-1 (p<0.05), Hes1 (p<0.05), and pAkt (p<0.05) were observed whereas a decrease in the levels of PTEN (p<0.05), a negative regulator of Akt, was evident following stem cell transplantation. Moreover, hearts transplanted with stem cells demonstrated decreased vascular and interstitial fibrosis (p<0.05) as well as MMP-9 expression (p<0.01) compared with controls. Additionally, heart function was significantly improved (p<0.05) in both cell-transplanted groups. In conclusion, our data show that transplantation of ES and iPS cells blunt DOX-induced adverse cardiac remodeling, which is associated with improved cardiac function, and these effects are mediated by the Notch pathway. PMID:24988225

  8. Novel biomarkers for early diagnosis of acute kidney injury after cardiac surgery in adults

    PubMed Central

    Kališnik, Jurij Matija

    2016-01-01

    Acute kidney injury after cardiac surgery with cardiopulmonary bypass is a common and serious complication and it is associated with increased morbidity and mortality. Diagnosis of acute kidney injury is based on the serum creatinine levels which rise several hours to days after the initial injury. Thus, novel biomarkers that will enable faster diagnosis are needed in clinical practice. There are numerous urine and serum proteins that indicate kidney injury and are under extensive research. Despite promising basic research results and assembled data, which indicate superiority of some biomarkers to creatinine, we are still awaiting clinical application. PMID:27212976

  9. The GATA-4 transcription factor transactivates the cardiac muscle-specific troponin C promoter-enhancer in nonmuscle cells.

    PubMed Central

    Ip, H S; Wilson, D B; Heikinheimo, M; Tang, Z; Ting, C N; Simon, M C; Leiden, J M; Parmacek, M S

    1994-01-01

    The unique contractile phenotype of cardiac myocytes is determined by the expression of a set of cardiac muscle-specific genes. By analogy to other mammalian developmental systems, it is likely that the coordinate expression of cardiac genes is controlled by lineage-specific transcription factors that interact with promoter and enhancer elements in the transcriptional regulatory regions of these genes. Although previous reports have identified several cardiac muscle-specific transcriptional elements, relatively little is known about the lineage-specific transcription factors that regulate these elements. In this report, we demonstrate that the slow/cardiac muscle-specific troponin C (cTnC) enhancer contains a specific binding site for the lineage-restricted zinc finger transcription factor GATA-4. This GATA-4-binding site is required for enhancer activity in primary cardiac myocytes. Moreover, the cTnC enhancer can be transactivated by overexpression of GATA-4 in non-cardiac muscle cells such as NIH 3T3 cells. In situ hybridization studies demonstrate that GATA-4 and cTnC have overlapping patterns of expression in the hearts of postimplantation mouse embryos and that GATA-4 gene expression precedes cTnC expression. Indirect immunofluorescence reveals GATA-4 expression in cultured cardiac myocytes from neonatal rats. Taken together, these results are consistent with a model in which GATA-4 functions to direct tissue-specific gene expression during mammalian cardiac development. Images PMID:7935467

  10. Twist1 Controls a Cell-Specification Switch Governing Cell Fate Decisions within the Cardiac Neural Crest

    PubMed Central

    Vincentz, Joshua W.; Firulli, Beth A.; Lin, Andrea; Spicer, Douglas B.; Howard, Marthe J.; Firulli, Anthony B.

    2013-01-01

    Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. PMID:23555309

  11. Meta-Analyses of Human Cell-Based Cardiac Regeneration Therapies: Controversies in Meta-Analyses Results on Cardiac Cell-Based Regenerative Studies.

    PubMed

    Gyöngyösi, Mariann; Wojakowski, Wojciech; Navarese, Eliano P; Moye, Lemuel À

    2016-04-15

    In contrast to multiple publication-based meta-analyses involving clinical cardiac regeneration therapy in patients with recent myocardial infarction, a recently published meta-analysis based on individual patient data reported no effect of cell therapy on left ventricular function or clinical outcome. A comprehensive review of the data collection, statistics, and the overall principles of meta-analyses provides further clarification and explanation for this controversy. The advantages and pitfalls of different types of meta-analyses are reviewed here. Each meta-analysis approach has a place when pivotal clinical trials are lacking and sheds light on the magnitude of the treatment in a complex healthcare field. PMID:27081108

  12. Optogenetics-enabled assessment of viral gene and cell therapy for restoration of cardiac excitability

    PubMed Central

    Ambrosi, Christina M.; Boyle, Patrick M.; Chen, Kay; Trayanova, Natalia A.; Entcheva, Emilia

    2015-01-01

    Multiple cardiac pathologies are accompanied by loss of tissue excitability, which leads to a range of heart rhythm disorders (arrhythmias). In addition to electronic device therapy (i.e. implantable pacemakers and cardioverter/defibrillators), biological approaches have recently been explored to restore pacemaking ability and to correct conduction slowing in the heart by delivering excitatory ion channels or ion channel agonists. Using optogenetics as a tool to selectively interrogate only cells transduced to produce an exogenous excitatory ion current, we experimentally and computationally quantify the efficiency of such biological approaches in rescuing cardiac excitability as a function of the mode of application (viral gene delivery or cell delivery) and the geometry of the transduced region (focal or spatially-distributed). We demonstrate that for each configuration (delivery mode and spatial pattern), the optical energy needed to excite can be used to predict therapeutic efficiency of excitability restoration. Taken directly, these results can help guide optogenetic interventions for light-based control of cardiac excitation. More generally, our findings can help optimize gene therapy for restoration of cardiac excitability. PMID:26621212

  13. Ionizing Radiation Impacts on Cardiac Differentiation of Mouse Embryonic Stem Cells

    PubMed Central

    Helm, Alexander; Arrizabalaga, Onetsine; Pignalosa, Diana; Schroeder, Insa S.; Durante, Marco

    2016-01-01

    Little is known about the effects of ionizing radiation on the earliest stages of embryonic development although it is well recognized that ionizing radiation is a natural part of our environment and further exposure may occur due to medical applications. The current study addresses this issue using D3 mouse embryonic stem cells as a model system. Cells were irradiated with either X-rays or carbon ions representing sparsely and densely ionizing radiation and their effect on the differentiation of D3 cells into spontaneously contracting cardiomyocytes through embryoid body (EB) formation was measured. This study is the first to demonstrate that ionizing radiation impairs the formation of beating cardiomyocytes with carbon ions being more detrimental than X-rays. However, after prolonged culture time, the number of beating EBs derived from carbon ion irradiated cells almost reached control levels indicating that the surviving cells are still capable of developing along the cardiac lineage although with considerable delay. Reduced EB size, failure to downregulate pluripotency markers, and impaired expression of cardiac markers were identified as the cause of compromised cardiomyocyte formation. Dysregulation of cardiac differentiation was accompanied by alterations in the expression of endodermal and ectodermal markers that were more severe after carbon ion irradiation than after exposure to X-rays. In conclusion, our data show that carbon ion irradiation profoundly affects differentiation and thus may pose a higher risk to the early embryo than X-rays. PMID:26506910

  14. Caveolae protect endothelial cells from membrane rupture during increased cardiac output

    PubMed Central

    Cheng, Jade P.X.; Mendoza-Topaz, Carolina; Howard, Gillian; Chadwick, Jessica; Shvets, Elena; Cowburn, Andrew S.; Dunmore, Benjamin J.; Crosby, Alexi; Morrell, Nicholas W.

    2015-01-01

    Caveolae are strikingly abundant in endothelial cells, yet the physiological functions of caveolae in endothelium and other tissues remain incompletely understood. Previous studies suggest a mechanoprotective role, but whether this is relevant under the mechanical forces experienced by endothelial cells in vivo is unclear. In this study we have sought to determine whether endothelial caveolae disassemble under increased hemodynamic forces, and whether caveolae help prevent acute rupture of the plasma membrane under these conditions. Experiments in cultured cells established biochemical assays for disassembly of caveolar protein complexes, and assays for acute loss of plasma membrane integrity. In vivo, we demonstrate that caveolae in endothelial cells of the lung and cardiac muscle disassemble in response to acute increases in cardiac output. Electron microscopy and two-photon imaging reveal that the plasma membrane of microvascular endothelial cells in caveolin 1−/− mice is much more susceptible to acute rupture when cardiac output is increased. These data imply that mechanoprotection through disassembly of caveolae is important for endothelial function in vivo. PMID:26459598

  15. Cardiac valve cells and their microenvironment—insights from in vitro studies

    PubMed Central

    Wang, Huan; Leinwand, Leslie A.; Anseth, Kristi S.

    2015-01-01

    During every heartbeat, cardiac valves open and close coordinately to control unidirectional flow of blood. In this dynamically challenging environment, resident valve cells actively maintain homeostasis, but the signalling between cells and their microenvironment is complex. When this homeostasis is disrupted and valve opening obstructed, haemodynamic profiles can be altered and lead to impaired cardiac function. Currently, late stages of cardiac valve diseases are treated surgically, as there are no known drug therapies to reverse or halt disease progression. Consequently investigators have sought to understand the molecular and cellular mechanisms of valvular diseases usi in vitro cell culture systems and biomaterials scaffolds that can mimic extracellular microenvironment. In this Review we describe how signals in the extra cellular matrix regulate valve cell function. We propose that the cellular context is a critical factor when studying the molecular basis of valvular diseases in vitro, and one should consider how the surrounding matrix might influence cell signalling and functional outcomes in the valve. Investigators need to build a systems level understanding of the complex signalling network involved in valve regulation, to facilitate drug target identification and promote in situ or ex vivo heart valve regeneration. PMID:25311230

  16. c-kit(+) cells: the tell-tale heart of cardiac regeneration?

    PubMed

    Nigro, Patrizia; Perrucci, Gianluca Lorenzo; Gowran, Aoife; Zanobini, Marco; Capogrossi, Maurizio C; Pompilio, Giulio

    2015-05-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the developed world. Although ongoing therapeutic strategies ameliorate symptoms and prolong life for patients with cardiovascular diseases, they do not solve the critical issue related to the loss of cardiac tissue. Accordingly, stem/progenitor cell therapy has emerged as a paramount approach for cardiac repair and regeneration. In this regard, c-kit(+) cells have animated much interest and controversy. These cells are self-renewing, clonogenic, and multipotent and display a noteworthy potential to differentiate into all cardiovascular lineages. However, their functional contribution to cardiomyocyte turnover is one of the centrally debated issues concerning their regenerative potential. Regardless, plentiful preclinical and clinical studies have been conducted which provide evidence for the capacity of c-kit(+) cells to improve cardiac function. The purpose of this review is to give a comprehensive, impartial, critical description and evaluation of the literature on c-kit(+) cells from bench to bedside in order to address their true potential, benefits and controversies. PMID:25575564

  17. Adult T-cell leukemia-lymphoma.

    PubMed

    Tsukasaki, Kunihiro

    2012-04-01

    Adult T-cell leukemia-lymphoma (ATL) was first described in 1977 as a distinct clinico-pathological entity with a suspected viral etiology. Subsequently, a novel RNA retrovirus, human T-cell leukemia/lymphotropic virus type 1 (HTLV-1) was isolated from a cell line established from the leukemic cells of an ATL patient, and the finding of a clear association with ATL led to its inclusion among human carcinogenic pathogens. The three major routes of HTLV-1 transmission are mother-to-child infections via breast milk, sexual intercourse, and blood transfusions. HTLV-1 infection early in life, presumably from breast feeding, is crucial in the development of ATL. The diversity in clinical features and prognosis of patients with this disease has led to its subtype-classification into four categories, acute, lymphoma, chronic, and smoldering types defined by organ involvement, and LDH and calcium values. In cases of acute, lymphoma, or unfavorable chronic subtypes (aggressive ATL), intensive chemotherapy such as VCAP-AMP-VECP is usually recommended. In cases of favorable chronic or smoldering ATL (indolent ATL), watchful waiting until disease progression has been recommended although the long term prognosis was inferior to those of, for instance, chronic lymphoid leukemia. Retrospective analysis suggested that the combination of interferon alpha and zidovudine was apparently promising for the treatment of ATL, especially for types with leukemic manifestation. Allogeneic hematopoietic stem cell transplantation is also promising for the treatment of aggressive ATL possibly reflecting graft vs. ATL effect. Several new agent-trials for ATL are ongoing and in preparation, including a defucosylated humanized anti-CC chemokine receptor 4 monoclonal antibody. Two steps should be considered for the prevention of HTLV-1-associated ATL. The first is the prevention of HTLV-1 infections and the second is the prevention of ATL among HTLV-1 carriers. So far, no agent has been found to be

  18. Cancer survivorship: cardiotoxic therapy in the adult cancer patient; cardiac outcomes with recommendations for patient management.

    PubMed

    Steingart, Richard M; Yadav, Nandini; Manrique, Carlos; Carver, Joseph R; Liu, Jennifer

    2013-12-01

    Many types of cancer are now curable or, if not cured, becoming a chronic illness. In 2012, it was estimated that there were more than 13,500,000 cancer survivors in the United States. Late outcomes of these survivors are increasingly related to cardiovascular disease, either as a consequence of the direct effects of cancer therapy or its adverse effects on traditional cardiac risk factors (eg, obesity, hypertension, dyslipidemia, and diabetes mellitus). This article describes the therapies that have led to advances in cancer survival and the acute and chronic cardiovascular toxicities associated with these therapies. Recommendations are made for the surveillance and management of cancer survivors. Published guidelines on the subject of cardio-oncology are reviewed in light of clinical experience caring for these patients. To supplement this cancer-related knowledge base, appropriateness criteria and guidelines for cardiac care in the general population were extrapolated to cancer survivors. The result is a series of recommendations for surveillance and management of cardiovascular disease in cancer survivors. PMID:24331191

  19. A New Method to Stabilize C-Kit Expression in Reparative Cardiac Mesenchymal Cells

    PubMed Central

    Wysoczynski, Marcin; Dassanayaka, Sujith; Zafir, Ayesha; Ghafghazi, Shahab; Long, Bethany W.; Noble, Camille; DeMartino, Angelica M.; Brittian, Kenneth R.; Bolli, Roberto; Jones, Steven P.

    2016-01-01

    Cell therapy improves cardiac function. Few cells have been investigated more extensively or consistently shown to be more effective than c-kit sorted cells; however, c-kit expression is easily lost during passage. Here, our primary goal was to develop an improved method to isolate c-kitpos cells and maintain c-kit expression after passaging. Cardiac mesenchymal cells (CMCs) from wild-type mice were selected by polystyrene adherence properties. CMCs adhering within the first hours are referred to as rapidly adherent (RA); CMCs adhering subsequently are dubbed slowly adherent (SA). Both RA and SA CMCs were c-kit sorted. SA CMCs maintained significantly higher c-kit expression than RA cells; SA CMCs also had higher expression endothelial markers. We subsequently tested the relative efficacy of SA vs. RA CMCs in the setting of post-infarct adoptive transfer. Two days after coronary occlusion, vehicle, RA CMCs, or SA CMCs were delivered percutaneously with echocardiographic guidance. SA CMCs, but not RA CMCs, significantly improved cardiac function compared to vehicle treatment. Although the mechanism remains to be elucidated, the more pronounced endothelial phenotype of the SA CMCs coupled with the finding of increased vascular density suggest a potential pro-vasculogenic action. This new method of isolating CMCs better preserves c-kit expression during passage. SA CMCs, but not RA CMCs, were effective in reducing cardiac dysfunction. Although c-kit expression was maintained, it is unclear whether maintenance of c-kit expression per se was responsible for improved function, or whether the differential adherence property itself confers a reparative phenotype independently of c-kit. PMID:27536657

  20. A New Method to Stabilize C-Kit Expression in Reparative Cardiac Mesenchymal Cells.

    PubMed

    Wysoczynski, Marcin; Dassanayaka, Sujith; Zafir, Ayesha; Ghafghazi, Shahab; Long, Bethany W; Noble, Camille; DeMartino, Angelica M; Brittian, Kenneth R; Bolli, Roberto; Jones, Steven P

    2016-01-01

    Cell therapy improves cardiac function. Few cells have been investigated more extensively or consistently shown to be more effective than c-kit sorted cells; however, c-kit expression is easily lost during passage. Here, our primary goal was to develop an improved method to isolate c-kit(pos) cells and maintain c-kit expression after passaging. Cardiac mesenchymal cells (CMCs) from wild-type mice were selected by polystyrene adherence properties. CMCs adhering within the first hours are referred to as rapidly adherent (RA); CMCs adhering subsequently are dubbed slowly adherent (SA). Both RA and SA CMCs were c-kit sorted. SA CMCs maintained significantly higher c-kit expression than RA cells; SA CMCs also had higher expression endothelial markers. We subsequently tested the relative efficacy of SA vs. RA CMCs in the setting of post-infarct adoptive transfer. Two days after coronary occlusion, vehicle, RA CMCs, or SA CMCs were delivered percutaneously with echocardiographic guidance. SA CMCs, but not RA CMCs, significantly improved cardiac function compared to vehicle treatment. Although the mechanism remains to be elucidated, the more pronounced endothelial phenotype of the SA CMCs coupled with the finding of increased vascular density suggest a potential pro-vasculogenic action. This new method of isolating CMCs better preserves c-kit expression during passage. SA CMCs, but not RA CMCs, were effective in reducing cardiac dysfunction. Although c-kit expression was maintained, it is unclear whether maintenance of c-kit expression per se was responsible for improved function, or whether the differential adherence property itself confers a reparative phenotype independently of c-kit. PMID:27536657

  1. Cardiac AAV9 Gene Delivery Strategies in Adult Canines: Assessment by Long-term Serial SPECT Imaging of Sodium Iodide Symporter Expression

    PubMed Central

    Moulay, Gilles; Ohtani, Tomohito; Ogut, Ozgur; Guenzel, Adam; Behfar, Atta; Zakeri, Rosita; Haines, Philip; Storlie, Jimmy; Bowen, Lorna; Pham, Linh; Kaye, David; Sandhu, Gurpreet; O'Connor, Michael; Russell, Stephen; Redfield, Margaret

    2015-01-01

    Heart failure is a leading cause of morbidity and mortality, and cardiac gene delivery has the potential to provide novel therapeutic approaches. Adeno-associated virus serotype 9 (AAV9) transduces the rodent heart efficiently, but cardiotropism, immune tolerance, and optimal delivery strategies in large animals are unclear. In this study, an AAV9 vector encoding canine sodium iodide symporter (NIS) was administered to adult immunocompetent dogs via epicardial injection, coronary infusion without and with cardiac recirculation, or endocardial injection via a novel catheter with curved needle and both end- and side-holes. As NIS mediates cellular uptake of clinical radioisotopes, expression was tracked by single-photon emission computerized tomography (SPECT) imaging in addition to Western blot and immunohistochemistry. Direct epicardial or endocardial injection resulted in strong cardiac expression, whereas expression after intracoronary infusion or cardiac recirculation was undetectable. A threshold myocardial injection dose that provides robust nonimmunogenic expression was identified. The extent of transmural myocardial expression was greater with the novel catheter versus straight end-hole needle delivery. Furthermore, the authors demonstrate that cardiac NIS reporter gene expression and duration can be quantified using serial noninvasive SPECT imaging up to 1 year after vector administration. These data are relevant to efforts to develop cardiac gene delivery as heart failure therapy. PMID:25915925

  2. Cardiac AAV9 Gene Delivery Strategies in Adult Canines: Assessment by Long-term Serial SPECT Imaging of Sodium Iodide Symporter Expression.

    PubMed

    Moulay, Gilles; Ohtani, Tomohito; Ogut, Ozgur; Guenzel, Adam; Behfar, Atta; Zakeri, Rosita; Haines, Philip; Storlie, Jimmy; Bowen, Lorna; Pham, Linh; Kaye, David; Sandhu, Gurpreet; O'Connor, Michael; Russell, Stephen; Redfield, Margaret

    2015-07-01

    Heart failure is a leading cause of morbidity and mortality, and cardiac gene delivery has the potential to provide novel therapeutic approaches. Adeno-associated virus serotype 9 (AAV9) transduces the rodent heart efficiently, but cardiotropism, immune tolerance, and optimal delivery strategies in large animals are unclear. In this study, an AAV9 vector encoding canine sodium iodide symporter (NIS) was administered to adult immunocompetent dogs via epicardial injection, coronary infusion without and with cardiac recirculation, or endocardial injection via a novel catheter with curved needle and both end- and side-holes. As NIS mediates cellular uptake of clinical radioisotopes, expression was tracked by single-photon emission computerized tomography (SPECT) imaging in addition to Western blot and immunohistochemistry. Direct epicardial or endocardial injection resulted in strong cardiac expression, whereas expression after intracoronary infusion or cardiac recirculation was undetectable. A threshold myocardial injection dose that provides robust nonimmunogenic expression was identified. The extent of transmural myocardial expression was greater with the novel catheter versus straight end-hole needle delivery. Furthermore, the authors demonstrate that cardiac NIS reporter gene expression and duration can be quantified using serial noninvasive SPECT imaging up to 1 year after vector administration. These data are relevant to efforts to develop cardiac gene delivery as heart failure therapy. PMID:25915925

  3. Acquired deficiency of tafazzin in the adult heart: Impact on mitochondrial function and response to cardiac injury.

    PubMed

    Szczepanek, Karol; Allegood, Jeremy; Aluri, Hema; Hu, Ying; Chen, Qun; Lesnefsky, Edward J

    2016-04-01

    The content and composition of cardiolipin (CL) is critical for preservation of mitochondrial oxidative phosphorylation (OXPHOS) and inner membrane integrity. Tafazzin (Taz) is an enzyme responsible for remodeling of immature CL containing mixed acyl groups into the mature tetralinoleyl form (C18:2)4-CL. We hypothesized that acquired defects in Taz in the mature heart would impact remodeling of CL and augment cardiac injury. The role of acquired Taz deficiency was studied using the inducible Taz knockdown (TazKD) mouse. Taz-specific shRNA is induced by doxycycline (DOX). One day of DOX intake decreased Taz mRNA in the heart to 20% vs. DOX-treated WT. Knockdown was initiated at an adult age and was stable during long term feeding. CL phenotype was assessed by (C18:2)4-CL content and was reduced 40% vs. WT at two months of DOX. TazKD showed increased production of reactive oxygen species and increased susceptibility to permeability transition pore opening at baseline. However, OXPHOS measured using the rate of oxygen consumption was unchanged in the setting of acquired Taz deficiency. Infarct size, measured in isolated buffer-perfused Langendorff hearts following 25min. Stop flow ischemia and 60min. Reperfusion was not altered in TazKD hearts. Thus, impaired Taz-function with onset at adult age does not enhance susceptibility to ischemia-reperfusion injury. PMID:26692032

  4. Cell Phone Use by Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Bryen, Diane Nelson; Carey, Allison; Friedman, Mark

    2007-01-01

    Although cell phone use has grown dramatically, there is a gap in cell phone access between people with disabilities and the general public. The importance of cell phone use among people with intellectual disabilities and studies about use of cell phones by adults with intellectual disabilities was described. Our goal was to determine the extent…

  5. Hepatic cancer stem cells may arise from adult ductal progenitors

    PubMed Central

    Nikolaou, Kostas C; Talianidis, Iannis

    2016-01-01

    Cancer stem cells (CSCs) are defined as cells within tumors that can self-renew and differentiate into heterogeneous lineages of cancerous cells. The origin of CSCs is not well understood. Recent evidence suggests that CSCs in hepatocellular carcinoma could be generated via oncogenic transformation and partial differentiation of adult hepatic ductal progenitor cells.

  6. Acute Preconditioning of Cardiac Progenitor Cells with Hydrogen Peroxide Enhances Angiogenic Pathways Following Ischemia-Reperfusion Injury

    PubMed Central

    Pendergrass, Karl D.; Boopathy, Archana V.; Seshadri, Gokulakrishnan; Maiellaro-Rafferty, Kathryn; Che, Pao Lin; Brown, Milton E.

    2013-01-01

    There are a limited number of therapies available to prevent heart failure following myocardial infarction. One novel therapy that is currently being pursued is the implantation of cardiac progenitor cells (CPCs); however, their responses to oxidative stress during differentiation have yet to be elucidated. The objective of this study was to determine the effect of hydrogen peroxide (H2O2) treatment on CPC differentiation in vitro, as well as the effect of H2O2 preconditioning before implantation following ischemia-reperfusion (I/R) injury. CPCs were isolated and cloned from adult rat hearts, and then cultured in the absence or presence of H2O2 for 2 or 5 days. CPC survival was assessed with Annexin V, and cellular differentiation was evaluated through mRNA expression for cardiogenic genes. We found that 100 μM H2O2 decreased serum withdrawal-induced apoptosis by at least 45% following both 2 and 5 days of treatment. Moreover, 100 μM H2O2 treatment for 2 days significantly increased endothelial and smooth muscle markers compared to time-matched untreated CPCs. However, continued H2O2 treatment significantly decreased these markers. Left ventricular cardiac function was assessed 28 days after I/R and I/R with the implantation of Luciferase/GFP+ CPCs, which were preconditioned with 100 μM H2O2 for 2 days. Hearts implanted with Luciferase/GFP+ CPCs had significant improvement in both positive and negative dP/dT over I/R. Furthermore, cardiac fibrosis was significantly decreased in the preconditioned cells versus both I/R alone and I/R with control cells. We also observed a significant increase in endothelial cell density in the preconditioned CPC hearts compared to untreated CPC hearts, which also coincided with a higher density of Luciferase+ vessels. These findings suggest that preconditioning of CPCs with H2O2 for 2 days stimulates neoangiogenesis in the peri-infarct area following I/R injury and could be a viable therapeutic option to prevent heart

  7. Mesenchymal Stromal Cells but Not Cardiac Fibroblasts Exert Beneficial Systemic Immunomodulatory Effects in Experimental Myocarditis

    PubMed Central

    Miteva, Kapka; Pappritz, Kathleen; Westermann, Dirk; Schefold, Joerg C.; Fusch, Gerhard; Weithäuser, Alice; Rauch, Ursula; Becher, Peter-Moritz; Klingel, Karin; Ringe, Jochen; Kurtz, Andreas; Schultheiss, Heinz-Peter; Tschöpe, Carsten

    2012-01-01

    Systemic application of mesenchymal stromal cells (MSCs) in inflammatory cardiomyopathy exerts cardiobeneficial effects. The mode of action is unclear since a sufficient and long-acting cardiac homing of MSCs is unlikely. We therefore investigated the regulation of the immune response in coxsackievirus B3 (CVB3)-induced acute myocarditis after intravenous application of MSCs. Wildtype mice were infected with CVB3 and treated with either PBS, human MSCs or human cardiac fibroblasts intravenously 1 day after infection. Seven days after infection, MSCs could be detected in the spleen, heart, pancreas, liver, lung and kidney, whereby the highest presence was observed in the lung. MSCs increased significantly the myocardial expression of HGF and decreased the expression of the proinflammatory cytokines TNFα, IL1β and IL6 as well as the severity of myocarditis and ameliorated the left ventricular dysfunction measured by conductance catheter. MSCs upregulated the production of IFNγ in CD4+ and CD8+ cells, the number of IL10-producing regulatory T cells and the apoptosis rate of T cells in the spleen. An increased number of CD4+CD25+FoxP3 could be found in the spleen as well as in the circulation. In contrast, application of human cardiac fibroblasts had no effect on the severity of myocarditis and the systemic immune response observed after MSCs-administration. In conclusion, modulation of the immune response in extracardiac organs is associated with cardiobeneficial effects in experimental inflammatory cardiomyopathy after systemic application of MSCs. PMID:22815907

  8. Foetal bovine serum-derived exosomes affect yield and phenotype of human cardiac progenitor cell culture

    PubMed Central

    Angelini, Francesco; Ionta, Vittoria; Rossi, Fabrizio; Miraldi, Fabio; Messina, Elisa; Giacomello, Alessandro

    2016-01-01

    Introduction: Cardiac progenitor cells (CPCs) represent a powerful tool in cardiac regenerative medicine. Pre-clinical studies suggest that most of the beneficial effects promoted by the injected cells are due to their paracrine activity exerted on endogenous cells and tissue. Exosomes are candidate mediators of this paracrine effects. According to their potential, many researchers have focused on characterizing exosomes derived from specific cell types, but, up until now, only few studies have analyzed the possible in vitro effects of bovine serum-derived exosomes on cell proliferation or differentiation. Methods: The aim of this study was to analyse, from a qualitative and quantitative point of view, the in vitro effects of bovine serum exosomes on human CPCs cultured either as cardiospheres or as monolayers of cardiosphere-forming cells. Results: Effects on proliferation, yield and molecular patterning were detected. We show, for the first time, that exogenous bovine exosomes support the proliferation and migration of human cardiosphere-forming cells, and that their depletion affects cardiospheres formation, in terms of size, yield and extra-cellular matrix production. Conclusion: These results stress the importance of considering differential biological effects of exogenous cell culture supplements on the final phenotype of primary human cell cultures.

  9. Contrasting effects of cardiac glycosides on cisplatin- and etoposide-induced cell death.

    PubMed

    Kulikov, Andrey V; Slobodkina, Ekaterina A; Alekseev, Andrey V; Gogvadze, Vladimir; Zhivotovsky, Boris

    2016-07-01

    Cardiac glycosides (CGs) or cardiotonic steroids, which constitute a group of naturally occurring compounds with a steroid-like structure, can act on Na+/K+-ATPase as a receptor and activate intracellular signaling messengers leading to a variety of cellular responses. Epidemiological studies have revealed that CGs, used for the treatment of cardiac disorders, may also be beneficial as anti-cancer agents. CGs, acting in combination with other chemotherapeutic agents, may significantly alter their efficiency in relation to cancer cell elimination, causing both sensitization and an increase in cancer cell death, and in some cases resistance to chemotherapy. Here we show the ability of CGs to modulate apoptotic response to conventionally used anti-cancer drugs. In combination with etoposide, CGs digoxin may enhance cytotoxic potential, thereby allowing the chemotherapeutic dose to be decreased and minimizing toxicity and adverse reactions. Mechanisms behind this event are discussed. PMID:26854291

  10. Fibronectin is Essential for Reparative Cardiac Progenitor Cell Response Following Myocardial Infarction

    PubMed Central

    Konstandin, Mathias H.; Toko, Haruhiro; Gastelum, Grady M.; Quijada, Pearl; De La Torre, Andrea; Quintana, Mercedes; Collins, Brett; Din, Shabana; Avitabile, Daniele; Völkers, Mirko; Gude, Natalie; Fässler, Reinhard; Sussman, Mark A.

    2013-01-01

    Rationale Adoptive transfer of cardiac progenitor cells (CPCs) has entered clinical application despite limited mechanistic understanding of the endogenous response following myocardial infarction (MI). Extracellular matrix (ECM) undergoes dramatic changes after MI and therefore might be linked to CPC-mediated repair. Objective Demonstrate the significance of Fibronectin (Fn), a component of the ECM, for induction of the endogenous CPC response to MI. Methods and Results This report shows that presence of CPCs correlates with expression of Fn during cardiac development and after MI. In vivo, genetic conditional ablation of Fn blunts CPC response measured 7 days after MI through reduced proliferation and diminished survival. Attenuated vasculogenesis and cardiogenesis during recovery was evident at the end of a 12 week follow-up period. Impaired CPC-dependent reparative remodeling ultimately leads to continuous decline of cardiac function in Fn knockout animals. In vitro, Fn protects and induces proliferation of CPCs via β1-Integrin-FAK-Stat3-Pim1 but Akt-independent mechanism. Conclusion Fn is essential for endogenous CPC expansion and repair needed for stabilization of cardiac function after MI. PMID:23652800

  11. Cardiac Myocyte Alternans in Intact Heart: Influence of Cell-Cell Coupling and β-Adrenergic Stimulation

    PubMed Central

    Hammer, Karin P.; Ljubojevic, Senka; Ripplinger, Crystal M.; Pieske, Burkert M.; Bers, Donald M.

    2015-01-01

    Background Cardiac alternans are proarrhythmic and mechanistically link cardiac mechanical dysfunction and sudden cardiac death. Beat-to-beat alternans occur when beats with large Ca2+ transients and long action potential duration (APD) alternate with the converse. APD alternans are typically driven by Ca2+ alternans and sarcoplasmic reticulum (SR) Ca2+ release alternans. But the effect of intercellular communication via gap junctions (GJ) on alternans in intact heart remains unknown. Objective We assessed the effects of cell-to-cell coupling on local alternans in intact Langen-dorff-perfused mouse hearts, measuring single myocyte [Ca2+] alternans synchronization among neighboring cells, and effects of β-adrenergic receptor (β-AR) activation and reduced GJ coupling. Methods and Results Mouse hearts (C57BL/6) were retrogradely perfused and loaded with Fluo-8 AM to record cardiac myocyte [Ca2+] in situ with confocal microscopy. Single cell resolution allowed analysis of alternans within the intact organ during alternans induction. Carbenoxolone (25 μM), a GJ inhibitor, significantly increased the occurrence and amplitude of alternans in single cells within the intact heart. Alternans were concordant between neighboring cells throughout the field of view, except transiently during onset. β-AR stimulation only reduced Ca2+ alternans in tissue that had reduced GJ coupling, matching effects seen in isolated myocytes. Conclusions Ca2+ alternans among neighboring myocytes is predominantly concordant, likely because of electrical coupling between cells. Consistent with this, partial GJ uncoupling increased propensity and amplitude of Ca2+ alternans, and made them more sensitive to reversal by β-AR activation, as in isolated myocytes. Electrical coupling between myocytes may thus limit the alternans initiation, but also allow alternans to be more stable once established. PMID:25828762

  12. Evaluation of an established pericardium patch for delivery of mesenchymal stem cells to cardiac tissue.

    PubMed

    Vashi, Aditya V; White, Jacinta F; McLean, Keith M; Neethling, William M L; Rhodes, David I; Ramshaw, John A M; Werkmeister, Jerome A

    2015-06-01

    The present study has evaluated a commercial pericardial material for its capacity to assist as a natural extracellular matrix (ECM) patch for the delivery and retention of mesenchymal stem cells for cardiac repair. The repair of cardiac tissue with cells delivered by an appropriate bioscaffold is expected to offer a superior, long-lasting treatment strategy. The present material, CardioCel®, is based on acellular pericardium that has been stabilized by treatments, including a low concentration of glutaraldehyde, that eliminate calcification after implantation. In the present study, we have assessed this material using human bone marrow mesenchymal stem cells at various cell densities under standard, static cell culture conditions. The initial seeding densities were monitored to evaluate the extent of cell attachment and cell viability, with subsequent cell proliferation assessed up to 4 weeks using an MTS assay. Cell morphology, infiltration, and spreading were tracked using scanning electron microscopy and phalloidin staining. The efficacy of long-term cell survival was further assessed by examining the extent and type of new tissue formation on seeded scaffolds at 70 days; both type I and type III collagens were present in fibrillar structures on these scaffolds indicating that the seeded stem cells had the capacity to differentiate into collagen-producing cells necessary to repair damaged ECM. These data show that the CardioCel® scaffold is an appropriate substrate for the stem cells and has the potential to both retain seeded stem cells and to act as a template for cell propagation and new tissue formation. PMID:25266083

  13. Evaluation of an established pericardium patch for delivery of mesenchymal stem cells to cardiac tissue.

    PubMed

    Vashi, Aditya V; White, Jacinta F; McLean, Keith M; Neethling, William M L; Rhodes, David I; Ramshaw, John A M; Werkmeister, Jerome A

    2014-09-25

    The present study has evaluated a commercial pericardial material for its capacity to assist as a natural extracellular matrix patch for the delivery and retention of mesenchymal stem cells for cardiac repair. The repair of cardiac tissue with cells delivered by an appropriate bioscaffold is expected to offer a superior, long-lasting treatment strategy. The present material, CardioCel®, is based on acellular pericardium that has been stabilized by treatments, including a low concentration of glutaraldehyde, that eliminate calcification after implantation. In the present study, we have assessed this material using human bone marrow mesenchymal stem cells at various cell densities under standard, static cell culture conditions. The initial seeding densities were monitored to evaluate the extent of cell attachment and cell viability, with subsequent cell proliferation assessed up to 4 weeks using an MTS assay. Cell morphology, infiltration and spreading were tracked using scanning electron microscopy and phalloidin staining. The efficacy of long-term cell survival was further assessed by examining the extent and type of new tissue formation on seeded scaffolds at 70 days; both type I and type III collagens were present in fibrillar structures on these scaffolds indicating that the seeded stem cells had the capacity to differentiate into collagen-producing cells necessary to repair damaged extracellular matrix. These data show that the CardioCel® scaffold is an appropriate substrate for the stem cells and has the potential to both retain seeded stem cells and to act as a template for cell propagation and new tissue formation. PMID:25256436

  14. Stem cells and cardiac repair: a critical analysis.

    PubMed

    Dinsmore, Jonathan H; Dib, Nabil

    2008-03-01

    Utilizing stem cells to repair the damaged heart has seen an intense amount of activity over the last 5 years or so. There are currently multiple clinical studies in progress to test the efficacy of various different cell therapy approaches for the repair of damaged myocardium that were only just beginning to be tested in preclinical animal studies a few years earlier. This rapid transition from preclinical to clinical testing is striking and is not typical of the customary timeframe for the progress of a therapy from bench-to-bedside. Doubtless, there will be many more trials to follow in the upcoming years. With the plethora of trials and cell alternatives, there has come not only great enthusiasm for the potential of the therapy, but also great confusion about what has been achieved. Cell therapy has the potential to do what no drug can: regenerate and replace damaged tissue with healthy tissue. Drugs may be effective at slowing the progression of heart failure, but none can stop or reverse the process. However, tissue repair is not a simple process, although the idea on its surface is quite simple. Understanding cells, the signals that they respond to, and the keys to appropriate survival and tissue formation are orders of magnitude more complicated than understanding the pathways targeted by most drugs. Drugs and their metabolites can be monitored, quantified, and their effects correlated to circulating levels in the body. Not so for most cell therapies. It is quite difficult to measure cell survival except through ex vivo techniques like histological analysis of the target organ. This makes the emphasis on preclinical research all the more important because it is only in the animal studies that research has the opportunity to readily harvest the target tissues and perform the detailed analyses of what has happened with the cells. This need for detailed and usually time-intensive research in animal studies stands in contrast to the rapidity with which

  15. Oxidative stress and nitric oxide pathway in adult patients who are candidates for cardiac surgery: patterns and differences

    PubMed Central

    Cavalca, Viviana; Tremoli, Elena; Porro, Benedetta; Veglia, Fabrizio; Myasoedova, Veronika; Squellerio, Isabella; Manzone, Daniela; Zanobini, Marco; Trezzi, Matteo; Di Minno, Matteo Nicola Dario; Werba, José Pablo; Tedesco, Calogero; Alamanni, Francesco; Parolari, Alessandro

    2013-01-01

    OBJECTIVES We investigated whether oxidative stress and the arginine/nitric oxide pathway differ in control subjects and in adult patients who are candidates for the three most common cardiac surgical operations: coronary bypass surgery, aortic valve replacement for calcific non-rheumatic aortic stenosis or mitral valve repair for degenerative mitral insufficiency. METHODS In this prospective observational study, we studied 165 consecutive patients undergoing surgery from January to June 2011 (coronary bypass surgery, n = 63; aortic valve replacement for calcific non-rheumatic aortic stenosis, n = 51; mitral valve repair for degenerative mitral insufficiency, n = 51). Thirty-three healthy subjects with cardiovascular risk factors similar to surgery patients were also studied (Controls). Oxidative stress (the ratio of reduced and oxidized glutathione and urinary isoprostane), antioxidants (alpha- and gamma tocopherol) and factors involved in nitric oxide synthesis (arginine, symmetric and asymmetric dimethylarginine) were measured before surgery. Analysis of variance general linear models and principal component analysis were used for statistical analysis. RESULTS Surgical patients had increased levels of oxidative stress and decreased levels of antioxidants. Increased levels of nitric oxide inhibitor asymmetric dimethylarginine were detected in surgical candidates, suggesting arginine/nitric oxide pathway impairment. Concerning the differences among surgical procedures, higher oxidative stress and a major imbalance of the ratio between substrate and inhibitors of nitric oxide synthesis were evidenced in patients who were candidates for mitral valve repair with respect to coronary bypass surgery patients and patients with calcific non-rheumatic aortic stenosis. CONCLUSIONS Patients undergoing cardiac surgery have increased oxidative stress and a trend towards an impaired arginine/nitric oxide pathway with respect to Controls. Patients affected by mitral valve

  16. Genetic dissection of cardiac growth control pathways

    NASA Technical Reports Server (NTRS)

    MacLellan, W. R.; Schneider, M. D.

    2000-01-01

    Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.

  17. Human placenta-derived adherent cells improve cardiac performance in mice with chronic heart failure.

    PubMed

    Chen, Hong-Jung; Chen, Chien-Hsi; Chang, Ming-Yao; Tsai, Da-Ching; Baum, Ellen Z; Hariri, Robert; Herzberg, Uri; Hsieh, Patrick C H

    2015-03-01

    Human placenta-derived adherent cells (PDACs) are a culture-expanded, undifferentiated mesenchymal-like population derived from full-term placental tissue, with immunomodulatory, anti-inflammatory, angiogenic, and neuroprotective properties. PDA-001 (cenplacel-L), an intravenous formulation of PDAC cells, is in clinical development for the treatment of autoimmune and inflammatory diseases. We tested the therapeutic effects of PDA-001 in mice with chronic heart failure (CHF). Three weeks after transaortic constriction surgery to induce CHF, the mice underwent direct intramyocardial (IM) or i.v. injection of PDA-001 at a high (0.5 × 10(6) cells per mouse), medium (0.5 × 10(5) cells per mouse), or low (0.5 × 10(4) cells per mouse) dose. The mice were sacrificed 4 weeks after treatment. Echocardiography and ventricular catheterization showed that IM injection of PDA-001 significantly improved left ventricular systolic and diastolic function compared with injection of vehicle or i.v. injection of PDA-001. IM injection of PDA-001 also decreased cardiac fibrosis, shown by trichrome staining in the vicinity of the injection sites. Low-dose treatment showed the best improvement in cardiac performance compared with the medium- and high-dose groups. In another independent study to determine the mechanism of action with bromodeoxyuridine labeling, the proliferation rates of endothelial cells and cardiomyocytes were significantly increased by low or medium IM dose PDA-001. However, no surviving PDA-001 cells were detected in the heart 1 month after injection. In vivo real-time imaging consistently revealed that the PDA-001 cells were detectable only within 2 days after IM injection of luciferase-expressing PDA-001. Together, these results have demonstrated the cardiac therapeutic potential of PDA-001, likely through a paracrine effect. PMID:25673767

  18. Vitamin D and Cardiac Differentiation.

    PubMed

    Kim, Irene M; Norris, Keith C; Artaza, Jorge N

    2016-01-01

    Calcitriol (1,25-dihydroxycholecalciferol or 1,25-D3) is the hormonally active metabolite of vitamin D. Experimental studies of vitamin D receptors and 1,25-D3 establish calcitriol to be a critical regulator of the structure and function of the heart. Clinical studies link vitamin D deficiency with cardiovascular disease (CVD). Emerging evidence demonstrates that calcitriol is highly involved in CVD-related signaling pathways, particularly the Wnt signaling pathway. Addition of 1,25-D3 to cardiomyocyte cells and examination of its effects on cardiomyocytes and mainly Wnt11 signaling allowed the specific characterization of the role of calcitriol in cardiac differentiation. 1,25-D3 is demonstrated to: (i) inhibit cell proliferation without promoting apoptosis; (ii) decrease expression of genes related to the regulation of the cell cycle; (iii) promote formation of cardiomyotubes; (iv) induce expression of casein kinase-1-α1, a negative regulator of the canonical Wnt signaling pathway; and (v) increase expression of noncanonical Wnt11, which has been recognized to induce cardiac differentiation during embryonic development and in adult cells. Thus, it appears that vitamin D promotes cardiac differentiation through negative modulation of the canonical Wnt signaling pathway and upregulation of noncanonical Wnt11 expression. Future work to elucidate the role(s) of vitamin D in cardiovascular disorders will hopefully lead to improvement and potentially prevention of CVD, including abnormal cardiac differentiation in settings such as postinfarction cardiac remodeling. PMID:26827957

  19. Omega 3 polyunsaturated fatty acid modulates dihydropyridine effects on L-type Ca2+ channels, cytosolic Ca2+, and contraction in adult rat cardiac myocytes.

    PubMed Central

    Pepe, S; Bogdanov, K; Hallaq, H; Spurgeon, H; Leaf, A; Lakatta, E

    1994-01-01

    The effect of docosahexaenoic acid (DHA; C22:6) on dihydropyridine (DHP) interaction with L-type Ca2+ channel current (ICa), cytosolic Ca2+ (Cai), and cell contraction in isolated adult rat cardiac myocytes was studied. The DHP L-type Ca(2+)-channel blocker nitrendipine (10 nM) reduced peak ICa (measured by whole-cell voltage clamp from -45 to 0 mV) and reduced the amplitude of the Ca2+ transient (measured as the transient in indo-1 fluorescence, 410/490 nm) and the twitch amplitude (measured via photodiode array) during steady-state electrical stimulation (0.5 Hz). The DHP L-type Ca2+ channel agonist BAY K 8644 (10 nM) significantly increased ICa, the amplitude of the Cai transient, and contraction. When cells were exposed to DHA (5 microM) simultaneously with either BAY K 8644 or nitrendipine, the drug effects were abolished. Arachidonic acid (C20:4) at 5 microM did not block the inhibitory effects of nitrendipine nor did it prevent the potentiating effects of BAY K 8644. DHA modulation of DHP action could be reversed by cell perfusion with fatty acid-free bovine serum albumin at 1 mg/ml. Neither DHA nor arachidonic acid alone (5 microM) had any apparent effect on the parameters measured. DHA (5 microM) had no influence over beta-adrenergic receptor stimulation (isoproterenol, 0.01-1 microM)-induced increases in ICa, Cai, or contraction. The findings that DHA inhibits the effect of DHP agonists and antagonists on Ca(2+)-channel current but has no effect alone or on beta-adrenergic-induced increases in ICa suggests that DHA specifically binds to Ca2+ channels at or near DHP binding sites and interferes with ICa modulation. Images PMID:7522322

  20. Exploring analytical proteomics platforms toward the definition of human cardiac stem cells receptome.

    PubMed

    Gomes-Alves, Patrícia; Serra, Margarida; Brito, Catarina; R-Borlado, Luis; López, Juan A; Vázquez, Jesús; Carrondo, Manuel J T; Bernad, António; Alves, Paula M

    2015-04-01

    Human cardiac stem cells (hCSC) express a portfolio of plasma membrane receptors that are involved in the regulatory auto/paracrine feedback loop mechanism of activation of these cells, and consequently contribute to myocardial regeneration. In order to attain a comprehensive description of hCSC receptome and overcoming the inability demonstrated by other technologies applied in receptor identification, mainly due to the transmembrane nature, high hydrophobic character and relative low concentration of these proteins, we have exploited and improved a proteomics workflow. This approach was based on the enrichment of hCSC plasma membrane fraction and addition of prefractionation steps prior to MS analysis. More than 100 plasma membrane receptors were identified. The data reported herein constitute a valuable source of information to further understand cardiac stem cells activation mechanisms and the subsequent cardiac repair process. All MS data have been deposited in the ProteomeXchange with identifier PXD001117 (http://proteomecentral.proteomexchange.org/dataset/PXD001117). PMID:25504917

  1. Lack of Rybp in Mouse Embryonic Stem Cells Impairs Cardiac Differentiation.

    PubMed

    Ujhelly, Olga; Szabo, Viktoria; Kovacs, Gergo; Vajda, Flora; Mallok, Sylvia; Prorok, Janos; Acsai, Karoly; Hegedus, Zoltan; Krebs, Stefan; Dinnyes, Andras; Pirity, Melinda Katalin

    2015-09-15

    Ring1 and Yy1 binding protein (Rybp) has been implicated in transcriptional regulation, apoptotic signaling and as a member of the polycomb repressive complex 1, it has an important function in regulating pluripotency and differentiation of embryonic stem cells (ESCs). Earlier, we had proved that Rybp plays an essential role in mouse embryonic and central nervous system development. This work identifies Rybp, as a critical regulator of heart development. Rybp is readily detectable in the developing mouse heart from day 8.5 of embryonic development. Prominent Rybp expression persists during all embryonic stages, and Rybp marks differentiated cell types of the heart. By utilizing rybp null ESCs in an in vitro cardiac differentiation assay, we found that rybp null ESCs do not form rhythmically beating cardiomyocytes (CMCs). Gene expression profiles revealed a downregulation of cardiac terminal and upregulation of germline-specific markers in the rybp null CMCs. Furthermore, transcriptome analysis uncovered a number of novel candidate target genes regulated by Rybp. Among these are several that are important in cardiac development and contractility such as Plagl1, Isl1, and Tnnt2. Importantly, forced expression of rybp in rybp-deficient ESCs by a lentiviral vector was able to rescue the mutant phenotype. Our data provide evidence for a previously unrecognized function of Rybp in heart development and point out the importance of germ cell lineage gene silencing during somatic differentiation. PMID:26110923

  2. Cardiac stem cell genetic engineering using the αMHC promoter

    PubMed Central

    Bailey, Brandi; Izarra, Alberto; Alvarez, Roberto; Fischer, Kimberlee M; Cottage, Christopher T; Quijada, Pearl; Díez-Juan, Antonio; Sussman, Mark A

    2010-01-01

    Aims Cardiac stem cells (CSCs) show potential as a cellular therapeutic approach to blunt tissue damage and facilitate reparative and regenerative processes after myocardial infarction. Despite multiple published reports of improvement, functional benefits remain modest using normal stem cells delivered by adoptive transfer into damaged myocardium. The goal of this study is to enhance survival and proliferation of CSCs that have undergone lineage commitment in early phases as evidenced by expression of proteins driven by the α-myosin heavy chain (αMHC) promoter. The early increased expression of survival kinases augments expansion of the cardiogenic CSC pool and subsequent daughter progeny. Materials & methods Normal CSCs engineered with fluorescent reporter protein constructs under control of the αMHC promoter show transgene protein expression, confirming activity of the promoter in CSCs. Cultured CSCs from both nontransgenic and cardiac-specific transgenic mice expressing survival kinases driven by the αMHC promoter were analyzed to characterize transgene expression following treatments to promote differentiation in culture. Results & conclusion Therapeutic genes controlled by the αMHC promoter can be engineered into and expressed in CSCs and cardiomyocyte progeny with the goal of improving the efficacy of cardiac stem cell therapy. PMID:19903002

  3. Regulation of troponin C synthesis in primary culture of chicken cardiac muscle cells.

    PubMed

    Malhotra, S B; Bag, J

    1987-01-01

    Cardiac myocyte cell culture from fourteen day old embryonic chicken heart was prepared. This cultured cell system was used to examine the regulation of troponin C (TnC) synthesis in cardiac muscle. To examine the regulation of TnC polypeptide synthesis, cardiac myocyte cells were pulse labelled with 35S-methionine at different days after plating. The synthesis of TnC was measured by determining the amount of radioactivity incorporated into the TnC polypeptide following separation by two dimensional gel electrophoresis. These measurements showed that TnC synthesis was maximum in 36 to 48 h old cultures and reached its lowest level in 4 day old cultures. This was in contrast to the synthesis of actin and tropomyosin. Synthesis of these polypeptides were lowest in 36 to 48 h old cultures and was maximum in 7 day old cultures. To examine whether the synthesis of TnC polypeptide paralleled the levels of TnC mRNA the sequences homologous to quail slow TnC cDNA clone were measured by hybridisation. The results showed that the decrease in the synthesis of troponin C polypeptide cannot be fully explained by the decrease in the steady state level of troponin C mRNA. The possibility of a role of translational control of troponin C mRNA in this process is discussed. PMID:2890096

  4. Primary Prevention of Sudden Cardiac Death in Adults with Transposition of the Great Arteries: A Review of Implantable Cardioverter-Defibrillator Placement

    PubMed Central

    Cedars, Ari M.

    2015-01-01

    Transposition of the great arteries encompasses a set of structural congenital cardiac lesions that has in common ventriculoarterial discordance. Primarily because of advances in medical and surgical care, an increasing number of children born with this anomaly are surviving into adulthood. Depending upon the subtype of lesion or the particular corrective surgery that the patient might have undergone, this group of adult congenital heart disease patients constitutes a relatively new population with unique medical sequelae. Among the more common and difficult to manage are cardiac arrhythmias and other sequelae that can lead to sudden cardiac death. To date, the question of whether implantable cardioverter-defibrillators should be placed in this cohort as a preventive measure to abort sudden death has largely gone unanswered. Therefore, we review the available literature surrounding this issue. PMID:26413012

  5. Prevalence and Prognosis of Unrecognized Myocardial Infarction Determined by Cardiac Magnetic Resonance in Older Adults

    PubMed Central

    Schelbert, Erik B.; Cao, Jie J.; Sigurdsson, Sigurdur; Aspelund, Thor; Kellman, Peter; Aletras, Anthony H.; Dyke, Christopher K.; Thorgeirsson, Gudmundur; Eiriksdottir, Gudny; Launer, Lenore J.; Gudnason, Vilmundur; Harris, Tamara B.; Arai, Andrew E.

    2013-01-01

    Context Unrecognized myocardial infarction (MI) is prognostically important but electrocardiography (ECG), the main epidemiology tool for detection, is insensitive to MI. Objective Determine prevalence and mortality risk for unrecognized MI (UMI) detected by cardiac magnetic resonance (CMR) or ECG. Design ICELAND MI is a cohort substudy of the Age, Gene/Environment Susceptibility-Reykjavik Study (enrollment January 2004–January 2007) using ECG or CMR to detect UMI. Setting Community dwelling participants in Iceland over age 67. Participants 936 participants (ages 67–93 years) including 670 who were randomly selected and 266 with diabetes. Main Outcome Measures MI prevalence and mortality through September 1, 2011. Results reported with 95% confidence limits and net reclassification improvement (NRI). Results Of 936 participants, 91 had recognized MI (RMI; 9.7% CI 8–12%), and 157 had UMI by CMR (17%; CI 14–19%) which was more prevalent than the 46 UMI by ECG (5%; CI 4–6%, p<0.001). Diabetic participants had more UMI by CMR than UMI by ECG (n=72; 21%; CI 17–26% vs. n=15; 4%; CI 2–7%, p<0.001). UMI by CMR was associated with atherosclerosis risk factors, coronary calcium, coronary revascularization, and peripheral vascular disease. Over a median of 6.4 years, 33% (CI 23–43%) of individuals with RMI died (30 of 91) and 28% (CI 21–35%) with UMI died (44 of 157), both higher rates than the 17% (CI 15–20%) with no MI that died (119 of 688). UMI by CMR improved risk stratification for mortality over RMI (NRI: 0.34; CI 0.16–0.53). Adjusting for age, sex, diabetes, and RMI, UMI by CMR remained associated with mortality (HR 1.45 CI 1.02–2.06, absolute risk increase (ARI) 8%) and significantly improved risk stratification for mortality, NRI 0.16 (CI 0.01–0.31)) but UMI by ECG did not (HR 0.88, CI 0.45–1.73 ARI −2%; NRI: −0.05; CI −0.17–0.05). Compared to those with RMI, participants with UMI by CMR used cardiac medications such as statins

  6. Transforming growth factor-{beta}2 enhances differentiation of cardiac myocytes from embryonic stem cells

    SciTech Connect

    Kumar, Dinender . E-mail: Dinender.Kumar@uvm.edu; Sun, Baiming

    2005-06-24

    Stem cell therapy holds great promise for the treatment of injured myocardium, but is challenged by a limited supply of appropriate cells. Three different isoforms of transforming growth factor-{beta} (TGF-{beta}) -{beta}1, -{beta}2, and -{beta}3 exhibit distinct regulatory effects on cell growth, differentiation, and migration during embryonic development. We compared the effects of these three different isoforms on cardiomyocyte differentiation from embryonic stem (ES) cells. In contrast to TGF-{beta}1, or -{beta}3, treatment of mouse ES cells with TGF-{beta}2 isoform significantly increased embryoid body (EB) proliferation as well as the extent of the EB outgrowth that beat rhythmically. At 17 days, 49% of the EBs treated with TGF-{beta}2 exhibited spontaneous beating compared with 15% in controls. Cardiac myocyte specific protein markers sarcomeric myosin and {alpha}-actin were demonstrated in beating EBs and cells isolated from EBs. In conclusion, TGF-{beta}2 but not TGF-{beta}1, or -{beta}3 promotes cardiac myocyte differentiation from ES cells.

  7. Epoxyeicosatrienoic acids protect cardiac cells during starvation by modulating an autophagic response

    PubMed Central

    Samokhvalov, V; Alsaleh, N; El-Sikhry, H E; Jamieson, K L; Chen, C B; Lopaschuk, D G; Carter, C; Light, P E; Manne, R; Falck, J R; Seubert, J M

    2013-01-01

    Epoxyeicosatrienoic acids (EETs) are cytochrome P450 epoxygenase metabolites of arachidonic acid involved in regulating pathways promoting cellular protection. We have previously shown that EETs trigger a protective response limiting mitochondrial dysfunction and reducing cellular death. Considering it is unknown how EETs regulate cell death processes, the major focus of the current study was to investigate their role in the autophagic response of HL-1 cells and neonatal cardiomyocytes (NCMs) during starvation. We employed a dual-acting synthetic analog UA-8 (13-(3-propylureido)tridec-8-enoic acid), possessing both EET-mimetic and soluble epoxide hydrolase (sEH) inhibitory properties, or 14,15-EET as model EET molecules. We demonstrated that EETs significantly improved viability and recovery of starved cardiac cells, whereas they lowered cellular stress responses such as caspase-3 and proteasome activities. Furthermore, treatment with EETs resulted in preservation of mitochondrial functional activity in starved cells. The protective effects of EETs were abolished by autophagy-related gene 7 (Atg7) short hairpin RNA (shRNA) or pharmacological inhibition of autophagy. Mechanistic evidence demonstrated that sarcolemmal ATP-sensitive potassium channels (pmKATP) and enhanced activation of AMP-activated protein kinase (AMPK) played a crucial role in the EET-mediated effect. Our data suggest that the protective effects of EETs involve regulating the autophagic response, which results in a healthier pool of mitochondria in the starved cardiac cells, thereby representing a novel mechanism of promoting survival of cardiac cells. Thus, we provide new evidence highlighting a central role of the autophagic response in linking EETs with promoting cell survival during deep metabolic stress such as starvation. PMID:24157879

  8. Cardiac Lymphoma.

    PubMed

    Jeudy, Jean; Burke, Allen P; Frazier, Aletta Ann

    2016-07-01

    Lymphoma of the heart and pericardium may develop in up to 25% of patients with disseminated nodal disease, but primary cardiac lymphoma is rare. The majority are diffuse large B-cell lymphomas, which arise in immunocompetent older individuals, men twice as often as women. Subsets are found in immunocompromised patients, including those with HIV-AIDS or allograft recipients. Cardiac lymphomas tend to arise in the wall of the right heart, especially right atrium, with contiguous infiltration of epicardium and pericardium. Pericardial implants and effusions are common. The disease is often multifocal in the heart, but cardiac valves are usually spared. PMID:27265603

  9. December 2014 HeartWeek issue of cardiology in the young: highlights of HeartWeek 2014: diseases of the cardiac valves from the foetus to the adult.

    PubMed

    Jacobs, Jeffrey P

    2014-12-01

    This December Issue of Cardiology in the Young represents the 12th annual publication generated from the two meetings that compose "HeartWeek in Florida". "HeartWeek in Florida", the joint collaborative project sponsored by the Cardiac Center at the Children's Hospital of Philadelphia, Pennsylvania, together with Johns Hopkins All Children's Heart Institute of Saint Petersburg, Florida, averages over 1000 attendees every year and is now recognised as one of the major planks of continuing medical and nursing education for those working in the fields of diagnosis and treatment of cardiac disease in the foetus, neonate, infant, child, and adult. "HeartWeek in Florida" combines the International Symposium on Congenital Heart Disease, organised by All Children's Hospital and Johns Hopkins Medicine and entering its 15th year, with the Annual Postgraduate Course in Pediatric Cardiovascular Disease, organised by The Children's Hospital of Philadelphia and entering its 18th year. This December, 2014 Issue of Cardiology in the Young features highlights of Johns Hopkins All Children's Heart Institute's 14th Annual International Symposium on Congenital Heart Disease, which was held at the Renaissance Vinoy Resort & Golf Club, Saint Petersburg, Florida, from 15-18 February, 2014. This Symposium was co-sponsored by The American Association for Thoracic Surgery (AATS) and had as its special focus " Diseases of the Cardiac Valves from the Fetus to the Adult ". We acknowledge the tremendous contributions made to paediatric and congenital cardiac care by Duke Cameron and Joel Brenner, and therefore we dedicate this December, 2014 HeartWeek Issue of Cardiology in the Young to them. Duke Cameron is Professor of Surgery at Johns Hopkins University and Cardiac Surgeon-in-Charge at The Johns Hopkins Hospital. Joel Brenner is Professor of Pediatrics at Johns Hopkins University and Director of the Taussig Heart Center at Bloomberg Children's Center, The Johns Hopkins Hospital. Together

  10. An Engineered Cardiac Reporter Cell Line Identifies Human Embryonic Stem Cell-Derived Myocardial Precursors

    PubMed Central

    Mihardja, Shirley S.; Liszewski, Walter; Erle, David J.; Lee, Randall J.; Bernstein, Harold S.

    2011-01-01

    Unlike some organs, the heart is unable to repair itself after injury. Human embryonic stem cells (hESCs) grow and divide indefinitely while maintaining the potential to develop into many tissues of the body. As such, they provide an unprecedented opportunity to treat human diseases characterized by tissue loss. We have identified early myocardial precursors derived from hESCs (hMPs) using an α-myosin heavy chain (αMHC)-GFP reporter line. We have demonstrated by immunocytochemistry and quantitative real-time PCR (qPCR) that reporter activation is restricted to hESC-derived cardiomyocytes (CMs) differentiated in vitro, and that hMPs give rise exclusively to muscle in an in vivo teratoma formation assay. We also demonstrate that the reporter does not interfere with hESC genomic stability. Importantly, we show that hMPs give rise to atrial, ventricular and specialized conduction CM subtypes by qPCR and microelectrode array analysis. Expression profiling of hMPs over the course of differentiation implicate Wnt and transforming growth factor-β signaling pathways in CM development. The identification of hMPs using this αMHC-GFP reporter line will provide important insight into the pathways regulating human myocardial development, and may provide a novel therapeutic reagent for the treatment of cardiac disease. PMID:21245908

  11. Anonymous sources: where do adult β cells come from?

    PubMed

    German, Michael S

    2013-05-01

    Evidence that the pool of insulin-producing β cells in the pancreas is reduced in both major forms of diabetes mellitus has led to efforts to understand β cell turnover in the adult pancreas. Unfortunately, previous studies have reached opposing conclusions regarding the source of new β cells during regeneration in the adult pancreas. In this issue of the JCI, Xiao et al. use a novel mouse model for detecting new β cells derived from non-β cells to demonstrate the absence of β cell neogenesis from non-β cells during normal postnatal growth and in models of β cell regeneration. This work adds to mounting evidence that in most physiological and pathological conditions, β cell neogenesis may not make large contributions to the postnatal β cell pool - at least not in rodents. PMID:23619356

  12. HIV is inactivated after transepithelial migration via adult oral epithelial cells but not fetal epithelial cells

    PubMed Central

    Tugizov, Sharof M.; Herrera, Rossana; Veluppillai, Piri; Greenspan, Deborah; Soros, Vanessa; Greene, Warner C.; Levy, Jay A.; Palefsky, Joel M.

    2010-01-01

    Oral transmission of human immunodeficiency virus (HIV) in adult populations is rare. However, HIV spread across fetal/neonatal oropharyngeal epithelia could be important in mother-to-child transmission. Analysis of HIV transmission across polarized adult and fetal oral epithelial cells revealed that HIV transmigrates through both adult and fetal cells. However, only virions that passed through the fetal cells – and not those that passed through the adult cells – remained infectious. Analysis of expression of anti-HIV innate proteins beta-defensins 2 and 3, and secretory leukocyte protease inhibitor in adult, fetal, and infant oral epithelia showed that their expression is predominantly in the adult oral epithelium. Retention of HIV infectivity after transmigration correlated inversely with the expression of these innate proteins. Inactivation of innate proteins in adult oral keratinocytes restored HIV infectivity. These data suggest that high-level innate protein expression may contribute to the resistance of the adult oral epithelium to HIV transmission. PMID:21056450

  13. A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death

    PubMed Central

    Wang, Z; Liu, D; Varin, A; Nicolas, V; Courilleau, D; Mateo, P; Caubere, C; Rouet, P; Gomez, A-M; Vandecasteele, G; Fischmeister, R; Brenner, C

    2016-01-01

    Although cardiac cytosolic cyclic 3′,5′-adenosine monophosphate (cAMP) regulates multiple processes, such as beating, contractility, metabolism and apoptosis, little is known yet on the role of this second messenger within cardiac mitochondria. Using cellular and subcellular approaches, we demonstrate here the local expression of several actors of cAMP signaling within cardiac mitochondria, namely a truncated form of soluble AC (sACt) and the exchange protein directly activated by cAMP 1 (Epac1), and show a protective role for sACt against cell death, apoptosis as well as necrosis in primary cardiomyocytes. Upon stimulation with bicarbonate (HCO3−) and Ca2+, sACt produces cAMP, which in turn stimulates oxygen consumption, increases the mitochondrial membrane potential (ΔΨm) and ATP production. cAMP is rate limiting for matrix Ca2+ entry via Epac1 and the mitochondrial calcium uniporter and, as a consequence, prevents mitochondrial permeability transition (MPT). The mitochondrial cAMP effects involve neither protein kinase A, Epac2 nor the mitochondrial Na+/Ca2+ exchanger. In addition, in mitochondria isolated from failing rat hearts, stimulation of the mitochondrial cAMP pathway by HCO3− rescued the sensitization of mitochondria to Ca2+-induced MPT. Thus, our study identifies a link between mitochondrial cAMP, mitochondrial metabolism and cell death in the heart, which is independent of cytosolic cAMP signaling. Our results might have implications for therapeutic prevention of cell death in cardiac pathologies. PMID:27100892

  14. When, where and how to initiate hypothermia after adult cardiac arrest.

    PubMed

    Taccone, F S; Donadello, K; Beumier, M; Scolletta, S

    2011-09-01

    Therapeutich hypothermia (TH) has been shown to improve neurological outcome and survival after witnessed cardiac arrest (CA) that is due to ventricular fibrillation. Although TH is widely used following witnessed CA as well as all forms of initial rhythm, the mortality rate after CA remains unacceptably high, and additional study is needed to understand when and how to implement hypothermia in the post-resuscitation phase. Experimental studies have emphasized the importance of initiating cooling soon after the return of spontaneous circulation (ROSC) or even during cardiopulmonary resuscitation (CPR). Clinical studies have shown that pre-hospital induction of hypothermia is feasible and has no major adverse events-even when used intra-arrest-and may provide some additional benefits compared to delayed in-hospital cooling. Thus, hypothermia use should not be limited to the Intensive Care Unit but can be initiated in the field/ambulance or in the Emergency Department, then continued after hospital admission- even during specific procedures such as coronary angiography-as part of the global management of CA patients. Various methods (both non-invasive and invasive) are available to achieve and maintain the target temperature; however, only some of these methods-which include cold fluids, ice packs, iced pads and helmet and trans-nasal cooling- are easily deployed in the pre-hospital setting. PMID:21878875

  15. Parameter identifiability of cardiac ionic models using a novel CellML least squares optimization tool.

    PubMed

    Hui, Ben B B; Dokos, Socrates; Lovell, Nigel H

    2007-01-01

    Published models of excitable cells can be used to fit to a range of action potential experimental data. CellML is a well-defined standard for publishing and exchanging such models, but currently there is a lack of software that utilizes CellML for parameter analysis. In this paper, we introduce a Java-based utility capable of performing model simulation, identifiability analysis, and parameter optimization of ionic cardiac cell models written in CellML. Identifiability analysis was performed in seven CellML models. Parameter identifiability was consistently improved by using the compensatory membrane current as opposed to the membrane voltage as the residual. as well as through the introduction of an additional stimulus set used in the fitting process. PMID:18003205

  16. "The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells.

    PubMed

    Sirabella, Dario; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2015-08-01

    The pressing need for effective cell therapy for the heart has led to the investigation of suitable cell sources for tissue replacement. In recent years, human pluripotent stem cell research expanded tremendously, in particular since the derivation of human-induced pluripotent stem cells. In parallel, bioengineering technologies have led to novel approaches for in vitro cell culture. The combination of these two fields holds potential for in vitro generation of high-fidelity heart tissue, both for basic research and for therapeutic applications. However, this new multidisciplinary science is still at an early stage. Many questions need to be answered and improvements need to be made before clinical applications become a reality. Here we discuss the current status of human stem cell differentiation into cardiomyocytes and the combined use of bioengineering approaches for cardiac tissue formation and maturation in developmental studies, disease modeling, drug testing, and regenerative medicine. PMID:26069271

  17. The effect of space microgravity on the physiological activity of mammalian resident cardiac stem cells

    NASA Astrophysics Data System (ADS)

    Belostotskaya, Galina; Zakharov, Eugeny

    Prolonged exposure to weightlessness during space flights is known to cause depression of heart function in mammals. The decrease in heart weight and its remodeling under the influence of prolonged weightlessness (or space microgravity) is assumed to be due to both morphological changes of working cardiomyocytes and their progressive loss, as well as to possible depletion of resident cardiac stem cells (CSCs) population, or their inability to self-renewal and regeneration of muscle tissue under conditions of weightlessness. We have previously shown that the presence of different maturity clones formed by resident CSCs not only in culture but also in the mammalian myocardium can be used as an indicator of the regenerative activity of myocardial cells [Belostotskaya, et al., 2013: 2014]. In this study, we were interested to investigate whether the 30-day near-Earth space flight on the spacecraft BION-M1 affects the regenerative potential of resident CSCs. Immediately after landing of the spacecraft, we had examined the presence of resident c-kit+, Sca-1+ and Isl1+ CSCs and their development in suspension of freshly isolated myocardial cells of C57BL mice in comparison to controls. Cardiac cell suspension was obtained by enzymatic digestion of the heart [Belostotskaya and Golovanova, 2014]. Immunocytochemically stained preparations of fixed cells were analyzed with confocal microscope Leica TCS SP5 (Germany) in the Resource Center of St-Petersburg State University. CSCs were labeled with appropriate antibodies. CSCs differentiation into mature cardiomyocytes was verified using antibodies to Sarcomeric α-Actinin and Cardiac Troponin T. Antibodies to Connexin43 were used to detect cell-cell contacts. All antibodies were conjugated with Alexa fluorochromes (488, 532, 546, 568, 594 and/or 647 nm), according to Zenon-technology (Invitrogen). It has been shown that, under identical conditions of cell isolation, more complete digestion of heart muscle was observed in

  18. Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses

    PubMed Central

    Ma, Zhen; Liu, Qiuying; Liu, Honghai; Yang, Huaxiao; Yun, Julie X.; Eisenberg, Carol; Borg, Thomas K.; Xu, Meifeng; Gao, Bruce Z.

    2012-01-01

    Following myocardial infarction there is an irreversible loss of cardiomyocytes that results in the alteration of electrical propagation in the heart. Restoration of functional electrical properties of the damaged heart muscle is essential to recover from the infarction. While there are a few reports that demonstrate that fibroblasts can form junctions that transmit electrical signals, a potential alternative using the injection of stem cells has emerged as a promising cellular therapy; however, stem-cell electrical conductivity within the cardiac muscle fiber is unknown. In this study, an in vitro cardiac muscle model was established on an MEA-based biochip with multiple cardiomyocytes that mimic cardiac tissue structure. Using a laser beam, stem cells were inserted adjacent to each muscle fiber (cell bridge model) and allowed to form cell-cell contact as determined by the formation of gap junctions. The electrical conductivity of stem cells was assessed and compared with the electrical conductivities of cardiomyocytes and fibroblasts. Results showed that stem cell-myocyte contacts exhibited higher and more stable conduction velocities than myocyte-fibroblast contacts, which indicated that stem cells have higher electrical compatibility with native cardiac muscle fibers than cardiac fibroblasts. PMID:22170399

  19. Cardiac mechanics are impaired during fatiguing exercise and cold pressor test in healthy older adults

    PubMed Central

    Muller, Matthew D.; Mast, Jessica L.; Patel, Hardikkumar

    2013-01-01

    We sought to determine how the aging left ventricle (LV) responds to sympathetic nervous system (SNS) activation. Three separate echocardiographic experiments were conducted in 11 healthy young (26 ± 1 yr) and 11 healthy older (64 ± 1 yr) adults. Tissue Doppler imaging was used to measure systolic myocardial velocity (Sm), early diastolic myocardial velocity (Em), and late diastolic myocardial velocity (Am) during isometric fatiguing handgrip (IFHG), a 2-min cold pressor test (CPT), and 5 min of normobaric hypoxia. Heart rate (HR) and mean arterial pressure (MAP) were also monitored on a beat-by-beat basis; rate pressure product (RPP) was used as an index of myocardial oxygen demand. At peak IFHG, the groups had similar increases in RPP, but the ΔSm was significantly greater (i.e., larger impairment) in the older subjects (−0.82 ± 0.13 cm/s) compared with the young subjects (0.37 ± 0.30 cm/s). At peak IFHG, the ΔEm was similar between older (−1.59 ± 0.68 cm/s) and young subjects (−1.06 ± 0.76 cm/s). In response to the CPT, both Sm and Em were reduced in the older adults but did not change relative to baseline in the young subjects. Normobaric hypoxia elevated HR and RPP in both groups but did not alter Tissue Doppler parameters. These data indicate that Sm and Em are reduced in healthy older adults during IFHG and CPT. We speculate that suboptimal LV adaptations to SNS stress may partly explain why acute heavy exertion can trigger myocardial ischemia. PMID:23154996

  20. Child-to-Adult Liver Transplantation With Donation After Cardiac Death Donors

    PubMed Central

    Hu, Liangshuo; Liu, Xuemin; Zhang, Xiaogang; Yu, Liang; Sha, Huanchen; Zhou, Ying; Tian, Min; Shi, Jianhua; Wang, Wanli; Liu, Chang; Guo, Kun; Lv, Yi; Wang, Bo

    2016-01-01

    Abstract Development of organ transplantation is restricted by the discrepancy between the lack of donors and increasing number of patients. The outcome of pediatric donors transplanted into adult recipients especially with donation after circulatory death (DCD) pattern has not been well studied. The aim of this paper is to describe our experience of 3 successful DCD donor child-to-adult liver transplantations lately. Three DCD donors were separately 7, 5, and 8 years old. The ratio between donor graft weight and recipient body weight was 1.42%, 1.00%, and 1.33%, respectively. Ratio between the volume of donor liver and the expected liver volume was 0.65, 0.46, and 0.60. Splenectomy was undertaken for the second recipient according to the portal vein pressure (PVP) which was observed during the operation. Two out of 3 of the recipients suffered with acute kidney injury and got recovered after renal replacement therapy. The first recipient also went through early allograft dysfunction and upper gastrointestinal bleeding. The hospital course of the third recipient was uneventful. After 1 year of follow-up visit, the first and second recipients maintain good quality of life and liver function. The third patient was followed up for 5 months until now and recovered well. DCD child-to-adult liver transplantation should only be used for comparatively matched donor and recipient. PVP should be monitored during the operation. The short-term efficacy is good, but long-term follow-up and clinical study with large sample evaluation are still needed. PMID:26886643

  1. Influence of aging on the quantity and quality of human cardiac stem cells

    PubMed Central

    Nakamura, Tamami; Hosoyama, Tohru; Kawamura, Daichi; Takeuchi, Yuriko; Tanaka, Yuya; Samura, Makoto; Ueno, Koji; Nishimoto, Arata; Kurazumi, Hiroshi; Suzuki, Ryo; Ito, Hiroshi; Sakata, Kensuke; Mikamo, Akihito; Li, Tao-Sheng; Hamano, Kimikazu

    2016-01-01

    Advanced age affects various tissue-specific stem cells and decreases their regenerative ability. We therefore examined whether aging affected the quantity and quality of cardiac stem cells using cells obtained from 26 patients of various ages (from 2 to 83 years old). We collected fresh right atria and cultured cardiosphere-derived cells (CDCs), which are a type of cardiac stem cell. Then we investigated growth rate, senescence, DNA damage, and the growth factor production of CDCs. All samples yielded a sufficient number of CDCs for experiments and the cellular growth rate was not obviously associated with age. The expression of senescence-associated b-galactosidase and the DNA damage marker, gH2AX, showed a slightly higher trend in CDCs from older patients (≥65 years). The expression of VEGF, HGF, IGF-1, SDF-1, and TGF-b varied among samples, and the expression of these beneficial factors did not decrease with age. An in vitro angiogenesis assay also showed that the angiogenic potency of CDCs was not impaired, even in those from older patients. Our data suggest that the impact of age on the quantity and quality of CDCs is quite limited. These findings have important clinical implications for autologous stem cell transplantation in elderly patients. PMID:26947751

  2. Influence of aging on the quantity and quality of human cardiac stem cells.

    PubMed

    Nakamura, Tamami; Hosoyama, Tohru; Kawamura, Daichi; Takeuchi, Yuriko; Tanaka, Yuya; Samura, Makoto; Ueno, Koji; Nishimoto, Arata; Kurazumi, Hiroshi; Suzuki, Ryo; Ito, Hiroshi; Sakata, Kensuke; Mikamo, Akihito; Li, Tao-Sheng; Hamano, Kimikazu

    2016-01-01

    Advanced age affects various tissue-specific stem cells and decreases their regenerative ability. We therefore examined whether aging affected the quantity and quality of cardiac stem cells using cells obtained from 26 patients of various ages (from 2 to 83 years old). We collected fresh right atria and cultured cardiosphere-derived cells (CDCs), which are a type of cardiac stem cell. Then we investigated growth rate, senescence, DNA damage, and the growth factor production of CDCs. All samples yielded a sufficient number of CDCs for experiments and the cellular growth rate was not obviously associated with age. The expression of senescence-associated b-galactosidase and the DNA damage marker, gH2AX, showed a slightly higher trend in CDCs from older patients (≥ 65 years). The expression of VEGF, HGF, IGF-1, SDF-1, and TGF-b varied among samples, and the expression of these beneficial factors did not decrease with age. An in vitro angiogenesis assay also showed that the angiogenic potency of CDCs was not impaired, even in those from older patients. Our data suggest that the impact of age on the quantity and quality of CDCs is quite limited. These findings have important clinical implications for autologous stem cell transplantation in elderly patients. PMID:26947751

  3. SIRT Is Required for EDP-Mediated Protective Responses toward Hypoxia–Reoxygenation Injury in Cardiac Cells

    PubMed Central

    Samokhvalov, Victor; Jamieson, Kristi L.; Fedotov, Ilia; Endo, Tomoko; Seubert, John M.

    2016-01-01

    Hypoxia–reoxygenation (H/R) injury is known to cause extensive injury to cardiac myocardium promoting development of cardiac dysfunction. Despite the vast number of studies dedicated to studying H/R injury, the molecular mechanisms behind it are multiple, complex, and remain very poorly understood, which makes development of novel pharmacological agents challenging. Docosahexaenoic acid (DHA, 22:6n3) is an n - 3 polyunsaturated fatty acid obtained from dietary sources, which produces numerous effects including regulation of cell survival and death mechanisms. The beneficial effects of DHA toward the cardiovascular system are well documented but the relative role of DHA or one of its more potent metabolites is unresolved. Emerging evidence indicates that cytochrome P450 (CYP) epoxygenase metabolites of DHA, epoxydocosapentaenoic acids (EDPs), have more potent biological activity than DHA in cardiac cells. In this study we examined whether EDPs protect HL-1 cardiac cells from H/R injury. Our observations demonstrate that treatment with 19,20-EDP protected HL-1 cardiac cells from H/R damage through a mechanism(s) protecting and enhancing mitochondrial quality. EDP treatment increased the relative rates of mitobiogenesis and mitochondrial respiration in control and H/R exposed cardiac cells. The observed EDP protective response toward H/R injury involved SIRT1-dependent pathways. PMID:27242531

  4. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species.

    PubMed

    Serena, Elena; Figallo, Elisa; Tandon, Nina; Cannizzaro, Christopher; Gerecht, Sharon; Elvassore, Nicola; Vunjak-Novakovic, Gordana

    2009-12-10

    Exogenous electric fields have been implied in cardiac differentiation of mouse embryonic stem cells and the generation of reactive oxygen species (ROS). In this work, we explored the effects of electrical field stimulation on ROS generation and cardiogenesis in embryoid bodies (EBs) derived from human embryonic stem cells (hESC, line H13), using a custom-built electrical stimulation bioreactor. Electrical properties of the bioreactor system were characterized by electrochemical impedance spectroscopy (EIS) and analysis of electrical currents. The effects of the electrode material (stainless steel, titanium-nitride-coated titanium, titanium), length of stimulus (1 and 90 s) and age of EBs at the onset of electrical stimulation (4 and 8 days) were investigated with respect to ROS generation. The amplitude of the applied electrical field was 1 V/mm. The highest rate of ROS generation was observed for stainless steel electrodes, for signal duration of 90 s and for 4-day-old EBs. Notably, comparable ROS generation was achieved by incubation of EBs with 1 nM H(2)O(2). Cardiac differentiation in these EBs was evidenced by spontaneous contractions, expression of troponin T and its sarcomeric organization. These results imply that electrical stimulation plays a role in cardiac differentiation of hESCs, through mechanisms associated with the intracellular generation of ROS. PMID:19720058

  5. Cell and gene therapy for arrhythmias: Repair of cardiac conduction damage

    PubMed Central

    Xiao, Yong-Fu

    2011-01-01

    Action potentials generated in the sinoatrial node (SAN) dominate the rhythm and rate of a healthy human heart. Subsequently, these action potentials propagate to the whole heart via its conduction system. Abnormalities of impulse generation and/or propagation in a heart can cause arrhythmias. For example, SAN dysfunction or conduction block of the atrioventricular node can lead to serious bradycardia which is currently treated with an implanted electronic pacemaker. On the other hand, conduction damage may cause reentrant tachyarrhythmias which are primarily treated pharmacologically or by medical device-based therapies, including defibrillation and tissue ablation. However, drug therapies sometimes may not be effective or are associated with serious side effects. Device-based therapies for cardiac arrhythmias, even with well developed technology, still face inadequacies, limitations, hardware complications, and other challenges. Therefore, scientists are actively seeking other alternatives for antiarrhythmic therapy. In particular, cells and genes used for repairing cardiac conduction damage/defect have been investigated in various studies both in vitro and in vivo. Despite the complexities of the excitation and conduction systems of the heart, cell and gene-based strategies provide novel alternatives for treatment or cure of cardiac arrhythmias. This review summarizes some highlights of recent research progress in this field. PMID:22783301

  6. Role of connectivity and fluctuations in the nucleation of calcium waves in cardiac cells

    NASA Astrophysics Data System (ADS)

    Hernandez-Hernandez, Gonzalo; Alvarez-Lacalle, Enric; Shiferaw, Yohannes

    2015-11-01

    Spontaneous calcium release (SCR) occurs when ion channel fluctuations lead to the nucleation of calcium waves in cardiac cells. This phenomenon is important since it has been implicated as a cause of various cardiac arrhythmias. However, to date, it is not understood what determines the timing and location of spontaneous calcium waves within cells. Here, we analyze a simplified model of SCR in which calcium release is modeled as a stochastic processes on a two-dimensional network of randomly distributed sites. Using this model we identify the essential parameters describing the system and compute the phase diagram. In particular, we identify a critical line which separates pinned and propagating fronts, and show that above this line wave nucleation is governed by fluctuations and the spatial connectivity of calcium release units. Using a mean-field analysis we show that the sites of wave nucleation are predicted by localized eigenvectors of a matrix representing the network connectivity of release sites. This result provides insight on the interplay between connectivity and fluctuations in the genesis of SCR in cardiac myocytes.

  7. Cell Death and Serum Markers of Collagen Metabolism during Cardiac Remodeling in Cavia porcellus Experimentally Infected with Trypanosoma cruzi

    PubMed Central

    Castro-Sesquen, Yagahira E.; Gilman, Robert H.; Paico, Henry; Yauri, Verónica; Angulo, Noelia; Ccopa, Fredy; Bern, Caryn

    2013-01-01

    We studied cell death by apoptosis and necrosis in cardiac remodeling produced by Trypanosoma cruzi infection. In addition, we evaluated collagen I, III, IV (CI, CIII and CIV) deposition in cardiac tissue, and their relationship with serum levels of procollagen type I carboxy-terminal propeptide (PICP) and procollagen type III amino-terminal propeptide (PIIINP). Eight infected and two uninfected guinea pigs were necropsied at seven time points up to one year post-infection. Cell death by necrosis and apoptosis was determined by histopathological observation and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Deposition of cardiac collagen types was determined by immunohistochemistry and serum levels of PICP, PIIINP, and anti-T. cruzi IgG1 and IgG2 by ELISA. IgG2 (Th1 response) predominated throughout the course of infection; IgG1 (Th2 response) was detected during the chronic phase. Cardiac cell death by necrosis predominated over apoptosis during the acute phase; during the chronic phase, both apoptosis and necrosis were observed in cardiac cells. Apoptosis was also observed in lymphocytes, endothelial cells and epicardial adipose tissue, especially in the chronic phase. Cardiac levels of CI, CIII, CIV increased progressively, but the highest levels were seen in the chronic phase and were primarily due to increase in CIII and CIV. High serum levels of PICP and PIIINP were observed throughout the infection, and increased levels of both biomarkers were associated with cardiac fibrosis (p = 0.002 and p = 0.038, respectively). These results confirm the role of apoptosis in cell loss mainly during the chronic phase and the utility of PICP and PIIINP as biomarkers of fibrosis in cardiac remodeling during T. cruzi infection. PMID:23409197

  8. Cell death and serum markers of collagen metabolism during cardiac remodeling in Cavia porcellus experimentally infected with Trypanosoma cruzi.

    PubMed

    Castro-Sesquen, Yagahira E; Gilman, Robert H; Paico, Henry; Yauri, Verónica; Angulo, Noelia; Ccopa, Fredy; Bern, Caryn

    2013-01-01

    We studied cell death by apoptosis and necrosis in cardiac remodeling produced by Trypanosoma cruzi infection. In addition, we evaluated collagen I, III, IV (CI, CIII and CIV) deposition in cardiac tissue, and their relationship with serum levels of procollagen type I carboxy-terminal propeptide (PICP) and procollagen type III amino-terminal propeptide (PIIINP). Eight infected and two uninfected guinea pigs were necropsied at seven time points up to one year post-infection. Cell death by necrosis and apoptosis was determined by histopathological observation and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Deposition of cardiac collagen types was determined by immunohistochemistry and serum levels of PICP, PIIINP, and anti-T. cruzi IgG1 and IgG2 by ELISA. IgG2 (Th1 response) predominated throughout the course of infection; IgG1 (Th2 response) was detected during the chronic phase. Cardiac cell death by necrosis predominated over apoptosis during the acute phase; during the chronic phase, both apoptosis and necrosis were observed in cardiac cells. Apoptosis was also observed in lymphocytes, endothelial cells and epicardial adipose tissue, especially in the chronic phase. Cardiac levels of CI, CIII, CIV increased progressively, but the highest levels were seen in the chronic phase and were primarily due to increase in CIII and CIV. High serum levels of PICP and PIIINP were observed throughout the infection, and increased levels of both biomarkers were associated with cardiac fibrosis (p = 0.002 and p = 0.038, respectively). These results confirm the role of apoptosis in cell loss mainly during the chronic phase and the utility of PICP and PIIINP as biomarkers of fibrosis in cardiac remodeling during T. cruzi infection. PMID:23409197

  9. The adult human brain harbors multipotent perivascular mesenchymal stem cells.

    PubMed

    Paul, Gesine; Özen, Ilknur; Christophersen, Nicolaj S; Reinbothe, Thomas; Bengzon, Johan; Visse, Edward; Jansson, Katarina; Dannaeus, Karin; Henriques-Oliveira, Catarina; Roybon, Laurent; Anisimov, Sergey V; Renström, Erik; Svensson, Mikael; Haegerstrand, Anders; Brundin, Patrik

    2012-01-01

    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain. PMID:22523602

  10. miR-146a targets Fos expression in human cardiac cells

    PubMed Central

    Palomer, Xavier; Capdevila-Busquets, Eva; Botteri, Gaia; Davidson, Mercy M.; Rodríguez, Cristina; Martínez-González, José; Vidal, Francisco; Barroso, Emma; Chan, Tung O.; Feldman, Arthur M.; Vázquez-Carrera, Manuel

    2015-01-01

    ABSTRACT miR-146a is a microRNA whose transcript levels are induced in the heart upon activation of NF-κB, a transcription factor induced by pro-inflammatory molecules (such as TNF-α) that is strongly related to the pathogenesis of cardiac disorders. The main goal of this study consisted of studying new roles of miR-146a in cardiac pathological processes caused by the pro-inflammatory cytokine TNF-α. Our results demonstrate that miR-146a transcript levels were sharply increased in cardiac ventricular tissue of transgenic mice with specific overexpression of TNF-α in the heart, and also in a cardiomyocyte cell line of human origin (AC16) exposed to TNF-α. Among all the in silico predicted miR-146a target genes, Fos mRNA and protein levels notably decreased after TNF-α treatment or miR-146a overexpression. These changes correlated with a diminution in the DNA-binding activity of AP-1, the Fos-containing transcription factor complex. Interestingly, AP-1 inhibition was accompanied by a reduction in matrix metalloproteinase (MMP)-9 mRNA levels in human cardiac cells. The specific regulation of this MMP by miR-146a was further confirmed at the secretion and enzymatic activity levels, as well as after anti-miR-mediated miR-146a inhibition. The results reported here demonstrate that Fos is a direct target of miR-146a activity and that downregulation of the Fos–AP-1 pathway by miR-146a has the capacity to inhibit MMP-9 activity. Given that MMP-9 is an AP-1 target gene involved in cardiac remodeling, myocardial dysfunction and progression of heart failure, these findings suggest that miR-146a might be a new and promising therapeutic tool for treating cardiac disorders associated with enhanced inflammation in the heart. PMID:26112171

  11. Cardiac Rehabilitation is Associated with Lasting Improvements in Cognitive Function in Older Adults with Heart Failure

    PubMed Central

    Alosco, Michael L.; Spitznagel, Mary Beth; Cohen, Ronald; Sweet, Lawrence H.; Josephson, Richard; Hughes, Joel; Rosneck, Jim; Gunstad, John

    2016-01-01

    Objective Heart failure (HF) is a known risk factor for cognitive impairment. Cardiac rehabilitation (CR) may attenuate poor neurocognitive outcomes in HF via improved physical fitness—a significant promoter of cognitive function. However, no study has examined the possible acute and lasting benefits of CR on cognitive function in persons with HF. Methods and Results 52 patients with HF completed a 12-week Phase II CR program. All participants were administered neuropsychological testing and completed a brief physical fitness assessment at baseline, completion of CR (i.e. 12-weeks), and 12-month follow-up. Repeated measures analyses showed a significant time effect for both attention/executive function and memory (p < 0.05). Attention/executive function performance increased from baseline to 12-weeks and these gains remained up to 12-m